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Abstract

Many machine learning methods, such as the k-nearest neighbours algorithm, heav-

ily depend on the distance measure between data points. As each task has its own

notion of distance, distance metric learning has been proposed. It learns a distance

metric to assign a small distance to semantically similar instances and a large dis-

tance to dissimilar instances by formulating an optimisation problem.

While many loss functions and regularisation terms have been proposed to im-

prove the discrimination and generalisation ability of the learned metric, the metric

may be sensitive to a small perturbation in the input space. Moreover, these methods

implicitly assume that features are numerical variables and labels are deterministic.

However, categorical variables and probabilistic labels are common in real-world

applications.

This thesis develops three metric learning methods to enhance robustness

against input perturbation and applicability for categorical variables and probabilis-

tic labels.

In Chapter 3, I identify that many existing methods maximise a margin in the

feature space and such margin is insufficient to withstand perturbation in the in-

put space. To address this issue, a new loss function is designed to penalise the

input-space margin for being small and hence improve the robustness of the learned

metric.

In Chapter 4, I propose a metric learning method for categorical data. Classi-

fying categorical data is difficult due to high feature ambiguity, and to this end, the

technique of adversarial training is employed. Moreover, the generalisation bound

of the proposed method is established, which informs the choice of the regularisa-
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tion term.

In Chapter 5, I adapt a classical probabilistic approach for metric learning to

utilise information on probabilistic labels. The loss function is modified for training

stability, and new evaluation criteria are suggested to assess the effectiveness of

different methods.

At the end of this thesis, two publications on hyperspectral target detection are

appended as additional work during my PhD.



Impact Statement

Classification is one of the most important tasks in the statistics and machine learn-

ing communities. The developed methods have been used in numerous applications,

such as financial credit approval, face recognition, medical diagnosis, and malware

filtering. This thesis focuses on one of the most classical classifiers, namely the

nearest neighbour algorithm. As the method is highly interpretable, improvements

on it can contribute to a more explainable and trusted machine learning model. More

specifically, the impact of this thesis are threefolds.

1. The algorithms presented in Chapters 4 and 5 can improve the accuracy of the

nearest neighbour algorithm for two practical problem settings. The first set-

ting considers datasets consisting of categorical features. This type of data is

prevalent in social and health sciences. The second setting considers datasets

whose class labels are provided in the form of probability. This is common

in medical diagnosis and appears more often nowadays with the advent of

crowdsourcing platforms, which enable large datasets to be labelled by mul-

tiple annotators.

2. The algorithm presented in Chapter 3 can improve the test-time robustness of

the nearest neighbour algorithm. Such robustness is an important measure to

assess the reliability of classification methods.

3. Insight and theory presented in the thesis may be beneficial to researchers

working on metric learning and adversarial robustness. Two geometric inter-

pretations are provided to help understand the concept of adversarial robust-

ness with respect to the nearest neighbour classifier (Chapter 3) and the effect
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of adversarial training (Chapter 4). A finite-sample guarantee on the adver-

sarially trained distance metric is shown, which specifies the requirement for

generalisation (Chapter 4). New evaluation criteria are suggested to measure

the effectiveness of metric learning algorithms in the setting of probabilistic

labels (Chapter 5).
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Chapter 1

Introduction

1.1 Background and scope of the thesis

The distance measure between data points is important for many classification,

clustering and ranking methods. For example, the k-nearest neighbours (kNN)

algorithm assigns the test instance to the most common class among the k near-

est training instances. While metrics such as the Euclidean distance can be used,

they are not specific to the classification task and thus may not produce the opti-

mal performance. As it is important yet difficult to handcraft a distance metric for

each problem, metric learning has attracted considerable research attention since its

proposal [1]. Metric learning algorithms take training data as input and output a

distance metric such that the resulting distance could accord well with the semantic

notion of similarity.

Existing metric learning methods can be mainly divided into two categories

based on the learning paradigm, namely supervised metric learning and unsuper-

vised metric learning; the latter is more well known as manifold learning [2; 3].

Within the supervised learning paradigm, methods can be further divided depend-

ing on the type of learned metrics, such as the Mahalanobis distance, χ2 histogram

distance and string edit distance.

In this thesis, we study metric learning in a supervised setting and focus on

learning the Mahalanobis distance. Compared with the conventional classification

setting where the label information is available to each instance, the supervision



1.2. Research objectives 15

in metric learning is often provided in the form of pairwise or triplet constraints.

The pairwise constraints specify which two training instances should be similar or

dissimilar, and the triplet constraints specify the relative relationship between two

pairs of instances such as ‘A is more similar to B than is to C’.

The Mahalanobis distance has been most widely studied in the metric learning

community. For any two instances xi,xj , the (generalised) Mahalanobis distance

is defined as dM (xi,xj) =
√

(xi − xj)TM(xi − xj); the parameter matrix M

is constrained to be positive semi-definite. The metric can be easily optimised by

formulating a constrained convex programming problem. The loss function em-

beds the supervision information, which assigns a large penalty if the parameter

matrix violates pairwise or triplet constraints. For example, imposing a hinge loss

on triplet constraints encourage the metric to separate two instance pairs by a mar-

gin. The regularisation term, such as the Frobenius norm of the matrix, constrains

the complexity of the metric and promotes its generalisation to unseen data.

1.2 Research objectives

Many metric learning methods have been proposed to improve the discriminability,

generalisability and robustness of the metric, as well as the efficiency and scalabil-

ity of the optimisation procedure. Nevertheless, most of them lack robustness to

perturbation in the instance space. A tiny perturbation of the test instance may be

magnified by the learned metric and cause a large change in the distance. Conse-

quently, the nearest neighbour may change from the correct class to the incorrect

one, and even worse, result in misclassification if 1NN classifier is used. Motivated

by this issue, the first research objective of this thesis is to enhance the robustness

of distance metric against instance perturbation.

Most metric learning methods implicitly assume that input data are numerical

variables, but they are evaluated on datasets with categorical variables. Encoding

categorical variables as integers and then treating them as real-valued numerical

variables is problematic since, for nominal variables, the difference between two

integers is meaningless for two nominal levels and, for ordinal variables, the dif-
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ference between two integers does not accurately reflect the distance between the

two ordinal levels. Considering categorical data are prevalent in health and social

sciences, developing a suitable method for this data type is the second objective of

this thesis.

The pairwise and triplet constraints used for supervision are often constructed

based on class labels; for example, instances of the same class are considered to

be similar and the ones of different classes are dissimilar. This class information

is deterministic, meaning that the class membership of instances has no ambiguity.

In some real-world applications, such as medical diagnosis, ambiguity exists natu-

rally and hence labels are associated with probabilities. Adapting metric learning

methods for probabilistic labels is the third research objective.

1.3 Contributions and outline

Three contributions are presented in this thesis for each of the above objectives and

summarised as follows.

Contribution 1: Metric learning towards certified robustness

Chapter 3 builds on the insight that the margin in the transformed feature space,

which is widely used in existing methods for separating similar and dissimilar pairs

of instances, is insufficient to withstand a small perturbation of test instance in the

original instance space. To enhance robustness against instance perturbation, we

propose a simple yet effective solution through enlarging the adversarial margin,

which is defined as the distance between a training instance and its nearest adver-

sarial example [4] in the instance space. A closed-form solution to the adversarial

margin is first derived by drawing on an intuitive geometric insight into the nearest

neighbour classifier. A new perturbation loss is then defined to penalise the margin

for being small. The proposed loss is flexible and can be optimised jointly with

any triplet-based metric learning methods. It is also beneficial to the generalisation

ability of the learned metric, which is shown by using the technique of algorith-

mic robustness. Extensive experiments demonstrate the superiority of the proposed

method over the state-of-the-arts in terms of both discrimination accuracy and ro-
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bustness to noise.

Contribution 2: Metric learning for categorical and ambiguous features

Chapter 4 develops a new method that addresses two challenges of learning the dis-

tance metric from categorical features, namely high feature ambiguity and small

sample size. More specifically, ambiguity arises as the boundaries between or-

dinal or nominal levels are not always sharply defined. To mitigate the impact

of feature ambiguity, we propose to consider the worst-case perturbation of each

instance within a deliberately designed constraint set and learn the Mahalanobis

distance through adversarial training [5]. Moreover, we provide a geometric inter-

pretation of the proposed method, showing that the method dynamically divides the

instance space into three regions and exploits the information on the “adversarially

vulnerable” region. This information, which has not been considered in previous

triplet-based methods, is useful for small-sized data. Furthermore, we establish the

generalisation bound for a general form of adversarial training. It suggests that the

sample complexity rate remains at the same order only if the Mahalanobis distance

is regularised with the elementwise 1-norm. Experiments on ordinal and mixed

ordinal-and-nominal datasets demonstrate the effectiveness of the proposed method

when encountering the problems of high feature ambiguity and small sample size.

Contribution 3: Metric learning for probabilistic labels

Chapter 5 proposes to adopt a probabilistic framework for learning the metric from

probabilistic labels. Such framework can sidestep the challenge of constructing

pairwise or triplet constraints from probabilistic labels by directly using these la-

bels as supervision. More specifically, we revise the existing estimation of class

membership probabilities by taking into account probabilistic labels. Moreover, a

new loss function based on the Jensen-Shannon divergence is proposed to encourage

learning a metric such that the estimated probability, which is a function of the met-

ric, is similar to the observed probability. Furthermore, since predicted probabilities

indicate the confidence of outcome and may be useful to downstream applications,

we advocate new evaluation measures to assess the classification performance of

metric learning algorithms and suggest three statistical distances. Experiments on
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datasets with synthetic and real probabilistic labels demonstrate the benefit of util-

ising label probabilities to classification.

The works presented in Chapter 3 and 4 lead to the following submission and

publication:

• Xiaochen Yang∗, Yiwen Guo∗, Mingzhi Dong, and Jing-Hao Xue. Metric

learning through maximizing the adversarial margin. Submitted to European

Conference on Machine Learning and Principles and Practice of Knowledge

Discovery in Databases (ECML-PKDD) journal track, 2021.

• Xiaochen Yang∗, Mingzhi Dong∗, Yiwen Guo, and Jing-Hao Xue. Met-

ric learning for categorical and ambiguous features: An adversarial method.

European Conference on Machine Learning and Principles and Practice of

Knowledge Discovery in Databases (ECML-PKDD), 2020.

The rest of the thesis is organised as follows. Chapter 2 provides a formal

introduction to metric learning and a brief background theory on the generalisation

bound and adversarial robustness. Chapters 3, 4 and 5 present Contributions 1, 2

and 3, respectively. Each chapter is self-contained with necessary preliminaries.

Chapter 6 summarises the thesis and outlines future works. Appendices A and B

include the following two additional works completed during the PhD. The papers

present new approaches to target detection in hyperspectral images, addressing the

problem of unequal noise variances over spectral bands and the issue of scarce target

spectra.

• Xiaochen Yang, Lefei Zhang, Lianru Gao, and Jing-Hao Xue. MSDH:

Matched subspace detector with heterogeneous noise. Pattern Recognition

Letters, vol. 125, pp. 701-707, 2019.

• Xiaochen Yang, Mingzhi Dong, Ziyu Wang, Lianru Gao, Lefei Zhang, and

Jing-Hao Xue. Data-augmented matched subspace detector for hyperspectral

subpixel target detection. Pattern Recognition, vol. 106, Article 107464,

2020.

∗ Equal contribution.



Chapter 2

Background

The first part of this chapter introduces metric learning, covering the definition of

a distance metric, the optimisation formulation of metric learning, and seminal al-

gorithms from which this thesis is developed. The second part provides preliminar-

ies on generalisation and robustness, covering some key concepts in the statistical

learning theory and two theorems on the generalisation bound which will be used

in Chapters 3 and 4.

2.1 Distance metric learning

2.1.1 Definition of a metric

A metric, which is also termed distance function or simply distance, is defined as

follows.

Definition 1. [6] A metric over a vector space X is a function d : X ×X → [0,∞)

such that the following properties hold for all xi,xj,xk ∈ X :

• d(xi,xj) + d(xj,xk) ≥ d(xi,xk) (triangle inequality);

• d(xi,xj) ≥ 0 (non-negativity);

• d(xi,xj) = d(xj,xi) (symmetry);

• d(xi,xj) = 0 if and only if xi = xj (identity of indiscernibles).

A function that only satisfies the first three properties is called a pseudometric.

In the classification literature, pseudometric is often referred to as metric; we follow
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this simplification in the thesis.

The Mahalanobis distance [7] is the foundation of the majority of metric learn-

ing methods, owing to its nice interpretation of learning a linear transformation.

Definition 2. [6] For any xi,xj ∈ Rp, the generalised Mahalanobis distance is

defined as

dM (xi,xj) =
√

(xi − xj)TM(xi − xj), (2.1)

and parameterised by M ∈ Sp+, where Sp+ denotes the cone of symmetric positive

semi-definite p× p real-valued matrices.

In the original Mahalanobis distance, M is defined as the inverse covariance

matrix. With a slight abuse of terminology, in the metric learning literature, any

metric in the form of Eq. 2.1 is termed the Mahalanobis distance. Since M is

positive semi-definite, it can be decomposed as M = LTL, and the Mahalanobis

distance can be rewritten as:

dM (xi,xj) =
√

(xi − xj)TM (xi − xj)

=
√

(xi − xj)TLTL(xi − xj)

=
√

(Lxi −Lxj)T (Lxi −Lxj).

Therefore, computing the Mahalanobis distance in the original space is same as

computing the Euclidean distance in the transformed space after linearly mapping

the data by the transformation matrix L. If M is low rank, the data is mapped

into a space of lower dimension. Based on this equivalence, metric learning can be

approached by either learning the distance matrix M or learning the linear trans-

formation matrix L.

2.1.2 Formulation of supervised Mahalanobis distance learning

Research on selecting optimal distance metrics for the nearest neighbour classifier

dates back to the 1980s [8]. The recent resurgence of research interest in this field

attributes to [1], which first proposes to formulate the metric learning task as a con-

vex optimisation problem. Most later works on supervised Mahalanobis distance
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learning fall into this optimisation framework; they vary in loss functions and regu-

larisation terms to better align with the side information on the ideal distance.

Two common forms of side information are pairwise constraints and triplet

constraints [6]:

• pairwise constraints1:

S = {(xi,xj) : xi and xj should be similar},

D = {(xi,xj) : xi and xj should be dissimilar}.

• triplet constraints:

R = {(xi,xj,xl) : xi should be more similar to xj than to xl}.

The optimisation formulation of supervised Mahalanobis distance learning

consists of a loss function that encodes the supervision and a regulariser on the

metric:

min
M∈dom(M)

`(M ;S,D,R) + λR(M). (2.2)

dom(M ) specifies the domain of the metric, which is generally defined as the space

of positive semi-definite matrices. The loss function `(M ;S,D,R) will assign a

penalty if the learned metric violates the given pairwise or triplet constraints. The

regularisation term R(M ) will constrain the complexity of the learned metric so

that it can generalise well to the unseen data. λ is the trade-off parameter between

the loss and the regulariser.

2.1.3 Representative metric learning algorithms

A large number of metric learning algorithms have been proposed since the pro-

posal of [1] to improve the discriminability, generalisability and robustness of the

metric, efficiency for large-scale and high-dimensional data, and applicability to

specific classification tasks, such as multi-label problems and multi-task problems.

1The notation D is used only in this section for dissimilar constraints to accord with the metric
learning literature; it will be used to denote the distribution in the rest of the thesis.
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A comprehensive survey of methods is provided in [9]. Here, we present three

seminal algorithms, which are representatives of learning the metric from pairwise

constraints, learning from triplet constraints, and learning in a probabilistic frame-

work; the latter two algorithms are the foundations of Chapters 3, 4 and Chapter 5,

respectively.

In the following discussion, we denote a set of training examples by

{(xi, yi)}ni=1 with instances xi ∈ Rp and labels yi ∈ {1, 2, . . . , C}.

Mahalanobis metric for clustering (MMC) [1] MMC aims to minimise the dis-

tances between pairs of similar instances and maximises the distance between pairs

of dissimilar instances:

min
M

∑
(xi,xj)∈S

d2
M (xi,xj)

s.t.
∑

(xi,xj)∈D
dM (xi,xj) ≥ 1,

M ∈ Sp+.

(2.3)

By using the squared Mahalanobis distance, the objective function is linear in M .

Moreover, the two constraints are both convex. Therefore, the optimisation problem

is convex. The similar set is generated by randomly sampling pairs of instances with

the same class label, i.e. S = {(xi,xj) : yi = yj}; the dissimilar set is generated

from instances of different labels, i.e. D = {(xi,xj) : yi 6= yj}.

Large margin nearest neighbor (LMNN) [10] MMC and other early approaches

minimises the distance between all similar pairs, whereas the subsequent k-nearest

neighbour (kNN) classifier uses only the nearest k instances for prediction. This lo-

cal property of kNN is taken account into LMNN, which has the following objective

function:

min
M∈SP+

(1−µ)
∑

(xi,xj)∈S

d2
M (xi,xj)+µ

∑
(xi,xj ,xl)∈R

[
1 + d2

M (xi,xj)− d2
M (xi,xl)

]
+
,

(2.4)
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where [a]+ = max(a, 0) for a ∈ R. The pairwise and triplet constraints are defined

as follows:

S =
{

(xi,xj) : j ∈ arg mink
a=1,··· ,n

{dE(xi,xa) : yi = ya}
}
,

R =
{

(xi,xj,xl) : (xi,xj) ∈ S, yi 6= yl
}
,

where arg mink denotes the k minimal elements of a set and dE denotes the Eu-

clidean distance.

The first part of Eq. 2.4 is designed to pull together k nearest neighbours with

the same label. The second part is designed to push all instances with different la-

bels outside the local neighbourhood plus a unit margin; the margin acts a safeguard

against noise. µ ∈ [0, 1] is the trade-off parameter, balancing the effects of shrink-

ing and expanding distances. xj in the set S is termed the target neighbour of xi

and xl is termed the impostor. An illustration of LMNN is given in Figure 2.1.

Figure 2.1: Illustration of LMNN. The objective is to bring the target neighbour xj closer
to the instance xi and push the impostor xl outside the local neighbourhood of
xi (indicated by the circle) plus a margin. The figure is reproduced from [10].

Neighbourhood components analysis (NCA) [11] NCA is a probabilistic ap-

proach to metric learning with a direct objective of maximising the test accuracy

of NN classifier. Since the true data distribution is unknown, the method instead

maximises a smooth approximation of the leave-one-out classification accuracy on

the training data:

max
L

∑
i

∑
j

pij1[yi = yj], (2.5)

where

pij =
exp(−‖Lxi −Lxj‖2

2)∑
k 6=i exp(−‖Lxi −Lxk‖2

2)
, pii = 0, (2.6)
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and 1[·] denotes the indicator function. pij defines the probability of selecting in-

stance xj as the nearest neighbour of xi by applying a softmax function to the

Euclidean distances in the linearly transformed space. In addition to the above

objective which maximises the expected number of correct classification, [11] pro-

poses an alternative objective which maximises the log-likelihood that all instances

select same-class points as their neighbours:

max
L

∑
i

log
(∑

j

pij1[yi = yj]
)
. (2.7)

Eqs. 2.5 and 2.7 can also be interpreted as minimising the L1-norm and the

Kullback-Leibler divergence from the estimated probability distribution built on pij

to the observed distribution represented as a one-hot vector, respectively.

2.2 Generalisation and robustness

2.2.1 The statistical learning framework

In this section, we review some basic concepts in the statistical learning framework;

the terminology follows [12].

In a classification setting, a learning algorithm, or simply a learner,

takes as input a training set and outputs a classifier. The training set S =

{(x1, y1), . . . , (xn, yn)} consists of n training examples that are independently

and identically distributed (i.i.d.) according to an unknown probability distribution

D over X × Y . X is set of of all possible instances and is referred as the instance

space; each instance will be represented by a vector of features. Y is the set of

all possible labels. The classifier, or more often known as the hypothesis in the

literature, is a function from X to Y , i.e. h : X → Y . The set of all possible

hypotheses is termed the hypothesis class and denoted byH.

The goal of the learner is to find a classifier that minimises the expected risk.

Let z = (x, y) ∈ Z denote an instance-label pair and ` denote a loss function. The
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expected risk (also known as the generalisation error or the true error) is defined as:

R(h) = Ez∼D[`(h, z)]. (2.8)

Since the expected risk cannot be evaluated due to the unknown distribution D, the

learner will instead minimise the empirical risk (also known as the training error):

Rn(h) =
1

n

n∑
i=1

[`(h, zi)]. (2.9)

This learning paradigm is called the empirical risk minimisation (ERM).

Minimising the empirical risk does not necessarily lead to a low expected risk.

The difference between these two quantities, termed the generalisation gap, can

be bounded based on a number of techniques, some of which are presented in the

following section.

2.2.2 Generalisation bound

The generalisation bound provides a finite sample guarantee on the deviation of

the expected risk from the empirical risk. It can be established through tools such

as the complexity of the hypothesis class [13], stability of an algorithm [14], and

robustness of an algorithm [15]. In this section, we present two ways of bounding

the generalisation gap – one based on the Rademacher complexity, which is one of

the complexity measures, and one based on the algorithmic robustness.

2.2.2.1 Rademacher complexity-based generalisation bound [16]

The definition of Rademacher complexity is given as follows.

Definition 3. [12] Let F be a function class and F ◦ S be the set of all possible

evaluations a function f can achieve on a sample S of size n:

F ◦ S = {(f(z1), · · · , f(zn)) : f ∈ F}.
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Let the variables in σ be i.i.d. according to P (σi = 1) = P (σi = −1) = 1
2
. Then,

the empirical Rademacher complexity of F with respect to S is defined as:

R̂n(F ◦ S) =
1

n
E

σ∼{±1}n

[
sup
f∈F

n∑
i=1

σif(zi)

]
. (2.10)

The Rademacher complexity of F is the expectation of the empirical Rademacher

complexity over all samples of size n drawn according to the distribution D:

Rn(F) = E
S∼Dn

[
R̂n(F ◦ S)

]
. (2.11)

The empirical Rademacher complexity can be intuitively understood as mea-

suring how well a function class can fit random noise on average. A more complex

function class can return an evaluation on a sample S that has a large inner product

with a random sign vector on average.

The following theorem states that the generalisation gap is upper bounded by

the Rademacher complexity of the hypothesis class.

Theorem 1. Assume |`(h, z)| ≤ c for all z and h. Then, with probability at least

1− δ, for all h ∈ H,

R(h)−Rn(h) ≤ 2cRn(H) + c

√
2 ln(2/δ)

n
, (2.12)

R(h)−Rn(h) ≤ 2c R̂n(H ◦ S) + 4c

√
2 ln(4/δ)

n
. (2.13)

In particular, this holds for h = ERMH(S).

A merit of bounding the generalisation gap via the empirical Rademacher com-

plexity, i.e. Eq. 2.13, is that the bound is data-dependent; the training set S is used

both for learning the classifier and evaluating the generalisation performance. Such

dependency can lead to a much tighter bound than Eq. 2.12 in practice.

2.2.2.2 Algorithmic robustness-based generalisation bound [15]

Originating from robust optimisation [17], algorithmic robustness is a relatively

new technique to prove the generalisation bound. Robustness and a weaker notion
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of robustness termed pseudo-robustness are defined as follows.

Definition 4. An algorithmA is (K, ε(·)) robust forK ∈ N and ε(·) : Zn → R if Z
can be partitioned into K disjoint sets, denoted by {Ci}Ki=1, such that the following

holds for all zn = {z1, . . . ,zn : zi ∈ Z}:

∀z ∈ zn,∀z′ ∈ Z, ∀i = 1, · · · ,K : if z, z′ ∈ Ci, then |`(Azn , z)− `(Azn , z′)| ≤ ε(zn),

where Azn denotes the classifier learned on the set zn.

Definition 5. Let card(·) denote the cardinality of a set. An algorithm A is

(K, ε(·), n̂(·)) pseudo-robust for K ∈ N, ε(·) : Zn → R and n̂(·) : Zn →
{1, . . . , n} if Z can be partitioned into K disjoint sets, denoted by {Ci}Ki=1, such

that for all zn = {zi}ni=1, there exists a subset of samples ẑn with card(ẑn) = n̂(zn)

that the following holds:

∀z ∈ ẑn,∀z′ ∈ Z,∀i = 1, · · · ,K : if z, z′ ∈ Ci, then |`(Azn , z)− `(Azn , z′)| ≤ ε(zn).

Robustness requires a classifier, trained on every set of samples, to obtain sim-

ilar performances between a training instance and a nearby test instance, while

pseudo-robust requires the condition to hold for a subset of samples. One merit

of studying the (pseudo) robustness property is that the above definitions do not re-

strict the samples zn to be independent, and thus the analysis can be conducted in a

non-i.i.d. setting.

Several theorems have been proved in [15]; here, we only present the following

generalisation bound based on the pseudo-robustness in an i.i.d. setting.

Theorem 2. Assume |`(h, z)| ≤ c for all z and h. If a learning algorithm A is

(K, ε(·), n̂(·)) pseudo-robust and the training set zn is generated by n i.i.d. draws

from D, then with probability at least 1− δ we have

|R(Azn)−Rn(Azn)| ≤ n̂(zn)

n
ε(zn)+c

(
n− n̂(zn)

n
+

√
2K ln 2 + 2 ln(1− δ)

n

)
.
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2.2.3 Adversarial robustness

While deep neural networks have achieved the state-of-the-art performance in many

applications such as computer vision and speech recognition, they are shown to be

vulnerable to adversarial perturbations, which are well-thought imperceptible per-

turbations of the input that cause erroneous prediction. Adversarial perturbations

can only modify the legitimate test inputs; they cannot modify the training pro-

cedure. The perturbed inputs are termed adversarial examples [4]. To improve

robustness against adversarial examples, adversarial training [5] has been shown to

be one of the most effective methods. It learns a model by considering the worst-

case perturbation of each training instance.

More mathematically, an adversarial example of size r for a given Lp-norm

is said to exist if there exists δ such that ‖δ‖p ≤ r and h(x + δ) 6= h(x). If

no such δ exists, then the model is said to achieve certified robustness [18]. The

goal of adversarial training is to learn the parameters θ that minimise the expected

adversarial risk:

min
θ

E
(x,y)∼D

[
max

δ:‖δ‖p≤r
`(x+ δ, y;θ)

]
. (2.14)

Analogous to empirical risk minimisation, the empirical adversarial risk is min-

imised in practice.

We make a remark that the above definitions refer to norm-bounded adversarial

examples. Other types of perturbations, such as change in light condition [19] and

spatial transformation [20], have their corresponding definitions.



Chapter 3

Metric Learning Towards Certified

Robustness

3.1 Introduction
Distance metric learning (DML) focuses on learning similarity or dissimilarity

between data and it has been actively researched in classification and cluster-

ing [2; 3; 6], as well as domain-specific applications such as information re-

trieval [21; 22], computer vision [23; 24; 25] and bioinformatics [26]. A commonly

studied distance metric is the generalised Mahalanobis distance, which defines the

distance between any two instances xi,xj ∈ Rp as

dM (xi,xj) =
√

(xi − xj)TM(xi − xj),

where M is a positive semi-definite (PSD) matrix. Owing to its PSD property,

M can be decomposed into LTL with L ∈ Rd×p; thus the Mahalanobis distance

is equivalent to the Euclidean distance ‖Lxi − Lxj‖2
2 in the linearly transformed

feature space.

To learn a specific distance metric for each task, prior knowledge on instance

similarity and dissimilarity should be provided as side information. Metric learn-

ing methods differ by the form of side information they use and the supervision

encoded in similar and dissimilar pairs. For example, pairwise constraints enforce

the distance between instances of the same class to be small (or smaller than a
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Figure 3.1: Comparison of traditional metric learning methods and the proposed method.
While classical methods separate similar and dissimilar pairs by a margin (in-
dicated by the gap between gray dashed circles), a small perturbation from xi
to x′i in the instance space may change its nearest neighbour (NN) from xj to
xl in the learned feature space. Our method aims to expand the certified neigh-
bourhood (indicated by blue dotted circle), defined as the largest hypersphere in
which xi could be perturbed without any label change on its NN in the learned
feature space. Points on line PB are equidistant from xj and xl with respect to
the learned distance.

threshold value) and the distance between instances of different classes to be large

(or larger than a threshold value) [1; 27; 28; 29; 30]. The thresholds could be

either pre-defined or learned for similar and dissimilar pairs [31; 32]. In triplet

constraints (xi,xj,xl), distance between the different-class pair (xi,xl) should be

larger than distance between the same-class pair (xi,xj), and typically, plus a mar-

gin [10; 33; 34; 35]. More recently, quadruplet constraints are proposed, which

require the difference in the distance of two pairs of instances to exceed a mar-

gin [36], and (N + 1)-tuplet extends the triplet constraint for multi-class classifica-

tion [37; 38].

The gap between thresholds in pairwise constraints and the margin in triplet

and quadruplet constraints are both designed to learn a distance metric that could

ensure good generalisation of the subsequent k-nearest neighbour (NN) classifier.

However, such a separating margin imposed at the distance and decision level does

not necessarily produce a robust metric – indeed it may be sensitive to a small
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perturbation at the instance level. As illustrated in Figure 3.1 (upper), a tiny pertur-

bation from xi to x′i in the instance space can be magnified by the learned distance

metric, leading to a change in its NN from xj to xl in the feature space, and even

worse, an incorrect label prediction if 1NN is used.

In this chapter, we propose a simple yet effective method to enhance robustness

of the learned distance metric against instance perturbation. The principal idea is

to expand a certified neighbourhood, defined as the largest hypersphere in which a

training instance could be perturbed without changing the label of its nearest neigh-

bour (or k nearest neighbours if required) in the feature space.

Our contributions are mainly fourfold. Firstly, we derive an analytically ele-

gant solution to the radius of certified neighbourhood (Section 3.2.1). It is equiv-

alent to the distance between a training instance xi and its nearest adversarial ex-

ample [4] termed support point. Building on a geometric insight, the support point

can be easily identified as the closest point to xi in the instance space that lies on

the decision boundary in the feature space. Secondly, we define a new perturbation

loss that penalises the radius for being small, or equivalently, encourages an expan-

sion of certified neighbourhood (Section 3.2.1), which can be optimised jointly with

any existing triplet-based metric learning methods (Section 3.2.2). The optimisation

problem suggests that our method learns a discriminative metric in a weighted man-

ner and simultaneously imposes a data-dependent regularisation. Thirdly, because

learning a distance metric for high-dimensional data may suffer from overfitting,

we extend the perturbation loss so that the metric could be learned based on PCA

transformed data in a low-dimensional subspace while retaining the ability to with-

stand perturbation in the original high-dimensional instance space (Section 3.2.3).

Fourthly, we show the benefit of expanding a certified neighbourhood to the gener-

alisation ability of the learned distance metric by using the theoretical technique of

algorithmic robustness [15] (Section 3.2.4, Theorem 3). Experiments in noise-free

and noisy settings show that the proposed method outperforms existing robust met-

ric learning methods in terms of classification accuracy and validate its robustness

to noise (Section 3.3).
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Notation Let {xi, yi}ni=1 denote the set of training instance and label pairs, where

xi ∈ X ⊆ Rp and yi ∈ Y = {1, . . . , C}; X is called the instance space. Our

framework is based on triplet constraints {xi,xj,xl} and we adopt the following

strategy for generating triplets [10]:

S =
{

(xi,xj) : j ∈ arg mink
a=1,··· ,n

{dE(xi,xa) : yi = ya}
}
,

R =
{

(xi,xj,xl) : (xi,xj) ∈ S, yi 6= yl
}
,

where arg mink denotes the k minimal elements of a set and dE denotes the Eu-

clidean distance. xj is termed the target neighbour of xi and xl is termed the im-

postor. dM denotes the Mahalanobis distance; M ∈ Sp+, where Sp+ is the cone of

p× p real-valued PSD matrices. M 2 = MM . |A| denotes the cardinality of a set

A. 1[·] denotes the indicator function. [a]+ = max(a, 0) for a ∈ R.

3.2 Methodology
In this section, we will firstly derive an explicit formula for the support point and

provide the rationale behind the advocated perturbation loss. Secondly, we will

present how the introduced loss term can be used in conjunction with triplet-based

metric learning methods such as large (distance) margin nearest neighbor (LMNN).

Thirdly, we will incorporate the linear transformation induced by PCA into our

framework, making the method suitable for high-dimensional data. Fourthly, we

will show the benefit of the proposed method to the generalisation ability of the

learned distance metric. Lastly, we will discuss the relationship between the pro-

posed method and existing (robust) metric learning methods. Figure 3.2 illustrates

the main concepts discussed in this chapter and Table 3.1 provides a detailed termi-

nology list.

3.2.1 Support point and perturbation loss

As mentioned in the introduction, a learned distance metric may be sensitive to

perturbation in the sense that a small change of the instance could alter its nearest

neighbour in the learned feature space, from an instance of the same class to one
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Figure 3.2: Explanation of main concepts: given a triplet constraint (xi,xj ,xl), the deci-
sion boundary for xi is the perpendicular bisector of Lxj and Lxl, i.e. line
PB. Points on the right-hand side of PB are adversarial examples. The sup-
port point is defined as the nearest adversarial example, i.e. the closest point
to xi in the instance space that its L-transformed point lies on PB. The Eu-
clidean distance between xi and its support point is called adversarial margin,
which is equivalent to the radius of certified neighbourhood; it will be enlarged
to τ through penalising the proposed perturbation loss.

Table 3.1: Terminology list.

adversarial example a perturbed instance; the perturbation changes the label
of the instance’s nearest neighbour (NN) in the feature
space from being the same class to being a different class.
In other words, the perturbation forces the NN classifier
to produce an incorrect prediction [4].

support point (xi,min) the adversarial example that is closest to the training in-
stance in the original instance space

certified neighbour-
hood

the largest hypersphere that a training instance could be
perturbed while keeping its NN in the feature space to be
an instance of the same class

adversarial margin
(dE(xi,xi,min))

the Euclidean distance between a training instance and its
associated support point. It defines the radius of certified
neighbourhood.

of a different class, and consequently, increasing the risk of misclassification from

kNN. A perturbed point, that causes a change in the nearest neighbours and thus

prediction, is termed an adversarial example [4]; if the adversarial examples of an

instance are all far away from the instance itself, a high degree of robustness is

expected. Based on this reasoning, we will construct a loss function to penalise the

small distance between a training instance xi and its closest adversarial example

(i.e. support point), and therefore, allowing xi to retain prediction correctness even

when perturbed to a larger extent.
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We start by building a geometric insight into the support point: for any instance

xi associated with the triplet constraint (xi,xj,xl), the support point xi,min is the

closest point to xi in the instance space that lies on the decision boundary formed by

xj and xl in the feature space. Note that closeness is defined in the instance space

and will be calculated using the Euclidean distance since we target at changes on the

original feature of an instance; and that the decision boundary is found in the feature

space since kNNs are identified by using the Mahalanobis distance. Mathematically,

we can formulate the support point xi,min as follows:

xi,min = arg min
x′i∈Rp

(x′i − xi)TA0(x′i − xi)

s.t. (Lx′i −
Lxj +Lxl

2
)T (Lxl −Lxj) = 0.

(3.1)

With a pre-given positive definite matrix A0, the objective function of Eq. 3.1 de-

fines an arbitrarily oriented hyperellipsoid, representing any heterogeneous and cor-

related perturbation. Without prior knowledge on the perturbation, we simplify A0

as the identity matrix. In this case, the objective function defines a hypersphere,

representing perturbation of equal magnitude in all directions. It can also be inter-

preted as minimising the Euclidean distance from the training instance xi. Unless

otherwise stated, we always refer the certified neighbourhood as the largest hy-

persphere; the hyperellipsoid case is discussed in Appendix 3.5.1. The constraint

defines the decision boundary, which is the perpendicular bisector of points Lxj

and Lxl. In other words, it is a hyperplane that is perpendicular to the line joining

pointsLxj andLxl and passes their midpoint Lxj+Lxl

2
; all points on the hyperplane

are equidistant from Lxj and Lxl.

Since Eq. 3.1 minimises a convex quadratic function with an equality con-

straint, we can find an explicit formula for the support point xi,min by using

the method of Lagrangian multipliers; the detailed derivation is given in Ap-

pendix 3.5.1:

xi,min = xi +
(
xj+xl

2
− xi)TM (xl − xj)

(xl − xj)TM 2(xl − xj)
M (xl − xj). (3.2)
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With a closed-form solution of xi,min, we can now calculate the squared Euclidean

distance between xi and xi,min:

d2
E(xi,xi,min) =

(d2
M (xi,xl)− d2

M (xi,xj))
2

4d2
M2(xj,xl)

. (3.3)

For clarity, we will call dE(xi,xi,min) the adversarial margin, in contrast to the

distance margin as in LMNN. It defines the radius of the certified neighbourhood.

To improve robustness of distance metric, we design a perturbation loss to

encourage an expansion of certified neighbourhood. Two situations need to be dis-

tinguished here. Firstly, when the nearest neighbour of xi is an instance from the

same class, we will penalise a small adversarial margin by using the hinge loss

[τ 2 − d2
E(xi,xi,min)]+. The reasons are that (a) the adversarial margin is generally

smaller for hard instances that are close to the class boundary in contrast to those

locating far away and (b) it is these hard instances that are more vulnerable to per-

turbation and demand an improvement in their robustness. Therefore, we introduce

τ for directing attention to hard instances and controlling the desired margin. Sec-

ondly, in the other situation where the nearest neighbour of xi belongs to a different

class, metric learning should focus on satisfying the distance requirement specified

in the triplet constraint. In this case, we simply assign a large penalty of τ 2 to pro-

mote a non-increasing loss function. Integrating these two situations leads to the

proposed perturbation loss:

JP =
1

|R|
∑
R

{
[τ 2 − d̃2

E(xi,xi,min)]+1[d2
M (xi,xl) > d2

M (xi,xj)]

+τ 21[d2
M (xi,xl) ≤ d2

M (xi,xj)]
}
,

(3.4)

where
∑
R is an abbreviation for

∑
(xi,xj ,xl)∈R. To prevent the denominator of

Eq. 3.3 from being zero, which may happen when different-class instances xj and

xl are close to each other, we add a small constant ε (ε = 10−10) to the denominator;

that is, d̃2
E(xi,xi,min) =

(d2
M (xi,xl)−d2

M (xi,xj))
2

4(d2
M2 (xj ,xl)+ε)

.
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3.2.2 Metric learning towards certified robustness

As support points are derived from triplet constraints, it would be natural and

straightforward to embed the proposed perturbation loss into a metric learning

method that is also based on triplet constraints. LMNN is thus adopted as an exam-

ple for its wide use and effective classification performance.

The objective function of the proposed LMNN towards certified robust-

ness (LMNN-CR) is as follows:

min
M∈Sp+

J = JLMNN + λJP,

JLMNN = (1− µ)
1

|S|
∑
S

d2
M (xi,xj) + µ

1

|R|
∑
R

[
1 + d2

M (xi,xj)− d2
M (xi,xl)

]
+
,

(3.5)

where
∑
S stands for

∑
(xi,xj)∈S . The weight parameter λ > 0 controls the im-

portance of perturbation loss (JP) relative to the loss function of LMNN (JLMNN).

µ ∈ (0, 1) balances the impacts between pulling together target neighbours and

pushing away impostors.

We adopt the projected gradient descent algorithm to solve the optimisation

problem (Eq. 3.5). The gradient of JP and JLMNN are given as follows:

∂JP

∂M
=

1

|R|
∑
R

αijl

{d2
M (xi,xl)− d2

M (xi,xj)

2
(
d2
M2(xj,xl) + ε

) (Xij −Xil)

+
(d2
M (xi,xl)− d2

M (xi,xj))
2

4
(
d2
M2(xj,xl) + ε

)2 (MXjl +XjlM )
}
,

∂JLMNN

∂M
=

1− µ
|S|

∑
S

Xij +
µ

|R|
∑
R

βijl(Xij −Xil),

where αijl = 1[d2
M (xi,xl) > d2

M (xi,xj), d̃E(xi,xi,min) ≤ τ ], βijl = 1[1 +

d2
M (xi,xj)−d2

M (xi,xl) ≥ 0];Xij = (xi−xj)(xi−xj)T andXil,Xjl are defined

similarly. The gradient of JP is a sum of two descent directions. The first direction

Xij−Xil agrees with LMNN, indicating that our method updates the metric toward

better discrimination in a weighted manner. The second direction MXjl +XjlM

controls the scale of M ; the metric will descend at a faster pace in the direction of
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a larger correlation between M and Xjl. This suggests our method functions as a

data-dependent regularisation. Let M t denote the Mahalanobis matrix learned at

the tth iteration. The distance matrix will be updated as:

M t+1 = M t − γ
(∂JLMNN

∂M t
+ λ

∂JP

∂M t

)
,

where γ denotes the learning rate. To guarantee the PSD property, we factorize

M t+1 as V ΛV T via eigendecomposition and truncate all negative eigenvalues to

zero, i.e. M t+1 = V max(Λ, 0)V T .

The proposed perturbation loss is a generic approach to improving robustness

to perturbation. In Appendix 3.5.3, we give another example which incorporates

the perturbation loss into sparse compositional metric learning (SCML) [39]; the

new method is termed SCML towards certified robustness (SCML-CR). SCML is

a recent triplet-based method that reduces the number of parameters and avoids the

projection onto the PSD cone by representing the Mahalanobis distance metric as

a sparse and non-negative combination of rank-one basis elements. The solution to

the support point and the form of perturbation loss remain the same; the learning

of the Mahalanobis distance is replaced by learning the sparse coefficients, and

the optimisation problem is solved via the accelerated proximal gradient descent

algorithm.

3.2.3 Extension to high-dimensional data

Learning a distance metric for extremely high-dimensional data will result in a large

number of parameters to be estimated and potentially suffer from overfitting. In or-

der to reduce the input dimensionality, PCA is often applied to pre-process the data

prior to metric learning [10; 40]. In this subsection, we will extend the proposed

method so that the distance metric learned in the low-dimensional PCA subspace

could still achieve robustness against perturbation in the original high-dimensional

instance space.

Defining perturbation loss in conjunction with PCA is realisable as our deriva-

tion builds on the linear transformation induced by the distance metric and PCA
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also performs a linear transformation to map data onto a lower dimension subspace.

LetD ∈ Rd×p denote the linear transformation matrix obtained from PCA; p is the

original feature dimension and d is the reduced feature dimension. With a slight

abuse of terminology, datasets with p ≤ n is referred as high-dimensional so long

as p is relatively large (e.g. p2 > 100n). Following the same principle as before, the

support pointxPCA
i,min should be the closest point toxi in the original high-dimensional

instance space and lie on the perpendicular bisector of pointsLDxj andLDxl, i.e.

after first mapping the data to a low-dimensional subspace byD and then mapping

it to a feature space by L. The mathematical formulation is as follows:

xPCA
i,min = arg min

x′i

(xi − x′i)T (xi − x′)

s.t. (LDx′i −
LDxj +LDxl

2
)T (LDxl −LDxj) = 0

(3.6)

As shown in Appendix 3.5.2, xPCA
i,min again has a closed-form solution and equations

on the adversarial margin and perturbation loss can be extended accordingly.

3.2.4 Generalisation benefit

From the perspective of algorithmic robustness [15], enlarging the adversarial mar-

gin could potentially improve the generalisation ability of triplet-based metric learn-

ing methods. The following generalisation bound, i.e. the gap between the expected

risk and the empirical risk, follows from the pseudo-robust theorem of [41]. Pre-

liminaries and derivations are given in Appendix 3.5.4.

Theorem 3. Let M ∗ be the optimal solution to Eq. 3.5. Then with probability at

least 1− δ we have:

|R(M ∗)−Rn(M ∗)| ≤ n̂(ts)

n3
+ c
(n3 − n̂(ts)

n3
+ 3

√
2K ln 2 + 2 ln 1/δ

n

)
, (3.7)

where R(M ) = E(zi,zj ,zl)∼D`(M ; zi, zj, zl) denotes the expected risk, Rn(M) =

1
n(n−1)(n−2)

∑
i 6=j 6=l `(M ; zi, zj, zl) denotes the empirical risk, `(M ; zi, zj, zl) =

[1 + d2
M (xi,xj)− d2

M (xi,xl)]+ · 1{yi=yj 6=yl} is the classical triplet loss, c is a con-

stant denoting the upper bound of the loss function `, n̂(ts) denotes the number of
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triplets whose adversarial margins are larger than τ , and K = |Y|(1 + 2
τ
)p.

Enlarging the desired adversarial margin τ will reduce the value of K and

n̂(ts) in Eq. 3.7. On the one hand, K decreases with τ at a polynomial rate of the

input dimensionality p and hence the upper bound of generalisation gap reduces at

a rate of p1/2. On the other hand, the reduction in n̂(ts) increases the upper bound.

However, n̂(ts) remains relatively stable when τ increases as long as most instances

in the dataset do not have a small margin in the original instance space. Therefore,

for this type of dataset, we expect an improvement in the generalisation ability of

the learned distance metric from enlarging the adversarial margin.

3.2.5 Relationship with other metric learning methods

In this subsection, we will discuss the connection between the introduced adver-

sarial margin and the (distance) margin in conventional metric learning methods,

followed by a comparison between our method and some other robust metric learn-

ing methods.

Our method imposes a safety margin in the original instance space while tra-

ditional metric learning methods target at a margin in the feature space. These two

objectives can be linked by the Lipschitz constant of the Mahalanobis distance. The

involved Lipschitz constant, as formally defined below, bounds the magnitude of

change in the output f(u) for any change in the input u:

Definition 6. [42] Given two metric spaces (U , ρU) and (V , ρV), the Lipschitz con-

stant of a function f : U → R is defined to be the smallest L > 0 that satisfies

|f(u)− f(v)| ≤ Lρ(u, v) for all u, v ∈ U .

Recall that the objective function associated with the triplet loss in LMNN is

d2
M (xi,xl) ≥ d2

M (xi,xj) + 1.

Let ∆xi denote a perturbation of xi and f(x) = d2
M (x,xl) − d2

M (x,xj). When

the Lipschitz constant of the Mahalanobis distance and hence of f(x) is large, a

small change from xi to xi + ∆xi is likely to cause a large difference between
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f(xi) and f(xi + ∆xi). In other words, the fixed margin 1 imposed in the feature

space may be insufficient to offset instance perturbation and guarantee classification

performance. Therefore, we advocate maximising the margin in the instance space

directly and thus propose the perturbation loss.

To improve robustness to perturbation that is likely to exist in practice, many

robust metric learning methods have been proposed, which can be categorised into

three main types. The first type of methods imposes structural assumption or regu-

larisation over M so as to avoid overfitting [43; 44; 45; 46; 40; 47; 48]. Methods

with structural assumption are proposed for classifying images and achieve robust-

ness by exploiting the structural information of images; however, such information

is generally unavailable in the symbolic datasets that will be studied in this chap-

ter. Regularisation-based methods are proposed to reduce the risk of overfitting to

feature noise. Our proposal, which is aimed to withstand perturbation, does not

conflict with these methods and can be combined with them to learn a more effec-

tive and robust distance metric; an example is shown in Section 3.3.3. The second

type of methods explicitly models the perturbation distribution or identifies clean

latent examples [49; 50]. The expected Mahalanobis distance is then used to adjust

the value of separating margin. The third type of methods generates hard instances

through adversarial perturbation and trains a metric to fare well in the new hard

problem [51; 52]. Although sharing the aim of improving metric robustness, these

methods approach the task at a data-level by synthesising real examples that incur

large losses, while our method tackles perturbation at a model-level by designing a

loss function that considers the definition of robustness with respect to the decision

maker kNN. By preventing change in the nearest neighbour in a strict manner, our

method can obtain a certification on the adversarial margin.

Finally, we note that a large margin in the instance space has been studied in

deep neural networks for enhancing robustness and generalisation ability [53; 54;

55; 56]. In contrast, our paper investigates such margin in the framework of metric

learning, defines it specifically with respect to the NN classifier, and provides an

exact and analytical solution to the margin.
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3.3 Experiments
In this section, we first visualise the effect of the perturbation loss on a synthetic

dataset. Next, we evaluate the generalisation performance and robustness of pro-

posed method on 12 benchmark datasets (10 low/medium-dimensional and two

high-dimensional). Finally, we discuss the computational aspect of the proposed

method.

3.3.1 Synthetic data

We synthesise a two-dimensional dataset to illustrate the effect of the perturbation

loss on the adversarial margin. The dataset includes two classes of ten instances

each, simulated from Gaussian distributions. The mean vectors of the positive and

negative classes are set as [0.4, 0.4] and [−0.4,−0.4] respectively, and the covari-

ance matrices for both classes are set as [1,−0.5;−0.5, 1]. Mean centring and stan-

dardisation are performed prior to metric learning. Experimental settings such as

the number of target neighbours and the ranges of hyperparameters are described in

the subsequent section. Hyperparameters are selected on a separate validation set

of 10,000 instances.

Figure 3.3: Visualisation and comparison of adversarial margins of LMNN (without) and
LMNN-CR (with the proposed perturbation loss).

In Figure 3.3, we plot the adversarial margins of training instances after learn-

ing the Mahalanobis distance via LMNN or LMNN-CR; that is, dE(xi,xmin) cal-

culated with respect to different M . For clarity, the margin size is shrunk by 70
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percent of its original size for all instances. For easy instances whose nearest neigh-

bours are instances of the same class (e.g. A), incorporating the perturbation loss

enlarges the margin by a large magnitude. For hard instances which are located

close to instances of the opposite class (e.g. B), the margin still gets enlarged al-

though to a less extent. For instances whose margin is already quite large under

LMNN (e.g. C), LMNN-CR may not further enlarge their margins, and even shrink

the margins in some cases, which agrees with the design of the desired margin τ .

Appendix 3.5.5.2 presents two more simulation studies to illustrate the differ-

ence in the learning mechanism of LMNN and LMNN-CR.

3.3.2 Experiments on UCI data

3.3.2.1 Data description and experimental setting

We evaluate the proposed LMNN-CR and SCML-CR on 10 UCI datasets [57]. In-

formation on sample size, feature dimension and class information is listed in Ta-

ble 3.2. All datasets are pre-processed with mean-centring and standardisation,

followed by L2 normalisation to unit length. We use 70-30% training-test partitions

Table 3.2: Characteristics of the datasets.

Dataset #Instances #Features #Classes #Rounds
(training,test) (reduced dimensions)

UCI data
Australian 690 14 2 20
Breast cancer 683 9 2 20
Fourclass 862 2 2 20
Haberman 306 3 2 20
Iris 150 4 3 20
Segment 2310 19 7 20
Sonar 208 60 2 20
Voting 435 16 2 20
WDBC 569 30 2 20
Wine 178 13 3 20

High-dimensional data

Isolet
7797 617 26 4

(1560,1558) (170)

MNIST
4000 784 10 1

(2000,2000) (141)
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and report the average result over 20 rounds of random split.

The proposed methods are compared with two types of methods. First, we

consider different regularisers on M . Specifically, we replace the regulariser in

LMNN from
∑
S d

2
M (xi,xj) to the log-determinant divergence (LDD) [31], which

encourages learning a metric toward the identity matrix, and to the capped trace

norm (CAP) [40], which encourages a low-rank matrix. Second, we compare with

the method DRIFT [49], which models the perturbation distribution explicitly. We

also report the performance of adversarial metric learning (AML) [51]. However, it

is not directly comparable to our method as it learns from pairwise constraints and

is based on a different backbone of geometric mean metric learning [58].

Hyperparameters of our methods are tuned via random search [59]. We ran-

domly sample 50 sets of values from the following ranges: µ ∈ U(0.1, 0.9),

τ ∈ U (0, P90%{dE(xi,xi,min)}), λ ∈ U(0, 4/τ 2). U(a, b) denotes the uniform dis-

tribution. Pk%{dE(xi,xi,min)} denotes the kth percentile of dE(xi,xi,min), where

the distance is calculated for all i in the triplet constraint with respect to the Eu-

clidean distance. Setting the upper bound of the adversarial margin τ via the per-

centile avoids unnecessary large values, matching our intention to expand the cer-

tified neighbourhood primarily for hard instances. The upper bound of the weight

parameter λ depends on the realisation of τ to ensure that magnitudes of perturba-

tion loss and LMNN loss are at the same level. SCML-CR is tuned in the same

manner. The optimal hyperparameters from five-fold cross-validation on the train-

ing data are used to learn the metric. More details on the training procedure of the

proposed and other methods are given in Appendix 3.5.5.1. The MATLAB code for

our method is available at http://github.com/xyang6/LMNNPL.

In all experiments, triplet constraints are generated from 3 target neighbours

and 10 nearest impostors, calculated under the Euclidean distance. We use 3NN as

the classifier and accuracy as the evaluation criterion.

3.3.2.2 Evaluation on classification performance

Table 3.3 reports the mean value and standard deviation of classification accuracy.

LMNN-CR outperforms LMNN on 9 out of 10 datasets. Among the methods with

http://github.com/xyang6/LMNNPL.
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Table 3.3: Classification accuracy (mean±standard deviation) of 3NN on clean datasets.

LMNN-based SCML-based

Dataset AML LMNN LDD CAP DRIFT LMNN-CR SCML SCML-CR

Australian 83.25±2.59 83.70±2.43 84.18±2.37 83.97±2.45 84.47±2.02 84.47±1.63 84.76±2.08 84.42±2.18
Breast cancer 97.10±1.21 97.12±1.25 96.95±1.51 97.00±1.08 96.98±1.16 97.02±1.30 97.00±1.09 97.07±1.24
Fourclass 75.12±2.35 75.10±2.31 75.15±2.32 75.02±2.48 75.08±2.34 75.12±2.35 75.10±2.27 75.12±2.35
Haberman 72.58±4.00 72.19±3.89 72.42±3.95 71.52±3.54 72.02±3.94 72.64±4.29 72.75±3.79 72.36±4.38
Iris 87.00±5.41 87.11±5.08 87.67±4.70 86.67±5.49 85.89±4.46 87.33±4.73 86.89±6.40 87.44±5.31
Segment 95.21±0.72 95.31±0.89 95.58±0.81 95.51±0.70 95.75±0.65 95.64±0.83 92.61±6.65 93.95±1.47
Sonar 84.13±4.86 86.67±4.10 87.22±3.90 87.22±4.38 86.19±4.43 87.78±3.53 82.38±4.15 84.13±4.61
Voting 95.34±1.64 95.80±1.78 95.80±1.41 95.92±1.45 95.31±1.32 96.15±1.56 95.84±1.58 96.26±1.28
WDBC 96.93±1.39 96.99±1.30 96.96±1.43 96.99±1.51 96.70±1.16 97.13±1.33 97.25±1.30 97.25±1.52
Wine 97.13±1.75 97.31±1.94 96.67±1.76 96.85±2.26 97.69±1.79 97.69±1.89 97.69±1.79 97.22±2.04

#Outperform - 9 8 10 9 - 7 -

For methods with LMNN as the backbone, the best ones are shown in bold and the second best ones are underlined; for methods
with SCML as the backbone, the best ones are shown in bold. ‘#Outperform’ counts the number of datasets where LMNN-CR
(SCML-CR, resp.) outperforms or performs equally well with LMNN-based (SCML, resp.) methods.

LMNN as the backbone, our method achieves the highest accuracy on 6 datasets

and second highest accuracy on the remaining 4 datasets. SCML-CL outperforms

or performs equally well with SCML on 7 datasets. These experimental results

demonstrate the benefit of perturbation loss to generalisation of the learned distance

metric.

3.3.2.3 Investigation into robustness

In this section, we evaluate robustness of metric learning methods against instance

perturbation. To start with, we conduct an in-depth experiment on the Australian

dataset to investigate the relationship between the proposed perturbation loss, ad-

versarial margin and robustness. First, we compare the adversarial margins obtained

from LMNN and LMNN-CR. Figure 3.4a provides a histogram of adversarial mar-

gin for all triplets that satisfy d2
M (xi,xj) < d2

M (xi,xl). Triplets that do not sat-

isfy the constraint are not taken into account since in this case, by design of our

perturbation loss, LMNN-CR will focus on correcting the nearest neighbour and

improving classification accuracy rather than on enlarging the adversarial margin

and improving robustness. Instances whose values of dE(xi,xi,min) are close to

zero are incapable of defending perturbation. After learning with the proposed loss

(LMMN-CR), we see that nearly half of these vulnerable instances have a larger

adversarial margin. Next, we test the robustness performance by adding Gaussian

noise to test data. We consider the following two types of zero-mean Gaussian noise
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(a) Histogram of adversar-
ial margins after metric
learning from LMNN and
LMNN-CR.

(b) Performance of LMNN-
based methods under
different levels of spherical
Gaussian noise.

(c) Performance of LMNN-
based methods under
different levels of Gaussian
noise.

Figure 3.4: Investigation into robustness on the Australian dataset.

– Gaussian with a diagonal covariance matrix and equal variances (abbreviated to

spherical Gaussian), and Gaussian with a diagonal covariance matrix and unequal

variances (Abbr. Gaussian). The noise intensity is controlled via the signal-to-noise

ratio (SNR). In addition, considering the small sample size of UCI datasets, we

augment test data by adding multiple rounds of random noise until its size reaches

10,000. Figure 3.4b plots the classification accuracy of LMNN-based methods un-

der different levels of spherical Gaussian noise. When the noise intensity is low,

the performance of LMNN and LMNN-CR remain stable. When the noise intensity

increases to the SNR of 10 dB or 5 dB, the performances of both method degrade.

Owing to the enlarged adversarial margin, the influence on LMNN-CR is slightly

smaller than that on LMNN. When the SNR equals 1 dB, the performance gain

from using LMNN-CR becomes smaller. This result is reasonable as the desired

margin τ is selected according to the criterion of classification accuracy and hence

may be too small to withstand a high level of noise. LMNN-CR surpasses all other

LMNN-based methods until the noise intensity is very large. Figure 3.4c plots the

accuracy under Gaussian noise. Compared with the case of spherical Gaussian, the

degradation of all methods is more pronounced in this case, but the pattern remains

similar.

We now turn to test robustness on all datasets. Table 3.4 reports the classi-

fication accuracy after contaminating the test data by the Gaussian noise of 5 dB.

LMNN-CR and SCML-CR improve the robustness of the corresponding baselines
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Table 3.4: Classification accuracy of 3NN on datasets contaminated with Gaussian noise
(SNR=5 dB).

LMNN-based SCML-based

Dataset AML LMNN LDD CAP DRIFT LMNN-CR SCML SCML-CR

Australian 82.26±1.62 82.13±1.52 82.57±1.55 81.82±1.52 81.97±1.53 82.90±1.53 82.59±1.70 82.84±1.64
Breast cancer 96.70±1.01 96.24±1.06 96.66±1.07 96.27±1.03 96.61±0.97 96.69±1.07 96.34±1.03 96.63±1.03
Fourclass 69.00±1.06 67.74±1.25 68.84±1.14 67.84±1.19 69.13±1.02 69.04±1.11 68.22±1.10 68.96±1.11
Haberman 70.21±1.84 70.21±1.84 70.25±1.82 69.39±2.06 69.31±2.50 70.25±1.90 69.98±1.64 70.24±1.85
Iris 79.07±3.25 78.75±2.96 79.04±3.17 77.90±3.31 78.57±3.09 79.20±3.08 78.32±3.60 79.18±3.13
Segment 85.87±0.70 79.03±3.37 83.49±1.17 82.77±2.49 83.88±1.33 82.13±2.70 61.28±9.78 62.86±8.76
Sonar 83.50±3.38 83.54±4.30 86.18±2.93 85.44±2.79 84.65±3.30 84.99±3.13 76.91±4.32 79.49±3.80
Voting 94.10±1.07 94.01±1.00 94.24±1.13 94.37±1.17 93.94±1.12 94.64±1.21 93.99±1.15 94.65±1.09
WDBC 96.47±1.12 92.01±1.65 96.30±0.94 96.14±1.11 96.02±0.88 96.07±0.89 95.75±1.29 96.22±1.14
Wine 95.03±1.14 93.27±1.62 93.97±1.38 93.87±1.49 94.55±1.15 94.44±1.21 93.92±1.55 94.52±1.33

#Outperform - 10 6 7 7 - 10 -

on all datasets. This clearly demonstrates the efficacy of adding perturbation loss for

improving robustness against instance perturbation. Moreover, LMNN-CR is supe-

rior to the existing robust metric learning methods CAP and DRIFT on 7 datasets.

The method LDD is also quite robust to perturbation. However, this should not be

surprising as it encourages learning a metric close to the Euclidean distance, and

the Euclidean distance is less sensitive to perturbation than the discriminative Ma-

halanobis distance. The performance under spherical Gaussian noise is very similar

to the Gaussian noise and is reported in Appendix 3.5.5.3.

3.3.3 Experiments on high-dimensional data

In Section 3.2.3, we extend LMNN-CR for high-dimensional data. To verify its

effectiveness, we test it on the following two datasets:

1) MNIST-2k [60]: The dataset includes the first 2,000 training images and first

2,000 test images of the MNIST database. We apply PCA to reduce the fea-

ture dimension from 784 to 141, accounting for 95% of total variance. All

methods are trained and tested once on the pre-given training/test partition.

2) Isolet [57]: The dataset is a spoken letter database and is available from UCI.

It includes 7,797 instances, grouped into four training sets and one test set.

The original feature dimension is 617, and the leading 170 principal com-

ponents which explain 95% of total variance are retained. All methods are

trained four times, one time on each training set, and evaluated on the pre-
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Table 3.5: Generalisation and robustness of DML methods on high-dimensional datasets.

Isolet

Method Clean SG,SNR=20 SG,SNR=5 G,SNR=20 G,SNR=5 Adv.
(0.0809) (0.4233) (0.0588) (0.3181) margin

LMNN 90.14±4.45 90.09±4.15 86.02±3.48 90.17±4.03 87.81±3.87 0.1095
LMNN-CR 91.08±3.71 91.02±3.77 87.91±3.30 91.05±3.73 89.40±3.76 0.1249

CAP 91.05±3.66 91.13±3.85 88.97±4.00 91.10±3.73 89.90±3.87 0.1514
CAP-CR 91.58±3.96 91.52±3.86 89.91±3.74 91.47±3.91 90.65±3.73 0.1559

SCML 90.73±4.10 90.33±4.21 86.50±4.18 90.51±4.14 88.50±3.71 0.0683
SCML-CR 90.83±4.16 90.67±4.12 86.55±3.75 90.83±4.16 88.41±4.07 0.0822

MNIST

Method Clean SG,SNR=20 SG,SNR=5 G,SNR=20 G,SNR=5 Adv.
(0.0540) (0.2939) (0.0649) (0.3482) margin

LMNN 90.55 90.00 88.40 90.10 88.40 0.1528
LMNN-CR 91.15 91.35 90.80 91.45 90.35 0.2235

CAP 91.65 91.80 91.40 91.80 90.70 0.2219
CAP-CR 92.00 91.90 90.85 91.95 90.65 0.2264

SCML 88.95 88.75 87.35 88.85 86.45 0.1217
SCML-CR 89.15 89.20 88.50 89.35 88.05 0.1432

Columns 3-6 report methods’ robustness against spherical Gaussian noise (SG) and Gaussian noise
(G). Values in brackets give the average perturbation size, calculated as the mean value of the L2-
norm of noises (‖∆xi‖2).

given test set.

In addition to aforementioned methods, we introduce CAP-CR, which com-

prises the triplet loss of LMNN, the proposed perturbation loss, and the regulariser

of CAP. CAP enforces M to be low-rank, which is a suitable constraint for high-

dimensional data. With the inclusion of the perturbation loss, we expect the learned

compact metric to be more robust to perturbation. For a fair comparison, in CAP-

CR, we use the same rank and regularisation weight as CAP, and tune τ, λ from 10

randomly sampled sets of values.

Table 3.5 compares the generalisation and robustness performance of LMNN,

CAP, SCML and our method; the generalisation performance of other methods are

inferior to LMNN-CR and are reported in Appendix 3.5.5.3. First, on both datasets,

our method achieves higher clean accuracy than the baseline methods, validating its

efficacy in improving the generalisation ability of the learned distance metric. Sec-
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ond, when the SNR is 20 dB, the average perturbation size is smaller than the av-

erage adversarial margin. In this case, our method maintains its superiority. When

the SNR is 5 dB, the average perturbation size is larger than the average adver-

sarial margin. Nonetheless, our method produces even larger gain in accuracy for

LMNN on both datasets, for CAP on Isolet, and for SCML on MNIST. These results

demonstrate that adversarial margin is indeed a contributing factor in achieving cer-

tified robustness. Third, CAP-CR obtains higher accuracy on both clean and noise-

contaminated data than LMNN-CR. This supports our discussion in Section 3.2.5

that regularisation and perturbation loss impose different requirements on M and

combining them has the potential for learning a more effective distance metric.

3.3.4 Computational cost

We now analyse the computational complexity of LMNN-CR. According to Eq. 3.6,

our method requires additional calculations on d2
M2(xj,xl) and MXjl. Given n

training instances, k target neighbours and p features, the computational complex-

ities of d2
M2(xj,xl) and MXjl are O(np2 + n2p) and O(n2p2), respectively. The

total complexity of our method is O(p3 + n2p2 + kn2p), same as that of LMNN.

Table 3.6 compares the running time of LMNN-based methods on four UCI

datasets that are large in sample size or in dimensionality and two high-dimensional

datasets. The computational cost of our method is comparable to LMNN.

Table 3.6: Average training time (in seconds) of LMNN-based methods.

LMNN LDD CAP DRIFT LMNN-CR

Australian 13.44 0.83 3.07 1.00 2.15
Segment 27.48 10.45 11.47 5.12 19.54
Sonar 4.93 4.08 4.65 0.92 6.75
WDBC 9.38 2.94 5.22 5.12 8.17
Isolet 339.57 207.69 176.50 N/A 190.55
MNIST 369.55 68.98 180.68 37.51 391.04

3.3.5 Parameter sensitivity

The proposed LMNN-CR includes three hyperparameters – µ for the weight of sim-

ilarity constraints, λ for the weight of the perturbation loss, and τ for the desired ad-
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Figure 3.5: Sensitivity of LMNN-CR to hyperparameters (indicated by the straight line).
The optimal accuracy and parameter value found via CV are indicated by the
dashed line and asterisk, respectively.

versarial margin. We investigate their influences on the classification performance

by varying one hyperparameter and fixing the other two at their optimal values.

Figure 3.5 shows the accuracy on MNIST evaluated over the range of the hyperpa-

rameter. The performance changes smoothly with respect to µ. It is stable over a

wide range of λ. When λ equals 0, LMNN-CR fails to learn a metric and returns a

zero matrix. The performance is most affected by τ . Indeed, τ plays the central role

in LMNN-CR as it determines the distribution of adversarial margins. Therefore,

we shall strive to search for its optimal value.

3.4 Conclusions and future work
In this chapter, we demonstrate that robustness and generalisation of distance met-

rics can be enhanced by enforcing a larger margin in the instance space. By taking

advantage of the linear transformation induced by the Mahalanobis distance, we

obtain an explicit formula for the support points and push them away from training

instances through penalising the perturbation loss. Extensive experiments verify

that our method effectively enlarges the adversarial margin, achieves certified ro-

bustness, and sustains classification excellence.

The perturbation is assumed to be spherically distributed in the current study.

Since this assumption does not always hold in practice, we may consider jointly

learning the elliptical distribution and distance metric from the data. Another inter-

esting future work will be extending the idea to nonlinear metric learning methods,

as these methods generally have higher expressive power.
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3.5 Appendix

3.5.1 Derivation of support point, adversarial margin, and gra-

dient of perturbation loss

We define the hyperellipsoid via the quadratic form. An arbitrarily oriented hyper-

ellipsoid, centred at µ ∈ Rp, is defined by the solutions to the equation

{x ∈ Rp : (x− µ)TA0(x− µ) = r2},

where A0 is a positive definite matrix. By the Cholesky decomposition, A0 =

AAT . Therefore, finding the support point of xi on the hyperellipsoid is equivalent

to finding the point x′i that defines the smallest hypersphere given by (AT (x′i −
xi))

T (AT (x′i−xi)) = r2. The optimisation problem of Eq. 3.1 is equivalent to the

following problem:

xi,min = arg min
x′i∈Rp

(
AT (x′i − xi)

)T (
AT (x′i − xi)

)
s.t. (Lx′i −

Lxj +Lxl
2

)T (Lxl −Lxj) = 0.

Applying the method of Lagrangian multiplier, we transform the above problem to

the following Lagrangian function by introducing the Lagrangian multiplier λ and

solve it by setting the first partial derivatives to zero:

min
x′i

(
AT (x′i − xi)

)T (
AT (x′i − xi)

)
− λ(Lx′i −

Lxj +Lxl
2

)T (Lxl −Lxj)

δ

δx′i
: 2AAT (x′i − xi)− λLTL(xl − xj) = 0

x′i = xi +
λ

2
A−1

0 L
TL(xl − xj)(

Lxi +
λ

2
LA−1

0 L
TL(xl − xj)−

Lxj +Lxl
2

)T
(Lxl −Lxj) = 0

λ

2
=

(
xj+xl

2
− xi)TLTL(xl − xj)

(xl − xj)TLTLA−1
0 L

TL(xl − xj)

xi,min = xi +
(
xj+xl

2
− xi)TM(xl − xj)

(xl − xj)TMA−1
0 M (xl − xj)

A−1
0 M(xl − xj).
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The Hessian matrix equals 2A0, which is positive definite, and hence xi,min is the

minimum point. ReplacingA0 = I (identity matrix) gives Eq. 3.2.

The squared adversarial margin is calculated by first simplifyingxi,min and then

computing r2 as follows:

(
xj + xl

2
− xi)TM (xl − xj)

=
1

2

(
(xj − xi) + (xl − xi)

)T
M
(
(xl − xi)− (xj − xi)

)
=

1

2

(
d2
M (xi,xl)− d2

M (xi,xj)
)

r2 =(xi − xi,min)
TA0(xi − xi,min)

=

(
d2
M (xi,xl)− d2

M (xi,xj)

2(xl − xj)TMA−1
0 M(xl − xj)

A−1
0 L

TL(xl − xj)
)T

A0

(
d2
M (xi,xl)− d2

M (xi,xj)

2(xl − xj)TMA−1
0 M (xl − xj)

A−1
0 L

TL(xl − xj)
)

=
(d2
M (xi,xl)− d2

M (xi,xj))
2

4
(
(xl − xj)TMA−1

0 M(xl − xj)
)2 (xl − xj)TLTLA−1

0 A0A
−1
0 L

TL(xl − xj)

=
(d2
M (xi,xl)− d2

M (xi,xj))
2

4
(
(xl − xj)TMA−1

0 M(xl − xj)
) .

SubstitutingA0 = I gives Eq. 3.3.

Now, we derive the gradient of JP with respect to M . When d2
M (xi,xl) >

d2
M (xi,xj) and r ≥ τ (i.e. d̃E(xi,xi,min) ≥ τ in the hyperspherical case),

or d2
M (xi,xl) ≤ d2

M (xi,xj), the gradient equals zero. When d2
M (xi,xl) >

d2
M (xi,xj) and r < τ , the gradient of JP equals the gradient of −r2 (i.e.

−d̃2
E(xi,xi,min) in the hyperspherical case), which can be calculated by using the

quotient rule and the derivative of trace [61]:

∂

∂M

(
d2
M (xi,xl)− d2

M (xi,xj)
)2

=2
(
d2
M (xi,xl)− d2

M (xi,xj)
)

(Xil −Xij)

∂

∂M
(xl − xj)TMA−1

0 M(xl − xj)

=
∂

∂M
tr(XjlMA−1

0 M )

=XjlMA−1
0 +A−1

0 MXjl
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∂

∂M

(d2
M (xi,xl)− d2

M (xi,xj))
2

4
(
(xl − xj)TMA−1

0 M (xl − xj) + ε
)

=
2 (d2

M (xi,xl)− d2
M (xi,xj)) (Xil −Xij)

4
(
(xl − xj)TMA−1

0 M (xl − xj) + ε
)

−(d2
M (xi,xl)− d2

M (xi,xj))
2

(XjlMA−1
0 +A−1

0 MXjl)

4
(
(xl − xj)TMA−1

0 M (xl − xj) + ε
)2 ,

where tr(·) denotes the trace operator. Xij = (xi−xj)(xi−xj)T andXil,Xjl are

defined similarly. SubstitutingA0 = I gives Eq. 3.6.

3.5.2 Derivation of support point, adversarial margin, and gra-

dient of perturbation loss in the high-dimensional case

Support point, adversarial margin and gradient of the perturbation loss with dimen-

sionality reduction are derived by following the same principle as in Appendix 3.5.1.

The method of Lagrangian multiplier is applied to derive a closed-form solu-

tion to the support point:

min
x′i

(
AT (x′i − xi)

)T (
AT (x′i − xi)

)
− λ(x′i −

xj + xl
2

)TDTLTLD(xl − xj)

δ

δx′i
: x′i =xi +

λ

2
A−1

0 D
TLTLD(xl − xj)

λ

2
=

(
xj+xl

2
− xi)TDTLTLD(xl − xj)

(xl − xj)TDTLTLDA−1
0 D

TLTLD(xl − xj)

xPCA
i,min =xi +

(
x̃j+x̃l

2
− x̃i)TM (x̃l − x̃j)

(x̃l − x̃j)TMDA−1
0 D

TM(x̃l − x̃j)
A−1

0 D
TM (x̃l − x̃j),

where x̃ denotesDx.

The squared adversarial margin is calculated from the definition of the hyper-

ellipsoid:

r2 =(xi − xPCA
min )TA0(xi − xPCA

min )

=

(
d2
M (x̃i, x̃l)− d2

M (x̃i, x̃j)
)2

4
(
(x̃l − x̃j)TLTLDA−1

0 D
TLTL(x̃l − x̃j)

)2

· (x̃l − x̃j)TLTLDA−1
0 A0A

−1
0 D

TLTL(x̃l − x̃j)
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=

(
d2
M (x̃i, x̃l)− d2

M (x̃i, x̃j)
)2

4(x̃l − x̃j)TMDA−1
0 D

TM (x̃l − x̃j)

The perturbation loss is defined similarly to Eq. 3.4 as follows:

JPCA
P =

1

|R|
∑
R

{
[τ 2 − d̃2

E(xi,x
PCA
i,min)]+1{d2

M (x̃i,x̃l)>d
2
M (x̃i,x̃j)} + τ 21{d2

M (x̃i,x̃l)≤d2
M (x̃i,x̃j)}

}
,

where d̃2
E(xi,x

PCA
i,min) =

(
d2
M (x̃i,x̃l)−d2

M (x̃i,x̃j)
)2

4((x̃l−x̃j)TMDDTM(x̃l−x̃j)+ε)
.

The gradient of JPCA
P is given as:

∂JPCA
P

∂M
=

1

|R|
∑
R

αijl

{ (
d2
M (x̃i, x̃l)− d2

M (x̃i, x̃j)
)
(X̃ij − X̃il)

2
(
(x̃l − x̃j)TMDA−1

0 D
TM(x̃l − x̃j) + ε

)
+

(
d2
M (x̃i, x̃l)− d2

M (x̃i, x̃j)
)2

4
(
(x̃l − x̃j)TMDA−1

0 D
TM(x̃l − x̃j) + ε

)2

· (X̃jlMDA−1
0 D

T +DA−1
0 D

TMX̃jl)

}
.

3.5.3 Sparse compositional metric learning towards certified ro-

bustness

We start by briefly revisiting the sparse compositional metric learning (SCML)

method [39]. The core idea is to represent the Mahalanobis distance as a non-

negative combination of K basis elements; that is,

M =
K∑
k=1

wkbkb
T
k , w ≥ 0,

where the basis set {bk}Kk=1 is generated by using the Fisher discriminative analysis

at several local regions. To learn a discriminative metric with good generalisation

ability, the learning objective comprises a margin-based hinge loss function and an

L1-norm regularisation term as follows:

min
w

JSCML =
1

|R|
∑
R

[
1 + d2

w(xi,xj)− d2
w(xi,xl)

]
+

+ η‖w‖1,
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where η ≥ 0 controls the degree of sparsity.

Similar to LMNN-CR, we propose SCML towards certified robustness

(SCML-CR) by adding the perturbation loss JP (Eq. 3.4) to the original objec-

tive function JSCML:

min
M∈Sp+

J = JSCML + λJP. (3.8)

The adversarial margin of Eq. 3.3 is now a function of w:

d2
E(xi,xi,min) =

(
d2
w(xi,xl)− d2

w(xi,xj)
)2

4d2
w2(xj,xl)

d2
w(xi,xj) = (xi − xj)T

( K∑
k=1

wkbkb
T
k

)
(xi − xj)

d2
w2(xj,xl) = (xj − xl)T

( K∑
k1=1

K∑
k2=1

wk1wk2bk1b
T
k1
bk2b

T
k2

)
(xj − xl).

The optimisation problem (Eq. 3.8) is solved via the accelerated proximal gra-

dient descent algorithm. The gradient of JP with respect to w is as follows:

∂JP

∂wk
=

1

|R|
∑
R

αijl

{
d2
M (xi,xl)− d2

M (xi,xj)

2
(
d2
M2(xj,xl) + ε

) tr
(
bkb

T
k (Xij −Xil)

)
+

[d2
M (xi,xl)− d2

M (xi,xj)]
2

4
(
d2
M2(xj,xl) + ε

)2 tr
(
(bkb

T
kM +Mbkb

T
k )Xjl

)}
,

where ε is a small constant added to the denominator of d2
E(xi,xi,min).

3.5.4 Preliminaries and theorem on generalisation bound

The generalisation bound is proved based on pseudo-robustness of an algorithm.

The definition of pseudo-robustness and existing theorem are provided, followed

by the proof of Theorem 3.

3.5.4.1 Preliminaries

The following notations will be used in this section. Let z = (x, y) ∈ Z denote

an instance-label pair, D denote the underlying distribution of z, and ` denote a

loss function upper bounded by c. tzn = {(zi, zj, zl) : yi = yj 6= yl}. The
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generalisation gap is the difference between the expected risk R and the empirical

risk Rn.

Definition 7. [41] An algorithm A is (K, ε(·), n̂(·)) pseudo-robust for K ∈ N,

ε(·) : (Z × Z × Z)n → R and n̂(·) : (Z × Z × Z)n → {1, . . . , n3} if Z can

be partitioned into K disjoint sets, denoted by {Ck}Kk=1, such that for all samples

zn ∈ Zn, there exists a subset of training triplets t̂zn ⊆ tzn with |t̂zn| = n̂(tzn) that

the following holds:

∀(z1, z2, z3) ∈ t̂zn , ∀z′1, z′2, z′3 ∈ Z , ∀i, j, l = 1, . . . , K, if z1, z
′
1 ∈ Ci, z2, z

′
2 ∈ Cj

and z3, z
′
3 ∈ Cl, then

|`(Atzn , z1, z2, z3)− `(Atzn , z′1, z′2, z′3)| ≤ ε(tzn).

Theorem 4. [41] If A is (K, ε(·), n̂(·)) pseudo-robust and the training triplets tzn

come from from a sample set zn that is generated by n i.i.d. draws from D, then

with probability at least 1− δ we have:

|R(Atzn )−Rn(Atzn )| ≤ n̂(tzn)

n3
ε(tzn) + c

(n3 − n̂(tzn)

n3
+ 3

√
2K ln 2 + 2 ln 1/δ

n

)
.

(3.9)

Definition 8. [62] A δ-cover of a set Θ with respect to a metric ρ is a set

{θ1, . . . , θN} ⊂ Θ such that for each θ ∈ Θ, there exists some i ∈ {1, . . . , N}
such that ρ(θ, θi) ≤ δ. The δ-covering number N(δ,Θ, ρ) is the cardinality of the

smallest δ-cover.

3.5.4.2 Theorem and proof

Theorem 5. Let M ∗ be the optimal solution to Eq. 3.5. Then with probability at

least 1− δ we have:

|R(M ∗)−Rn(M ∗)| ≤ n̂(tzn)

n3
+ c
(n3 − n̂(tzn)

n3
+ 3

√
2K ln 2 + 2 ln 1/δ

n

)
,

where n̂(tzn) denotes the number of triplets whose adversarial margins are larger

than τ , c is a constant denoting the upper bound of the loss function (i.e. Eq. 3.4),
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and K = |Y|(1 + 2
τ
)p.

Proof. After embedding the perturbation loss, learning algorithms that minimise the

classical triplet loss, i.e. [1 + d2
M (xi,xj)− d2

M (xi,xl)]+ ·1{yi=yj 6=yl}, are (|Y|(1+

2
τ
)p, 1, n̂(·; τ)) pseudo-robust. ε = 1 since, by definition of certified neighbourhood,

any x that falls into the Euclidean ball with centre xi and a radius of the desired

margin τ will satisfy d2
M (x,xl) > d2

M (x,xj), and therefore any change in loss is

bounded by 1. The value of K can be determined via the covering number [41].

The instance space X can be partitioned by using the covering number N(τ,X , ‖ ·
‖2). By normalising all instances to have unit L2-norm, we obtain a finite covering

number as N ≤ (1 + 2
τ
)p [62]. The label space Y can be partitioned into |Y|

sets. Therefore, the number of disjoint sets, i.e. K, is always smaller than |Y|(1 +

2
τ
)p.

3.5.5 Experimental setup and additional results

3.5.5.1 Experimental setting

Hyperparameter tuning of compared methods LMNN, SCML, DRIFT and AML

are implemented by using the official codes provided by the authors; all parameters

are set as default apart from the trade-off parameter. Trade-off parameters are tuned

via five-fold cross-validation on the training data. For LMNN, the trade-off parame-

ter µ is chosen from {0.1, 0.2, . . . , 0.9}. For SCML, the weight of the regularisation

term η is chosen from {10−5, 10−4, . . . , 103}, and the number of bases is set as 200,

400 and 1000 for UCI datasets whose sample size is smaller than 500, larger than

500, and high-dimensional datasets, respectively. For LDD, the regulariser weight

is chosen from {10−6, 10−5, . . . , 102}. For CAP, the regulariser weight is chosen

from {10−3, 10−2, . . . , 10}, and the rank of M is chosen from 10 values equally

spaced between 1 and p. For DRIFT and AML, we search the grid suggested by the

authors.

Experimental setting of LMNN-CRM is initialised as the identity matrix. The

learning rate γ is initialised to 1. Following [10]’s work, γ is increased by 1% if

the loss function decreases and decreased by 50% otherwise. The training stops if
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the relative change in the objective function is smaller than the threshold of 10−7 or

reaches the maximum number of iterations of 1000.

Experimental setting of SCML-CR SCML-CR is tuned in the same manner as

LMNN-CR via random search; the range of η and the number of bases are same as

SCML, and the ranges of τ and λ are same as LMNN-CR. The method is optimised

via the accelerated proximal gradient descent algorithm with a backtracking stepsize

rule [63]. The initial learning rate is set as 1 and the shrinkage factor is set as 0.8.

w is initialised as the unit vector.

3.5.5.2 Comparisons between LMNN and LMNN-CR

In this section, two toy examples are presented to illustrate the difference in the

learning mechanisms of LMNN and LMNN-CR.
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Figure 3.6: Comparison of learning mechanisms of LMNN and LMNN-CR when features
exhibit different separability.

In the first example, we simulate a two-dimensional binary classification

dataset, as shown in Figure 3.6a. The positive class includes 100 instances drawn

uniformly from [−3, 0] in the horizontal (abbr. 1st) direction and [0, 1] in the verti-

cal (abbr. 2nd) direction. The negative class consists of two clusters, where the first

cluster includes 100 instances drawn from U(−3, 0) and U(−0.6,−0.5) in the 1st

and 2nd directions respectively, and the second cluster includes 20 instances drawn

from U(0, 0.1) and U(0, 1) in the two directions respectively. By design, instances

of positive and negative classes can be separated in both directions, while the sep-

arability in the 1st direction is much smaller than the 2nd direction. Figures 3.6b

and 3.6c show the instances in the projected feature space with metrics learned
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from LMNN and LMNN-CR, respectively; the projection direction is indicated by

the unit vector of red and blue lines; and the metric and the average of adversar-

ial margins (d̄E(xi,xi,min)) are given in the caption. The objective of LMNN is to

satisfy the distance margin. Thus, it expands the distance in both directions. More-

over, since the 1st direction has a small separability in the original instance space,

this direction is assigned with a larger weight. In contrast, LMNN-CR controls the

scale of M . Moreover, a notable difference is that the 2nd direction is assigned

with a larger weight than the 1st direction, which is again caused by the small sepa-

rability in the 1st direction. As any perturbation in the 1st direction is highly likely

to result in a misclassification, the proposed method diverts more attention to robust

features, i.e. the 2nd direction.
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Figure 3.7: Comparison of learning mechanisms of LMNN and LMNN-CR when con-
fronting the problem of multicollinearity.

In the second example, we simulate a three-dimensional binary classification

dataset, as shown in Figure 3.7a. The positive and negative classes each includes

100 instances. The first two dimensions are drawn from multivariate Gaussian dis-

tributions with µp = [0.45, 0.45], µn = [−0.45,−0.45], Σp = Σn =
[

1 −0.9
−0.9 1

]
.

The third dimension equals the sum of the first two dimensions, plus white Gaussian

noise with standard deviation of 0.01. By design, the dataset exhibits the problem

of strong multicollinearity. This issue has little influence on LMNN as the data is

nearly separable in all directions. However, it will affect the certified neighbour-

hood. Specifically, if the metric assigns equal weights to all dimensions, then the
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perturbation should be small in all directions so as to guarantee that the perturbed

instance stays on the correct side of the decision boundary. In contrast, if the met-

ric assigns weights only to the third dimension, then the perturbation in the first

two dimensions will not cause any change in the learned feature space and hence

a larger magnitude of perturbation in the third dimension could be allowed. This

expectation is supported by the empirical result in Figure 3.7c, where the distance

in the third dimension is more important than the first two dimensions.

In summary, our method learns a discriminative metric, and meanwhile, im-

poses a data-dependent regularisation on the metric. It also achieves larger adver-

sarial margins than LMNN.

3.5.5.3 Additional experimental results

Table 3.7 is a supplement to Section 3.3.2.3, which reports the robustness of DML

methods under spherical Gaussian noise with the SNR of 5 dB. Table 3.8 is a sup-

plement to Table 3.5, which reports the performances of AML, LDD and DRIFT on

high-dimensional datasets.

Table 3.7: Classification accuracy of DML methods on noise-contaminated datasets.
Spherical Gaussian noise with an SNR of 5 dB is added to test data.

LMNN-based SCML-based

Dataset AML LMNN LDD CAP DRIFT LMNN-CR SCML SCML-CR

Australian 82.67±1.59 82.46±1.58 83.02±1.58 82.36±1.56 82.58±1.45 83.50±1.56 82.93±1.65 83.42±1.68
Breast cancer 96.74±1.01 96.25±1.09 96.69±1.09 96.35±1.02 96.66±1.00 96.71±1.08 96.40±1.05 96.65±1.06
Fourclass 68.91±1.16 67.62±1.23 68.77±1.14 67.63±1.12 69.03±1.13 69.01±1.17 68.07±1.16 68.86±1.06
Haberman 69.81±1.85 69.84±1.79 69.92±1.87 69.23±2.00 69.09±2.49 69.89±1.90 69.65±1.63 69.88±1.83
Iris 78.92±3.25 78.61±2.97 78.87±3.16 77.79±3.27 78.43±3.09 79.04±3.09 78.16±3.58 79.01±3.12
Segment 87.92±0.69 81.02±3.55 86.15±1.26 85.34±2.47 86.63±1.09 84.72±2.62 60.18±9.73 61.33±9.05
Sonar 83.46±3.39 83.56±4.27 86.18±2.95 85.41±2.82 84.65±3.30 85.00±3.15 77.01±4.23 79.49±3.80
Voting 94.10±1.07 94.00±1.00 94.25±1.14 94.37±1.17 93.95±1.12 94.64±1.21 93.99±1.15 94.64±1.09
WDBC 96.49±1.12 91.71±1.90 96.30±0.94 96.16±1.08 96.04±0.86 96.11±0.88 95.74±1.30 96.21±1.16
Wine 95.12±1.12 93.33±1.63 94.03±1.39 93.97±1.47 94.66±1.15 94.51±1.20 94.01±1.56 94.61±1.32

#Outperform - 10 6 7 7 - 10 -
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Table 3.8: Generalisation and robustness of DML methods on high-dimensional datasets
(additional results).

Isolet

Method Clean SG,SNR=20 SG,SNR=5 G,SNR=20 G,SNR=5 Margin

AML 86.75±3.16 86.59±3.49 85.97±3.69 86.69±3.59 86.24±3.82 0.1261
LDD 90.91±3.90 90.81±4.12 87.97±3.83 90.75±4.12 89.13±4.05 0.1333

MNIST

Method Clean SG,SNR=20 SG,SNR=5 G,SNR=20 G,SNR=5 Margin

AML 89.25 88.70 88.85 89.30 89.20 0.2142
LDD 90.85 90.85 87.90 90.95 90.30 0.2232
DRIFT 90.85 90.75 87.45 90.65 89.45 0.2054

DRIFT is unable to learn a metric on Isolet and hence is not reported.



Chapter 4

Metric Learning for Categorical and

Ambiguous Features

4.1 Introduction

The k-nearest neighbours (kNN) algorithm is a classical and widely used classifica-

tion method by virtue of the nonparametric nature, interpretability, and flexibility in

defining the distance between instances [64]. As a discriminative distance function

can boost kNN’s performance, the idea of learning a task-specific metric from the

data was pioneered in [1], which formulates the task of learning a generalised Ma-

halanobis distance as a convex optimisation problem. Thereafter, many global [10],

local [65], kernelised [66] and deep [67] metric learning methods have been pro-

posed to further improve the discriminability. While these methods are effective,

they have rarely been applied to data with ordinal and nominal features.

Ordinal and nominal variables (i.e. features) are subsumed under the data type

of categorical variables that have measurement scales consisting of a set of cate-

gories [68]. Categorical variables with ordered scales are called ordinal variables

and the ones with unordered scales are called nominal variables. For example,

when collecting a film survey, the audience review (poor, fair, good, excellent) is

an ordinal variable; the genre of favourite films (action, comedy, drama, horror) is

a nominal variable. Both types of variables occur frequently in social and health

sciences and also arise in education and marketing.
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Classifying ordinal and nominal variables faces at least the following three

challenges. First, a simple way of representing these variables is to encode them

as integers and then treat them as real-valued numerical variables. However, for

an ordinal variable, the difference between two integers does not necessarily reflect

the real distance between the two ordinal levels, and for a nominal variable, the dif-

ference between two integers is meaningless for two nominal levels. Another way

of representing ordinal and nominal variables is to encode each categorical vari-

able into a set of binary variables, such as through dummy coding. This conversion

avoids the above problems, and allows for the modelling of interactions between

different levels of the variable. However, it inevitably increases the feature dimen-

sion, and the effect is dramatic when each variable has a large number of levels. The

second challenge is the ambiguity in ordinal variables. For example, in the example

of audience review, the boundaries between levels such as ‘good’ and ‘excellent’

are not sharply defined, thereby causing ambiguity. This issue is less common in

nominal variables, but it still appears when some categories have overlapping char-

acteristics. Third, for economic and ethical reasons, the categorical data collected in

social and health sciences often have a small sample size. This places a restriction

on model complexity since a complex model may overfit and generalise poorly to

unseen data.

This chapter focuses on adapting metric learning methods for ordinal and nom-

inal features that could work on both types of encoded data, i.e. as integer variables

and as dummy variables, and address the feature ambiguity and small-sized prob-

lems. Firstly, to mitigate the impact of feature ambiguity, we propose to consider

the worst-case perturbation of each instance within a deliberately designed con-

straint set and learn the Mahalanobis distance through adversarial training. The

constraint set takes into account the discrete nature of nominal variables and the

ordering nature of ordinal variables. Secondly, we provide a geometric interpre-

tation of the proposed formulation, which suggests that our method dynamically

divides the instance space into three regions, namely support region, adversarially

vulnerable region, and adversarially robust region. Compared with classical metric
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learning methods which only uses information on the support region, our method

additionally uses information on instances from the adversarially vulnerable region,

thereby coping better with the small sample size problem. Thirdly, we prove the

generalisation bound for a general form of adversarial training. It suggests that the

sample complexity rate of adversarial training remains at the same order as that

of standard training in classical methods only if the Mahalanobis distance is regu-

larised with the elementwise 1-norm. Finally, the method is tested on datasets with

all ordinal variables and with a mixture of ordinal and nominal variables. It sur-

passes state-of-the-art methods in cases of high feature ambiguity and small sample

size.

The rest of this chapter is organised as follows. Section 4.2 reviews distance

metrics used for categorical data and metric learning methods that are robust to

feature uncertainty. Section 4.3 proposes the new metric learning algorithm, and

discusses the method from both geometric and theoretical perspectives. Section 4.4

verifies the method on simulated and real-world categorical data. Section 4.5 draws

a conclusion and suggests future work. Proof, detailed experimental settings, and

some additional results are deferred to Appendix 4.6.

4.2 Related work

This section briefly reviews distance metrics for categorical data and metric learning

methods that consider feature uncertainty.

Distance metrics for categorical data Various distance or similarity measures are

proposed for categorical data, mostly for nominal data, in an unsupervised setting.

The most common measure is overlap, which defines the similarity between two

instances x1,x2 on the ith feature to be 1 if their values are equal and 0 otherwise.

Summing up the similarities over all features defines the distance between x1 and

x2. Based on overlap, many probabilistic or frequency-based measures have been

proposed to assign different weights on matches or mismatches, as well as taking

into account the occurrence of other feature values [69]. Another class of measures

are based on entropy, where the distance contribution of each categorical level de-
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pends on the amount of information it holds. Entropy-based measures have been

extended in [70] to quantify the order relation of ordinal variables.

In a supervised setting, non-learning approaches use the label information to

determine the discriminative power of each feature and adjust the feature weights

in distance calculation accordingly [71]. Learning approaches learn the distance

between each pair of categorical levels or a mapping function from each level to

a real value by minimising the classification error [72; 73]. More recently, large

margin-based metric learning methods have been adapted for ordinal and nominal

variables [74; 75]. Building on the assumption that an ordinal variable represents a

continuous latent variable that falls into an interval of values, [74] jointly learns the

Mahalanobis distance, thresholds of intervals, and parameters of the latent variable

distribution. As the number of thresholds is determined by the number of variables

and levels within them, the method may involve a large number of parameters and

suffer from overfitting. [75] represents the categorical data by computing the inter-

action between levels, between variables, and between variables and classes, fol-

lowed by learning the Mahalanobis distance in a kernel space. However, it ignores

the natural ordering of ordinal variables.

Metric learning with uncertainty In most metric learning methods, a Mahalanobis

distance is optimised such that similar instances become closer with respect to the

new metric and dissimilar instances become farther away. As the optimisation pro-

cess is guided by the side information, its effectiveness degrades in the presence of

label noise, influential points, and feature uncertainty. Compared with influential

points which account for a small proportion of instances but severely influence the

model, feature uncertainty, possibly ensued from ambiguity in the definition of set

boundaries, measurement and quantisation errors, and data processing of repeated

measurements, normally appears as small perturbations but potentially pollutes a

large number of instances [76]. Many robust metric learning methods have been

proposed to tackle the above problems [77; 78; 79], and here, we only discuss those

on feature uncertainty.

One way to handle feature uncertainty is to build an explicit model of perturba-
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tion [49; 50]. [49] assumes a perturbation distribution of each instance, replaces the

Mahalanobis distance by its expected value, and iteratively learns the distribution

and distance metric by minimising the number of violations of triplet constraints.

The method essentially adjusts the constraint on distance margin for each triplet

according to its reliableness. Another approach is to learn a distance metric that is

less sensitive to feature uncertainty via adversarial training [51; 52]. The method

involves two stages. The confusion stage generates adversarial pairs that incur large

losses, and the discrimination stage optimises the distance metric based on these

augmented pairs. Originating from robust optimisation [17; 80], adversarial train-

ing has received considerable attention in recent years as an effective approach to

achieving robustness to adversarial examples [5]. In addition, adversarial training is

shown to improve the classification accuracy when there is only a limited number of

instances available to train the model [81]. While our method shares a similar prin-

ciple, it differs from existing adversarial metric learning methods in two respects.

Firstly, we take the subsequent classification mechanism into consideration when

searching for the worst-case perturbation. Derived from triplet constraints, the per-

turbation is capable of altering the decision of NN classifier. Secondly and more

importantly, the loss function in our proposal is designed specifically for ordinal

and nominal features with an explicit consideration of their discrete and ordering

nature.

4.3 Methodology
In this section, we propose to model feature ambiguity as a perturbation to the

instance and learn the Mahalanobis distance through adversarial training. After

introducing notations, we will present the method and its optimisation algorithm,

followed by a geometric interpretation and a generalisation analysis.

4.3.1 Preliminaries

Let zn = {zi = (xi, yi)}ni=1 denote the training set, where xi ∈ X is the ith training

instance associated with label yi ∈ Y = {1, . . . , C}; zi ∈ Z is independently and

identically distributed (i.i.d.) according to an unknown distribution D. Suppose
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each instance includes p features, pord of which are ordinal variables and pnom =

p − pord are nominal variables. Ordinal variables can be encoded as consecutive

integers or as a set of binary values. In the integer case, a variable with pr levels

takes values from {1, 2, . . . , pr}, and the mapping should follow the order relation.

In other words, for ordinal levels O1 ≺ O2 ≺ · · · ≺ Opr with an order relation ≺,

there is a mapping function O such that O(Oq) = q, q = 1, . . . , pr. In the binary-

valued case, ordinal variables are encoded via the OrderedPartitions method [82;

74]. For example, an ordinal variable with 3 levels will be encoded as [1,0,0],

[1,1,0] and [1,1,1]. Nominal variables are encoded via the 1-of-K encoding scheme.

For example, a nominal variable with 3 levels will be encoded as [1,0,0], [0,1,0]

and [0,0,1]. Let P denote the feature dimension after encoding, which equals pord +∑pnom

r=1 pr if ordinal variables are encoded as integers and equals
∑p

r=1 pr if they are

encoded as a set of binary values.

In this work, we focus on learning the Mahalanobis distance from triplet-based

side information. For any two instances xi,xj ∈ RP , the generalised (squared)

Mahalanobis distance is defined as

d2
M (xi,xj) = (xi − xj)TM(xi − xj),

where M ∈ SP+ is a P × P real-valued positive semi-definite (PSD) matrix. A

classical triplet-based metric learning method is the large margin nearest neigh-

bors (LMNN) algorithm [10]. It pulls k nearest same-class instances closer and

pushes away different-class instances by a fixed margin through optimising the fol-

lowing objective function:

min
M∈SP+

(1−µ)
∑

(xi,xj)∈S

d2
M (xi,xj)+µ

∑
(xi,xj ,xl)∈R

[
1 + d2

M (xi,xj)− d2
M (xi,xl)

]
+
,

(4.1)

where [a]+ = max(a, 0) for a ∈ R; µ is the trade-off parameter. The constraints S
andR are defined as follows:
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S =
{

(xi,xj) : j ∈ arg mink
a=1,··· ,n

{d(xi,xa) : yi = ya}
}
,

R =
{

(xi,xj,xl) : (xi,xj) ∈ S, yi 6= yl
}

;

arg mink denotes the k minimal elements of a set and d denotes the Euclidean dis-

tance. xj is termed the target neighbour of xi and xl is termed the impostor.

4.3.2 Metric learning with adversarial training (MLadv)

The objective function of LMNN (Eq. 4.1) can be interpreted as minimising a

linear combination between the empirical risk 1
n

∑n
i=1 `(xi, yi;M ) and the regu-

lariser on M ; the hinge loss ` of [1 + d2
M (xi,xj) − d2

M (xi,xl)]+ separates tar-

get neighbours and impostors by a unit margin, and the regulariser is chosen as∑
(xi,xj)∈S d

2
M (xi,xj). To address the issue of feature ambiguity faced by ordinal

and nominal variables, we propose to model the unknown ambiguity as a perturba-

tion of xi. Instead of the hinge loss, we consider the worst-case loss within a certain

perturbation range and minimise the empirical adversarial risk:

min
M

1

n

n∑
i=1

max
δi∈∆

`(xi + δi, yi;M ). (4.2)

δ denotes the perturbation and its form is specified by set ∆. The optimal solution to

the inner maximisation problem is termed the worst-case perturbation and denoted

by δ?.

To fit ordinal and nominal variables, we need to incorporate their properties

when defining the perturbation set ∆. A typical choice of ∆ is the set ofLp-bounded

perturbation, i.e. ‖δ‖p ≤ ε, with p = 1, 2,∞. However, a non-integer real-valued

ε is not suitable for ordinal and nominal variables as it ignores the discrete nature

of nominal variables and the ordering nature of ordinal variables. Therefore, we

restrict δ via the following two conditions: i) ‖δ‖∞ = 1; and ii) ‖δ‖1 ≤ ε, ε ∈ N.

Since the loss function is linear in δ as shown in Eq. 4.4, the first condition guar-

antees that the perturbed instance remains as an integer or a binary value. More
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crucially, the magnitude of one aligns with the source of feature ambiguity, which

arises from non-rigorously defined set boundaries. In the example of film survey,

the perturbation from ‘good’ to ‘fair’ matches the real-world decision-making pro-

cess whereas replacing ‘good’ by ‘bad’ dramatically changes the original informa-

tion. The second condition controls the level of perturbation. Integrating these two

conditions, the perturbation δ can change at most ε features of each instance.

To train the Mahalanobis distance, we form triplet constraints from both origi-

nal and perturbed instances [83], and apply different loss functions to these triplets.

For the original triplets, we adopt the loss function of LMNN and change the unit

distance margin to an adjustable quantity τ . As we shall discuss in Section 4.3.4,

τ determines how the instance space is divided into the support region and the

adversarially vulnerable region. If the distance margin is satisfied by the triplet

(xi,xj,xl), we will proceed to add perturbation to the instance xi. For the per-

turbed triplets, we adopt the perceptron loss [84]. Although the perceptron loss is

rarely used in metric learning due to the lack of distance margin, it is sensible in our

setting since the perturbation itself can serve as a margin in the instance space.

Integrating the above design of perturbation set and loss functions, we pro-

pose the following objective function for metric learning with adversarial training

(MLadv):

min
M∈SP+

λ‖M‖1+
µ

|R|
∑

(xi,xj ,xl)∈R

[
τ + d2

M (xi,xj)− d2
M (xi,xl)

]
+

+
1− µ
|R|

∑
(xi,xj ,xl)∈R

1[d2
M (xi,xl) > d2

M (xi,xj) + τ ]

·
[

max
δi:‖δi‖∞=1,‖δi‖1≤ε

{d2
M (xi + δi,xj)− d2

M (xi + δi,xl)}
]

+
,

(4.3)

where |R| denote the numbers of triplets in the set R; 1[·] is the indicator func-

tion which equals 1 if the condition is satisfied and 0 otherwise. The element-

wise 1-norm (hereinafter abbreviated to L1-norm), i.e. ‖M‖1 = ‖vec(M )‖1 =∑P
m,n=1Mmn, is used to regularise the complexity of the distance matrix. As
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proved in Section 4.3.5, this choice of regulariser is essential to guarantee that the

number of samples required for the adversarially trained metric to generalise has

the same order as that for the standard metric. λ > 0 is a trade-off parameter be-

tween the regularisation term and the loss function, and µ ∈ [0, 1] balances between

the influence from original instances and perturbed instances. The triplet set R is

constructed in the same way as LMNN, i.e. according to Eq. 4.3.1.

4.3.3 Optimisation algorithm

According to the Danskin’s theorem [85], the gradient of the maximum of a differ-

entiable function is given by the gradient of the function evaluated at the maximum

point, i.e.

∇M max
δ∈∆

`(x+ δ, y;M) = ∇M`(x+ δ?, y;M ),

where δ? = arg maxδ∈∆ `(x + δ, y;M ); ∇ denotes the gradient. Therefore, the

optimisation problem (Eq. 4.3) can be solved by first deriving a closed-form solution

to the inner maximisation problem and then updating M via the proximal gradient

descent algorithm.

4.3.3.1 Inner maximisation

The solution to the worst-case perturbation δ?i is derived by simplifying the ob-

jective function as follows: let δ?i = arg maxδi:‖δi‖∞=1,‖δi‖1≤ε{d2
M (xi + δi,xj) −

d2
M (xi + δi,xl)}, then

arg maxδi{d2
M (xi + δi,xj)− d2

M (xi + δi,xl)}

⇔ arg maxδi{d2
M (xi,xj)− d2

M (xi,xl) + 2δTi M(xl − xj)}

⇔ arg maxδiδ
T
i M (xl − xj)

(4.4)

Under the constraint ‖δi‖∞ = 1, we have δ?i = sign(M (xl − xj)). With the

additional constraint ‖δi‖1 ≤ ε, ε ∈ N, we have

δ?i,[k] =


sign(Mk·(xl − xj)) if k ∈ arg maxε

a=1,··· ,P
|Ma·(xl − xj)|

0 otherwise
, (4.5)
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where δ?i,[k] denotes the kth element of the vector δ?i ; Mk· denotes the kth row of

M ; arg maxε denotes the ε maximal elements of a vector; sign(v) applies the sign

function to each element of the vector v and |v| calculates elementwise absolute

values. The solution of δ?i,[k] may not be unique. After sorting elements of |Ma·(xl−
xj)| in descending order, if there are multiple elements having the same value at the

εth largest position, then one of them will be selected randomly and contributes to

δ?i,[k].

4.3.3.2 Outer minimisation

Since theL1-norm regularisation leads to a non-smooth objective function, the prox-

imal gradient descent algorithm is adopted to optimise M in three steps. In the

gradient descent step,M is updated as

M t+ 1
3 = M t − ηt∇M |M t

∇M =
µ

|R|
∑
R

αijl(Xij −Xil) +
1− µ
|R|

∑
R

(1− αijl)α?ijl(X?
ij −X?

il)
(4.6)

where
∑
R is an abbreviation for

∑
(xi,xj ,xl)∈R; αijl = 1[τ + d2

M (xi,xj) ≥
d2
M (xi,xl)], α?ijl = 1[d2

M (x?i ,xj) ≥ d2
M (x?i ,xl)]; x

?
i = xi + δ?i ; Xij =

(xi − xj)(xi − xj)T ,X?
ij = (x?i − xj)(x?i − xj)T , and Xil,X

?
il are defined sim-

ilarly. The learning rate ηt decays during training according to the exponential

function exp(−0.99(1 + 0.01t)). Next, we compute the proximal mapping for the

L1-norm regularisation, which is equivalent to applying the soft-thresholding oper-

ator toM t+ 1
3 :

M
t+ 2

3
mn = sign(M

t+ 1
3

mn )[|M t+ 1
3

mn | − ληt]+. (4.7)

Finally,M is projected onto the cone of PSD matrices via eigendecomposition:

M t+ 2
3 = V ΛV T

M t+1 = V max(Λ, 0)V T .
(4.8)

The optimisation algorithm of the proposed method is summarised in Algorithm 1.
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Algorithm 1: Metric learning with adversarial training
Input: triplet constraintsR, parameters λ, µ, τ, ε, maximum number of

iterations T
Output: MT

Initialization: M 0 = I;
for t = 1 to T do

Compute worst-case perturbation δ?i according to Eq. 4.5;
Perform gradient descent onM according to Eq. 4.6;
Perform proximal mapping onM according to Eq. 4.7;
ProjectM onto the PSD cone according to Eq. 4.8.

4.3.3.3 Computational complexity

We now analyse the computational complexity of the proposed method. MLadv has

the same computational complexity as LMNN in calculating the distance of each

triplet, performing gradient descent, and projecting onto the PSD cone; their total

complexity equals O(P 3 + nP 2 + |R| · P ), where P is the feature dimension after

variable encoding, n is the number of training instances, and |R| is the number of

triplet constraints. The extra cost results from the sorting operation used to find the

worst-case perturbation and the soft-thresholding operation used to perform the L1-

norm regularisation. The time complexity of the sorting step is O(|R| · P 2 logP )

and that of the soft-thresholding step is O(P 2). Overall, the time complexity of

MLadv per iteration is O(P 3 + |R| · P 2 logP + nP 2 + |R| · P ).

4.3.4 Geometric interpretation

We now provide a geometric interpretation for better understanding the effect of

perturbation.

To start with, we rewrite the gradient of Eq. 4.6 by plugging in the worst-case

perturbation derived in Eq. 4.5:
µ

|R|
∑
R
1[d2

M (xi,xl) ≤ τ + d2
M (xi,xj)](Xij −Xil)

+
1− µ
|R|

∑
R
1[d2

M (xi,xj) + τ < d2
M (xi,xl) ≤ d2

M (xi,xj) + 2‖Mxlj‖1,[ε]](X?
ij −X?

il),

(4.9)

where ‖Mxlj‖1,[ε] =
∑

maxε |M(xl − xj)| is the sum of ε maximal values in the

vector [|M1·(xl − xj)|, . . . , |MP ·(xl − xj)|].
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Figure 4.1: Illustration of MLadv. Instances are shown in the linearly mapped feature space
induced by an isotropic M (left) and an anisotropic M (right). Left: LMNN
learns M based on instances from the support region where the difference in
squared distances (DD) d2

M (xi,xl)−d2
M (xi,xj) is not greater than τ . MLadv

learns on additional instances from the adversarially vulnerable region where
the instance may be misclassified after adding the worst-case perturbation. The
regions are divided by two hyperplanes that are parallel to the decision bound-
ary with DD of τ and 2‖Mxlj‖1,[ε], respectively. Right: Instances lying above
the grey dash-dotted line select xj1 as NN and should be separated farther
away from the decision boundary due to the high correlation between M and
xl − xj1 . The effect of the metric is indicated by the arrow at the bottom-left
corner.

Eq. 4.9 shows that, while LMNN and its variants learn the metric only on

triplets where the impostor lies insufficiently far away from the instance, i.e. the

difference in squared distances (DD) d2
M (xi,xl)− d2

M (xi,xj) is less than or equal

to the required margin τ , the proposed method not only uses these information but

also selectively exploits triplets that satisfy the margin constraint. In particular, the

new selection criterion considers the correlation between the distance metric and

(xl −xj): if the correlation is high, i.e. the value of ‖Mxlj‖1,[ε] is large, it is more

likely this triplet will incur a loss and hence contribute to the gradient.

Figure 4.1 illustrates the above discussion with two figures. In both figures,

we show all instances in the linearly mapped feature space induced by the Maha-

lanobis distance, and consider different positions of xi with respect to fixed target

neighbour xj and impostor xl. The left figure illustrates which triplets are used in
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LMNN and MLadv for calculating the gradient; for simplicity, the learned M is

assumed to be isotropic, i.e. a scaled Euclidean distance. For xi1 , both methods use

the triplet (xi1 ,xj,xl) since DD is less than τ . For xi2 and xi3 , the methods differ.

(xi2 ,xj,xl) and (xi3 ,xj,xl) satisfy the margin constraint and hence are not used

in LMNN. However, they are used in the proposed MLadv as xi2 and xi3 may be

misclassified in the presence of perturbation; the perturbation sets with ε = 1 and

ε = 2 are indicated by the blue line and blue square, respectively. When ε = 1, xi2

may be misclassified as the worst-case perturbation δ?i2 can drag the instance across

the decision boundary; when ε = 2, both xi2 and xi3 may be misclassified. For

xi4 , both methods ignore the triplet (xi4 ,xj,xl) since xi4 remains far away from

the decision boundary even after adding δ?i4 .

The right figure presents the general case with an anisotropic M and multiple

target neighbours, and illustrates the interaction between DD, xl−xj , andM . Even

though the DDs of (xi1 ,xj1 ,xl) and (xi2 ,xj2 ,xl) are the same, xi1 is not robust

against the worst-case perturbation whereas xi2 is. The reason is that M expands

the horizontal distance, as indicated by the arrows at the bottom-left corner, and has

a higher correlation with xl − xj1 compared to xl − xj2 . This suggests that, for

an instance to be invariant to the worst-case perturbation, the requirement of DD is

determined locally with respect to xl − xj and dynamically with respect toM .

In summary, as points with the same DD form a separating hyperplane that is

orthogonal to the line joining xj and xl, the proposed method essentially divides

the instance space into three regions according to the hyperplanes with DD of τ and

2‖Mxlj‖1,[ε]. It then makes use of instances from the support region and adversar-

ially vulnerable region for learning the metric. The additional information from the

latter region is particularly important for datasets with a small sample size.

4.3.5 Theoretical analysis

In this section, we provide the generalisation bound for metric learning trained in

the adversarial setting. In essence, with the same form of loss function, adversarial

training incurs a larger loss than standard training due to the addition of perturba-

tion. Therefore, it is expected that the sample complexity would be higher in order
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to achieve the same generalisation performance.

We start by defining some notations. The adversarial loss is defined as

˜̀
M (zi, zj, zl) = 1[yi = yj 6= yl]

[
τ+ max

δi:‖δi‖∞≤ε
{d2
M (xi+δi,xj)−d2

M (xi+δi,xl)}
]

+
.

(4.10)

The generalisation bound studies the gap between the expected adversarial risk

R̃(M ) = E(zi,zj ,zl)∼D[˜̀M (zi, zj, zl)] and the empirical adversarial risk R̃n(M ) =

1
n(n−1)(n−2)

∑
i 6=j 6=l

˜̀
M (zi, zj, zl). LetMz denote the optimal solution to the learn-

ing problem:

min
M∈S+

P

R̃n(M) + λ‖M‖1. (4.11)

The generalisation bound ofMz is given by the following theorem.

Theorem 6. Let Mz be the solution to the problem (4.11). Then, with probability

at least 1− δ we have that

R̃(Mz)− R̃n(Mz) ≤
32τ(x2

max + εxmax)
√
e logP

λ
√
n

+ τ
[
1 +

x2
max + 2εxmax

λ

]√2 ln(1/δ)

n
+

4τ√
n
,

(4.12)

where xmax = supx,x′∈X ‖x− x′‖∞.

Theorem 6 is established based on the Rademacher complexity [16] and U-

statistics [86]; proof is given in Appendix 4.6.1.

We make three remarks here. First, by definition, the perturbation size is rel-

atively small compared to xmax, and therefore, εxmax < x2
max. This suggests that

adversarial training does not largely increase the sample complexity. Second, as

shown in the proof, if M is regularised via the common choice of the Frobenius

norm, the sample complexity required by adversarial training will be higher than the

standard training at a rate of O(
√
P ). To avoid this sublinear dependence of sample

complexity on feature dimension, L1-norm is used as the regulariser. Third, The-

orem 6 provides a general guarantee on the generalisation performance of triplet-

based metric learning trained in the adversarial setting. The adversarial loss defined
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in Eq. 4.10 with ε = 1 unifies the two loss functions defined in our learning objec-

tive (Eq. 4.3). In other words, the metric learned through the proposed algorithm

has a theoretical guarantee in terms of bounded generalisation gap.

4.4 Experiments
In this section, we first conduct experiments on a discretised dataset to evaluate

the proposed method when facing the problems of small sample size and feature

ambiguity. Then, we compare it with state-of-the-art methods on datasets with all

ordinal variables and mixed ordinal-and-nominal variables.

4.4.1 Parameter settings

The proposed method includes four hyperparameters, namely weight of origi-

nal instances µ, regularisation parameter λ, distance margin τ , and perturbation

size ε. Their values are identified via the random search strategy [59]. We sam-

ple 100 sets of values and select the one that gives the highest accuracy on the

validation set. The range of each hyperparameter is as follows: µ ∈ [0, 1],

λ ∈ {10−5, 10−4, 10−3, 10−2}, τ ∈ [0,max ‖xlj‖1], ε ∈ {0, 1, . . . , pord + 2pnom}.
The upper bound of τ is inspired by Eq. 4.9 with M initialised as the Euclidean

distance. The upper bound of ε is chosen based on the fact that perturbing one or-

dinal level to its adjacent level or a nominal level to another level causes at most

pord + 2pnom changes in encoded features. In addition, the initial learning rate is

tuned for each dataset before optimising the hyperparameters. We search its value

from {10−2, 10−1, . . . , 102} while holding µ, τ = 1 (i.e. replicating LMNN). The

MATLAB code for our method is available at http://github.com/xyang6/

MLadv.

Triplet constraints are constructed from 3 target neighbours and 10 nearest

impostors calculated under the Euclidean distance. 3NN is used as the classifier.

4.4.2 Experiments with discretised features

The goal of this experiment is to understand the potential of the proposed method

for data with a small training set and ambiguous features. Our experiment is based

on the UCI dataset Magic, which has 10 real-valued features, 19020 instances, and

http://github.com/xyang6/MLadv.
http://github.com/xyang6/MLadv.
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(a) effect of training sample size (b) effect of feature ambiguity

Figure 4.2: Evaluation of LMNN and MLadv on the discretised dataset Magic. Ordinal
variables are encoded as integers (‘int’) or a set of binary values (‘bin’).

2 classes. All features are first discretised into ordinal features with five equal-

frequency levels, and then encoded as integers (denoted as ‘int’) or as a set of binary

values (denoted as ‘bin’). We compare LMNN and the proposed method on both

types of data.

4.4.2.1 Learning from small training sets

In this study, we build the training set by randomly selecting 5, 20, . . . , 95 instances

from each class; the validation and test sets each include 9000 instances. The experi-

ment is implemented 20 times and the mean accuracy is shown in Figure 4.2a; quan-

titative results, including the standard deviation, are provided in Appendix 4.6.2.2.

First, our MLadv outperforms LMNN over the whole range of training sample

size, no matter what the encoding scheme is. Second, we see a clear advantage of

MLadv over LMNN when the training set is small. Third, we notice that our MLadv

performs better with binary encoding than integer encoding, when the sample size

is larger than 20.

4.4.2.2 Learning under feature ambiguity

We move on to evaluate the method when encountering feature ambiguity. The

experimental setting is same as before; the training sample size is selected as 80. To

simulate ambiguity, for each feature, we select 10%, 20%, . . . , 50% instances whose

ground-truth real values are closest to the discretisation threshold, and change their

ordinal level to the adjacent level.
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Figure 4.3: Demonstration of the training process of MLadv on Magic with binary encod-
ing. Figures show the 2D embedding of the learned distance via multidimen-
sional scaling. Sizes of green circles and yellow circles are proportional to
the number of triplets violating the distance margin constraint and incurring
a loss after adding the worst-case perturbation, respectively. As the training
progresses, the metric becomes more robust against the perturbations and the
difference between the intra-class distance and the inter-class distance becomes
more remarkable.

Figure 4.2b shows the classification accuracy of this study. MLadv improves

LMNN consistently over a wide range of ambiguity levels, and the performance

gain becomes slightly larger as the ambiguity level increases.

4.4.2.3 Visualisation of training process

Our geometric interpretation suggests that MLadv considers additional triplets from

the adversarially vulnerable region, which would be particularly valuable in the

small-sized problem. In Figure 4.3, we present the training process of MLadv at

different iterations. The multidimensional scaling [87] is used to embed the learned

distance between 20 instances into two dimensions. Sizes of green circles and yel-

low circles are proportional to the number of triplets that do not satisfy the distance

margin (i.e. second term of Eq. 4.3) and the number of triplets that incur a loss after

adding the worst-case perturbation (i.e. third term of Eq. 4.3), respectively.

At the beginning of training, as instances of the same class are not well sep-

arated from instances of the different class, almost all triplets violate the distance

margin constraints. Therefore, the metric is learned mostly from the original in-

stances (as indicated by most points being in green circles). After 10 iterations, the

majority of instances are closer to target neighbours than to impostors, but they are

not robust to the worst-case perturbation (as indicated by a large number of yellow
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circles). Our method will continue using their information for metric learning. Af-

ter 200 iterations, sizes of yellow circles become smaller, indicating that the learned

metric becomes more robust. At the end of training, while some instances still vio-

late the margin constraint, a large number of instances are surrounded by instances

of the same class and locate far away from instances of the different class.

4.4.3 Experiments on real datasets

The goal of this experiment is to compare the proposed method with robust metric

learning methods and ordinal metric learning methods under the conditions when

the training sample size is small or the feature ambiguity is present. As ambiguities

in categorical levels occur more frequently in ordinal variables than in nominal

variables, our experiments only study datasets with all ordinal variables or with a

mixture of ordinal and nominal variables.

4.4.3.1 Datasets and experimental settings

We use 6 datasets from UCI machine learning repository [57] and WEKA work-

bench [88]. Information on feature type, feature dimension, sample size and class

information is listed in Table 4.1. Here, we explain the last column of ambiguity,

which is assigned based on our understanding of the data. The degree of ambiguity

is inherent in the data and may be inferred from the data source. Lecturer and So-

cial Worker collect subjective ratings and assessments respectively, and hence may

include a high level of ambiguity. Hayer-Roth and Lymphography are social data

and medical data respectively; ambiguity is also likely to exist in these data. Car

and Nursery are derived from a hierarchical decision model; their ambiguity levels

are expected to be relatively low as there is an underlying rule behind these data.

Table 4.1: Characteristics of the datasets.

Dataset Abb. Feature Type #Instances pord pnom #Classes Ambiguity

Car CA ordinal 1728 6 0 4 low
Nursery NU ordinal+nominal 12960 6 2 4 low
Hayes-Roth HR ordinal+nominal 132 2 2 3 medium
Lymphography LY ordinal+nominal 148 3 15 4 medium
Lecturer LE ordinal 1000 4 0 5 high
Social Worker SW ordinal 1000 10 0 4 high
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Each dataset is randomly split into the training, validation, and test sets. To

simulate a small-sample environment, we set their proportions as 20%, 40%, 40%

for all datasets except for the large dataset Nursery. For Nursery, 100 samples are

selected as the training set, and the remaining samples are equally split into the

validation and test sets. We repeat the random split 20 times, and report the mean

value and standard deviation of classification accuracy.

We compare the proposed method with LMNN and three closely related meth-

ods. DRIFT [49] and AML [64] are robust metric learning methods that are de-

signed to handle feature uncertainty for real-valued data. Ord-LMNN [74] adapts

LMNN to ordinal variables by assuming a latent variable for each ordinal variable.

Training procedures of these methods are specified in Appendix 4.6.2.1.

4.4.3.2 Results and discussions

Table 4.2 reports the classification accuracy of 3NN with the Mahalanobis distance

learned from different methods. First, we see that the proposed method outper-

forms the baseline method LMNN, regardless of the encoding scheme. Second, we

compare MLadv with the existing ordinal metric learning method Ord-LMNN. Ord-

LMNN considers the order relation of ordinal variables and is effective on datasets

Balance Scale and Car. However, as the method estimates the distributional param-

eters for each feature, its effectiveness highly depends on the data quality. When the

ambiguity level is high, the accuracy of Ord-LMNN becomes even worse than the

baseline whereas our method remains competitive. Third, the robust metric learn-

ing method DRIFT achieves a high accuracy when the feature ambiguity is high.

However, as the method ignores the properties of ordinal and nominal variables, its

performance is inferior to our method. Overall, our method achieves the best or

second-best performance on each dataset.

We make a final remark on the encoding scheme and practicability of the pro-

posed method. On most datasets, MLadv-bin is superior to MLadv-int. We hy-

pothesise that, as binary encoding represents the data by using more features, the

expressive power of the metric increases and hence may improve the discriminabil-

ity. While the two encoding schemes are evaluated separately in our experiment,
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Table 4.2: Classification accuracy (mean value±standard deviation) of 3NN with different
metric learning methods. The best methods are shown in bold and the second
best ones are underlined.

LMNN-int LMNN-bin DRIFT AML Ord-LMNN MLadv-int MLadv-bin

low level of ambiguity
CA 89.94±1.31 92.24±0.89 90.24±1.17 88.84±1.13 93.94±1.43 90.13±1.32 92.90±1.13
NU 85.73±1.68 86.11±1.78 86.01±2.02 79.83±3.11 87.54±1.45 86.65±2.12 86.67±1.48

medium level of ambiguity
HR 71.83±10.72 76.42±6.80 71.34±10.37 65.98±7.85 75.12±9.55 74.51±10.06 78.58±5.94
LY 78.51±7.15 79.91±6.65 83.16±6.40 68.25±17.57 74.56±9.17 82.37±3.58 83.33±4.85

high level of ambiguity
LE 55.08±2.55 54.83±2.53 55.64±3.00 55.61±2.28 53.03±3.27 55.90±2.70 55.61±3.00
SW 50.00±2.61 50.58±2.30 50.73±2.93 50.50±2.07 48.68±2.82 51.10±2.15 51.91±3.09

they could be determined at the step of choosing the initial learning rate in practical

applications. In other words, there is no need to tune hyperparameters twice. Except

for Lymphography, this early decision can always find the optimal method between

MLadv-int and MLadv-bin.

4.5 Conclusions and future work

In this chapter, we propose that adversarial training with a deliberately designed

perturbation set can enhance triplet-based metric learning methods in mitigating

the problems of high feature ambiguity and small sample size faced by ordinal and

mixed ordinal-and-nominal data. Experiments on real datasets verify the efficacy of

our method. Moreover, we discuss the effect of adversarial training from a geomet-

ric perspective. Compared with previous methods using a fixed margin constraint,

the proposed method provides a flexible way of adjusting the margin, which is data-

dependent and dynamic. Furthermore, we guarantee the theoretical performance of

adversarially trained metric. It shows that the adversarial training does not increase

the order of sample complexity required for the metric to generalise, provided the

suitable regulariser of L1-norm is applied.

This study focuses only on categorical features. Generalising the method to a

mix of categorical and numerical features would be practically valuable. In addition,

metric learning comprises a loss function and a regulariser, and we only tailor the



4.6. Appendix 81

loss function to incorporate the properties of categorical features. In the future, we

will consider designing specific regularisers for this feature type.

4.6 Appendix

4.6.1 Proof of generalisation bound

The generalisation bound is established based on the Rademacher complexity [16].

With the same form of loss function, adversarial training incurs a larger loss than

standard training due to the addition of perturbation. Therefore, we need to first

show that the adversarial loss and the Rademacher complexity of the adversarial

loss function class are both bounded. After that, we prove the bound following the

works of [89; 90; 86].

For completeness, we list all notations used in the proof as follows.

Inner product, vector norm, and matrix norm: 〈X,Y 〉 = trace(XTY ) denotes the

Frobenius inner product of matrices X and Y . ‖v‖1 and ‖v‖2 denote the L1-norm

and L2-norm of a vector v, respectively; ‖M‖1 =
∑

mnMmn and ‖M‖F denote

the (elementwise) L1-norm and the Frobenius norm of a matrix M , respectively.

Given any matrix norm ‖ · ‖, its dual norm is defined as ‖M‖∗ = sup{〈M ,X〉 :

‖X‖ ≤ 1}.
Adversarial loss of triplet-based metric learning problems with L∞-bounded per-

turbations:

˜̀
M (zi, zj, zl) = 1[yi = yj 6= yl][τ+ max

δi:‖δi‖∞≤ε
{d2
M (xi+δi,xj)−d2

M (xi+δi,xl)}]+
(4.13)

Expected adversarial risk:

R̃(M) = E(zi,zj ,zl)∼D[˜̀M (zi, zj, zl)]
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Empirical adversarial risk:

R̃n(M ) =
1

n(n− 1)(n− 2)

∑
i 6=j 6=l

˜̀
M (zi, zj, zl)

Rademacher complexity [91]: For any function class F , given a sample set zn of

size n, the empirical Rademacher complexity of F with respect to zn is defined as:

R̂n(F) =
1

n
E
σ

[
sup
f∈F

n∑
i=1

σif(zi)
]
,

where σ1, . . . , σn are Rademacher variables, i.i.d. according to P(σi = 1) =

P(σi = −1) = 1
2
. The Rademacher complexity is the expectation of the em-

pirical Rademacher complexity over all samples of size n drawn according to D:

Rn(F) = Ezn∼D[R̂n(F)].

We propose to learn the distance metric by optimising the following objective

function:

min
M∈S+

P

R̃n(M) + λ‖M‖1. (4.14)

The optimal solution to Eq. 4.14 is denoted as Mz. Since R̃n(Mz) + λ‖Mz‖1 ≤
R̃n(0) +λ‖0‖1 ≤ τ , where 0 denotes the zero matrix, we can restrict the parameter

space ofM as:

H =
{
M : M ∈ S+

P , ‖M‖1 ≤
τ

λ

}
.

The following lemma shows that the adversarial loss is bounded.

Lemma 1. The adversarial loss of Eq. 4.13 is upper bounded:

sup
zi,zj ,zl∈Z

sup
M∈H

˜̀
M (zi, zj, zl) ≤ τ

[
1 +

2εxmax

λ
+
x2

max

λ

]
, (4.15)

where xmax = supx,x′∈X ‖x− x′‖∞.
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Proof.

˜̀
M (zi, zj, zl)

≤[τ + max
δi:‖δi‖∞≤ε

{d2
M (xi + δi,xj)− d2

M (xi + δi,xl)}]+

=[τ + d2
M (xi + ε sign(M (xl − xj)),xj)− d2

M (xi + ε sign(M (xl − xj)),xl)]+
=[τ + d2

M (xi,xj)− d2
M (xi,xl) + 2ε sign(M(xl − xj))TM(xl − xj)]+

≤τ + 〈M ,Xij〉+ 2ε〈M , (xl − xj) sign(M(xl − xj))T 〉
(a)

≤τ + ‖M‖1‖Xij‖∞ + 2ε‖M‖1‖(xl − xj) sign(M (xl − xj))T‖∞

⇒ sup
zi,zj ,zl∈Z

sup
M∈H

˜̀
M (zi, zj, zl)

(b)

≤ τ +
τ

λ
x2

max + 2ε
τ

λ
xmax

Remark: Step (a) of the above proof makes use of the dual norm of ‖M‖1, and

step (b) bounds ‖(xl − xj) sign(M(xl − xj))T‖∞ by xmax. If we regularise M

via the Frobenius norm, the dual norm will be the Frobenius norm, and ‖(xl −
xj) sign(M (xl−xj))T‖F ≤

√
P supx,x′∈X ‖xl−xj‖2. This sublinear dependence

of the loss function on the feature dimension is unavoidable, even after normalising

all instances to have a unit length with respect to the L2-norm.

The following lemma shows that the Rademacher complexity of the adversarial

loss function class is bounded.

Lemma 2. Let Rn = 1
n
Ezn,σ[supM∈H

∑n
i=1 σi

˜̀
M (zi, z

′
i, z
′′
i )], where z′i, z

′′
i are

independent of zi. Then,

Rn ≤
8τ(x2

max + εxmax)
√
e logP

λ
√
n

+
τ√
n
. (4.16)

Proof. The proof builds on the contraction lemma of the Rademacher complex-

ity [92] and the Khinchin–Kahane inequality (Lemma 9 of [89]).
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Ezn,σ sup
M∈H

n∑
i=1

σi ˜̀M (zi, z
′
i, z
′′
i )

=Ezn,σ sup
M∈H

n∑
i=1

σi1[y = y′ 6= y′′][τ + d2
M (xi + δ?i ,x

′
i)− d2

M (xi + δ?i ,x
′′
i )]+

≤Ezn,σ sup
M∈H

∣∣∣ n∑
i=1

σi
(
[τ + d2

M (xi + δ?i ,x
′
i)− d2

M (xi + δ?i ,x
′′
i )]+ − τ

)∣∣∣
+ Eσ

∣∣∣ n∑
i=1

σiτ
∣∣∣

(a)

≤2Ezn,σ sup
M∈H

∣∣∣ n∑
i=1

σi
[
d2
M (xi + δ?i ,x

′
i)− d2

M (xi + δ?i ,x
′′
i )
]∣∣∣+ Eσ

∣∣∣ n∑
i=1

σiτ
∣∣∣

≤4Ezn,σ sup
M∈H

∣∣∣ n∑
i=1

σid
2
M (xi,x

′
i)
∣∣∣

+ 4εEzn,σ sup
M∈H

∣∣∣ n∑
i=1

σi sign(M(x′′i − x′i))TM (x′′i − x′i)
∣∣∣+ Eσ

∣∣∣ n∑
i=1

σiτ
∣∣∣

≤4τ

λ
Ezn,σ

∥∥∥ n∑
i=1

σi(xi − x′i)(xi − x′i)T
∥∥∥
∞

+
4τε

λ
Ezn,σ

∥∥∥ n∑
i=1

σi(x
′′
i − x′i) sign(M(x′′i − x′i))T

∥∥∥
∞

+ τEσ
∣∣∣ n∑
i=1

σi

∣∣∣ (4.17)

Step (a) is obtained by applying the Talagrand’s contraction lemma.

Each term in the last line of inequality (4.17) can be bounded by applying

the Khinchin–Kahane inequality. Here, we show the bound of the second term;

bounds of the first and third terms are derived in [89] and results are listed below

for completeness.

Ezn,σ
∥∥∥ n∑
i=1

σi(x
′′
i − x′i) sign(M (x′′i − x′i))T

∥∥∥
∞

≤Ezn,σ
∥∥∥ n∑
i=1

σi(x
′′
i − x′i) sign(M (x′′i − x′i))T

∥∥∥
q

for any 1 < q <∞

=Ezn,σ
[ P∑
k1,k2=1

∣∣ n∑
i=1

σi(x
′′
i,[k1] − x′i,[k1]) sign(Mk2·(x

′′
i − x′i))

∣∣q] 1
q
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≤Ezn
[ P∑
k1,k2=1

Eσ
∣∣ n∑
i=1

σi(x
′′
i,[k1] − x′i,[k1]) sign(Mk2·(x

′′
i − x′i))

∣∣q] 1
q

(b)

≤Ezn
[ P∑
k1,k2=1

(q − 1)
q
2

(
Eσ
∣∣ n∑
i=1

σi(x
′′
i,[k1] − x′i,[k1]) sign(Mk2·(x

′′
i − x′i))

∣∣2) q
2
] 1

q

=Ezn
[ P∑
k1,k2=1

(q − 1)
q
2

( n∑
i=1

(
x′′i,[k1] − x′i,[k1]

)2(
sign(Mk2·(x

′′
i − x′i))

)2
) q

2
] 1

q

≤q 1
2Ezn

[ P∑
k1,k2=1

( n∑
i=1

sup
x,x′∈X

‖x− x′‖2
∞

) q
2
] 1

q

=q
1
2P

2
q sup
x,x′∈X

‖x− x′‖∞
√
n

(c)
=2 sup

x,x′∈X
‖x− x′‖∞

√
en logP

Ezn,σ
∥∥∥ n∑
i=1

σi(xi − x′i)(xi − x′i)T
∥∥∥
∞
≤ 2 sup

x,x′∈X
‖x− x′‖2

∞

√
en logP

Eσ
∣∣∣ n∑
i=1

σi

∣∣∣ ≤ √n (4.18)

In step (b), we apply the Khinchin–Kahane inequality with 2 < q < ∞. In step

(c), we set q = 4 logP . Putting results of (4.18) into the inequality (4.17) gives the

bound of (4.16).

We now prove the generalisation bound ofMz.

Theorem 7. LetMz be the solution to the problem (4.14). Then, for any 0 < δ < 1,

with probability 1− δ we have that

R̃(Mz)− R̃n(Mz) ≤
32τ(x2

max + εxmax)
√
e logP

λ
√
n

+ τ
[
1 +

x2
max + 2εxmax

λ

]√2 ln(1/δ)

n
+

4τ√
n
,

(4.19)

where xmax = supx,x′∈X ‖x− x′‖∞.

Proof.

Step 1: We bound the difference between R̃(Mz) − R̃n(Mz) and Ezn supM∈H

[R̃(M)− R̃n(M )] via the McDiarmid’s inequality [93].
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First, we observe that R̃(Mz) − R̃n(Mz) ≤ supM∈H[R̃(M ) − R̃n(M )].

Next, we apply the McDiarmid’s inequality to bound the difference between

supM∈H[R̃(M) − R̃n(M )] and Ezn supM∈H[R̃(M ) − R̃n(M)], where Ezn de-

notes the expectation with respect to the training sample set zn. An essential condi-

tion of the McDiarmid’s inequality is that the function supM∈H[R̃(M)− R̃n(M )]

has bounded differences, which is shown as follows. Let zn = (z1, . . . ,zk−1,

zk, zk+1, . . . ,zn) and zn′ = (z1, . . . ,zk−1, z
′
k, zk+1, . . . ,zn) be two training sam-

ple sets that differ in one sample. Combining the result of Lemma 1, we have the

following inequality:

∣∣∣ sup
M∈H

[R̃(M ; zn)− R̃n(M ; zn)]− sup
M∈H

[R̃(M ; zn′)− R̃n(M ; zn
′
)]
∣∣∣

≤
∣∣∣ sup
M∈H

R̃n(M ; zn)− sup
M∈H

R̃n(M ; zn′)
∣∣∣

=
1

n(n− 1)(n− 2)
sup
M∈H

∑
k 6=j 6=l

|˜̀M (zk, zj, zl)− ˜̀
M (z′k, zj, zl)|

≤ 1

n(n− 1)(n− 2)
sup
M∈H

∑
k 6=j 6=l

(|˜̀M (zk, zj, zl)|+ |˜̀M (z′k, zj, zl)|)

≤ 2

n
sup
M∈H

˜̀
M (zk, zj, zl)

≤2τ

n

[
1 +

2εxmax

λ
+
x2

max

λ

]
.

Applying the McDiarmid’s inequality to the term supM∈H[R̃(M )− R̃n(M )], with

probability 1− δ there holds

sup
M∈H

[R̃(M )− R̃n(M)]

≤Ezn sup
M∈H

[R̃(M )− R̃n(M)] + τ
[
1 +

2εxmax

λ
+
x2

max

λ

]√2 ln(1/δ)

n
.

(4.20)

Step 2: We bound the expectation term Ezn supM∈H[R̃(M)−R̃n(M )] by reducing

the analysis of non-i.i.d. triplets to i.i.d. random variables via the U-statistic [94]

and symmetrising with the introduction of Rademacher variables [16].
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First, based on Lemma 4 of [86], we can derive the following inequality:

Ezn sup
M∈H

[R̃(M)− R̃n(M )]

=Ezn sup
M∈H

[
R̃(M )− 1

n(n− 1)(n− 2)

∑
i 6=j 6=l

˜̀
M (zi, zj, zl)

]

≤Ezn sup
M∈H

[
R̃(M )− 1

bn
3
c

bn
3
c∑

i=1

˜̀
M (zi, zbn

3
c+i, zbn

3
c+i)
]
,

(4.21)

where b·c denotes the floor function. For simplicity, define R̄n(M ) = 1
bn

3
c
∑bn

3
c

i=1

˜̀
M (zi, zbn

3
c+i, zbn

3
c+i).

Next, we symmetrise by replacing R̃(M ) with Ez̄n [R̄n(M )]. Let z̄n =

(z̄1, . . . , z̄n) denote another training set, where z̄i’s are independent of each other

and independent of zi’s. Then,

Ezn sup
M∈H

[R̃(M )− R̄n(M)] =Ezn sup
M∈H

[
Ez̄n [R̄n(M ; z̄n)]− R̄n(M ; zn)

]
≤Ezn,z̄n sup

M∈H
[R̄n(M ; z̄n)− R̄n(M ; zn)].

(4.22)

Finally, we symmetrise again by introducing the Rademacher variables.

Ezn,z̄n sup
M∈H

[R̄n(M ; z̄n)− R̄n(M ; zn)]

=Ezn,z̄n
1

bn
3
c sup
M∈H

bn
3
c∑

i=1

[˜̀M (z̄i, z̄bn
3
c+i, z̄bn

3
c+i)− ˜̀

M (zi, zbn
3
c+i, zbn

3
c+i)]

=Ezn,z̄n,σ
1

bn
3
c sup
M∈H

bn
3
c∑

i=1

σi[˜̀M (z̄i, z̄bn
3
c+i, z̄bn

3
c+i)− ˜̀

M (zi, zbn
3
c+i, zbn

3
c+i)]

≤Ezn,z̄n,σ
1

bn
3
c sup
M∈H

bn
3
c∑

i=1

σi ˜̀M (z̄i, z̄bn
3
c+i, z̄bn

3
c+i)

− Ezn,z̄n,σ
1

bn
3
c sup
M∈H

bn
3
c∑

i=1

σi ˜̀M (zi, zbn
3
c+i, zbn

3
c+i)

=2Ezn,σ
1

bn
3
c sup
M∈H

bn
3
c∑

i=1

σi ˜̀M (zi, zbn
3
c+i, zbn

3
c+i) (4.23)
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Step 3: Substituting the result of Lemma 2 into the inequality (4.23) and combining

with inequalities (4.20),(4.21),(4.22) prove the theorem.

4.6.2 Implementation details and additional experimental re-

sults

This section includes experimental settings of MLadv and comparison methods,

quantitative results of experiments with discretised features, and convergence

curves of MLadv.

4.6.2.1 Experimental settings of MLadv and comparison methods

MLadvM is initialised as the identity matrix. The learning rate decays during

training according to the exponential function exp(−0.99(1 + 0.01t)). The training

stops if the relative change in the objective function is smaller than the threshold of

10−7 or reaches the maximum number of iterations of 5000.

Comparison Methods The comparison methods are implemented by using the of-

ficial codes provided by the authors. Trade-off parameters are selected based on

the validation performance. For LMNN, µ is chosen from {0.1, 0.2, . . . , 0.9}. For

DRIFT and AML, a grid search is performed with the grid suggested by the au-

thors. For Ord-LMNN, the uniform prior is tested in the experiment; λ is chosen

from {0.4, 1, . . . , 4} and τ is chosen from {0.5, 1, . . . , 3.5}. All other parameters

are set as default.

4.6.2.2 Quantitative Results of Experiments with discretised Fea-

tures

Tables 4.3 and 4.4 are supplements to Figure 4.2, which list the mean value and

standard deviation of classification accuracy on the discretised dataset Magic.

4.6.2.3 Convergence curve

As shown in Figure 4.4, MLadv converges before reaching the maximum iteration

number.
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Table 4.3: Effect of training sample size on the classification accuracy (mean value
±standard deviation) of LMNN and MLadv.

Sample size LMNN-int MLadv-int LMNN-bin MLadv-bin

5 60.97±9.91 68.96±5.32 59.56±6.52 65.29±5.08
20 72.67±4.11 74.30±3.08 71.12±4.28 75.32±3.03
35 72.14±2.26 72.98±2.18 71.93±2.07 75.62±2.51
50 73.88±1.80 74.77±2.16 73.28±2.07 76.42±1.86
65 73.83±2.21 74.72±1.91 73.75±1.94 76.54±1.62
80 74.37±1.72 75.17±1.50 74.50±1.87 76.53±1.76
95 74.52±1.27 75.20±1.22 74.97±1.40 77.05±1.64

Table 4.4: Effect of ambiguity level on the classification accuracy of LMNN and MLadv.

Ambiguity level LMNN-int MLadv-int LMNN-bin MLadv-bin

0% 74.37±1.72 75.20±1.22 74.50±1.87 77.05±1.64
10% 73.22±1.59 74.36±1.34 73.96±1.58 76.16±1.35
20% 73.19±1.65 74.08±1.78 73.69±2.10 76.00±1.40
30% 71.81±2.07 73.09±1.85 72.56±2.37 75.51±1.70
40% 70.21±2.63 71.69±2.34 71.36±2.63 74.29±2.54
50% 69.33±3.06 71.20±2.53 69.77±2.84 73.20±2.53

Figure 4.4: Convergence curves of MLadv on datasets HR and LY.



Chapter 5

Metric Learning for Probabilistic

Labels

5.1 Introduction

Metric learning [3; 6] is shown to be effective in improving the classification per-

formance of distance-based classifiers, such as k-nearest neighbour (NN). It aims

to learn a distance measure such that semantically similar instances are close under

the new measure and dissimilar instances are far apart. In most supervised metric

learning algorithms, the metric, most commonly the generalised Mahalanobis dis-

tance, is learned by formulating an optimisation problem [1]. The class information

of training instances is used to construct pairwise or triplet constraints, which are

then encoded into the loss function and guide the learning process; instances of the

same class are supposed to be similar and instances of different classes should be

dissimilar.

The current formulation builds on the assumption that the class label is deter-

ministic, meaning that each instance belongs to one of the classes with complete

certainty. However, in some practical applications, it is more natural that the in-

stance belongs to a class with some probability and thus the labels are probabilistic.

For instance, a physician may encounter uncertainty when diagnosing a patient as

having a disease and hence could only provide a probability to indicate the confi-

dence in the decision. Another application is crowdsourcing. Multiple annotators
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are asked to classify the same instance and they may not agree on the class label.

The proportion of annotators who assign the same label can be viewed as the prob-

ability that the instance belongs to this class.

The key challenge of learning the metric from probabilistic labels is how to

construct informative constraints. A brute-force approach is to convert probabilis-

tic labels into deterministic labels, such as by selecting the class whose probability

exceeds a pre-defined threshold in binary classification tasks or the one with the

highest probability in multi-class classification tasks, and then proceed as usual.

However, this results in a loss of information about uncertainty and raises a new

issue of choosing an appropriate threshold [95]. [96] proposes a solution to con-

struct triplet constraints from probabilistic labels for binary classification problems.

It ranks all instances according to their probabilities of belonging to the positive

class and, based on the ranks, four sets of constraints are derived. For example, in-

stances with closer ranks are considered to be more similar. While it takes account

of probabilistic labels, the method is limited to binary classification. A simple trans-

formation of a multi-class problem into a binary problem via the one-vs-all scheme

again discards rich information about individual classes.

In this chapter, we propose a new metric learning algorithm for probabilistic la-

bels based on neighbourhood components analysis (NCA) [11]. NCA is a classical

method which learns a linear transformation matrix to maximise the expected accu-

racy of the stochastic nearest neighbour classifier. Benefiting from its probabilistic

formulation, we can sidestep the issue of constructing pairwise or triplet constraints

and learn the metric directly from probabilistic labels. More specifically, we firstly

revise the existing way of estimating class membership probabilities by replacing

deterministic labels with probabilistic labels. Secondly, to fully exploit the proba-

bility information on all classes and ensure training stability, we propose to learn

the transformation matrix by minimising the Jensen-Shannon divergence (JSD) [97]

between the observed probability distribution and the predicted probability distri-

bution.

In addition to the above methodological contribution, we propose new evalu-
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ation criteria to assess the effectiveness of metric learning algorithms in the setting

of probabilistic labels. The conventional performance measure is the classification

accuracy; we suggest to also measure the distance between the observed probability

distribution and the predicted probability distribution. The reason is that the pre-

dicted probability would be valuable to inform real-world decision making, such as

in the medical diagnosis application. Therefore, a good prediction should not only

be correct but also associated with a reasonable probability of being correct. To this

end, three statistical distances are considered. We test the proposed algorithm on 7

real datasets with simulated and real probabilistic labels, and the method achieves

good performance under both accuracy-based and distance-based measures.

The rest of this chapter is organised as follows. Section 5.2 provides prelim-

inaries and reviews NCA. Section 5.3 proposes the new metric learning algorithm.

Section 5.4 presents the empirical study and introduces the new evaluation criteria.

Section 5.5 draws a conclusion and discusses future work.

5.2 Neighbourhood components analysis (NCA)
In a conventional supervised setting, i.e. labels are deterministic, we are given a

set of n training examples {(xi, yi)}ni=1, where instances xi ∈ Rp and labels yi ∈
{1, . . . , C}. The generalised Mahalanobis distance is represented by a p × p real-

valued positive semi-definite matrixM and, asM can be decomposed intoLTL, it

is equivalent to computing the Euclidean distance in the linearly transformed space

after mapping the data by L:

dM (xi,xj) =
√

(xi − xj)TM (xi − xj)

= ‖Lxi −Lxj‖2.

The goal of neighbourhood components analysis (NCA) is to learn the lin-

ear transformation matrix L such that the test accuracy of NN classifier is max-

imised. As the test data is unavailable, the method instead maximises the leave-

one-out (LOO) classification accuracy on the training data. Moreover, to avoid the

discontinuity of the LOO accuracy as a function of L, a stochastic selection rule is
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used to approximate the selection of NN, leading to a probabilistic formulation of

metric learning.

The stochastic selection rule defines the probability that xi selects xj as its

neighbour by applying a softmax function over the Mahalanobis distance:

pij =
exp(−‖Lxi −Lxj‖2

2)∑
k 6=i exp(−‖Lxi −Lxk‖2

2)
, pii = 0. (5.1)

Let zi denote the predicted label of xi. Then xi will be predicted as class c with the

following probability:

P (zi = c) =
n∑
j=1

pij1[yj = c], (5.2)

where 1[·] denotes the indicator function.

To learn L, two objective functions have been proposed. The first one is to

maximise the expected number of instances that are correctly classified:

max
L

n∑
i=1

n∑
j=1

pij1[yj = yi].

The second objective is to maximise the log-likelihood of all instances selecting

same-class points as their neighbours:

max
L

n∑
i=1

log
( n∑
j=1

pij1[yj = yi]
)
. (5.3)

Eq. 5.3 can be alternatively interpreted as minimising the sum of Kullback–Leibler

(KL) divergences from the predicted probability distribution P (Zi) = [P (zi =

1), . . . , P (zi = C)] to the observed probability distribution P (Yi) over all instances.
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5.3 Probabilistic neighbourhood components analy-

sis (PNCA)
In this section, we propose a new approach to learning the metric from probabilis-

tic labels; the method is termed probabilistic neighbourhood components analy-

sis (PNCA). The formulation of PNCA is first introduced, followed by its objective

function. The optimisation algorithm is finally presented.

5.3.1 Probabilistic formulation of NCA

Compared with deterministic labels where each instance xi is associated with a

label yi, in the case of probabilistic labels, xi is associated with a vector of label

probabilities P (Yi) = [P (yi = 1), . . . , P (yi = C)]. Learning the metric based on

NCA is particularly appropriate for probabilistic labels since it outputs a prediction

with probability. Nevertheless, the method requires two revisions on the estimation

of predicted probabilities and the objective function for learning L.

To estimate the predicted probability that xi belongs to class c, we replace the

deterministic labels in Eq. 5.2 by probabilistic labels as follows:

P (zi = c) =
n∑
j=1

pijP (yj = c), (5.4)

where pij is given by Eq. 5.1 and is a function of the transformation matrix L. As

presented in the following section, L will be learned by optimising the divergence

loss.

5.3.2 Divergence loss

To make full use of the probability information on labels, we propose to min-

imise the Jensen-Shannon divergence (JSD) [97] between the observed probability

distribution P (Y ) and the predicted probability distribution P (Z): let P (Mi) =

1
2
(P (Yi) + P (Zi)), then the divergence loss is defined as

Ldiv =
1

n

n∑
i=1

DJSD(P (Yi)‖P (Zi))
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=
1

n

n∑
i=1

[1

2
DKL(P (Yi)‖P (Mi)) +

1

2
DKL(P (Zi)‖P (Mi))

]
(5.5)

=
1

2n

n∑
i=1

C∑
c=1

(
P (yi = c) log

P (yi = c)

P (mi = c)
+ P (zi = c) log

P (zi = c)

P (mi = c)

)
.

JSD is an information-theoretic divergence measure between two probability dis-

tributions; a small value of JSD indicates that the distributions are more similar.

Therefore, the preceding objective function encourages learning a transformation

matrix such that the predicted probability, derived from neighbours in the trans-

formed space, is similar to the observed probability. Moreover, compared with the

KL divergence used in NCA, optimising the JSD leads to a more stable training

process. The reason is that the JSD is well defined over the probability range of

[0, 1] and thus will be less affected by highly confident instances whose label prob-

abilities approach to 1 for one class and 0 for all other classes. This will be further

explained after presenting the gradient in Section 5.3.3.

5.3.3 Optimisation problem of PNCA

The optimisation problem of PNCA is formulated by combining the divergence loss

with a regularisation term to constrain the complexity of L:

min
L
Ldiv + λ‖L‖2

F , (5.6)

where ‖L‖F denotes the Frobenius norm ofL; λ is a hyperparameter which controls

the influence of the regularisation.

The optimisation problem of Eq. 5.6 is non-convex and is optimised via the

gradient descent algorithm. The gradient of Ldiv is given as follows:

∂Ldiv

∂L
= L

n∑
i=1

n∑
j=1

( C∑
c=1

log
(1

2
+

1

2

P (yi = c)

P (zi = c)

)(
P (yj = c)− P (zi = c)

))
pijXij,

(5.7)

where Xij = (xi − xj)(xi − xj)T . As mentioned before, minimising the JSD

leads to more stable training than minimising the KL divergence. This is due to
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the influence of P (zi = c) on the gradient. The objective function built on the

KL divergence and the associated gradient are given in Eq. 5.8. Compared with it,

minimising the JSD introduces an additional logarithm operator to 1/P (zi = c) and

hence avoids the gradient to be predominantly determined by a few instances whose

P (zi = c) is close to zero.

L =
1

n

n∑
i=1

DKL(P (Yi)‖P (Zi));

∂L
∂L

= 2L
n∑
i=1

n∑
j=1

( C∑
c=1

P (yi = c)

P (zi = c)
P (yj = c)− 1

)
pijXij.

(5.8)

5.4 Experiments
In this section, we firstly explore how probabilistic labels affect metric learning on

two toy examples. Secondly, we evaluate the performance of PNCA on 7 datasets

with synthetic and real probabilistic labels. Thirdly, we propose new evaluation

measures to assess the reliability of predicted probabilities.

5.4.1 Toy examples

The goal of this experiment is to understand the benefit and limitation of considering

label probabilities when learning the metric. To this end, we simulate two binary

classification datasets, synthesise probabilistic labels, visualise the metric learned

from NCA and PNCA, and compare the classification accuracy. NCA is optimised

by using the KL divergence as the objective function (i.e. Eq. 5.3) and, for a fair

comparison, PNCA is optimised with only the divergence loss (i.e. λ = 0).

The first dataset shows the benefit of utilising label probabilities. The dataset

includes 40 instances of two dimensions. 20 instances are drawn uniformly from

[−1, 0] in the first dimension and [0, 1] in the second dimension, and the remain-

ing 20 instances are drawn uniformly from [0, 1] and [0,−1] in the two dimensions

respectively. Deterministic labels are generated according to the following classifi-

cation rule – an instance is of the positive class if its second feature has a positive

value. Probabilistic labels are also generated based on the second feature alone – the

probability of belonging to the positive class equals to the cumulative probability of
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the second feature; that is, P (yi = 1) = P (U ≤ x[2]
i ), where U ∼ unif(−1, 1) and

x
[2]
i denotes the value of the second feature. Figure 5.1a shows the dataset; deter-

ministic labels are indicated by shapes and probabilistic labels are indicated by the

colour scale.

(a) M =

[
1 0
0 1

]
(b) M =

[
74.0 −72.9
−72.9 71.8

]
(c) M =

[
0.1 −9.1
−9.1 693.9

]

Figure 5.1: Illustration of the benefit of probabilistic labels. Instances are shown in (a) the
original space, (b) the transformed space with L learned from NCA, (c) the
transformed space with L learned from PNCA. The learned metric is given in
the subcaption.

Figures 5.1b and 5.1c show instances in the transformed space with the linear

transformation matrix learned from NCA and PNCA, respectively; the correspond-

ing Mahalanobis distances are given in the caption. The objective of NCA encour-

ages all instances are correctly classified by using nearby samples. Consequently,

the learned metric reduces the intra-class dispersion and retains the inter-class sep-

aration. The objective of PNCA encourages the predicted probabilities of all in-

stances to be similar to the observed probabilities. The learned metric shrinks the

distance along the first dimension (indicated by a small value ofM1,1) and expands

the distance along the second dimension (indicated by a large value ofM2,2). Con-

sequently, instances with similar observed label probabilities locate close to each

other. On a separate test data which includes 2000 instances generated from the

same distribution, NCA obtains a classification accuracy of 0.981, and PNCA ob-

tains a higher accuracy of 0.996. This example suggests that the proposed method

is able to exploit the extra supervision provided by probabilistic than deterministic
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labels and, by minimising the divergence between distributions, it identifies that the

first feature is less useful than the second feature for classification.

The second dataset explains the limitation of PNCA. The dataset includes 80

instances generated from two-dimensional Gaussian distributions. The mean vec-

tors of the positive class and the negative class are [2, 1]T and [−1, 2]T , respectively;

the covariance matrices are set as
[

1 −0.5
−0.5 1

]
for both classes. Deterministic labels

are generated according to the Bayes rule, and probabilistic labels are generated

according to the posterior distribution. Figure 5.2a shows the dataset.

(a) M =

[
1 0
0 1

]
(b) M =

[
79.2 9.2
9.2 1.1

]
(c) M =

[
25.5 6.1
6.1 1.4

]

Figure 5.2: Illustration of the limitation of PNCA.

Figures 5.2b and 5.2c show instances in the transformed space after applying

NCA and PNCA, respectively. Compared with NCA which focuses on separating

instances of different classes by a large margin, PNCA focuses more on grouping

instances with similar probabilities. Consequently, the generalisation performance

of PNCA is inferior to NCA. The classification accuracy of PNCA and NCA are

0.830 and 0.861, respectively.

5.4.2 Real datasets

To fully understand the effectiveness of PNCA, we test the method on three types of

datasets. The first two data types, regression datasets and multi-class classification

datasets, are used to synthesise probabilistic labels for binary classification tasks and

multi-class classification tasks, respectively. The third data type, a crowdsourcing

dataset, provides real probabilistic labels.

Since existing metric learning methods are built on deterministic labels and

cannot directly work with probabilistic labels, we only compare PNCA with the



5.4. Experiments 99

Table 5.1: Characteristics of the datasets.

Dataset Type #Classes #Features #Instances Class distribution
(#Reduced dim.)

Concrete regression 2 8 1030 319/711
Energy regression 2 8 768 330/438
Housing regression 2 13 506 110/396

Vehicle multiclass 4 18 846
Accent multiclass 5 12 164
Segment multiclass 7 19 2310

Music crowdsourcing 10 124 (20) 700

The class distribution is listed for imbalanced datasets. These datasets are evaluated
based on F1 score. All other datasets are evaluated based on classification accuracy.

baseline method NCA and the metric learning method for probabilistic labels

InML [96].

The overall setup of experiments and parameter tuning of each method are

first explained, followed by data description and experimental results for three data

types. Table 5.1 lists main characteristics of the 7 datasets studied in this experi-

ment.

5.4.2.1 Experimental settings

All datasets are pre-processed with mean-centring and standardisation. We use

70%-30% training-test partitions and report the average result over 20 rounds of

random split. 1NN is used as the classifier.

For a fair comparison, we include the Frobenius norm regularisation in NCA.

Eq. 5.3 is chosen as its objective function. InML is designed for binary clas-

sification problems. To extend it to the multi-class classification setting, we

adopt the one-vs-all strategy and construct triplet constraints for each class in

turn. Hyperparameters of all methods are tuned via 5-fold cross-validation on

the training set. For NCA, the weight of the regularisation term is selected from

the range of {10−3, 10−2, . . . , 102}. For InML, the regulariser weight α is se-

lected from {10−4, 10−3, . . . , 101}. For the proposed PNCA, λ is selected from

{10−7, 10−6, . . . , 10−2}. NCA is implemented by using drToolbox [98], and InML

is implemented by following the procedure described in [96].
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5.4.2.2 Regression datasets

We simulate binary classification tasks from three regression datasets [57], namely

Concrete, Energy and Housing. The Energy dataset includes two response variables

and the response ‘heating load’ is used in this study. We apply min-max normalisa-

tion to the real-valued response and use the normalised value as probabilistic labels.

To generate deterministic labels, we assign instances to the positive class if the nor-

malised value is larger than 0.5 and otherwise to the negative class. As the dataset

is imbalanced, F1 score is used as the evaluation measure.

Figure 5.3: Boxplots of F1 scores of 1NN on regression datasets. Mean values of F1 scores
are given in the bracket.

Figure 5.3 gives the boxplots and mean values of F1 scores for NCA, InML and

PNCA. Compared with NCA, PNCA achieves higher mean value on all datasets.

Except on the Housing dataset where it has a slightly lower median, PNCA obtains

higher median, lower quartile and upper quartile than NCA. Same finding applies

when comparing PNCA with InML.

5.4.2.3 Multi-class classification datasets

For multi-class classification, we adopt datasets Vehicle (4 classes), Accent (5

classes), and Segment (7 classes) [57]. For Accent, we have removed the response

‘US’ since it causes severe class imbalance. Based on the original features and class

information, a multinominal logistic regression is applied. The estimated probabil-

ities are used as probabilistic labels, and the class with the maximum probability

defines the deterministic labels. As the logistic regression model cannot perfectly fit

the data, there is some discrepancy between the original class labels and the derived

deterministic labels. The transformation matrix is trained on the derived probabilis-

tic/deterministic labels and tested on the original labels. The classification accuracy
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Figure 5.4: Boxplots and mean values of accuracy of 1NN on multi-class classification
datasets.

is used as the evaluation measure.

Figure 5.4 shows the experimental results. On all three datasets, PNCA

achieves the highest mean and median accuracy. The method is also reliable. Its

spread, as indicated by the interquartile range (IQR), is competitive with NCA and

InML on the Vehicle dataset and is smaller on the other two datasets.

5.4.2.4 Real-world crowdsourcing dataset

The final experiment adopts a crowdsourcing dataset with real probabilistic labels.

The music genre dataset consists of 700 songs, carefully chosen by experts as rep-

resentative of 10 music genres [99]. It has been published on Amazon Mechanical

Turk for annotation, and each song is categorised as one of the genres by multiple

annotators. The proportion of annotators who classify an instance as a particular

music genre gives the probability that the instance belongs to that class. The class

with the highest probability gives the deterministic label. As discussed in [99], only

a couple of annotators provide high quality answers. This is also found after our

conversion, where the annotation labels agree with the expert labels on only 71% of

instances. To avoid overfitting, we add an additional pre-processing step by reduc-

ing the feature dimensionality from 124 to 20 via PCA; the leading PCs account for

90% of total variance.

Figure 5.5 shows the classification accuracy of 1NN. The proposed method

again shows its advantage over NCA with higher accuracy and smaller spread.

InML is originally proposed for binary classification, and when the one-vs-all

scheme is applied, triplet constraints constructed from the positive class and the

merged minority class may not provide useful supervision, thereby leading to an
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Figure 5.5: Boxplots and mean values of accuracy of 1NN on the crowdsourcing dataset.

unsatisfactory classification performance which is worse than a random guess.

5.4.3 Evaluation criteria for probabilistic labels

As the input supervision is in the form of probability and reflects uncertainty of clas-

sifying an instance, associating the predicted outcome with a probability may aid

in decision making of downstream applications. Therefore, we propose additional

evaluation criteria to measure the distance between the observed probability and

the predicted probability. For all methods, the predicted probability is calculated

according to Eq. 5.4 with pij calculated with respect to the learned transformation

matrix. We consider three metrics that measures the distance between probability

distributions, namely the JS distance (denoted as DJS) [100], the Hellinger distance

(DH) [101], and the total variation distance (DTV) [102].

The definitions of the studied distances are given as follows. Let P and Q

denote two discrete probability distributions over X , and P (A) =
∑

x∈A P (x) for

A ⊆ X . Then,

DJS(P,Q) =
√
DJSD(P‖Q)

DH(P,Q) =

√∑
x

(√
P (x)−

√
Q(x)

)2

=
∥∥∥√P −√Q

∥∥∥
2

DTV(P,Q) = supA⊆X |P (A)−Q(A)| = 1

2
‖P −Q‖1.

All three distances are proper metrics, i.e. satisfying the axioms of triangle in-

equality, non-negativity, symmetry and identity of indiscernibles, and are bounded.

Moreover, they are well defined for all possible values of P (x) and Q(x), which is

particularly important for probabilistic labels as it is very likely that some observed
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label probabilities are close to 0. Among the three distances, the JS distance is

most directly linked with our objective function, since it is the square root of JSD.

Hellinger and TV distances both belong to the family of f -divergence and they are

related as (DH)2

2
≤ DTV ≤ DH [102].

Figure 5.6: Evaluation of metric learning methods based on the Jensen-Shannon distance
(DJS), the Hellinger distance (DH), and the total variation distance (DTV).
Dataset names are abbreviated to the first two letters.

Figure 5.6 shows the performance of different methods evaluated by using dis-

tance measures; a smaller distance indicates that the predicted probability distri-

bution is more consistent with the test probability distribution. In terms of the JS

distance, PNCA outperforms NCA on 5 out of 7 datasets. InML is founded on

LMNN [10] rather than a probabilistic framework. Therefore, compared with NCA

and PNCA, its predicted probability is more different from the observed probabil-

ity. PNCA retains its benefit when measured by the Hellinger distance and the TV

distance; it obtains to the smallest distance on 6 and 7 datasets, respectively.

To further illustrate the benefit of utilising the label probabilities to metric

learning and value of the predicted probability, we provide a visualisation of the

Vehicle dataset in Figure 5.7. t-SNE [103] is used to embed the linearly trans-

formed test data into two dimensions. Class categories are indicated by different

colours and shapes; predicted probabilities are indicated by colour transparency,

where a lighter colour corresponds to a smaller probability. We see that, by using

PNCA, instances of Class 3 and 4 form their own groups and stay away from in-

stances of other classes. Instances of Class 1 and 2 could not be well separated.

In this case, the predicted probability is smaller when an instance is surrounded by

more heterogeneous neighbours. This pattern suggests that PNCA can produce a
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Figure 5.7: t-SNE of the Vehicle dataset. Class categories are represented by different
colours; lighter colour indicates a smaller probability that an instance belongs
to the corresponding class.

reliable predicted probability, which may serve as an indicator of the confidence in

the predicted outcome.

5.5 Conclusions and future work
In this chapter, we proposed PNCA as a simple yet effective way of learning the

distance metric from probabilistic labels. The algorithm fully exploits the label

information in the estimation of predicted probabilities and in the optimisation of

the loss function. Experiments on 7 datasets demonstrate the effectiveness of PNCA

in terms of both accuracy and three newly introduced distance criteria.

This work suggests the potential of adopting a probabilistic framework for met-

ric learning from probabilistic labels. In the future, we intend to further improve

the framework, such as correcting the label noise as in [78] and generalising it for

stochastic selection of k-neighbourhoods with k > 1 as in [104].



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, three distance metric learning algorithms have been proposed to im-

prove the robustness of existing methods against instance perturbation and extend

their applicability for categorical features and probabilistic labels.

Chapter 3 addresses the limitation of large margin-based metric learning meth-

ods in withstanding a small perturbation of test instance. A loss function that di-

rectly enlarges the adversarial margin has been proposed. It prevents the perturbed

instance from changing the label of its nearest neighbours and thus guarantees that

the prediction of kNN classifier remains the same. Extensive experiments on bench-

mark datasets show that the proposed loss can be easily leveraged with existing

triplet-based methods and validate its effectiveness in improving the generalisation

ability and robustness of the learned distance metric.

Chapter 4 presents a new metric learning algorithm that specifically targets

at categorical features. The method alleviates the issue of feature ambiguity by

learning the metric through adversarial training. It is particularly beneficial for

small-sized datasets as more information is utilised when learning the metric. The

generalisation ability of the proposed method has been guaranteed theoretically and

verified empirically on ordinal and mixed ordinal-and-nominal datasets with high

feature ambiguity and small sample size.

Chapter 5 presents a new algorithm which allows the metric to be learned from
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probabilistic labels. By adapting NCA and minimising the Jensen-Shannon diver-

gence, the probability information on all classes is fully exploited to supervise met-

ric learning. Considering the practical value of associating the predicted outcome

with a reasonable probability, evaluation criteria based on statistical distances have

been suggested to assess the efficacy of different methods.

6.2 Future work

6.2.1 Certified robustness for nonlinear metric learning meth-

ods

While enlarging the adversarial margin is shown to be effective in improving cer-

tified robustness for deep learning models, the approach proposed in Chapter 3,

though sharing the same idea, cannot certify adversarial robustness. The reason is

that, like most metric learning algorithms, our method fixes target neighbours and

impostors prior to metric learning for computational efficiency, and thus the support

point derived from the fixed set of triplet constraints is not necessarily the nearest

adversarial example among all possible triplets. To achieve certified robustness

and avoid high computational cost, one possible solution is to incorporate proto-

type learning [105] into our method. The idea is to learn few prototype examples

to represent the training set, and all test instances will be classified according to

their distances to these examples. As the number of prototypes is generally very

small, the number of triplets is limited and hence the support points can be derived

efficiently.

The expressive power of the Mahalanobis distance is limited as it corresponds

to learning a global linear transformation. To suit datasets that have multi-modality

or nonlinearly separable features, local metric learning methods and kernelised

methods have been proposed. It would be interesting to investigate their robust-

ness and extend the idea of adversarial margin to these methods when appropriate.
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6.2.2 Metric learning from noisy probabilistic labels and label

distributions

In Chapter 5, the metric is learned from probabilistic labels, assuming the label

information is correct. On the other hand, the crowdsourcing dataset contains a

relatively high level of noise. Therefore, it would be valuable to robustify the model

against label noise. One possible solution is to adopt the latent variable approach

proposed in [78], which introduces a latent variable to represent the true label and

associates the observed label with this latent variable via a transition matrix. The

transition matrix is only suitable for deterministic labels and should be replaced by

an appropriate non-parametric model to suit probabilistic labels.

A closely related topic to probabilistic labels is label distribution learn-

ing [106], where each instance is assigned to a label distribution. Conceptually, the

two topics differ in two aspects. Learning from probabilistic labels is a single-label

classification task, and the probability reflects the inherent difficulty of classifying

an instance. In contrast, learning from label distributions is a multi-label classifi-

cation task; all labels with non-zero probabilities are correct labels for an instance.

The probability reflects the degree to which the label describes an instance. It would

be interesting to extend PNCA to this problem setting by taking into account the

correlation between labels.

6.2.3 Uncertainty estimation for metric learning

Most metric learning algorithms output a point estimation of the distance metric. On

the other hand, it would be desirable if the algorithm could provide an uncertainty

estimate to characterise the confidence in this output. This would be particularly

valuable when the metric is learned from imperfect data, such as the ambiguous fea-

tures and probabilistic labels studied in Chapters 4 and 5. One way of estimating the

uncertainty is through Bayesian metric learning, which has been discussed in [107].

Based on this, the first future work would be to formulate PNCA in a Bayesian

framework. Another way of uncertainty estimation is to adopt bootstrap [108] or

ensemble methods [109]. The latter approach has been actively researched in quan-
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tifying uncertainty for deep learning models, and it also shows promising perfor-

mances on detecting out-of-distribution inputs and adversarial examples. Incorpo-

rating these ideas into metric learning would be another interesting future research

topic.
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