UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Essays on distance metric learning

Yang, Xiaochen; (2020) Essays on distance metric learning. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Yang_10112518_Thesis_redacted.pdf]
Preview
Text
Yang_10112518_Thesis_redacted.pdf

Download (1MB) | Preview

Abstract

Many machine learning methods, such as the k-nearest neighbours algorithm, heavily depend on the distance measure between data points. As each task has its own notion of distance, distance metric learning has been proposed. It learns a distance metric to assign a small distance to semantically similar instances and a large distance to dissimilar instances by formulating an optimisation problem. While many loss functions and regularisation terms have been proposed to improve the discrimination and generalisation ability of the learned metric, the metric may be sensitive to a small perturbation in the input space. Moreover, these methods implicitly assume that features are numerical variables and labels are deterministic. However, categorical variables and probabilistic labels are common in real-world applications. This thesis develops three metric learning methods to enhance robustness against input perturbation and applicability for categorical variables and probabilistic labels. In Chapter 3, I identify that many existing methods maximise a margin in the feature space and such margin is insufficient to withstand perturbation in the input space. To address this issue, a new loss function is designed to penalise the input-space margin for being small and hence improve the robustness of the learned metric. In Chapter 4, I propose a metric learning method for categorical data. Classifying categorical data is difficult due to high feature ambiguity, and to this end, the technique of adversarial training is employed. Moreover, the generalisation bound of the proposed method is established, which informs the choice of the regularisation term. In Chapter 5, I adapt a classical probabilistic approach for metric learning to utilise information on probabilistic labels. The loss function is modified for training stability, and new evaluation criteria are suggested to assess the effectiveness of different methods. At the end of this thesis, two publications on hyperspectral target detection are appended as additional work during my PhD.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Essays on distance metric learning
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2020. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
Keywords: distance metric learning, nearest neighbour classifier
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Statistical Science
URI: https://discovery.ucl.ac.uk/id/eprint/10112518
Downloads since deposit
388Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item