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Epilepsy is a heterogeneous condition with disparate etiologies, phenotypic and 

genotypic characteristics. Clinical and research aspects are accordingly varied, 
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ranging from epidemiological to molecular, spanning clinical trials and outcomes, 

gene and drug discovery, imaging, electroencephalography, pathology, epilepsy 

surgery, digital technologies and numerous others. Epilepsy data is collected in the 

terabytes and petabytes, pushing the limits of current capabilities. Modern 

computing firepower and advances in machine and deep learning, pioneered in 

some diseases, open up exciting possibilities for epilepsy too. However, without 

carefully designed approaches to acquiring, standardizing, curating, and making 

available such data, there is a risk of failure. Thus, careful construction of relevant 

ontologies, with intimate stakeholder inputs, provides the requisite scaffolding for 

more ambitious big data undertakings, such as an epilepsy data commons. In this 

review, we assess the clinical and research epilepsy landscapes in the big data 

arena, current challenges and future directions, and make the case for a systematic 

approach to epilepsy big data. 
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Bullet points 

• Epilepsy data is multi-modal, and requires big data principles for proper 

handling. 

• Big data approaches provide both clinical and research opportunities. 

• Structured and principled approaches to epilepsy big data is necessary for 

maximum impact 

Disclaimer: This report was written by experts selected by the International League 

Against Epilepsy (ILAE) and was approved for publication by the ILAE. Opinions 
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expressed by the authors, however, do not necessarily represent the policy or 

position of the ILAE 
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Big Data is an intuitive, colloquially used term 1 – first in business, and latterly in 

science and healthcare. MetaGroup’s 2014 definition describes Big Data as high-

volume, high-velocity and high-variety information assets that demand cost-

effective, innovative forms of information processing for enhanced insight and 

decision making. In addition to these “3Vs”, 2 the fourth “v” of data veracity is 

particularly pertinent since suspect data draws suspect conclusions. (Figure 1) In an 

era of unprecedented collaboration and resource pooling, Big Data’s promise is both 

inviting and challenging, especially in epilepsy due to its inherent heterogeneity and 

the vast array of scientific disciplines it involves. This review examines Big Data 

aspects specific to epilepsy, and describes current state of the art as well as future 

directions. 

 

The Meaning of Big Data  

  

In epilepsy, a plethora of disparate data drives variety (phenotype, genotype, video-

EEG, extra-cranial and intracranial physiological signal, structural and functional 

imaging, metabolomics, wearables), which in turn drives volume (currently 

terabytes), challenges veracity (data acquisition, standardization) and highlights 

current deficiencies in managing data generated with high velocity. (Figure 1) 

However, as Big Data becomes increasingly commoditized, it may be more helpful 

to think of “Big Data” as a frame of mind. This allows perception of the scientific 

landscape in a more ambitious data scale, and enables bigger questions. In order to 
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scale and accelerate scientific progress, a Big Data frame of mind drives research 

in three new directions. 

  

1) Collaboration. The last century has seen tremendous progress in healthcare 

delivery and research, using traditional approaches, whether pharmaceutical 

randomized controlled trials, or basic science. The field however, is poised to enter 

a new era enabling unprecedented collaborative possibilities. The sudden 

unexpected death in epilepsy (SUDEP) exemplar, illustrates Big Data opportunities. 

Here, identifying a sufficiently powered cohort of patients requires meticulous, 

prospective follow up of large at-risk cohorts in the Epilepsy Monitoring Unit (EMU). 

3 Multiple EMUs collaborate, generating several hundred gigabytes of data per 

patient. The Epi25 (genetics - see http://epi-25.org) and ENIGMA (neuroimaging - 

http://enigma.ini.usc.edu/ongoing/enigma-epilepsy) are examples of similar highly 

successful, domain-specific collaborations which allow for validation of promising 

ideas at an accelerated pace. 

  

2) Data resource infrastructure (a.k.a. data commons). New challenges emerge 

as soon as data are put in the hands of a community of investigators, rather than in 

individual laboratories. The 2010 Institute of Medicine (IOM) report, 4“Elements of 

an Integrated National Strategy to Accelerate Research and Product Development 

for Rare Diseases,” recommended a national strategy that “shares research 

resources and infrastructure to make good and efficient use of scarce funding, 

expertise, data, and biological specimens.” This recommendation is especially 
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relevant to the epilepsy community and underscores the needs to make data 

Findable, Accessible, Interoperable, and Reusable (the FAIR principles).5 

  

The NIH Data Commons (or Commons) aims at a shared virtual space for digital 

objects to be found, stored, commented and computed upon by the scientific 

community. Four components are considered integral parts of the Commons:  a 

computing resource for accessing and processing digital objects; a “digital object 

compliance model” that enables digital objects to be FAIR; datasets adhering to 

compliance model; and data access services. An Epilepsy Commons, following the 

sleep exemplar,6 would greatly facilitate epilepsy research, enhance the efficiency 

of resource utilization, and ensure the rigor and reproducibility of epilepsy research. 

  

3) New modes for interacting with waveform data. A Big Data vision requires new 

modes management of datasets generated from epilepsy research. One such 

opportunity is the signal data format called the “File Wall” Challenge. Because simply 

expanding storage or adding computing power will not cope with the volume and 

data complexity, data organization challenges must be addressed. In existing cloud 

storage/processing systems large signal datasets are typically stored as identified 

unstructured “blobs.” Traditional distributed file systems present “file wall” barriers 

that make data access, transmission, processing and analysis more difficult. There 

is an immediate need in epilepsy for research into ontology-driven, cloud-based data 

representation and management methods. Several initiatives have begun to address 

multimodal interaction including the Brain Imaging Data Structure (BIDS - 

https://bids.neuroimaging.io) and Fast Healthcare Interoperability Resources (FIHR 
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- https://www.hl7.org ) that may extrapolate to epilepsy. A significant challenge with 

waveform data currently lies in a neurophysiological data format that allows 

interoperability of video-EEG data. The Multiscale Electrophysiology Format version 

3 (MEF3) is one format that has been proposed as a universal standard, addressing 

an urgent need in both research and clinical domains, allowing easy exchange of 

data. 7 There is also an increasing shift towards machine learning, deep learning 

and artificial intelligence in epilepsy big data, particularly in its EEG aspects.8 These 

include EEG spike detection, and automated surface EEG and intracranial EEG 

seizure detection, some of which already have impactful clinical applications such 

as with closed loop Responsive Neural Stimulation.  

 

4) Data safety and privacy. Increasing data innovation creates inevitable conflict 

with informational privacy. The application of Fair Information Practice Principles 

(FIPPs) is paramount, and include individual control, transparency, respect for 

context, security, access and accuracy, focused collection, and accountability. 

These are challenged by big data paradigms, and careful attention to existing 

regulations (from institutional review boards to national regulations, e.g. Health 

Insurance Portability and Accountability Act [HIPAA]) is essential. For example, 

there is increasing recognition that data de-identification and anonymization are not 

the silver bullets to data privacy issues they once were. Nowhere is this more 

relevant than in the genomics arena data where subject “re-identification” is a major 

concern9, and as yet incompletely addressed in the legal arena.10 
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Getting the Basics Right – Epilepsy Ontology, Classification and Common 

Data Elements  

 

Biomedical ontologies are widely used to achieve three data management 

objectives: (1) management of multi-dimensional knowledge; (2) integration of 

disparate data; and (3) automated reasoning for decision support and knowledge 

discovery 12. For example, the Systematized Nomenclature of Medicine Clinical 

Terms (SNOMED CT) is one of the most comprehensive and widely used biomedical 

ontologies that serves as the de-facto standard for encoding clinical information in 

electronic health record (EHR) systems. SNOMED CT together with several other 

biomedical ontologies, such as the Human Phenotype Ontology (HPO), RxNorm 

Gene Ontology are predicted to have a central role in clinical Big Data applications, 

including data-driven classification of diseases as part of the precision medicine 

initiative 13. Formal languages for modeling are used, such as the Ontology Web 

Language (OWL) based on description logic 14. OWL-modeled ontologies, 

accurately model a domain of interest and support the use of automated tools called 

‘reasoners’ to discover implicit knowledge from a big data repository. An ontology 

structure is inherently a knowledge graph which can be used to infer implicit 

knowledge from large datasets. 

 

The generic informatics definition of ontology is “a formal specification of terms in 

the domain (e.g. epilepsy) and relations among them (e.g. focal impaired awareness 

seizure is a type of focal seizure which is a type of seizure)”. One key feature is the 

multi-axial categorization of a concept, which enables it to be applied to various 
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organizations of information within that domain. This significantly simplifies tasks of 

organizing and exploring large datasets. Ontology-supported queries together with 

reasoning tools allow users to explore hitherto undiscovered knowledge about how 

data relates to each other.   

 

Multiple ILAE classification & terminology task forces and work groups have been 

challenged by the complexities inherent in characterization of seizures/epilepsies.  

The factors that require consideration have included: locus of onset, location, 

propagation, age of onset, age of remission, prognosis, EEG and neuroimaging 

characteristics, biological mechanism, etiologies, co-morbidities and functional 

impairment. Even as the need for multiple axes has been appreciated, several 

‘structural’ issues contribute to the classification problem. These include (1) lack of 

standardized definitions for core terms (concepts); (2) the evidence-base to 

determine how these various factors relate to each other; (3) the reality that 

information available in one setting may not be available in another; and (4) use of 

uni-axial classification hierarchies that by their structure do not easily allow a term 

in one branch of a classification to be incorporated into another.  The need for 

‘assembly’ of various concepts in different hierarchies (e.g. based upon age of onset) 

for different purposes (e.g., clinical care, epidemiology) has been recognized 15, 16, 

but implementation has been impeded due to lack of a computable modeling 

framework such as OWL. 

 

Currently, there are three public domain seizure/epilepsy ontologies available, 

hosted by the NIH-funded Bioportal site (URL).  We discuss two. The Epilepsy 
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Syndrome Seizure Ontology (ESSO) was the first attempt to harmonize existing 

seizure/epilepsy classifications to allow common definitions, but most importantly to 

enable organization by available information. Starting with semiology, demographic 

and testing (EEG, genetic testing) factors can be added if known (Figure 2).  Another 

robust example is the Epilepsy and Seizure Ontology (EpSO) that models multi-

dimensional information including seizures, seizure features, etiology (including 

gene IDs mapped to Gene Ontology 11, and drug information). EpSO (Figure 3) is 

currently used in a variety of informatics tools 17-26.  

 

Like all disruptive technologies, the concepts related to ontologies and OWL will 

require education and familiarity prior to adoption in epilepsy that can lead to 

meaningful basic and clinical experiments. Challenges for adoption include: (1) 

consensus on meanings of terms (concepts) (2) evidence to provide connections 

(relationships) between terms and (3) the necessity for the epilepsy community to 

embrace the reality that knowledge related to epilepsy is truly multi-dimensional, 

requiring harmonization of its various components.  Just as gene sequencing is now 

considered essential for diagnosis, so will ontologies be for understanding epilepsy. 

 

 

Big Data in Intracranial EEG (IEEG) Research  

 

IEEG recordings provide a window on to mechanisms of brain function with unique 

temporo-spatial resolution. For study of electrophysiological activity, access to 

databases providing IEEG recordings is critical. Recordings with high numbers of 
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multi-contact electrodes with an extended frequency range for local field potentials 

and single neurons require databases that integrate data at rates of up to a TB per 

day. Useful analyses require valid, extended metadata e.g. behavioral data, 

electrode positions in relation to individual brain structures.      

 

The seizure prediction field highlights the need for large datasets; early results based 

on limited datasets 27, 28 suggested that forecasting was infeasible, whereas later, 

extensive dataset studies provided the key to success 29. These efforts 30, 31,32, 33 

provide examples of databases that use long-term recordings based on local servers 

(EU) or commercial cloud services (US). 

 

Increasingly, centers are offering shared clinical and research datasets 34, 35. 

Furthermore, multinational collaborations are establishing databases on specific 

EEG datasets, one example being the F-TRACT-database joining information from 

intracranial evoked cortico-cortical potentials from 25 European centers to build a 

network of functional connectivity 36.  

 

Whereas some technological challenges inherent to data format variability appear 

solvable, others remain unsolved, including different country-based data safety 

standards, willingness to share not only data but also algorithms for re-validation, 

and sustainable funding for maintenance and development beyond project level 33.  

 

Neuropathological Repositories and Big Data  
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Biorepositories should not only offer long-term storage of human brain and blood 

samples, but also catalog a standardized set of data describing the patient’s clinical 

history and phenotype. Up-to-date patient consent and ethical approval must be in 

place to allow sharing of biological samples and research data. However, most 

tertiary epilepsy centers in Europe will select less than 50 patients a year for epilepsy 

surgery.37, 38  Very large tertiary centers may operate on more than 150 patients a 

year.  

 

The European Epilepsy Brain Bank consortium (EEBB)_was established in 2006 as 

a virtual database aiming to standardize histopathological reporting of specimens 

obtained during epilepsy surgery and epileptogenic brain lesions 39. To date, EEBB 

has collected diagnoses from 9523 children and adults from 36 epilepsy surgery 

centers in 12 European countries and prompted the ILAE to develop an International 

Classification of Focal Cortical Dysplasia 40, of hippocampal sclerosis 41 as well as 

international recommendations for the histopathological work-up of epilepsy surgery 

specimens. 42 Disease classifications help to define a disease and also inform 

surgical patient management, where decision making may still rely on small series 

and randomized trials for difficult-to-treat focal epilepsies. 43, 44 

 

Under the direction of the 7th European Health Framework Program (FP7), EEBB 

was promoted in 2014 as a biorepository to support clinical trials in epilepsy surgery. 

The European Union (EU) framework program Horizon2020 promoted EEBB as a 

European neuropathology reference center. The biorepository includes long-term 
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storage of paraffin-embedded and fresh frozen brain samples, and matched blood 

samples with minimum de-identified clinical data.  

 

Limitations of this dataset include its retrospective nature, inability to predict surgical 

outcomes, medication use, EEG and MRI biomarkers. The database is encrypted 

into the web-based SecuTrial platform, which does not allow connection with 

biomedical OMICs. International collaboration and data sharing is restricted to 

partners of the FP7 consortium. These limitations endorse an ILAE mandate to 

promote international collaboration for big data analysis of human epilepsy brain 

samples and harmonization of written patient consent, ethical review and material 

transfer agreements. 

 

  

Epilepsy Imaging and Big Data  

 

Magnetic resonance imaging (MRI) allows for  comprehensive analysis of the whole 

brain. This technique can provide detailed descriptions of structure, function, 

metabolism and networks, from single cells to systems in models and humans, which 

parallels the scope of the genome and other biomes.  

In epilepsy, a leading example of collaboration is the Enhancing Neuroimaging 

Genetics through Meta-analysis (ENIGMA) project based on meta- and mega-

analyses. Launched in 2015, ENIGMA-Epilepsy uses harmonized quality checks 

rather than sharing datasets across an international consortium of more than 50 

sites and it has already produced insightful results 45. Notably, this approach 
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bypasses challenges related to institutional ethical approvals and the need for high 

throughput computing. Other sharing strategies currently not used in epilepsy rely 

on sharing raw imaging data in repositories, such as the NIH-funded Neuroimaging 

Informatics Tools and Resources Clearinghouse (NITRC - www.nitrc.org), a suite of 

services including a registry, image repository, and a cloud-based environment. 

Beside ethical concerns, data science faces other challenges. For example, 

variability in clinical assessments, missing data and variable study cohorts may 

confound disease severity with study site. A major technical challenge relates to 

variability in MRI hardware and acquisition, image quality, and parameters, which 

may lead to differences in data scaling and noise. A mitigation strategy would be the 

adoption of the newly-proposed Harmonized Neuroimaging of Epilepsy Structural 

Sequences (HARNESS-MRI) protocol entailing a set of acquisitions readily available 

on most MR scanners.46  It is crucial to establish and abide by MRI quality-standards 

and to append standardized phenotypical descriptors based on the most recent 

classifications. Disease models using multi-centric MRI data require consideration 

of confounders related to unbalanced patient-to-control ratios and measurement 

variance across sites. A solution would be to first develop models based on a given 

dataset and test generalizability to others, rather than prioritizing pooling data across 

sites.  

 

  

Epilepsy Genetics and Big Data  
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Collective genomic efforts in the past decade, have capitalized on access to high-

throughput genomic analysis and next-generation sequencing, as well as team 

science, which fosters collaboration and scaling of studies that would never be 

possible by single investigators.  A critical element has been the collection of detailed 

phenotypic information in addition to other data (e.g. EEG records, source 

documentation from medical records, etc.).  

  

The NIH funded Epilepsy Phenome/Genome Project (EPGP), is an international, 

collaborative study that collected detailed phenotype data and DNA samples on over 

4,100 subjects (and family members) with specific forms of epilepsy. The repository 

with millions of data points continues to be fully operational for follow-up studies. 47, 

48  The EPGP cohort, along with European and Australian datasets, were critical to 

the success of the NIH-funded Epilepsy Center Without Walls entitled “Epi4K: Gene 

Discovery in 4,000 Epilepsy Genomes”, which utilized exome sequencing to identify 

new de novo variants causing epileptic encephalopathy and Lennox-Gastaut 

syndrome, and ultra-rare genetic variation in common forms of epilepsy, among 

other findings. 49, 50 Other examples include the large datasets created through the 

International League Against Epilepsy Consortium on Complex Epilepsies,51 the 

EuroEPINOMICS-RES Consortium,52 and the massive, international effort currently 

underway, entitled Epi25, that has a goal to sequence 25,000 epilepsy exomes (see 

http://epi-25.org/). Encompassing epilepsy and more, the database of Genotype and 

Phenotype (dbGaP) is an NIH maintained database of datasets, which archives and 

distributes results of studies investigating genotype-phenotype interactions.53  
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The explosion in knowledge of genetic variants associated with human epilepsies 

and in molecular targets for ictogenesis, epileptogenesis, and comorbidogenesis 

constitute rich libraries to search for candidates in molecular pathogenesis and 

therapy. In animal studies, concerted efforts to generate knockout54 or conditional 

knockout mice 55,56,57 and C57 embryonic stem cells have resulted in at least 17,000 

knockout mice. Characterization of the phenotype of these genetic models58 will be 

offered in a public access database. While this is invaluable for investigators, 

significant enhancements will be needed to include endpoints relevant to clinical 

epilepsy research. 

  

The ILAE/AES Joint Translational Task Force, in collaboration with NINDS is 

generating preclinical CDEs for epilepsies and comorbidities to facilitate data input 

from multiple labs into big databases,59 generate accepted classifications and 

terminologies for video-EEG studies and seizures in rodents,60-64  and perform 

systematic analyses of preclinical studies.65  An aim is to optimize these products in 

platforms that could be used in big databases to enhance epilepsy research, 

including translation from preclinical to clinical arenas. 

  

“Relatively big data” from multicenter cohort studies 

 

Sharing and assembling results from single-center cohorts through collaborative 

research efforts has increasingly been applied to address questions in epilepsy. 

Although these approaches do not comply strictly with definitions of big data, a 2016 

Lancet Neurology “round-up” comment used the term big data when referring to 
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multicenter cohorts of 1450 surgical patients, 446 children with absences, and as 

few as 14 neonates. 66 The cooperation of many dedicated physicians from different 

centers was considered the key attribute to new research in epilepsy. 

 

For rare epilepsies, small or heterogeneous populations, and for new, unproven 

therapies, pooling results from small cohort studies can yield relatively “big data”, 

overcoming their lack of statistical power and sources of bias. Multicenter cohort 

studies or meta-analyses have merits, even when the quantity of data is much 

smaller than in big data. In Europe, the European Reference Network EpiCare 

(http://epi-care.eu/ )serves to facilitate multinational collaborations in rare and 

complex epilepsies. For focused research questions, limited but specific and well-

structured “clean” data can be systematically collected retrospectively from available 

multicenter patient data, enabling multivariable analyses and prediction modeling 

with sufficient statistical power. For example, the TimeToStop cohort study allowed 

to investigate whether early withdrawal of antiepileptic drugs (AED) after pediatric 

epilepsy surgery is safe. 67 One researcher collecting data systematically from 766 

children across fifteen collaborating centers ensured high-quality data and found that 

early AED withdrawal did not affect seizure outcome. 67 

 

Alternatively, published single-center cohort studies can be meta-analyzed with 

either aggregate or individual participant data (IPD). Although IPD is the gold 

standard for clinical research synthesis 68 retrieval rate is sub-optimal 69, and it is still 

underutilized. Nevertheless, IPD meta-analyses have increasingly been applied in 

epilepsy, for example to determine AED monotherapy efficacy 70, predict seizure 
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outcome after epilepsy surgery in tuberous sclerosis complex 71, calculate the 

chance of seizure recurrence after a first febrile seizure 72 and the risk of ictal 

asystole in epilepsy 73, and to produce a prediction model that calculates the 

individualized risk of seizure relapse following AED withdrawal. 74 Big data research, 

multicenter cohort studies and IPD meta-analyses can be considered 

complementary approaches.  

 

Electronic Health Records and Epilepsy Big Data  

  

Data from Electronic health records (EHR),  generated during routine clinical care 

across multiple settings,75 are increasingly being linked 76 and used for translational 

research and for large-scale observational research. EHR data can be classified into 

three main types 77: 

a)    Structured data: Mostly used for administrative purposes and annotated using 

controlled clinical terminologies and statistical classification systems such as 

SNOMED_CT, ICD-10, LOINC and RxNorm. These typically include information 

such as diagnoses, prescriptions and surgical procedures and interventions during 

in-patient and out-patient care. 

b)    Unstructured data: Recorded as raw text and typically include a patient’s medical 

history, and clinicians’ observations and findings.  

c)    Binary data: Traditionally include data from imaging procedures and increasingly 

from personal healthcare wearable devices or smart phones. 
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Research platforms such as CALIBER78 link EHR data from primary care, hospital 

care and mortality and offer researchers high resolution longitudinal data on chronic 

and acute conditions at a population level. Raw EHR data, however, suffer from 

multiple challenges 79 and require substantial preprocessing before they can be 

research-ready for statistical analysis, a process known as phenotyping 80 81. 

  

In the context of epilepsy research, curated EHR data offer substantial advantages 

compared to traditional methods: a) EHR have large sample sizes, enabling 

scientists to gain accurate measures of incidence and prevalence in populations; b) 

Linked EHR can be utilized to quantify healthcare utilization and costs associated 

with epilepsy, its treatment and comorbidities; c) high-resolution EHR data can help 

identify and validate novel epilepsy subtypes using unsupervised machine learning, 

which can lead to personalized medicine approaches; d) Longitudinal EHR data can 

help characterize valid phenotypes of disease progression, with unique etiological 

and prognostic features. 

 

Epidemiological Opportunities in Big Data  

 

Clinical epidemiological data in the zettabyte (1021 bytes or 1 trillion gigabytes) 82 

range, representing a large portion of the population of interest, is particularly apt for 

Big Data applications, and can detect small but clinically meaningful effect sizes. 

Such unprecedented statistical power can confer immense precision. However, 

unless the veracity of the data is ensured, narrow confidence intervals can be 

erroneously misconstrued as accuracy 83. 
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Data sources and validation 

Large clinical data repositories need not be population-based, but they must be 

representative of the population of interest. Typically, population-based sources 

include administrative health data, EHR data, national health surveys, and vital 

statistics (Table 2). Non population-based platforms include national and regional 

clinical registries 84-86 and pooled individual patient data from clinical trials 69. 

Frequently, there is a trade-off between granularity and quality. For instance, clinical 

registries and pooled trial data are frequently rich and detailed but can have selection 

bias (trials), and may lack consistency and completeness (voluntary registries). 

  

Valid case definitions for epilepsy now exist for administrative health records 87 and 

EHR 88, 89. Although the reported sensitivity and specificity are high (>80-85%) 87, 88 

, these are often context-specific, and their utility should be quantified when used in 

different datasets 90. Likewise, outcome measures, if not validated, can lead to 

spurious conclusions 91. Thus, all conditions of interest must be treated with 

methodological rigor lest results become irrevocably skewed due to misclassification 

bias. 

  

Analyses from validated epidemiological data have yielded remarkable insights into 

the incidence 92, 93 and prevalence 92, 94 of epilepsy, the co-morbid profile of epilepsy 

94, the bi-directionality of depression and epilepsy 95, 96, the association between 

epilepsy and autism 97, 98, and debunking the spurious putative link between 

antiepileptic drug use and suicide 99, 100. Overall mortality 101, 102 and SUDEP 101, 103 
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have been studied with large EHR and administrative data. Initial endeavors at 

applying machine learning to Big Data for the purposes of predicting epilepsy 

outcomes appear promising 104. Finally, population-based surveillance of health care 

access, utilization, and costs are now permissible using these large data sources 

105, 106.   

  

Used prudently, hitherto unforeseen opportunities exist for cost-effective and 

statistically powerful investigations into the epidemiology of epilepsy using big data. 

These include disease surveillance, identification of new somatic and psychiatric 

conditions, precision medicine targets, and health outcomes and health care use 

assessments. However, many of these hypothesis-generating studies will require 

validation through other methods. 

 

Digital Health, Wearable Technology and Big Data  

 

Over 5 billion human beings currently use a mobile phone, the majority of whom 

share information on social media. In 2017, close to half of the population used at 

least one connected care technology to monitor health indicators (Future Health 

Index 2017, Philipps). US hospitals and insurance providers are rapidly transitioning 

to digital mobile health (mHealth). Concurrently, partnerships between large IT 

companies (e.g., Apple, and Google) and hospitals, are developing novel healthcare 

ecosystems. Hence, there is huge potential for information technologies to generate 

big data in any medical field, provided relevant data can be captured and shared.  
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Most interestingly, connected devices with sensors have already proved useful for 

detecting generalized tonic-clonic seizures (GTCS)107-112 , and some of these have 

received FDA approval (e.g., Embrace, Brain Sentinel).113, 114 Others are being 

developed from non-medical mainstream wearables (e.g., Apple watch), offering 

potential for major dissemination within the epilepsy population.113 

 

GTCS can be reliably detected with sensors measuring body movements during the 

clonic phase (wrist accelerometer or pressure bed sensor),115-118 surface 

electromyography of the arm during the tonic phase, 119-121 and changes in 

electrodermal activity.114, 122 Changes in heart rate, that can be extracted through 

photoplethysmography,123, 124 can also be used to detect various seizure types.125, 

126 Recently developed multimodal seizure detectors are likely to prove more 

sensitive and specific than any single-sensor technology.127-129 

 

Detecting GTCS with connected devices can enable more precise evaluation of 

seizure frequency and treatment optimization, as well as timely intervention by 

triggering alarms. This might help reduce seizure-related adverse events and 

fatalities.130, 131 Data gathered through connected devices may also provide 

biomarkers of various comorbidities, e.g., AED side effects, risk of SUDEP, and 

seizure-modulating environmental and internal factors. As already demonstrated by 

the North-American Brain Initiative and European Human Brain Project, mHealth 

(mobile health) data are considered complementary to –omics in precision medicine. 
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This rapidly developing field faces important challenges, including data privacy and 

merging information from connected devices, usually stored on generic clouds, to 

EHRs managed by health providers. The research potential of mHealth technologies 

in epilepsy should be facilitated by the unique collaboration developed by the ILAE 

and International Bureau for Epilepsy (IBE).  

 

Big Data Funding Initiatives in Medical Research 

 

Recognizing the transformative opportunities provided by Big Data, government 

funding agencies around the world have launched strategic programmatic 

investment to accelerate Big Data research as highlighted below..  

 

EU: Horizon 2020 is the leading EU Research and Innovation program (with nearly 

€80 billion of funding available over 2014 to 2020). Funding opportunities under 

Horizon 2020 Programme (https://ec.europa.eu/programmes/horizon2020/) include 

topics such as “Big Data technologies and extreme-scale analytics” (ICT-12-2018-

2020) that are focused on data management, data processing, deep analytics, data 

protection, data visualization, and user experience. 

 

United States(US): In the US, the flagship program has been BD2K, Big Data to 

Knowledge, a trans-National Institutes of Health initiative launched in 2013 to 

support the research and development of innovative and transformative approaches 

and tools to maximize and accelerate the integration of big data and data science 

into biomedical research. New data science strategy (https://datascience.nih.gov) 
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includes Precision Medicine and the BRAIN initiative, with the National Library of 

Medicine (NLM) as the nexus  of data science resources. The US National Science 

Foundation (NSF), another federal funding agency of US, has a standing program 

on Critical Techniques, Technologies and Methodologies for Advancing Foundations 

and Applications of Big Data Sciences and Engineering. “Harnessing Data for 21st 

Century Science and Engineering” has been identified as one of the 10 Big Ideas for 

Future NSF Investments 

(https://www.nsf.gov/about/congress/reports/nsf_big_ideas.pdf). 

 

China 

Big Data funding initiatives in China has been represented by investment in 

Precision Medicine. Precision Medicine is a part of the Chinese government’s Five 

Year Plan for 2016-2020 as it works to prioritize genomics to drive better health care 

outcomes. Investment through programs such as the National High-Tech R&D 

Program has led its investigator community and infrastructure to the forefront of 

research involving methodologies of genomics and proteomics, with rapid 

development in technologies for molecular imaging, drug targets and big data. 

 

The role of the ILAE Task Force for Big Data 

The digital revolution has opened up tremendous opportunities for large scale 

collaborative epilepsy clinical care and research. The ILAE Big Data Task Force 

comprises epilepsy clinicians and researchers who are engaged in disparate 

epilepsy research domains and have an interest in large-scale collaborative clinical 

and research endeavors. Their role is to review past and current epilepsy big data 
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efforts, and over the tenure of the Task Force, to recommend guidelines and advice 

that help deliver high impact Big Data research that is directly relevant to patient 

care, while providing a framework of reference for navigating privacy,  legal, and 

ethical issues surrounding such enterprises. Specific laws, such as the General Data 

Protection Regulation (GDPR) in Europe and the Health Insurance Portability and 

Accountability Act of 1996 (HIPAA) in the USA govern such endeavors. 

  

Conclusion  

  

Big data, data sharing and high-performance computing are poised to restructure 

the way we deliver health care and do research. An overview of these themes in 

epilepsy shows great opportunities and important challenges.  Successful instances 

where these processes produce new and important knowledge are beginning to 

emerge and should be strengthened. To harness the full potential of big data will 

require attention to policies and procedures, secure environments, data quality 

standards, data platforms, and data science models that can accommodate the large 

volume and variety of data that is characteristic of epilepsy. Most importantly, it will 

require a new way of thinking about the evidence derived from big data in its 

application to health care and research. The greatest chances of success will lie in 

large national and international multicenter collaborations.  
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Figure 1. Big Data “4Vs” of volume, variety, velocity and veracity as they apply to 

the epilepsy domain (Lhatoo 2017). 

 

 

Figure 2: A screenshot of the Epilepsy Syndrome Seizure Ontology (ESSO) 

showing organization of terms to which testing (EEG, imaging, genetic testing) 

factors can be added. 

 

 

Figure 3: A screenshot of the Epilepsy and Seizure Ontology (EpSO) showing the 

detailed class hierarchy of lateralizing signs associated with seizures and the use 

of class-level restrictions to model information at a fine-level of granularity, such as 

"left sign of 4" is related to left extended arm and it is a sub category of "sign of 

four". 
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Table 1 Large multicenter EEG databases  
 
Database name EPILEPSIAE IEEG 
Funding EU  NIH  
Year data provided 2013 2016 / ongoing  
# data providers 3 >100 
# data sets 275 >1000 
Content Scalp and intracranial 

long-term EEG recordings in 
epilepsy patients 

Intracranial EEG recordings in 
epilepsy patients and animals  

Raw data Interictal + ictal EEG, 
3D MRI 

Interictal + ictal EEG, imaging 

Metadata Clinical information Clinical information 
EEG annotations By human experts By automated routines 
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TABLE 2. Population based sources of big data. 
  

Data source Sources Advantages Disadvantages 

Administrative 
health records 
(AHR) 

• National claims data 
• Regional claims data 

• Often large and 
population-based 

• Longitudinal 
• No selection or recall 

bias 
• Cost-effective 

• Not collected for clinical 
purposes 

• Different methods of 
coding 

• Lack granularity Lack of 
AHR phenotypes 

Electronic 
Health Records 
(EHR) 

• Clinical Practice 
Research Datalink 
(CPRD) 

• The Health 
Improvement Network 
database 

• Often large and 
frequently 
population-based 

• Longitudinal 
• Coded by physicians 

for clinical purposes 
• More granular 

outcome data 

• Different methods of 
coding 

• Different proprietary 
EHR software 

• Patients may move 
• Lack of EHR 

phenotypes 
  

Health Survey 
Data 

• Canadian Community 
Health Survey 

• US National Health 
Interview Survey 

• WHO World Health 
Survey 

• Population-based 
• Standardized data 

collection 
• Patient reported 

outcomes 
• Comparability across 

populations of 
interest 

• Self report may limit 
diagnostic accuracy 

• Response rates may 
vary 

• Often cross-sectional 
• Resource intensive 

Vital Statistics 
Data 

• Statistics Canada 
• United Kingdom Office 

of National Statistics 
• US National Vital 

Statistics System 

• Population-based 
• Longitudinal data 
• Standardized data 

collection 
• Cause-specific death 

• Inconsistent coding 
• Variable quality 
• Incomplete information 
• Delays in reporting 
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