

© 2020 XXX‐X‐XXXX‐XXXX‐X/XX

Supporting collaborative design and project management for
AEC using Speckle’s interactive data flow diagram

1ST PAUL POINET1, 2ND DIMITRIE STEFANESCU1, 3RD GEORGIOS TSAKIRIDIS2, AURELIE DE BOISSIEU2,
ELENI PAPADONIKOLAKI1

1University College London - Bartlett School of Construction and Project Management, London, United Kingdom.
2Grimshaw Architects, London, United Kingdom.

1p.poinet@ucl.ac.uk, 2georgios.tsakiridis@grimshaw.global

Fig. 1. The interactive data flow diagram in Speckle. Here, each cluster represents a software environment from which data has been sent to – or received

from – another software document through the respective Speckle clients. The square nodes represent the shared Speckle data streams which can be accessed
by the users belonging to the same Speckle project.

ABSTRACT.

Recent advances in architectural geometry and the rising ubiquity of
design computation and Visual Programming (VP) amongst architecture
practices has led to the design and construction of more complex, larger
scale architectural projects. Consequently, the Architecture, Engineering
and Construction (AEC) industry has witnessed the emergence of custom
technological solutions tailored within some of the most progressive
architecture practices to better understand and visualize complex digital
design workflows. Although very relevant, such existing solutions have
always been developed in isolation to solve particular design problems
related to the conception and construction of a specific building project.
Based on this observation, the open-source data platform for AEC called
Speckle has been developed in order to bring more transparency in the
design process, enabling multiple stakeholders working from different
software environments to seamlessly communicate through its web
interface. The present paper both introduces the platform and describes
an interactive data flow diagram – named SpeckleViz – built upon it to
support in a user friendly manner transparent collaborative design, project
management and version control for AEC. This will be illustrated through
two selected case studies.

KEYWORDS

Project Management, Version Control, Data Flow, Activity Network

1. INTRODUCTION

From De Vries’ Activity Network [de Vries 1995], the discretization
of logic through “staging” introduced by Front Inc. [Van der Heijden et
al. 2015], the Metagraph developed by Woods Bagot [Ringley 2017], to
Sacks’ process models integrating material and informational flows

[Sacks et al. 2002], these different approaches commonly address the
visualization of the design workflow at the global level – across multiple
users and/or documents, in contrast with the more local input-output data
flow within a single Visual Programming (VP) file, such as Grasshopper
[Grasshopper 2020] or Dynamo [Dynamo 2020]. Although these
methods have proved to be very successful at solving specific in-house
computational design problems, they have been developed in isolation
and their resulted Activity Network Diagrams (AND) have served
primarily as visualization tools. Indeed, both the De Vries’ Activity
Network or the Metagraph from Woods Bagot could only be used to
visualize the data flow but lacked interactive capabilities that could
enable the end-user to interface with the AND itself by analysing the data
exchanged within a specific time range or under user-defined metadata.

The interactive data flow diagram SpeckleViz [SpeckleViz 2020]
augments the above-mentioned attempts to visualize the data exchanges
and activity/social networks occurring during the design process through
the implementation of custom interaction features to directly manage and
interface with the shared data streams. As SpeckleViz leverages the open-
source AEC data platform Speckle [Speckle 2020], it also brings more
transparency in the design process than the previously mentioned
methods.

This paper demonstrates the interactive, collaborative and data
analytics capabilities of SpeckleViz through two case studies which
provided placeholder data sets to deploy data flow diagrams. Through
both case studies, it was demonstrated that the interactive data flow
diagram in Speckle [Speckle 2020] can be used to analyse data exchanges
happening at a global level across decentralized users, while data can still
be processed independently and locally through each individual software
at a local level. The initial input(s) and final output(s) of a Grasshopper

PART 1: PROPOSITION

PROPOSITION

© 2020 XXX‐X‐XXXX‐XXXX‐X/XX

and/or Dynamo definition act in this case respectively as global
receiver(s) and sender(s) within the wider digital design chain deployed
through Speckle.

Through the two cases, the collaborative capabilities of SpeckleViz
are demonstrated in small and large scale projects alike. The emphasis is
on interoperability and data exchange and on how sustainable are Speckle
[Speckle 2020] and SpeckleViz on a large scale and complex
architectural project where data is difficult to consolidate throughout the
design process.

 The first case study consists of a collaboration with L2Onaval (a
naval architecture practice) and CBStructure (a naval engineering
practice) who provided datasets and 3D models from a 35-passenger
aluminium vessel, called e-Boucarot [e-Boucarot 2020], entirely
powered by an integrated electric propulsion system. Using SpeckleViz,
the case study demonstrates a speculative data flow in which different
datasets are exchanged seamlessly across different software platforms
(e.g. Rhino3D and Microsoft Excel) from the earliest design phase to the
latest stages.

The second case study consists of a collaboration with Grimshaw
Architects who provided datasets and 3D models from a large-scale,
aviation-related infrastructure project in the United Kingdom. By
deploying the graph on these datasets, Grimshaw Architects was able to
both review what kinds of insights the graph could instantly provide them
through its existing features (e.g. tag-based queries). The architecture
firm also identified particular missing features that could be helpful
within their practice and provide critical feedback which could lead to
future iterations and transformation of the data flow diagram into a proper
management interface providing richer data analytics to the end-user –
defined here as a “superuser” [Deutsch 2019] (e.g. computational
designer, Building Information Modelling (BIM) specialist or design
technologist). This would enable the latter to better manage large-scale
and complex architectural projects throughout the whole design process.

 The present paper is divided into six sections. After this introduction,
follow the description of the open-source data platform Speckle and the
SpeckleViz interface. Afterwards, a demonstration of SpeckleViz via a
speculative design workflow deployed across the two case studies
follows. The paper ends with a discussion and final concluding remarks
with an outline of future works.

2. SPECKLE

 Speckle differentiates itself from other commercial web-based
interoperability platforms by proposing a complete open-source data
framework for AEC [Speckle 2020]. Speckle was originally developed at
the University College London (UCL) in 2016 by Dimitrie Stefanescu as

part of the InnoChain project, a H2020 Marie Curie European Training
Network.

 Speckle mainly consists of a Representational State Transfer
Application Programming Interface (REST API) [SpeckleServer 2020]
which is consumed by different client applications (Fig. 2). Those
applications can either be web-based – such as [SpeckleAdmin 2020] –
or integrated within the different supported Computer-Aided Design
(CAD) software packages, such as Rhino3D and Grasshopper
[SpeckleRhino 2020], Revit [SpeckleRevit 2020] and Dynamo
[SpeckleDynamo 2020]. Through its REST API, Speckle generally keeps
track of what has been sent to/from whom, and to/from where.

 Resources in Speckle are organized in a hierarchical manner as a
Work Breakdown Structure (WBS) through Objects, Layers (collections
of Objects), Streams (collections of Layers and/or Objects) and Projects
(collections of Streams). Furthermore, Speckle allows for resources to be
enriched with extra metadata such as description, tags, comments, so as
to be able to respond to the project's needs and allow for diagonal queries.
The web admin interface allows users to manage these resources and
control who has access to what data through link sharing, permissions,
and project organizations (Fig. 3).

Fig. 2. The Speckle Technology Stack.

Fig. 3. The Speckle web admin interface [SpeckleAdmin 2020].

PROPOSITION

© 2020 XXX‐X‐XXXX‐XXXX‐X/XX

 The Speckle Admin web app could be compared to other existing
Common Data Environments (CDE) in the sense that it presents a single
source of information used to collate, manage and disseminate
documentation for the whole project team. However, Speckle’s CDE
differs from other existing CDEs at it is not file-based and does not offer
any Information Container Data Drop (ICDD) functionality1. Instead,
resources in Speckle are dynamically sent and received from the different
CAD software integrations (or clients), and are represented as JSON
objects which can be accessed via their dedicated URLs/URIs.

 Via Speckle Streams, users are able to share data from the different
existing Speckle clients and plug-ins, which expose a User Interface to

1 Formerly known as Information Container for Data Drop (ICDD), the
standard has beenrecently renamed as Information Container for Linked Document
Delivery. https://www.iso.org/standard/74389.html. Accessed 12 July 2020.

both share data (Senders) and receive (Receivers). For example, User A
creates a Sender to share Stream A to User B, who creates a Receiver to
receive Stream A from User A. As data transfer protocols in Speckle
operate in a unidirectional (as opposed to bidirectional) manner, User B
would need to create a new Stream (after working upon the data sent by
User A via Stream A) to share new data to User A. This simple yet crucial
triple protocol (Sender-Stream-Receiver) defines the basis of Speckle’s
Activity Network and is illustrated in Fig. 4, along with the
aforementioned hierarchical directory structure of Speckle (Object,
Layers, Streams, Projects).

Fig. 5. The SpeckleViz interface [SpeckleViz 2020].

Fig. 4. Data exchange protocol between two users. Streams are created and stored within the Admin’s Project interface which and contains the
Speckle Project’s exchanged data.

PROPOSITION

© 2020 XXX‐X‐XXXX‐XXXX‐X/XX

3. SPECKLEVIZ

 SpeckleViz [SpeckleViz 2020] is a custom web application (Fig. 5)
that is now part of the Speckle web admin interface [SpeckleAdmin
2020], and sits at the bottom of any Speckle Project’s page. Although one
Stream can be contained within multiple Projects, SpeckleViz only
renders the activity network happening within a single Project. In other
words, SpeckleViz is a tool for illustrating data flows among the project
network, a “network that gets re-initiated for each project” [Chinowsky
et al. 2008], [Chinowsky et al. 2010]. Thus, given a specific Speckle
Project, SpeckleViz harvests the information from both the clients and
the documents collected by the Speckle REST API [SpeckleServer 2020],
and renders it through its dedicated interface. While the latter is
characterized by both visualization and interaction features described in
the next subsections, a complete documentation explaining the interface’s
features can be found in [SpeckleViz 2020].

3.1. Visualization features

While circle nodes represent Senders (S) and Receivers (R), square
nodes represent Streams. Arrows (or graph edges) represent either data
that has been shared to a stream by the user (Receiver to Stream) or data
that has been retrieved by a user from a stream (Stream to Sender). The
edge’s thickness is proportional to the number of exchanged geometrical
objects. Generally, both nodes and edges are coloured according to their
respective timestamp: dark blue for the newest created, and light grey for
the oldest.

As the graph is force-directed and rendered dynamically, its overall
layout might sometimes become too convoluted and not tidy enough to
be grasped as a whole. Therefore, several options have been exposed to
the end-user in order to manually adapt the graph representation: while
the display mode of the graph edges could be switched between three
different modes (straight line, arc or diagonal), the force-directed graph
layout can be altered in order to force its alignment along the X or Y axis,
taking the shape of a tidier Directed Acyclic Graph (DAG). Furthermore,
the end-user could at any time during render stop the force-directed
simulation.

Senders and Receivers can be grouped either by identical Document
GUID or identical Client’s owner ID. While the latter is represented by a
blue convex hull, the former is visualized by a pink convex hull.

3.1. Interaction features

The visualization features described in the previous section have
been augmented by various interaction features, giving the end-user a

more granular control over the data exposed by SpeckleViz. These
features operate on different levels:

 Drop-down menus
Right-clicking on one the Stream nodes would display a
related drop-down menu. The user can choose between
accessing the Stream’s information through the Speckle web
management admin interface, viewing the Stream within the
Speckle viewer interface or accessing the Stream’s data
available through the API endpoints.

 Time frame selection
A slider enables the end-user to select a specific time frame of
the project. When dragging the slider, the graph’s nodes and
links fade out when they are out of the selected time frame,
and fade back in when they are within it. Furthermore, the
Streams contained within the selected time frame are
continuously collated and can be visualized altogether within
the Speckle viewer through a dedicated button.

 Tag-based queries
In Speckle, Streams can be tagged by the end-user through the
web management admin interface [SpeckleAdmin 2020].
These user-defined tags are then exposed via the API through
the Stream’s property tags, which are being collected on the
back-end before rendering the graph in SpeckleViz. On the
front-end side, the end-user is able to select/deselect the
existing tags present within the API. The selection
dynamically updates the display of the Stream nodes within
the graph by highlighting the ones containing at least one tag
present within the current selection. Furthermore, the selected
tagged Streams are continuously collated and can be
visualized altogether within the Speckle viewer through a
dedicated button.

 Adaptive representations
SpeckleViz gives the end-user the possibility to visualize and
adapt its graph from different points of view, or perspectives:
the SpeckleViz toolbar exposes a toggle button enabling the
user to choose between the “Data flow per user” and “Data
flow per document” modes. Therefore, SpeckleViz provides
the users with illustrations of the data flows among the Social
Network, as described by [Wasserman and Faust 1994], and
the Activity Network, as defined by [De Vries 1995].
Switching between these two modes dynamically updates the
graph that reorganizes its nodes according to the chosen data
flow perspective.

Fig. 6. Overall data flow diagram of the e-Boucarot case study, rendered in SpeckleViz and inspected via the Speckle viewer web app.

PROPOSITION

© 2020 XXX‐X‐XXXX‐XXXX‐X/XX

E-BOUCAROT’S CASE STUDY

This first case study (Fig. 6) employs Speckle to seamlessly exchange
3D models provided by both L2Onaval and CBStructure, during the
conception and late design stages of a 35-passenger aluminium vessel –
called e-Boucarot – across multiple Rhino3D and Microsoft Excel
documents. SpeckleViz is then used to visualize and analyze these data
exchanges. Although the current design practices amongst these naval
architecture and engineering firms do not use Speckle, the present case
study speculates how traditional workflows could be improved through
the deployment of Speckle and SpeckleViz within them.

3.2. Data flow

The speculative data flow illustrated in Fig.6, Fig.7 and Fig.8 is
constituted of 10 design steps enumerated below:

 1. Design of the main hull by of L2Onaval in Rhino3D
(document A) and transfer of the generated data to document
B (Fig. 9).

 2. Structural detailing of the hull by CBStructure in Rhino3D
(document B) based on the data received from document A
(Fig. 10).

 3. Reception in document A (acting now as master file) of the
data generated previously in document B.

 4. Hull’s structure weight estimation performed by CBStructure
via Excel for Office 365 (document E), based on data received
from document B.

 5. Bumper drawing by L2Onaval in Rhino3D (document C)
based on the data received from document A (Fig. 11).

 6. Reception in document A of the data generated previously in
document C.

 7. Bumper’s weight estimation performed by L2Onaval via
Excel for Office 365 (document E), based on data received from
document C.

 8. Superstructure detailing by CBStructure in Rhino3D
(document D) based on the data received from document A
(Fig. 12).

 9. Reception in document A of the data generated previously in
document D.

 10. Superstructure’s weight estimation performed by
CBStructure via Excel for Office 365 (document E), based on
data received from document D.

Fig. 7. Speculative data flow using Speckle to enable seamless data exchanges
across multiple documents authored by L2Onaval and/or CBStructure.

Fig. 8. The speculative data flow described in section 4.1 and illustrated in
Fig. 6, rendered via SpeckleViz.

Fig. 9. Hull drawing: data originated from the document A (Rhino3D)
authored by L2Onaval, viewed in the Speckle viewer app.

Fig. 10. Hull strucutral detailing: data originated from the document B
(Rhino3D) authored by CBStructure, viewed in the Speckle viewer app.

Fig. 11. Bumper: data originated from the document C (Rhino3D) authored
by L2Onaval, viewed in the Speckle viewer app.

PROPOSITION

© 2020 XXX‐X‐XXXX‐XXXX‐X/XX

Fig. 12. Superstructure: ata originated from the document D (Rhino3D)
authored by CBStructured, viewed in the Speckle viewer app.

Fig. 13. Master file: data originated from the documents A, B, C, and D
(Rhino3D) authored by both L2Onaval and CBStructure, aggregated in
document A (Rhino3D) and viewed in the Speckle viewer app.

3.3. Analysis in Excel

The different weight estimations performed in Excel (Fig. 14) are
following the layer table organization from Rhino3D extracted
automatically via Speckle. Object properties from Rhino (e.g. object
name, material, thickness, volume and centre of gravity position) are also
kept during the transfer between Rhino3D and Excel. Once all the
different properties are extracted from the model, total weight and global
centre of gravity of the ship’s components are computed directly via
Excel. Load cases will then be used to compute preliminary stability and
check authority’s regulation criteria.

Fig. 14. Data received from Rhino3D to Excel via Speckle. The objects’
material, volume and centre of gravity, the total weight and global gravity
of the ship’s components can be subsequently calculated.

2 AutoCAD Civil 3D software is a design and documentation solution for civil
engineering that supports building information modeling (BIM) workflows.

Although the Speckle client for Rhino3D is fully developed and well
maintained, the Speckle client for Microsoft Excel is released as a beta
version. The installation instructions can be found in [SpeckleExcel
2020].

Through the deployment of this case study, L2Onaval recognized
that both Speckle and its Activity Network Diagram SpeckleViz
could significantly improve digital design workflow in everyday
practices.

The next case study will look beyond pure data exchange
and interoperability concerns by deploying and stress testing SpeckleViz
onto a larger and more complex architectural project. This will
help in evaluating how robust are the platform and graph interface
in a richer collaborative environment where data is more volatile and
constantly sent back and forth between multiple project members.
4. GRIMSHAW ARCHITECTS’ CASE STUDY

4.1. Presentation of the case study

The second study interrogates the use of SpeckleViz by Grimshaw
Architects on a large-scale, aviation-related infrastructure project in the
United Kingdom, where Grimshaw Architects’ full scope of involvement
ranges across multiple scales, from the largest scales of land-use planning
& zoning down to the architectural design of individual buildings.

On this specific project, the wider integrated design team counts
hundreds of members of the Architecture, Engineering and Construction
(AEC) industry, including architects, engineers, and urban designers. The
present study is focused on the implementation of the tool specifically at
the urban design scale, within a core team of approximately forty
architects.

The main design task is the development of a consistent masterplan,
within a complex framework of physical, functional and operational
parameters and constraints, through the engagement with a large group
of stakeholders, public authorities and local communities. In order to
achieve that, the design team has a developed a design process, which is
split into two main steps:

 The first step is the development of a combinatorial system of
parts (components) based on the given brief, which are related
to both on-airport activities: airfield, terminals, satellite
buildings, aprons etc. and off-airport activities: road & rail
network, parking infrastructure, utilities and community
facilities, as well as major landscape interventions and water
reservoirs.

 The next step is the distribution of these components in a series
of zones across the available land, through an iterative process
of extensive optioneering [Holzer and Downing 2010] and
spatial and organization optimisations, which when put
together form the Preferred Masterplan (PM).

In terms of the technical side of data production, manipulation and
output, the design teams work with 2D and 3D Computer Aided Design
(CAD) elements, as well as Geographic Information System (GIS)
datasets, which represent either component (2D/ 3D models) or zonal
elements (boundary lines etc.) in several stages of Level of Development
(LOD), which are consolidated in drawing sets (for the representational
elements), datasheets (for the metadata) and bespoke online viewing
platforms. The development, coordination and exchange of data is
handled through several formats:

 Civil 3D2 models in .dwg (extension format for AutoCAD
files).

 Rhino3D3 models in .3dm (open-source 3D model format and
native file format for Rhino3D).

3 Rhinoceros (typically abbreviated Rhino, or Rhino3D) is a computer
graphics and computer-aided design (CAD) software package.

PROPOSITION

© 2020 XXX‐X‐XXXX‐XXXX‐X/XX

 Coordinated Building Information Modelling (BIM) models
in .rvt (extension format for Revit4 files).

 GIS data in .shp5 and .geotiff6 formats.

 LIDAR Pointclouds in LAS7.

4.2. Speckle in the wider project’s data flow

To handle the scale of the project, the multiplicity of the file formats
and the quality of the deliverables, a Common Data Environment (CDE)
was set by the client following information management best practices
[BS EN ISO 19650-1:2018 2018]. The case study won’t interrogate the
wider CDE but will focus on its interface with the speckle
implementation (Fig. 15).

Fig. 15. The case study in the wider data flows of the project.

4.3. Information management best practice and data streams
identification

As detailed in the previous section, in this case study Speckle is not
implemented as a Common Data Environment but as an internal tool to
enhance fast pace and agile internal data exchange. However, agile and
versatile data exchange in early stage of design still requires solid data
management strategies. Especially, in this case the streamed datasets
needed to be clearly identified to support the team collaboration. Indeed,
the different members of the team (not only the “senders”) needed to be
able to quickly identify the content of the streams: which data was
contained, if it was suitable for further uses. At Grimshaw, in more
“traditional” data-exchange processes, BIM guidelines are defined and
used to allow suitable management of the projects data. In this case, only
light guidelines and best practice were set and would benefit to be refined.

It is worth noticing that data exchanged were mainly Work In
progress (WIP) [BS EN ISO 19650-1:2018 2018], but also published
data, in order to address the following needs:

 Data from published document: reference information
(boundary lines for example) needed to be consolidated/used
in the study.

 WIP data: boundaries or land use options, associated with
metadata.

We propose to interrogate here the different identification metadata of the
Speckle Streams from the case study, according to BS EN ISO 19650-
2:2018 (Fig. 16).

4Autodesk Revit is a Building Information Modelling (BIM) software for
architects, landscape architects, structural engineers, mechanical, electrical, and
plumbing (MEP) engineers, designers and contractors.

5 Object created and/or used by various 3D design programs; typically a three-
dimensional image represented using polygons that are defined by vertices and
lines; may also be a 2D drawing

Fig. 16. Identification of information containers within a common data
environment, according to BS EN ISO 19650-2:2018 (page 37)

All identification data of the Speckle Streams are identified as
analysed in Table 1.

TABLE I. IDENTIFICATION FIELDS (BS EN ISO 19650-1:2018) AND
RELATED METADATA IN SPECKLE

Identification field Identification in Speckle

Project Ensured by the Speckle project code field

Originator In this case, exchanges were run only
within Grimshaw Architects, so the
“originator” identification was not crucial.
Also more detailed “originator” information is
kept track of for each stream, especially about
the senders ID as well as the streamed data
history.

Volume/System Volume & levels (i.e. models breakdown)
were tracked through Speckle tags (e.g. Fig.
17) which proved to be flexible and versatile
enough for this stage of the project.

Level/Location

Type “Types” as per the ISO are “types of
information” (like Room Data Sheet, Survey
etc), these are not defined nor constrained in
Speckle, allowing the versatility of each
stream.

Role Roles are dependent on the sender, and
therefore currently very versatile.

Number Sequential numbers are needed only if the
stream is part of a series. If needed, in this case
study this field was included in the stream
name.

Status The status identification (WIP, Shared etc)
and suitability (suitable for stage approval, etc)
fields were missing. Suitability

Analyse of the Identification of information container according to BS EN
ISO 19650-1:2018

From this analysis, we can notice that:

 Some identification fields were kept undefined for more
versatility, especially the “Types” field.

 Some identification fields were undefined to rely on the
automated tracking of the stream history, an automation

6 GeoTIFF is a public domain metadata standard which allows geo-referencing
information to be embedded within a TIFF file

7 LIDAR Data Exchange File. The LAS (LASer) format is a file format
designed for the interchange and archiving of lidar point cloud data.

PROPOSITION

© 2020 XXX‐X‐XXXX‐XXXX‐X/XX

allowing more accuracy and consistency: as for the
“originator” and “role” fields.

 Streams names and tags were the most useful identifier,
especially through their visualization in SpeckleViz: as for the
“Volume/System” and “Level/Location” fields.

 The “status” and “suitability” identification were missing in
this case study. It could have been set as tags, but with the risk
of human error in setting or modifying them.

The high agility and versatility of Speckle reflects in the information
management strategies currently implemented.

Speckle has been used so far at Grimshaw Architects both as an
interoperability tool and a collaboration tool. However, the
implementation of proper information management best practices is
currently in progress. Further studies would be needed to interrogate
further the use of Speckle as a powerful Common Data Environment and
the evolution it implies in collaborative practices.

Fig. 17. The “LU Current_Zone J” Stream inspected in the Speckle Admin
interface (top) and within the Speckle viewer (bottom).

4.4. General user observations of SpeckleViz

The SpeckleViz functionality was implemented after few months of
Speckle implementation on the project. Its use is still in experimentation
and this case study doesn’t reflect an everyday use of the tool but more a
proactive initiative to assess the potentiality for some further improved
implementation.

The metagraph, or SpeckleViz interface, is easy to access and its
functionalities relatively easy to understand for a design technology
aware individual. Amongst its functionality, we can note that:

 The toggle between data flow per user and data flow per
document enable interesting insights on the project
organisation.

 The stream filter per tag (Fig. 18) as well as the highlight of a
specific timeframe enable an access to further understand the
streams, their content and history.

The specific insights gained on the project and its processes will be
developed in the following sections.

The general ergonomic of the interface be improved:

 Navigating the graph is made difficult by the absence of a
“zoom extent” tool, especially for disconnected nodes.

 Navigating the streams precisely is not easy especially for
over connected nodes where the streams overlap.

 Further visualisation could be beneficial.

 Further analytics could be beneficial: such as how many users,
how many active users, empty streams and type of data.

Fig. 18. Example of visualisation highlighting the use of a specific zoning
tag in the streams.

4.5. Insights accessed on the project thanks to the user-based
visualisation

Fig. 19. User-based visualisation of the project’s streams.

The main insights we got from accessing the projects streams through
the visualisation per users are:

 One main user is emitting and receiving the majority of the
streams.

 A reduced proportion of the streams are actually used to
exchange data between users, most of the streams are sent and
received by the same person.

 Out of the thirteen users part of the speckle project, only seven
are actually contributing to the pool of data exchanged.

 Several of the active users are actually not exchanging data
with anyone but sending data only to themselves.

 It seems that some streams are sent but never received.

 The few streams having a different receiver than their sender all
implies the main speckle user: this person is the main
connection, none of the secondary nodes connect together (Fig.
20).

PROPOSITION

© 2020 XXX‐X‐XXXX‐XXXX‐X/XX

Fig. 20. Detail on the user-based visualisation of the project’s streams.

The highlight of the streams timeframe help to understand the
evolution of the focus of the team. It confirms the importance of the
central user and its consistence along the project timeframe (Fig. 21).

Fig. 21. Detail on the user-based visualisation of the project’s timeframe.

4.6. Insights accessed on the project thanks to the document-
based visualisation

Grimshaw Architects provided two main insights through the
visualization of the dataflow per document:

 Because the Rhino3D API does not really have a consistent
DocumentID property which corresponds instead to the
RuntimeSerialNumber of the document, only one main
Grasshopper definition seemed to have been used to
issue/receive data, which wrongly shows a poor modularity of
the scripting strategy of the project. This issue has been fixed
since, by generating a key/value pair containing a custom GUID
(Globally Unique Identifier) and storing it in the document’s
string dictionary.

 Because there is no visibility on non-speckle related exchanges
and Grasshopper-Rhino is used as a main mining tool for the
information, a very small part of the whole process and project
data is actually available to our understanding through the
graph.

Fig. 22. Document-based visualisation of the project’s streams.

4.7. Limitations and opportunities

Essentially, Grimshaw Architects identified three critical issues related
to SpeckleViz which could be improved in the future through further
development:

 Poor ergonomics of the graph display:
‐ Insufficient visibility of the disconnected nodes.
‐ A zoom extent tool would definitely improve the

user experience while navigating through the graph.

 It is currently quite difficult to get a good overall understanding
of the digital workflow only through the graph itself. High level
analytics would be helpful such as : count of senders, count of
receivers and count project members.

 The SpeckleViz tool also reflects some of the speckle bugs.
When a stream bug for a reason or another, it has to be created
again, which make the timeline less accurate and loss the
versions.

Grimshaw Architects also recognized that improving tag curation
upfront within the Speckle admin interface would make tag-based
queries in SpeckleViz more meaningful. Finally, Grimshaw Architects
pointed out the need to be able to deal directly with options via the graph
(i.e. map equivalent streams but for different intents).

5. DICUSSION AND CONCLUSION

This paper briefly introduced the current challenges in collaborative
design workflows within the AEC sector and described both the open-
source AEC data platform Speckle and its related SpeckleViz interface,
an experimental and work-in-progress web-based interactive
visualization tool, which aims at representing and managing the activity
and social networks (across users or documents), operating within the
Speckle framework. The two case studies described in this paper helped
in illustrating the direct application of both Speckle and SpeckleViz in
the AEC industry, and helped in assessing to what extent the open-source
platform and its related graph interface could fully support “real-world”,
industry-related scenarios.

The paper contributed to knowledge, first through the e-Boucarot
case-study that described how existing segregated digital design
workflows in industry could be seamlessly streamlined through Speckle
and visualized through SpeckleViz. Secondly, the Grimshaw Architects
case-study allowed for understanding the use of SpeckleViz on a larger
scale. The practical implications of the work are that critical issues were
identified, in terms of process, uses and functionalities such as: need for
including Speckle in the project BIM guidance, lack of functionalities
toward ISO1960 Common Data Environment compliance, lack of a
zoom-extent tool, lack of high-level data analytics and lack of a
versioning control system integrated within the graph.

Apart from these challenges, the tag-based query system proved to
be very useful and encouraged Grimshaw Architects to better curate their
Streams with tags so that they can be more searchable through the
interface. To this end, beyond a visualization tool, SpeckleViz
demonstrated the potential to evolve towards a proper management tool,
enabling deeper curation, versioning, editing and deletion of Streams and
streamlining issue management and collaborative work.

ACKNOWLEDGMENTS

The present research has received funding from InnovateUK under
the competition “Increase Productivity, Performance and Quality in UK
Construction” (proj. no. 104799). Speckle was originally developed at
The Bartlett School of Architecture as part of the InnoChain project,
which received funding from the European Un-ion’s Horizon 2020
research and innovation programme under the Marie-Sklodowska-Curie
grant agreement No 642877.

 The authors would like to thank both Grimshaw Architects,
L2Onaval and CBStructure for providing relevant datasets and feedback
in the case studies described in the present paper.

PROPOSITION

© 2020 XXX‐X‐XXXX‐XXXX‐X/XX

REFERENCES

AXIOS. 2020. Axios GitHub Repository. Axios is a promise based
HTTP client for the browser and Node.js. GitHub.
https://github.com/axios/axios.

ISO 19650-1&2:2018. 2018. Organization and digitization of
information about buildings and civil engineering works, including
building information modelling (BIM) — Information management
using building information modelling — Part 1: Concepts and principles.
Part 2: Delivery phase of the assets. International Organization for
Standardization. https://www.iso.org/standard/68078.html.

CHINOWSKY, P., DIEKMANN, J., AND GALLOTI, V. 2008. Social network
model of construction. In Journal of construction engineering
and management, 134, 804–812.

CHINOWSKY, P. DIEKMANN, J., AND O'BRIEN, J. 2010. Project
organizations as social networks. In Journal of Construction
Engineering and Management, 452-458.

D3JS. 2020. D3.js Github Organization. Github.
https://github.com/d3.

DE VRIES, B. 1995. Message Development in the Building Process. In
Modeling of Buildings through their Life-Cycle. Proceedings
of the CIB w78 Conference. Pp. 467-479. Standford.

DEUTSCH, R. 2019. Superusers: Design Technology Specialists and the
Future of Practice, First Edition. Routledge.

DYNAMO. 2020. Dynamo is a graphical programming interface within
Revit, which is a Building Information Modelling (BIM)
software for architects, and structural engineers. Dynamo BIM.
https://dynamobim.org/

E-BOUCAROT. 2020. Capbreton Goes Green with All-Electric Passenger
Ferry. The Marine Executive.
https://www.maritime-executive.com/corporate/capbreton-
goes-green-with-all-electric-passenger-ferry.

GRASSHOPPER. 2020. Grasshopper3D (typically abbreviated
Grasshopper) is a visual programming language and
environment that runs within Rhino3D. Grasshopper3D.
https://www.grasshopper3d.com/.

HOLZER, D. AND DOWNING, S. 2010. Optioneering: a new basis for
engagement between architects and their collaborators. AD:
Architectural Design 80, 4, 60–63.

RINGLEY, B. 2017. What is the point of using Dynamo? San Francisco
Computational Design User Group, June 2017.
https://www.youtube.com/watch?v=y6N1ICoFoyU.

SACKS, R., NAVON, R., SHAPIRA, A., AND BRODETSKY, I., 2002. M
Monitoring Construction Equipment for Automated Project
Performance Control. International Symposium on
Automation and Robotics in Construction. Pp. 161-166.

SPECKLE. 2020. Speckle GitHub Organization. GitHub.
https://github.com/speckleworks.

SPECKLEADMIN. 2020. SpeckleAdmin GitHub Repository. GitHub.
https://github.com/speckleworks/SpeckleAdmin.

SPECKLEDYNAMO. 2020. Speckle client for Dynamo. GitHub.
https://github.com/speckleworks/SpeckleDynamo.

SPECKLEEXCEL. 2020. Speckle client for Microsoft Excel. GitHub.
https://github.com/speckleworks/SpeckleExcel.

SPECKLEREVIT. 2020. Speckle client for Revit. GitHub.
https://github.com/speckleworks/SpeckleRevitReboot.

SPECKLERHINO. 2020. Speckle client for Rhino. GitHub.
https://github.com/speckleworks/SpeckleRhino.

SPECKLESERVER. 2020. Speckle Server Github Repository. GitHub.
https://github.com/speckleworks/SpeckleServer.

SPECKLEVIZ. 2020. SpeckleViz documentation page. Speckle.
https://speckle.systems/docs/web/speckleviz

VAN DER HEIJDEN, R., E. LEVELLE, AND M. REISE 2015. Parametric
Building Information Generation for Design and Construction.
In Proceedings of the 35th Annual Conference of the
Association for Computer Aided Design in Architecture –
Computational Ecologies, Design in the Anthropocene
(ACADIA 2015). Pp 417–430.

VUEJS. 2020. Vue.js Github Organization. Github.
https://github.com/vuejs.

VUETIFY. 2020. Vuetify.js Github Organization. Github.
https://github.com/vuetifyjs/vuetify.

WASSERMAN, S. AND FAUST, K. 1994. Social network analysis: Methods
and applications. Cambridge, United Kingdom: Cambridge
University Press.

I/O SESSION

© 2020 XXX‐X‐XXXX‐XXXX‐X/XX

HARVESTING THE SPECKLE REST API

On the back-end, the SpeckleViz activity network diagram harvests
data from the Speckle REST API (Application Programming Interface)
by performing calls using Axios [Axios 2020]. The initial HTTP request
takes a Project ID as an input, returning the list of contained Streams as a
response. New HTTP requests are made to retrieve each stream’s
corresponding resources, such as the _id (Stream’s ID), owner
(Stream’s owner), createdAt (Stream’s creation time) and
updatedAt (Stream’s last update) properties. The complete list of the
existing Stream properties are illustrated in Fig. 23, left. Finally, last
HTTP requests are made to get the corresponding Clients (Sender and/or
Receiver) resources per Stream, such as the _id (Client’s ID), owner
(Client’s owner), documentGuid (Document’s GUID),
documentName, createdAt (Client’s creation time) and
updatedAt (Client’s last update) properties. The complete list of the
existing Stream properties are illustrated in Fig. 23, right. Although most
of the resources can inform the graph, the main ones used to create its
nodes and edges are the Client’s _id and Stream’s _id properties. The
collected resources are formated into a JSON (JavaScript Object
Notation) objects which will further feed the graph on the front-end.

INPUT (BACK-END)

The code below consumes the Speckle REST API through the above-
mentioned HTTP requests. This is only a part of the whole script that
produces the final graph. The complete code can be found on the
SpeckleAdmin Github Repository page [SpeckleAdmin 2020].

asyncComputed: {

 async myResolvedValue() {
 this.toggleFix = false
 let streamLinks = []
 let nodes = []

 let resProject
 try {
 resProject = await axios.get(

`${this.$store.state.server}/projects/${this.
project._id}`

)
 } catch (err) {

PART 2: IMPLEMENTATION [I/O SECTION]

Fig. 23. HTTP responses from:
https://hestia.speckle.works/api/v1/streams/${StreamID} (left)

https://hestia.speckle.works/api/v1/streams/${StreamID}/Clients (right).

I/O SESSION

© 2020 XXX‐X‐XXXX‐XXXX‐X/XX

 console.log(err)
 return
 }

 let allusersSet = new

Set([resProject.data.resource.owner,
resProject.data.resource.canRead,
resProject.data.resource.canWrite])

 let allusers =
[...allusersSet].flat()

 allusers = [...new Set(allusers)]
 //this.$data.all_userInfo =

allusers

 for (let i = 0; i <

allusers.length; i++) {
 let user = allusers[i]
 let resOwner
 try {
 resOwner = await axios.get(

`${this.$store.state.server}/accounts/${user}
`

)
 }catch (error) {
 console.log("Can't access

user info")
 }
 let userInfo =

resOwner.data.resource
 //console.log(userInfo)

 let userCode =

`${userInfo.name} ${userInfo.surname} @
${userInfo.company}`

this.$data.all_userCode.push(userCode)

this.$data.all_userInfo.push(userInfo)

 }

 let projectStreams =

resProject.data.resource.streams
 let projectPermissions =

resProject.data.resource.permissions

 let alltags = []
 for (let i = 0; i <

projectStreams.length; i++) {
 let streamShortID =

projectStreams[i]
 let stream_id
 let resStream

 try {
 resStream = await axios.get(

`${this.$store.state.server}/streams/${stream
ShortID}`

)

 let streamOwnerID =

resStream.data.resource.owner
 let resOwner
 try {
 resOwner = await axios.get(

`${this.$store.state.server}/accounts/${strea
mOwnerID}`

)
 }catch (error) {

 console.log("Can't access
user info")

 }
 let userInfo =

resOwner.data.resource

 stream_id =

resStream.data.resource._id
 let streamCanRead =

resStream.data.resource.canRead
 let streamCanWrite =

resStream.data.resource.canWrite
 let streamCreatedAt =

resStream.data.resource.createdAt
 let streamUpdatedAt =

resStream.data.resource.updatedAt
 let streamName =

resStream.data.resource.name
 let streamTags =

resStream.data.resource.tags
 let objectsNumber =

resStream.data.resource.objects.length
 let units =

resStream.data.resource.baseProperties.units
 let tolerance =

resStream.data.resource.baseProperties.tolera
nce

 let rawData = {stream_id:

stream_id, canRead: streamCanRead, canWrite:
streamCanWrite, tags: streamTags, objNum:
objectsNumber, owner: streamOwnerID,
createdAt: new
Date(streamCreatedAt).toLocaleString("en-
GB"), updatedAt: new
Date(streamUpdatedAt).toLocaleString("en-
GB"), units: units, tol: tolerance}

Object.keys(rawData).forEach((key,i) =>

{if(Array.isArray(rawData[key]) &&
(rawData[key].length < 1)){

 rawData[key] =
["undefined"]

 }
 })

 for (let j = 0; j <

streamTags.length; j++) {

this.$data.allStreamTagsJSON.push({ name:
streamTags[j] })

 }
 alltags.push(streamTags)

 nodes.push({
 type: "Stream",
 _id: stream_id,
 streamId: streamShortID,
 owner: streamOwnerID,
 createdAt: streamCreatedAt,
 updatedAt: streamUpdatedAt,
 size: "10",
 objectsNumber: objectsNumber,
 name: `${streamName}`,
 tags: streamTags,
 canRead: streamCanRead,
 canWrite: streamCanWrite,
 units: units,

I/O SESSION

© 2020 XXX‐X‐XXXX‐XXXX‐X/XX

 tolerance: tolerance
 })
 } catch (error) {
 console.log("Can't access

stream: " + streamShortID)
 }

 //
 let resClient
 try {
 resClient = await axios.get(

`${this.$store.state.server}/streams/${stream
ShortID}/clients`

)

 for (let j = 0; j <

resClient.data.resources.length; j++) {
 let client_id =

resClient.data.resources[j]._id
 let clientOwnerID =

resClient.data.resources[j].owner

 let resOwner
 try {
 resOwner = await axios.get(

`${this.$store.state.server}/accounts/${clien
tOwnerID}`

)
 }catch (error) {
 console.log("Can't access

user info")
 }

 let userInfo =

resOwner.data.resource
 let clientCanRead =

resClient.data.resources[j].canRead
 let clientCreatedAt =

resClient.data.resources[j].createdAt
 let clientUpdatedAt =

resClient.data.resources[j].updatedAt
 let clientRole =

resClient.data.resources[j].role
 let clientDocumentType =

resClient.data.resources[j].documentType
 let clientDocumentName =

resClient.data.resources[j].documentName
 let clientDocumentID =

resClient.data.resources[j].documentGuid
 let customName = ``

 if (clientRole == "Sender") {
 customName = `S`
 }
 if (clientRole == "Receiver")

{
 customName = `R`
 }

 nodes.push({
 type: "Client",
 _id: client_id,
 owner: clientOwnerID,
 userInfo: userInfo,
 createdAt: clientCreatedAt,
 updatedAt: clientUpdatedAt,
 role: clientRole,
 size: "10",
 documentType:

clientDocumentType,

 documentName:
clientDocumentName,

 documentGuid:
clientDocumentID,

 name: customName
 })

 if (clientRole == "Receiver")

{
 streamLinks.push({
 source: stream_id,
 target: client_id,

 targetClient: client_id,
 targetDoc:

clientDocumentID,
 action: "receiving"
 })
 } else if (clientRole ==

"Sender") {
 streamLinks.push({
 source: client_id,
 target: stream_id,

 sourceClient: client_id,
 sourceDoc:

clientDocumentID,
 action: "sending"
 })
 }
 }
 } catch (error) {
 console.log("Can't access

stream's client from " + streamShortID)
 }
 }

 this.allStreamTags =

this.flatten(alltags)
 this.sortedNodesByCreationDate =

nodes

this.sortedNodesByCreationDate.sort(function(
a, b) {

 return a.createdAt < b.createdAt
 ? -1
 : a.createdAt > b.createdAt
 ? 1
 : 0
 })

 let createdAts =

this.sortedNodesByCreationDate.map(d =>
d.createdAt)

 this.result = [nodes, streamLinks]
 //this.value3 =

[0,this.result[0].length-1]
 this.dates = createdAts
 this.dates = createdAts.map(d =>

new Date(d).toLocaleString("en"))
 this.dates = [...new

Set(this.dates)]

 this.sliderValue = [this.dates[0],

this.dates[this.dates.length - 1]]

 return [nodes, streamLinks]
 }
 }

I/O SESSION

© 2020 XXX‐X‐XXXX‐XXXX‐X/XX

The main output of the above code is [nodes, streamLinks] which
will later feed the front-end of SpeckleViz, described below.

OUTPUT (FRONT-END)

SpeckleViz is built upon the Speckle web management admin
interface, within the Speckle Project tab. As the latter has been designed
with Vue.js, an open-source JavaScript framework for building user
interfaces and single-page applications [Vue.js 2018], a basic layout has
been designed with the same framework in order to host the graph itself,
which has been rendered using D3.js (also known as D3, short for Data-
Driven Documents) - a JavaScript library for producing dynamic,
interactive data visualizations in web browsers [D3.js 2017].

As Vue.js and D3.js operate on different levels and through different
mechanisms, a suitable pattern had to be established to enable the passing
of data seamlessly from one framework to the other. In this context, a
Vue template has been created to receive the SVG elements from D3.js.
For example, the SVG elements <svg> <g> and <rect> elements are
added individually rather than through the familiar D3.js method
chaining pattern. This allows to dynamically bind these elements to D3.js
data within the Vue component, and take advantage of Vue’s reactivity.

In general, the graph is generated through d3-force, a D3.js module
dedicated to force-directed graph layout using velocity verlet integration.
In regards to the styling of the toolbar and control panels, SpeckleViz
relies on Vuetify.js [Vuetify 2019].

Fig. 23. The resulted visualisation and interaction features have been
described in section 3. The resulted graph takes different shapes (such as in
Fig. 6 and Fig. 19) depending on the Speckle Project’s content (Different
Streams shared across different users and documents).

View publication statsView publication stats

https://www.researchgate.net/publication/343627975

