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Abstract 

The crystal structure, electromechanical properties and electrocaloric effect in novel lead-free 

(Bi0.5K0.5)TiO3-La(Mg0.5Ti0.5)O3 ceramics were investigated. A morphotropic phase boundary 

(MPB) between the tetragonal and pseudocubic phase was found at x=0.01~0.02. In addition, 

the relaxor properties were enhanced with increasing the La(Mg0.5Ti0.5)O3 content. In situ 

high temperature X-ray diffraction patterns and Raman spectra were characterized to 

elucidate the phase transition behavior. The enhanced electrocaloric effect (ΔT=1.19 K) and 

piezoelectric coefficient (d33=103 pC/N) were obtained for x=0.01 at room temperature. 

Meanwhile, the temperature stability of the ECE was considered to be related to the high 

depolarization temperature and relaxor characteristics of the BKT-based ceramics. The above 

results suggest that the piezoelectric and ECE properties can be simultaneously enhanced by 

establishing an MPB. These results also demonstrate the great potential of the studied 

systems for solid-state cooling applications and piezoelectric-based devices. 

 

Key words: Bi0.5K0.5TiO3 ceramic; Lead-free; Dielectric relaxor; Piezoelectric; Electrocaloric 

effect.  

 

1. INTRODUCTION 

Perovskite-type bismuth-based ferroelectric ceramics are promising candidates to 

replace the hazardous lead-containing ceramics in sensors, actuators and transducers 

applications.
1
 Bi0.5Na0.5TiO3 (BNT) and Bi0.5K0.5TiO3 (BKT) are two typical bismuth-based 

ferroelectric ceramics. Since ferroelectric-relaxor transition induced excellent strain 

properties were discovered in Bi0.5Na0.5TiO3-BaTiO3-(K0.5Na0.5)NbO3 systems, eco-friendly 
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BNT-based ferroelectric ceramics have attracted global research interest.
2
 However, only a 

few studies have been focused on BKT-based ceramics to date. In contrast to BNT with 

typical rhombohedral structure, BKT exhibits a tetragonal symmetry and presents high 

tetragonality c/a=1.02 (a=3.925 Å and c=3.993 Å) at room temperature. The structural 

difference between BNT and BKT is suggested to originate from the large ionic radius of K
+
 

that contributes to the appearance of long-range ferroelectric order.
3
 BKT exhibits two 

successive phase transitions, i.e., from tetragonal to pseudocubic at 260°C and from 

pseudocubic to cubic at 380°C.
4,5

 The piezoelectric coefficient d33 of the pure BKT ceramic is 

estimated to be only 69.8 pC/N, which is not sufficient for practical applications.
6
 Generally, 

MPB has been used to enhance the piezoelectric and ferroelectric properties and a number of 

BKT-based solid solutions have been prepared, including the BKT-Bi(Ni0.5Ti0.5)O3 and 

BKT-Bi0.5Na0.5ZrO3 systems.
7,8

 The MPB separating the tetragonal and 

rhombohedral/pseudocubic phases facilitates domain rotations and extensions and thus 

enhances the piezoelectric properties.
9
 This behavior indicates the potential to explore high 

electromechanical performances by establishing MPB in BKT-based systems.  

With the application or removal of an electric field in the polar crystals, the adiabatic 

entropy/temperature change will take place, and this phenomenon is called electrocaloric 

effect (ECE).
10,11

 The research of the ECE has renewed interest since giant ECEs were 

obtained in ferroelectric and organic thin films.
12,13

 Afterwards, the ECE was extensively 

explored and much progress has been made on both experimental and theoretical sides.
14-16

 

However, in thin films, large ECE was usually acquired by applying high electric field, which 

leads to a low ECE efficiency ξ (ΔTmax/ΔE). Therefore, it is essential to explore large ECEs 

in bulk ceramics to establish macroscopic cooling cycles. BaTiO3-based single crystals and 

ceramics with optimal ECEs have been developed. However, the typical first-order phase 

transition results in a narrow and sharp peak on heating process, predicting the temperature 

instability of the ECE properties.
17,18

 Taking this into consideration, relaxor ferroelectrics 

characterized by diffuse phase transitions are expected to display a broad temperature range, 

as previously reported in Bi0.5Na0.5TiO3-based systems.
19

 In particular, the alignment of polar 

nanoregions (PNRs) in relaxor ferroelectrics also contributes to the ECE.
20

 Regarding the 

ECE measurement for relaxor ferroelectric ceramics, the directly measured ECE method is 
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essential because the Maxwell relations can be only applied to equilibrium states.
21

 For 

example, in Ba(Zr,Ti)O3-(Ba,Ca)TiO3 and Aurivillius relaxor ferroelectric ceramics, large 

discrepancies have been observed between the direct and indirect ECE measurements.
22,23

 

Therefore, the direct measurement of ECE is essential to disclose the cooling ability of the 

BKT-based relaxor ferroelectric ceramics. 

La-containing complex compound perovskites are one kind of fundamental material that 

is used in applications of microwave resonators. La(Mg1/2Ti1/2)O3 (LMT) is usually 

considered as a typical low-loss microwave material and is also an promising end member to 

modulate electromechanical properties.
24,25

 In this work, novel lead-free BKT-LMT ceramics 

are investigated and the MPB region is the focus. The composition dependent phase structure, 

and the dielectric, piezoelectric, ferroelectric and ECE properties of the ceramics are 

discussed in detail. 

 

2. EXPERIMENTAL PROCEDURE  

Conventional solid-state reaction method was used to fabricate the (1-x)BKT–xLMT 

(x=0~0.03) ceramics. High–purity chemicals Bi2O3, K2CO3, TiO2, La2O3 and 

4[MgCO3]·Mg(OH)2·5H2O (≥99.0%, Sinopharm Chemical Reagent Co. Ltd., China) were 

used as raw materials. The K2CO3 raw powder was desiccated in the oven at 140 °C for 12 h 

as it is susceptible to moisture in the air. The mixing powders were first milled with zirconia 

media in ethanol for 6 h, and the milled powder were calcined twice in a covered alumina 

crucible at 930 
o
C for 2 h. After second calcination, the powders were milled again for 

another 12 h. The dried powders were mixed with 5 wt% PVA binder, and then pressed into 

pellets with 1 mm in a thickness and 10 mm in diameter. After removing the PVA binder, the 

pellets were sintered over the range of 1060°C–1080°C depending on the LMT content. All 

pellets were covered with the corresponding sacrificial powders to reduce the loss of K and 

Bi elements during sintering. The obtained pellets were polished and the silver pastes were 

covered on the both sides of the pellets for electrical characterizations. The samples were 

poled at 120 °C for 15 min by applying a dc field of 5 kV/mm in silicon oil and finally cooled 

to room temperature with electric-field. The crystal structures were monitored by an X–ray 
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diffractometer (XRD, Bruker D8 Advance, Karlsruhe, Germany) with CuKα1 radiation. 

Raman spectra were acquired by Raman scattering spectrometer (Horiba Jobin-Yvon HR800, 

France) with a 532 nm laser and was equipped with a Linkam THMSE 600 heating stage. 

The microstructure of the ceramics was observed using a scanning electron microscope 

(SEM, JEOL JSM-6490LV, Tokyo, Japan). The temperature dependence of dielectric 

properties was measured with an LCR meter (Agilent E4980A, Santa Clara, CA). 

Polarization-electric field (P–E) hysteresis loops was measured by using a ferroelectric test 

system (Precision LC, Radiant Technologies, Inc. Albuquerque, NM). The piezoelectric 

coefficient was measured using a quasi-static d33 meter (ZJ-3A, Institute of Acoustics, 

Chinese Academy of Science, Beijing, China). The temperature variation was detected by a 

thermistor that was adhered to the samples. A Cu conductive paste was used to connect the 

sample with high-voltage power amplifier and the signals outputted from the thermocouple 

was recorded by the computer. 

 

2. RESULTS AND DISCUSSION 

3.1 Room-temperature composition-dependent phase structural evolution and microstructure 

The XRD patterns of the BKT-xLMT (x=0~0.03) solid solutions at room temperature 

are shown in Fig. 1(a). It can be seen that all samples form main perovskite phases with a 

minute trace of the second phase K4Ti3O8 (PDF#41-0167), which might be ascribed to the 

volatilization of elemental Bi during the sintering process.
26

 To clearly demonstrate the 

evolution of the crystal structure of the BKT-xLMT ceramics, the locally magnified (111) 

and (200) peaks are shown in Figs. (b1-b4) and (c1-c4), and the (200) peak is fitted by a 

Gaussian peak shape function using PeakFit software (SeaSolve Software Inc.). The pure 

BKT ceramic exhibits a tetragonal phase that is characterized by a single (111) peak and the 

splitting of the (002)/(200) diffraction peaks. The transition from the tetragonal to the 

pseudocubic phase is detected and the content of the pseudocubic phase gradually increases 

with increasing LMT content. For x=0.01 and 0.02, the (002)T/(200)T and (200)pc peaks can 

be simultaneously detected, which indicates the formation of an MPB region with 

coexistence of the tetragonal and pseudocubic phases. The single (111) and (200) peaks in the 
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ceramic with x=0.03 are attributed to pseudocubic symmetry. This finding is also supported 

by the Raman spectrum discussed below. Therefore, the addition of LMT content tends to 

decrease the lattice distortion of the tetragonal phase matrix and finally the pseudocubic 

phase dominates. This result is considered to be related with the decoupling between the 

A-site of Bi
3+

/La
3+

 and the B-site of Ti
4+

/Mg
2+

 ions. The electro-negativity of La
3+

 (1.1) and 

Mg
2+

 (1.2) is much weaker than Bi
3+

 (1.9) and Ti
4+

 (1.5), the addition of the LMT component 

will weaken the coupling of the A- and B-site ions, while the angle of the BO6 tilt decreases. 

Moreover, the absence of a shift in the (111) peaks indicates that the inter-planar spacing d of 

the BKT-xLMT ceramics remain nearly unchanged for all studied compositions. This 

behavior is probably due to the combined effects of the relatively smaller ionic radius of La
3+

 

than that of Bi
3+

 and K
+
 in the A-sites (CN=12, R(Bi1/2K1/2)

2+
=1.525 Å>RLa

3+
=1.22 Å), and the 

larger ionic radius of Mg
2+

(CN=6, RMg
2+

=0.72 Å) than that of Ti
4+

 in the B-sites (CN=6, 

RTi
4+

=0.605 Å).
27

 

Raman spectroscopy is known as an effective technique to probe the short-range order 

and phase transitions in perovskites. It can be seen that the Raman bands of the BKT-xLMT 

ceramics are relatively broad and diffuse. This behavior is mainly due to the random 

occupancy of ions in both the A-sites (Bi
3+

, K
+
 and La

3+
) and B-sites (Mg

2+
 and Ti

4+
).

28,29
 To 

better identify the band position and the full width at half maximum (FWHM), the diffusive 

peaks are deconvoluted by seven Lorentzian peaks (labelled A~F) in the range of 150~700 

cm
-1

, as shown in Fig. 2(a). Unlike the typical Bi0.5Na0.5TiO3-based ferroelectric ceramics, the 

E(1TO) mode at approximately 115 cm
-1

 and the A1 mode at approximately 141cm
-1

 are 

clearly observed in the BKT-xLMT ceramics, these modes can be assigned to Bi-O and K-O 

bonding, respectively.
30

 The intensity of both modes are enhanced for x=0.02 and suddenly 

degenerates for x=0.03, which suggests a variation in the local structure for the A-site cations 

in the BKT-xLMT ceramics. The 200-400 cm
-1

 region characterized by the A, B and C bands, 

is closely related to the B-O vibrations in the perovskites. The D, E and F bands in the range 

of 400~700 cm
-1

 correspond to the BO6 octahedral vibrations.
31,32

 Variations in the band 

position and the FWHMs for B-O bond and BO6 octahedral vibrations can provide useful 

information regarding the structural changes and their evolutions as a function of LMT 

content are plotted in Figs. 2(b-d). It can be seen that the C and F bands exhibit a redshift 
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with increasing LMT content. The redshift of the B-O bonds can be ascribed to the enhanced 

structural disorder and the reduced polarity of the unit cell.
32,33

 In addition, the sudden 

increase in the FWHM for the B and F bands is believed to be an indication of the phase 

transition. On the basis of the Raman spectra of x=0.03, the cubic phase should be ruled out 

because first-order Raman modes are not allowed in the Pm-3m space group.
34

 Therefore, with 

increasing LMT content, the structural change occurs in the compositions of x=0.01~0.02, 

and the x=0.03 ceramics exhibits a pseudocubic phase.  

Figure 3(a-d) shows the cross-section morphology of the BKT-xLMT samples. All 

ceramics are well sintered at the proper temperature. The microstructure exhibits a 

homogeneous state for all compositions and no apparent porosity is detected. The addition of 

the LMT content has a minor effect on the grain shape and size and the grain size is in the 

vicinity of 0.45±0.05 μm for all compositions. 

 

3.2 Evolution of the dielectric properties in the BKT-xLMT ceramics 

The temperature dependence of the dielectric properties for the unpoled and poled 

BKT-xLMT (x=0~0.03) ceramics was measured at 1, 10 and 100 kHz over a range of 25 

°C-500 °C, as shown in Figs. 4(a-d). The temperature of the dielectric maxima (Tm) shows a 

frequency dispersion in all samples, thus exhibiting the characteristics of relaxor 

ferroelectrics.
35

 For the virgin BKT ceramic, the temperature corresponding to the dielectric 

maxima Tm (1 kHz) is approximately 362 °C, and gradually decreases to 336 °C, 311 °C and 

299 °C for x=0.01, 0.02 and 0.03 (virgin state), respectively. Another low temperature 

dielectric anomaly Td (~274 °C) is observed for the unpoled BKT, corresponding to the 

spontaneous phase transition from the tetragonal to pseudocubic phase. Once poled (shown 

by red lines), interestingly, the Td is enhanced and reaches 279 °C, both are also indicated by 

a hump in the tanδ curves, as shown by arrows in Fig. 4(a). More obvious changes can be 

detected between the poled and unpoled states for x=0.01 ceramics. Compared to the BKT 

ceramic, the dielectric anomaly Td of x=0.01 sample is approximately 187 °C and it can be 

only observed for the poled states. The application of electric field leads to an increment in 

the tetragonal phase proportion and the appearance of long-range polar order, which results in 
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an enhancement (x=0) or the appearance (x=0.01) of Td. However, Td is not detected above 

the room temperature for the poled x=0.02 and 0.03 ceramics. The dielectric permittivity at 

Tm is suppressed for the poled x=0.02 samples, as clearly shown in the inset of Fig. 4(c).As is 

known, the dielectric permittivity is affected by the domain wall mobility and density, and the 

variation in the dielectric permittivity for the unpoled and poled ceramics may signify the 

existence of polar nanoregions (PNRs).
36

 Moreover, the size and dynamics of the PNRs are 

considered as an crucial factor in determining the performance for relaxor ferroelectric 

ceramics.
37-39

 The degeneration of the dielectric permittivity for the poled x=0.02 sample is 

due to the coalescence of the PNRs. For the x=0.03 sample, as shown in the inset of Fig. 4(d), 

no obvious changes are detected between the unpoled and poled states, which can be ascribed 

to the characteristics of the ergodic relaxor phase. Moreover, with increasing content of LMT, 

the relaxor properties of the BKT-xLMT ceramics are enhanced, as described in 

Supplementary data (Fig.S1). 

 

3.3 In situ high temperature characterization of the XRD patterns and Raman spectra 

To disclose the phase transition within the MPB region, in situ high-temperature X-ray 

diffraction from 25 °C to 400 °C is performed for the x=0.01 and 0.02 ceramics, and the 

XRD patterns are listed in Fig.S2. The structural parameters, calculated by the fitted 

diffraction peak profile, are shown in Figs. 5(a1-a2). The lattice constant cT and tetragonality 

c/a gradually decreases with increasing temperature as a whole. The lattice constant aT 

gradually increases with increasing temperature in the MPB. Once the temperature reaches 

their respective Td values (180 °C for x=0.01 and 120 °C for x=0.02), the coexistence of the 

two phases finally transform into the pseudocubic phase, and the lattice parameter aPC 

continuously increases with further increasing temperature. Notably, the Td for the x=0.02 

ceramic is not detected from the dielectric curves.  

Additionally, the local structural evolution of the x=0.01 and 0.02 samples are analyzed 

by in situ temperature dependent Raman spectra, and special attention is paid to the boundary 

across from the coexistence of the tetragonal and pseudocubic to the single pseudocubic 

phase, as shown in Fig. S3. The evolution in the wavenumber, FWHM and intensity of the 
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typical B, C and F bands for the x=0.01 and 0.02 samples is plotted in Fig. 6 (a1-c3). 

Significant discontinuities in the wavenumber, FWHM and intensity for the B, C and F bands 

can be detected for x=0.01 and 0.02 when the temperature approaches their respective Td, 

which is an indication of phase change. The B and C bands gradually soften until Td is 

approached, which is closely correlated with the weakening of the Ti-O bond. The continual 

weakening of the Ti-O bond will induce structural transitions in the local scale, as indicated 

by the hatching area. It is also evidenced by the FWHM of the Ti-O bond and TiO6 octahedra 

that they both sharply decrease in the vicinity of Td, 180 °C for x=0.01 and 120 °C for 

x=0.02, which is also in accordance with the in situ XRD analysis. This result can be ascribed 

to a decrease in the coherence length of the Ti-O bond, as witnessed in Bi0.5Na0.5TiO3-based 

systems.
40

 The intensity of the bands C and F gradually decreases with an increase in the 

temperature, and the discontinuity occurs around their respective Td, which is related to the 

gradual evolution in the tetragonal phase to the pseudocubic phase. Moreover, the two 

studied samples possess the first-order Raman spectra even far above Td, thus explaining that 

the phase structure is still pseudocubic. The underlying mechanism may be related to the 

doubling of the unit cell and the polar nanoregions in the BKT-xLMT ceramics.
41

  

 

3.4 Ferroelectric and piezoelectric properties of the BKT-xLMT ceramics 

Figure 7(a~d) shows the room-temperature P-E hysteresis loops and corresponding J-E 

curves for all compositions at a frequency of 10 Hz. It can be seen that, unsaturated P-E loops 

with flat J-E curves are obtained for the pure BKT ceramic, indicating that the tetragonal 

domains are not fully switched under E=6 kV/mm. However, the P-E loops gradually evolve 

to a saturated shape with a relatively large maximum polarizations Pmax and the remnant 

polarizations Pr with a single sharp current density peak J1 when x increases to 0.01. For 

x=0.02 composition, the ferroelectricity is reduced with a weak J1 hump. A further increase 

in the LMT content to x=0.03 leads to slim P-E loops with a current density platform. 

Furthermore, the current density value for x=0.01 and 0.02 is larger than that of x=0 and 0.03, 

which confirms the higher domain switching degree within the MPB zone.
42

 As shown in Fig. 

7(e), in the pure BKT ceramics, the Pmax and Pr values are ~6 μC/cm
2
 and 3 μC/cm

2
, 
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respectively. For x=0.01, the highest values of Pmax~17μC/cm
2
 and Pr~9μC/cm

2
 are obtained. 

The further addition of LMT leads to a decrease in the Pmax and Pr. Moreover, the d33 value 

increases from 70 pC/N in pure BKT ceramic to the maximum value of 103 pC/N for x=0.01, 

and then it gradually decreases with a further increase in the LMT content, namely, 82 pC/N 

and 42pC/N for x=0.02 and 0.03, respectively. The coexistence of tetragonal and pseudocubic 

phases provides easier domain switching, thus leading to better piezoelectric coefficients and 

ferroelectric properties. The d33 value of the 0.99BKT-0.01LMT composition is higher than in 

the BKT-BiScO3
43

 and BKT-BiFeO3
44

 ceramics and comparable to the BKT-Bi(Ni0.5Ti0.5)O3
7
 

and BKT-Bi(Mg2/3Nb1/3)O3 systems.
45 

 

3.5 Directly measured electrocaloric effect of the BKT-xLMT ceramics 

Figure 8(a) shows the temperature change in the 0.99BKT-0.01LMT ceramic in 

response to the removal of the electric field. The black circles represents the measured data 

and the red line denotes the fit according to Eq.(1). Then, the ΔT can be precisely 

determined.
46

  

                                                        (1) 

where Tbath is the surrounding temperature and t is the heat transfer time.  

It can be seen that the temperature sharply decreases when electric field is released. 

This result effectively confirms that the BKT-xLMT ceramics exhibit a positive ECE. Fig. 

8(b) shows the variation in ΔT as a function of the electric field at RT. It can be seen that ΔT 

almost linearly increases with an increasing electric field from 1 to 4 kV/mm, which is 

ascribed to the increasing entropy change at higher electric field strengths. The ΔT value is 

also enhanced in the vicinity of the MPB region, ΔT increases from 0.88 K for x=0 to 1.19 K 

for x=0.01 and then gradually decreases when deviated from the MPB. As shown in Fig. 8(c), 

ΔT for x=0.01 is 1.19 K at room temperature. When the temperature increases to 100 °C, ΔT 

is up to 1.26 K under E=4 kV/mm. In view of practical applications, the temperature stability 

is also very important. The instability η, defined as: 

        

     
                                            (2)  
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is adopted to evaluate the temperature stability of the ECE.
47

 As plotted in Fig. 8(d). the 

instability is lower than 10% over the range 25 °C~120 °C for x=0.01. The parameter ξ is 

also utilized to evaluate the performance of different materials under the unit of electric field. 

The ξ of the ceramic with x=0.01 approaches 0.3 K·mm/kV, which is competitive with the 

ECE efficiency of the other relaxor ferroelectric ceramics, as shown in Table 1.
48-53

 With 

respect to the ECE, aside from the polarization contribution, the diffuse phase transition and 

the existence of PNRs also play an important role in the temperature stability of the ECE. The 

alignment of the PNRs will be easily induced by the external electric field, which is 

beneficial for the enhancement of the ECE. Moreover, the diffuse phase transition with high 

Td will lead to the stability of the ECE in the studied temperature range. 

 

4. CONCLUSIONS  

The crystal structure, dielectric, ferroelectric, and piezoelectric properties, and electrocaloric 

effect of the BKT-xLMT binary solid solutions were discussed in detail. The introduction of 

LMT decreased the tetragonality of the BKT ceramic and an MPB region was formed at 

x=0.01~0.02. The 0.99BKT-0.01LMT ceramic showed an enhanced piezoelectric coefficient 

(d33~103 pC/N) and ECE (ΔT=1.19 K) at room temperature. The ΔT value of the x=0.01 

ceramic exhibited a good temperature stability and the temperature instability η is lower than 

10 % over 25°C~120 °C, which is clarified by in situ high-temperature XRD patterns, Raman 

spectra. The good thermal stability is attributed to the diffuse phase transition with high Td 

and the existence of polar nanoregions. The BKT-LMT solid solution system demonstrates 

the potential of lead-free ceramics in piezoelectric-based devices and solid-state cooling 

applications. 
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Figures Captions 

 

Figure 1. Room-temperature XRD patterns for (1-x)BKT-xLMT ceramics (x=0~0.03); 

(b1)~(b4) the locally magnified (111) peaks and (c1)~(c4) the (200) diffraction peaks fitted 

using a Gaussian peak shape function. 

 

Figure 2. (a) The Raman spectra for (1-x)BKT-xLMT (x=0~0.03) ceramics and (b)-(d) 

wavenumber and FWHM for B, C and F band as a function of LMT content. 

 

Figure 3. Cross-section morphology of the (a) x=0; (b)x=0.01; (c) x=0.02 and (d) c=0.03 

ceramics. 

 

Figure 4. (a)-(d) Temperature dependence of dielectric constant and loss tangent for poled 

(red line) and unpoled (black line) (1-x)BKT-xLMT (x=0~0.03) ceramics measured at 1, 10 

and 100 kHz. 

 

Figure 5. The variation of lattice parameter and tetragonality as a function of temperature. 

 

Figure 6. The variation of wavenumber (a1, b1 and c1), FWHM (a2, b2 and c2) and intensity 

(a3, b3 and c3) as a function of temperature. 

 

Figure 7. (a-d) P-E loops with J-E curves of the (1-x)BKT-xLMT ceramics at room 

temperature and (e) variation of Pmax, Pr and d33 as a function of LMT content. 
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Figure 8. (a) A temperature signal versus time measured directly for the 0.99BKT-0.01LMT 

ceramics at room temperature as a representative (solid dots). The red line is the fitting 

function of the exponential decay due to the heat losses to the surroundings. The blue line 

represents the applied field. (b) The room-temperature adiabatic temperature change ΔT as a 

function of the electric field; the inset shows the variation of ΔT as a function of LMT 

content; (c) temperature dependence of ΔT and (d) temperature instability η for BKT-xLMT 

(x=0~0.03) ceramics. 

 

 

 

 

 

 

Table 1 Comparison of ECE properties of the 0.99BKT-0.01LMT ceramic in this work 

with those reported in the literature. 

 

Material T 

(°C) 

ΔT 

(K) 

ΔE 

(kV/mm) 

ξ 

(K·mm/kV) 

Reference 

BCZT 85 0.6 4 0.15 48 

Ce-SBN 30 0.6 2.8 0.21 49  

BNKT 160 0.73 2.2 0.33 50  

Reactive PMN-PT 70 0.558 2.4 0.23 51  

KTN RT 0.42 2 0.21 52  

KNN 80 0.41 2 0.2 53  

BKT-LMT RT 1.17 4 0.29 This work  
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