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Abstract

This paper investigates arbitrage chains involving four currencies and four foreign ex-
change trader-arbitrageurs. In contrast with the three-currency case, we find that arbi-
trage operations when four currencies are present may appear periodic in nature, and not
involve smooth convergence to a “balanced” ensemble of exchange rates in which the law
of one price holds. The goal of this article is to understand some interesting features of
sequences of arbitrage operations, features which might well be relevant in other contexts
in finance and economics.
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systems

JEL Classification: C60, F31, D82

1. Introduction

An arbitrage operation involves buying some good or asset for a lower price than
that for which it can be sold, taking advantage of any imbalance in the quoted prices.
The “law of one price” is a statement of a key implication of the absence of arbitrage
opportunities. In turn arbitrage is often the process invoked to explain why goods or
assets that are in some sense “identical” should have a common price.
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A study of commodity prices since 1273 concluded that “. . . despite the steady de-
cline in transportation costs over the past 700 years, the repeated intrusion of wars and
disease, and the changing fashions of commercial policy, the volatility and persistence of
deviations in the law of one price have remained quite stable” (Rogoff, 1996, p. 18). The
present paper investigates a relatively neglected complication regarding arbitrage opera-
tions, namely the order in which information about arbitrage opportunities is presented,
illustrating this in relation to arbitrage chains involving four currencies. The key finding
is that arbitrage operations can be periodic in nature, rather than involving a smooth
convergence to a law of one price.

The early literature on the law of one price is coeval with the purchasing power parity
explanation of foreign exchange rates. The terminology was coined in Cassel (1916),
involving arbitrage between relatively homogeneous goods priced in different currencies
Rogoff (1996); Froot et al. (2001). Empirical tests suggest that arbitrage operations in
goods do not exert a strong influence on exchange rates until the price index deviations
involved exceed about 25% Engel (1999); Obstfeld and Rogoff (2001). Innovations that
were expected to reduce price dispersion, such as the European Single Market legislation
coming into effect in 1992, and the Economic and Monetary Union project beginning in
1999, have had little effect on price level disparities Wolf (2003). The degree of price level
dispersion between US cities has displayed no marked trend over time Rogers (2001). A
study of the prices charged for identical products in IKEA stores in twenty-five countries
revealed typical price divergences of 20–50%, differences that could not be attributed to
just country or location-specific factors Haskel and Wolf (2001). Among the most cited
reasons for deviations from the law of one price are transaction costs, taxes, transport
costs, trade barriers, the costs of searching for price differences, nominal price rigidities,
customer market pricing, nominal exchange rate rigidities and differences in market power
Taylor (2002).

In relation to assets, an early application of the law of one price was to the interest
rate parity theory of the forward exchange rate, whereby the ratio of the forward to
spot exchange rate between two currencies is equal to the ratio of the interest rates in
the two currencies over the forward period in question (Keynes, 1923, p. 130). An ar-
bitrage opportunity in relation to assets can be defined as “an investment strategy that
guarantees a positive payoff in some contingency with no possibility of a negative pay-
off and with no net investment” (Dybvig and Ross, 2008, online). The absence of such
arbitrage opportunities has been seen as the unifying concept underlying mainstream
theories in finance, no-arbitrage principles being applied in the Modigliani–Miller theo-
rem of corporate capital structure, in the Black–Scholes model of option pricing and in
the arbitrage pricing model of asset prices Ross (1978). Actual arbitrage operations in
relation to assets often involve net investment and risk and/or uncertainty, in addition to
the complications arising in relation to arbitrage in goods. Notable deviations from the
law of one price in financial markets have been documented in relation to comparable
circumstances applying to closed-end country funds, American Depository Receipts, twin
shares, dual share classes and corporate spin-offs Lamont and Thaler (2003). Among the
limits to arbitrage in financial markets are those arising from transactions costs Deardorff
(1979), and those involving the capital requirements of conducting arbitrage operations
Shleifer and Vishny (1997). A spectacular illustration of the capital limits to arbitrage
was provided by the demise of the Long-Term Capital Management (LTCM) hedge funds.
The arbitrage discrepancies being exploited in LTCM’s “convergence trades” widened in
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1998. LTCM attempted unsuccessfully to raise new capital to finance its arbitrage posi-
tions. To avoid a major financial collapse the New York Federal Reserve Board organised
a bail-out by creditors Lowenstein (2000).

In what follows we focus on the limits to arbitrage arising from the order in which
information is disseminated to arbitrage traders. The illustration used is for a foreign
exchange (FX) market with four FX traders and four currencies, see Sections 3 and 4.
An Arbiter, the metaphorical equivalent of an unpaid auctioneer in a Walrasian system,
knows all the actual exchange rates. The individual FX traders, however, initially know
only the exchange rates involving their own, domestic currencies. Justification for the
assumptions used in our model is provided in Section 2. So the US FX trader knows
the exchange rates for the dollar against the euro, sterling and yen, but not the cross
exchange rates for the non-dollar currencies. There are no transactions costs, no net
capital requirements and no risks involved in the arbitrage operations. Instead we focus
on the information dissemination problem, and show that the order in which information
about cross exchange rate discrepancies, and hence arbitrage opportunities, is presented
makes an important difference to the sequences of arbitrage operations conducted.

A general discussion of arbitrage dynamics is given in Section 5. An unexpected fea-
ture of the processes considered in this paper is that, rather than there being a smooth
convergence to an ensemble of exchange rates with no arbitrage opportunities, the ar-
bitrage operations may display periodicity and no necessary convergence on a cross ex-
change rate law of one price. See Proposition 6 in Section 6 for a rigorous explanation.
A further unexpected feature is that, starting at an ensemble of exchange rates which is
not balanced, and using special periodic sequences of arbitrages, the Arbiter can achieve
any balanced (satisfying the law of one price) exchange rate ensemble. See, in particular,
Theorem 1 in Section 6 and Theorem 2 in Section 8. These counter-intuitive results are
new, as far as we are aware. In line with the renowned “impossibility theorem” of Arrow
(1951) these results suggest an “arbitrage impossibility theorem”. Proofs are relegated
to Section 9.

The mathematical approach taken in this paper to the analysis of arbitrage op-
eration chains may be understood as a typical example of the asynchronous interac-
tions that are important in systems theory and in control theory, see the monographs
(Bertsekas and Tsitsiklis, 1989; Asarin et al., 1992; Kaszkurewicz and Bhaya, 2000) and
the surveys Kozyakin (2003, 2004). The arbitrage chains are particularly relevant to
desynchronised systems theory, see Asarin et al. (1992). Presence of an asynchronous
interaction often leads to a dramatic complication of the related mathematical problems.
Kozyakin (1990, 2003) proved that many asynchronous problems cannot be solved al-
gorithmically, and also Blondel and Tsitsiklis (1997, 2000a,b) and Tsitsiklis and Blondel
(1997) demonstrated that, even in the cases when the problem is algorithmically solv-
able, it is typically as hard to solve numerically as the famous “Travelling salesman
problem,” see Applegate et al. (2006) (that is, in the mathematical language, the prob-
lem is NP-hard which is an abbreviation for “Non-deterministic Polynomial-time hard”
which means in the theory of algorithms that a problem is very hard, if possible, to solve,
see Garey and Johnson (1979)). In this context the fact that the principal questions that
arise in analysis of arbitrage operation chains admit straightforward combinatorial anal-
ysis came to the authors as a pleasant surprise. Our construction uses a geometrical
approach to visualisation of arbitrage chains presented in Sections 7–9, which may be
useful in relation to other problems in mathematical economics.
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The periodicity results in this paper have implications for several strands of literature.
One is that dealing with the disequilibrium foundations of equilibrium economics. The
stability analysis of Fisher poses the question: “can one expect to prove that an econ-
omy with rational agents conscious of disequilibrium and taking advantage of arbitrage
opportunities is driven (asymptotically) to any equilibrium, Walrasian or constrained?”
(Fisher, 1989, pp. 86–87). Fisher uses the assumption of “no favorable surprise” as a
means of demonstrating that a cessation of exogenous shocks can lead to convergence
to equilibrium. The results in this paper suggest that there can be endogenous reasons,
arising from the cyclical response of arbitrage sequences to an exogenous shock that gives
rise to an arbitrage opportunity, why convergence to equilibrium may not take place.

Another strand of literature to which our results relate is that on market segmen-
tation and arbitrage networks. Goods and assets are not traded on a single exchange.
Instead there are various trading posts, such as commodity and stock exchanges. Other
trades, including a sizeable proportion of foreign exchange deals, are conducted “over
the counter” in direct transactions that bypass formal exchanges. “As a result, var-
ious clienteles trade on different exchanges, and very few retail clients trade on more
than one exchange, let alone on all of them simultaneously” (Rahi and Zigrand, 2008,
p. 3). A key aspect of segmentation in the foreign exchange “market” is that dealing
rooms tend to specialise in domestic currency trades. This provides a rationale for the
specification in this paper that foreign exchange dealers initially are aware of only the
exchange rates involving their domestic currencies. We restrict our analysis to the case
of 4 currencies, with 6 principal exchange rates. The Financial Times gives daily quotes
for 52 currencies. The 1,326 principal exchange rates involved suggest richer potential
opportunities for arbitrage than in the four currency case studied in the present paper.
Bank for International Settlements (BIS) data indicate that, in 2010, transactions in
these four currencies counted for 155.9% of global FX market turnover, the currency
components being US dollars (84.9%), euros (39.1%), Japanese yen (19.0%) and pound
sterling (12.9%). Because two currencies are involved in each transaction, the % shares
sum to 200% (BIS, 2010, Table B.4).

2. Micro Structure of the FX market

In a centralised market trade takes place at prices that are public information and
traders face the same potential trading opportunities. In contrast the FX market is de-
centralised, with the end-user bank customers, banks, brokers and central banks involved
facing several possible methods of executing transactions, and possibly different exchange
rate quotes, some of which constitute private information. BIS data for FX spot exchange
rate transactions in 2010 (BIS, 2010, Table E.24) indicate the following breakdown in
execution methods as a % of total global turnover: inter-dealer direct (14.9%), customer
direct (21.6%), voice broker (8.6%), electronic broking system (26.0%), single-bank elec-
tronic proprietary trading platforms (14.3%) and multi-bank dealing systems (14.5%).
Until the late 1980s FX transactions were conducted largely by telephone, with FX deal-
ers phoning counterparties to get bid (buy) and offer (sell) quotes for specific transaction
amounts, there also being indirect dealing via voice brokers who would search for match-
ing interests between clients, see Galliardo and Heats (2009). The last two decades have
seen a growth in electronic methods of execution, a distinction being between electronic
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broking systems such as Reuters Matching and the Electronic Broking System Spot
Dealing System (EBS), and single or multi-bank proprietary dealing platforms.

A burgeoning literature investigates how this fragmented trading structure impacts
on price determination in FX markets, see Lyons (2001) and Evans (2011) for surveys.
The key contrast is between the decentralised transactions conducted by FX dealers
who quote bid and offer prices that are not public information, and the one-way bid
or offer limit orders to buy and sell currencies at a specific price that are accumulated
by FX brokers in the quasi-centralised segment of the market. This means that market
information is fragmented, FX dealers having private information about the transactions
forthcoming at their own quoted bid and offer prices, and having access to the public
information regarding the order flows accumulated by the FX brokers. For analysis,
discussion and evidence regarding how order flows impact on intra-day exchange rates
see Evans and Lyons (2002); Sarno and Taylor (2001); Evans and Lyons (2008).

The analysis in the present paper assumes that FX dealers initially know only the
exchange rates for their own domestic currencies, the order in which they discover im-
balances in the exchange rate ensemble, in the form of cross exchange rate discrepancies,
playing a key role in the arbitrage sequences conducted. The fragmented nature of infor-
mation in FX markets suggests that this strong assumption has a whiff of reality in that
different FX dealers are likely to have disjoint information sets and can conduct trades at
different prices. Individual FX dealers conducting bi-lateral trades with end-users receive
private information in the form of the orders forthcoming at their quoted bid and ask
prices, and this can give rise to profitable arbitrage opportunities. For example, an FX
dealer specialising in US dollars might simultaneously receive large buy orders for euros
and large sell orders for Japanese yen, and suspect that euros are under-priced relative
to Japanese yen. After checking out the euro – Japanese yen exchange rates quoted in
the inter-dealer market, or in the brokered section of the market where information is
public, the dealer might discover that this is indeed the case, and exploit this arbitrage
opportunity regarding which other FX traders are initially unaware.

The BIS data on the geographical distribution of FX market turnover is informative
in relation to the assumption in the present paper that FX dealers initially are aware
of only the exchange rates involving their own domestic currency. Banks located in the
UK account for 37% of global FX turnover, followed by the US (18%), Japan (6%),
Singapore (5%), Switzerland (5%), Hong Kong (5%) and Australia (4%) — see (BIS,
2010, Graph B.7). Although cross-border transactions account for nearly two-thirds of
FX market turnover, this still leaves 35% of the turnover being local in nature (BIS,
2010, Table 3.2), suggesting that the tendency of FX dealers initially to focus on the
exchange rates involving their own domestic currencies assumed in the present paper is
evident in a significant section of the FX market.

Traders could be better informed about exchange rate developments involving their
own domestic currencies for a variety of reasons. This could be simply because their core
end-users have the domestic currency as a unit of account, and means of payment, so the
domestically-based FX dealers have a “home bias” when it comes to the exchange rates
that they consider first. The psychology literature indicates that here are quite tight
limits to the pieces of information that the working memory can take into account when
decisions are made Baddeley (2004), suggesting that there could well be advantages
to FX traders if they focus, at least initially, on a limited number of exchange rates.
Alternatively the “home bias” could be due to the existence of different time zones.
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So, for example, Japanese FX traders may be more able to react to new information
relevant to the Japanese yen during the Asian trading hours in which North American
and European markets are closed. The evidence is that most FX trades initiated in
Japan and Australia occur during Asian trading hours; most trades initiated in the US
and Canada occur during North American hours; while UK-initiated trades tend to be
bunched in the overlapping Asia – Europe and Europe – North America time zones
(D’Souza, 2008, Table 2). A further reason for “home bias” is that the localised or
institutionalised links that FX traders have with domestic clients gives them order flow
information about the likely course of the exchange rates involving the domestic currency
before the price impact of this information becomes publicly available, via the effects on
inter-dealer trades, to FX traders operating in foreign locations.

In Covrig and Melvin (2002) the authors pose the question “does Tokyo know more
about the yen?”. Prior to December 22, 1994 the Japanese FX market closed for lunch
from 12–00 to 13–30 hours, Tokyo time. On the basis that local order flow conveys in-
formational advantages, the authors postulate that the trades of informed Tokyo traders
would be bunched before the lunch-time FX market closure, an effect that would disap-
pear once the lunch-time closure was abolished. They found a significant tendency of
foreign quotes on the Japanese yen – US dollar market to lag behind the Tokyo quotes in
this pre-lunch period, suggesting either that Tokyo-based traders were better informed
about the Japanese yen – US dollar exchange rate than FX traders based in foreign
locations, or that foreign-based traders believed this to be the case. Further evidence
for a “home bias” in the FX market was found in a study of the Canadian dollar – US
dollar and Australian dollar – US dollar markets D’Souza (2008). The author calculates
the impulse response functions of the exchange rates to trades, measured by the order
flows, initiated in different locations. Trades initiated in Canada had a larger long-run
impact on the Canadian dollar – US dollar exchange rate than those initiated the US
during North American trading hours, and than Australian and Japanese trades initi-
ated during Asian trading hours. UK-initiated trades had a slightly larger long-run effect
during European trading hours, but this effect was much larger before the start of North
American trading hours. Somewhat similarly, trades initiated in Australia had a larger
long-run impact on Australian dollar – US dollar exchange rate than trades initiated in
the US and elsewhere. The conclusion is that “dealers operating both at the same time
and in the same geographic region as fundamentally driven customers have a natural
informational advantage” (D’Souza, 2008, pp. 23–24).

A major challenge to theories based on the idea that macroeconomic “fundamentals”
drive exchange rates was presented by the Meese-Rogoff results that such models did not
forecast any better than the “naive” postulate that the exchange rate rate would remain
unchanged Meese and Rogoff (1983). Engel and West Engel and West (2005) showed
that exchange rates would display something close to the random walk implied by the
naive forecast if the fundamentals followed an ±(1) process and the factor for discount-
ing future fundamentals was close to one. The microstructure literature has shown a
way out of this impasse, showing that micro-based information regarding order flows,
information which is not necessarily publicly available, can explain a significant com-
ponent of exchange rate variation. So, for example, Evans and Lyons Evans and Lyons
(2005) show that end-user order flow data can explain around 16% of the variance in
the monthly spot rate between the US dollar and the euro, outperforming both standard
macro fundamentals models and the random walk specification. The microstructure lit-
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erature has also focussed attention onto high frequency data sets. Osler Osler (2005), for
example, analyses minute-by-minute quotes for the US dollar spot exchange rates with
the Deutschmark, Japanese yen and pound sterling, discovering significant effects from
stop-loss order flows, where the stop-loss order is one that instructs FX dealers to buy
(sell) a certain amount of a currency at the “market” rate once the exchange rate has
risen (fallen) to a pre-specified level.

A full survey of the theoretical and empirical literature on FX exchange rate deter-
mination has been beyond the scope of the present paper (see Evans (2011) for such a
survey). What we would argue is that the foregoing selective review of the literature
provides some justification for the assumptions used in the analysis of the arbitrage se-
quences that follows. The assumption that FX dealers initially know only the exchange
rates for their domestic currency finds some support in the “home bias” evidence cited
above. The evidence on the fragmented nature of the FX market lends support to the
assumption that FX traders can have privileged access to initially private information,
stemming from order flows from end-user clients, that would allow them to identify im-
balances in cross exchange rates, and hence identify arbitrage opportunities before FX
traders based in other locations can identify such opportunities. There is also evidence
that there are arbitrage opportunities to be exploited. In Marshall et al. (2007) the au-
thors use binding quote and transactions data from the electronic broking system, EBS,
for the US dollar, euros, Japanese yen, the pound sterling and the Swiss franc. Triangular
arbitrage opportunities are identified within two-minute time horizons, and can be ex-
ploited by three trades on the EBS trading screen. Each identified arbitrage opportunity
involved the US dollar and the euro, the third currency being the Japanese yen, pound
sterling or Swiss franc. The estimated mean arbitrage profits, net of bid-offer spreads
and 0.2 basis point trade fees, ranged from 2.8 to 3.0 basis points (Marshall et al., 2007,
p. 4). So here is evidence of, albeit small, profits to be had from arbitrage operations on
a quasi-centralised, electronic broking trading platform. Once the decentralised sections
of the FX market are considered, the existence of initially private information is likely
extend the range and size of profitable arbitrage arbitrage opportunities available.

3. The Three Currency Case

Consider a foreign exchange (FX) market that involves only three currencies: Dollars
($), Euros (e) and Sterling (£). This FX market involves three pair-wise exchange
operations:

Dollar ⇆ Euro, Dollar ⇄ Sterling, Euro ⇄ Sterling.

The currencies are measured in natural currency units, and the corresponding (strictly
positive) exchange rates, r$e, r$£, re£, are well defined. For instance, one dollar can be
exchanged for r$e euros. The rates related to the inverted arrows are reciprocal:

re$ =
1

r$e
, r£$ =

1

r$£
, r£e =

1

re£
. (1)

We treat the triplet

(r$e, r$£, re£) (2)
7



as the ensemble of principal exchange rates.
We suppose that, prior to a reference time moment 0, each FX trader knows only

the exchange rates involving his domestic currency. So the dollar trader does not know
the value of re£, the euro trader is unaware of r$£, and the sterling trader is unaware of
r$e. We are interested in the case where the initial rates are unbalanced in the following
sense. By assumption, the dollar trader can exchange one dollar for r$e euros. Let us
suppose that unbeknownst to him the exchange rate between sterling and euro is such
that the the dollar trader could make a profit by first exchanging a dollar for r$£ units
of sterling and then exchanging these for euros. The inequality which guarantees that
dollar trader can take advantage of this arbitrage opportunity is that the product r$£r£e
is greater than r$e:

r$£ · r£e > r$e. (3)

Let us consider the situation where the inequality (3) holds, and, after the reference
time moment 0, one of the three traders becomes aware of the third exchange rate.
The evolution of this FX market depends on which trader is the first to discover the
information concerning the third exchange rate. The following three cases are relevant.

3.1. Case 1.
The dollar trader becomes aware of the value of the rate re£. Therefore, the dollar

trader contacts the euro trader and makes a request to increase the rate r$e to the new
fairer value

rnew$e = r$£ · r£e =
r$£
re£

.

The reciprocal exchange rate re$ is also to be adjusted to the new level:

rnew
e$ =

1

rnew$e

.

The result is that the principal exchange rates become balanced at the levels:

rnew$e =
r$£
re£

, r$£, re£.

3.2. Case 2.
The euro trader is the first to discover the third exchange rate r$£. By (1), inequality

(3) may be rewritten as

r$£
re£

<
1

re$
,

which is, in turn, equivalent to re$ · r$£ > re£. In this case the euro trader could
do better by first exchanging euros for dollars, and then by exchanging the dollars for
sterling. Therefore, the euro trader requests adjustment of the rate re£ to the value

rnewe£ = re$ · r$£ =
r$£
r$e

.

In terms of the principal exchange rates the outcome is that the FX market adjusts to
the following balanced rates:

r$e, r$£, rnewe£ =
r$£
r$e

.
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3.3. Case 3.

The sterling trader is the first to discover the third exchange rate r$e. The inequality
(3) may be rewritten as r£e · re$ > r£$. Thus, the sterling trader requests adjustment
of the rate r£$ to rnew

£$ = r£e · re$. In this case the principal exchange rates become
balanced at the levels:

r$e, rnew$£ = r$e · re£, re£.

After the adjustment of the principal exchange rates (2), following the new informa-
tion being revealed, the exchange rates become balanced, and this is the end of the arbi-
trage evolution of an FX market with three currencies. Having established the reasonably
straightforward application of arbitrage to three currencies, we now turn to investigation
what happens when the FX market contains four currencies and four currency traders.

4. Four Currencies

Consider an FX market $e£U that involves four currencies: Dollars ($), Euros (e),
Sterling (£) and Yen (U). This FX market involves six exchange relationships:

Dollar ⇄ Euro, Dollar ⇄ Sterling, Dollar ⇄ Y en,

Euro ⇄ Sterling, Euro ⇄ Y en, Sterling ⇄ Y en.

The exchange rates are:

r$e, r$£, r$U, re$, reU, r£U,
r£$, r£e, r£U, rU$, rUe, rU£.

The rates relating to the inverted arrows are reciprocal:

re$ =
1

r$e
, r£$ =

1

r$£
, rU$ =

1

r$U
,

r£e =
1

re£
, rUe =

1

reU
, rU£ =

1

r£U
.

(4)

Our market may be described by the ensemble of six principal exchange rates

R = (r$e, r$£, r$U, re£, reU, r£U) (5)

together with the reciprocal exchange rates (4).
The following characterisation of balanced, no-arbitrage, exchange rates (5), that is

the ensembles of exchange rates such that no trader could do better by trading indirectly,
is convenient.

Proposition 1. Ensemble (5) of the principal exchange rates is balanced if and only if
the following relationships hold:

re£ =
r$£
r$e

, reU =
r$U
r$e

, r£U =
r$U
r$£

. (6)

Proof. This assertion can be proved by inspection.
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5. Arbitrages

Let us suppose that initially each trader is aware only of the three exchange rates
involving his domestic currency. For instance, the dollar trader knows only the rates r$e,
r$£, r$U.

We are interested in the case where the rates r$e, r$£, r$U, re£, reU, r£U are un-
balanced.

For instance, let us suppose that the dollar trader can make a profit by first exchanging
one dollar for r$£ units of sterling, and then by exchanging this sterling for euros. This
means that the product r$£ · r£e is greater than r$e:

r$£ · r£e > r$e. (7)

Suppose that the dollar trader becomes aware of the rate re£, and, therefore, about the
inequality (7). The dollar trader then asks the euro trader to increase the exchange rate
r$e to the new fairer value

rnew$e = r$£ · r£e =
r$£
re£

.

Along with the adjustment of the exchange rate r$e the reciprocal rate re$ would be
adjusted to

rnew
e$ =

1

rnew$e

.

We call this procedure $e£-arbitrage, and we use the notation A$e£ to represent it. We
denote by RA$e£ the ensemble of the new principal exchange rates:

R
new = RA$e£ =

(

rnew$e , r$£, r$U, re£, reU, r£U
)

.

We also use the notation RA$e£ in the case where the inequality (7) does not hold. In
this case, of course, RA$e£ = R, and we say that arbitrage A$e£ is not active in this case.
This particular arbitrage is an example of the 24 possible arbitrages listed in Table 1.
We will also use, where convenient, the notation A(n) for the arbitrage number n from
this table: for instance, A(1) = A$e£.

The principal distinction of the FX market with four currencies from that with only
three currencies is that applying a single arbitrage operation does not bring the FX market
to a balance in which no arbitrage opportunities exist, and in which the law of one price
holds.

6. Main Results

One can apply arbitrages from Table 1 sequentially in any order and to any initial
exchange rates R. The situation that we have in mind is the following. Suppose that
there exists an Arbiter who knows current ensemble R of exchange rates. This Arbiter
could provide information to the FX traders in any order he wants, thus activating the
chain (or superposition) of corresponding arbitrages. The principal question is:

Question 1. How powerful is the Arbiter?
10



Table 1: List of arbitrages

Number Arbitrage Activation condition Actions

1 A$e£ re£ > r$e · r$£ rnew$e = r$£ · r−1
e£

2 A$eU r$U > r$e · reU rnew$e = r$U · r−1
eU

3 A$£e r$e · re£ > r$£ rnew$£ = r$e · re£
4 A$£U r$U > r$£ · r£U rnew$£ = r$U · r−1

£U

5 A$Ue r$e · reU > r$U rnew$U = r$e · reU
6 A$U£ r$£ · r£U > r$U rnew$U = r$£ · r£U
7 Ae$£ r$£ < r$e · re£ rnew$e = r$£ · r−1

e£

8 Ae$U r$U < r$e · reU rnew$e = r$U · r−1
eU

9 Ae£$ r$£ > re£ · r$e rnew
e£

= r$£ · r−1
$e

10 Ae£U reU > re£ · r£U rnew
e£

= reU · r−1
£U

11 AeU$ r$U > reU · r$e rnew
eU

= r$U · r−1
$e

12 AeU£ re£ · r£U > reU rnew
eU

= re£ · r£U
13 A£$e r$e · re£ < r$£ rnew$£ = r$e · re£
14 A£$U r$U < r$£ · r£U rnew$£ = r$U · r−1

£U

15 A£e$ r$£ < re£ · r$e rnew
e£

= r$£ · r−1
$e

16 A£eU reU < re£ · r£U rnew
e£

= reU · r−1
£U

17 A£U$ r$U > r£U · r$£ rnew
£U

= r$U · r−1
$£

18 A£Ue reU > r£U · re£ rnew
£U

= reU · r−1
e£

19 AU$e r$e · reU < r$U rnew$U = r$e · reU
20 AU$£ r$£ · r£U < r$U rnew$U = r$£ · r£U
21 AUe$ r$U < reU · r$e rnew

eU
= r$U · r−1

$e

22 AUe£ re£ · r£U < reU rnew
eU

= re£ · r£U
23 AU£$ r$U < r£U · r$£ rnew

£U
= r$U · r−1

$£

24 AU£e reU < r£U · re£ rnew
£U

= reU · r−1
e£

The short answer is: the Arbiter is surprisingly powerful.
Let us explain at a more formal level what we mean.
For a finite chain of arbitrages A = A1 · · ·An, and for a given ensemble R of initial

exchange rates, we denote the resulting ensemble of principal exchange rates as

RA = RA1 · · ·An (8)

If R is balanced, then RA = R for any individual arbitrage, and therefore RA = R for
any chain (8). If, on the contrary, R is not balanced, then different arbitrage chains (8)
could result in different balanced or unbalanced ensembles of principal exchange rates.
Denote by S(R) the collection of the sets RA related to all possible chains (8). Denote
also by Sbal(R) the subset of S(R), that includes only balanced exchange rates ensembles.
Our principal observation is the following:

For a typical unbalanced exchange rate ensemble R, the set Sbal(R) is unexpectedly
rich; therefore the Arbiter, who prescribes a particular sequence of arbitrages, is an un-
expectedly powerful figure.

To avoid cumbersome notation and technical details when providing a rigorous for-
mulation of this observation, we concentrate on the simplest initial ensemble. Let us
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consider the ensemble

R̄α = (α · r̄$e, r̄$£, r̄$U, r̄e£, r̄eU, r̄£U) , (9)

where α > 0, α 6= 1 and R̄ is a given balanced ensemble of principal exchange rates. The
ensemble (9) is not balanced. The ensemble (9) may have emerged as follows. Let us
suppose that the underlying balanced rates

R̄ = (r̄$e, r̄$£, r̄$U, r̄e£, r̄eU, r̄£U) (10)

had been in operation up to a certain reference time moment 0. At this moment the
dollar trader has decided to increase his price for euros by a factor α > 1. A natural
respecification of Question 1 is the following:

Question 2. To which balanced exchange rates can the Arbiter now bring the foreign
exchange market?

The possible general structure of elements from the corresponding sets S(R̄α) and
Sbal(R̄α) is easy to describe. To this end we denote by Tα(R̄) the collection of all
sextuples of the form

(αn1 · r̄$e, αn2 · r̄$£, αn3 · r̄$U, αn4 · r̄e£, αn5 · r̄eU, αn6 · r̄£U) , (11)

where ni are integer numbers (positive, negative or zero). We also denote by T bal
α the

subset of elements of Tα, which satisfy the relationships

n4 = n2 − n1, n5 = n3 − n1, n6 = n3 − n2.

Proposition 2. The following inclusions hold:

S(Rα) ⊂ Tα(R̄), (12)

Sbal(R̄α) ⊂ T bal
α (R̄). (13)

Proof. The ensemble (10) belongs to T . To verify (12) we show that the set Tα is
invariant with respect to each arbitrage A from Table 1. This statement can be checked
by inspection. Let us, for instance, apply to a sextuple (11) the first arbitrage A$e£.
Then, by definition, either this arbitrage is inactive, or it changes the first component
αn1 · r̄$e of (11) to the new value

rnew$e =
αn2 · r̄$£
αn4 · r̄e£

= αn2−n4 ·
r̄$£
r̄e£

. (14)

However, the ensemble R̄ is balanced, and, by the first equation (6), r̄$£
r̄e£

= r̄$e. Therefore,

(14) implies that the ensemble R̄A$e£ also may be represented in the form (11). We
have proved the first part of the proposition, related to the set S(R̄α). The inclusion
(13) follows now from Proposition 1.

Proposition 2 in no way answers Question 2. This proposition, however, allows us to
reformulate this question in a more constructive form:

12



Question 3. How big is the set Sbal(R̄α), compared with the collection T bal
α (R̄) of all

elements that satisfy the restrictions imposed by Proposition 2?

The naive expectation would be that the set Sbal(R̄α) is finite and, at least for values
of α close to 1, that all elements of Sbal(R̄α) are close to R̄. However,the following
statement, describing an unexpected feature of the power of the Arbiter, is true.

Theorem 1. The set Sbal(R̄α) coincides with T bal
α (R̄):

Sbal(R̄α) = T bal
α (R̄). (15)

Moreover each balanced ensemble (11) may be achieved via a chain of arbitrage operations
no longer than

N(n1, n2, n3) = 3(|n1 − 1|+ |n2|+ |n3|) + 3. (16)

Loosely speaking, this theorem means that the Arbiter is extremely powerful. An
assertion similar to Theorem 1 was formulated as a hypothesis in Kozyakin et al. (2010).
We describe the algorithms corresponding to this theorem in the next section.

The following assertion certifies that the estimate (16) from Theorem 1 is pretty close
to the optimal.

Proposition 3. The inequalities

|n1 − n2 + n4|, |n1 − n3 + n5)|, |n2 − n3 + n6| ≤ 1

hold for any R ∈ S(R̄α). Here ni are the integers from representation (11) of R.

Proof. This assertion is a special case of Lemma 7 which will be considered below.

Note that the set S(R̄α) is, in contrast to (15), much smaller than the totality Tα(R̄)
of all ensembles of the form (11). In particular, the following assertion holds:

Proposition 4. Let A denote a chain of arbitrages of length N , and R = R̄αA. Then
3(|n1− 1|+ |n2|+ |n3|) ≤ N +8, where n1, n2, n3 are the integers from the representation
(11) of R.

Let us consider an infinite arbitrage chain:

A = A1A2A3 · · ·An · · · . (17)

This chain is periodic with minimal period p if An = An+p for n = 1, 2, . . ., and p is
the minimal positive integer with this property. Various periodic chains of arbitrage
play a special role in context of this article, and we summairise below some interesting
features of such periodic arbitrage chains. For a periodic chain (17) and for an initial
(unbalanced) exchange rate ensemble R0 we consider the sequence

R0,R1,R2, . . . ,Rn, . . . (18)

defined by Rn = Rn−1An, n = 1, 2, . . . .
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Proposition 5. Either (i) the sequence (18) is periodic for n ≥ 36p; or (ii) this sequence
is diverging: at least one of the following six relationships hold:

r$en → 0, r$£n → 0, r$Un → 0, r$en → ∞, r$£n → ∞, r$Un → ∞.

Moreover, in Case (i) the minimal period of the sequence is a divisor of 24p; in Case
(ii) there exist a divisor q of 24p and factors γ$e, . . . , γ£U such that the relationships
r$en+q = γ$er$en, . . . , r£Un+q = γ£Ur$en hold for n ≥ 36p.

Proof. This statement follows from Lemmas 3 and 4.

To conclude this discussion, we note one more unexpected feature of periodic chains
of arbitrage. A chain (17) is regular for the initial ensemble R0 if this chain includes
all 24 arbitrages, and each arbitrage is active infinitely many times while generating the
sequence (18). By analogy with typical results from the desynchronised systems theory,
one could expect a regular chain of arbitrage elements of the corresponding sequence (18)
should be balanced for sufficiently large n. However, this is not the case: the sequences
(18) may be both periodic (after some transient period) or diverging.

As an instructive example consider the 24-periodic chain A∗ which is defined by the
following equations:

A1 = A
(15), A2 = A

(10), A3 = A
(3), A4 = A

(21),

A5 = A
(11), A6 = A

(8), A7 = A
(24), A8 = A

(17),

A9 = A
(6), A10 = A

(9), A11 = A
(16), A12 = A

(13),

A13 = A
(12), A14 = A

(22), A15 = A
(14), A16 = A

(18),

A17 = A
(23), A18 = A

(15), A19 = A
(5), A20 = A

(7),

A21 = A
(4), A22 = A

(19), A23 = A
(1), A24 = A

(5).

Proposition 6. For the initial ensemble R0 = R̄α the corresponding sequence (18) is
periodic with minimal period 24, and all arbitrages from A∗ are active.

Proof. By inspection.

This proposition demonstrates that arbitrage operation chains may display periodicity
and no necessary convergence on a cross exchange rate law of one price. See Figs. 5, 7
and formula (31) below for an explanation of the geometrical meaning of the arbitrage
chain A∗.

7. The Basic Algorithm

Introduce the following chains of arbitrages of length 3:

A
(1)
+ = A

(21)
A

(16)
A

(1)
, A

(2)
+ = A

(3)
A

(17)
A

(10)
, A

(3)
+ = A

(5)
A

(18)
A

(12)
,

A
(1)
− = A

(8)
A

(9)
A

(11)
, A

(2)
− = A

(15)
A

(18)
A

(14)
, A

(3)
− = A

(21)
A

(23)
A

(20)
.

It is convenient to define the mapping σ(n) which corresponds to a non-negative integer
n by the symbol “+”, and by the symbol “−” for a negative integer.
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Proposition 7. The chain

A(n1, n2, n3) =
(

A
(3)
σ(n3)

)|n3|(

A
(2)
σ(n2)

)|n2|

A
(15)

A
(18)

(

A
(1)
σ(n1)

)|n1−1|

A
(5) (19)

satisfies Theorem 1: the ensemble R̄αA(n1, n2, n3) coincides with
(

αn1 · r̄$e, αn2 · r̄$£, αn3 · r̄$U, αn1−n2 · r̄e£, αn1−n3 · r̄eU, αn2−n3 · r̄£U

)

,

and the length N of the chain (19) satisfies N ≤ 3(|n1 − 1|+ |n2|+ |n3|) + 3.

The legitimacy of this algorithm may be verified by induction. However a simple
geometric proof is much more instructive. This proof will be given later on. This chain
is not always the shortest: for instance, in the case n1 = n2 = n3 = 0 the shortest chain
A is of length one: A = A7.

8. General case

8.1. Direct Generalisation

We begin with the following comment. The ensemble (9) is the first item in the list

R̄
1
α = (α · r̄$e, r̄$£, r̄$U, r̄e£, r̄eU, r̄£U) ,

R̄
2
α = (r̄$e, α · r̄$£, r̄$U, r̄e£, r̄eU, r̄£U) ,

R̄
3
α = (r̄$e, r̄$£, α · r̄$U, r̄e£, r̄eU, r̄£U) ,

R̄
4
α = (r̄$e, r̄$£, r̄$U, α · r̄e£, r̄eU, r̄£U) ,

R̄
5
α = (r̄$e, r̄$£, r̄$U, r̄e£, α · r̄eU, r̄£U) ,

R̄
6
α = (r̄$e, r̄$£, r̄$U, r̄e£, r̄eU, α · r̄£U) .

(20)

A natural “relabelling” procedure confirms that the main results described in Section 6
hold without any changes for first initial ensemble from the list (20). In particular,
Theorem 1 implies

Corollary 1. The equality Sbal(R̄i
α) = T bal

α (R̄) holds for i = 2, 3. Moreover each bal-
anced ensemble (11) may be achieved via a chain of arbitrage operations no longer than
N i(n1, n2, n3), where

N2(n1, n2, n3) = 3(|n1|+ |n2 − 1|+ |n3|) + 3,

N3(n1, n2, n3) = 3(|n1|+ |n2|+ |n3 − 1|) + 3,

To describe the corresponding algorithms we introduce the auxiliary chains

Ã
(1)

+ = A
(1)

A
(21)

A
(16)

, Ã
(2)

+ = A
(13)

A
(23)

A
(16)

, Ã
(3)

+ = A
(24)

A
(12)

A
(19)

.

Ã
(1)
− = A

(9)
A

(11)
A

(8)
, Ã

(2)
− = A

(9)
A

(34)
A

(4)
, Ã

(3)
− = A

(6)
A

(11)
A

(17);

˜̃
A

(1)

+ = A
(18)

A
(12)

A
(5)

,
˜̃
A

(2)

+ = A
(23)

A
(16)

A
(13)

,
˜̃
A

(3)

+ = A
(18)

A
(12)

A
(5)

.

˜̃
A

(1)

− = A
(20)

A
(21)

A
(23)

,
˜̃
A

(2)

− = A
(4)

A
(9)

A
(24)

,
˜̃
A

(3)

− = A
(20)

A
(21)

A
(23)

.
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The equation (19) can be modified to the form

A2(n1, n2, n3) =
(

Ã
(1)

σ(n1)

)|n1|

A
(24)

A
(12)

(

Ã
(3)

σ(n3)

)|n3|
(

Ã
(2)

σ(n2)

)|n2−1|

A
(1)

for i = 2, and to the form

A3(n1, n2, n3) =

(

˜̃
A

(2)

σ(n2)

)|n2|
(

˜̃
A

(1)

σ(n1)

)|n1|

A
(12)

A
(10)

(

˜̃
A

(3)

σ(n3)

)|n3−1|

A
(3)

for i = 3.
Let us turn to the initial ensembles R̄i

α, i = 4, 5, 6.

Proposition 8. The equality Sbal(R̄i
α) = T bal

α (R̄) holds for i = 4, 5, 6. Moreover
each balanced ensemble (11) may be achieved via a chain of arbitrage no longer than
N i(n1, n2, n3), where

N4,5,6(n1, n2, n3) = 3(|n1|+ |n2|+ |n3|) + 4.

The corresponding chains A4(n1, n2, n3), i = 4, 5, 6, may be defined by the following
equations:

A4(n1, n2, n3) = A
(12)

A(n1 + 1, n2, n3)

= A
(12)

(

A
(3)
σ(n3)

)|n3|(

A
(2)
σ(n2)

)|n2|

A
(15)

A
(18)

(

A
(1)
σ(n1)

)|n1|

A
(5),

A5(n1, n2, n3) = A
(16)

A(n1 + 1, n2, n3)

= A
(16)

(

A
(3)
σ(n3)

)|n3|(

A
(2)
σ(n2)

)|n2|

A
(15)

A
(18)

(

A
(1)
σ(n1)

)|n1|

A
(3),

A6(n1, n2, n3) = A
(16)

A2(n1 + 1, n2, n3)

= A
(10)

(

Ã
(1)

σ(n1)

)|n1|

A
(24)

A
(12)

(

Ã
(3)

σ(n3)

)|n3|(

Ã
(2)

σ(n2)

)|n2−1|

A
(1).

Proof. This assertion may be proved analogously to Theorem 1.

8.2. Arbitrage Discrepancies

To formulate further generalisations we need an additional notion. To each ensemble
R = (r$e, r$£, r$U, re£, reU, r£U) we attach an arbitrage discrepancies ensemble, using
the relationships for balanced principal exchange rates given in (6) above

D(R) = (de£(R), deU(R), d£U(R))

as follows:

de£(R) = log re£ − log r$£ + log r$e,

deU(R) = log reU − log r$U + log r$e,

d£U(R) = log r£U − log r$U + log r$£.

(21)
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For instance

D(R̄1
α) = a(1, 1, 0), D(R̄2

α) = a(−1, 0, 1), D(R̄3
α) = a(0,−1,−1),

D(R̄4
α) = a(1, 0, 0), D(R̄5

α) = a(0, 1, 0), D(R̄6
α) = a(0, 0, 1),

(22)

where a = logα.

Proposition 9. The ensemble R is balanced, if and only if D(R) = 0.

Proof. Follows from Proposition 1 and equations (21).

8.3. Case A

The case where two of the discrepancies (21) are equal to zero was implicitly consid-
ered in Section 8.1: see the second line in (22) and Proposition 8.

8.4. Case B

Consider now the case when one of the discrepancies in (21) is equal to zero, while
two others are not. We will be particularly interested in the situation where two nonzero
discrepancies are different. This situation may have emerged, for instance, as follows.
Let us suppose that the underlying balanced rates (10) had been in operation up to a
certain reference time moment 0. At this moment the Euro trader has decided to change
two of three his rates, namely re£ and reU, by different factors α and β. Then at this
moment the two discrepancies would acquire different non-zero values, while the third
discrepancy remains equal to zero.

Suppose, for example that d£U = 0, while de£, deU 6= 0. We introduce the ratio

q(R) =
deU(R)

de£(R)
. (23)

Theorem 2. Let the number (23) be irrational. Then set Sbal(R) is dense in the totality
T bal of all possible balanced ensembles.

A proof of this assertion will be given later on.
Consider also the case where q = q(R) is a rational number: q = m/n with co-prime

integers m,n (including the possibilities m = 1 or n = 1). Denote also

α = exp(deU/n).

The following assertion is a straightforward analog of Proposition 2.

Proposition 10. The inclusions S(R) ⊂ Tα(R) and Sbal(R) ⊂ T bal
α (R) hold.

The following is an analog of Theorem 1:

Proposition 11. The equality Sbal(R) = T bal(R) holds.

A proof of this assertion will be given later on.
Note that the expressions like (16) are not valid in general. Similar expressions may

be established, however, for the cases m = 1 or n = 1. Note also that the case when
the discrepancy triplet is of one the forms (a, a, 0) or (a, 0,−a) or (0, a, a), a 6= 0, was
implicitly considered in Section 8.1: see the first line in (22) and Proposition 8.
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8.5. Case C

Consider the case where all three arbitrage discrepancies (21) are not equal to zero.

Corollary 2. Let at least one of the ratios

q1(R) =
deU(R)

de£(R)
, q2(R) =

d£U(R)

de£(R)
(24)

be irrational. Then the set Sbal(R) is dense in the totality T bal of all possible balanced
ensembles.

Suppose now that both ratios (24) are rational:

q1(R) =
m1

n1
, q2(R) =

m2

n2
.

Denote by lcm(n1, n2) the least common multiple of the corresponding denominators.
Denote

α(R) = exp

(

de£(R)

lcm(n1, n2)

)

.

Proposition 12. The relationships S(R) ⊂ Tα(R) and Sbal(R) ⊂ T bal
α (R) hold.

Corollary 3. Let

lcm(n1, n2) = n1 · n2. (25)

Then Sbal(R) = T bal
α (R).

Proof. This assertion as well as formulated below Corollary 4 follows from Proposition 11
together with Lemma 17.

Consider finally the case when the ratios q1(R) and q2(R) are rational, but (25) does
not hold. In this case we introduce the number γ such that di = kiγ where the numbers
ki are integers and their greatest common divisor, gcd(k1, k2, k3), is equal to 1. Consider
also the following six numbers:

a1 = gcd(k1, k2), a2 = gcd(k1, k3),

a3 = gcd(k2, k3), a4 = gcd(k1, k2 − k3),

a5 = gcd(k2, k1 + k3), a6 = gcd(k3, k1 − k2).

(26)

Introduce also the numbers αi = exp ai, i = 1, . . . , 6.

Corollary 4. The equation Sbal(R) = ∪6
i=1T

bal
αi

(R) holds.

Note that all six numbers in (26) may indeed be greater than one. For instance,
consider: k1 = 595, k2 = 1683, k3 = 308. By inspection, gcd(k1, k2, k3) = 1, and

a1 = gcd(k1, k2) = 17, a2 = gcd(k1, k3) = 7,

a3 = gcd(k2, k3) = 11, a4 = gcd(k1 − k2, k3) = 4,

a5 = gcd(k1 + k3, k2) = 3, a6 = gcd(k1, k2 − k3) = 5.
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9. Proofs

From this point onward we discuss the proofs of the theorems formulated above.
This part of the paper is organised as follows. In Section 9.1 we introduce, as a useful
auxiliary tool, stronger arbitrage procedures. Using strong arbitrages, we “linearise the
problem”, reducing it to investigation of all possible products of 12 explicitly written
6 × 6-matrices. Afterwards, in Section 9.2 we separate a family of 12 3 × 3-matrices
G(i) such that the products of these matrices completely describe the dynamics of the
discrepancy triplets. The properties of such products appear to be of key importance, and
these are investigated in Section 9.3. The results are applied in Section 9.4. Sections 9.5
and 9.6 are dedicated to finalising the proof of Theorem 1. Finally, in Sections 9.7–9.9
we provide proofs for Theorem 2 and Proposition 11.

9.1. Strong Arbitrages

We use, as an auxiliary tool, stronger arbitrage procedures. Let us begin with an
example. Consider the currencies triplet ($e£). For a given R we define the strong

arbitrage Â$e£R as A$e£ if the inequality (7) holds, and as Ae$£, otherwise. Note that
in both cases the result in terms of principal exchange rates is the same: the rate r$e is
changed to rnew$e = r$U

re£
.

The strong arbitrage Â$eU is the second entry in Table 2 of the possible 12 strong
arbitrages. The meaning of a strong arbitrage is simple. This is an arbitrage balancing a
sub-FX market such as $eU by changing the exchange rate for a pair such as Dollar ⇆
Euro. We will use, where convenient, the notation Â(n) for the arbitrage number n from
this table.

Table 2: Strong arbitrages

Number Strong arbitrage Action Numbers of arbitrages

1 Â$e£ rnew$e = r$£ · r−1
e£

1, 7

2 Â$eU rnew$e = r$U · r−1
eU

2, 8

3 Â$£e rnew$£ = r$e · re£ 3, 13

4 Â$£U rnew$£ = r$U · r−1
£U

4, 14

5 Â$Ue rnew$U = r$,e · reU 5, 19

6 Â$U£ rnew$U = r$£ · r£U 6, 20

7 Âe£$ rnew
e£

= r$£ · r−1
$e 9, 15

8 Âe£U rnew
e£

= reU · r−1
£U

10, 16

9 ÂeU$ rnew
eU

= r$U · r−1
$e 11, 21

10 ÂeU£ rnew
eU

= re£ · r£U 12, 22

11 Â£U$ rnew
£U

= r$U · r−1
$£ 17, 23

12 Â£Ue rnew
£U

= reU · r−1
e£

18, 24

Proposition 13. For any arbitrage chain (8), and any initial exchange rates R, there

exists a chain Â = Â1 · · · Ân of strong arbitrages such that RÂ = RA. Conversely, for
any chain Â = Â1 · · · Ân of strong arbitrages, and any initial exchange rates R, there
exists a chain of arbitrages such that RÂ = RA.
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This proposition reduces investigation of the questions from the previous section to
investigation of analogous questions related to chains of strong arbitrages.

Now we relate each strong arbitrage to a 6× 6 matrix B(A) as follows:

B$e£ = B
(1) =





0 0 0 0 0 0
−1 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



 , B$eU = B
(2) =





0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

−1 0 0 0 1 0
1 0 0 0 0 1



 ,

B$£e = B
(3) =





1 0 0 1 0 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1



 , B$£U = B
(4) =





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 1



 ,

B$Ue = B
(5) =





1 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0



 , B$U£ = B
(6) =





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 0



 ,

Be£$ = B
(7) =





1 −1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



 , Be£U = B
(8) =





1 0 0 0 0 0
0 0 0 0 0 0
0 −1 1 0 0 0
0 0 0 1 0 0
0 1 0 0 1 0
0 0 0 0 0 1



 ,

BeU$ = B
(9) =





1 0 0 0 −1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 1



 , BeU£ = B
(10) =





1 0 0 0 0 0
0 1 0 0 1 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1



 ,

B£U$ = B
(11) =





1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 −1 1 0 0
0 0 0 0 1 0
0 0 1 0 0 1



 , B£Ue = B
(12) =





1 0 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1



 .

For any ensemble R = (r$e, r$£, r$U, re£, reU, r£U) we denote

logR = (log r$e, log r$£, log r$U, log re£, log reU, log r£U) .

Proposition 14. The equation log(RÂ(i)) = (logR)B(i) holds for i = 1, . . . , 12.

Proof. Follows from definitions.

9.2. A Special Coordinate System

In the six-dimensional real coordinate space R6 we introduce the vectors

v1 = (1,−1, 0, 1, 0, 0), v2 = (1, 0,−1, 0, 1, 0), v3 = (0, 1,−1, 0, 0, 1).

By definition for any ensemble R

〈v1, logR〉 = de£(R), 〈v2, logR〉 = deU(R), 〈v3, logR〉 = d£U(R),

where 〈·, ·〉 denotes the usual inner product in R6.
Propositions 1 and 14 together imply

Corollary 5. The three-dimensional subspace 〈v1,v〉 = 〈v2,v〉 = 〈v3,v〉 = 0 is invariant
with respect to each linear operator v → vB(i), i = 1, . . . , 12.
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We introduce in R6 the new basis

{e1, e2, e3,v1,v2,v3};

here e1 = (1, 0, 0, 0, 0, 0), e2 = (0, 1, 0, 0, 0, 0), v3 = (0, 0, 1, 0, 0, 0). By the last corollary
in this basis the matrices of the linear operators v → vB(i) have the block-triangular
form:

D(i) =

(

1 0

H(i) G(i)

)

.

Here

0 =





0 0 0
0 0 0
0 0 0



 , 1 =





1 0 0
0 1 0
0 0 1



 ,

and G(i), H(i) are some 3× 3-matrices.
Denote

v(R) = (log r$e, log r$£, log r$U, de£(R), deU(R), d£U(R)) .

Proposition 15. The equality v(RÂ(i)) = v(R)D(i) holds for i = 1, . . . , 12.

Proof. Follows from Lemma 1 and Proposition 14.

The matrices D(i) may be written explicitly as

QB(i)Q−1, (27)

where

Q =







1 0 0 0 0 0
0 1 0 1 0 0
0 0 1 0 0 0
1 −1 0 1 0 0
1 0 −1 0 1 0
0 1 −1 0 0 1






, Q−1 =







1 0 0 −1 −1 0
0 1 0 1 0 −1
0 0 1 0 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1






. (28)

Lemma 1. The following equations are valid:

G(1) =
( 0 −1 0

0 1 0
0 0 1

)

, G(2) =
( 1 0 0

−1 0 0
0 0 1

)

, G(3) =
(

0 0 1
0 1 0
0 0 1

)

,

G(4) =
(

1 0 0
0 1 0
1 0 0

)

, G(5) =
( 1 0 0

0 0 −1
0 0 1

)

, G(6) =
( 1 0 0

0 1 0
0 −1 0

)

,

G(7) =
(

0 0 0
0 1 0
0 0 1

)

, G(8) =
( 0 0 0

1 1 0
−1 0 1

)

, G(9) =
(

1 0 0
0 0 0
0 0 1

)

,

G(10) =
(

1 1 0
0 0 0
0 1 1

)

, G(11) =
(

1 0 0
0 1 0
0 0 0

)

, G(12) =
( 1 0 −1

0 1 1
0 0 0

)

,

and

H(1) =
(−1 0 0

0 0 0
0 0 0

)

, H(2) =
( 0 0 0

−1 0 0
0 0 0

)

, H(3) =
(

0 1 0
0 0 0
0 0 0

)

,

H(4) =
( 0 0 0

0 0 0
0 −1 0

)

, H(5) =
(

0 0 0
0 0 1
0 0 0

)

, H(6) =
(

0 0 0
0 0 0
0 0 1

)

,

H(i) = 0, i = 7, . . . , 12.
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Proof. Follows by inspection from (27), (28).

Proposition 16. The discrepancy ensemble D(RÂ) depends only on D(R) and Â, and

may be written as follows: D(RÂ(i)) = D(R)G(i). Here i is the number of a strong
arbitrage as listed in Table 2.

Proof. Follows from Proposition 15.

By the last proposition a discrepancy ensemble D(RÂ) related to an arbitrage chain

Â = Â1 · · · Ân may be written as

D(RÂ) = D(R)
n
∏

i=1

Gi.

Therefore the set G of all possible products of the matrices G(i) is of interest.

9.3. Structure of the Set G

The following assertion is the key observation of our paper:

Lemma 2. The set G consists of 229 elements.

Proof. By inspection

Denote by Â the totality of all finite chains of strong arbitrages.

Corollary 6. For a given R the set D(R) = {D(RÂ) : A ∈ A} consists of less than 230
elements.

Let us discuss briefly the structure of the set G. A subset G of G is called a connected
component, if for any G1, G2 ∈ G there exists G ∈ G satisfying G2 = G1G. By the
definition different connected components do not intersect.

Lemma 3. The set G is partitioned into 14 connected components U1, . . . U14. Each of
the first six connected components includes 24 matrices of range 2; each of the connected
components U7, . . . U13 includes 12 matrices of range one; the last component contains a
single zero matrix.

The sets U1, . . . , U6 may be characterised by the following inclusions:

G(2i−1), G(2i) ∈ Ui, i = 1, . . . , 6.

To identify the connected components U7, . . . U13 we list below the smallest lexicograph-
ical matrices from these components

(−1 −1 0
0 0 0
0 0 0

)

∈ U7,
( 0 0 0

−1 −1 0
0 0 0

)

∈ U8,
( 0 0 0

0 0 0
−1 −1 0

)

∈ U9,

(−1 −1 0
1 1 0
0 0 0

)

∈ U10,

(

−1 −1 0
0 0 0

−1 −1 0

)

∈ U11,
( 0 0 0

−1 −1 0
1 1 0

)

∈ U12,

(

−1 −1 0
1 1 0

−1 −1 0

)

∈ U13.

One can move from one connected component Ui to another component Uj applying
a matrix G(i), i = 1, . . . , 12. Let us describe the set of possible transitions. We will use
the notation Ui ≻ Uj if such a transition is possible.
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Lemma 4. The following relationships hold:

U1 ≻ U9, U10, U13, U2 ≻ U8, U11, U13, U3 ≻ U7, U12, U13,

U4 ≻ U8, U9, U12, U5 ≻ U7, U9, U11, U6 ≻ U7, U8, U10.

Also Ui ≻ U14, i = 1, . . . , 13.

Proof. By inspection.

Lemma 5. For any G ∈ G either G or G2 or G3 is a projector.

Proof. By inspection.

9.4. Discrepancy Dynamics

The structure of the set G explained above induces structuring of the set of dis-
crepancies, which we discuss below. We say that a set D of discrepancies is a connected
component if for any D1,D2 ∈ D there exists an arbitrage chain A satisfying D1A = D2.
For a given reals a, b we denote by D(a, b) the set of different triplets from the collection

D1(a, b) = (a, b,−a+ b) , D2(a, b) = (−a+ b, b, a) ,

D3(a, b) = (a, a− b,−b) , D4(a, b) = (−a+ b,−a,−b) ,

D5(a, b) = (−b, a− b, a) , D6(a, b) = (−b,−a,−a+ b) ,

D7(a, b) = (0, b,−a+ b) , D8(a, b) = (a, 0,−a+ b) ,

D9(a, b) = (a, b, 0) , D10(a, b) = (0, b, a) ,

D11(a, b) = (−a+ b, 0, a) , D12(a, b) = (−a+ b, b, 0) ,

D13(a, b) = (0,−a,−b) , D14(a, b) = (−a+ b, 0,−b) ,

D15(a, b) = (−a+ b,−a, 0) , D16(a, b) = (0, a− b,−b) ,

D17(a, b) = (a, 0,−b) , D18(a, b) = (a, a− b, 0) ,

D19(a, b) = (0, a− b, a) , D20(a, b) = (−b, 0, a) ,

D21(a, b) = (−b, a− b, 0) , D22(a, b) = (0,−a,−a+ b) ,

D23(a, b) = (−b, 0,−a+ b) , D24(a, b) = (−b,−a, 0) .

(29)

Lemma 6. Each set D(a, b) is a connected component, and each connected component
coincides with a certain set D(a, b).

Proof. This statement may be proved by inspection.

Let us discuss in brief the structure of the sets D(a, b) for different values a, b. Clearly,
D(0, 0) consists of the single zero triplet D0 = (0, 0, 0). The connected components
D(±a, 0), D(0,±a), D(a, a), D(−a,−a) coincide and include the following 12 elements:

D1(a) = a( 0, 0, 1), D2(a) = a(−1, 0, 1),

D3(a) = a(−1, 0, 0), D4(a) = a(−1,−1, 0),

D5(a) = a( 0,−1, 0), D6(a) = a( 0,−1,−1),

D7(a) = a( 0, 0,−1), D8(a) = a( 1, 0,−1),

D9(a) = a( 1, 0, 0), D10(a) = a( 1, 1, 0),

D11(a) = a( 0, 1, 0), D12(a) = a( 0, 1, 1).

(30)
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We use notation D(a) for this set. Geometrically the set D(a) represents vertices of a
partly distorted truncated cuboctahedron, or triangular orthobicupola, shown in Fig. 1.
The structure of this component will be explained in more detail in Section 9.6. The
set D(a,−a), D(a, 2a), D(a, a/2), also consists of 12 elements. Geometrically these sets
D(a) represent vertices of a distorted truncated tetrahedron, shown in Fig. 2. Otherwise,
a set D(a, b), consists of 24 elements, and represents vertices of a distorted truncated
octahedron, shown in Fig. 3. The structure of this component will be explained in more
detail in Section 9.7.

Figure 1: Left: the form of a polyhedron with vertices D(a), a 6= 0; Right: the same polyhedron
transparent.

Figure 2: Left: the form of polyhedrons with vertices D(a,−a), D(a, 2a), or D(a, a/2), a 6= 0; Right:
the same polyhedron transparent.

We formulate also a corollary of Proposition 4. For a set D of discrepancies we denote
by G(D) the collection of elements of the form DG(i), D ∈ D, i = 1, . . . , 12.

Corollary 7. The equality

G(D(a, b)) = D(a, b))
⋃

D(a)
⋃

D(b)
⋃

D(a− b),

holds for a 6= b. Also G(D(a)) = D(a)
⋃

(0, 0, 0).

Some discrepancy triplets do not belong to any connected component; however any
element of the form DG(i) must belong to a connected component. More precisely:
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Figure 3: Left: a typical form of a generic polyhedron with vertices D(a, b); Right: the same polyhedron
transparent.

Proposition 17. The following inclusions hold:

(a, b, c)G(1,2) ∈ D(c,−a+ b), (a, b, c)G(3,4) ∈ D(a− c, b),

(a, b, c)G(5,6) ∈ D(−b+ c, a), (a, b, c)G(7,8) ∈ D(c, b),

(a, b, c)G(9,10) ∈ D(a,−c), (a, b, c)G(11,12) ∈ D(a, b).

Proof. This assertion may be proved by inspection.

9.5. Incremental Dynamics

For a given sextuple R we denote by R′ the triplet of the first three components of
R: R′ = (r$e, r$£, r$U). Denote further I(R, Â) = log(RÂ)′ − logR′, where Â is a strong
arbitrage.

Proposition 18. I(R, Â) depends only on Â and D(R) and may be described as follows:

I(R, Â(1)) = d(R)H(1) =−de£(R) (1, 0, 0) ,

I(R, Â(2)) = d(R)H(2) =−deU(R) (1, 0, 0) ,

I(R, Â(3)) = d(R)H(3) = de£(R) (0, 1, 0) ,

I(R, Â(4)) = d(R)H(4) =−d£U(R) (0, 1, 0) ,

I(R, Â(5)) = d(R)H(5) = deU(R) (0, 0, 1) ,

I(R, Â(6)) = d(R)H(6) = d£U(R) (0, 0, 1) .

Also the equalities I(R, Â(i)) = d(R)H(i) = (0, 0, 0) hold for i = 7, 8, 9, 10, 11, 12.

Proof. Follows from Corollary 15.

9.6. Proof of Theorem 1

This proceeds by graphing the detailed dynamics of the arbitrage discrepancies. In
this section we use the shorthand notation Di instead of Di(a).
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Lemma 7. For any initial exchange rate ensemble belonging to the list (20), and for
any arbitrage chain, the corresponding sequence of discrepancies includes only elements
from the union D0

⋃

D(a), a = logα, see (30). The possible transition paths, arising
from the strong arbitrages listed in Table 1, are given in Table 3.

Figure 4 plots the corresponding graph. Figure 5 plots a similar graph, where the
numbers of the arbitrages from Table 1 are included, instead of the numbers of strong
arbitrages.

Proof. By inspection follows from Proposition 16.

Ignoring the zero vertex D0, the edges that lead to this vertex and directions of the
edges, another, polyhedral, representation of the graph plotted in Fig. 4 is given in Fig. 6.
The corresponding polyhedron is a distorted triangular orthobicupola, shown in Fig. 1.
The incidence matrix I of the graph plotted in Fig. 6 is as follows:

I =



















1 1 0 0 1 0 0 0 1 0 0 1
1 1 1 1 0 0 0 0 0 0 0 1
0 1 1 1 0 0 1 0 0 0 1 0
0 1 1 1 1 1 0 0 0 0 0 0
1 0 0 1 1 1 0 0 1 0 0 0
0 0 0 1 1 1 1 1 0 0 0 0
0 0 1 0 0 1 1 1 0 0 1 0
0 0 0 0 0 1 1 1 1 1 0 0
1 0 0 0 1 0 0 1 1 1 0 0
0 0 0 0 0 0 0 1 1 1 1 1
0 0 1 0 0 0 1 0 0 1 1 1
1 1 0 0 0 0 0 0 0 1 1 1



















.

Table 3: Transition, caused by strong arbitrages from Table 1

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

Â(1) D1 D12 D11 D0 D5 D6 D7 D6 D5 D0 D11 D12

Â(2) D1 D2 D3 D0 D9 D8 D7 D8 D9 D0 D3 D2

Â(3) D1 D0 D7 D6 D5 D6 D7 D0 D1 D12 D11 D12

Â(4) D1 D0 D3 D4 D5 D4 D3 D0 D9 D10 D11 D10

Â(5) D1 D2 D3 D2 D1 D0 D7 D8 D9 D8 D7 D0

Â(6) D5 D4 D3 D4 D5 D0 D11 D10 D9 D10 D11 D0

Â
(7)

D1 D1 D0 D5 D5 D6 D7 D7 D0 D11 D11 D12

Â(8) D2 D2 D0 D4 D4 D6 D8 D8 D0 D10 D10 D12

Â(9) D1 D2 D3 D3 D0 D7 D7 D8 D9 D9 D0 D1

Â(10) D12 D2 D3 D3 D0 D6 D6 D8 D9 D10 D0 D12

Â(11) D0 D3 D3 D4 D5 D5 D0 D9 D9 D10 D11 D10

Â(12) D0 D2 D2 D4 D6 D6 D0 D8 D8 D10 D12 D12

Now let us deal with the coupled discrepancies and the incremental dynamics.

Corollary 8. For any arbitrage chain the corresponding sequence of increments includes
only the zero triplet I0 = (0, 0, 0) or one of the following six triplets:

I1 = a(1, 0, 0), I2 = a(−1, 0, 0), I3 = a(0, 1, 0),

I4 = a(0,−1, 0), I5 = a( 0, 0, 1), I6 = a(0, 0,−1).
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Figure 4: Graph of the transitions caused by the strong arbitrages.
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Figure 5: The previous graph with the arbitrage numbers, instead of the strong arbitrage numbers.

The dynamics of the increments I is conveniently visualised in Fig. 7.
The correctness of this description of the dynamics of the increments follows imme-

diately from Corollary 7 and Proposition 18. The legitimacy of the algorithms relevant
to Theorem 1 and, therefore, proof of Theorem 1 and Proposition 8 follows from Figs. 5
and 7.

We note also that the 24-periodic chain of arbitrage from Proposition 6 was also found
looking at Fig. 5 and 7. The corresponding route is quite natural from this perspective,
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Figure 7: The increment dynamics graph

and is given by

D10 → D11 → D10 → D12 → D1 → D12 → D2 → D3 →

D2 → D4 → D5 → D4 → D6 → D7 → D6 → D8 →

D9 → D8 → D10 → D8 → D6 → D4 → D2 → D12 → D10.

(31)

9.7. Commuters, Terminals and Knots

Now we move to a proof of Theorem 2 and Proposition 11. The case de£ = deU has
been considered in Section 8.1. Thus we can assume that de£ 6= deU.

The focus is again on the dynamics of the exchange rate discrepancies. The set
of all discrepancies that may be achievable from D = (a, b, 0) contains altogether 61
different elements, see Corollary 7. The corresponding connected component D(a, b),
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which contains D = (a, b, 0), see (29), contains 24 elements listed in (29). To describe the
detailed structure of this set we will introduce a new notation. The set D(a, b), contains
six elements that have all three components that are non-zero, and we re-denote these
elements by

C1 = (a, b,−a+ b) , C2 = (−a+ b, b, a) , C3 = (a, a− b,−b) ,

C4 = (−a+ b,−a,−b) , C5 = (−b, a− b, a) , C6 = (−b,−a,−a+ b) .

We call these ensembles commuters by way of analogy with passenger travel.
We call an element with two non-zero components a terminal, if d1 6= ±d2. There are

altogether 18 terminals in D(a, b). To each commuter Ci, i = 1, . . . , 6, we relate three
terminals T j

i , j = 1, 2, 3, as follows:

T 1
1 = (0, b,−a+ b) , T 2

1 = (a, 0,−a+ b) , T 3
1 = (a, b, 0) ;

T 1
2 = (0, b, a) , T 2

2 = (−a+ b, 0, a) , T 3
2 = (−a+ b, b, 0) ;

T 1
3 = (0,−a,−b) , T 2

3 = (−a+ b, 0,−b) , T 3
3 = (−a+ b,−a, 0) ;

T 1
4 = (0, a− b,−b) , T 2

4 = (a, 0,−b) , T 3
4 = (a, a− b, 0) ;

T 1
5 = (0, a− b, a) , T 2

5 = (−b, 0, a) , T 3
5 = (−b, a− b, 0) ;

T 1
6 = (0,−a,−a+ b) , T 2

6 = (−b, 0,−a+ b) , T 3
6 = (−b,−a, 0) .

Lemma 8. The equalities

CiG
(7) = T 1

i , CiH
(7) = (0, 0, 0),

CiG
(9) = T 2

i , CiH
(9) = (0, 0, 0),

CiG
(11) = T 3

i , CiH
(11) = (0, 0, 0)

hold for i = 1, . . . , 6. Also the following equalities hold: T j
i G

(k) = Ci, for i = 1, . . . , 6,
j = 1, 2, 3, k = 8, 10, 12.

We group the commuters and terminals in six knots, K1, . . . ,K6 as follows:

Ki =
{

Ci, T
1
i , T

2
i , T

3
i

}

, i = 1, . . . , 6.

Figure 8 illustrates behaviour at a knot.

7
9

11

8

10

12

C

T1

T2

T3

Figure 8: The “commuter–terminals” graph of a knot
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9.8. Travel Between Knots

Departing from a particular terminal, and applying some arbitrages with numbers k =
7, . . . , 12, one can travel to another terminal belonging to a different knot, simultaneously
“loading some cargo” upon the corresponded triplet R′. Details are given in the following
proposition.

Proposition 19. The following groups of equalities hold:














T 1
1 G

(3) = T 1
2 , T 1

1 H
(3) = (0, a, 0), T 1

1G
(5) = T 2

4 , T 1
1H

(5) = (0, 0, b);

T 2
1 G

(1) = T 1
6 , T 2

1 H
(1) = (−a, 0, 0), T 2

1G
(6) = T 3

3 , T 2
1H

(6) = (0, 0,−a);

T 3
1 G

(2) = T 2
6 , T 3

1 H
(2) = (−b, 0, 0), T 3

1G
(4) = T 3

2 , T 3
1H

(4) = (0, a− b, 0);

{

T 1
2 G

(2) = T 2
5 , T 1

2H
(2) = (−b, 0, 0), T 1

2 G
(4) = T 3

1 , T 1
2 H

(4) = (0,−a, 0);

T 3
2 G

(1) = T 2
2 , T 3

2H
(1) = (a− b, 0, 0), T 3

2 G
(6) = T 3

3 , T 3
2 H

(6) = (0, 0,−a);

{

T 1
3G

(2) = T 2
4 , T 1

3H
(2) = (a, 0, 0), T 1

3 G
(4)= T 3

6 , T 2
3H

(4) = (0, b, 0);

{

T 1
4 G

(2) = T 2
3 , T 1

4H
(2) = (−a+ b, 0, 0), T 1

4 G
(4) = T 3

5 , T 1
4 H

(4) = (0, b, 0);

T 3
4 G

(1) = T 1
3 , T 3

4H
(1) = (−a, 0, 0), T 3

4 G
(6) = T 3

1 , T 3
4 H

(6) = (0, 0,−b);

{

T 1
5 G

(2) = T 2
2 , T 1

5H
(2) = (−a+ b, 0, 0), T 1

5 G
(4) = T 3

4 , T 1
5 H

(4) = (0,−a, 0);

T 3
5 G

(1) = T 1
2 , T 3

5H
(1) = (b, 0, 0), T 3

5 G
(6) = T 3

6 , T 3
5 H

(6) = (0, 0, a);

{

T 1
6G

(2) = T 2
1 , T 1

6H
(2) = (a, 0, 0), T 1

6 G
(4) = T 3

3 , T 1
6 H

(4) = (0, a − b, 0).

We introduce the “travel between knots” directed graph Γ, shown in Fig. 9, as fol-
lows. This graph has 6 vertices that correspond to the knots K1, . . . ,K6. A knot Ki is
connected by an arrow with another knot Kj if one of terminals belonging to Kj figures
in the rows belonging to the i-th subset of equalities from Proposition 19. For instance,
the knot K1 is connected with K2,K3,K4,K6. Moreover each arrow corresponds to
the three dimensional “cargo vector(s)”: these vectors are related in a natural way to
the increment vectors in the equalities above. For instance, we attach the cargo-vectors
(0, a − b, 0) and (0, a, 0) to the K1 → K2 arrow. The incidence matrix of this graph is
written below.

I(Γ) =

















0 1 0 1 0 1
1 0 1 0 1 0
0 0 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
0 1 0 0 0 0
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Figure 9: The “travel between knots” graph Γ

9.9. Finalising the proof of Theorem 2 and Proposition 11

If the single transition Ki → Kj is possible we use W i→j for the corresponding

cargo; we will use W i→j
1 ,W i→j

2 if two transitions are possible. In the latter case W i→j
1

refers to the upper vector indicated at graph Γ. For instance, W 1→2
1 = (0, a − b, 0),

W 1→2
2 = (0, a, 0), W 2→1 = (0,−a, 0), etc.

Lemma 9. For any positive integers N1, N2, N3 there exists a chain Â of strong arbi-
trages such that RÂ has the form

(r$e +m1a−N1b, r$£ +m2a+N2b, r$U +m3a−N3b)

where m1,m2,m3 are some positive integer numbers,

Proof. Since the moves from one terminal to another, within a particular knot, are always
possible and do not change R′ (see Lemma 8), any route allowed by the graph Γ can be
performed, and any combination of corresponding cargo can be loaded. For the cycle
K1 → K2 → K5 → K6 → K1 we have

W 1→2
1 +W 2→5

1 +W 5→6 +W 6→1 = (a− b, a, 0).

For the cycle K1 → K2 → K3 → K6 → K1 we have

W 1→2
2 +W 2→3 +W 3→6 +W 6→1 = (a, a+ b, a).

For the cycle K1 → K2 → K3 → K4 → K1 we have

W 1→2
2 +W 2→3 +W 3→4 +W 4→1 = (a, a, a− b).
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Corollary 9. For any non-negative integers N1, N2, N3 and M1,M2,M3 there exists a
chain Â of strong arbitrages such that RÂ has the form (r$e +M1a−N1b, r$£ +M2a+
N2b, r$U +M3a−N3b).

Proof. From the lemma above it follows that we can achieve the state

(r$e +m1a− (N1 − 1)b, r$£ +m2a+ (N2)b, r$U +m3a− (N3 + 1)b, a, b,−a+ b).

Then moving to the terminal T 3
1 and applying arbitrage Â(6) we arrive at

(r$e + (m1 − 1)a− (N1)b, r$£ +m2a+ (N2)b, r$U +m3a−N3b, 0, a, 0).

However, from this state we can, by Proposition 1, adjust the numbers m1,m2,m3 to
the targets M1,M2,M3.

Theorem 2 and Proposition 11 follow immediately from this last corollary.

10. Concluding Remarks

The key contribution of this paper is to ask what happens to arbitrage sequences
when the number of goods or assets under consideration is four, rather than the two, or
occasionally three, usually considered. The model is illustrated with regard to a foreign
exchange market with four currencies and traders, so there are C2

4 = 6 principal exchange
rates. Despite abstracting from various complications – such as transaction costs, capital
requirements and risk – that are often invoked to explain the limits to arbitrage, we
find that the arbitrage operations conducted by the FX traders can generate periodicity
or more complicated behaviour in the ensemble of exchange rates, rather than smooth
convergence to a “balanced” ensemble where the law of one price holds.

We use the fiction of an Arbiter, who knows all the actual exchange rates and what
a balanced ensemble would be, to bring out the information problem. FX traders tend
to specialise in particular currencies, so the assumption that the FX traders are initially
aware only of the exchange rates for their own “domestic” currencies is not entirely im-
plausible. We show that the order in which the Arbiter reveals information to individual
traders regarding discrepancies in exchange rate ensembles makes a key difference to the
arbitrage sequences that will be pursued. The sequences are periodic in nature, and
show no clear signs of convergence on a balanced ensemble of exchange rates. The Ar-
biter might know the law of one price exchange rate ensemble, but the traders have little
chance of stumbling onto such an ensemble by way of their arbitrage operations.

The analysis in the present paper raises several issues to pursue in future research.
An obvious extension is to allow for a larger number of currencies and ask what happens
to the arbitrage sequences as this number becomes large. One interesting modification
of the analysis would allow the FX traders to learn that arbitrage sequences tend to be
periodic and modify their arbitrage strategies to take the periodicity into account. An-
other modification would allow some arbitrage operations to be pursued simultaneously,
and ask what happens as the limiting case where all arbitrage operations are exploited
simultaneously is approached. An alternative reformulation of the analysis would be
as a Markov process where the states are sextuples of exchange rates between the four
currencies and the passages between the states reflect the effects of arbitrage operations
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pursued. It would be interesting to see if this could be done without compromising the
relative simplicity of the present formulation. Finally, but by no means exhaustively, it
would be interesting to work with high frequency data sets to test for the existence of
the types of arbitrage sequences postulated in the present paper.
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