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Abstract—Shapley values are great analytical tools in game
theory to measure the importance of a player in a game. Due to
their axiomatic and desirable properties such as efficiency, they
have become popular for feature importance analysis in data
science and machine learning. However, the time complexity to
compute Shapley values based on the original formula is expo-
nential, and as the number of features increases, this becomes
infeasible. Castro et al. [1] developed a sampling algorithm, to
estimate Shapley values. In this work, we propose a new sampling
method based on a multilinear extension technique as applied in
game theory. The aim is to provide a more efficient (sampling)
method for estimating Shapley values. Our method is applicable
to any machine learning model, in particular for either multi-
class classifications or regression problems. We apply the method
to estimate Shapley values for multilayer perceptrons (MLPs) and
through experimentation on two datasets, we demonstrate that
our method provides more accurate estimations of the Shapley
values by reducing the variance of the sampling statistics.

Index Terms—shapley values, feature attribution methods,
sampling

I. INTRODUCTION

Explaining models have becoming an important aspect of
data science, in particular, with the growing complexity of
machine learning models. For motivations, discussions, and
different explainability models under a unified framework,
we refer to the work of Lundberg and Lee [2] where the
methods LIME [3], DeepLIFT [4], Layer-Wise Relevance
Propagation [5], and exact Shapley values [6] together with
their SHAP methods are explained. The main reason for
the popularity of Shapley values is that they satisfy certain
interesting axioms (which we will discuss in Section III), most
notably the efficiency axiom, that are desirable in analyzing
interpretability and attributions.

It is worth noting that Shapley values are a local inter-
pretability attribution method in the sense that they quantify
the explanation of a specific model by assigning a value to
each input feature. This value can be then interpreted as the
contribution (or relevance) of that feature towards the output
of the model. Although several non-axiomatic methods are
developed in particular for neural networks, an advantage
of an axiomatic approach, such as Shapley values, is to
have a profound theoretical background that mitigates the
risk of misleading or unreliable interpretations. While there

are other attribution methods which have their own merits,
we specifically focus on estimating Shapley values through
sampling methods.

The main drawback of the calculation of Shapley values
using the original definition (aka exact Shapely values) is
its exponential time complexity. We divide Shapley values
estimation methods into two main categories, methods that do
not converge towards the exact Shapely values, and methods
that do converge. In the first category, we have two types
of methods. The first type are semi-closed form solution
methods to approximate Shapley values which provide a
decent approximation for simple games (see the work of
Castro et al. [1] where they make a comparison of this
method with their sampling approach). These solutions are
normally based on the central limit theorem (see the work
of Owen [7]) which are computationally cheap. The second
type of the first category are data-driven methods such as
regression and linear based techniques [8, 9], quantitative
input influence approaches [10], and DASP [11]. The second
category includes the Shapley sampling method developed by
Castro et al. [1] which in general becomes computationally
expensive as the number of feature increases, however, this
has the advantage of converging to the exact Shapley values.

Our method falls within the second category in which we
provide a sampling type algorithm to estimate Shapley values
based on a multilinear extension technique as applied in game
theory [7], which converges to the exact Shapley values. As
mentioned earlier, semi-closed form solutions have already
been obtained from this multilinear extension techniques for
simple games [7], however, to the best of our knowledge, this
is the first time that a sampling type algorithm is extracted
from the multilinear extension techniques. Furthermore, our
algorithm is applicable for calculating the Shapley values of
features of any machine learning model. In particular, we apply
the algorithm for the case of MLPs in classification problems.

The sampling methods such as the one developed by
Castro et al. [1] are used as a ground truth for Shapley
value estimations or attributions, see for instance the work
of Ancona et al. [11]. Their experiments show that for up to a
certain number of network evaluations, their method provides
a more accurate solution. In this paper we compare against the
sampling algorithm developed by Castro et al. [1] and from
now on we will refer to this algorithm as Castro sampling.



As our experiments show, comparing to the Castro sam-
pling, our method reduces the variance of the estimator which
results in a more accurate and time-efficient algorithm. The
goal is to present our algorithm in its original form though
it could be improved in several directions which we leave
to future work. In our experimental analysis, first, we use
a dataset with a small number of features in which we can
calculate the exact Shapley values. Knowing the exact Shapley
values in this case, we can then compare the quality of our
method, in terms of both accuracy and time-efficiency against
Castro sampling. As the results confirm, the error of our
approximation is much lower. Next, we then apply the method
also on a dataset with a larger number of features. While it is
not possible to obtain the exact Shapley values in this case,
we can perform a variance analysis to show that our estimator
admits a lower variance compared to that of Castro sampling.

The reminder of this paper goes as follows. In § II, we
discuss related works. In § III, we introduce the background
and preliminaries necessary to explain our method in § IV. § V
is devoted to the experimental setup. Results are presented and
discussed in § VI. We conclude in § VII.

II. RELATED WORK

Multilinear extension methods have been already applied in
calculating feature attributions. Jones and Wilson [12] present
a multilinear extension technique, which is then applied to
multichoice games in the context of Shapley values using the
central limit theorem. Michalak et al. [13] present analytical
formulas for Shapley value-based centrality in both weighted
and unweighted networks algorithms. The base of our method
is the multilinear extension technique as developed by Owen
[7]. This work is further discussed in the next section. Despite
other multilinear extension techniques applied to estimate
Shapley values, our method does indeed converge to the exact
Shapley values. Although sampling methods should converge
to the exact values, the sampling nature still remains there, and
it becomes computationally cumbersome in the presence of a
large number of features. So the efficiency and applicability
of the method boils down to its convergence speed.

Depending on the structure of the machine learning model,
in certain cases, simpler approximations might be possible.
Fatima et al. [9] introduce a polynomial time approximation
method to estimate Shapley values for weighted voting games.
A similar idea is also used by Ancona et al. [11] for explaining
deep neural networks where in contrast to the sampling method
developed by Castro et al. [1], their algorithm does not
converge to the exact Shapley values, however, for up to a
fixed number of instructions, their algorithm provides a more
accurate estimation.

It is worth noting that there are other attribution methods
as well. Lundberg and Lee [2] introduce the KernelSHAP
method, which combines sampling with lasso regression.
There are also Integrated Gradient [14], and DeepLIFT and
its two flavors Rescale and RevealCancel [15, 4]. However,
among all these methods, only KernelSHAP (without regular-
izer) converges to the exact Shapley values.

III. BACKGROUND AND PRELIMINARIES

A. Feature Attribution Through Shapely Values

Consider a machine learning model � from Rn+1 into R
with inputs represented by X = (x0; x1; :::; xn) in the feature
space Rn+1, where x0 = 1 is to account for the bias term,
and n � 1 is a positive integer.

A prime question in many applied fields such as data science
and finance is to provide an algorithm that measures the
contribution (also called attribution or importance) of a given
feature xj , j = 0; 1; :::; n, in the output �(X) where X is the
input of the machine learning model. But how should such
notion of importance be defined?

Let us have a short excursion to game theory where the
notion of contribution is well defined for games. In game
theory language, a game is a real-valued function � defined on
the player set (called features in our setup) fx0; x1; : : : ; xng,
i.e., � : 2fx0;x1;:::;xng ! R. In contrast to machine learning
where the inputs are tuples (vectors) of features, in game
theory the inputs are set of players.

Suppose that we want to define a notion of contribution for
the player xj , j = 0; 1; :::; n; of a game expressed by �. Let us
denote the contribution of feature xj by 	j(�). It is argued by
Shapley [6] that 	j(�) is a reasonable notion of contribution,
if it satisfies (at least) the following axioms:

Efficiency:
Pn

j=0 	j(�) = �(X). That is, the sum of all
contributions is equal to the output of the game.

Symmetry: For any two players xi and xj , if �(A[fxig) =
�(A[fxjg) for all subset A (of the player set) that do not
contain neither xi nor xj , then 	j(�) = 	i(�). That is,
if two players have the same influence on any coalition
their contributions should be the same.

Linearity: For two games � and ! with the same player set
and for all players xj and a real number �, we have
	j(�+!) = 	j(�)+	j(!) and 	j(��) = �	j(�). That
is, when two independent games are combined, the total
contribution of a player is equal to the sum of individual
contributions on each game.

Null player (feature): For a player xj and a game �, if �(A[
fxjg) = �(A) for all subsets A (of the player set) that
do not contain xj (such player is called null player) then
	j(�) = 0:

Remarkably, it is proved by Shapley [6] that 	j(�) must
satisfy the following representation:

	j(�) =
X

A�Xnfxjg

jAj! (n� jAj)!
(n+ 1)!

(�(A [ fxjg)� �(A)) ;

(1)
where jAj is the cardinality of the set A, i.e., the number
of elements in A. In other words, the only measurement that
satisfies the four axioms is given by Equation (1), which is
called the Shapley value (see the work of Moulin [16] for
more explanations).

Given the desirable axioms, it appears that Shapley values
are suitable measurements of a player’s contribution in a



game which make them also suitable candidates for measuring
contributions of features in machine learning. Concretely, a
machine learning model� on a feature space (player set in
game theory) can be considered as a game, and a tuple of
featuresX = ( x0; x1; : : : ; xn ) is interpreted as the set of
playersf x0; x1; : : : ; xn g. Vice versa, for a set of players (each
player is interpreted as a feature), we can create a tuple where
a missing feature is substituted by zero. The last point is
related to the concept of baseline in machine learning where
we substitute a missing feature with a zero baseline. Other
choices of baselines are also available [17], but this does not
affect our methodology.

From the above argument, we can formally de�ne the
contribution of a featurex j in a machine learning model�
through Shapley value as follows:

De�nition III.1. Given a featurex j and a machine learning
model � , we de�ne its contribution towards� (X ) as the
Shapley value of the featurex j for � , that is:

Sj (� ) =
X

A � X nf x j g

jAj! (n � j Aj)!
(n + 1)!

(� (A [ f x j g) � � (A)) ;

where jAj is the cardinality of the setA, and with some
abuse of notation,� (A [ f x j g) and � (A) must be understood
as the evaluation of� for the corresponding tuples obtained
respectively fromA [f x j g andA, through replacing a missing
feature by zero in the tuples.

B. Multilinear Extensions Method

Next, we provide a brief review of the multilinear extension
method as developed by Owen [7]. In order to do so, �rst, we
need to impose a probabilistic structure on the feature space in
the following sense. For a �xedj = 0 ; 1; :::; n and a random
subsetE j of f x0; x1; :::; xn g r f x j g, the probability of any
feature (exceptx j ) being inE j is equal toq where0 � q � 1;
more precisely, this means that:

P(f xk 2 E0g) = q; for all k = 1 ; 2; :::; n;

P(f xk 2 En g) = q; for all k = 0 ; 1; :::; n � 1;

and for j = 1 ; 2; :::; n � 1,

P(f xk 2 E j g) = q; for all k = 0 ; 1; :::; j � 1; j + 1 ; :::; n:

Furthermore, we assume that sampling is done so that the
eventsf xk 2 E j gk6= j; 0� k � n are mutually independent. Note
that becauseE j is a random subset,� (E j ) becomes a random
variable.

Given the above probabilistic structure, a probabilistic rep-
resentation of the Shapley values is provided as follows [7]:

Sj (v) =
Z 1

0
ej (q) dq; (2)

where
ej (q) = E[� (E j [ f x j g) � � (E j )]: (3)

The integral of Equation (2) can be interpreted as either
Riemann or Lebesgue integral. Equations (2) and (3) are the

Algorithm 1 Owen Sampling
Input: � , X = ( x0; x1; : : : ; xn ), Q, M
Output: Ŝ(� ) = ( Ŝ0(� ); Ŝ1(� ); : : : ; Ŝn (� ))

1: Ŝj (� ) := 0 , for all j
2: for q = 0 ; 1=Q;2=Q; : : : ;1 do
3: ej := 0 , for all j
4: for m = 1 ; 2; : : : ; M do
5: I (q)

m  (bj : bj � Bern(q); for all j )
6: h(q)

m;j  � (I (q)
m � X + X ( j ) ) � � (I (q)

m � X ); for all j

7: ej  ej + h(q)
m;j ; for all j

8: end for
9: Ŝj (� )  Ŝj (� ) + ej ; for all j

10: end for
11: Ŝ(� )  Ŝj (� )=(QM ); for all j

result of the multilinear extension method and provide the
bases of the two algorithms that we present in the next section.

IV. T HE PROPOSEDSAMPLING ALGORITHMS

In this section, we present two algorithms based on the
multilinear extension method developed by Owen [7] (in his
honor, we call the algorithmsOwen sampling).

A. The Owen Sampling Algorithm

The �rst algorithm is based on a discretization of Equation
(2). In this algorithm, the number of samples is controlled by
two positive integersQ and M , and the Shapley values esti-
mators are shown bŷS(� ) = ( Ŝ0(� ); :::; Ŝn (� )) . Algorithm 1
explains the method in pseudo-code.

This Algorithm requires as inputX , � , and the number of
samples which are controlled by the parametersQ andM . The
parameterQ controls the level of discretization of the integral
in Equation (2), and the parameterM controls the accuracy of
the estimation of the expected valueej (q) in Equation (3). The
optimal choices ofQ andM are yet to be explored, however,
of the two, the parameterQ plays a more signi�cant role in the
sense that by increasingQ, in general, we increase the total
random numbers generated in the inner loop controlled byM .
But the opposite of this does not occur. In all our experiments,
we �x the value of M = 2 , i.e., the total number of samples
is equal to2Q.

The outer loop in Line 2 of this algorithm approximates
the integral of Equation (2) by initializing zero values for
its integrandsej in Line 3. If we divide these values byM ,
i.e. ej =M , they are approximations ofej (q) in Equation (3).
More precisely, the inner loop in Line 4 uses a Monte Carlo
estimation method that leads to the estimation of Equation (3).
Since the probabilistic structure of the algorithm is governed
by Bernoulli distribution, in Line 5, for each iteration of the
inner loop, we generaten + 1 Bernoulli random numbers
independently, which are temporarily stored in the vectorI (q)

m ,
i.e., each element of this vector is either zero or one depending
on the outcome of the Bernoulli random number.



This vector is used to calculate the marginal contributions
h(q)

m;j . In Line 6, the� operator is the element-wise multiplica-

tion, and it is applied to the vectorsI (q)
m andX . The operand

X ( j ) in Line 6 indicates the vector(0; 0; : : : ; 0; x j ; 0; : : : ; 0).
The unnormalized approximated values of the integral in
Equation (2) are then updated in Line 9. To normalize them
we need to divided them by the total number of iterations
QM . The convergence of this algorithm is guaranteed by the
following proposition.

Proposition IV.1. Suppose that for a �xedj , function
q 7! ej (q) is Riemann (or Lebesgue) integrable1, i.e.,R1

0 jej (q)j dq < 1 . Then the estimators of Algorithm 1
converge to the true Shapley values asQ and M increase.

Proof. See the Appendix.

B. Time Complexity Analysis

Algorithm 1 can be improved using parallel programming,
however, an implementation method such as this is not our
main criterion of comparison. Note that generating a Bernoulli
random number is computable in constant time, i.e.,O(1)
[18, 19]. Therefore, assuming that the time complexity of
calculating h(q)

m;j is polynomial, the time complexity of the
algorithm is polynomial. This has the same time complexity
of the Castro sampling algorithm [1], but in order to have a
fair comparison, a more detailed investigation is required.

In the Castro sampling algorithm, in each iteration three
major operations are performed:

1) �rst, a random permutation from the set ofn features is
drawn using a uniform probability, the time-complexity
of this is O(n);

2) second for a given permutation, the set of predecessors
of the features in that permutation is calculated. This is
alsoO(n), and;

3) �nally, the value of the machine learning model is
calculated.

By a one to one comparison of Castro sampling algorithm to
Algorithm 1, in each iteration, we draw a random sample with
time complexityn � O(1) = O(n), instead of calculating the
predecessors of the features, we calculate the identityej =
ej + h(q)

m;j , for all j , that isO(n), and �nally we calculate the
value of the machine learning model. In Algorithm 1, a total
of QM samplings is required, while in the Castro sampling
algorithm, this is handled by a single parameter,M c.

Therefore, for a fair comparison, forQM samplings of
Algorithm 1, we have to considerM c = QM ones of the
Castro sampling algorithm. However, as our experiments show,
both the accuracy and the actual running time of Algorithm
1 are better than that of the Castro sampling algorithm. An
important feature of Algorithm 1 is symmetry which can be
exploited to improve the Algorithm 1 as follows.

1This is a technical assumption, and it is satis�ed in all practical circum-
stances.

Algorithm 2 Halved Owen Sampling
Input: � , X = ( x0; x1; : : : ; xn ), Q, M
Output: Ŝ(� ) = ( Ŝ0(� ); Ŝ1(� ); : : : ; Ŝn (� ))

1: Ŝj (� ) := 0 , for all j
2: for q = 0 ; 1=Q;2=Q; : : : ;0:5 do
3: ej := 0 , for all j
4: for m = 1 ; 2; : : : ; M do
5: I (q)

m  (bj : bj � Bern(q); for all j )
6: I ( � q)

m  1 � I (q)
m

7: h(q)
m;j  � (I (q)

m � X + X ( j ) ) � � (I (q)
m � X ); for all j

8: h( � q)
m;j  � (I ( � q)

m � X + X ( j ) )� � (I ( � q)
m � X ); for all j

9: ej  ej + h(q)
m;j + h( � q)

m;j ; for all j
10: end for
11: Ŝj (� )  Ŝj (� ) + ej ; for all j
12: end for
13: Ŝ(� )  Ŝj (� )=(QM ); for all j

C. Improving Owen Sampling through Symmetry

For 0 � q � 1, we let h( � q)
m;j represent the calculation of

the output of the machine learning model as in Line 6 of
Algorithm 1, when instead ofq, we use1 � q. Looking at
Algorithm 1, it is clear that by using this symmetry, we only
need to run the outer loop of this algorithm halfway through,
i.e., for q = 0 ; 1=Q; :::;0:5, as for eachq, we can duplicate
the calculations of the output of the machine learning model
by using1 � q. For instance, suppose that we only have three
features(x0; x1; x2), and for a givenq, we have generated
the Bernoulli random sequence(1; 1; 0) which means that the
featuresx0 andx1 are selected according to this distribution,
and featurex2 is absent. This is equivalent to choosing only
x2 based on the random sequence(0; 0; 1) generated using a
Bernoulli distribution with parameter1� q. This will have two
important consequences, �rst, we only need to generateMQ=2
random numbers each with Bernoulli distribution and, second
and most importantly, this will further reduce the variance
of the estimator which will be discussed in our experimental
section. For this reason, we call this algorithmHalved Owen
Sampling. This is formalized in Algorithm 2.

Algorithm 2 is almost identical to Algorithm 1 except
for few lines. As already discussed, comparing Line 2 of
Algorithm 1 against Line 2 of Algorithm 2, we now only
need to exploreQ=2 iterations. In Lines 7 and 8, we calculate
the output of the model for two cases,q and1 � q, using the
vectors created in Lines 5 and 6. The result of Line 7 and 8
is then added to Line 9. The convergence of this algorithm is
guaranteed by the following theorem.

Theorem IV.1. Suppose that for a �xedj , functionq 7! ej (q)
is Riemann (or Lebesgue) integrable, i.e.,

R1
0 jej (q)j dq < 1 .

Then the estimates of Algorithm 2 converge to the true Shapley
values asQ and M increase.

Proof. See the Appendix.



For a fair comparison of Algorithm 2 against the Castro
sampling algorithm, we use similar arguments as done for
Algorithm 1 where for aQM sample size of this algorithm, we
consider an equivalentM c = QM sample size of the Castro
sampling algorithm. This may sound counter-intuitive because
it would appear that this new algorithm usesQM=2 samples,
i.e., we generateQMn=2 random numbers in contrast to
QMn random numbers of Algorithm 1. However, in its inner
most loop we calculate the output of the machine learning
model twice. Hence, the number of operations is still in the
order ofQM . Therefore we consider the same sample size as
for Algorithm 1.

V. EXPERIMENTAL SETUP

In this section, we perform several experiments to test our
algorithms. Although, the algorithms are applicable to any
machine learning model, here we focus only on Multilayer
Perceptrons (MLPs); further experiments on more complex
networks are left to future work. The software used to run
these experiments is available at the following link https:
//github.com/aldolipani/OwenShap.

A. Datasets and Preprocessing

We experiment with the following two datasets:
Credit Card Dataset (CC). This is a �nancial dataset which

is a collection of credit card data used by Yeh and Lien
[20]. There is a total number of 29,351 observations where
each observation is made of 23 features and a binary target
variable. The features are either �nancial (such as pay related
information) or non-�nancial like age. The target variable is
either zero or one with one indicating the default of the credit
card account.

Modi�ed NIST (MNIST). This is a large database of
handwritten digits that is commonly used for training and
testing machine learning models [21]. It was created by “re-
mixing” the samples from another dataset. Each sample is a
black and white image of a handwritten digit. Furthermore, the
black and white images are normalized to �t into a 28x28 pixel
bounding box. The MNIST dataset contains 70,000 images.

These two datasets have a different number of features (23
and 784). In order to compare the various sampling algorithms
we need to compute the exact Shapely values for at least
one dataset. However, both datasets make this calculation
infeasible due to their feature sizes. For this reason, we reduce
the dimensionality of the CC dataset by only selecting the �rst
15 features.

B. MLPs and Training Details

The activation function of the input layer and hidden layers
is always a sigmoid, while the activation function of the output
layer is a softmax. All MLPs are trained using Adam as
optimizer with its default parameters and the binary cross-
entropy as loss function. We use an early stopping criteria to
avoid over�tting, where we stop training after the loss on the
validation set has not improved over 3 epochs. We divide both
datasets into 64% training set, 16% validation set and 20%

test set. The rest of the hyper-parameters, i.e., the number of
hidden layers and number of neurons in each layer, are chosen
via a Monte Carlo sampling of models using the training and
validation sets.

For the CC dataset, we sample 1000 models with a number
of hidden layers from 0 to 3 and a number of neurons for each
hidden layer from 1 to 15. The best model has 2-hidden layers
with 13 and 9 neurons each. The accuracy of this model on
the CC test set is 0.8247. For the MNIST dataset, we sample
1000 models with a number of hidden layers from 0 to 3 and
a number of neurons for each hidden layer from 25 to 500
at multiples of 25. The best model has 2-hidden layers with
300 and 25 neurons each. The accuracy of this model on the
MNIST test set is 0.9818.

C. Experiments

Approximation Error. To evaluate the quality of the differ-
ent sampling algorithms, we compare them against the exact
Shapely values. Computing the Shapely values is an expensive
operation because it grows exponentially with the number of
features. In order to make this feasible, we only perform this
analysis on the smaller CC dataset. Here, we take a sample
of size 50 of the test set and compute the exact Shapely
values. Then for each algorithm, as we increase the number of
algorithms' samplings, we compute the average of the Mean
Squared Errors (MSEs) across the examples. In order to make
a fair comparison, so that the numbers of samples of the
various algorithms are equivalent, we setM c = 2m for the
Castro sampling, wherem is a positive integer, andQ = m
andM = 2 for the Owen sampling.

Variance Analysis. Besides the quality of the predictions,
we perform a complementary analysis of the sampling al-
gorithms by measuring their sample variances. To do this,
we �rst take a sample of the test set of size 50. Then for
each sampling algorithm and each example, we estimate the
Shapely values increasing the sampling sizes from 2 to 200 at
steps of 2. At each step, we compute the standard deviations
of the feature estimates over the previous steps. Then, we
compute the average across the features. Finally, we average
across the examples. Note that the increase in the sample size
is done by varying the equivalent number of samples, i.e.,
M c = 2Q. As the number of samples increases, a decrease
of the averaged sample standard deviations would con�rm the
convergence of the estimators. Note that from Proposition IV.1
and Theorem IV.1, the Owen sampling algorithms converge to
the exact Shapley values only when bothM andQ increase.
By �xing M = 2 , the algorithms converge to an estimation of
the Shapley values.

VI. RESULTS AND DISCUSSION

In Figure 1, we observe the results of the error analysis.
Both plots measure the MSE of the exact Shapely values
against the outcome of the sampling algorithms. The box-plot
is computed over 50 examples from the test set and using 2000
equivalent samples (M c = 2000 for Castro,Q = 1000 and
M = 2 for Owen). From this box-plot we can observe that the



Fig. 1: MSE of the exact Shapely values against the Castro and Owen samplings. The box-plot shows the variance of the error
over 50 examples and 2000 samples. The line-plot shows how the error decreases when the number of samples is increased.

Algorithm Parameters MSE (10� 6 ) Time (ms)
Castro M c = 2000 0.5575 3.004
Owen M = 2 ; Q = 1000 0.3184 1.044

Halved Owen M = 2 ; Q = 1000 0.1207 0.968

TABLE I: Summery of the results presented in box-plot in
Fig. 1. Results are averaged over 50 examples of the CC test
set.

Owen sampling outperforms the Castro sampling. Moreover,
the Halved variant of the Owen sampling further improves the
original Owen sampling. In Table I, we observe the summary
of the results shown in the box-plot. Moreover, we also present
the expected running-time per example of the algorithms. This
result, although may depend on the CPU (AMD Threadripper
2950X CPU) and GPU (Nvidia Titan RTX) used, shows that
the Owen algorithm achieved around a 3-fold speed-up against
the Castro algorithm.

In Figure 1, we also graph a line-plot of the MSEs computed
over 50 examples from the CC test set. The x-axis of this plot
represents the number of equivalent samples. In this plot we
observe that the MSE of the Owen sampling tends to zero
faster than that of Castro sampling. This plot further con�rms
the superiority of the Owen sampling and in particular of its
Halved version.

In Figure 2, we present two plots each computed on a
different dataset, CC on the left and MNIST on the right. The
x-axis and y-axis of these plots represent the number of equiva-
lent samples and the sample standard deviation. As previously
mentioned, since all the estimators converge, these sampled
standard deviation tend to decrease. Here we can observe that
as anticipated when discussing the previous experiment, the
Castro sampling has a higher variance with respect to the
Owen sampling. Moreover, we see that the Halved Owen
sampling performs better than the Owen sampling. These
results agree with what is observed in the previous experiment.

Finally, in Figure 3, we provide a qualitative analysis of
the results of these sampling algorithms. This in order to
observe whether the quality of these estimators are perceivable
when producing saliency maps – a common way to show
on what the model is basing its prediction. We do this for
the MNIST dataset. In this case we compare the results of
the Castro sampling against the Halved Owen sampling with
an equivalent number of samples of 12. In order to have a
reference, we use as a ground truth the results of the Castro
sampling algorithm when computed with a very large number
of samples, 5,000 in this case. These images' pixels colored
in blue represent the negative contributions and in red the
positive ones towards the predicted score. When judging these
images we should not focus on their background color because
this depends on the maximum and minimum pixel values
of the image. In these images we should focus instead on
the most saturated pixels, these are in fact those that mostly
contribute towards or against the model prediction. In these
images we can observe that in most of the cases the Owen
sampling identi�es better those highly contributing pixels than
the Castro sampling.

VII. C ONCLUSION AND FUTURE WORK

We have provided a sampling algorithm to ef�ciently esti-
mate Shapley values that can be also used as a ground truth for
comparison purposes, since we have proved the convergence
of this algorithm to the exact Shapely values. The method
takes advantage of a variance reduction method and provide
more accurate estimations for the Shapley values. In all the
experiments that we have carried out, our comparison with
the Castro algorithm [1] has been based on equal bases,
i.e., we have used the equivalent number of samples. In our
experiments, MLP models are used to �t with the datasets
for classi�cation problems (though regression problems could
be considered as well). An optimal architecture of the MLPs
are found using a cross validation analysis. Then we have



Fig. 2: Variance analysis of the estimators: the left-hand side plot is computed for the CC dataset, and the right-hand one for
the MNIST dataset. Both plots are based on 50 examples of the test sets.

(a) Ground Truth (Castro Sampling withM c = 5 ; 000)

(b) Castro Sampling (M c = 12 )

(c) Halved Owen Sampling (M = 2 andQ = 6 )

Fig. 3: Saliency maps of 10 randomly selected digits from the test set of the MNIST dataset. We use the top-most row as a
reference to compare the results of the following two rows.

used these MLPs to test the effectiveness of our results on the
corresponding datasets. First, we have started with a dataset
with small number of features in which we can �nd the
exact measurements of Shapley values. By selecting random
instances from the test dataset and calculating the MSE in
this case, our algorithms provide clear-cut improvements over
the existing sampling algorithm leading to more accurate
estimations. While an exact measurement of the Shapley
values on datasets with a large number of features is not
feasible, we have used an analysis of variance to show that our
algorithm provide estimators for which their variance rapidly
�attens leading to more accurate estimators. For consistency,
the same analysis is also carried out for datasets with small
number of features, and the same results are con�rmed.

The experiments and the algorithms can be still improved
in several directions which we leave to future work. More
experimental analysis on different datasets could be carried out
more complex deep learning architectures than MLPs, since
our algorithm could work with any machine learning model.
The accuracy of our algorithm is controlled by two parameters,
in our analysis, we took one of the parameters to be equal to
2. However, more ef�cient and smart combinations of these
parameters might improve the performance of our algorithms,
in particular combining this with some statistical analysis, it
might be possible to obtain the least number of operations
required to reach certain accuracy through �nding con�dence
intervals.
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