UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Silicon microfabricated reactor for operando XAS/DRIFTS studies of heterogeneous catalytic reactions

Venezia, B; Cao, E; Matam, SK; Waldron, C; Cibin, G; Gibson, EK; Golunski, S; ... Gavriilidis, A; + view all (2020) Silicon microfabricated reactor for operando XAS/DRIFTS studies of heterogeneous catalytic reactions. Catalysis Science & Technology , 10 (32) pp. 7842-7856. 10.1039/d0cy01608j. Green open access

[thumbnail of d0cy01608j.pdf]
Preview
Text
d0cy01608j.pdf - Published Version
Available under License : See the attached licence file.

Download (6MB) | Preview

Abstract

Operando X-ray absorption spectroscopy (XAS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and mass spectrometry (MS) provide complementary information on the catalyst structure, surface reaction mechanisms and activity relationships. The powerful combination of the techniques has been the driving force to design and engineer suitable spectroscopic operando reactors that can mitigate limitations inherent to conventional reaction cells and facilitate experiments under kinetic regimes. Microreactors have recently emerged as effective spectroscopic operando cells due to their plug-flow type operation with no dead volume and negligible mass and heat transfer resistances. Here we present a novel microfabricated reactor that can be used for both operando XAS and DRIFTS studies. The reactor has a glass–silicon–glass sandwich-like structure with a reaction channel (3000 μm × 600 μm; width × depth) packed with a catalyst bed (ca. 25 mg) and placed sideways to the X-ray beam, while the infrared beam illuminates the catalyst bed from the top. The outlet of the reactor is connected to MS for continuous monitoring of the reactor effluent. The feasibility of the microreactor is demonstrated by conducting two reactions: i) combustion of methane over 2 wt% Pd/Al2O3 studied by operando XAS at the Pd K-edge and ii) CO oxidation over 1 wt% Pt/Al2O3 catalyst studied by operando DRIFTS. The former shows that palladium is in an oxidised state at all studied temperatures, 250, 300, 350, 400 °C and the latter shows the presence of linearly adsorbed CO on the platinum surface. Furthermore, temperature-resolved reduction of palladium catalyst with methane and CO oxidation over platinum catalyst are also studied. Based on these results, the catalyst structure and surface reaction dynamics are discussed, which demonstrate not only the applicability and versatility of the microreactor for combined operando XAS and DRIFTS studies, but also illustrate the unique advantages of the microreactor for high space velocity and transient response experiments.

Type: Article
Title: Silicon microfabricated reactor for operando XAS/DRIFTS studies of heterogeneous catalytic reactions
Open access status: An open access version is available from UCL Discovery
DOI: 10.1039/d0cy01608j
Publisher version: http://dx.doi.org/10.1039/d0cy01608j
Language: English
Additional information: This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Chemical Engineering
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Chemistry
URI: https://discovery.ucl.ac.uk/id/eprint/10112921
Downloads since deposit
43Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item