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Abstract

For a graph G, its rth power Gr is defined as the graph with the same vertex set
as G, and an edge between any two vertices whenever they are within distance r of
each other in G. Motivated by a result from additive number theory, Hegarty raised
the question of how many new edges Gr has when G is a regular, connected graph
with diameter at least r. We address this question for r ̸= 3, 6. e give a lower bound
for the number of edges in the rth power of G in terms of the order of G and the
minimal degree of G. As a corollary, for r ̸= 3, 6, we determine how small the ratio
e(Gr)/e(G) can be for regular, connected graphs of diameter at least r.

1 Introduction

The rth power of G, denoted Gr, is the graph with vertex set V (G), and xy an edge
whenever x and y are within distance r of each other. Consider the following question
“How many new edges are added to a graph G by taking its rth power?” If G is a
complete graph then Gr doesn’t have any new edges. Therefore it is natural to place
additional restrictions on G. The diameter of a connected graph G, denoted diam(G), is
defined to be the maximal distance between a pair of vertices in G (alternatively, diam(G)
is the minimal r for which Gr is complete). One would expect that when r is smaller than
diam(G), then Gr has substantially more edges than G. In this paper we study how many
new edges are added to a graph G by taking its rth power, for G a connected graph with
diam(G) ≥ r. In particular, for r ̸= 3, 6, we determine how small the ratio e(Gr)/e(G) can
be for regular, connected graphs G.
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The motivation for studying this comes from a corollary of the Cauchy-Davenport
Theorem from additive number theory. Before we can state this corollary, we need a
definition. The Cayley graph of a subset A ⊆ Zp is constructed on the vertex set Zp. For
two distinct vertices x, y ∈ Zp, we define xy to be an edge whenever x−y ∈ A or y−x ∈ A.
The following is a consequence of the Cauchy-Davenport Theorem (usually stated in the
language of additive number theory).

Theorem 1.1 (Cauchy and Davenport, [1, 2]). Let p be a prime, G the Cayley graph of a
set A ⊆ Zp, and r an integer such that r < diam(G). Then we have

e(Gr)

e(G)
≥ r. (1)

One could ask whether inequalities similar to (1) hold for more general families of
graphs. Motivated by the fact that Cayley graphs are regular, Hegarty asked this question
for regular graphs and proved the following theorem.

Theorem 1.2 (Hegarty, [7]). Let G be a regular, connected graph, satisfying diam(G) ≥ 3.
Then we have

e(G3)

e(G)
≥ 1 + ϵ. (2)

Where ϵ ≈ 0.087.

The constant ϵ has since been improved to 1/6 by the author [8] and to 3/4 by DeVos
and Thomassé [4]. The value ϵ = 3/4 is optimal in the sense that there exists a sequence of
regular graphs of diameter greater than 3, Gm, satisfying e(G3

m)/e(Gm) → 7/4 as m → ∞
[4].

Hegarty also asked what happens for other powers of G. For G2, Hegarty showed that
no inequality similar to (2) can hold for regular graphs in general, by exhibiting a sequence
of regular, connected graphs of diameter greater than 2, Gm, satisfying e(G2

m)/e(Gm) → 1
as m → ∞ [7]. Goff [6] studied the 2nd power of regular graphs further. He showed that for
any d-regular graph connected graph G such that diam(G) > 2, we have e(G2)/e(G) ≥ 1+
3
2d
−o

(
1
d

)
. For general d-regular connected graphs G with diam(G) > 2, he showed that the

3
2d

term in this result cannot be replaced with λ/d for any λ > 3
2
. However he showed that

with the exception of two families of exceptional graphs, we have e(G2)/e(G) ≥ 1+ 2
d
−o

(
1
d

)
for all d-regular connected graphs with diam(G) > 2.

The goal of this paper is to deal with the case when r ≥ 4. In particular, for r ̸= 3, 6, we
find how small the ratio e(Gr)/e(G) can be for a regular, connected graph G of diameter
at least r.

The requirement of G being regular in Theorem 1.2 is quite restrictive. DeVos and
Thomassé noticed that it is possible to remove this assumption, and bound e(G3) in terms
of the order of G and the minimum degree of G. They proved the following theorem.
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Theorem 1.3 (DeVos and Thomassé, [4]). Let G be a connected graph of minimum degree
δ(G) and satisfying diam(G) ≥ 3. Then we have

e(G3) ≥ 7

8
δ(G)|G|. (3)

When G is regular, the above theorem immediately implies Theorem 1.2 with the
optimal constant of ϵ = 3/4. The main theorem which we shall prove in this paper is a
generalisation of Theorem 1.3 to higher powers of G.

Theorem 1.4. Suppose that r ̸= 6. Let G be a connected graph satisfying diam(G) ≥ r
and having minimum degree δ(G).

• If r ≡ 0 (mod 3), then we have

e(Gr) ≥
(
r + 3

6
− 3

4(r + 3)

)
δ(G)|G|.

• If r ̸≡ 0 (mod 3), then we have

e(Gr) ≥ 1

2

⌈r
3

⌉
δ(G)|G|.

The case r = 3 of Theorem 1.4 is due to DeVos and Thomassé [4], and will not be
proved here. Applying Theorem 1.4 to regular graphs gives the following corollary.

Corollary 1.5. Suppose that r ̸= 6. Let G be a connected, regular graph, and r a positive
integer such that diam(G) ≥ r.

• If r ≡ 0 (mod 3), then we have

e(Gr)

e(G)
≥ r + 3

3
− 3

2(r + 3)
.

• If r ̸≡ 0 (mod 3), then we have

e(Gr)

e(G)
≥

⌈r
3

⌉
.

Corollary 1.5 gives a lower bound on the ratio e(Gr)/e(G) for regular graphs. The
bounds on e(Gr)/e(G) in Corollary 1.5 are optimal in the following sense. For each r,
there exists a sequence of regular, connected graphs of diameter at least r, Gm, such that
e(Gr

m)/e(Gm) tends to the bound given by Corollary 1.5 as m tends to infinity. We will
give a construction of such sequences in Section 3.

The structure of this paper is as follows. In Section 2 we define some notation and
prove Theorem 1.4. In Section 3, we construct sequences of regular graphs which show
that the bounds on e(Gr)/e(G) in Corollary 1.5 are optimal. In Section 4 we make some
remarks about the case when r = 6, as well as some open problems in this area.
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2 Proofs

In this section we prove Theorem 1.4.
Although Theorem 1.4 is a theorem about loopless graphs, in this section we will also

consider graphs which may contain loops. This is because the proof of our results is more
natural in this setting.

We will denote graphs which may contain loops by curly letters such as “G”. Graphs
with loops explicitly forbidden are donoted by Roman letters such as “G”. For two vertices
x and y (possibly x = y) we only ever allow one edge between x and y. The neighbourhood
of a vertex x, N(x), is defined as the set of vertices adjacent to x. (If there is a loop at
x, then N(x) will contain x itself.) The degree of x is |N(x)|. Notice that this ensures
that a loop is counted only once in the degree of a vertex. The minimal degree of a graph,
taken over all vertices in G is denoted by δ(G). For graphs with loops allowed, Gr is again
defined to be the graph with vertex set V (G), and xy an edge whenever x and y are within
distance r of each other in G. Notice that this definition implies that Gr always has a loop
at each vertex (since for any vertex v we have d(v, v) = 0). For two sets of vertices X and
Y , let d(X, Y ) denote the length of a shortest path between a vertex in X and a vertex in
Y . If X is a set of vertices, let N r(X) be the set of vertices at distance at most r from
X. We abbreviate N r({x}) as N r(x). Notice that since Gr has a loop at every vertex, we
always have e(Gr) = 1

2

∑
v∈V (G)(|N r(v)|+ 1). For all other notation, we refer to [5].

We will prove the following theorem, and then deduce Theorem 1.4 as a corollary.

Theorem 2.1. Let G be a connected graph, and r a positive integer such that r ̸= 3, 6 and
diam(G) ≥ r.

• If r ≡ 0 (mod 3), then we have

e(Gr) ≥
(
r + 3

6
− 3

4(r + 3)

)
δ(G)|G|+ 1

2
|G|.

• If r ̸≡ 0 (mod 3), then we have

e(Gr) ≥ 1

2

⌈r
3

⌉
δ(G)|G|+ 1

2
|G|.

The basic strategy of the proof is simple—for each vertex v, we show that |N r(v)| is
large, thereby showing that e(Gr) = 1

2

∑
v∈V (G)(|N r(v)| + 1) is large as well. When r ̸≡ 0

(mod 3), this is an easy task—it will turn out that in this case each vertex in v satisfies
|N r(v)| ≥ ⌈r/3⌉ δ. When r ≡ 0 (mod 3), the proof is more complicated. In that case, we
will show that a large proportion of the vertices of G satisfy |N r(v)| ≥ (r/3 + 1)δ, which
in turn will imply the bound in Theorem 2.1. This is the same general strategy as the
one used by DeVos and Thomassé [4] in the proof of Theorem 1.3. However, many of our
intermediate steps are different from their proof.
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Proof of Theorem 2.1. For convenience, we will set δ = δ(G). If P is a path between two
vertices x and y, we say that P is a geodesic if the length of P is d(x, y). The notion of
a geodesic is useful because the neighbourhood of a geodesic must be quite large. This is
quantified in the following claim.

Claim 2.2. Let P be a length k geodesic. Then |N(P )| ≥
(⌊

k
3

⌋
+ 1

)
δ holds.

Proof. Let x0, x1, . . . , xk be the vertices of P (in the order in which they occur along the
path). Notice that N(x0), N(x3), . . . , N(x3⌊ k

3⌋) must all be disjoint, since otherwise we

could find a shorter path between x0 and xk. The sets N(x0), N(x3), . . . , N(x3⌊ k
3⌋) must

also be contained in N(P ), and each have order at least δ. This implies the result.

We now prove the theorem in the case when r ̸≡ 0 (mod 3).
The diameter of G is at least r, so G must contain a length r geodesic, P . Claim 2.2

implies that the following holds:

|G| ≥ |N(P )| ≥
(⌊r

3

⌋
+ 1

)
δ =

⌈r
3

⌉
δ. (4)

Since Gr contains a loop at every vertex, we have e(Gr) =
∑

v∈V (G)
(
1
2
|N r(v)|+ 1

2

)
.

Thus to prove Theorem 2.1 it is sufficent to exhibit
⌈
r
3

⌉
δ elements of N r(v) for each vertex

v ∈ V (G).
Suppose that there exists a length r − 1 geodesic Pv starting from a vertex v. Then

N(Pv) is contained in N r(v), giving

|N r(v)| ≥ |N(Pv)| ≥
(⌊

r − 1

3

⌋
+ 1

)
δ =

⌈r
3

⌉
δ.

The second inequality is an application of Claim 2.2.
Suppose that all the vertices in G are within distance r − 1 of v. In this case we have

N r(v) = V (G), which is of order at least
⌈
r
3

⌉
δ by (4). This completes the proof of the case

“r ̸≡ 0 (mod 3)” of the theorem.

For the rest of the proof fix r such that r ≡ 0 (mod 3) and r ≥ 9.
If v is a vertex of G, we say that v is sufficient if |N r(v)| ≥

(
r
3
+ 1

)
δ. Otherwise we

say that v is insufficient.
The following is a useful property of insufficient vertices.

Claim 2.3. Let v be an insufficient vertex. Then there is some vertex at distance r + 1
from v.

Proof. Since diam(G) ≥ r, Claim 2.2 implies that |G| ≥
(
r
3
+ 1

)
δ. Since v is insufficient,

we have |N r(v)| <
(
r
3
+ 1

)
δ, and so v cannot be within distance r from all the vertices in

the graph.

The following three claims will allow us to bound the number of insufficient vertices
in G.
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Claim 2.4. If 2 < d(x, y) < r holds for x, y ∈ V (G), then either x or y is sufficient.

Proof. Suppose that x is insufficient. By Claim 2.3, we can find a length r geodesic starting
from x with vertex sequence x, x1, x2, . . . , xr.

Suppose that N(y)∩N(xi) ̸= ∅ for some i with 3 ≤ i ≤ r−3. In this case N(x), N(x3),
N(x6), . . . , N(xr) are all contained in N r(y). There are r

3
+1 of these, they are all disjoint

(since x, x1, x2, . . . , xr form a geodesic), and are of order at least δ. Hence y is sufficient.
Otherwise N(y) ∩ N(xi) = ∅ for all r ≤ i ≤ r − 3. In this case N(x), N(y), N(x3),

N(x6), . . . , N(xr−3) are all disjoint and contained in N r(x). This contradicts our initial
assumption that x is insufficient.

Claim 2.5. Let x and y be two vertices in G such that r ≤ d(x, y) ≤ r + 2. If there exists
a vertex z ∈ G such that d(z, x) ≥ r−1 and d(z, y) ≥ r−1, then either x or y is sufficient.

Proof. Choose any z in N r−1({x, y}) \ N r−2({x, y}). This set is nonempty by the second
assumption of the claim. We will have d(z, x), d(z, y) ≥ r−1 and either d(z, x) or d(z, y) =
r − 1. Without loss of generality assume that d(z, x) = r − 1 and d(z, y) ≥ r − 1.

We will show that x is sufficient. Let x, x1, . . . , xd(x,y)−1, y be a geodesic between x
and y. For i = 1, . . . , d(x, y)− 1, the triangle inequality implies that

d(x, z)− i = d(x, z)− d(x, xi) ≤ d(xi, z), (5)

d(y, z)− d(x, y) + i = d(y, z)− d(y, xi) ≤ d(xi, z). (6)

Averaging (5) and (6), and using the inequalities d(z, x), d(z, y) ≥ r−1 and d(x, y) ≤ r+2
gives

r − 4

2
≤ d(xi, z). (7)

Using r ≥ 9 and the fact that d(xi, z) is an integer, (7) implies that d(z, xi) ≥ 3 for all
i. Hence N(x), N(z), N(x3), N(x6), . . . , N(xr−3) are all disjoint and contained in N r(x).
Hence x is sufficient.

Claim 2.6. If d(x, y) = r holds for x, y ∈ V (G), then either x or y is sufficient.

Proof. Suppose that x and y are insufficient. By Claim 2.3 there exists z ∈ V (G) such that
d(x, z) = r + 1. Let x, x1, . . . , xr−1, y be a geodesic between x and y. Since x and y are
insufficient, Claim 2.5 implies that we have d(z, y) < r−1. Note that d(x, z) = r+1 implies
that N(z) ∩ N(xi) = ∅ for all i ≤ r − 2. Thus N(z), N(x1), N(x4), . . . , N(xr−2) are all
disjoint and contained in N r(y). This contradicts our assumption that y is insufficient.

Let X be the set of insufficient vertices in G. We define an equivalence relation “∼” on
X by letting x ∼ y if d(x, y) ≤ 2. For r ≥ 9, Claim 2.4 implies that this is an equivalence
relation. Let X1, . . . , Xl be the equivalence classes of “∼”.

The following claim gives a lower bound on the order of G.

Claim 2.7. |G| ≥
(
r+3
6

)
δl.
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Proof. First suppose that l ≤ 2. Let P be a geodesic in G of length diam(G) ≥ r. Then
Claim 2.2 implied that |G| ≥ |N(P )| ≥ (r + 3)δ/3, proving the result.

Thus we can suppose that l ≥ 3. Claims 2.4 and 2.6 imply that d(Xi, Xj) ≥ r + 1 for
all i ̸= j.

If we had d(Xi, Xj) ≤ r+2 for some i and j, then Claim 2.5 would imply that we have
d(Xi, z) < r− 1 or d(Xj, z) < r− 1 for all z ∈ V (G). Then, Claim 2.4 would imply that all
the vertices outside of Xi and Xj are sufficient, contradicting the assumption that l ≥ 3.

Therefore we can suppose that d(Xi, Xj) ≥ r + 3 for all i ̸= j. For each i, choose xi to

be any vertex in Xi. Note that N⌊ r
2⌋(xi) contains a length

⌊
r
2

⌋
geodesic, P . Using Claim

2.2 gives ∣∣∣N⌊ r
2⌋+1(Xi)

∣∣∣ ≥ |N(P )| ≥
(⌊

1

3

⌊r
2

⌋⌋
+ 1

)
δ ≥

(
r + 3

6

)
δ.

For the last inequality we are using the fact that r ≡ 0 (mod 3). Note that d(Xi, Xj) ≥ r+3

implies thatN⌊ r
2⌋+1(Xi)∩N⌊ r

2⌋+1(Xj) = ∅ for all i, j. This implies that the following holds:

|V (G)| ≥
l∑

i=1

∣∣∣N⌊ r
2⌋+1(Xi)

∣∣∣ ≥ (
r + 3

6

)
δl.

When x is insufficient, the following claim gives a lower bound on the order of N r(x).

Claim 2.8. Suppose that x is an insufficient vertex in the equivalence class Xi. Then,
|N r(x)| ≥ |Xi|+ r

3
δ holds.

Proof. By Claim 2.3, we can choose a length r geodesic from x. Let x, x1, . . . , xr be the
vertices of this geodesic. Suppose that Xi ∩ N(xj) is nonempty for some xj. Choose
y ∈ Xi ∩N(xj). Clearly j ≤ 1 must hold, since otherwise N(x), N(x3), N(x6), . . . , N(xr)
would all be contained in N r(y), contradicting that y is insufficient (since y ∈ Xi).

Hence Xi, N(x2), N(x5), . . . , N(xr−1) are all disjoint and contained in N r(x) proving
the claim.

Combining Claims 2.7 and 2.8 we prove the theorem.
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2e(Gr)−
(
r + 3

3
− 3

2(r + 3)

)
δ|G| − |G| =

∑
x∈V (G)

|N r(x)| −
(
r + 3

3
− 3

2(r + 3)

)
δ|G|

≥
∑

x sufficient

(r
3
+ 1

)
δ +

l∑
i=1

(
|Xi|+

r

3
δ
)
|Xi|

−
(
r + 3

3
− 3

2(r + 3)

)
δ|G|

=
3

2(r + 3)
δ|G|+

l∑
i=1

(
|Xi|2 − |Xi|δ

)
≥ 1

4
δ2l +

l∑
i=1

(
|Xi|2 − |Xi|δ

)
=

l∑
i=1

(
|Xi|2 − |Xi|δ +

1

4
δ2
)

=
l∑

i=1

(
|Xi| −

1

2
δ

)2

≥ 0.

The first equality uses the fact that Gr contains a loop at every vertex, hence 2e(Gr) =∑
x∈V (G) |N r(x)|+ |G|. The first inequality follows from the definition of “sufficient vertex”

and Claim 2.8. The second equality follows from the fact that there are |G| −
∑l

i=1 |Xi|
sufficient vertices in G. The second inequality follows from Claim 2.7. This completes the
proof.

We now deduce Theorem 1.4 from Theorem 2.1.

Proof of Theorem 1.4. Let G be a copy of G with a loop added at every vertex. Then Gr

will be isomorphic to Gr with a loop added at every vertex. Note that we have e(Gr) =
e(Gr)+|G|, and δ(G) = δ(G)+1. Substitute these into Theorem 2.1 to obtain the following.

• If r ≡ 0 (mod 3), then we have

e(Gr) ≥
(
r + 3

6
− 3

4(r + 3)

)
δ(G)|G|+

(
r + 3

6
− 3

4(r + 3)
− 1

2

)
|G|.

• If r ̸≡ 0 (mod 3), then we have

e(Gr) ≥ 1

2

⌈r
3

⌉
δ(G)|G|+

(
1

2

⌈r
3

⌉
− 1

2

)
|G|.
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Note that for r ≥ 3, both r+3
6
− 3

4(r+3)
− 1

2
and 1

2

⌈
r
3

⌉
− 1

2
are non-negative, so Theorem 1.4

follows.

3 Extremal constructions

In this section we construct graphs which demonstrate the optimality of Theorem 1.4 and
Corollary 1.5. Specifically, for each r, we will construct a sequence of regular, connected
graphs of diameter at least r, Gm, such that e(Gr

m)/e(Gm) tends to the bound given by
Corollary 1.5 as m tends to infinity. See Figure 1 for a diagram of the sequences that we
will construct. We prove the following.

Proposition 3.1. Let r be an integer greater than 3. There exists a sequence of regular,
connected graphs of diameter ≥ r, Gm, which satisfy the following.

• If r ≡ 0 (mod 3), then we have

lim
m→∞

e(Gr
m)

e(Gm)
=

r + 3

3
− 3

2(r + 3)
.

• If r ̸≡ 0 (mod 3), then we have

lim
m→∞

e(Gr
m)

e(Gm)
=

⌈r
3

⌉
.

Proof. For r ̸≡ 0 (mod 3), we construct the following sequence of graphs Gm. Take disjoint
sets of vertices N0, ..., Nr, with |Ni| = m− 1 if i ≡ 1 (mod 3) and |Ni| = 2 otherwise. Add
all the edges between Ni and Ni+1 for i = 0, 1, . . . , r− 1. Add all the edges within Ni for
all i. Remove a cycle passing through all the vertices in N1 ∪ ... ∪ Nr−1. It is easy to see
that Gm is m-regular and of diameter r. If r ≡ 1 (mod 3) then |Gm| = 1

3
(rm+2m+3r−6)

will hold. Since Gm is m-regular, we have e(Gm) =
1
6
(rm + 2m + 3r − 6)m. Since Gr

m is
complete, we have e(Gr

m) =
1
18
(rm + 2m + 3r − 6)(rm + 2m + 3r − 7). This implies that

e(Gr
m)/e(Gm) →

⌈
r
3

⌉
as m → ∞. A similar calculation can be used to show that the same

limit holds when r ≡ 2 (mod 3).
For r ≡ 0 (mod 3), we construct the following sequence of graphs Gm to show that

Corollary 1.5 is optimal. Take disjoint sets of vertices N0, ..., Nr+1. Let |N0| = |Nr+1| =
2m + 1, |Ni| = 1 if i ≡ 2 (mod 3), and |Ni| = 2m otherwise. Add all the edges between
Ni and Ni+1 for i = 0, 1, . . . , r. Add all the edges within Ni for all i. Delete a perfect
matching from each of the sets N1 and Nr. This will ensure that Gm is 4m-regular and
has diameter r + 1. Note that |Gm| = 1

3
(4rm + r + 12m + 6), and so we have e(Gm) =

1
6
(4rm+ r+ 12m+ 6)4m. The only edges missing from Gr

m will be between N0 and Nr+1,
so we have e(Gr

m) =
1
18
(4rm+ r+12m+6)(4rm+ r+12m+5)− (2m+1)2. This implies

that e(Gr
m)/e(Gm) → r+3

3
− 3

2(r+3)
as m → ∞. This construction is a generalization of one

from [4].

9



K2m+1 K2m K2m
K2m K2m+1K2m

K1 K1

Km+1

K2
K2 K2 K2 K2 K2

Km+1 Km+1

r = 8

r = 6

Km+1

K2
K2 K2 K2 K2

Km+1 Km+1

r = 7

Figure 1: Graphs showing the optimality of the cases “r = 6,” “r = 7,” and “r = 8” of
Corollary 1.5. The grey circles represent complete graphs of specified order. The black
lines between the sets represent all the edges being present between them. The white
cycle in the “r = 7” and “r = 7” cases represents a single cycle passing through all the
vertices in the specified sets being removed. The white matchings in the “r = 6” case
represent a perfect matching being removed from the specified sets.

4 Remarks

In this section we discuss some problems which are left open in this paper.

• One natural open problem is to extend the results of this paper to the case when
r = 6. In particular it would be interesting to know if Theorem 1.4 holds for r = 6. It
seems to be difficult to extend our proof of this theorem to the case when r = 6. One
reason for this is that there are examples showing that Claim 2.7 does not always
hold when r = 6. We sketch one such construction here.

For fixed m, and i = 1, 2, 3, we define a set of vertices Bi of order m as well as three
vertices ai, ci, di. For each i, all the edges inside Bi are present as well as the edges
between Bi and {ai, ci}, and the edge cidi. We add a set of vertices X of order m and
add all the edges inside X and between X and {d1, d2, d3}. This produces a graph
Gm, with minimum degree m+2 and order 4m+9. However, it is easy to check that
for m ≥ 2 the insufficient vertices in this graph are a1, a2, and a3. Since d(ai, aj) = 8
for i ̸= j, we obtain that there are three equivalence classes of insufficient vertices
in G. But then we have |Gm| = 4m + 9 ≤ 9δ(Gm), showing that the conclusion of
Claim 2.7 does not hold for this graph.

Therefore it seems that some new ideas would be needed in order to extend the results
of this paper to the case when r = 6.

• Notice that Theorems 1.4 and Corollary 1.5 have the condition “diam(G) ≥ r”
whereas Theorem 1.1 has the condition “diam(G) > r”. Both bounds are natural to
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study. Although Corollary 1.5 is a statement about graphs satisfying “diam(G) ≥ r”,
we can use it to obtain a lower bound on the quantity e(Gr)/e(G) for graphs satisfying
“diam(G) > r” as well. When r ≡ 0 or 1 (mod 3), it is easy to see that the
lower bound Corollary 1.5 gives cannot be increased even when restricted to graphs
satisfying “diam(G) > r” (using the examples we constructed in Section 3).

In more generality one could ask for bounds on e(Gr) among all graphs satisfying
diam(G) > D for some fixed D. When D is larger than r, then it is likely that that
the bounds in Theorem 1.4 could be improved. Some results in this direction have
already been obtained by DeVos, McDonald, and Scheide. We refer the reader to [3]
for details.
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