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Abstract

The paper obtains analytical results for the asymptotic properties of
Model Selection Criteria – widely used in practice – for a general family
of hidden Markov models (HMMs), thereby substantially extending the
related theory beyond typical ‘i.i.d.-like’ model structures and filling in
an important gap in the relevant literature. In particular, we look at
the Bayesian and Akaike Information Criteria (BIC and AIC) and the
model evidence. In the setting of nested classes of models, we prove that
BIC and the evidence are strongly consistent for HMMs (under regularity
conditions), whereas AIC is not weakly consistent. Numerical experiments
support our theoretical results.

Keywords Hidden Markov models, Akaike information criteria, Bayesian
information criteria, Model evidence.

1 Introduction
Owning to their rich structure, hidden Markov models (HMMs) are routinely
used in such diverse disciplines as finance (Mamon and Elliott, 2007), speech
recognition (Gales and Young, 2008), epidemiology (Green and Richardson,
2002), biology (Yoon, 2009), signal processing (Crouse et al., 1998). We re-
fer to Del Moral (2004, 2013) for a comprehensive study of the theory of HMMs
and of accompanying Monte Carlo methods for their calibration to observations.
Model Selection has been one of the most well studied topics in Statistics. BIC
(Schwarz, 1978) or AIC (Akaike, 1974) – as well as their generalisations (Konishi
and Kitagawa, 1996) – and the evidence, are used in a wide range of contexts,
including time series analysis (Shibata, 1976), regression (Hurvich and Tsai,
1989), bias correction (Hurvich and Tsai, 1990), composite likelihoods (Varin
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and Vidoni, 2005). For a comprehensive treatment of the subject of Model
Selection, see e.g. Claeskens and Hjort (2008).

There has been relatively limited research on Model Selection for general
classes of HMMs used in practice. A fundamental property of a Model Se-
lection Criterion is that of consistency (to be defined analytically later on in
the paper). Csiszár and Shields (2000) prove strong consistency of BIC for
discrete-time, finite-alphabet Markov chains. In the HMM context, Gassiat and
Boucheron (2003) consider discrete-time, finite-alphabet HMMs and provide
asymptotic and finite-sample analysis of code-based and penalised maximum
likelihood estimators (MLEs) using tools from Information Theory and Stein’s
Lemma. With regards to the Bayesian approach to Model Selection, this typi-
cally involves the marginal likelihood of the data (or evidence) (Jeffreys, 1998;
Kass and Raftery, 1995). Shao et al. (2017) show numerically that the evidence
can be consistent for HMMs, however this has yet to be proven analytically.

The work in this paper makes a number of contributions, relevant for HMMs
on general state spaces – thus of wide practical significance and such that cover
an important gap in the theory of HMMs established in the existing litera-
ture. We remark that our analysis assumes smoothness conditions of involved
functions w.r.t. the parameter of interest, thus is intrinsically not relevant for
interesting problems of discrete nature, an example being the identification of
the number of states of the underlying Markov chain. Our main results can be
summarised as follows:

(i) We establish sharp asymptotic results (in the sense of obtaining lim supn
for the quantity of interest) for the log-likelihood function for HMMs eval-
uated at the MLE, in an a.s. sense. A lot of the initial developments are
borrowed from Douc et al. (2014) (see also citations therein for more works
on asymptotic properties of the MLE for HMMs). Moving from the study
of the MLE to that of Model Selection Criteria is non-trivial, involving
for instance use of the Law of Iterated Logarithm (LIL) for – carefully
developed – martingales (Stout, 1970).

(ii) We show that BIC and the evidence are strongly consistent in the con-
text of nested HMMs, whereas AIC is not consistent. To the best of our
knowledge, this is the first time that such statements are proven in the
literature for general HMMs. For AIC, we show that, w.p. 1, this criterion
will occasionally choose the wrong model even under an infinite amount
of information.

The rest of the paper is organised as follows. In Section 2, we briefly review
some asymptotic results for the log-likelihood function and the MLE without
assuming model correctness. An important departure from the i.i.d. setting
is that the log-likelihood function itself does not make up a stationary time-
series process even if the data are assumed to be derived from one. Section 3
begins with some asymptotic results for the MLE and the log-likelihood under
model correctness. Later on, we move beyond the established literature and,
by calling upon LIL for martingales, we establish a number of fundamental
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asymptotic results, relevant for Model Selection Criteria. In Section 4, we study
the derivation of BIC (and its connection with the evidence) and AIC for general
HMMs. In particular, an explicit result binding BIC and evidence will later
on be used to show that the two criteria share similar consistency properties.
Section 5 contains our main results. We prove strong consistency of BIC and
the evidence and non-consistency of AIC for a class of nested HMMs. Section 6
reviews (for completeness) an algorithm borrowed from the literature, based on
Sequential Monte Carlo, for approximating AIC and BIC. We use this algorithm
in Section 7 to present some numerical results that agree with our theory. We
conclude in Section 8.

2 Asymptotics under No-Model-Correctness
We briefly summarise some asymptotic results for general HMMs needed in later
sections. The development follows closely (Douc et al., 2014, Ch. 13). An HMM
is a bivariate process {xk, zk}k≥0 such that state component {xk}k≥0 is an unob-
servable Markov chain with initial law x0 ∼ η and transition kernel Qθ(·|x), with
values in the measurable space (X,X ). We have adopted a parametric setting
with θ ∈ Θ ⊆ Rd, for some d ≥ 1. Conditionally on {xk}k≥0, the distribution of
the observation process instance zk depends only on xk = x, independently over
k ≥ 0, and is given by the kernel Gθ(·|x) defined on (Y,Y). We assume that X,
Y are Polish spaces and X , Y the corresponding Borel σ-algebras. The notation
{yk}k≥0 is reserved for the true data generating process, which may or may not
belong in the parametric family of HMMs we specified above – meant to be
distinguished from {zk}k≥0 which is the process driven by the model dynamics.
In particular, in this section we work under no-model correctness, i.e. we do not
have to assume the existence of a correct parameter value for the prescribed
model that delivers the distribution of the data generating process.

Throughout the article, we assume that the following hold.

Assumption 1. The data generating process {yk}k≥0 is strongly stationary and
ergodic.

Assumption 2. (i) Qθ(·|x) is absolutely continuous w.r.t. a probability mea-
sure µ on (X, X ) with density qθ(x′|x) – µ is fixed for all (x, θ) ∈ X×Θ.

(ii) Gθ(·|x) is absolutely continuous w.r.t. a measure ν on (Y, Y) with density
gθ(y|x) – ν is fixed for all (x, θ) ∈ X×Θ.

(iii) The initial distribution η = η(dx0) has density, denoted η(x0) – with some
abuse of notation –, w.r.t. µ.

(iv) The parameter space Θ is a compact subset of Rd; w.p. 1, pθ(y0:n−1) > 0
for all θ ∈ Θ, for all n ≥ 1, where pθ(·) denotes here the density of the
distribution of the observations under the model (for given θ and size n).

Without loss of generality, we have assumed that η(dx0) does not depend on θ.
Probability statements – as in Assumption 2(iv) – and expectations throughout
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the paper are to be understood w.r.t. the law of the data generating process
{yk}. Henceforth we make use of the notation ai:j = (ai, . . . , aj), for integers
i ≤ j, for a given sequence {ak}. We need the following conditions.

Assumption 3. There exist σ−, σ+ ∈ (0,∞) so that

σ− ≤ qθ(x′|x) ≤ σ+

for any x, x′ ∈ X and any θ ∈ Θ.

This is the strong mixing condition typically used in this context (e.g. Del Moral
(2004, 2013)), providing a Dobrushin coefficient of 1 − σ−/σ+ for the hidden
Markov chain; it is critical for most of the results reviewed or developed in
the sequel. Assumption 3 implies, for instance, that for any x ∈ X, A ∈ X ,
Qθ(A|x) ≥ σ−µ(A), that is, for any θ ∈ Θ, X is a 1-small set for the process
{xk}k≥0. The chain has the unique invariant measure πXθ and is uniformly
ergodic, so for any x ∈ X, n ≥ 0,

∥∥Qnθ (·|x)− πXθ
∥∥
TV
≤ (1 − σ−/σ+)n – with

‖·‖TV denoting total variation norm.
We calculate the likelihood and log-likelihood functions,

pθ(y0:n−1) =

∫
η(dx0)gθ(y0|x0)

n−1∏
k=1

{
qθ(xk|xk−1)gθ(yk|xk)

}
µ⊗n(dx1:n−1); (1)

`θ(y0:n−1) = log pθ(y0:n−1) =

n−1∑
k=0

log pθ(yk|y0:k−1). (2)

Though {yk}k≥0 is stationary and ergodic, terms {log pθ(yk|y0:k−1)}k≥0 do not
form a stationary process (in general). To obtain stationary and ergodic log-
likelihood terms, following Douc et al. (2004); Cappé et al. (2005); Douc et al.
(2014), we work with the standard extension of the stationary y-process onto the
whole of the integers, and write {yk}∞k=−∞. One can then define the variable
log pθ(yk|y−∞:k−1) as the a.s. limit of the Cauchy sequence (uniformly in θ)
log pθ(yk|y−t:k−1) – found as in (1) for initial law x−t ∼ η – as t → ∞; see
(Douc et al., 2014, Ch. 13) for more details. We can now define the modified,
stationary version of the log-likelihood

`sθ(y−∞:n−1) :=

n−1∑
k=0

log pθ(yk|y−∞:k−1). (3)

Assumption 4. We have that b+ := supθ∈Θ supx∈X ,y∈Y gθ(y|x) <∞ and

E | log b−(y0)| <∞,

where b−(y) := infθ∈Θ

∫
X
gθ(y|x)µ(dx) > 0.

The finite-moment part implies that E | log pθ(y0|y−∞:−1)| <∞, thus Birkhoff’s
ergodic theorem can be applied for averages deduced from (3).
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Proposition 1. Under Assumptions 1-4,

sup
θ∈Θ
| 1n`θ(y0:n−1)− 1

n`
s
θ(y−∞:n−1)| ≤ C

n ,

for a constant C > 0.

Proof. This is Proposition 13.5 of Douc et al. (2014); the upper bound C/n is
implied from the proof of that proposition.

We consider the maximum likelihood estimator (MLE) defined as the set

θ̂n = arg max
θ∈Θ

`θ(y0:n−1). (4)

Assumption 5. For all (x, x′) ∈ X× X and y ∈ Y, the mappings θ 7→ qθ(x
′|x)

and θ 7→ gθ(y|x) are continuous.

Such requirements imply continuity of the log-likelihood θ 7→ 1
n`θ(y0:n−1) and

its limit θ 7→ E [ log pθ(y0|y−∞:−1) ], which – together with other conditions –
provide convergence of the MLE to the maximiser of the limiting function. For
sets A,B ⊆ Θ, we define d(A,B) := infa∈A,b∈B |a− b|.

Proposition 2. Under Assumptions 1-5 we have the following.

(i) Let `(θ) := E [ log pθ(y0|y−∞:−1) ]. The function θ 7→ `(θ) is continuous,
and we have

lim
n→∞

sup
θ∈Θ
| 1n`θ(y0:n−1)− `(θ)| = 0, w.p. 1.

(ii) We have limn→∞ d(θ̂n, θ∗) = 0, w.p. 1, where

θ∗ := arg max
θ∈Θ

`(θ)

is the set of global maxima of `(θ).

Proof. This is Theorem 13.7 of Douc et al. (2014). The proof of (i) is based on
working with the stationary version of the log-likelihood in (3), permitted due
to Proposition 2, and using Birkhoff’s ergodic theorem.

Recall that θ∗ need not be thought of as the correct parameter value here, as no
assumption of the class of HMMs containing the correct data-generating model
is made in this section. To avoid identifiability issues, we make the following
assumption on the HMM model.

Assumption 6. θ∗ is a singleton.

This implies immediately the following.

Corollary 1. The set of maxima θ̂n is a singleton for all large enough n, w.p. 1,
and limn→∞ θ̂n = θ∗, w.p. 1.
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3 Asymptotics under Model-Correctness
To examine the asymptotic behaviour of Information Criteria like AIC or BIC
one has to investigate the behaviour of the log-likelihood evaluated at the MLE,
`θ̂n(y0:n−1), for increasing data size n. Following closely Douc et al. (2014), we
first pose the following assumption, with θ∗ ∈ Θ as determined in Proposition 2
and Assumption 6. Here and in the sequel, all gradients and Hessians – repre-
sented by ∇ and ∇∇> respectively, adopting an ‘applied mathematics’ notation
– are w.r.t. the model parameter(s) θ.

Assumption 7. θ∗ is in the interior of Θ, and there exists ε > 0 and an open
neighbourhood Bε(θ∗) := {θ ∈ Θ : |θ − θ∗| < ε} of θ∗ such that the following
hold.

(i) For any (x, x′) ∈ X×X and y ∈ Y, θ 7→ qθ(x
′|x) and θ 7→ gθ(y|x) are twice

continuously differentiable on Bε(θ∗).

(ii) supθ∈Bε(θ∗) supx,x′∈X2

{ ∣∣∇ log qθ(x
′|x)
∣∣+
∣∣∇∇> log qθ(x

′|x)
∣∣ } <∞.

(iii) For some δ > 0,

E
[

sup
θ∈Bε(θ∗)

sup
x∈X

{ ∣∣∇ log gθ(y0|x)
∣∣2+δ

+
∣∣∇∇> log gθ(y0|x)

∣∣ } ] <∞.
|·| denotes the Euclidean norm for vector input or one of the standard equivalent
matrix norms for matrix input. Assumption 7 implies that, for any fixed n the
log-likelihood function is twice continuously differentiable in Bε(θ∗) (standard
use of bounded convergence theorem from Assumption 7(i)). Also, the score
function has finite (2 + δ)–moment and the Hessian finite first moment, for
any θ ∈ Bε(θ∗); the proof of these statements requires use of Fisher’s identity
(used later on) together with parts (ii), (iii) of Assumption 7 involving the
gradient for the score function, and Louis’ identity (see e.g. Poyiadjis et al.
(2011) for background on Fisher’s, Louis’ identities) for the Hessian together
with the stated conditions for the matrices of second derivatives. We avoid
further details.

We start off with a standard Taylor expansion,

`θ̂n(y0:n−1) = `θ∗(y0:n−1) +
∇>`θ∗ (y0:n−1)√

n

√
n(θ̂n − θ∗)

+ 1
2

√
n(θ̂n − θ∗)>

[ ∫ 1

0

∇∇>`sθ̂n+(1−s)θ∗ (y0:n−1)

n ds
]√

n(θ̂n − θ∗), (5)

together with a corresponding one for the score function,

0 ≡ ∇`θ̂n (y0:n−1)
√
n

=
∇`θ∗ (y0:n−1)√

n
+
[ ∫ 1

0

∇∇>`sθ̂n+(1−s)θ∗ (y0:n−1)ds

n

]√
n(θ̂n − θ∗). (6)
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We will look at the asymptotic properties of the score function terms and the
integral involving the Hessian, i.e. of,

∇`θ∗(y0:n−1)/
√
n,

∫ 1

0

∇∇>`sθ̂n+(1−s)θ∗ (y0:n−1)ds

n , (7)

starting from the former.
We will sometimes work under the assumption of model-correctness and we

shall be clear when that is the case.

Assumption 8. The dynamics of the data generating process {yk}k≥0 corre-
spond to those of the HMM with initial distribution x0 ∼ η(·) ≡ πXθ∗(·), transition
kernel Qθ∗(·|x) and observation kernel Gθ∗(·|x).

For results that do not refer to Assumption 8, θ∗ still makes sense as per its
definition in Proposition 2. Using Jensen’s inequality, and for θ∗ corresponding
to the true parameter, one can easily check that `(θ) ≤ `(θ∗), so indeed the true
parameter coincides with θ∗ given in Proposition 2.

Following (Douc et al., 2014, Ch. 13) we obtain:

1. Re-write the score function evaluated at θ = θ∗ as

∇`θ∗(y0:n−1) =

n−1∑
i=0

[
∇`θ∗(y0:i)−∇`θ∗(y0:i−1)

]
, (8)

under the convention that ∇`θ∗(y0:−1) ≡ 0. The above differences will be
shown to converge – for increasing data size n, in an appropriate sense –
to stationary (and ergodic) martingale increments.

2. Using Fisher’s identity, one has, for y0:k ∈ Yk+1, k ≥ 0,

∇`θ∗(y0:k) =

∫
Xk+1

∇ log pθ∗(x0:k, y0:k) pθ∗(x0:k|y0:k)µ⊗(k+1)(dx0:k)

=

k∑
j=0

∫
X2

dθ∗(xj−1, xj , yj)pθ∗(xj−1:j |y0:k)µ⊗2(dxj−1:j),

where we have defined

dθ∗(xj−1, xj , yj) := ∇ log [ qθ∗(xj |xj−1) gθ∗(yj |xj) ], j ≥ 0,

with the conventions

dθ∗(x−1, x0, y0) ≡ dθ∗(x0, y0) ≡ ∇ log [ η(x0) gθ∗(y0|x0) ]

and the one∫
X2

dθ∗(x−1, x0, y0)pθ∗(x−1:0|y0:k)µ⊗2(dx−1:0)

≡
∫
X

dθ∗(x0, y0)pθ∗(x0|y0:k)µ(dx0).
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Thus, we have, for i ≥ 0,

hθ∗(y0:i) : = ∇`θ∗(y0:i)−∇`θ∗(y0:i−1) (9)

=

∫
X2

dθ∗(xi−1, xi, yi)pθ∗(xi−1:i|y0:i)µ
⊗2(dxi−1:i)

+

i−1∑
j=0

[ ∫
X2

dθ∗(xj−1, xj , yj)pθ∗(xj−1:j |y0:i)µ
⊗2(dxj−1:j)

−
∫
X2

dθ∗(xj−1, xj , yj)pθ∗(xj−1:j |y0:i−1)µ⊗2(dxj−1:j)
]
.

3. To obtain stationary increments for increasing n, Douc et al. (2014) work
with (for i ≥ 0)

hθ∗(y−∞:i) :=

∫
X2

dθ∗(xi−1, xi, yi)pθ∗(xi−1:i|y−∞:i)µ
⊗2(dxi−1:i)

+

i−1∑
j=−∞

[ ∫
X2

dθ∗(xj−1, xj , yj)pθ∗(xj−1:j |y−∞:i)µ
⊗2(dxj−1:j)

−
∫
X2

dθ∗(xj−1, xj , yj)pθ∗(xj−1:j |y−∞:i−1)µ⊗2(dxj−1:j)
]
.

Following (Douc et al., 2014, Proposition 13.20), integrals involving in-
finitely long data sequences of the form∫

X2

dθ∗(xj−1, xj , yj)pθ∗(xj−1:j |y−∞:i)µ
⊗2(dxj−1:j), j ≤ i, i ≥ 0,

appearing above are defined as a.s. or L2-limits of the random variables∫
X2 dθ∗(xj−1, xj , yj)pθ∗(xj−1:j |y−m:i)µ

⊗2(dxj−1:j), with m → ∞, given
Assumptions 1-7. A small modification of the derivations in (Douc et al.,
2014, Ch.13) (they look at second moments) gives that, under Assump-
tions 1-7, and for constant δ > 0 as defined in Assumption 7(iii), for i ≥ 0,∥∥hθ∗(y0:i)−hθ∗(y−∞:i)

∥∥
2+δ

≤ 12E1/(2+δ)
[

sup
x,x′∈X

|dθ∗(x, x′, y0)|2+δ
]
ρi/2−1

1−ρ , (10)

where ρ = 1 − σ−/σ+. (The expectation in the upper bound is finite
due to Assumption 7(ii),(iii).) Here and below, ‖ · ‖a, a ≥ 1, denotes the
La–norm of the variable under consideration. From triangular inequality
we have,∥∥∥n−1/2

n−1∑
i=0

{
hθ∗(y0:i)− hθ∗(y−∞:i)

}∥∥∥
2+δ

≤ n−1/2
n−1∑
i=0

‖hθ∗(y0:i)− hθ∗(y−∞:i)‖2+δ.
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Thus, recalling equation (8) and definition (9), the bound (10) implies

∇`θ∗ (y0:n−1)√
n

= n−1/2
n−1∑
i=0

hθ∗(y−∞:i) +OL2+δ
(n−1/2). (11)

For a ≥ 1 and a sequence of positive reals {bk}, OLa(bn) denotes a sequence
of random variables with La-norm being O(bn).

4. At this point we are required to make explicit use of the model-correctness
Assumption 8. We have

E [hθ∗(y−∞:i)|y−∞:i−1 ] = E
[
E [ dθ∗(xi−1, xi, yi)|y−∞:i ]

∣∣∣ y−∞:i−1

]
+

i−1∑
j=−∞

E
[ {

E [ dθ∗(xj−1, xj , yj)|y−∞:i]

− E [ dθ∗(xj−1, xj , yj)|y−∞:i−1]
} ∣∣∣ y−∞:i−1

]
Each term in the sum is trivially 0. For the first term, we have,

E [ dθ∗(xi−1, xi, yi)|y−∞:i−1 ] = E
[
E [ dθ∗(xi−1, xi, yi) |xi−1, y−∞:i−1 ]

]
≡ 0.

Notice that we have indeed used the model correctness assumption to ob-
tain the latter result. So, terms hθ∗(y−∞:i) make up a strongly stationary,
ergodic (they inherit the properties of the data generating process) mar-
tingale increment sequence – of finite second moment – under the filtration
generated by the data. Using a CLT (Hall and Heyde, 1980) and the LIL
of Stout (1970) for such sequences allows for control over the martingales

Mn,j :=

n−1∑
i=0

(hθ∗(y−∞:i))j , 1 ≤ j ≤ d.

Subscript j indicates the j-th component of the d-dimensional vectors. In
particular, we have the CLT (‘⇒’ denotes weak convergence, and Nd(a,B)
the d-dimensional Gaussian law with mean a and covariance matrix B)

Mn√
n
⇒ Nd(0,Jθ∗), (12)

where we have defined,

Jθ∗ = E [hθ∗(y−∞:0)hθ∗(y−∞:0)> ]. (13)

Also, we have the LIL (Stout, 1970),

lim sup
n

|Mn,j |√
2n log logn

= E1/2
[

(hθ∗(y−∞:0))2
j

]
, 1 ≤ j ≤ d, w.p. 1. (14)
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We now turn to the second term in (7).

Proposition 3. Under Assumptions 1-7, we have that, w.p. 1,

lim
δ→0

lim
n→∞

sup
θ∈Bδ(θ∗)

∣∣(−∇∇>`θ(y0:n−1)/n)− Jθ∗
∣∣ = 0.

Proof. This is Theorem 13.24 of Douc et al. (2014).

Proposition 4. Under Assumptions 1-7 we have that, w.p. 1,

Jθ∗(y0:n−1) := −
∫ 1

0

∇∇>`sθ̂n+(1−s)θ∗ (y0:n−1)ds

n −→ Jθ∗ .

Proof. This is implied immediately from Proposition 3 (recall that θ̂n → θ∗).

Notice that this result does not require the assumption of model correctness.
We do make the following assumption on the HMM model under consideration.

Assumption 9. The matrix Jθ∗ ∈ Rd×d is non-singular.

We summarise the results in this part with a proposition and theorem.

Proposition 5. (i) Under Assumptions 1-7, 9 we have, for all large enough n,

`θ̂n(y0:n−1) = `θ∗(y0:n−1) + 1
2
∇>`θ∗ (y0:n−1)√

n
J−1
θ∗

(y0:n−1)
∇`θ∗ (y0:n−1)√

n
,

where Jθ∗(y0:n−1)→ Jθ∗ , w.p. 1, for the non-singular matrix Jθ∗ defined
in (13).

(ii) Under Assumptions 1-7, 9 we have, for all large enough n,

∇`θ∗ (y0:n−1)√
n

= n−1/2
n−1∑
i=0

hθ∗(y−∞:i) + n−1/2Rn

where ‖hθ∗(y−∞:i)‖2+δ + ‖Rn‖2+δ ≤ C, for δ > 0 as determined in As-
sumption 7(iii) and a constant C > 0.

(iii) Under Assumptions 1-9, w.p. 1, as n → ∞, n−1/2Rn → 0, and we have
the CLT

∇`θ∗(y0:n−1)√
n

⇒ Nd(0,Jθ∗).

Proof. The equation in part (i) is a combination of equations (5), (6), assuming
that n is big enough to permit inversion of the involved matrix. (ii) is simply a
rewriting of earlier calculations. The CLT in (iii) is trivial.

Theorem 1. Under Assumptions 1-9, we have the LIL,

lim sup
n

|(∇`θ∗ (y0:n−1))j |√
2n log logn

= E1/2
[

(hθ∗(y−∞:0))2
j

]
, 1 ≤ j ≤ d.
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Proof. From Proposition 5(ii), using Markov inequality, we have for 1 ≤ j ≤ d
and any ε > 0,

P [ |Rn,j | ≥ ε
√
n ] = P [ |Rn,j |2+δ ≥ ε2+δ n1+δ/2 ] ≤ E |Rn,j |2+δ

ε2+δ n1+δ/2
.

Thus,

∞∑
n=0

P [ |Rn,j | ≥ ε
√
n ] <∞,

and the Borel-Cantelli lemma gives that

P [ |Rn,j | ≥ ε
√
n, infinitely often in n ] = 0.

Equivalently, w.p. 1, |Rn,j |/
√
n→ 0. The proof is completed via the martingale

LIL in (14).

4 Model Selection Criteria for HMMs
We provide a brief illustration for the derivation of AIC and BIC, with focus
on HMMs. Results obtained that explicitly connect BIC and the evidence will
allow for deriving consistency properties for the evidence directly after studying
the BIC criterion later in the paper.

4.1 BIC and Evidence for HMMs
We consider the derivation of BIC for a general HMM. BIC is used by Schwarz
(1978) and can be obtained by applying a Laplace approximation at the calcu-
lation of the marginal likelihood (or evidence) of the model under consideration.
Consideration of the sequence of log-likelihood functions over the data size n (see
e.g. Kass et al. (1990) for the concept of ‘Laplace-regular’ models) provide ana-
lytical, sufficient conditions for controlling the difference between the evidence
and BIC. We briefly review the Taylor expansions underlying the derivation of
BIC and provide the regularity conditions that control its difference from the
evidence in the context of HMMs. Compared with Kass et al. (1990), weaker
conditions are required here, as BIC derives from an O(n−1) approximation, in
an a.s. sense, of the evidence (rather than O(n−2) expansions looked at in the
Laplace-regular framework).

Let π(θ)dθ be a prior for parameter θ – for simplicity we assume that dθ is
the Lebesgue measure on Rd. The evidence is given by

p(y0:n−1) =

∫
Θ

π(θ) exp
{
`θ(y0:n−1)

}
dθ. (15)

We define
J(y0:n−1) := −∇∇

>`θ̂n (y0:n−1)

n .

11



We will be explicit on regularity conditions in the statement of the proposition
that follows. Following similar steps as in Kass et al. (1990), we apply a fourth-
order Taylor expansion around the MLE θ̂n that gives – for u :=

√
n(θ − θ̂n),

`θ(y0:n−1) = `θ̂n(y0:n−1)− 1
2 u
>J(y0:n−1)u

+ 1
6 n
−1/2

d∑
i,j,k=1

uiujuk
∂θi∂θj ∂θk `θ̂n (y0:n−1)

n +R1,n, (16)

for residual term R1,n (in the integral form expansion) involving fourth-order
derivatives of θ 7→ `θ(y0:n−1)/n evaluated at

ξ = aθ̂n + (1− a)θ,

for some a ∈ [0, 1], fourth order polynomials of u, and a factor of n−1, see
e.g. Ch.14 of Lang (2012) for details on such expansions. Notice we have used
∇`θ̂n(y0:n−1) = 0. For the prior density we have

π(θ) = π(θ̂n) + n−1/2∇>π(θ̂n)u+R2,n,

for the integral residual term R2,n with second-order derivatives of π(θ), second-
order polynomial of u and a factor of n−1. Using a second order expansion for
x 7→ ex, only for the terms beyond the quadratic in u in (16), we get

p(y0:n−1)

pθ̂n(y0:n−1)
=

∫
Θ

e−
1
2 u
>J(y0:n−1)u×

{π(θ̂n) + n−1/2m(u, y0:n−1) +Rn} dθ, (17)

where we have separated the term (later on removed as having zero mean under
a Gaussian integrator)

m(u, y0:n−1) = 1
6 n
−1/2

d∑
i,j,k=1

uiujuk
∂θi∂θj ∂θk `θ̂n (y0:n−1)

n +∇>π(θ̂n)u;

the residual term Rn can be deduced from the calculations.

Remark 1. The Laplace-regular setting of Kass et al. (1990) provides concrete
conditions for the above derivations to be valid and for controlling the deduced
residual terms. Apart from the standard assumptions on the existence of deriva-
tives and a bound on the fourth order derivatives of `θ(y0:n−1) close to θ∗ – the
latter being defined in Proposition 2 as the limit of θ̂n – the following are also
required:

(i) For any δ > 0, w.p. 1,

lim sup
n

sup
θ∈Θ−Bδ(θ∗)

{
1
n

(
`θ(y0:n−1)− `θ∗(y0:n−1)

)}
< 0;

12



(ii) For some ε > 0, Bε(θ∗) ⊆ Θ, and w.p. 1,

lim sup
n

sup
θ∈Bε(θ∗)

{
det
(
−∇∇>`θ(y0:n−1)/n

)}
> 0.

Note that (i) is implied by Proposition 2 and identifiability Assumption 6. Also,
Proposition 3 and Assumption 9 imply (ii).

Here, det(·) denotes the determinant of a square matrix. Following the above
remark, the Laplace-regular setting of Kass et al. (1990) translates into the
following assumption and proposition.

Assumption 10. (i) W.p. 1, θ 7→ qθ(x
′|x) and θ 7→ gθ(y|x) are four-times

continuously differentiable for x, x′ ∈ X, y ∈ Y; the prior θ 7→ π(θ) is
two-times continuously differentiable.

(ii) For some ε > 0, Bε(θ∗) ⊆ Θ and w.p. 1, for all 0 ≤ j1 ≤ · · · ≤ jk ≤ d,
k ≤ 4

lim sup
n

sup
θ∈Bε(θ∗)

{
1
n

∣∣∂θj1 · · · ∂θjk `θ(y0:n−1)
∣∣} <∞.

Proposition 6. Under Assumptions 1-7, 9-10, we have that, w.p. 1,

p(y0:n−1)

pθ̂n(y0:n−1)
= (2π)d/2 n−d/2 {det(J(y0:n−1)}−1/2π(θ̂n) (1 +O(n−1)).

Proof. Under the assumptions, Theorem 2.1 of Tadic and Doucet (2018) ensures
that the the log-likelihood θ 7→ `θ(y0:n−1) is four-times continuously differen-
tiable. Then, recall from Proposition 2 that θ 7→ `θ(y0:n−1)/n converges uni-
formly to the continuous function θ 7→ `(θ) defined therein, which implies that
θ̂n → θ∗, with θ∗ the unique maximiser of `(·) (under Assumption 6) – all these
statements hold w.p. 1. We choose sufficiently small δ > 0 (in Remark 1(i)),
then ε = ε1 and ε = ε2 in Assumption 10(ii) and Remark 1(ii) respectively, and
γ > 0 such that for large enough n, Bδ(θ∗) ⊆ Bγ(θ̂n) ⊆ Bmin{ε1,ε2}(θ∗). We have
that

p(y0:n−1)

pθ̂n(y0:n−1)
=

∫
Θ−Bγ(θ̂n)

π(θ) en×
1
n{`θ(y0:n−1)−`θ̂n (y0:n−1)}dθ

+

∫
Bγ(θ̂n)

π(θ) e`θ(y0:n−1)−`θ̂n (y0:n−1)dθ

≤ e−c n +

∫
Bγ(θ̂n)

π(θ) e`θ(y0:n−1)−`θ̂n (y0:n−1)dθ,

for some c > 0, where we used Remark 1(i) to obtain the inequality. It remains
to treat the integral on Bγ(θ̂n). Applying the Taylor expansions as described in
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the main text and continuing from (17) – with the domain of integration now
being Bγ(θ̂n) – will give,

In :=

∫
Bγ(θ̂n)

π(θ) e`θ(y0:n−1)−`θ̂n (y0:n−1)dθ

=

∫
Bγ(θ̂n)

e−
1
2 u
>J(y0:n−1)u{π(θ̂n) + n−1/2m(u, y0:n−1) +Rn} du. (18)

A careful, but otherwise straightforward, consideration of the structure of the
residual Rn gives that, under Remark 1(ii) and Assumption 10(ii),

1
(2π)d/2{det(J(y0:n−1))}−1/2

∫
Bγ(θ̂n)

e−
1
2 u
>J(y0:n−1)u |Rn| dθ = O(n−1).

Thus, continuing from (18), the change of variables u =
√
n(θ− θ̂n) implies that,

for f(·; Ω) denoting the pdf of a centred d-dimensional Gaussian distribution
with precision matrix Ω,

In = (2π)d/2 n−d/2 {det(J(y0:n−1)}−1/2

×
∫
Bγ√n(0)

f(u; J(y0:n−1)){π(θ̂n) + n−1/2m(u, y0:n−1)} du

× (1 +O(n−1))

The final result follows from the fact, that using Assumption 10(i), the integral
appearing above is O(e−c

′n) apart from the same integral over the whole Rd,
for some constant c′ > 0.

Proposition 6 implies that, w.p. 1,

log p(y0:n−1) = `θ̂n(y0:n−1)− d
2 log n+O(1) +O(n−1).

Ignoring the terms which are O(1) w.r.t. n, we obtain that

2 log p(y0:n−1) ≈ 2`θ̂n(y0:n−1)− d log n.

Thus, working with the Laplace approximation to the evidence, one can derive
the standard formulation of the BIC,

BIC = −2`θ̂n(y0:n−1) + d log n. (19)

Remark 2. The above results provide an interesting conceptual reassurance.
Admitting the evidence as the core principle under which model comparison is
carried out, if amongst a family of parametric HMM models, w.p. 1 one has
the largest evidence for any big enough n, then BIC is guaranteed to eventually
select that model as the optimal one.
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Remark 3. There is considerable work in the literature regarding consistency
properties of the evidence (or Bayes Factor) for classes of models beyond the
i.i.d. setting, see e.g. Chatterjee et al. (2018) and the references therein. In our
approach, we have brought together results in the literature to deliver assump-
tions that – whilst being fairly general – were produced with HMMs in mind (and
the connection between AIC and the evidence) and are relatively straightforward
to be verified, indeed, for HMMs. Alternative approaches typically provide higher
level conditions (see e.g. above reference) in an attempt to preserve generality.

4.2 AIC for HMMs
AIC is developed in Akaike (1974) with its derivation discussed for i.i.d. data
and Gaussian models of ARMA type. Following more recent expositions (see
e.g. Claeskens and Hjort (2008)), AIC is based on the use of the Kullback-
Leibler (KL) divergence for quantifying the distance between the true data-
generating distribution and the probability model; an effort to reduce the bias
of a ‘naive’ estimator of the KL divergence leads to the formula for AIC. The
case that one does not assume that the parametric model contains the true
data distribution corresponds to a generalised version of AIC often called the
Takeuchi Information Criterion (TIC), first proposed in Takeuchi (1976). The
above ideas are easy to be demonstrated in simple settings (e.g. Claeskens and
Hjort (2008) consider i.i.d. and linear regression models).

The framework connecting KL with AIC, in the context of HMMs, can be
developed as follows. Let v(dz0:n−1) denote the true data-generating distribu-
tion, n ≥ 1. A model is suggested in the form of a family of distributions
{pθ(dz0:n−1); θ ∈ Θ}. We assume that v(dz0:n−1), pθ(dz0:n−1) admit densities
v(z0:n−1), pθ(z0:n−1) w.r.t. ν⊗n, n ≥ 1. We work with the KL distance,

KLn(θ) : = 1
n

∫
v(dz0:n−1) log

v(z0:n−1)

pθ(z0:n−1)

= 1
n

∫
v(dz0:n−1) log v(z0:n−1)− 1

n

∫
v(dz0:n−1) log pθ(z0:n−1). (20)

Therefore, minimising the above discrepancy is equivalent to maximising

Rn(θ) := 1
n

∫
v(dz0:n−1) log pθ(z0:n−1).

Following standard ideas from cases models (e.g. i.i.d. models), one is interested
in the quantity Rn(θ̂n), but, in practice, has access only to the naive estimator
1
n`θ̂n(y0:n−1), the latter tending to have positive bias versus Rn(θ̂n) due to the
use of both the data and the data-induced MLE in its expression. AIC is then
derived by finding the larger order term (of size O(1/n)) in the discrepancy of
the expectation and appropriately adjusting the naive estimator.

Assumption 11. (i) There exists a constant C > 0, such that w.p. 1,

sup
n≥1

sup
θ∈Θ

{
1
n

∣∣∇∇>`θ(y0:n−1)
∣∣} < C.
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(ii) There is some n0 ≥ 1 such that w.p. 1, matrix J−1
θ∗

(y0:n−1) – defined in
Proposition 4 – is well-posed for all n ≥ n0, and there is a constant C ′ > 0,
such that w.p. 1,

sup
n≥n0

|J−1
θ∗

(y0:n−1)| < C ′.

These are high-level assumptions – especially Assumption 11(ii) – and a more
analytical study is required for them to be of immediate practical use (or weaken-
ing them); but such a study would considerably deviate from the main purposes
of this work. Our contribution is contained in the following proposition.

Proposition 7. Under Assumptions 1-9, 11, we have that

E
[

1
n`θ̂n(y0:n−1)−Rn(θ̂n)

]
= d

n + o(n−1).

Proof. Use of a second-order Taylor expansion gives,

1
n`θ̂n(y0:n−1)−Rn(θ̂n)

= 1
n`θ∗(y0:n−1)− 1

n

∫
`θ∗(z0:n−1)v(dz0:n−1)

+ 1
n
∇>`θ∗ (y0:n−1)√

n

√
n(θ̂n − θ∗)− 1

n

{∫
v(dz0:n−1)∇>`θ∗(z0:n−1)

}
(θ̂n − θ∗)

+ 1
2n

√
n(θ̂n − θ∗)>

{∫
Eθ∗(y0:n−1, z0:n−1)v(dz0:n−1)

}√
n(θ̂n − θ∗). (21)

where we have set

Eθ∗(y0:n−1, z0:n−1) :=

∫ 1

0

∇∇>`sθ̂n+(1−s)θ∗ (y0:n−1)−∇∇>`sθ̂n+(1−s)θ∗ (z0:n−1)

n ds.

Taking expectations in (21), notice that: i) the expectation of the first differ-
ence on the right-hand-side is trivially 0; ii) the integral appearing in the second
difference is identically zero, since we are working under the correct model As-
sumption 8. It remains to consider the expectation of the terms,

ζn := 1
n
∇>`θ∗ (y0:n−1)√

n

√
n(θ̂n − θ∗);

ζ ′n := 1
2n

√
n(θ̂n − θ∗)>

{∫
Eθ∗(y0:n−1, z0:n−1)v(dz0:n−1)

}√
n(θ̂n − θ∗). (22)

The first term rewrites as, using (6),

ζn = 1
n ×

∇>`θ∗ (y0:n−1)√
n

J−1
θ∗

(y0:n−1)
∇`θ∗ (y0:n−1)√

n

Thus, Proposition 5 gives that,

nζn ⇒ Z>J−1
θ∗
Z; Z ∼ N(0,Jθ∗).

For weak convergence to imply convergence in expectation, we require uniform
integrability. Assumption 11(ii) takes care of the difficult term J−1

θ∗
(y0:n−1).
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Then, Proposition 5(iii) and the Marcinkiewicz–Zygmund inequality applied for
martingales (Ibragimov and Sharakhmetov, 1999), give that

sup
n
‖∇`θ∗ (y0:n−1)√

n
‖2 <∞.

Thus, from Cauchy–Schwarz, we have

sup ‖nζn‖2 <∞,

which implies uniform integrability for {nζn}n. So, we have shown that,

E [nζn ] → E [Z>J−1
θ∗
Z ] ≡ d. (23)

We proceed to term ζ ′n in (22). Using again (6) and setting

Aθ∗(y0:n−1) := ∇>`θ∗(y0:n−1)/
√
n · J−1

θ∗
(y0:n−1),

we have that,

2nζ ′n = Aθ∗(y0:n−1)
{∫

Eθ∗(y0:n−1, z0:n−1)v(dz0:n−1)
}
A>θ∗(y0:n−1).

Clearly, we can write,

E [ 2nζ ′n ]

=

∫ {
Aθ∗(y0:n−1)Eθ∗(y0:n−1, z0:n−1)A>θ∗(y0:n−1)

}
(v ⊗ v)(dy0:n−1, dz0:n−1).

From Proposition 3 we obtain that (v ⊗ v)(dy0:n−1, dz0:n−1)-a.s., we have that
limn Eθ∗(y0:n−1, z0:n−1)→ Jθ∗ −Jθ∗ = 0. This implies the weak convergence of
Aθ∗(y0:n−1)Eθ∗(y0:n−1, z0:n−1)A>θ∗(y0:n−1)⇒ 0. Assumption 11, and arguments
similar to the ones used for ζn, imply uniform integrability for {nζ ′n}. We thus
have E [nζ ′n ]→ 0.

This latter result together with (23) complete the proof.

Proposition 7 provides the underlying principle for use of the standard AIC,

AIC :=− 2`θ̂n(y0:n−1) + 2d. (24)

5 BIC, Evidence, AIC Consistency Properties
We will now use the results in Sections 2-4 to examine the asymptotic properties
of BIC, the evidence and AIC in the context of HMMs. We define the notions
of strong and weak consistency in model selection in a nested setting as follows.

Definition 1 (Consistency of Model Selection Criterion). Assume a sequence
of nested parametric models

M1 ⊂ · · · ⊂ Mk ⊂Mk+1 ⊂ · · · ⊂ Mp,
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for some fixed p ≥ 1, specified via a sequence of corresponding parameter spaces
Θ1 ⊆ Rd1 , and Θk+1 = Θk ×∆Θk, ∆Θk ⊆ Rdk+1−dk , k ≥ 1, with dk < dl for
k < l. Let Mk∗ , for some k∗ ≥ 1, be the smallest model containing the correct
one – the latter determined by the true parameter value θk

∗

∗ (=: θ∗) ∈ Θk∗ .
Let Mk̂n

, for index k̂n ≥ 1 based on data {y0, . . . , yn−1} ∈ Yn, n ≥ 1, be
the model selected via optimising a Model Selection Criterion. If it holds that
limn→∞ k̂n = k∗, w.p. 1, then the Model Selection Criterion is called strongly
consistent. If it holds that limn→∞ k̂n = k∗, in probability, then the Model
Selection Criterion is called weakly consistent.

We henceforth assume that for each 1 ≤ k ≤ p,Mk corresponds to a parametric
HMM as defined in Section 2. The particular model under consideration will
be implied by the corresponding parameter appearing in an expression or the
superscript k used in relevant functions; i.e., a quantity involving θk will refer
to model Mk. E.g., θk∗ ∈ Θk is the a.s. limit of the MLE, θ̂kn, for model Mk,
and such a limit has been shown to exist under Assumptions 1-6 for modelMk.

Assumption 12. Assumptions 2-6 hold for each parametric model Mk, for
index 1 ≤ k < k∗; Assumptions 2-9 hold for each parametric model Mk, for
index k∗ ≤ k ≤ p.

Remark 4. For a model Mk that contains Mk∗ (k > k∗), for all of Assump-
tions 2-9 to hold, it is necessary that the parameterisation of the larger model
Mk is such that non-identifiability issues are avoided. In a trivial example,
for Mk∗ corresponding to i.i.d. data from N(θ1, 1), a larger model of the form
N(θ1, exp(θ2)) would satisfy Assumptions 2 and 9 (the main ones the relate to
the shape, in the limit, of the log-likelihood and, consequently identifiability) –
one can check this – whereas model N(θ1 + θ2, 1) would not. In practice, for a
given application with nested models, one can most times easily deduce whether
identifiability issues are taken care of, thus Assumptions 2-9 correspond to rea-
sonable requirements over the larger models. In general, only ‘atypical’ parame-
terisations can produce non-identifyibility issues – thus, also abnormal behavior
of the log-likelihood function – for the case of the larger model.

Proposition 8. Let λn := `k
θ̂kn

(y0:n−1) − `k
∗

θ̂k∗n
(y0:n−1), for a k 6= k∗. Under

Assumptions 2-9, 12 we have the following.

(i) IfMk ⊂Mk∗ , then limn→∞ n−1λn = `k(θk∗)− `k
∗
(θ∗) < 0, w.p. 1.

(ii) IfMk ⊃Mk∗ , then λn ≥ 0 and λn = O(log log n), w.p. 1.

Proof. (i) From Proposition 2 we have, w.p. 1,

n−1
(
`θ̂kn

(y0:n−1)− `k
∗

θ̂k∗n
(y0:n−1)

)
→ `k(θk∗)− `k

∗
(θ∗)

≡ E [ log pθk∗ (y0|y−∞:−1) ]− E [ log pθ∗(y0|y−∞:−1) ].
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Using Jensen’s inequality and simple calculations, one obtains that

E [ log pθk∗ (y0|y−∞:−1) ]− E [ log pθ∗(y0|y−∞:−1) ]

≤ log

∫
p
θk∗

(y0|y−∞:−1)

pθ∗ (y0|y−∞:−1)pθ∗(y−∞:0)dy−∞:0 ≡ log 1.

For strict inequality, Assumptions 6 and 12 imply that mapping θ 7→ `k
∗
(θ)

has the unique maximum θ∗ ∈ Θk∗ . Thus, we cannot have `k(θk∗) = `k
∗
(θ∗),

as this would give (from the nested model structure) `k
∗
(θ∗) = `k

∗
(θk, θ0) for

some θ0 ∈
∏k∗

l=k+1 ∆Θl, with (θk, θ0)> 6= θ∗ (otherwise the definition of correct
model class would be violated).

(ii) Having λn ≥ 0 is a consequence of the log-likelihood for modelMk being
maximised over a larger parameter domain than Mk∗ . Then, notice that the
limiting matrix Jθ∗ in Proposition 4 (for the notation used therein) is positive-
definite: it is non-negative-definite following its definition in (13); then, non-
singularity Assumption 9 provides the positive-definiteness. From Proposition
5(i), the difference in the definition of λn equals the difference of two quadratic
forms, as the constants in the expression for the log-likelihood provided by
Proposition 5(i) are equal for models Mk∗ , Mk and cancel out. As λn ≥ 0,
and both quadratic forms are non-negative, it suffices to consider the one for
modelMk. The a.s. convergence of the positive-definite matrix in the quadratic
form implies a.s. convergence of its eigenvalues and eigenvectors. Thus, using
Theorem 1, overall one has that λn = O(

∑d
i=1 log log n) = O(log log n).

5.1 Asymptotic Properties of BIC and Evidence
BIC is known to be strongly consistent in i.i.d. settings and some particular
non-i.i.d. ones (Claeskens and Hjort, 2008). In the context of HMMs, Gassiat
and Boucheron (2003) show strong consistency of BIC for observations that
take a finite set of values. The key tool to obtain strong consistency of BIC in
a general HMM is LIL we obtained in Section 3. Nishii (1988) also uses LIL for
the i.i.d. setting to prove strong (and weak) consistency of BIC.

Recall that k∗ denotes the index of the correct model.

Proposition 9. (i) Let k̂n be the index of the selected model obtained via
minimizing BIC as defined in (19). Then, under Assumptions 1-9, 12, we
have that k̂n → k∗, w.p. 1.

(ii) If k̂n denotes the index obtained via maximising the evidence in (15), then
Assumptions 1-12 imply that k̂n → k∗, w.p. 1.

Proof. (i) We make use of Proposition 8. Indeed, in the case thatMk ⊂Mk∗ ,
Proposition 8(i) gives

BICn(Mk)− BICn(Mk∗)

= n
{

1
n`θ̂k∗n

(y0:n−1)− 1
n`θ̂kn

(y0:n−1)− (dk−dk∗ ) logn
n

}
,

→ +∞ w.p. 1,
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therefore lim infn k̂n ≥ k∗, w.p. 1. In the case Mk ⊃ Mk∗ , we obtain,
from Proposition 8(ii),

BICn(Mk)− BICn(Mk∗)

= (dk − dk∗) log n− {`θ̂kn(y0:n−1)− `θ̂k∗n (y0:n−1)}

= (dk − dk∗) log n−O(log log n).

Thus, w.p. 1, for all large enough n, BICn(Mk)− BICn(Mk∗) > ck > 0,
for some constant ck. Therefore, we have lim supn k̂n ≤ k∗, w.p. 1.

(ii) Given part (i), this now follows directly from Proposition 6.

Therefore, BIC is strongly consistent for a general class of HMMs in the nested
model setting we are considering here – with a model assumed to be a correctly
specified one.

5.2 Asymptotic Properties of AIC
We can be quite explicit about the behaviour of AIC. Consider the case k > k∗.
Making use of Proposition 5 we have

`θ̂kn
(y0:n−1)−`θ̂k∗n (y0:n−1)

= 1
2

∇>`
θk∗

(y0:n−1)
√
n

J−1
θk∗

∇`
θk∗

(y0:n−1)
√
n

− 1
2
∇>`θ∗ (y0:n−1)√

n
J−1
θ∗

∇`θ∗ (y0:n−1)√
n

+ εn, (25)

where εn = o(log log n), w.p. 1. Due to working with nested models, we have
(immediately from the definition of Jθk∗ , Jθ∗)

J := Jθk∗ =

(
J11 J12

J21 J22

)
∈ Rdk×dk .

where J11 ≡ Jθ∗ , and J12, J21 = J>12 as deduced from Jθk∗ . Similarly, the
quantity ∇`θ∗(y0:n−1) forms the upper dk∗ -dimensional part of ∇`θk∗ (y0:n−1).
We will make use of the matrix equations implied by

JJ−1 = Idk ⇐⇒(
J11 J12

J21 J22

)(
(J−1)11 (J−1)12

(J−1)21 (J−1)22

)
=

(
Idk∗ 0dk∗×(dk−dk∗ )

0(dk−dk∗ )×dk∗ I(dk−dk∗ )

)
.

Given the above nesting considerations, some cumbersome but otherwise straight-
forward calculations give

∇>`
θk∗

(y0:n−1)
√
n

J−1
θk∗

∇`
θk∗

(y0:n−1)
√
n

− ∇
>`θ∗ (y0:n−1)√

n
J−1
θ∗

∇`θ∗ (y0:n−1)√
n

≡
{M∇`

θk∗
(y0:n−1)}>
√
n

D
M∇`

θk∗
(y0:n−1)
√
n

, (26)
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where we have set

M :=
(

(J−1)21 {(J−1)22}−1
)
∈ R(dk−dk∗ )×dk ;

D := {(J−1)22}−1 ∈ R(dk−dk∗ )×(dk−dk∗ ).

Consider the standard decomposition of the symmetric positive-definite D,

D = PΛP>,

for orthonormal P ∈ R(dk−d∗k)×(dk−d∗k) and diagonal Λ ∈ R(dk−d∗k)×(dk−d∗k).

Assumption 13. Define the martingale increments in Rdk−dk∗ , k > k∗.

h̃θk∗ (y−∞:0) := (
√

ΛP>M)hθk∗ (y−∞:0).

We have that E
∣∣h̃θk∗ (y−∞:0)

∣∣2 > 0.

Proposition 10. Under Assumptions 1-9, 12-13, we have that, for k > k∗,

P
[

AICn(Mk) < AICn(Mk∗), infinitely often in n ≥ 1
]

= 1.

Proof. Continuing from (25), (26), the use of LIL for martingale increments will
give that, w.p. 1,

lim sup
n

√
2
{
`θ̂kn

(y0:n−1)− `θ̂k∗n (y0:n−1)}
log log n

≥ sup
1≤j≤dk−dk∗

E
[

(h̃θk∗ (y−∞:0))2
j

]
> 0.

As the difference `θ̂kn(y0:n−1)−`θ̂k∗n (y0:n−1) is of size Θ(log log n)−o(log log n) in-
finitely often, the result follows immediately. (The notation Θ(an) for a positive
sequence {an} means that the sequence of interest is lower and upper bounded
by can and c′an respectively for constants 0 < c < c′.)

Thus, AIC is not a consistent Model Selection Criterion – in contrast with BIC.
Still, it is well known that AIC has desirable properties, e.g. with regards to
prediction error (in many cases the model chosen by AIC attains the minimum
maximum error in terms of prediction among models being considered), or its
minimax optimality. Barron et al. (1999) is a comprehensive article of this topic
and shows that minimax optimality of AIC holds in many cases, including the
i.i.d., some non-linear models and for density estimation. For works on the
efficiency of AIC terms of prediction see Shibata (1980, 1981); Shao (1997).
AIC is equivalent to LOO cross-validation (Stone, 1977) for i.i.d.-type model
structures. We refer to Ding et al. (2017, 2018) for a comprehensive review of
AIC and BIC. Note that Yang (2005) shows that consistency of model selection
and minimax optimality do not necessarily hold simultaneously. Our main focus
in this work is asymptotic behaviour of criteria from a model selection viewpoint,
so we will not further examine the prediction perspective.
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5.3 A General Result
Following e.g. Sin and White (1996), one can generalise some of the above results
for arbitrary penalty functions. Assume that we consider Information Criterion
(IC) of the form

ICn(Mk) = −`θ̂kn(y0:n−1) + penn(k), (27)

for a penalty function penn(k) ∈ R, (strictly) increasing in k ≥ 1.

Proposition 11. (i) If the following hold, for k′ > k ≥ 1,

lim
n→∞

penn(k′)−penn(k)
n = 0, lim

n→∞
penn(k′)−penn(k)

log logn = +∞,

then, under Assumptions 1-9, 12, the information criterion ICn in (27)
is strongly consistent.

(ii) If the following hold, for k′ > k ≥ 1,

lim
n→∞

penn(k′)−penn(k)
n = 0, lim

n→∞
penn(k′)− penn(k) = +∞,

then, under Assumptions 1-9, 12, the Information Criterion ICn in (27)
is weakly consistent.

Proof. (i) It is an immediate generalisation of the proof of Proposition 9.
(ii) First, let us consider the case when Mk ⊂ Mk∗ . Then, for any ε > 0 we
have

P
[

ICn(Mk)− ICn(Mk∗) > ε
]

= P
[
`θ̂k∗n

(y0:n−1)− `θ̂kn(y0:n−1) + (penn(k)− penn(k∗)) > ε
]

→ 1.

The limit follows from Proposition 8(i), as the random variable on the left
side of the inequality above diverges to +∞ w.p. 1, and a.s. convergence implies
convergence in probability. This result implies directly limn→∞ P [ k̂n ≥ k∗ ] = 1,
where k̂n denotes the model index minimising ICn(Mk), 1 ≤ k ≤ p.

Next, we consider the case whereMk∗ ⊂Mk. We have that

P
[

ICn(Mk) ≤ ICn(Mk∗)
]

= P
[
`θ̂kn

(y0:n−1)− `θ̂k∗n (y0:n−1) ≥ (penn(k)− penn(k∗))
]
. (28)

Recall the expression for `θ̂kn(y0:n−1)− `θ̂k∗n (y0:n−1) implied by Proposition 5(i).
The martingale CLT in Proposition 5(iii) gives that

∇`
θk∗

(y0:n−1)
√
n

⇒ Ndk
(
0,Jθk∗

)
,

22



with Jθk∗ defined in the obvious manner. Let Z ∼ Ndk
(
0,Jθk∗

)
; the continuous

mapping theorem gives that

`θ̂kn
(y0:n−1)− `θ̂k∗n (y0:n−1)⇒

= 1
2Z
>J−1

θk∗
Z − 1

2Z
>
1:dk∗
J−1
θ∗
Z1:dk∗ =: Z0

Continuing from (28), since |Z0| < ∞, w.p. 1, for any ε > 0 we can have some
n0 so that for all n1 ≥ n0, P [Z0 ≥ penn1

(k) − penn1
(k∗) ] < ε. Thus, for all n

large enough, we have that

P
[
`θ̂kn

(y0:n−1)− `θ̂k∗n (y0:n−1) ≥ (penn(k)− penn(k∗))
]

≤ P
[
`θ̂kn

(y0:n−1)− `θ̂k∗n (y0:n−1) ≥ (penn1
(k)− penn1

(k∗))
]

→ P [Z0 ≥ penn1
(k)− penn1

(k∗) ] < ε.

Thus, we conclude that P [ ICn(Mk) ≤ ICn(Mk∗)] → 0, so that we have ob-
tained limn→∞ P [ k̂n ≤ k∗ ] = 1.

Overall, we have shown that limn→∞ P [ k̂n = k∗ ] = 1.

The above results highlight that the penalty function should grow to infinity
with the sample size (at certain rate) to deliver strongly or weakly consistent IC.

6 Particle Approximation of AIC and BIC
BIC and AIC can be used for model selection for HMMs but are typically impos-
sible to calculate analytically due to intractability of the likelihood function for
general HMMs. Thus, an approximation technique is required. We adopt the
computational approach of Poyiadjis et al. (2011) which – for completeness – we
briefly review in this section. It involves a particle filtering algorithm coupled
with a recursive construction for an integral approximation.

The description follows closely Poyiadjis et al. (2011). The marginal Fisher
identity gives,

∇`θ(y0:n) =

∫
X

∇ log pθ(xn, y0:n)pθ(xn|y0:n)µ(dxn).

At step n, let (x
(i)
n , w

(i)
n )Ni=1 be a particle approximation of pθ(dxn|y0:n), with

standardised weights, i.e.
∑
i w

(i)
n = 1, obtained via some particle filtering algo-

rithm, so that,

∇`θ(y0:n) ≈
N∑
i=1

w(i)
n ∇ log pθ(x

(i)
n , y0:n). (29)

We explore the unknown quantity ∇ log pθ(xn, y0:n). We have,

pθ(xn,y0:n)

= pθ(y0:n−1)gθ(yn|xn)

∫
X

qθ(xn|xn−1)pθ(xn−1|y0:n−1)µ(dxn−1). (30)
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This implies that,

∇pθ(xn, y0:n) = pθ(y0:n−1)gθ(yn|xn)

∫
X

qθ(xn|xn−1)pθ(xn−1|y0:n−1)×{
∇ log gθ(yn|xn) +∇ log qθ(xn|xn−1) +∇ log pθ(xn−1, y0:n−1)

}
µ(dxn−1). (31)

At step n − 1, let (x
(j)
n−1, w

(j)
n−1)Nj=1 be a particle approximation of the filtering

distribution pθ(dxn−1|y0:n−1) and (α
(j)
n−1)Nj=1 a sequence of approximations to

(∇ log pθ(x
(j)
n−1, y0:n−1))Nj=1. Equations (30), (31) suggest the following recursive

approximation of ∇ log pθ(x
(i)
n , y0:n), for 1 ≤ i ≤ N ,

α(i)
n =

∑N
j=1 w

(j)
n−1qθ(x

(i)
n |x(j)

n−1)∑N
j=1 w

(j)
n−1qθ(x

(i)
n |x(j)

n−1)
×

{
∇ log gθ(yn|x(i)

n ) +∇ log qθ(x
(i)
n |x

(j)
n−1) + α

(j)
n−1

}
, (32)

Thus, from (29), one obtains an estimate of the score function at step n, as

∇`θ(y0:n) ≈
N∑
i=1

w(i)
n α(i)

n . (33)

The calculation in (32), and the adjoining particle filtering algorithm, can be
applied recursively to provide the approximation of the score function in (33)
for n = 0, 1, . . .. Note that the computational cost of this algorithm is O(N2),
but is robust for increasing n as it is based on the approximation of the filtering
distributions rather than the smoothing ones, see results and comments on this
point in Poyiadjis et al. (2011).

Moreover, Poyiadjis et al. (2011) use the score function estimation method-
ology to propose an online gradient ascent algorithm for obtaining an MLE-type
parameter estimate. In more detail, the method is based on the recursion

θn+1 = θn + γn+1∇ log pθ(yn|y0:n−1)
∣∣
θ=θn

, (34)

where {γk}k≥1 is a positive decreasing sequence with

∞∑
k=1

γk =∞,
∞∑
k=1

γ2
k <∞.

To deduce an online algorithm – following ideas in Le Gland and Mevel (1997)
– intermediate quantities involved in the recursions in (29)-(32) are calculated
at different, consecutive parameter values. See Poyiadjis et al. (2011) for more
details, and Le Gland and Mevel (1997); Tadic and Doucet (2018) for analytical
studies on the convergence properties of the algorithm. In particular, under
strict conditions the algorithm is shown to converge to the maximiser θ∗ of the
limiting function of θ 7→ `n(θ)/n, as n→∞.
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Remark 5. In our setting, we want to use the numerical studies to illustrate
the theoretical results obtained for AIC and BIC, so we will use the outcome
of the online recursion as proxy for the MLE. Then, the AIC and BIC will be
approximated by running a particle filter for the chosen MLE value to obtain an
approximation of the log-likelihood of the data at this parameter value.

7 Empirical Study
We consider the following stochastic volatility model (labeled as SV)

SV :

{
Xt = φXt−1 +Wt,
Yt = exp(Xt/2)Vt, t ≥ 1,

and the one with jumps (labeled as SVJ ),

SVJ :

{
Xt = φXt−1 +Wt

Yt = exp(Xt/2)Vt + qtJt, t ≥ 1,

where Wt ∼ N(0, σ2
X), Vt ∼ N(0, 1), Jt ∼ N(0, σ2

J) and qt ∼ Bernoulli(p), all
variables assumed independent over the time index t ≥ 1. In both cases X0 = 0.
The extended model SVJ can be used to capture instantaneous big jumps in
the relative changes of the values of the underlying asset; the choice of models
has been motivated by their use in the literature, see e.g. Pitt et al. (2014).
Figure 1 shows two sets of n = 104 simulated observations, one from SV and
one from SVJ , under the corresponding true parameter values

(φ, σX) = (0.9,
√

0.3); (φ, σX , σJ , p) = (0.9,
√

0.3,
√

0.6, 0.6).

These simulated data will be used in the experiments that follow. Scenario 1
(resp. Scenario 2) corresponds to the case when the true model is SVJ (resp. SV).
We will compare the two models, using AIC and BIC, in both Scenarios. The
estimated parameter values for SV and SVJ – and the estimates for AIC and
BIC using a particle filter – are obtained via the method of Poyiadjis et al.
(2011), reviewed in Section 6. Note that, as we have established in this work,
BIC is expected to be consistent for both Scenarios, whereas AIC only for the
first Scenario.

We set γn = n−2/3 for all numerical experiments in the sequel. Figure 2
shows estimated parameter values for SV, SVJ , for both simulated datasets,
sequentially in the data size, using the online version of the method of Section 6,
with N = 200 particles. (We tried also larger number of particles, with similar
results.) To further investigate the stability of the algorithm in Section 6 we
summarize in Figures 3, 4 estimates of AIC and BIC for the two models from
R = 200 replications of the same algorithm, for different data sizes. Figure 3
corresponds to Scenario 1 and Figure 4 to Scenario 2. The results obtained seem
to indicate that the numerical algorithm used for approximating AIC and BIC
is fairly robust in all cases. Also, it appears that in the challenging Scenario 2,
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Figure 1: The n = 104 simulated observations from models SV, SVJ , with pa-
rameter values (φ, σX) = (0.9,

√
0.3), (φ, σX , σJ , p) = (0.9,

√
0.3,
√

0.6, 0.6),
respectively, to be used in the experiments.

Figure 2: Estimated parameters for the SV (top panel) and SVJ (bottom panel)
models as obtained – sequentially in time – via the data simulated from the SV
(top panel) and SVJ (bottom panel) models respectively and the algorithm
reviewed in Section 6 with N = 200 particles. The horizontal lines indicate the
true parameter values in each case.
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Figure 3: Boxplots for Scenario 1 (SVJ model is true) from R = 200 estimates
(R denotes the replications of the numerical algorithm) of an Information Cri-
terion (IC) and various observation sizes. Blue: AIC(SV), Orange: AIC(SVJ ),
Green: BIC(SV), Purple: BIC(SVJ ).

Figure 4: Boxplots for Scenario 2 (SV model is true) from R = 200 estimates
of an IC and various observation sizes. Blue: AIC(SV), Orange: AIC(SVJ ),
Green: BIC(SV), Purple: BIC(SVJ ).

even with n = 104 observations, the boxplots do not seem to provide any decisive
evidence in favor of true model SV.

Table 1 shows results from the same R = 200 replications for the estimation
of AIC and BIC for each of the two models and two simulated datasets. In
agreement with our theory, BIC appears more robust (than AIC) at choosing
the correct model for the dataset simulated from SV. Figure 5 plots differences
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in AIC and BIC in Scenario 2, sequentially in the data size – more accurately, a
proxy of the differences, see Remark 5. To be precise, the blue line denotes the
‘path’ of AIC(SV)−AIC(SVJ ), and the red line denotes the one of BIC(SV)−
BIC(SVJ ). Since model SV is true in this case, the difference should be lower
than zero for large enough n if the used IC were consistent. As one can see,
the difference in BIC is always negative after a large enough sample size n. In
contrast, and in agreement with our theory, the difference in AIC never has such
property. For instance, sometime after n = 104, the difference increased and
exceeded the zero line. This is a clear empirical manifestation of Proposition 10;
so, whereas in the previous plots the deficiency of AIC was difficult to showcase
when looking at fixed data sizes, such deficiency became clear when we look at
the evolution of AIC as a function of data size.

n 2, 500 5, 000 7, 500 10, 000

AIC(SV) 32/200 4/200 0/200 0/200
AIC(SVJ ) 168/200 196/200 200/200 200/200
BIC(SV) 51/200 5/200 0/200 0/200
BIC(SVJ ) 149/200 195/200 200/200 200/200

n 2, 500 5, 000 7, 500 10, 000

AIC(SV) 154/200 161/200 153/200 158/200
AIC(SVJ ) 46/200 39/200 47/200 42/200
BIC(SV) 179/200 173/200 184/200 192/200
BIC(SVJ ) 21/200 27/200 16/200 8/200

Table 1: Results after R = 200 replications of the approximation algorithm
with N = 200 particles. The top (resp. bottom) table shows results for the data
simulated from SVJ (resp. SV). The 1st (resp. 2nd) row in each table shows
the fraction of the replications where the estimated AIC is smaller for the SV
model (resp. SVJ model) for different data sizes; rows 3 and 4 show similar
results for BIC.

8 Conclusions and Remarks
We have investigated the asymptotic behaviour of BIC, the evidence and AIC for
nested HMMs, and have derived new results concerning their consistency prop-
erties. Our work shows that BIC – and the evidence – are strongly consistent
for a general class of HMMs. In contrast, for a similarly posed Model Selection
problem, AIC is not even weakly consistent. Our study focuses on asymptotics
for increasing data size, so we do not investigate finite sample-size results for
BIC, evidence and AIC, such as optimality properties. It is well-known that
AIC is minimax-rate optimal but BIC is not in many cases, see e.g. Barron
et al. (1999). We conjecture this might also be the case for general HMMs.

The technique of constructing stationary, ergodic processes by introducing a
backward infinite extension of the observations – see (3) in Section 2 – has been
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Figure 5: The path of differences in AIC and BIC in Scenario 2 (SV is the
true model). That is, the blue line show the approximated value of AIC(SV)−
AIC(SVJ ) as a function of data size, and the red line the corresponding function
for BIC(SV)− BIC(SVJ ).

used in many other studies, even beyond HMMs. E.g. Douc et al. (2020) use this
approach to study posterior consistency for a class of partially observed Markov
models; Lehéricy (2018) use it to investigate non-asymptotic behaviour of MLE
for (finite state space) HMMs; Le Corff and Fort (2013) apply the technique
within an online EM setting for HMMs; Diel et al. (2020) consider more general
classes of latent variable models.

We note that asymptotic results about the MLE for HMMs have recently
been obtained under weaker conditions. See, e.g., Douc et al. (2011, 2016) for
developments that go beyond compact spaces. Here, we have worked with strict
assumptions on the state space (see – indicatively – Assumption 3, Section 2),
so that we obtain an important first set of illustrative results for Model Selec-
tion Criteria, avoiding at the same time an overload of technicalities. Future
investigations are expected to further weaken the conditions we have used here.

There are challenges when trying to move beyond the Model-Correctness set-
ting. As we have described in the first parts of the paper, Douc and Moulines
(2012) show that the MLE converges a.s. even for misspecified models under
mild assumptions. However, a CLT for the MLE in the context of general state-
space misspecified HMMs has yet to been proven. To the best of our knowledge,
only Pouzo et al. (2016) obtain such a result for a finite state space X. Thus,
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extending our results to non-nested settings or/and ones where one does not as-
sume correctness of a model, is a non-trivial undertaking that requires extensive
further research. Also, we note that AIC is asymptotically prediction efficient
in some misspecified models whilst BIC is not. The above discussion suggests
that investigating asymptotic behaviour of model selection criteria under No-
Model-Correctness for general HMM models is an important open problem that
requires further research.

One can use alternative numerical algorithms instead of the one we have used
here, and describe in Section 6 – see e.g. the approach in Olsson and Alenlöv
(2017). Note that the numerical algorithm used in the paper is mostly a tool for
illustrating our theoretical findings, which is the main focus of our work. The
numerical study shown in the paper already delivers the points stemming from
the theory, so we have refrained from describing/implementing further methods
to avoid diverting attention from our main findings.

From a practitioner point of view, our results and numerical study indicate
that AIC can wrongly select the more complex model due to ineffective penalty
term. Critically, this can be difficult to assess using standard experiments. Our
study has shown that one needs to investigate the evolution of AIC against data
size to clearly highlight its deficiency in the context of a numerical study. We
stress here that in the numerical experiment we have knowingly used models for
which several of the stated Assumptions will not hold (maybe most notably, the
strong mixing Assumption 3). The aim is to illustrate at least numerically, that
while our assumptions are standard in the literature, they serve for simplifying
the path to otherwise too technical derivations and provide results that are
expected to hold in much more general settings.
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