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Reference range: Which statistical
intervals to use?
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Abstract

Reference ranges, which are data-based intervals aiming to contain a pre-specified large proportion of the population

values, are powerful tools to analyse observations in clinical laboratories. Their main point is to classify any future

observations from the population which fall outside them as atypical and thus may warrant further investigation. As a

reference range is constructed from a random sample from the population, the event ‘a reference range contains

100 Pð Þ% of the population’ is also random. Hence, all we can hope for is that such event has a large occurrence

probability. In this paper we argue that some intervals, including the P prediction interval, are not suitable as reference

ranges since there is a substantial probability that these intervals contain less than 100 Pð Þ% of the population, especially

when the sample size is large. In contrast, a ðP; cÞ tolerance interval is designed to contain 100 Pð Þ% of the population

with a pre-specified large confidence c so it is eminently adequate as a reference range. An example based on real data

illustrates the paper’s key points.
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1 Introduction

The ‘Choose Wisely’ campaign was developed in the United States in 2012 by the American Board of Internal
Medicine Foundation and was launched in the United Kingdom in 2016 by the Academy of Medical Royal
Colleges. It aims to encourage a dialogue between clinicians and patients regarding the risk and benefits of
interventions, and the practice of evidence-based treatment regimens.1 As described recently,2 this conversation
often refers to the patient’s observed values of relevant clinical markers. Since the clinical laboratory provides
comparator intervals to assist the clinician in determining a context for an individual value, a natural question
from the patient is ‘Are my test results typical with respect to a healthy population?’. Although such assessment
values are often referred to as the test’s normal range, this terminology should be discouraged as it implies that
such a result has a binary ‘normal or abnormal’ quality which may lead to an arbitrary dichotomous interpre-
tation of the patient’s health status.2 Instead, the terms ‘reference limits’ or ‘reference range’ should be used in this
context.

Reference ranges are powerful tools in laboratory medicine to aid decision making3 and their use has become
increasingly prevalent in clinical practice. Searching in the Web of Science engine at the time of writing for articles
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published between 1999 and 2019 with ‘reference range’ as a topic, we found 5431 articles of which 469 appeared

in 2019, in contrast to 268 articles that appeared in 2009. These articles have collectively been cited by 91,034

publications of which 11,270 appeared in 2019, 2.4 times more than the number of citing publications 10 years

earlier.
Apart from the important individual overtones for patients, incorrectly estimating the reference range of a

sensitive clinical marker of physiological function has enormous public health implications. For example, under-

estimating the upper limit of a reference range would mean classifying a large number of people as diseased, thus

affecting the doses of medication prescribed.4 Construction of appropriate reference ranges is therefore crucial in

laboratory medicine practice. Well-known general references3,5–9 and a case for teaching tolerance intervals in

introductory statistics courses10 are available.
It is common practice to assume that clinical markers related to a disease follow a normal distribution among

healthy subjects. If there is evidence against this assumption we could fit models to specify optimal transforma-

tions to normality, e.g. logarithmic or square root though this might still result in biased estimates of the upper or

lower limits of the reference range depending on whether the distribution is right or left skewed.9 Alternatively we

could construct reference ranges under specific parametric assumptions different to normality, or follow a non-

parametric procedure. The focus of this paper is on the construction of parametric and nonparametric reference

ranges for a selected reference population based on a random sample from the population. The problems related

to selecting a reference population have been discussed elsewhere.6

A P (commonly set to 95%) reference range is a data-based interval that purports to include 100Pð Þ% of the

values in the population of interest. Their main point is to classify any future observations from the population

which fall outside these intervals as atypical and thus may warrant further investigation.
Let Fð�Þ denote the continuous cumulative distribution function (cdf) of the population, and F�1ðcÞ denote the

ð100 cÞ-th percentile of the population for a given c 2 ð0; 1Þ. The interval F�1 ð1� PÞ=2ð Þ;F�1 ð1þ PÞ=2ð Þ� �
con-

tains exactly 100Pð Þ% of the population and would be used as the P reference range had F been known. Since Fð�Þ
is usually not known completely in real problems, the reference range has to be estimated from a random sample

X1; . . . ;Xn from the population, i.e. X1 . . . ;Xn are independent random variables identically distributed Fð�Þ. Note

that we follow the notation in Krishnamoorthy and Mathew11 thus denoting the interval’s content level by P

instead of the commonly used 1� a, and its confidence level by c.
When Fð�Þ is assumed to have a normal distribution Nðl; r2Þ with unknown mean l and unknown variance r2,

we have F�1ðcÞ ¼ lþ zc r where zc denotes the ð100 cÞ-th percentile of the standard normal distribution N(0, 1).

When Fð�Þ is not assumed to have a parametric form, nonparametric (or distribution free) methods can be used. In

this paper, both normal-based and nonparametric methods are considered.
As a reference range depends on the random sample, the proportion of the population contained in it is also

random. Thus the question is ‘which statistical intervals should be used as reference ranges?’
In this article we argue that a P prediction interval, which continues to be used as a reference range in the

literature,6,12,13 is not fit for the purpose of interest since there is a substantial probability (due to the randomness

in the sample) that the prediction interval contains less than 100Pð Þ% of the population.
We then argue that a ðP; cÞ tolerance interval, with confidence c 2 ð0; 1Þ set at a pre-specified large value, c ¼

0:95 say, is valid as a reference range since it guarantees, with large confidence c due to the randomness in the

sample, to contain 100Pð Þ% of the population values. Several authors have proposed to use tolerance intervals as

reference ranges.5,14,15 With almost 80 years of research on tolerance intervals or regions, various parametric and

nonparametric procedures are readily available for use as reference ranges.
The next two sections discuss reference ranges based on the normal distribution, and nonparametric reference

ranges. They are followed by a section considering a numerical example, and a final one with concluding remarks.

2 Reference ranges based on the normal distribution

2.1 Reference ranges currently in use

Based on the sample, one reference range that has been widely used is the P prediction interval for a future

observation Y from a population with Nðl; r2Þ distribution6,12,13

RR1 ¼ �X� tð1þPÞ=2;� S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=n

p
¼ �X� c1 S
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where �X ¼ 1
n

Xn

i¼1
Xi is the sample mean, S2 ¼ 1

n�1

Xn

i¼1
ðXi � �XÞ2 is the sample variance, td;� is the ð100 dÞ-th

percentile of the t distribution with � degrees of freedom (df), � ¼ n� 1, and c1 ¼ tð1þPÞ=2;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=n

p
.

A relevant guide on prediction intervals for reference regions is available,7 and we note that the prediction
interval RR1 has also been called the P expectation tolerance interval.16,17

Other reference ranges are based on estimators of the percentiles l� zð1þPÞ=2 r and include

RR2 ¼ �X� zð1þPÞ=2 S ¼ �X� c2 S

RR3 ¼ �X� zð1þPÞ=2 S=k� ¼ �X� c3 S

RR4 ¼ �X� zð1þPÞ=2 S k� ¼ �X� c4 S

where k� ¼
ffiffiffiffiffiffiffiffi
2=�

p
C ð� þ 1Þ=2ð Þ =Cð�=2Þ; c2 ¼ zð1þPÞ=2, c3 ¼ zð1þPÞ=2 = k� and c4 ¼ zð1þPÞ=2 k�.

9,12 Now �X þ c2 S is a
naı̈ve estimator of lþ zc r; �X þ c3 S has the minimum variance among unbiased estimators of lþ zcr, and �X þ
c4 S has minimum mean squared error among estimators of the form �X þ c S where c is a constant.12

One immediate question is whether these reference ranges RRi contain 100Pð Þ% of the values in the popula-
tion, which is the objective of a reference range. Note that the proportion of the population within the reference
range RRi ¼ �X� ci S is given by

Ki ¼ Pr
YjX1;...;Xn

Y 2 �X� ciSf g ¼ U
�X � l
r

þ ci
S

r

� �
� U

�X � l
r

� ci
S

r

� �
(1)

where Y�Nðl; r2Þ and is independent of the sample X1; . . . ;Xn, PrYjX1;...;Xn
f�g is the conditional probability of Y

conditioning on the sample X1; . . . ;Xn, and Uð�Þ is the cdf of a N(0, 1) random variable. Hence the objective of a
reference range is to have Ki � P. It is clear from equation (1) that Ki is a random variable depending on the

random sample via �X and S so whether ‘Ki � P’ is also random. As a result, all we can hope is that the event
Ki � Pf g has a large probability of occurrence.
We note from equation (1) that Ki increases as ci increases. Hence, among the RRi (1 � i � 4) given above, the

one that has the largest ci contains the largest proportion of the population. Figure 1 compares the ci for given
sample sizes n ¼ 2 : 150 and P¼ 0.95. Clearly, c1 is the largest among the ci (1 � i � 4), and so RR1 contains the
largest proportion of the population among the four reference ranges. We therefore investigate whether or not
‘K1 � P’ has a large probability to occur in order for RR1 to be used as a reference range.

Figure 1. The value of ci as a function of the sample size n.
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First, note that

E ðK1Þ ¼ E Pr
YjX1;...;Xn

Y 2 �X� c1Sf g
� �

¼ Pr Y 2 �X� c1Sf g (2)

¼ Pr
Y� �Xj j= r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=n

p	 

S=r

< tP=2;�

8<
:

9=
; ¼ P (3)

where the equality in equation (2) results directly from the well-known conditional expectation formula,18 and the

equality in equation (3) follows from the fact that Y� �Xð Þ= r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=n

p	 

is distributed N(0, 1) and is independent

of S=r which has the distribution
ffiffiffiffiffiffiffiffiffiffi
v2�=�

p
, with v2� denoting a chi-squared random variable with � ¼ n� 1 df. That

the probability in equation (3) is equal to P qualifies RR1 as a P prediction interval for a future observation Y

from the same population that the sample X1; . . . ;Xn is drawn.
Second, the distribution of K1 can be studied by simulating a large number, Rsim ¼ 1; 000; 000 say, of inde-

pendent realisations of K1. Note from equation (1) that

K1 ¼ U
Zffiffiffi
n

p þ c1

ffiffiffiffiffi
v2�
�

r !
� U

Zffiffiffi
n

p � c1

ffiffiffiffiffi
v2�
�

r !
(4)

where Z ¼ ffiffiffi
n

p ð �X � lÞ=r is a standard N(0, 1) random variable, v2� ¼ � S2=r2 is a chi-squared random variable

with � ¼ n� 1 df, and Z and v2� are statistically independent. From equation (4), K1 can easily be simulated. For

given P and n, Rsim ¼ 1; 000; 000 replicas of K1 are simulated, based on which the probability density function

(pdf) of K1 can be accurately approximated. In Figure 2, the kernel density estimate19 of the pdf of K1 based on

the simulated K1 values is plotted (by using the R package KernSmooth)20 for n ¼ 20, 50, 100 and 150. Based on

the simulated K1 values, we approximated PrfK1 < Pg by the proportion of the K1 values that are less than

P ¼ 0:95, which are given by 0.385, 0.429, 0.450 and 0.459 for n ¼ 20, 50, 100 and 150, respectively. Note that

PrfK1 < Pg is given in Figure 2 by the area under the pdf to the left of the vertical line at P ¼ 0:95.
Given equation (3), it can be shown by the delta method that

ffiffiffi
n

p
K1 � Pð Þ tends when n ! 1 to a normal

distribution with zero mean and finite variance. This is supported by Figure 2 which shows that the pdf of K1 is

getting closer to be symmetric and centered with decreasing variance at P as n increases. Note that n¼ 150 is not

large enough yet for the pdf of K1 to converge to a normal pdf. From a brief simulation study we found that in

Figure 2. The pdf’s of K1 for various sample sizes n.
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order to achieve this satisfactorily the sample size must be very large indeed. Even for n¼ 10, 000 the skewness and
kurtosis values suggest a significant lack of normality. The coefficient of variation of K1 for n¼ 150 is 0.014, and
becomes smaller than 0.01 for n � 300, and is around 0.002 for n¼ 10,000. This asymptotic normal distribution
implies that PrfK1 < Pg ! 0:5 as n ! 1, that is, the probability of the reference range RR1 containing less than
100Pð Þ% of the population is about 1/2 when the sample size is large.
The argument above means that, due to the sample’s randomness, using RR1 as the reference range implies that

there is a substantive probability, close to 50% when n is sufficiently large, that the reference range does not fulfill
its objective of containing 100Pð Þ% of the population. Its property E ðK1Þ ¼ P in equation (3) has the following
interpretation. A large number of individuals, I say, collect independent samples, one each, and compute the
corresponding reference ranges RR1 based on their own samples. Then the proportions of the population con-
tained in these I reference ranges, K1;1; . . . ;K1;I, are random values from the interval (0, 1) and form a random
sample from the distribution of K1 although some values could be very close to 0 and some values could be very
close to 1. The property E ðK1Þ ¼ P merely says that ðK1;1 þ � � � þ K1;IÞ=I is close to P when I is large. Hence, the
proportion of the population that one particular reference range contains could be very small but this is com-
pensated by some very large proportions of the population that some other individuals’ reference ranges might
contain in the sense that ðK1;1 þ � � � þ K1;IÞ=I is close to P. This potential for compensation from other reference
ranges is unlikely to offer any comfort for knowing that one’s reference range has a substantial probability of
containing less than 100Pð Þ% of the population. It is clearly desirable to have a high confidence that our own
reference range contains 100Pð Þ% of the population. Hence RR1 falls short on this ground and should not be
used as a reference range.

The justification for using prediction intervals as reference ranges5,13 is that exactly 100Pð Þ% of the future
observations from the population should fall within the prediction intervals. It is clear from the line of reasoning
stated in the previous paragraphs that this argument is not valid. The inappropriateness of prediction regions when
used as reference regions has also been noted in Sections 2.2 and 3.3 of Dong and Mathew.15

In the next section we discuss tolerance intervals since several authors5,14,15 have proposed to use them as
reference ranges. For example it has been stated that ‘it would seem that the statistical tolerance interval is what
clinical chemists have in mind when they speak of a reference range derived from a sample of individuals
representing some defined population’5 (p. 55).

2.2 Tolerance intervals

A tolerance interval with content level P is a data-based random interval constructed to contain 100Pð Þ% of the
population with a pre-specified (large) confidence level c about the randomness in the sample.11,16,17,21–23

Specifically, a ðP; cÞ tolerance interval is given by11

RR5 ¼ �X� c5 S

where the critical constant c5 ¼ c5 ðP; c; nÞ is chosen such that

Pr PrYjX1;...;Xn
Y 2 �X� c5Sf g � P

� � ¼ Pr U
�X � l
r

þ c5
S

r

� �
� U

�X � l
r

� c5
S

r

� �
� P

� �
¼ Pr U Z=

ffiffiffi
n

p þ c5
ffiffiffiffiffiffiffiffiffiffi
v2�=�

p	 

� U Z=

ffiffiffi
n

p � c5
ffiffiffiffiffiffiffiffiffiffi
v2�=�

p	 

� P

n o
¼ c

(5)

where the random variables Z and v2� in equation (5) are the same as those in equation (4). The R package
tolerance24,25 can be used to compute c5.

Figure 3 compares c1 and c5 for given sample sizes n ¼ 2 : 150 with P¼ 0.95 and c ¼ 0:90; 0:95f g. It is clear
from Figure 3 that c5 is considerably larger than c1 in order that RR5 contains 100Pð Þ% of the population with a
pre-specified large confidence c about the randomness in the sample. Also, as expected, c5 increases with c as seen
in Figure 3.

3 Equal-tailed tolerance intervals

The tolerance interval RR5 contains 100Pð Þ% of the population with a pre-specified (large) confidence c about the
randomness in the sample. But the proportion P of the population contained in RR5 may not be the central
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100Pð Þ% interval of the population. If we insist that a reference range should contain that central proportion of

the population, i.e. ½l� zð1þPÞ=2 r; lþ zð1þPÞ=2 r� with pre-specified confidence c about the randomness in the

sample, then we should use the following interval as the reference range

RR6 ¼ �X� c6 S

where the critical constant c6 ¼ c6 ðP; c; nÞ is chosen such that

Pr �X � c6 S < l� zð1þPÞ=2r and lþ zð1þPÞ=2r < �X þ c6 S
� � ¼ c

This interval is called the equal-tailed or central ðP; cÞ tolerance interval.15 A formula for values of c6 is

available11 and can be computed using the function K.factor of the R package tolerance.24,25 This interval

can be viewed as a c confidence simultaneous lower confidence bound on quantile l� zð1þPÞ=2 r and upper

confidence bound on quantile lþ zð1þPÞ=2 r.
26

It is clear that comprising the central 100Pð Þ% of the population ½l� zð1þPÞ=2 r; lþ zð1þPÞ=2 r� implies con-

taining 100Pð Þ% of the population. Hence the equal-tailed RR6 satisfies a more stringent requirement than RR5

and, as a result, c6 is larger than c5.
Figure 4 compares c5 and c6 for given sample sizes n ¼ 2 : 150 with P¼ 0.95 and confidence

c ¼ 0:90; 0:95; 0:99f g. It is clear from Figure 4 that c6 > c5, as expected.
Our view is that the ðP; cÞ tolerance interval should be used as the reference range since its form �X� c5 S is

centered at �X, mimicking the form of the equal-tailed tolerance interval l� c6 r, and with a large confidence c it
does contain 100Pð Þ% of the population. Only if we specifically require the reference range to contain the central

100Pð Þ% of the population, l� zð1þPÞ=2r, then the equal-tailed ðP; cÞ tolerance interval should be used; otherwise

it is unnecessarily wider and flags as atypical fewer individuals than the ðP; cÞ tolerance interval.

4 Nonparametric reference ranges

4.1 Nonparametric prediction intervals

When Fð�Þ is not assumed to have a specific form, nonparametric reference ranges can be considered and are based

on the order statistics X½1� < . . . < X½n� of the sample X1; . . . ;Xn, and the sample quantiles have been used to

estimate the population quantiles F�1 1� Pð Þ=2 �
and F�1 1þ PÞ=2ð Þ.6

Figure 3. The values of c1 and c5 for various sample sizes n.
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In what follows, jðpÞ and jðtÞ are indices used for prediction and tolerance intervals, respectively.
Let jðpÞ, with 1 � jðpÞ � n=2, be the largest natural number such that

Pr Y 2 ðX½jðpÞ�;X½n�jðpÞþ1�Þ
� � � P (6)

where Y is a future observation from the population Fð�Þ independent of the random sample X1; . . . ;Xn as before.
Using the well-known facts that U1 ¼ FðX1Þ; . . . ;Un ¼ FðXnÞ are independent, each having a uniform distribution
on the interval (0, 1), and that U½k� ¼ FðX½k�Þ is the k-th order statistic of U1; . . . ;Un and has a beta distribution
with parameters k and n� kþ 1, the probability in (6) is equal16 to nþ 1� 2 jðpÞ

 �
=ðnþ 1Þ. Hence the constraint

on jðpÞ required in equation (6) gives

jðpÞ ¼ hðnþ 1Þ 1� Pð Þ=2i (7)

where hai denotes the integer part of a. This leads to use the nonparametric prediction interval

RR7 ¼ X½jðpÞ�;X½n�jðpÞþ1�
 �

as a reference range. An interesting remark is that X½jðpÞ� and X½n�jðpÞþ1� are consistent point estimators of the
population quantiles F�1 ð1� PÞ=2ð Þ and F�1 ð1þ PÞ=2ð Þ, respectively.

The proportion of the population contained in RR7 is given by

K7 ¼ Pr
YjX1;...;Xn

Y 2 ðX½jðpÞ�;X½n�jðpÞþ1�Þ
� �

¼ Pr
YjX1;...;Xn

FðYÞ 2 FðX½jðpÞ�Þ;FðX½n�jðpÞþ1�Þ
 �� �

¼ U½n�jðpÞþ1� �U½jðpÞ�

(8)

which is a random variable. The important question is whether the probability that this proportion is at least P,
given by

Pr U½n�jðpÞþ1� �U½jðpÞ� � P
� �

(9)

is sufficiently large to qualify the P prediction interval RR7 ¼ X½jðpÞ�;X½n�jðpÞþ1�
 �

as a reference range.

Figure 4. The values of c5 and c6 for various sample sizes n.
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By noting that U½n�jðpÞþ1� �U½jðpÞ� and U½n�2jðpÞþ1� follow the same beta distribution Bn�2jðpÞþ1;2jðpÞ , Tukey’s equiv-

alence blocks result27 directly implies that

Pr U½n�jðpÞþ1� �U½jðpÞ� � P
� � ¼ 1� Bn�2jðpÞþ1;2jðpÞ ðPÞ (10)

where Bn�2jðpÞþ1;2jðpÞ ð�Þ denotes the cdf of the beta distribution with parameters n� 2 jðpÞ þ 1 and 2 jðpÞ. This prob-
ability can be easily calculated using the function pbeta in R.

Note that, as n ! 1, the beta distribution Bn�2jðpÞþ1;2jðpÞ converges to a normal distribution with mean P thus

the probability in equation (10) approaches 0.5 as n ! 1.
Figure 5 plots this probability against n for P ¼ 0:90; 0:95; 0:99f g. The plots are saw-tooth shaped due to the

discreetness of n and jðpÞ. It is clear from the figure that this probability can be substantially smaller than P, and

approaches 0.5 as n is large as expected from the asymptotic normal distribution pointed out above. This shows

that the nonparametric prediction interval has a substantial probability, close to 0.5 when n is large, of containing

less than 100Pð Þ% of the population values. Hence, this nonparametric prediction interval should not be used as a

reference range for the same reason as the prediction interval based on the normal distribution.

5 Nonparametric tolerance intervals

A nonparametric tolerance interval is constructed to contain 100Pð Þ% of the population with a pre-specified

(large) confidence c about the randomness in the sample. Consider the following nonparametric tolerance

interval21

RR8 ¼ ðX½jðtÞ�; X½n�jðtÞþ1�Þ

where jðtÞ satisfies that 1 � jðtÞ � n=2 should be the largest natural number such that the proportion of the pop-

ulation contained in RR8, given by

K8 ¼ Pr
YjX1;...;Xn

Y 2 ðX½jðtÞ�;X½n�jðtÞþ1�Þ
� � ¼ U½n�jðtÞþ1� �U½jðtÞ�

following similar lines as K7 in equation (8), is at least P with probability c about the randomness in

the sample X1; . . . ;Xn. It follows therefore from equation (10) that 1 � jðtÞ � n=2 should be the largest natural

Figure 5. The probability in equation (10) for various sample sizes n.
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number that satisfies

Pr U½n�jðtÞþ1� �U½jðtÞ� � P
� � ¼ 1� Bn�2jðtÞþ1;2jðtÞ ðPÞ � c (11)

For given n, P and c, jðtÞ can be easily computed by a direct search over the natural numbers in the range from 1

to n=2. Note that if the sample size n is too small, then the existence of jðtÞ is not guaranteed unless n satisfies11

1� nPn�1 � ðn� 1ÞPn
 �

� c (12)

The equal-tailed or central nonparametric tolerance intervals can be constructed in a similar way. Our view is

that a ðP; cÞ nonparametric tolerance interval is pertinent as a reference range similar to the normal distribution

case. Hence we do not go into the details about the equal-tailed nonparametric tolerance intervals to save space.
Figure 6 compares jðtÞ and jðpÞ for given sample sizes n with P¼ 0.95 and c ¼ 0:90; 0:95; 0:99f g. It is clear from

Figure 6 that jðtÞ is considerably smaller than jðpÞ, and so RR8 is wider than RR7, in order that RR8 contains

100Pð Þ% of the population with a pre-specified large confidence c about the randomness in the sample. Also, as

expected, jðtÞ decreases as c increases.

6 Example

A random sample of n¼ 210 observations on fasting plasma glucose is taken from the population of interest. The

data and the R code for all the computations in this paper are available at http://www.personal.soton.ac.uk/

wl/RefRange/.
Suppose that the usual normality tests28 show that it is reasonable to assume the population has a normal

distribution. The sample mean and standard deviation are computed to be �X ¼ 5:31 and S¼ 0.41 (in unit mmol/

L). If we use the prediction interval as the reference range, then it is given by

RR1 ¼ �X� tð1þPÞ=2;� S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=n

p ¼ 5:31� 1:97 	 0:41 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=210

p
¼ ½4:49; 6:12�

Note, however, as pointed out above, that the probability of the prediction interval containing less than

100Pð Þ% of the population can be substantial and is computed to be 47%. So there is a 47% probability that

the interval does not do what it purports to do: containing 100Pð Þ% of the population.

Figure 6. The values of jðpÞ and jðtÞ for various sample sizes n given P and c.
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If we use the ðP; cÞ tolerance interval as the reference range, with c ¼ 0:95, then it is given by

RR5 ¼ �X� c5 S ¼ 5:31� 2:14 	 0:41 ¼ ½4:43; 6:19�

This interval is wider than the prediction interval. But, as we pointed out, the tolerance interval does contain

100Pð Þ% of the population with probability c ¼ 0:95. Therefore, any future observations falling outside this

interval can be regarded as atypical and should be considered for further investigation.
While the tolerance interval above has a confidence c ¼ 95% of containing 100Pð Þ% of the population, it has a

less than c ¼ 95% probability of containing the central 100Pð Þ%of the population, l� zð1þPÞ=2r. This probability
is computed to be 86%.

In order to have a c ¼ 95% probability of containing the central 100Pð Þ% of the population, l� zð1þPÞ=2r, we
can use the equal-tailed ðP; cÞ tolerance interval, which is given by

RR6 ¼ �X� c6 S ¼ 5:31� 2:21 	 0:41 ¼ ½4:40; 6:22�

The confidence that this equal-tailed tolerance interval contains 100Pð Þ% of the population is computed to be

99%, which is much larger than c ¼ 95%. Hence, with a 99% probability, the equal-tailed tolerance interval

contains 100Pð Þ% of the population. Furthermore, we estimated that the equal-tailed tolerance interval
�X� 2:21S is the ð0:957; cÞ tolerance interval, that is, the interval contains 95.7% of the population with confi-

dence c ¼ 95%.
Now suppose that the distribution of the population cannot be assumed to be normal. Then nonparametric

reference ranges should be used. If we use the prediction interval as the reference range, then it is given by

RR7 ¼ ½X½5�; X½n�5þ1�� ¼ ½X½5�; X½206�� ¼ ½4:62; 6:09�

with jðpÞ ¼ 5. Note, however, as we have pointed out, that the probability of the prediction interval containing less

than 100Pð Þ% of the population can be substantial and is computed to be 39%. So there is a 39% probability that

the interval does not do what it purports to do: containing 100Pð Þ% of the population.
If we use the ðP; cÞ nonparametric tolerance interval as the reference range, with c ¼ 0:95, then it is given by

RR8 ¼ ½X½3�; X½n�3þ1�� ¼ ½X½3�; X½208�� ¼ ½4:38; 6:27�

with jðtÞ ¼ 3. This tolerance interval is wider than the nonparametric prediction interval but, as we pointed out, it

does contain 100Pð Þ% of the population with 95% confidence. Therefore, any future observations falling outside

this interval can be regarded as atypical and should be considered for further investigation.
Finally, we note that nonparametric intervals are usually wider than the corresponding parametric ones since

they require fewer assumptions than the parametric model.

7 Conclusions

The objective of a reference range is to contain a pre-specified large content level 100Pð Þ% of the population with

c confidence level, so that a future observation falling outside the reference range is regarded as atypical and

considered for further investigation. This procedure should be useful as part of screening programmes, whose aim

is to identify subjects at sufficient risk of a specific disorder who may benefit from further investigation or direct

preventive action to avoid death or disability and to improve their quality of life.29

Since a reference range depends on the random sample, the event ‘a reference range contains 100Pð Þ% of the

population’ is also random and so we can never be certain that a reference range contains 100Pð Þ% of the

population. All we can hope for is that the event ‘a reference range contains 100Pð Þ% of the population’

occurs with a large probability, c.
Based on this premise, we have argued that the prediction interval is not suitable as a reference range since

there is a substantial probability, close to 50% when n is large, that the prediction interval contains less than

100Pð Þ% of the population. In contrast, a ðP; cÞ tolerance interval is designed to contain 100Pð Þ% of the pop-

ulation with a pre-specified large confidence c so it is eminently adequate as a reference range.
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Tolerance intervals or regions have been studied by many statisticians since the 1940s. Various parametric and

nonparametric procedures are readily available for use as reference ranges or reference regions.11,16,17,24 Finally,

we note that there is some work on constructing reference ranges specifically assuming that the clinical marker

follows a log-normal distribution,30 and on sample size calculation for reference ranges,31,32 and tolerance inter-

vals.33–35 These aspects, however interesting, fall beyond the scope of our paper.
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