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ABSTRACT

The work reported in this thesis is an investigation of the potential for employing non-
steady-state constitutive relations to describe the inelastic deformation properties of rock
forming minerals.

Attempts to determine generally applicable constitutive equations for inelastic deformation
are complicated by the severe path dependence of the deformation response and by the wide
range of mechanisms by which that deformation is accomplished. In the geological literature it
has been normal practice to circumvent these problems by approximating the deformation as
occurring at steady-state. This presents difficulties for the description of deformation by
inherently transient mechanisms, for the description of small strain deformation, and for the
reliability of extrapolating laboratory mechanical properties to geological deformation
conditions. In contrast, in the materials science literature several systems of inelastic
constitutive equations which do not make the steady-state approximation have been proposed.
One of the oldest and most widely applied of these i.e. that due to Hart and coworkers, was
chosen for investigation here to determine its potential for geological applications.

To be successful any deformation constitutive equation must satisfy three criteria. Firstly it
must provide an adequate description of the material behaviour, secondly it must be
analytically / numerically integrable for deformation modelling purposes, and thirdly it must
contain material parameters which can be evaluated from the results of deformation
experiments. In the first half of this thesis the descriptive capacity and integrability of Hart’s
equations are investigated by attempting to provide a comprehensive description of inelastic
deformation from the perspective offered by Hart’s analysis. Hart bracketed from consideration
several aspects of inelastic deformation which are of considerable geological importance i.e. in
particular the influence of nominally deformation independent recovery processes (active at
high temperatures), of solute impurities, of finely dispersed inclusions and of grain-size.
Procedures for identifying the effect of these factors on the results of deformation experiments,
and possible strategies for extending the analysis to accommodate them are outlined.

The second half of the thesis describes an experimental programme designed to apply
Hart’s description to the inelastic deformation of Carrara marble at 200 MPa confining pressure
in the temperature range 120 to 700°C. The primary aim of the experimental programme was to
determine whether the material parameters in Hart’s description can be determined with
sufficient accuracy at elevated confining pressures (given the technical -limitations on the
quality of the data obtained from such tests) for the approach to be of interest for the
characterization of geological materials. From the results of several hundred experiments it is
found that those material parameters can be evaluated sufficiently accurately. Furthermore, the
proposed strategy for extending Hart’s analysis to high temperatures is shown to have
considerable potential. In so doing the first description of the inelastic deformation properties of
calcite at temperatures below 400°C is presented, and an experimental programme is outlined
which can be applied to materials of even greater geological significance. |
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11

1 INTRODUCTION

The characterization of the inelastic deformation properties of rock forming minerals is
severely compromised by the need to determine those properties at high confining pressure in
order to avoid the effects of cataclasis. The technical problems associated with deformation
experiments conducted at high confining pressure constrain both the type of experiment that can
be employed and the quality of the data that can be obtained, and these in turn restrict the type
of description of inelastic deformation properties that can be used. Recent improvements in
apparatus design and in data acquisition facilities however, offer the prospect that many of the
experimental techniques employed to characterize the properties of engineering materials at
room pressure, may now be viable at higher pressures. Consequently, descriptions of the
inelastic deformation behaviour of geological materials which are far superior to those hitherto
used may now be possible. The research reported in this thesis is an exploration of this
possibility. '

1.1 The nature of the task

To characterize the inelastic deformation properties of a material it is necessary to
determine an appropriate constitutive relation. Constitutive relations are equations that describe
the material response to externally applied conditions at any point within an object. Those
which describe the deformation response, when combined with equilibrium and compatibility
equations, allow the behaviour of a solid body to any prescribed thermal / loading history to be
predicted. For the description of deformation behaviour, there are three basic categories of
physical process of interest :

(i) the stretching of interatomic bonds i.e. elastic deformation ;

(ii) the switching of interatomic bonds among the various ‘atoms’ of the solid i.e. inelastic
deformation, and ;

(iii) the permanent breakage of bonds i.e. fracture.

The constitutive relations for elastic deformation are well understood, and are easily included in
deformation models because the elastic strain experienced by a body is a good description of its
elastic state. In contrast fracture is a highly complex phenomenon depending not only on the
material behaviour at a point but also upon the stresses and strains across the body, and
consequently few generally applicable constitutive relations to account for it have been devised
(although the advances in fracture mechanics form a step in this direction). The constitutive
relations for inelastic deformation form the focus of the present study.

Attempts to determine generally applicable constitutive relations for inelastic deformation
are complicated by the severe path dependence of the deformation response and by the wide
range of mechanisms by which that deformation is accomplished. These problems are manifest
in the observation that unless the deformation path is known, the magnitude of the inelastic
strain is not a reliable estimate of the mechanical state of a material i.e. equivalently, there
exists no mechanical test which can determine the amount of inelastic strain a body has
experienced. Consequently, any inelastic constitutive equation must incorporate not only the
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external deformation state variables — temperature T, effective confining pressure p, differential
stress o, and inelastic strain rate ™ — but also some measure of the internal mechanical state
o* (here defined as a variable with dimensions of stress) during deformation. This in tum
requires that the constitutive relations be composed of two parts ;
(a) an equation of state : f(T,p,o,£éM,0%) = 0
(b) amechanical state evolution equation : g(T, p, o, éM,0*) = 0

1.1.1 Inelastic constitutive equations employed for geological materials. In the geological
literature it has been normal practice to circumvent the problems posed by the history
dependence of inelastic deformation by approximating the deformation as occurring at steady
state, The material is then viewed as deforming either at constant ‘structure’ (here used
synonymously with mechanical state), or more frequently, in such a way that the structure
always remains uniquely specified by the external deformation variables (cf. § 15.2.1). In the
first case, the mechanical state of the deforming material is included within a constant material
parameter, and the constitutive relation is formulated as the product of that parameter with
various functions of the external deformation state variables. In the second case the mechanical
state is implicitly included within some or all of the functions of the external deformation state
variables. In each case the constitutive relation is an equation of state and there is no need to
formulate an accompanying evolution equation.

Three equations have been widely employed to describe such steady-state inelastic

deformation :
ém = Aexp(Bo)exp(-H,/RT) (L.1)
én = Ao"exp(-H,/RT) (1.2)
ém = A[sinh (Bo)]"exp (-H,/RT) (1.3)

where A, B, H; and n are material parameters (which may have different values in the different
equations) and R is the gas constant. Equation 1.1 is applied at low homologous temperatures /
high strain-rates, equation 1.2 at high homologous temperatures / low strain-rates and equation
1.3 at all temperatures / strain-rates (for it reduces to the other equations under the appropriate
conditions). For deformation modelling purposes, the deforming material is assumed to deform
elastically at stresses below some critical yield stress and then according to equations 1.1 - 1.3
at the critical yield stress (i.e. it is assumed to behave as an elastic - ideally plastic body).

Several well documented problems arise from the use of equations 1.1 - 1.3 to describe the
inelastic deformation of geological materials, When the equations are applied under
circumstances when one deformation mechanism is controlling the bulk deformation behaviour,
the functional form of the equations has some theoretical support. Consequently, the
experimental strategy is to conduct deformation tests under conditions where only one
mechanism is rate-controlling, and then to approximate the deformation of the material under
general conditions as the sum of the constitutive relations of all the relevant mechanisms.
However, this procedure ignores the ‘feedback’ relationships of the deformation mechanisms
on each other. Furthermore, by requiring that the constitutive relation for each mechanism be
evaluated under restricted deformation conditions, the problems that arise in the extrapolation
of the constitutive relations from laboratory to natural strain-rates are exacerbated.

The steady-state approximation itself imposes significant constraints. Deformation
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controlled by inherently transient mechanisms (e.g. deformation twinning, dislocation glide in
the absence of thermally activated climb over obstacles) cannot be described satisfactorily.
Indeed, both theoretical and experimental evidence suggests that steady-state deformation can
never be achieved at homologous temperatures less than 0.45 (§ 15.2.1.1). Even given that
steady-state can be achieved, equations 1.1 - 1.3 can only be applied under conditions where it
actually is achieved, thereby posing problems for modelling relatively small strain deformations
(e.g. such as might occur in lithospheric flexure). Peculiarly geological factors may serve to
compound this effect. For example, the deformation of quartz is strongly influenced by the
presence of H,O but the diffusion of H,O in quartz is so slow that there may be insufficient
time to establish an equilibium concentration in the lattice (and hence a steady-state
deformation-rate) either prior to or within the duration of a deformation episode.

Although these problems appear to have qualitative importance, it remains unclear how
significant they are for the interpretation of the results of geological deformation models. It may
be that the assumptions employed in defining the modelling problem are of far greater
importance than the errors introduced into the description of material behaviour by the steady-
state approximation. This matter alone presents a case for evaluating alternative descriptions of
the inelastic deformation properties of geological materials, for these can then be employed in
the deformation models to determine their effect on the results.

1.1.2 Inelastic constitutive relations employed in the materials’ sciences. The problem of
incorporating deformation history dependence into the constitutive relations for inelastic
deformation is one that has been of concern to materials’ scientists, particularly with regard to
engineering design problems. For such purposes, any constitutive equation must satisfy three
criteria

(i) it must provide a sufficiently accurate description of the material behaviour ;

(ii) it must contain material parameters that can be evaluated from the results of deformation
experiments, and ;

(iii) it must be of a form which is analytically and/or numerically integrable.

These criteria are mutually competitive. The accuracy of the description of material behaviour
is improved by increasing the number of material parameters. However, the experimental task
is simplified if the necessary experiments are few in number, short in duration and are
technically easy to conduct, which in general requires that there be as few material parameters
as possible. Integrability is generally favoured, particularly in terms of finding a numerical
solution within the constraints posed by computer memory capacity, if the number of material
parameters is small.

Several different systems of inelastic constitutive equations have been proposed, differing
primarily in the relative emphasis they give to these three criteria (five of the most successful of
these are reviewed and compared by their proponents in Miller, 1987). For the purposes of this
study, that due to Hart and coworkers has been investigated. Of all the systems of equations,
this has the longest pedigree, having been successfully applied to the room pressure inelastic
deformation of metals, ceramics and simple ionic solids. It contains relatively few material
parameters, each of which is relatively simple to evaluate experimentally, and yet extensive
finite element and boundary element modelling with the equations shows that they are not only
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highly competitive against the other systems of equations with respect to their computational
efficiency, but that they predict deformation behaviour under highly complex thermal / loading
histories remarkably accurately.

1.2 Scope of the present study

The work reported here is presented in two parts. In the first the descriptive capacity and
integrability of Hart’s equations is investigated from the perspective of potential geological
applications. The former is considered by attempting to provide a comprehensive description of
inelastic deformation within the context of Hart’s analysis. This not only allows the system of
equations proposed by Hart and coworkers to be outlined (cf. previous ‘state of the art’ reviews
of Hart’s analysis, describing successive developments : Hart, 1970, 1975 ; Hart et al., 1975 ;
Li et al., 1976 ; Hart, 1976, 1978 ; Li, 1981 ; Korhonen et al., 1987), but also permits an
evaluation of the potential that exists for extending those equations to accommodate aspects of
inelastic deformation which were bracketed from consideration by Hart but which are
nevertheless of considerable geological importance. Integrability is addressed through a review
of previous work on the deformation modelling capabilities of the equations.

The second part of this study is concerned with the problem of evaluating the material
parameters in Hart’s equations. An experimental programme designed to apply Hart’s
description to the inelastic deformation of Carrara marble at 200 MPa confining pressure and in
the temperature range 120 to 700°C is described. The primary aim of this programme was to
determine whether the material parameters in Hart’s description can be determined with
sufficient accuracy at elevated confining pressures, for the approach to be of interest for the
characterization of the deformation properties of geological materials. A secondary aim was to
determine the feasibility of some of the proposed strategies for extending the analysis to
accommodate factors of geological significance not considered by Hart. The choice of Carrara
marble reflects a compromise between the need to investigate a geologically significant
material, and the need to consider a material which can be deformed, without cataclasis, at
sufficiently low confining pressure for the technical limitations on the acquired mechanical data
to be minimized. Hence, as for the choice of Hart’s description from among the alternative
descriptions of inelastic deformation, the choice of Carrara marble presents a best case option
and provides an indication of whether or not it is worthwhile proceeding, given the presently
available high pressure deformation apparatus, with the attempt to find better descriptions of
inelastic properties than those presented by the steady-state approximation.
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2 THEORETICAL FRAMEWORK FOR HART’S ANALYSIS OF INELASTIC
DEFORMATION

The approach adopted by Hart in his description of inelastic deformation is
methodologically similar to that used to formulate the state variable descriptions of classical
thermodynamics. He begins by deriving experimentally verifiable conditions which must be
satisfied if a state variable description of inelastic deformation is to exist, and then shows how,
in the case where those conditions are satisfied, a variable describing the mechanical state of
the deforming material can be defined. This step of the analysis is formally equivalent to
Carathéodory’s treatment of the first and second laws of thermodynamics, and rests like that
treatment, on a purely phenomenological account of the observed material behaviour (i.e. no
interest is taken in the mechanisms /processes by which the observed behaviour is
accomplished except insofar as they affect the assumptions applied). Following verification that
the state variable description existence conditions are satisfied, the functional forms of the
constitutive relations are, as for their thermodynamic counterparts (e.g. the ideal gas law)
determined empirically. Only when armed with these constitutive relations, are general models
for inelastic deformation proposed and micromechanical interpretations sought to account for
the results.

The first part of this account of Hart’s description of inelastic deformation follows this
methodological structure. The initial analysis described in § 2, the verification of the existence
conditions in § 3, the determination of the constitutive relations in § 4 and the derivation of the
general model of inelastic deformation in § 5. A discussion of the limitations of the description
is deferred until § 6, where several developments of the inelastic deformation model aimed at
accommodating these limitations are described.

2.1 Definitions and assumptions in the initial analysis

The derivation of the conditions which must be satisfied if a state variable description of
inelastic deformation is to exist and the concomitant definition of the mechanical state variable,
were first outlined by Hart (1970). He resolved the accumulated total strain £(*) at any given
time in a deforming body, into three components : a time independent (excepting inertial
effects) elastic strain £(¢), a time dependent recoverable (on release of the differential load)
anelastic strain q, and a time dependent non-recoverable plastic strain ¢

et) = gl 4 g = glo) + g + 2.1)

where £(" is the time dependent part of £(*). Noting that £(¢) and a are good deformation state
variables of the material, Hart restricted his initial discussion to «. He further noted that in
general, £™ is composed of a grain matrix component and a grain boundary sliding component,
and then restricted the analysis to conditions where the grain boundary sliding component is
negligible. The analysis was also restricted to the stable, homogeneous deformation of an
isotropic material under a uniaxially applied stress, in the absence of static recovery processes.
These restrictions effectively limit the initial analysis to plastic deformation at homologous
temperatures of less than 0.45. However, all of the restrictions have, to a greater or lesser
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extent, been removed in subsequent developments (§ 5 and § 6).

2.2 Derivation of the existence conditions : the isothermal case
During any isothermal deformation history given the aforementioned restrictions, the
variation of the applied differential stress o and the material plastic strain-rate ¢, with the
plastic strain & in some increment of time, can be described by
dno = yda + vdlné& 2.2)
where y and v are measurable phenomenological parameters that are in general, dependent upon
the prior deformation history, but which at any time are given by
y = (dlno/dx)y : = (dlno/dln &), (2.3)
Equation 2.2 simply describes the smooth variation of any of the deformation variables in terms
of the others. The choice of Ino and In é& as basic variables rather than o and &, is for the
simplicity of the results that follow.
With a view to the desired form of the ultimate relationship required, equation 2.2 is
rewritten
da = Adlno + Bdlna 24
where
A=1/y : B = -v]y (2.5)
The conditions for the existence of a state variable description of plastic deformation are then
the conditions under which equation 2.4 is an exact differential i.e. the conditions under which
the equation possesses integral solutions which are independent of the path of integration. This
is the case when A and B (and hence y and v) are unique functions only of o and ¢ i.e. when

A = A(c,&) : B = B(oc,&)
or equivalently
y = y(o,&) : v = v(o,&) (2.6)
and when
(0A/dIn¢&), = (dB/dlno), 2.7
Equation 2.4 is then directly integrable to give a state relation of the form
a = a(o,&) 2.8)

However, this implies that o is a good deformation state variable which, as observed above
(§ 1.1), is not generally the case. Hence, some or all of the conditions given by equations 2.6
and 2.7 must be invalid during real plastic deformation.

Despite these observations a state variable description may still exist. Provided equations
2.6 hold, then equation 2.4 is a Pfaffian form in two independent variables (§ Al.1) and it
thereby follows that there always exists an integrating factor, here of the form I'(o , &), such
that '

I'dae = A'dlno + BI'dlna& (2.9)

is an exact differential even if equation 2.7 is not satisfied (§ A1.1.1.2). Hence the necessary
and sufficient conditions for the existence of a state variable description of isothermal plastic

deformation are given by equations 2.6.
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2.3 Derivation of the existence conditions : the non-isothermal case
The influence of temperature T when static recovery processes are unimportant, may be
included by the addition of an appropriate term to equation 2.2
dlno = yda + vdlné& + Hd(1/RT) (2.10)
where
H = [dlno/d(1/RT) 14, (2.11)
is a third phenomenological coefficient (the apparent activation enthalpy for plastic
deformation) and R is the gas constant. Rearranging equation 2.10 to the form of equation 2.4,
then
da = Adlno + Bdlné + Cd(1/RT) (2.12)
where
C =-H/y (2.13)
This is an exact differential if
A=A(6,&4,T) : B=B(c,&,T) : C=C(c,&,T)
or equivalently, if
y=v(c,&,T) : v=v(o,&,T) : H=H(oc,&,T) (2.14)
and if
(dA/dlné),r = (dB/0lno),r
[84/3(1/RT)],s = (3C/3In0)sy
[0B/9(1/RT)])ss = (0C/0ln &), (2.15)
Again, the fact that o is not a good deformation state variable implies that some or all of
equations 2.14 and 2.15 do not hold during real plastic deformation.

Provided equations 2.14 hold, equation 2.12 is a Pfaffian form in three independent
variables. However, for more than two independent variables, the theory of Pfaffian forms,
although admitting the possibility, does not guarantee the existence of an integrating factor
through which equation 2.12 becomes exact (§ Al.1.2) i.e. the satisfaction of equations 2.14 is
insufficient evidence for the existence of a state variable description of non-isothermal plastic
deformation. If such an integrating factor exists, and Carathéodory’s theorem (§ 2.5) suggests it
might, then it must be found by some new axiom of a physical character. No such axiom has
been presented.

In the absence of sufficient conditions for the existence of a state variable description of
non-isothermal deformation, the influence of temperature must be included by some suitable
parameterization of the isothermal incremental deformation equation. For example, by
normalizing o with the rigidity modulus G for the material at the given temperature, and by
using the temperature compensated strain-rate of Zener and Hollomon (1944), equation 2.12
becomes

da = Adln(c/G) + B[dIn& - Hd(1/RT)] (2.16)
which is a Pfaffian form in two independent variables provided H is independent of ¢ and &
and T is specified. Alternatively, the material parameters may have to be specified as a function
of temperature. Since the choice of an appropriate parameterization scheme is not specified by

theoretical arguments, it must be governed by empirical criteria.
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2.4 Definition of a mechanical state variable

By writing from equation 2.9
dlno* = I'dae = AI'dlno + BI'dln& (2.17)
a one parameter family of curves
o* = o*(o,&) (2.18)
is defined. For each fixed value of o* the corresponding curve is a solution to the Pfaffian
equation
dlnc* = 0
or equivalently (cf. equation 2.17)
da = 0 (2.19)

and it further follows that this solution is unique (§ A1.1.1.1).

Equation 2.19 indicates that o* is a measure of the instantaneous mechanical ‘condition’ of
the deforming material. Being dependent only upon the external state variables o and & and,
being independent of the prior deformation history, it is therefore an internal state property of
the material. Hart (1970) termed o* the hardness of the material. He observed that because an
infinite number of possible integrating factors exist (§ Al.1.1.2), any scheme assigning it a
numerical value is arbitrary.

In principle, if equation 2.12 has an integrating factor, then for non-isothermal deformation
equation 2.18 becomes

o* = o*(o,&,T) (2.20a)
defining a one parameter family of surfaces in ¢ — & — T space. In practice however, as
discussed above (§ 2.3), it has proved necessary to parameterize equation 2.4 to include the
effect of temperature (¢f. equation 2.16), so that equation 2.20a becomes

o* = o*(c,&;T) (2.20b)

2.5 Comparison of Hart’s theoretical analysis with Carathéodory’s treatment of the first
and second laws of thermodynamics

Nabarro (1989) observed that Hart’s analysis, as presented above, is formally equivalent to
Carathéodory’s (1909) treatment of the first and second laws of thermodynamics. To
demonstrate this, Carathéodory’s argument as presented by Sneddon (1957, pp. 39-42) is
summarized here.

It is found empirically, that in an adiabatic process the mechanical work done W is a

function of the thermodynamic variables (y, , . ..., yy) and (30, ...., y{?) defining the final
and initial states respectively of the system, and that it is independent of the values of those
variables ( ylfi), ceees y,&"’ ) at some intermediate state. Thus
Wy 0 ™)
= WO o) + WO 903 @a1)
Hence there is a function
U= Uy 5w (2.22)
called the internal energy of the system such that
Wy v ) = UGy ) - TGO, (2.23)

However, in a non-adiabatic process the equality given by equation 2.23 does not hold. In such
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instances the difference between the change in internal energy AU and the work done is defined
to be the quantity of heat AQ absorbed by the system during the process i.e.
40 = AU - W (2.24)
which is the first law of thermodynamics.
Now for a gas completely specified by its pressure p and volume V, equation 2.22 becomes
U= Up,V) (2.25)
If this gas expands by an infinitesimal amount dV, the work done is -pdV and the change in
internal energy is dU so that
40 = dU - W = Adp + BdV (2.26)
where
A = (oU/dp)y : B = (dU/dV), +p (2.27)
Then since A and B are functions only of p and V equation 2.26 is a Pfaffian form in two
independent variables. Consequently, there always exists an integrating factor Y(p, V) and an
internal state variable S(p , V') such that (c¢f. equation 2.17)
YAQ = dS (2.28)
i.e. so that equation 2.26, with each of its terms multiplied by Y is an exact differential.
If the thermodynamic system is described by N variables y; , . ..., yy where N > 2 then
equation 2.26 is replaced by a Pfaffian form of the type

N .
40 = 2 Y, dy, (2.29)

i=1

in which the Y; are functions of the y;. In this case, on the basis of the theory of Pfaffian forms
alone, functions Y and § (dependent on N variables) which make equation 2.29 exact, do not
necessarily exist. To establish the existence of these functions a new axiom of a physical
character is required and this axiom proves to be the second law of thermodynamics.

Carathéodory was able to demonstrate that if a Pfaffian differential form AY = Y, dy, +
Y, dy, + ...+ Yy dyy has the property that in every arbitrarily close neighbourhood of a given
point x, there exist points x which are inaccessible from x, along curves for which AY = 0, the
corresponding Pfaffian differential equation AY = 0 is integrable (Carathéodory’s theorem —
see § Al.1.3 for proof). Now the second law of thermodynamics is based on the empirical
observation that certain changes in state are not physically realizable (e.g. heat cannot flow
from a cold body to a hot one without external work being done). Carathéodory therefore, uses
his theorem to state the second law of thermodynamics as arbitrarily near to any prescribed
initial state there exist states which cannot be reached from the initial state as a result of
adiabatic processes. Consequently, if the first law leads to an equation of the form of equation
2.29 the second law states that arbitrarily near to the point ( yl(o), ceeey yA(,o)) there exist points
(yy»----,yy) which are inaccessible from the initial point along paths for which 40 = 0. It
follows immediately from Carathéodory’s theorem that there exist functions Y( Yiseooos yN)
and S(y;,....,yy) where

YAQ = dS (2.30)

The internal state function S is the entropy of the system and it can be shown that the
integrating factor Y is, apart from a multiplicative constant, a function only of the empirical
temperature of the system. Defining Y= 1/T where T is the thermodynamic temperature,
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equation 2.30 takes the familiar form
40/T = dS (2.31)

The similarity of this analysis with the state variable formulation of Hart is apparent if it is
observed that Y and § are formally equivalent to Hart’s integrating factor I" and his mechanical
state variable o* respectively, whilst AQ compares with do. The origin of the Pfaffian form in
the two analyses is different, Carathéodory taking his from the first law of thermodynamics and
Hart his from the incremental deformation equation. However, Carathéodory’s presentation of
the second law of thermodynamics would seem also to apply to Hart's analysis i.e. arbitrarily
near to any prescribed initial state (o, & , T combination) there exist other states (other o, & ,T
combinations) that cannot be reached from the initial state without a change in strain. If true,
then with Carathéodory’s theorem this statement indicates that an integrating factor for the
Pfaffian form for non-isothermal deformation (equation 2.12) must exist. However, without
explicit knowledge of the functional forms of equations 2.14, the functional form of this
integrating factor cannot be determined, thereby precluding the derivation of a relation of the
kind equation 2.31.
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3 EXPERIMENTAL VERIFICATION OF THE EXISTENCE CONDITIONS FOR
A STATE VARIABLE DESCRIPTION OF INELASTIC DEFORMATION

It follows from the theoretical analysis presented above that the necessary and sufficient
condition for the existence of a state variable description of inelastic deformation, provided that
the deformation is isothermal, is that the incremental deformation equation (equation 2.4) is a
Pfaffian form. It remains then to verify, by experiment, that this condition is satisfied during
real plastic deformation.

There are two approaches to this problem. The first is to demonstrate that equations 2.6 are
satisfied during real deformation, since it is these which make the incremental deformation
equation a Pfaffian form. This requires showing that y and v are unique (i.e. deformation history
independent) functions only of o and ¢&. The second approach is to demonstrate that there exists
a deformation history independent solution to the incremental deformation equation when
da =0, for then it follows (c¢f. § 2.4) that that equation must be a Pfaffian equation (and
therefore by definition, a Pfaffian form when dear # 0). This strategy requires verifying that o(&)
curves generated at constant mechanical state are unique (i.e. again, that they are deformation
history independent) and form a one parameter (o*) family.

Both strategies have been utilized although it has been the second approach that has
received the widest application, primarily because it also provides information for the

derivation of the constitutive relations between the deformation state variables.

3.1 Verifying that y and v are unique functions of o and &

The unique dependence of y and v on o and ¢& has been demonstrated for each parameter
individually, and by showing that a composite function of y and v is uniquely dependent on o
and &.

3.1.1 Verifying that y is a unique function of o and &. To demonstrate that y is a unique
function only of & and ¢ it is necessary to show that the slope of the In & versus & curve during
constant &, isothermal deformation (i.e. y, equation 2.3) is at any instant specified by the o and
& at that time irrespective of the value of . This has been demonstrated for Type 316 stainless
steel, high purity niobium (both at 22°C) and 1100 aluminium alloy (22 and 200°C) by Wire et
al. (1976), and for OFHC copper (22°C) by Korhonen et al. (1985b). In each case, the shape of
the In & / & curve obtained in constant displacement-rate experiments was compared with that
obtained in tests where the displacement-rate was suddenly changed several times during the
experiment. In making the comparison it was assumed that for £ > 0.005, & = ™ so that the
anelastic contribution to the inelastic deformation could be neglected (see § 5.1.3 for a
justification of this approximation). It was observed that the curves produced in the
displacement-rate change experiments could be translated parallel to the £™ axis so that they
superposed onto the curves produced at the corresponding displacement-rate in the
uninterrupted tests (figure 3.1). Hence the slope of the curves was specified by the stress alone
at given strain-rate, and not by the magnitude of the inelastic strain (which was different in the
various experiments). Comparison of the results obtained at different displacement-rates
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FIG.3.1. Room temperature, displacement-rate change experiments showing the
deformation history independence of ¥y = (dIn o/ dar), in (a) 1100 aluminium alloy and (b)
high purity niobium. In each case the points are for a specimen deformed at the indicated
inelastic strain-rate, while the solid line is for a specimen deformed at a strain-rate of
2 x 104 571, The solid line has been translated parallel to the strain axis to show the strain-
rate independence of ¥ (redrawn after Wire er al., 1976).

confirmed the strain-rate dependence of 7.
3.1.2 Verifying that v is a unique function of o and &. To demonstrate that v is a unique
function only of o and ¢ it is necessary to show that the slope of the In & versus In & curve
obtained at given value of o under isothermal conditions (i.e. v, equation 2.3) is specified only
by o and & irrespective of the magnitude of . Since such a curve is a curve at constant o* this
exercise is equivalent to verifying that curves of constant o* are unique and form a one
parameter family. As discussed below (§ 3.2), this has been confirmed for a wide variety of
materials.
3.1.3 The approach of MacEwen. MacEwen (1982) began with an alternative formulation of
the isothermal incremental deformation equation (equation 2.2)
da = (do/A) - (dlné/B) 3.1)
where
A = (do/dax), ; B = -(dlné&/da), 3.2)
The existence of a state variable description of plastic deformation is demonstrated if it is
shown that A and B are unique functions of & and ¢&. Alternatively, it follows from equation 3.1
that
C = (do/dIndc)y,, = A/B 3.3)
Hence the existence of the state variable description is demonstrated by showing that C is a
unique function of o and ¢. Since this requires the ambiguous procedure of defining a



24

mechanical state variable, both the equalities given in equation 3.3 must be demonstrated and
not just the unique dependence of (do / 9 In &),,,,, on o and & for the chosen state variable. It
then follows that if the equality holds, the mechanical state is adequately described by the
chosen variable and a state variable description of the deformation exists, but that if it does not,
either the chosen variable does not fully characterize the mechanical state or a state variable
description does not exist (i.e. the existence of a state variable description is not disproved).

MacEwen conducted room temperature experiments on polycrystalline zirconium. He
treated the mechanical state as being uniquely specified by the flow stress. Two deformation
paths were investigated : (1) a sequence of constant true strain-rate, load relaxation, constant
true strain-rate, constant true stress creep repeated until a total strain of about 0.1 had been
attained and, (2) a sequence of constant true strain-rate, sudden increase in strain-rate, sudden
decrease to re-establish the base strain-rate, constant true stress, again repeated until a total
strain of about 0.1. C=(d0 /9 In &), siress Was determined from the load relaxation tests on
path (1) and the strain-rate change tests on path (2), and shown to be a unique function of the
flow stress. A was determined from the constant strain-rate stress / strain curve immediately
before the onset of a creep test, and B from the creep curve immediately after (allowing for
anelastic effects) the onset of that test. The comparison of A /B with the value of C calculated
from the determined C / flow stress function showed that the equality given by equation 3.3 was
satisfied for all sixteen creep tests conducted, irrespective of the deformation history.

Although MacEwen found that the mechanical state of zirconium is strain-rate independent
at room temperature, experiments on other materials show that at 7> 0.3 7,, (where T,,, is the
material’s absolute melting temperature) this is not generally the case (§4.2.2). This
emphasizes the fact that these verifications of the state variable description existence conditions

are applicable only for the deformation conditions under which they were established.

3.2 Verifying that curves of constant * are unique and form a one parameter family

To demonstrate that curves of constant o* form a one parameter family it is necessary to
show that at given temperature, the set of o (&) curves, where each curve is obtained at given
value of & (i.e. at given mechanical state), are a set of o* contours (level curves) of the surface

f(o,a,0*) = 0 34

Uniqueness may then be verified by demonstrating that the o (&) curve at given o* is the same
irrespective of the deformation history required to obtain that value of o*.
3.2.1 The observed form of constant o* curves. In numerous investigations, the experimental
problem of determining the relationship between o and ¢& for a specimen whilst dar = 0 has been
solved by using the load relaxation test, which can generate within strains of a fraction of one
percent, stress and strain-rate data over several orders of magnitude of these variables. The
usual experimental procedure is to deform the specimen to a given flow stress (and hence given
c*) and then to conduct a load relaxation to determine the o (#(") curve. Subsequently the
specimen is reloaded to a higher flow stress and another relaxation carried out. This process is
repeated until a requisite number of curves, each of different 6*, have been obtained. Providing
the loading phase prior to each relaxation is taken beyond the yield stress & =~ ™ and anelastic
effects are negligible (§ 5.1.3). Although the load relaxation test is the most time efficient
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method of obtaining o* curves, the same information can be gathered from the stress dip test
(Birocheau and Oytana, 1983 ; Korhonen et al., 1985a).

A wide variety of materials have been investigated including metals, metallic alloys, a
metallic glass and several simple ionic solids. Homologous temperatures (i.e. T/ T,) of less
than 0.45 and strain-rates of between 10-3 and 10-10 s-! have been explored. Importantly, the
results show that the general form of the constant o* curves is essentially material independent.
For all the materials studied, the curves in log o —log & space are concave upward at low
homologous temperatures (7 < 0.25 T,,,), concave downward at high homologous temperatures
(T>0.3T,), and at intermediate temperatures are linear or, if extended over a sufficient strain-
rate range, may contain an inflexion point, being concave downward at low strain-rates and
concave upward at high strain-rates (figure 3.2).

3.2.2 Verifying that constant o* curves form a one parameter family. The verification that
constant o* curves form a one parameter family has been greatly facilitated by the observation
that for almost all materials investigated, a scaling relation exists whereby all of the o (™)
curves generated at given temperature may be superposed by a translation, without rotation,

along a constant direction of slope

4 = (dlogo/alogd), 1 (3.5)
Stated more precisely using the change of variables x = log £, y = log o and z = log o, then
2, - &)
(_ = 3 3.6)
ox X,z ox X+AX.Z, (

i.e. points of equal derivatives on two curves parameterized in z in the x, y plane superpose, and,
the scaling direction

4 = Ay/Ax = constant 3.7
is independent of the variables (figure 3.2b,d). This scaling property confirms that the curves
do indeed belong to a one parameter family and that that parameter is o*.

In all investigations of the form of the constant o* curves, the existence of the scaling
property has been tested only by visual inspection of the quality of the superposition of the
curves onto a common master. This fails to distinguish between apparent and real scaling, and
also requires that the curves have sufficient curvature to define a unique scaling direction. In
practice these problems are significant only when the data is collected over a small strain-rate
range or at temperatures of about 0.3 7,,. More rigorous tests based on the form of the general
function that gives rise to equations 3.6 and 3.7, can be employed once constitutive relations
have been fitted to the data (§ 4.1.1.1).

3.2.3 Verifying that the constant o* curves are unique, Hart (1970) suggested that if o* is a
unique function of o and & then no two constant o* curves obtained from the same material
should intersect. However, this is not in general correct. In a constant stress creep test where the
deforming phase passes through a creep-rate minimum, there exist two states of the material
which creep at the same & under the same o but which are clearly different because in one case
the creep-rate decelerates while in the other it accelerates. The intersection of the constant o*
curves in this case reflects the fact that the curves are contours in the o — & plane, to a surface
(equation 3.4) which ‘doubles back on itself’ in the third (o*) dimension. Nabarro (1989)
observed that this situation is analogéus to the surface T(p,V) representing the equation of
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FIG. 3.2. Constant o* curves generated by load relaxation experiments conducted after
constant displacement-rate loading to the indicated inelastic strains. (a) Low homologous
temperature behaviour demonstrated at room temperature by single crystals of LiF.
Translation of the curves along the indicated line yields the master curve shown in (b)
(redrawn after Lemer et al., 1979). (c) High homologous temperature behaviour
demonstrated at room temperature by single crystals of AgCl loaded in the [100] direction.
Translation of the curves along the indicated line yields the master curve shown in (d)
(redrawn after Lerner and Kohlstedt, 1982).
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FIG.3.2contd. Load relaxation data obtained at different temperatures but at
approximately the same o* in Type 316 stainless steel, showing the effect of temperature
on the concavity of o* curves. The stress values are rigidity modulus corrected for
temperature to room T (redrawn after Huang et al., 1977).

state for H,O in the range 0 — 10°C. This surface is approximately a portion of a circular
cylinder with its axis pointing in the direction (-2026 MPa, 1 unit strain, 2000°C). Hence at
atmospheric pressure, a given volume may correspond to T = 2°C or to T = 6°C.

The only way to verify uniqueness is to compare constant o* curves generated at the same
o* but after different deformation histories. In almost all experimental studies the pre-straining
prior to the determination of constant o* curves has been by monotonic, constant displacement-
rate deformation, without investigation of the effect of different deformation histories.
However, Tanoue and Matsuda (1982, 1984) and Tanocue et al. (1983) found that in
polycrystalline molybdenum, neither the displacement-rate used nor complex pre-strain
histories involving loading or strain-rate cycling had any effect on the shape of the curves. In
contrast, Swearengen et al. (1976) found that whilst both monotonic and cyclic loading
histories produced one parameter families of curves in high purity (99.97%) polycrystalline
iron, the scaling slope i was different in each case. This implies that the shape of the master o*
curve for this material is a function of deformation history and hence that the o* curves are not
unique. Differences in starting material pre-treatments, particularly in the annealing treatment
given to heavily cold-worked materials, have also been observed to produce different sets of one
parameter o* curves in a number of materials (in various stainless steels, Povolo and Tinivella,
1984a,b, Thomas and Yagee, 1975, Yamada and Li, 1973 ; in zircaloy-4, Povolo and Capitani,
1984, Povolo and Higa, 1980, Povolo and Peszkin, 1983 ; in molybdenum, Tanoue and



Matsuda, 1982 ; in Inconel, Povolo and Reggiardo, 1988 ; in LiF, Lerner et al., 1979).

The fact that under given pre-treatment one parameter families of curves are still observed
in these materials, suggests that the apparent failure of uniqueness may be due to substantial
microstructural changes induced by the pre-treatment (or, in the case of Swearengen et al., by
the deformation) which, from the perspective of Hart’s analysis, effectively render the starting
material as a new substance. Microstructural changes which could produce this effect include
the precipitation or rearrangement of second phase particles or the loss of the homogeneity or
isotropy (though the development of a fabric) of the deformation. Such effects, while not
accommodated in the theoretical framework of the state variable analysis, may however, be

included by a suitable parameterization of the material parameters in the final constitutive
relations (§ 6.3).

3.3 The effect of temperature

The effect of temperature on the concave upward o* curves generated at T < 0.25 T,, has
been fully investigated only for molybdenum (Tanoue and Matsuda, 1982, 1984 ; Tanoue et al.,
1983), although some experimental results have been reported for Type 316 stainless steel
(Huang er al., 1977) and zircaloy-4 (Huang et al., 1979). It is found to affect both the position
in o - & space and the shape of the curves, the latter being reflected in an increase of scaling
slope u with temperature. The positional effect can be accommodated with a Zener-Hollomon
type temperature parameterization (equation 2.16) but only with an apparent activation enthalpy
which varies with temperature (Huang et al., 1977). To describe the shape change the
temperature parameterization scheme employed must involve specifying the material
parameters in the final constitutive relations as a function of temperature.

The effect of temperature on the concave downward o* curves generated at T > 0.3 T,, has
been investigated for UO, (Roberts, 1974) and for Cr-Mo-V steel (Woodford, 1975), and been
shown to affect only the position of the curves in o - & space and not their shape (i.e. the
scaling slope is independent of temperature). In this case the Zener-Hollomon parameterization

with a temperature independent apparent activation enthalpy can fully account for temperature,
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4 DERIVATION OF THE CONSTITUTIVE RELATIONS

Having verified by experiment that a state variable description of plastic deformation exists
for real materials, it is necessary to derive the constitutive relations which comprise that
description. This involves the twin tasks of (a) determining the equation of state that interrelates
the internal and external state variables of the deformation system at any given time, and of (b)
determining the internal state variable evolution equation which allows the integration of the
incremental deformation equation along any deformation path of interest. Since the theoretical
analysis (§ 2) does not address the functional form of these constitutive relations, this exercise
is necessarily (at least in principle) empirical.

4.1 Derivation of the equation of state

The preceding discussion has shown that the isothermal, plastic deformation system is
characterized by the two external state variables ¢ and & together with the internal state
variable o*. The equation of state for this system is therefore a relationship between only these
three variables. '
4.1.1 Constraints on the form of the plastic equation of state. The required relationship
between the deformation variables is some function that describes the surface denoted by
equation 3.4. The general form of this function is constrained to be one that produces the
observed scaling behaviour of the o* level curves to this surface (§ 3.2.2), while the particular
equation chosen to represent that general form must satisfy the criteria which actually make it
an equation of state. In addition, the scaling property also constrains the functional
interrelationships of the material parameters in the special form.
4.1.1.1 The general function which produces the observed scaling behaviour : The general
form of a one parameter z family of y (x ; z) curves with a scaling relation Mp=Ax/Ay=0
(that is curves which can be made to superpose by a translation parallel to the y axis) is

y(x;z) = z + f(x) “4.1)

where f is an arbitrary function (Fortes and Emilia Rosa, 1984). For scaling along a linear
translation path in any direction, equation 4.1 becomes (Povolo, 1985)

g(A;x;) = B;x; + By i=123 4.2)
where the variables x;, x, and x; have been used in place of the x, y, z nomenclature, where g is
a real function which is continuous, single-valued and differentiable and A;, B; B, are real
constants, and where the Einstein suffix convention of summation over repeated indices within
a given term is implied.

Povolo (1985) verified that equation 4.2 produces a scaling slope which is independent of
the variables (i.e. the scaling property formulated as equation 3.7) by rewriting it as

F = g(A;x) - Bix;- B, = 0 4.3)
Taking increments of equation 4.3
Fdx; = g'(u)(4;4x;) - (B;j4x;)) = 0 4.4)

where u=A; x;, g'(u)=dg/du and F,=9F/dx; (§A1.2.1.1). For fixed increments Ax;
equation 4.4 can be satisfied only if



30

A;Ax; = 0 4.5)
B;Ax; = 0 (4.6)

Combining equations 4.5 and 4.6 then
Axy/Ax; = (A;Bj - BiA))/(A;By - BjAp) i#j#k 4.7)

(§A1.2.1.2) which defines three scaling relationships which are all independent of the variables.
The fact that scaling behaviour in one plane leads to scaling in the other two may be used as a
test of whether or not the observed scaling in one plane is real or apparent, for not only must
scaling be observed in the other two planes but the scaling slopes in all three planes must be
related according to equation 4.7 (Povolo and Fontelos, 1987a).

The scaling property formulated as equation 3.6 i.e. that points of equal derivatives should
be superposed, was shown by Povolo and Fontelos (1987b) to be satisfied by equation 4.2 in
the case that equation 4.3 can be used to define a function x;=wy(x;, x;) where i=j=k In
such circumstances (which must apply if equation 4.2 is to define an equation of state,
§ 4.1.1.2), the theorems for the derivatives of implicit functions (cf. equations 4.15) can be used
to show that

(3x)/3x), = - [8°(w) A;-B1/[g°(u) 4;- B 4.8)
From equation 4.5
u = A;jx; = A;(xq+4x;) 4.9)
and therefore using equation 4.9 in 4.8, then (ax, / 9x;); as defined at point (xq, x,, x3), equals
that defined at every other point (x; + 4xy, x, + 4x,, x5 + Ax;3) on the scaling path.

Since equation 4.2 satisfies the observed scaling properties (equations 3.6 and 3.7) of the
constant 0¥, o(d&) curves, it is, with the appropriate change of variables, the general form for
the plastic equation of state. Restating equation 4.2 in x, y, z nomenclature, then

g(A i x+A,y+Ajz) = Bix+Byy+B3z+B, (4.10)
where, since the scaling is observed in logarithmic space, x =log &, y =log o, z = log o* and
B4 =1log C (where C is a real constant). To satisfy the variable independent scaling property, the
A; and B;in equation 4.10 must satisfy equation 4.7, i.e.

Ay/Ax = (A{B3 - BjA3)/(A3B, - B3jAy) = 1/ My 4.11)
where M, is the reciprocal of the scaling slope (equation 3.5). Several functions of the form of
equation 4.10 which satisfy equation 4.11 were listed by Povolo (1985) and these are shown in
figure 4.1 together with their equivalents on the change of variables.
4.1.1.2 The conditions to be satisfied for the special form to be an equation of state : For
equation 4.10 to be an equation of state it is necessary that any one of the variables be a unique
function of the others or, equivalently, that the differential of each variable be a perfect
differential. Hence writing equation 4.10 (cf. equation 4.3) as

F(x, Yy, Z) = g(A1x+A2y +A3Z) - BIX'Bzy 'B3Z -B4 =0 (4.12)
then a function z = y (x, y) must exist and the differential
dz = (dy/ox),dx + (Jy/dy),dy (4.13)
must be exact. The necessary and sufficient condition for equation 4.13 to be exact is that
9 = 9
3y (oy / ax)y = % (oy / oy), (4.14)

where the derivatives of the functions (Jy / dx) y and (oy / dy) , are both continuous. Using the
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g(x-Mgy) = Bix + Byz+ B, =  f(&/oMR) = Ca&Pio*h
g(x-Mpy) = B,y + Byz+ B, =  f(&/oM) = Ca&Pro*Bs
g(Mgy+z) = By(x+2z) + B, = f(ocMro*) = C(a&o*)B
g(x+Mpz) = By(y+z)+ B, = f(¢o*Mr) = C(oo*)B
g(x+z) = Mpy + z + B, - f(ko*) = Co*oMr

g(y+z) = x + Mgz + B, - f(co*) = Cé&o*Mr
f(c/o*) = Cao*™Mr

'

g(y-z) = x- Mpz + B,

FIG. 4.1. Some functions which satisfy the observed scaling behaviour of constant o*
curves in log o - log & space i.e. which are special forms of equation 4.10 that also satisfy
equation 4.11 (after Povolo, 1985).

change of variables, u=A; x+ Ay y + A3z (as previously, § 4.1.1.1) and the theorems for the
derivatives of implicit functions (e.g. Hildebrand, 1976, pp. 342-346) then

oy _ (oF / ax)y’z _ [g°(w) Al ) Bll
(a_x)y - (@F/a), = [EWA4, - Bl (4.152)
vy _ (oF [ oy),, [g°) 4, - B, ]
(W)x T T @FJa),, = [EW4, - B] (4.15b)

so that equation 4.14 yields

2
_ . (A4, + A AN, + AAy + Av )
Wx), = ‘l’yx - -8 (u) [g'(u) A3 — B3] (4.16)

where = (3y/3x)y, Wy =(3W/3y), V= (3/3x) (3y/dy); and v, = (3/dy) (3y/ax),
(§ A1.2.1.3). Hence from equation 4.16, equation 4.13 is exact if g(u) A;-B;#0 or
g (u) # B3/A, 4.17)
Therefore, while the general form of the plastic constitutive relation is given by equation
4.10, the special form chosen must also satisfy equation 4.11 if it is to give rise to variable
independent scaling, and equation 4.17 if it is to be an equation of state. These constraints,
presented here according to the analysis of Povolo (1985), are sufficiently general to allow
them to be applied to a wide variety of plastic constitutive relations in addition to those arising
from Hart’s analysis (Povolo and Marzocca, 1983b ; Povolo and Rubiolo, 1983a,b ; Povolo et
al., 1984).
4.1.1.3 Constraints on the functional interrelationships of the material parameters in the
special form : Povolo and Marzoccé (1983a) outlined the constraints the scaling property
imposes on the functional interrelationships between the material parameters in any special
form of equation 4.10.
Theoretical expressions used to describe load relaxation data can be represented as
f(a/cg,&/é%,8) = 0 (4.18)
where o, , é* and B are parameters which depend upon the particular theoretical model
considered (with B being an implicit function of &/ and ¢&/é*), and f is a general function
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(Povolo, 1981). The substitution & = (™ is used in equation 4.18 with the caveat that prior to
the relaxation the specimen is loaded beyond the yield point so that anelastic effects are
negligible (§ 5.1.3). Taking increments of equation 4.18

of of * af -
_alog(o_/o_o)Alog(a/ao) + 308 (&/2%) Alog(c&/é*) + 3logh AlogB = 0 4.19)
with the additional constraints along the scaling path that
of of  dlogB  _
alog(a/ )] ~ Jlog(o/oy " dlogh dloglala,) 0 (4.202)
of of dlogB b
alog(d/é*)] o) = Slogaje® t dlogh olog(a/d® - ° (4.200)
On substituting equations 4.20 into equation 4.19 then
dlogp dlogp o '
W dlog(o/o,) + Slog(&/2%) Alog(c/é*) = AlogB 4.21)
Introducing v
h = h(o/oy,a&/é*,B) = odlogf/dlog(a/ay) (4.22a)
g = g(o/oy,&/é*,B) = dloghdlog(d/é¥) (4.22b)

equation 4.21 in turn becomes
hAlog (o/oy) + gAlog(&/é*) = AlogB 4.23)
This expression then relates the increments on the variables o and ¢ that are compatible with
the increments on the parameters o , £* and B in any special form of equation 4.10 given the
fact of the scaling relation. To be consistent with the observation that the scaling direction is
independent of the state variables, solutions to equation 4.23 which are independent of o/o,
¢&/é* and B are required.
4.1.2 Special forms adopted for the equation of state. Two different special forms of
equation 4.10 have been widely used for the isothermal plastic equation of state ; one applicable
at low homologous temperatures producing concave upward o* curves in log o — log & space,
and the other applicable at high homologous temperatures producing the concave downward
curves.
4.12.1 High homologous temperatures : The special form used at high homologous
temperatures was introduced by Hart et al. (1975) as
In(o*/c) = (é%/&) (4.24)
where A is a constant and o* and £* appear as normalization factors.
To find the interrelationships between A, o* and £* consistent with scaling behaviour,
equation 4.24 is written as

c/c* = exp[-(&/é*)*] (4.25)

Making the change of variables oy = o* and f = 4 then from equations 4.22 (§ A1.2.2.1)
h = dlogB/dlog(c/oy) = 1/[B(&/é*)PIn(a/é*)] (4.26a)
g = dlogB/dlog(&/é*) = -1/In(&/é*) (4.26b)

With equations 4.26, equation 4.23 has solutions which are independent of 6/0; , &//é* and B
only if
Adlogf = Alog(oc/og) = Alog(a/é*) = 0 4.27)
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that is if
Alogd =0 ; Alogo =Alogo* ; Alogd = Alogé* (4.28)
Hence to be consistent with the variable independent scaling property (equation 3.7), A must be
the same value for all the constant 6* curves (i.e. it must not change along the scaling path) and
o* and #* must be related as (equation 3.5)
, U = Alogo/Aloga = Alogo*/Alogé* (4.29)
that is as
% = C(o*)H (4.30)
where C is a constant.
Making the change of variables x =log &, y = log o, z = log 6*, and substituting equation
4.30, equation 4.24 can be rearranged (§ A1.2.2.2) to give
z-y-(1/n10){exp[AIn10(logC + mz - X)]1} = 0 (4.31)
where m=(1/u). It is then readily seen that equation 4.24 is a special form of equation 4.10
with
Aj=-1 3 A=0 ; A3=m
Bi=0 ; By=1 ; By=-1 ; By=0 4.32)
From equation 4.11, the scaling slope is given by u=(1/m) in accordance with the way m
was defined in equation 4.31. The condition for equation 4.24 to be an equation of state is, from
equations 4.17 and 4.32 (§ A1.2.2.3)
In(c*/o) = 1/Am (4.33)
This inequality does not necessarily always hold. Since the condition of continuity requires the
inequality to hold throughout the domain in which the equation of state is applicable, then it
follows that for equation 4.24 to be an equation of state either
(c*/o) > exp(1/Am) (4.34a2)

(o*/c) < exp(1/Am) (4.34b)

must be true for all &. The experiments conducted to investigate the high homologous
temperature equation of state have all been in the domain given by equation 4.34b.
4.12.2 Low homologous temperatures : Since the low homologous temperature log o — log &
constant o* curves have the same scaling relationship as those at high homologous
temperatures, and differ from them only in being concave upward rather than concave down,
the plastic equation of state at such temperatures can be expected to be described by an inverted
form of equation 4.24, i.e. by

In(o/o*) = (&/&*)* (4.35)
However, although equation 4.35 can describe the o* ‘curves, the recognition that at these
temperatures dislocation glide kinetics control the rate of plastic deformation, has led to a form
with greater micromechanical significance being chosen. Splitting the flow stress o into internal
stress o, and effective stress o; components such that

o = 0,+ 0 (4.36)
Hart (1976) proposed that the special form for the low homologous temperature equation of
state be

& = a*(|o5/G)Msgn(ap) 437)
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where g* is a rate parameter (which is constant at given mechanical state and at given
temperature), M is a constant, G is the rigidity modulus and sgn (o) is the signum function
whose value is simply the sign of its argument (the signum is omitted in all the equations below
where both & and oy are positive). Equation 4.37 has the same functional form as the Johnston-
Gilman equation which combines the empirically observed relationships between dislocation
glide velocity, plastic strain-rate and effective stress (as defined in equation 4.36) — § 6.2.2.1. It
may also be shown (§ A1.2.3.1) that on making the approximation
o* = o, (4.38)
(permissible at present because o* is arbitrarily defined, § 2.4) and using equation 4.36,
equation 4.37 is equivalent to equation 4.35 with '
A =1/M ; & = g(c*/G)M (4.39)
To find the interrelationships between d*, o*, G and M that are consistent with scaling
behaviour, equations 4.36 and 4.38 are used to rewrite equation 4.37 as

& = a[(c-0%)/GIM (4.40)
On rearranging and making the change of variables
co=0* ;, B=1/M ; & =a*(c*/G)M (4.41)
equation 4.40 becomes
(o/oy) = (&/é%8 + 1 (4.42)
so that from equations 4.22
h = dlogB/dlog(c/cy) = (6/0y)/[B(&/é¥)BIn(&/é%)] (4.43a)
g = OdlogfB/odlog(&/é¥) = -1/In(&/é%) (4.43b)

(§ A1.2.3.2). Again, as for the high homologous temperature case, the need for solutions to
equation 4.23 that are independent of o / g , & / é* and 8 requires

Alogf = Alog(o/oy) = Alog(é&/é*) = 0 (4.44)
and so from equation 4.41
-AdlogM =0 ; Alogo =A4dlogo* ; Alogd = Alogé* (4.45)

Hence to be consistent with the variable independent scaling property (equation 3.7), M must be
the same value for all the constant o* curves (i.e. it must not change along the scaling path),
and £* and o* must be related as (equation 3.5)
u=A4logo/Alogd = Alogo*/Alogé* = (M + dlog a*/dlog o*)-1 (4.46)
where the last equality in equation 4.46 follows from equation 4.41.
Making the change of variables x=1log &, y=1log o, z=1log o*, equation 4.40 can be
rearranged (§ A1.2.3.3) to give
(loga* - MlogG) + Mz - x + Mlog {exp[In10(y - z)] -1} = O 4.47)
Provided that the dependence of d* on o* is given by
loga* = A + Blogo* (4.48)
where A and B are constants, it is then readily seen that equation 4.40 is a special form of
equation 4.10 with
Al=0 ; A=1 ; A;=-1
Bi=1 ; B,=0 ; By3y=-(B+M) ; By=-(A-MlogG) (4.49)
From equation 4.11 the scaling slope is given by ux = (B + M)-! in accordance with equation
4.46. The condition for equation 4.40 to be an equation of state is, from equations 4.17 and 4.49
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(c*/c) = B/(B+M) (4.50)
(§ A1.2.3.4) which in the case that 4* is independent of o*, is always satisfied.
4.1.2.3 Temperature parameterization . The parameterization of equations 4.24 and 4.37 for
temperature follows from the observed effect of temperature on the constant o* curves (§ 3.3).

At high homologous temperatures, temperature affects only the position of the o* curves
and has no effect on their shape. Since this means that the scaling slope is independent of
temperature, it follows from the analysis presented in equations 4.26-4.30, that A is
temperature independent, and that position effect of temperature is accommodated wholly
within the constant C in equation 4.30. Hart et al. (1975) proposed that equation 4.30 be

& = (o*/G)"fyexp(-H/RT) (4.51)
where o* is scaled by the rigidity modulus G (which is implicitly temperature dependent), m is
the reciprocal of the scaling slope, £, is a frequency factor, H is an activation enthalpy and R is
the gas constant.

At low homologous temperatures, temperature affects both the position and the shape of
the o* curves. Since the effect on shape implies that the scaling slope is dependent on
temperature, it follows from equation 4.46 that M and/or oJlog a*/dlog o* depend on
temperature. The position effect indicates that ¢* is temperature dependent. No explicit forms
for these temperature dependencies have been proposed, although theoretical considerations
offer some constraints (§ 6.2.2.2).

4.2 Derivation of the mechanical state evolution equation
The plastic equations of state outlined above completely specify the plastic state of a
deforming material at any instant. However, they do not indicate how that state changes as
deformation proceeds. To determine this it is necessary to find some function of the state
variables which describes how the internal state variable * changes with plastic strain. From
equation 2.17, noting the definitions used in equation 2.5
dlno* = I'dae = (I'/y)(dlno - vdIng) 4.52)
so that this task is formally equivalent to finding the functional form of the integrating factor I".
4.2.1 General form of the integrating factor. For the adopted equations of state at both low
and high homologous temperatures (i.e. equations 4.24 and 4.37), along the scaling path
4 =dmno/dlné&é ; dhno = dhno* (4.53)
(equations 4.28, 4.29 and 4.45, 4.46). Substituting these identities into equation 4.52 and
solving for I" then
r=yul(u-v) (4.54)
(§ Al1.2.4, Wire et al., 1976). Equation 4.54 represents the general form of the integrating factor
in terms of ¥ and v (which are unspecified functions of o and &) given that the special form
chosen for the equation of state leads to the identities expressed in equation 4.53.
4.2.2 Special forms for the integrating factor. The general form of the integrating factor,
equation 4.54, is expressed as a function of o and & through the dependence of y and v on those
variables. However, since this integrating factor is the function that describes the evolution of
the mechanical state o* with deformation, it is more convenient to express it as a function of &
and o*. This presents no difficulty because the equations of state allow the third state variable
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to be determined from the other two.

4.22.1 Low homologous temperatures : In all the experiments that have been conducted, I" is
strain-rate independent at low homologous temperatures. Suzuki et al. (1982) demonstrated this
in a series of constant displacement-rate tests on zircaloy-2. Calculating oy in the low
homologous temperature equation of state (equation 4.37) by employing previously determined
values of the parameters in that equation and the imposed strain-rate of the test, they used
equation 4.36 to plot their stress /strain curves as curves of g, versus a. The g, / o curves
generated at different strain-rates are coincident (figure 4.2a) thereby establishing that do, / d
is independent of ¢&. The strain-rate independence of I' = dIno*/da then follows by
verifying that 6* =0, (equation 4.38) which was shown by determining o* from load
relaxations conducted at several points along the o, / & curve.

The strain-rate independence of I" at low homologous temperatures has also been
demonstrated in high purity niobium and Type 316 stainless steel (Wire et al., 1976 ; Korhonen
et al., 1985b). Korhonen et al. (1985b) plotted I" as a function of o* and found that irrespective
of &

r =[¢§/(c*-of)1" (4.55)
where £, n and o} are constants (figure 4.2b). They observed that the & independence of I’
suggests that £, 7 and o* are all temperature independent.
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FIG. 4.2. The I' function at low homologous temperatures. (a) o, / & curves in zircaloy-2
at 200°C as determined from constant displacement-rate & / &® curves using calculated
values of a;. At &(" > 0.01 the curves are strain-rate independent and o* ~g,. Hence it
follows that I" is strain-rate independent (redrawn after Suzuki ef al., 1982). (b) The
dependence of I" on o* in Type 316 stainless steel at room temperature as determined from
constant displacement-rate tests at several strain-rates in the range 3 x 103 to 3 x 10-5 s-1,
No strain-rate dependence can be seen (redrawn after Korhonen et al., 1985b).
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FIG. 4.3. The I function at high homologous temperatures. (a) Constant I data obtained
from 1100 aluminium alloy at temperatures of between room and 250°C and after loading
at several different strain-rates in the range 2.5 x 10-3 to 6.3 x 106 s-1, The stress values are
rigidity modulus corrected for temperature to their values at room T (redrawn after Hart et
al., 1975). (b) Curves of constant I" and constant o* in log o/ log &M space, where the I"
curves are calculated from equation 4.56 and the o* curves from equation 4.24, both using
room temperature material parameters for 1100 aluminium alloy (redrawn after Ellis et al.,
1975).

4.22.2 High homologous temperatures : Experiments on 1100 aluminium alloy (Wire et al.,
1976), high purity aluminium and OFHC copper (Korhonen et al., 1985b) have all shown I” to
be & dependent at high homologous temperatures. Curves of constant I" in log 6* — log (o* /
o) space are linear (figure 4.3a) which prompted Hart et al. (1975) to suggest that
I = C(o4/0*8) (4.56)
where A, B and C are constants. They also found that equation 4.56 could be parameterized for
temperature by normalizing both o and o* by the rigidity modulus at the specified temperature.
Ellis er al. (1975) showed that on a log o — log & plot curves of constant I” given by equation
4.56 are concave downward (figure 4.3b).
4.22.3 A special form applicable for all temperatures : The experimental results for I" may be
represented for all temperatures as the product of an athermal strain-rate independent term I" *
and a thermal strain-rate dependent term :
I' = I'(o,/o%)5* = ({/o*)7(0,/c*)sI* 4.57)
where { and 7 are constants (Li, 1981). At low homologous temperatures where o, = o*,
equation 4.57 reduces to equation 4.55 with o = 0.
Korhonen et al. (1985b) investigated equation 4.57 in detail and reformulated it in terms of
¢&. Plotting curves of constant o* in log I" — log ¢ space they found a scaling behaviour similar
to that observed for constant o* curves in log o — log ¢ space (figure 4.4a). This suggested that
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FIG. 4.4. The I function at all temperatures. (a) Curves of constant o* in log I"/ log &(™
space for the room temperature (high homologous temperature) deformation of commercial
purity aluminium. A master curve may be constructed by rigid body translation (redrawn
after Korhonen et al., 1985b). (b) The dependence of I" on o* in commercial purity
aluminium at room temperature and several different strain-rates. The data indicates a
power law relationship between the two variables at given strain-rate and thereby confirms
the functional form of equation 4.55 (with of =0) at high strain-rates where I" is
approximately strain-rate independent (redrawn after Korhonen ef al., 1985b).

(cf. equation 4.24)

I = ' exp[-(&*/&)4] (4.58)
where (¢f. equation 4.30)

a* = C(I*)ur (4.59)

A and C are constants, and u* is the scaling slope. The parameter &* provides a measure of the
strain-rate sensitivity of work hardening such that if & > &* no strain-rate dependence is
observed. Hence at high strain-rates even at relatively high temperatures, no strain-rate
dependence is expected, and I"=I'* should be given by equation 4.55. They confirmed this in
high purity aluminium (figure 4.4b) and OFHC copper, finding in common with equation 4.57,
that o = 0. They suggested that the need to have the o} parameter implies that the flow stress
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in some materials contains an additional component besides that of dislocation interactions.
Such interactions may arise for example, between dislocations and grain boundaries (§ 6.3.3),
and hence o # (0 may be expected in materials of fine grain-size. The temperature dependence
of equation 4.58 has not been investigated but given that an Arrenhius dependence of the rate
parameter &* is probable, Korhonen et al. (1985b) suggested (cf. equation 4.51)
a* = (I'*)™ f¥exp (- H¥/RT) (4.60)

where m* =1/ u*, f§ is a frequency factor and H* is an apparent activation enthalpy.

Equations 4.55, 4.58 and 4.60, which represent Korhonen et al.’s special form for I", and
the alternative expression equation 4.57, are equivalent. Writing equation 4.57 as

I = I'*(c,/o*)" (4.61a)
or equivalently as
In(Ir'*/I') = f(o*)In(0,/0*) (4.61b)
then on substituting the high temperature equation of state (equation 4.24)
In(r*/I) = f(o*) [(&*/a)*] (4.62)
For a given I'’* (or o*), and with the definition
a* = [f(o*)]1Ag* (4.63)
equation 4.62 becomes
In(I'*/I) = (&*/a&) (4.64)

which is the same as equation 4.58 with A = A. This latter equality seems to be confirmed by
existing experimental results.



5 A GENERAL MODEL FOR INELASTIC DEFORMATION

The preceding discussion has been restricted to the case of the stable, homogeneous, grain
matrix plastic deformation of an isotropic material under a uniaxially applied differential stress.
Any contribution to the deformation from elastic, anelastic or grain boundary sliding processes
has been neglected and it has been assumed that time dependent microstructural changes do not
exert any influence. All the experiments described above have been conducted and interpreted
within the confines of these conditions.

The results are now combined with a simple state variable description of anelastic
deformation to delimit a general phenomenological model of inelastic deformation in the
absence of grain boundary sliding and time dependent microstructural changes. This model is
then extended to the general case of the deformation of an anisotropic material under triaxially

applied differential stresses. Finally a micromechanical interpretation of the model is offered.

5.1 Description of the general model
The task of devising a general model for inelastic deformation which incorporates the

results discussed above, is one of finding a description that will reduce to some anelastic
equation of state when anelastic processes dominate the deformation, and to some general
plastic equation of state (which under the appropriate conditions must itself reduce to the low
and high homologous temperature equations of state, equations 4.37 and 4.24 respectively)
when plastic processes dominate it. ,
5.1.1 General descriptions of anelastic and of plastic deformation. The first task is to
determine general descriptions of both anelastic and plastic deformation.
5.1.1.1 Anelastic deformation : Within the context of the present analysis, anelastic
deformation has been phenomenologically defined as that part of the total strain which is both
time-dependent and recoverable (§ 2.1). It may therefore be represented by a two branch
analogue model (figure 5.1 ; Hart, 1979) containing a viscous element (shown as a dashpot in
figure 5.1) and a strain storage element (the spring). The constraint conditions for the
deformation of such a model are

o =0 +0, .1

a =& =48 5.2)
where oy, o, are the differential stresses and £, ¢, are the strain-rates acting in the respective
branches 1 and 2, and o and g are the total differential stress and total strain-rate respectively.
Assuming that the strain storage element is linear and that the viscous element is governed by a
power law, then the constitutive relations for the two elements may be written

o = Mg : (5.3)

é = A(o,/G)B (5.4)
where o/, A, B and G (the rigidity modulus) are constants at given mechanical state and
temperature. Combining equations 5.1 to 5.4 yields

@ = A[(oc-01)/G)1? = A[(c - «#a)/G]B (5.5)
where the identity a=¢; =¢, (i.e. the strains in the two branches are equal as follows from
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FIG. 5.1. An analogue representation of an anelastic element.

equation 5.2) has been used.

Since the anelastic strain g is a good state variable then, provided the functional forms of
equations 5.3 and 5.4 are valid and the magnitudes of </, A and B at given o* and T are
independent of the deformation history, equation 5.5 is an equation of state for anelastic
deformation. Existing experimental data indicates that these conditions are satisfied (§ 5.1.3.3).
5.1.1.2 Plastic deformation : In the previous discussion it has been observed that at T< 0.3 T,
plastic deformation is characterized by upwardly concave constant o* curves in log o — log &
space, while at 0.3 <7 /T,,<0.45 those constant o* curves are downwardly concave. The
former curves may be described by equation 4.37 and the latter by equation 4.24. It has also
been observed that within each temperature regime a Zener-Hollomon type temperature
compensated strain-rate can be employed to superpose at least the strain-rate location of curves
of a given o* (§ 3.3). The implication is therefore, that if a curve of given o* is extended over a
sufficiently large range of strain-rates, it will change from being concave upward to being
concave downward as strain-rate decreases (figure 5.2a). This conclusion is supported by the
observed mixed concavity of the o* curves generated at T = 0.3 7,, (figure 3.2e), and by the
results of Henderson et al. (1984) who extended a room temperature constant o* curve for
commercial purity aluminium to strain-rates of 102 s-! and found that the concave downward
curve obtained under normal laboratory strain-rates became concave upward at higher strain-
rates (figure 5.2b).

Inspection of equation 4.37 (in the form of equation 4.40) shows that it can only describe
concave upward curves, and that these curves approach o* asymptotically as log & tends to
minus infinity. Similarly equation 4.24 can only describe concave downward curves which
approach o* asymptotically as log & tends to infinity. This behaviour suggests that provided the
same scheme for assigning a value to o* is adopted for both equations, it should be possible to
combine them into one equation which has the desired mixed concavity. In selecting a form
which had micromechanical significance for the equation of state at low homologous
temperatures (§ 4.1.2.2), it was convenient to identify o* with the internal stress o, (equation
4.38), which at these temperatures is approximately equal to the mechanical threshold stress
(i.e. the stress at which most of the gliding dislocations in the deforming material can
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FIG. 5.2. Constant o* curves extended over many orders of magnitude of strain-rate, (a) A
schematic o* curve extended over a sufficiently wide range of strain-rates to show the
change in concavity which has previously here been associated with different temperature
regimes. To identify o* with the mechanical threshold stress is to define o* as the stress at
the inflexion point of the curve. (b) An approximately constant o* curve for the room
temperature deformation of commercial purity aluminium, showing the mixed concavity
suggested by (a). The load relaxation data was obtained by Henderson et al. (1984) after
constant displacement-rate loading to £(® = 0.09. The high strain-rate data was obtained
using the split Hopkinson bar technique by Hauser (1966) and corresponds to & = 0.08
. (redrawn after Henderson et al., 1984).

mechanically overcome the obstacles to their motion). Retaining this identification and
observing that at stresses below the threshold stress o =g, then substituting equations 4.24
and 4.37 into equation 4.38 yields

c = G(&/a*)!M + o*exp[-(é*/a)*] (5.6)
Equation 5.6 then describes plastic deformation at all 7<0.457,,, as has been confirmed by
Huang et al. (1977 ; 1979) who successfully used it to describe constant o* curves generated
from Type 316 stainless steel and zircaloy-4 over a wide range of temperatures.
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FIG. 5.3. An analogue representation of Hart’s (1976) model for grain matrix inelastic
deformation.

5.1.2 Presentation of the model. The functional similarity of equation 4.40 (the low
homologous temperature equation of state) and the first identity of equation 5.5 (the
constitutive relation for the viscous element of the anelastic model subject to the stress
constraint condition, equation 5.1), allowed Hart (1976) to propose the model illustrated in
figure 5.3 as an analogue for a general inelastic deformation. This model consists of three
elements labelled 1, 2 and 3, which are conveniently referred to by the names a - element (or
anelastic element), ¢ - element (or plastic element) and £ -element (or friction element)
respectively.
The constraint conditions for the deformation of the model are
o =0,%+ 0 (5.7
&M = & + daldt (5.8)
where o is the applied differential stress (of uniaxial symmetry), o, and oy are the differential
stresses operative in each branch of the model, é™ is the total inelastic strain-rate, & is the
strain-rate of the ¢ -element, and a is the stored but recoverable anelastic strain. It is
emphasized that £(" and ¢& are not time derivatives of state quantities but are simply rates. This
distinction is made to ensure that the evolution laws for ¢ and o* in the model are independent
of the rigid motions of the material, though in the following the dot notation for the time
derivative of a is used for simplicity.
The constitutive relations for the component elements are as follows (with the definition of
parameters restated for clarity) :
— the anelastic element is described by equation 5.3
o, = «Ha 5.9
where o/ is the anelastic modulus which is in general a function of * and T.
—the plastic element is described by the high homologous temperature equation of state
(equation 4.24) as parameterized for temperature (equation 4.51)
In(c*/0,) = (&%/a&)* (5.10)
&* = (o*/G)™fyexp (-H/RT) (5.11)
where A, m (the reciprocal of the scaling slope for high temperature constant o* curves), f, and
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H (an activation enthalpy) are material constants, G is the rigidity modulus (which is
temperature dependent) and R is the gas constant.
—the friction element is described by the low homologous temperature equation of state
(equation 4.37)
ém = g* (of/G)M (5.12)
where d* is a temperature and mechanical state dependent rate parameter and M is a material
constant.
The o* evolution equation for the model is written as
d(lno*)/dt = &I (o%0,) - R(c*,T) (5.13)
where R (o*, T) is an unspecified recovery function (treated as zero throughout the preceding
discussion) which incorporates all time dependent microstructural changes that influence the
magnitude of o*, and I is given by equations 4.55, 4.58 and 4.60 which become in the model

I' = I'exp[-(&*/&)4] (5.149)
r* = [§/(c*-0}) 1" (5.15)
a* = (I*)m* f& exp (-H* /RT) (5.16)

where A, £, , of, m* (the reciprocal of the scaling slope for constant o* curves in log I" -log &
space), f¢* and H* (an activation enthalpy) are material constants.

5.1.3 Deformation of the model. Before demonstrating that the model does reduce to the
anelastic and plastic equations of state (equations 5.5, 4.37 and 4.24) under the appropriate
conditions, it is convenient to consider its response to the conditions imposed in constant stress
creep, constant inelastic strain-rate and load relaxation experiments. To simplify the discussion
of the first two of these tests, any variation of «# or 4* during deformation (i.e. with o*) is
assumed to be negligible. _

5.1.3.1 Behaviour under the conditions that pertain in deformation experiments : The response
of the model in a constant stress creep test (where o is greater than the elastic limit and initially
o, < o*) is shown in figure 5.4a-c. In the early stages of the test o* /g, is large so that & =0

(equation 5.10). Consequently, &M =a=g,/e/ (equations 5.8 and 5.9). While & =0,
deM =da and o, increases (equation 5.9) so that oy decreases (equation 5.7) and with it £(m
(equation 5.12). With the increase of 0,, 0* / 0, decreases, eventually becoming small enough
for & to be non-negligible. Further increases in o, lead to a rapid rise of & (equation 5.10) so
that since it must still be that d=¢&,/«/, as & comes to dominate the left hand side of
equation 5.8, &, must decrease. If steady state creep is attained & =0 (equation 5.12) and
hence &,=0 (equation 5.7) and therefore ¢=0 and £ =¢.

The response of the model in a constant inelastic strain-rate test (where initially o, < c*)
is shown in figure 5.4d-e. Throughout the test £ is constant and so oy is constant (equation
5.12). Again initially o* /o, is large so that & =0, deM =da and o, increases. The stress /
inelastic strain curve is linear and of slope «# (equation 5.9). Once o, has increased
sufficiently for & to be non-negligible, &, again diminishes so that & decreases (equation 5.7),
and since the inelastic strain-rate is constant the slope of the stress/ inelastic strain curve
decreases. In the limit 5=0, then &,=0 and &M =4.
The response of the model during a load relaxation is given for the case in which the

relaxation is conducted after pre-straining to beyond the yield stress. In such circumstances o,
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FIG. 5.4. The response of Hart’s model in deformation experiments. (a) - (c) Response in a
constant stress creep test.

is of sufficient magnitude for & to be non-negligible. For all materials of interest, at these
conditions oy < 0, so that &= &, = o/ 4 (equations 5.7 and 5.9). During the relaxation

& = kém (5.17)
where x is an effective modulus for the specimen and load train (§ A2.2.3). Hence substituting

for &
a = xkéM A (5.18)
which combining with equation 5.8 and rearranging gives
& = [1-(x/AH)]EM (5.19)

For most deformation apparatus x < o# so that & =#£M, Even when this is not the case
equation 5.19 indicates that on a log o — log ™ plot, log & differs from log & only by a
constant (i.e.log[1-(x/o#)]) and hence the shape of the relaxation curves is unaffected. It
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FIG. 5.4 contd. (d) - (¢) Response of Hart’s deformation model in a constant inelastic
strain-rate experiment.

is this observation which allowed the effect of anelasticity to be ignored in the experiments
described above (§ 3 and § 4).

The response of the model during a load relaxation conducted when o, is not much greater
than oy (i.e. when & =0 throughout pre-straining) is considered below (§ 6.1.3.5).
5.1.3.2 Anelastic and plastic behaviour : The general deformation response of the model is
illustrated by its behaviour in the differential stress regimes o, < 6*, 6 <o* and o> o*.

For o, < o* then ¢ is negligibly small (equation 5.10). Under these conditions the plastic
element is effectively frozen and the model reduces to the anelastic analogue model shown in
figure 5.1. The constitutive behaviour is, with & =0 and equations 5.7, 5.8 and 5.12

4 = a*[(6-0,)/GIM = a*[(c-Ha)/GIM (5.20)
which is the same as the anelastic equation of state (equation 5.5, with ¢*=A and M = B).

At larger stresses (i.e. at stresses large enough for & to be non-negligible) for all materials
of interest, 0;< 0, and within an inelastic strain of 0.01, 4< & (cf. figures 5.4c,e). Under
such circumstances & =#(M), so that on rearranging equations 5.10 and 5.12 for ¢, and of
respectively, and substituting equation 5.7, then

o = G(&/a¥)VM + o*exp[-(*/a)*] (5.21)
which is the equation for a general plastic deformation (equation 5.6). The behaviour of
equation 5.21 is shown graphically in figure 5.5. For o<o* then with o;<og, (or
alternatively with the observation that this stress state pertains when & is relatively small)
equation 5.21 becomes



47

Q

LOG STRESS

Observed strain-rate range
High temperature Low temperature

"
L - g aal

LOG STRAIN-RATE

FIG. 5.5. A schematic representation of the strain-rate dependence of the flow stress at
given o* as implied by equation 5.21 representing general plastic deformation (redrawn
after Hart, 1976).

c = o*exp[-(&*¥/a&)*] (5.22)
which is the high homologous temperature plastic equation of state (equation 4.24). Hence
under these conditions the plastic element controls the rate of deformation. For o> o* then
with o,=0* (equation 4.38, or alternatively with the observation that this stress state pertains
when & is relatively large) equation 5.21 becomes

c = G(&/a*)M 4+ o* (5.23)
which is the low homologous temperature plastic equation of state (equation 4.37 in the form of
equation 4.40). Under these conditions it is the friction element that controls the rate of
deformation.
5.1.3.3 Experimental testing of the model : Equations 5.20 - 5.23 show that Hart’s model does
reduce to the expressions proposed for completely anelastic and completely plastic
deformation. However, if the model is to provide a satisfactory description of inelastic
deformation, it must also be shown that the values of 4* and M in equation 5.20 are the same (at
the appropriate o* and T) as their values in equation 5.23. Moreover it remains to be shown
that the value of o/ at given o* and T is independent of the deformation history i.e. that
equation 5.20 is an equation of state for anelasticity.

The first of these requirements has been examined using the stress dip test as conducted at
o < o* (Nir et al., 1976). Rewriting equation 5.20 as
a = a*(AH/GWM[a-alM (5.24)
where a;=(o /o/() is a saturation anelastic strain for given stress, then on integrating with
respect to time
(ag-ap)t™ - (a;-a)l'M = (1-M)a* (A | GM (1-1p) (5.25)
where q; is the anelastic strain at #,. Non-linear least squares fitting procedures can then be
applied to the recovered strain / time data to determine the values of ¢* and M. Equation 5.25
provides an excellent description of the stress change data obtained from a number of materials
(figure 5.6), and the values of ¢* and M determined in this way have been shown to agree
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FIG. 5.6. Loading and unloading data for the grain matrix anelastic deformation of Type
316 stainless steel at room temperature after stress changes in a constant stress creep test
where o < o*. The curves are best fits of equation 5.25 to the data and yield the same
values of g* and M as determined from load relaxation experiments (redrawn after Nir et
al., 1977).

within experimental error, with those obtained from load relaxation tests conducted at similar
o* (Nir et al., 1977 ; Suzuki et al., 1982 ; Suzuki and Okubo, 1984).

Alexopoulos et al. (1981) verified (for commercial purity aluminium and Type 304
stainless steel, both at room temperature) the deformation history independence of the
magnitude of «# at given o* and T. They determined «# from the slope of the stress / inelastic
strain curve prior to plastic yielding in constant displacement-rate experiments, and found that
repeated loading and unloading where the maximum stress was always less than the plastic
yield stress (so that o* remained constant) had no effect on /. They also verified that o/ was
strain-rate independent.

5.2 Extension of Hart’s model to the deformation of anisotropic materials in the presence
of multiaxial differential stresses and/or large strains

The introduction of a tensorial notation into equations 5.7 - 5.16 makes it possible to
consider the potential for extending Hart's uniaxial deformation model to the case of
deformation under multiaxially applied differential stresses, and to circumstances where the
rigid body motions of the deforming material are non-negligible. By defining a suitable
anisotropy tensor, the potential for incorporating material anisotropy into the model may also
be investigated,
5.2.1 Multiaxial formulation. In the small strain, multiaxial extension of Hart's deformation
model (e.g. Korhonen et al., 1987), the tensorial inelastic strain-rate is considered to be
composed of anelastic and plastic components such that (cf. equation 5.8)

éij.") = d; +4a (5.26)

i
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Deformation is assumed to be incompressible (i.e. /) =0) allowing the use of the stress
deviator s; =0y - (1/3) o) 6,7 (where 6,)- is the Kronecker delta) which, corresponding to
equation 5.7, is divided into two components

S5 = si(j“) + sg) ' 5.27)
Given that the deforming material is isotropic, Levy-Mises type flow relations (i.e. é‘.g.") =A oy

where A is some scalar) can be used to describe the interrelationship of corresponding stress

and strain-rate components. The flow relations that have been proposed are

éq('n) = (3/2)(é(n)/%)sg)
a; = (3/2)(&/0;) 5 (5.28)
ay = (3/2)(alo,)s®

in which the six scalar invariants are defined as
o=[(3/2)sys; 17 ; &M =[(2/3)ef eV 12
g, =1[(3/2) slg.") sij(.")]m ;o & =1[(2/3) d:,-jdg-]l/z (5.29)
o= [(3/2)sPsP12 ; a=1(2/3)a;a;]"
These scalar invariants can then be considered as effective stresses and strain-rates which are
related to the uniaxial equations 5.9 - 5.16. Equations 5.28, which are of the type employed in
the Prandtl-Reuss prescription for plasticity, require experimental verification. V

Bammann and Krieg (1987) observed that the multiaxial generalization described above
contains some ‘quirks’ that are not present in the uniaxial model. For example, from the
definitions given in equation 5.29 all six scalar invariants must always be positive no matter in
which direction £ (or s;) is operating. Another problem arises from the fact that in the
multiaxial mode}, like the uniaxial one, the inelastic strain-rate coincides with the direction of
the deviatoric external stress. Bammann and Krieg (1987) present an example to illustrate the
absurdities this can lead to. If the stress state given by s1; = 100 MPa with all other s; equal to
zero is applied for a time sufficient for g, to rise to 100 MPa, then from equations 5.29,
0=122MPa and from equations 5.7, 5.12 and 5.28, &{P=C(22)Y (where C is a
combination of material constants) with all other é,-j(") zero, If the stress state is then suddenly
changed to 55, = 0.1 MPa with all other s;; zero, o=0.12MPa but g, which being an internal
stress cannot change instantly, remains 100 MPa. Again from equations 5.7, 5.12 and 5.28,
£{%) = C (100)M with all other & t.j(.”) being zero. For real materials M = 5 so that the strain-rate in
the 22 - direction is extremely large for a near zero s,, stress.

These problems are peculiar to the multiaxial generalization and can possibly be eliminated
by making small changes in the mathematical formulation described above. Their significance
remains uncertain given that the multiaxial equations in the form presented here have been
successfully applied in a wide range of deformation modelling problems (§ 7.2.1).

5.2.2 Finite strain formulation. In accordance with the requirements of any constitutive
equation of state, Hart defined his equations to be independent of any rigid body motions of the
deforming material. Throughout the preceding discussion such motions have been ignored by
making the implicit assumption that they are negligible. However, the analysis is easily
extended to accommodate them (Van Arsdale et al., 1980 ; Mukherjee and Chandra, 1984).

5.2.2.1 Basic definitions : Referring to the same set of spatially fixed orthogonal cartesian
coordinates, the position of a material particle in a reference configuration of a three
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dimensional body is specified by coordinates X;, and in the current (‘deformed’) configuration
by coordinates x;. The displacement vector y; is defined as
x = X;+ uy; (5.30)
The velocity of this material point during deformation is denoted by v;. The velocity
gradient tensor Ly is split into symmetric and anti-symmetric parts

Ly = dj + £ (5.31)
where the deformation-rate dj; is the symmetric part
d. = 1 (E& + a_v’.) = d. (5.32)
U 2 axj ox; L :
and the spin-rate £2;; is the anti-symmetric part
1 (%% av}
2, = 5 (5% - a_x,) = -£ (5.33)

To be independent of the rigid motions of the deforming body (i.e. to be coordinate frame
independent), the constitutive relations must be formulated in terms of dj;, that is the rate
variables which are not time derivatives of anything (the inelastic and plastic strain-rates) must
be recast as deformation-rate variables. In addition, time differentiation (of o* and a,-j) must be
conducted in a coordinate frame which undergoes the same rigid motions as the body.
Following Oldroyd (1950, 1958 ; or see Harris, 1977, pp. 85f) it may easily be shown from the
definition of a covariant second rank tensor A; (assuming that the tensor has zero weight) that

0A; 04;; 0A;
-571 = ==+ v"'ZW:
while similarly from the definition of a contravariant second rank tensor, that

SA;  9A; 94y
at‘l = atu + Vk ax: + 'QjIAiI + 'QikAkj - deAiI - dkiAkj (5.34b)

Ay + Ay + dpAy + dyAy (5.34a)

where 8/6t is the time derivative (henceforth referred to as the convective derivative) in a
coordinate frame which translates, rotates and deforms with the material body. Although, as
observed by Oldroyd (1958), the convected derivative is the time derivative which arises most
naturally in the development of general frame invariant constitutive relations, the need to
distinguish associated covariant and contravariant tensors makes it inconvenient to use in
practice. Instead it is more usual to consider a coordinate frame which translates and rotates
with the material body but which remains rigid (i.e. remains an orthogonal cartesian frame
thereby removing the distinction between covariance and contravariance). For such a frame
d;;= 0 so that equations 5.34 reduce to

SA; 94, 94; DA;;
37 = TS + Vks';k- + QﬂA” + -QikAkj = Dt (5.35)

where D/Dt is the so-called Jaumann (or corotational) derivative. The Jaumann derivative is
frame invariant as may be seen by substituting equation 5.35 into either of equations 5.34 (here
equation 5.34a)

54y  DA;
5P = g+ dhy + dydy (5.36)

Hence, provided A; (and therefore its convective derivative) is a suitable variable in frame
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invariant constitutive relations, and since d,-j is also such a variable, then so must be the
Jaumann derivative. This frame invariance means that either the convective or the Jaumann
derivative may be used in the constitutive equations, as convenient.

Finally, it is observed that for a scalar variable the Jaumann derivative reduces to the
familiar material derivative D/Dt

DA _ 94 9A _ DA
Dt T ar T Veax, Dt (5.37)

(i.e. effectively it reduces to a derivative in a rigid coordinate frame which translates with the
material point but does not rotate with it, that is .Q,-j =0).

5.2.2.2 Formulation of the equations : From the preceding definitions, the multiaxial equations
5.26 - 5.29 become (again assuming the inelastic deformation is incompressible)

d,.J(."J = d,.S.P) + & ’ (5.38)
5 = sig.") + sg) (5.39)
afV = (3/2)(d‘"’/a,)s,§ﬂ
ap) = (3/2)(d? /o) sl (5.40)

a; = (3/2)(a/a,) s,.(j")
in which the six scalar invariants are defined as
o =[3/2)s;s517 5 d™ = [(2/3)df V"
o, = [(3/2)sfsf@12 ; a® =[(2/3)dP a1 (5.41)
o =1(3/2)sPsP12 5 a=1[(2/3)aya;1"
with the following modifications to equations 5.9 - 5.16

g, = «#Ha (5.42)

In(o*/0,) = (¢%/dP)* (5.43)

d® = a*(o;/GM (5.44)

do*/dt = 6* = dP o*I (0% 0,) - 0* R(c%,T) (5.45)

where 3;‘;’ is the Jaumann derivative given by substituting a;; for A; in equation 5.35 and 6% is
the material derivative given by substituting o* for A in equation 5.37 (recognizing that in
Hart’s model o* is a scalar). Since the multiaxial formulation used in this case (equations 5.38 -
5.41) is the same as that employed at small strains (equations 5.26 - 5.29), the same problems
arise (§ 5.2.1).

5.2.3 Incorporation of anisotropy. Hart (1976) provided for the incorporation of anisotropy
in his original presentation of the inelastic deformation model. He distinguished two types of
anisotropy, the first arising from the anisotropy of the crystal structure and the second from the
deformation history. Of these the flow anisotropy that results from the deformation history is
explicitly contained within the constitutive equations of the model, and consequently requires
no further attention.

To incorporate crystalline anisotropy it is assumed that the components a;;, ¢;; and éig.”) (or
ay;, di;.l’) and dij(”)) share the same anisotropy. Then each of the flow equations 5.28 (or 5.40) can
be rewritten as anisotropic tensor relations involving the same anisotropy tensor Kjjy- This
anisotropy tensor is prescribed to have the same properties as those of an anisotropic elastic
coefficient tensor for an elastically incompressible material, i.e.

Kiju = Kiu = Kjn (5.46a)
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Kiju = Ky (5.46b)

Kiw = Kju = 0 (5.46¢)
Equation 5.46¢c indicates that in general Kj;;; does not possess an inverse. However, Hart
(1976) defined a semi-inverse K:}‘k, which satisfies the relationship
K;-;,.k, Kimn = (1/2)(8;0j + 615 0jm) - (1/3) (856 ,n) 547

(where §;; is the Kronecker delta) and which acts as an inverse only when the invariant operands
are employed. Now the flow equations 5.28 (or 5.40) are of the form

xj = (3/2)(x/X) Ky Xy (5.48a)

X; = (2/3)(X/x) K;';,d Xy (5.48b)
where the dummy variables x;; and X;; represent the appropriate strain or strain-rate variable and
the appropriate stress variable respectively. To fix the form of the invariants x and X it is

necessary that they satisfy the relationship

Xjx; = Xx (5.49)
Then from equation 5.48a
Xjx; = (x/X)3/2) (X Ky Xy) (5.50)
which on comparison with equation 5.49 yields
X = [(3/2) (Xg'Kij;kqu)]m (5.51a)
Similarly
x = [(2/3) (x,-jK:;.,d xy) 112 (5.51b)

Equations 5.51 replace equations 5.29 (or 5.41) and anisotropy is incorporated, excepting the
problems raised by Bammann and Krieg (1987) with the multiaxial formulation (§ 5.2.1).

5.3 Micromechanical interpretation of the deformation model

The state variable description outlined in the preceding discussion has been developed
without recourse to any micromechanical arguments. However, it is possible to establish a
connection between the features of the analogue model developed from the analysis (figure
5.3), and the processes occurring during inelastic deformation.
5.3.1 A qualitative outline of the micromechanical interpretation. The attempt to find a
state variable description of inelastic grain matrix deformation is effectively an attempt to find
some description of the collective dislocation flux in a deforming material, and its dependence
on the external deformation variables.
5.3.1.1 General factors influencing the dislocation flux : The motion of a dislocation within a
deforming crystal is limited on the atomic scale by the Peierls-Nabarro hills and on a larger
scale by the interaction of the dislocation both with other dislocations (e.g. those moving on
other slip systems, caught in dislocation tangles or arranged in subgrain walls) and with second
phase particles. In general, the release of dislocations from these obstacles requires some
thermally activated process which is to some degree stress assisted. Hence it proves convenient
to distinguish
(a) a situation where the applied stress is greater than some critical (threshold) value for stress
controlled barrier circumvention so that the barriers present merely a ‘friction-type’ obstacle,
i.e. once the critical stress is attained the dislocation can move and continue to do so at that
stress (subject to spatial variations in obstacle size) without thermal assistance and without any
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wait-time at the obstacles, and
(b) a situation where the applied stress is less than this critical value and the dislocation must
wait for thermal assistance to overcome the obstacle.

In general, the critical stress oy required to overcome the Peierls-Nabarro hills is much
smaller than the critical stress oy required to overcome the long range obstacles. Hence when
0, <o < op the dislocation flux in long range obstacle free regions of crystal exceeds the rate
of passage through those barriers. Consequently, the mobile dislocations are forced to pile up
behind the barriers, thereby raising the driving force for barrier penetration and generating back
stresses (internal stresses) that slow the dislocation flux through the obstacle free regions.

Strong barrier passage at T < 0.5 T, is accomplished by (Nabarro, 1989) :

(a) cutting of repulsive forest dislocations [obstacle controlled dislocation glide],

(b) cross-slip at some pre-existing constriction such as a unit jog or the node of an attractive
junction i.e. cross-slip rate controlled by the reassociation of dissociated dislocations prior to
the cross-slip step [constriction controlled cross-slip], .

(c) cross-slip at some general point i.e. cross-slip rate controlled by the re-dissociation of the
dislocation on the new glide plane after the cross-slip step [dissociation controlled cross-slip],
and |

(d) climb of dislocations accommodated by the diffusion of vacancies generated during the
deformation.

Of these processes (a) and (b) are thermally assisted but stress controlled, depending primarily
on the stacking fault energy but being independent of the mobility of lattice vacancy point
defects. Process (c) is more strongly thermally assisted but can occur at low temperatures if the
stress is sufficiently high. It too is a function of stacking fault energy. Process (d) is stress
assisted but thermally controlled, being strongly dependent on the concentration and mobility of
lattice vacancies. Reflecting these controls, processes (a) and (b) are more significant at high
stresses / low temperatures and require no wait-time at the barrier. At lower stresses,
particularly with increasing temperature, process (c) dominates but requires some wait-time.
Process (d) becomes rate competitive only at low stresses and high temperatures (7 > 0.3 7, are
required before vacancy mobility is sufficient). It becomes more significant as the vacancies
generated by the deformation increase (the thermal equilibrium concentration of vacancies
remains too small for it at all < 0.5 T,,) and the barrier wait-time correspondingly decreases.
5.3.1.2 Comparison with Hart’s deformation model : The three elements of Hart’s deformation
model may be identified with these influences on the dislocation flux. The friction element
represents dislocation motion as restricted by the Peierls-Nabarro hills, the plastic element
represents dislocation motion as restricted by the rate of long range barrier circumvention, and
the anelastic element represents the dislocation pile-ups behind the long range barriers.

Three stress regimes are of interest (cf. § 5.1.3.2). When o} < o < op the dislocations pile
up behind the long range barriers but cannot overcome them i.e. the plastic element is inactive.
A stored strain is produced which is recovered on release of the applied stress and the
deformation is completely anelastic. When op < o the strong barriers may be overcome by
stress controlled mechanisms (processes a and b) with no wait-time. The friction element is
rate-controlling because the plastic element opens as fast as is required, and the deformation is
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of low homologous temperature plastic type. The fact that the corresponding material
parameters in the anelastic deformation equation (equation 5.20) and the low homologous
temperature plastic deformation equation (equation 5.23) have the same value (§ 5.1.3.3),
suggests that at these high stresses processes (a) and (b) have no kinetic significance (i.e. the
rate of deformation is controlled by the resistance posed by the Peierls-Nabarro hills, as at
lower stresses). When o; <o <op the strong barriers can only be overcome by 'strongly
thermally assisted mechanisms (processes ¢ and d). Because these require a wait-time, the
plastic element is rate controlling and the deformation is of high homologous temperature
plastic type. Process (c) will generally be the most significant control of the kinetics of
deformation under these conditions, particularly at the lower temperatures.

The total applied differential stress follows as the sum of the friction stress o; and the
internal stress of the pile-up o,.
5.3.1.3 Identity of the mechanical state variable : Given this micromechanical interpretation of
Hart’s deformation model, o* which is associated specifically with the plastic element, must be
some significant moment of the spatial distribution of the long range barriers. The identification
of o* with the threshold stress made previously (§ 5.1.1.2) is entirely consistent with this, given
that the threshold stress is taken as the macroscopic stress (op) required for the stress
controlled, strong barrier circumvention processes to be widely viable throughout the
deforming material.

In terms of some microstructurally observable feature, at low homologous temperatures the
fact that the internal stress o, equals the threshold stress allows the use of the familiar
expressions (e.g. Kocks et al., 1975, pp. 39-40)

o* = o, = &;Gb/l = &,Gbpl2 (5.52)

where @, and @, are constants, G is the rigidity modulus, b is the Burgers vector, / is half the
average spacing of the obstacles and p is the total (sessile and mobile) dislocation density.
Hence in principle, 6* may be quantified from the dislocation density. At high homologous
temperatures where the threshold stress does not equal the internal stress (i.e. o* = o, is not
true), some inverse correlation between o* and ‘subgrain’ size may be more appropriate, but as
yet this has received little attention (although see § 6.1.4 ; Stone, 1991).
5.3.1.4 Strain hardening behaviour : The athermal component of the hardening behaviour
represents the increasing strength / density of the long range barrier network as the dislocation
density increases during deformation. The strain-rate dependent part of the hardening behaviour
reflects the mediation of this increased dislocation density by the loss of dislocations during the
thermally activated barrier circumventing processes (through for example, the annihilation of
opposite dislocations by diffusion aided but deformation driven dislocation climb).
5.3.2 Quantification of the micromechanical interpretation. Hart (1984), developing some
earlier work (Hart and Solomon, 1973 ; Hart et al., 1975), showed that the micromechanical
interpretation of his deformation model can be given a more rigorous basis than that discussed
above. To accomplish this he represented the deforming material as a collection of ‘slip-zones’,
defining each slip-zone as a clear region of glide plane bounded at each end by a barrier to
dislocation motion. He then considered the dislocation pile-ups behind the barriers using
continuum dislocation theory (e.g. Hirth and Lothe, 1982, pp. 764 f).
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5.3.2.1 Formulation of the problem : Hart considered the simple case in which the slip-zones
belong to a planar array in a single slip system. He took the planar projection through the
system which contains the slip direction, and thereby reduced the problem to one of the glide
and storage of screw dislocations along one dimensional idealizations of the slip-zones (figure
5.7a). To complete the initial formulation of the problem, he considered the average slip-zone,
defined it to be of length 2/ with barriers located at +/, and defined «#?as the number of slip-
zones per unit area of the projection plane, G as the rigidity modulus and b as the Burgers
vector of the slip system (figure 5.7b).
5.3.2.2 The static case : When the dislocations cannot penetrate the barriers at the end of the
slip-zone and they have been generated from a source within the zone in pairs of equal and
opposite Burgers vector under the action of an applied stress o, then the pile-up configuration is
one of static equilibrium. The equilibrium condition then gives

+

c + %l:fdx’% = 0 (5.53)

-
where -/ < x<+1/, p(x) is the net dislocation density across the slip-zone and the integral is
defined in terms of its Cauchy principal value. Solving for p(x)

p) = (20/Gb) — L (5.54)
[ 1 - (x/D ]
(figure 5.7c). The total shear in the zone generated by a dislocation source at the origin is
+
T = b f dx [x p(x)] (5.55)
-l
which on substituting p(x) from equation 5.54 becomes
J = #zl’c/G (5.56)
The total stored strain g from the pile-up is
a = AT = nl24°(c/G) = o/ (5.57)
where o/ is the anelastic modulus, which is seen to be given by
M = G[(xPAP) (5.58)

5.3.2.3 The non-zero dislocation flux case : When the dislocations can penetrate the barriers the
pile-up is not static. If v(x) is the dislocation velocity for positive dislocations at each point of
the slip-zone then the positive dislocation flux ¢(x) past each point is given by
| $(x) = |p(x)|v(x) (5.59)
Experimental results (Gupta and Li, 1970) show that v(x) depends upon the local effective
friction stress oy so that equation 5.59 may be written
¢(x) = |p()|vics(x)] (5.60)
where (cf. § 6.2.2.1)
viop ()] = vo(gp/ GYM* (5.61)
in which vy and M* are material constants. Since for real materials M* > 5, then effectively
v=0 for oy<o, where g, is a critical value of stress, and v can take any required value for
or=0;, (Coulomb friction). This implies that during flow crfis constant over the interval -/ to +/,
which is significant because by writing
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FIG. 5.7. Hart’s micromechanical interpretation of his model. (a) A schematic distribution
of slip-zones intersecting a plane of projection. The slip-zones are under a planar shear
stress 7 with Burgers vector b in the plane. (b) The geometry of an average slip-zone as
used for the model computations. (c) The net dislocation density p(x) across a slip-zone
which is under an applied stress (all figures redrawn after Hart, 1984 and Jackson et al.,
1981).

o = 0;+0f (5.62)
then if oy is independent of x, it follows that o, is independent of x (for o is constant in this
analysis). This in turn means that the dislocation distribution p(x) is a static equilibrium
distribution i.e. it is independent of the dislocation flux and a function only of o or if preferred

c,.



57

The Coulomb friction nature of equation 5.61 may easily be demonstrated for the special
case of a stationary dislocation flux (i.e. ¢(x) has a constant value ¢ for all x) by rearranging it
and substituting equation 5.60

(67/G) = [$/(volp(x))11/M* (5.63)
Using values of M* =7 and the static equilibrium values of p(x) given by equation 5.54, then
equation 5.63 shows o to be independent of x (except near the barriers where the slip-zone
model is too simple to describe accurately the behaviour).
5.3.2.4 The static case revisited : The observation that the distribution of dislocations is a static
equilibrium one for at least the case of a stationary state of dislocation flux, suggests that the
static equations 5.53 - 5.58 may be recast in terms of o, rather than . In this way equation 5.57
becomes

o, = oMa (5.69)

which is the constitutive relation for the anelastic element of Hart’s deformation model
(equation 5.9).

Constraints on the form of the constitutive relation for the plastic element may also be
attained by a consideration of the force & acting on the blocked dislocation at either end of the
pile-up. This is given by the work per unit edge length required to extend the length of the slip-
Zone per unit amount

F = (x/2)(1/G)c} (5.65)
Introducing the parameter & * to characterize the critical strength of the barrier then the critical

value o* of g, is

F* = (n/2)(1/G)o*? (5.66)
If as seems reasonable, the rate of barrier penetration depends upon the ratio &/ & *, then
(FIF*) = (0,/0%)? (5.67)

so that the strain-rate for the plastic element should be a function of (o,/0*) as indicated by
equation 5.10.
5.3.2.5 The constraint equations : The strain-rate constraint equation for Hart’s deformation
model (equation 5.8) can be derived from this slip-zone model. To do this Hart (1984)
considered the general case of non-stationary dislocation flux. |

The local dislocation flux is defined in equation 5.59. The value of ¢ at the barriers
represents the time rate of dislocation passage through the barriers. This can be expressed as an
effective plastic strain-rate & given by

& = 2.4°bl¢ (5.68)

The observable macroscopic strain-rate ™ is given by

o |
& = b f dx |p(x)| v(x) (5.69)
-l

whilst the stored anelastic strain a has already been determined as (equation 5.57)
+

a = ST = A [ dx [xp(x)] (5.70)
-l
The equation for the conservation of dislocations is
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dg(x) dp(x) _
ax + 7 = 0 (5.71)

Multiplying equation 5.71 by x and integrating from -/ to +/ then
f dx $(x) = f dx x d”(") f dx & [x4)] + f dxxp(x) + 216 (5.72)

where ¢ is the value of ¢(x) at the barrier, and where use has been made of the identity

d _ dé(x)
Z Xe] = ¢ + x —7 (5.73)
When equation 5.72 is multiplied by «#°b, and equations 5.68 - 5.70 are used then
&M = & + da/dt (5.74)

which is equation 5.8.

The stress constraint equation in Hart’s deformation model (equation 5.5) has already been
demonstrated for the slip-zone model by showing that the dislocation velocity function
(equation 5.61) is approximately a Coulomb friction law (cf. equation 5.63).
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6 REFINEMENTS AND EXTENSIONS OF THE GENERAL MODEL FOR
INELASTIC DEFORMATION

The general model for inelastic deformation introduced by Hart (1976) and described
above (§ 5), successfully accounts for the principal features of anelastic and plastic deformation
at temperatures of less than 0.45 T,,. However, there remain a number of problems which must
be addressed before the model can be said to provide a complete description of inelastic
deformation :

(a) the description of deformation occurring near to the plastic yield point,

(b) the temperature and mechanical state dependencies of the anelastic modulus «# (equation
5.9), and of 4* and M in the constitutive relation for the friction element (equation 5.12),

(c) the effects of as yet unconsidered aspects of both the deforming material (e.g. the influence
of solute impurities, finely dispersed particles, grain-size) and the deformation environment
(e.g. pressure, the presence of fluids),

(d) the description of deformation at temperatures greater than 0.45 7,,, and

(e) the description of polyphase deformation and of inelastic deformation which is in other
ways inhomogeneous.

In the following discussion each of these issues is considered in turn. The refinements and
extensions which have been applied to the model since its formulation are described, and the
potential for accommodating the remaining problems is evaluated.

6.1 Deformation occurring near to plastic yielding

Although Hart’s deformation model accounts for purely anelastic and purely plastic
deformation (§ 5.1.3.2), it is found to be less accurate in its description of deformation occurring
near to the plastic yield point. In real materials plastic yielding is much less rapid than predicted
by the model (figure 6.1), real materials may accumulate some irrecoverable strain before they
plastically yield and, the Bauschinger effect (where a previously deformed specimen is stronger
when reloaded in the forward direction than when reloaded in the reverse direction) is much
larger in real materials than predicted by the model (the model predicts some Bauschinger effect
via the weak dependence of the friction stress o; on the strain-rate, which may cause some of
the ‘anelastic’ strain to be trapped during complete unloading and then released as the loading is
reversed). _

To accommodate these problems a ‘refined Hart model’ has been proposed in which the
anelastic element in the original model is replaced by a compound element. The basis for the
modification is a more precise phenomenological description of the deformation occurring prior
to plastic yielding.

6.1.1 Basis for the refined inelastic deformation model. Phenomenologically, the near yield
point behaviour of real materials is conveniently described with reference to the stress / strain
loops produced by loading and unloading in a constant displacement-rate test. Several such
loops are shown schematically in figure 6.2a. At stresses below the elastic limit oy, the material
deforms in a fully time independent elastic manner, while at higher stresses the presence of a
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FIG. 6.1. Schematic comparison of real material behaviour (dashed curve) with that
predicted by Hart’s inelastic deformation model (solid curve) in a constant displacement-
rate test,

time dependent inelastic strain results in the formation of a hysteresis loop. For stresses below
the so-called anelastic limit o, the hysteresis loops are closed reflecting the fact that the
inelastic deformation is a completely recoverable anelastic strain, while at stresses greater than
o, the hysteresis loops cease to be closed indicating the existence of an irrecoverable plastic
strain. This plastic strain is conveniently described as microplastic when it is produced at
stresses less than the yield stress oy, and as macroplastic at greater stresses. Thus the stress /
strain curve produced in a constant displacement-rate test exhibits four regions demarcated by
o, 0, and oy (figure 6.2b). They are region I — elastic ; region I — anelastic ; region Il —
microplastic and ; region IV — macroplastic. Comparison with figure 6.1 shows that the only
difference between the behaviour of real materials and Hart's model is in the microplastic
region which does not exist in the model.

From a micromechanical perspective, the fact that the problems with Hart's model seem to
originate at pre-yield strains, suggests that Hart’s (1984) dislocation pile-up interpretation of
inelastic deformation under those conditions (§ 5.3) is oversimplified. In that interpretation, the
existence of well defined pile-ups on single slip planes was assumed. Although such structures
are observed in many materials, in many others where easy cross-slip can occur, they are not.
However, as observed by Jackson et al. (1981) some sort of dislocation pile-up is a pre-
requisite for plastic yielding behaviour, and so the essential features of a stress concentration
leading to barrier penetration will remain whether or not that pile-up is a simple two-
dimensional structure or an extended dislocation cloud. A second approximation of Hart’s
interpretation is that the inelastic behaviour can be explained with an array of equal strength
(o*) barriers to dislocation motion. AThe fact that the barrier structure results from prior
macroplastic flow and that the self-correcting nature of such flow tends to limit structural
inhomogeneity, suggests that this is a reasonable approximation at large (greater than 0.01)

strains. However, there remains the possibility that weak barriers to dislocation motion within
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FIG. 6.2. Real material behaviour at stresses near the macroplastic yield point, (a) A
schematic representation of three constant displacement-rate stress / strain curves with the
peak stress below the elastic limit, the anelastic limit and the macroplastic yield stress
repectively. (b) Demarcation of a constant displacement-rate stress / strain curve into elastic
(I), anelastic (II), microplastic (III) and macroplastic (IV) regions on the basis of the
behaviour illustrated in (a).
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Hart’s idealized slip-zones influence the deformation under conditions where macroplastic flow
cannot take place.

The effect of introducing weak barriers into Hart’s slip-zones may be qualitatively
assessed. Under the action of an applied differential stress the static equilibrium dislocation
density across a slip-zone is shown in figure 6.3a (cf. figure 5.7¢). This shows the piling up of
dislocations at low stresses (o < o0,) behind the weak barriers, a phase of deformation which
has the same linear anelastic characteristics as observed in the original Hart model. At
sufficiently high stress (i.e. o> o,) the dislocations are able to surmount the weak barriers
while being unable (if o < oy) to penetrate the strong ones at either end of the slip-zone. In this
way microplastic deformation is produced. At still higher stresses (i.e. o> oy) the strong
barriers can be overcome and macroplastic deformation occurs as described previously.

6.1.2 Outline of the refined Hart model. The weak barrier model has the important
characteristic of leaving untouched those parts of the deformation that Hart’s model describes
well i.e. the anelastic and macroplastic regions of figure 6.2b.

In Hart’s original model there was only one type of dislocation pile-up, and hence only one
pile-up element with one anelastic state variable to characterize it, was required. In the weak
barrier model there are two types of pile-up and consequently two pile-up elements with two
anelastic state variables are required. In addition an element for weak barrier passage, with
associated internal state variable, is needed.

A suitable modification of Hart’s model has been proposed by Jackson et al. (1981). They
replaced the anelastic element of Hart with three new elements, leaving Hart’s other two
elements unmodified (figure 6.3b). The long range dislocation pile-up distribution is
represented by the a; —element, the short range pile-ups are represented by the g; — and
a, — elements acting together, and the passage through the weak barriers is represented by the
&, — element. The constraint equations for the deformation of the model (replacing equations
5.7 and 5.8) are

o =0;+0, = 0+ 0, + Op 6.1)
£n = dl + ('11 = dl + dz + dz (6.2)
The constitutive relations for the anelastic elements are ,
Caq = 6%1 a; (6.3)
Cp = %202 (6.4)

where «/(; and o/, are two new anelastic moduli which are in general dependent upon o* and
T. The constitutive relation for the microplastic element is assumed to be of the same form as
that of Hart’s plastic element (equations 5.10 and 5.11) since both involve leakage through
barriers i.e.

In(o}/c,) = (&/a)" (6.5)

& = (03 /G)™f, exp(-H/RT) (6.6)
In this way the state variable o characterizes the weak barriers. The remaining two elements
have the same constitutive relations as in Hart’s original model (i.e. equations 5.10 - 5.16). All
that remains to be defined is the g} evolution equation. Given that the weak barriers have a
distribution of strengths, the evolution of o3 must reflect the sampling of progressively stronger



(a)

PK)

ﬂ\

N\
\
\
)

(®)

) G, Oy
_\w—.---.—
@, O,
— — — — &—
VWA
/i [oF
ay al o
&
| %
£

FIG. 6.3. Modifications of Hart’s inelastic deformation model which improve the
description of near yield behaviour. (a) The effect of introducing weak barriers to
dislocation motion on the dislocation density across one of Hart’s slip-zones (cf. figure

5.7c ; redrawn after Jackson ef al., 1981). (b) An analogue representation of the refined
Hart model.
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barriers as deformation proceeds. o is therefore a function of stress. Jackson et al. (1981)
found that for high purity aluminium at 25°C
of = oy exp(c,0,) 6.7
where c, is a material constant. Equation 6.7 implies that the weakest barriers to dislocation are
very weak (o¥ is very small as o, — 0). Its difference from the o* evolution equations 5.14 -
5.16 reflects the fact that the latter represent real microstructural change during deformation
and not merely sampling effects. ‘ _

Equations 6.1 - 6.7 are presented in uniaxial form, but they may be generalized into a
multiaxial formulation which also includes anisotropy by following the same procedures as
outlined in § 5.2.

6.1.3 The deformation behaviour of the refined model. The refinements to Hart’s model
have been introduced from a qualitative consideration of the deformation processes occurring
near to the plastic yield point. It is therefore necessary to verify that the constitutive relations
can quantitatively describe real deformation under conditions where the new elements
contribute significantly to the material behaviour, and that those relations are equations of state.
To this end the response of the refined model under various loading conditions is considered
and compared with experimental results.

6.1.3.1 Expressions for o, and ¢, : The additional branch in the refined model complicates the
prediction of its deformation response. Hence in order to simplify the following discussion
expressions for o, and &, are derived.

From equations 6.1 and 6.3

Op = O -0p- May (6.8)
Rearranging equation 6.2 for a,, integrating and substituting the result into equation 6.8

t
0w = 0 -0 - o (e(") o - [ g dt) (69)
0

where or; is the sum of the macroplastic strain accumulated prior to (o) and during the
deformation.

From equations 6.2 and 6.4

Gy = €M - & - (6,/ ;) (6.10)

Differentiating equation 6.9 to find &,, and substituting the result into equation 6.10, then after
rearranging

@ = {(EM-dy) [1+(otby] )]} - [(6-67)] oy ] 6.11)
6.1.3.2 Constant inelastic strain-rate test : Figure 6.4a,b shows the response of the refined
model in a constant inelastic strain-rate test. These figures have been deduced in the same
manner as used to determine the response of the original model under the same loading
conditions (§ 5.1.3.1).

At the point of inelastic yielding (o = of) all the strain-rates are zero. After yielding £ is
constant and so from equation 5.12, oy is constant. Hence as o increases o, =0, + 0,
increases (equation 6.1). While (o* / 6,) and (6§ / 0,,) remain large, equations 5.10 and 6.5
ensure that ¢, = d, = 0. Therefore from equation 6.2

ém = 4, = 4, = constant (6.12)



65

(a)

Oga2

(]

STRESS
N

9

v

INELASTIC STRAIN

®)

£m

STRAIN-RATE

INELASTIC STRAIN

FIG. 6.4. The response of the refined Hart model in a constant inelastic strain-rate test.

and the deformation is purely anelastic. From equations 5.12, 6.1 and 6.12, the purely anelastic
response of the refined model is
4 = & = a*[(6c -0y - 0p)/GIM (6.13)
which is the same as equation 5.20.
During the anelastic deformation phase, from equations 6.1, 6.3 and 6.4

o = o%lal + 3%202 + or (6.19)
Differentiating
do  _ da, da, do;
wm = Pagm tPaggm Y om (6.13)

which becomes, from equation 6.12 (i.e. de™ =da; =da, ) and the observation that oy is
constant

do/de™ = My + oA, (6.16)
Thus the slope of the stress / strain curve in the anelastic region is (s#; + o#(,) which on
comparison with the same in the Hart’s original model yields

M = My + M,y 6.17)

Since the magnitude of o/ at given o* and T is independent of the deformation history
(§ 5.1.3.3), then equation 6.17 indicates that it is sufficient to show that either o/, or o/, are
similarly independent of deformation history for it to be verified that both equations 6.3 and 6.4
are good state relations. Furthermore it follows that if under isothermal conditions «/#; is
dependent only on o* then «#(, must be independent of ¢, thereby confirming the supposition
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that changes in o do not reflect changes in the obstacle structure but rather a weak barrier
sampling effect for a given structure.

When during loading o =0}, then (6 /0,,) attains a value sufficient for yielding of the
&, — element. At the beginning of the test o is the strength of the weakest barrier, and so this
occurs when o, is approximately equal to that strength. As o, continues to increase, initially a
large number of barriers can be overcome (equation 6.7) so that ¢, rises rapidly. Hence since
(equation 6.2)

ém = 4 = 4, + &, = constant (6.18)
then &, diminishes. This in turn requires (equation 6.4) that &,, decreases, and since &y is zero
and from equations 6.3 and 6.18 &, is constant, then from equation 6.1 & must diminish. Thus
the slope of the stress / strain curve decreases.

As the remaining weak barriers become fewer in number and stronger, ¥ starts to increase
more rapidly so that the rate of increase of ¢, decreases. In the final stages of microplastic flow
as o —> oy, all the weak barriers can be overcome and the model becomes like the original
weak barrier free one, with '

M = 4 = &, (6.19)
i.e. 4, = 0. The slope of the stress / strain curve is then given by «#;, which for real materials is
less than 0.5 «#€ implying that «#; < o#,.

At o =0y, (0*/o,) attains a value where the &, — element becomes active, and thereafter
macroplastic deformation continues as described for the original model.
6.1.3.3 Constant inelastic strain-rate cyclic tests : The response of the refined model to
loading / unloading or tension / compression cyclic deformation under constant inelastic strain-
rate conditions, may be readily deduced from micromechanical arguments.

In the early stages of unloading after deformation into the macroplastic region, leakage of
dislocations through the strong barriers continues until the back stress in the dislocation pile-up
exceeds the applied stress driving the leakage. When this occurs dislocations begin to move
backwards and start to pile up against the weak barriers in the opposite direction. Eventually the
difference between the applied stress and the back stress becomes sufficient for reverse leakage
over these weak barriers. Upon load reversal the applied stress adds to the back stress,
enhancing the reverse microplasticity, and leading eventually to the premature macroplastic
yielding which constitutes the Bauschinger effect. Thus the Bauschinger effect is seen to be due
to the trapping of ‘anelastic’ strain upon unloading, behind the weak barriers.

Examination of cyclic constant inelastic strain-rate stress / strain curves, where the cycle is
symmetric (i.e. where there is no Bauschinger effect) and the maximum stress is less than oy
(so that during the deformation da; =0 and hence also o* is constant), provides further
insight into the anelastic properties of the refined model. Symmetry of the cycle may be
obtained by repeating the cycle several times so as to saturate the pile-ups in each direction.
Once saturation behaviour is attained the strength of the weakest barrier is very small, so that at
04, 05 =0. Hence, provided o, > oy then from equation 6.1, g, =0cy. Using these results
equation 6.9 becomes at o

oy = 04 = oMy (eM-ap) (6.20)
The symmetry of the cycle indicates that at the centre of the loop the specimen contains neither
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FIG. 6.5. Stress /inelastic strain data obtained for Type 316 stainless steel in room
temperature, constant displacement-rate, tension / compression cycles where the maximum
stress was less than the macroplastic yield stress. The slope of the line through o4 and ¢,
(the centre of the loop) yields «#; (redrawn after Alexopoulos et al., 1982).

anelastic nor microplastic strain. Consequently that centre gives the value of o and equation
6.20 yields the value of «#; (figure 6.5). This method of determining «#¢; is in practice, more
reliable than that of using the slope of the stress / inelastic strain curve as o — oy in a constant
inelastic strain-rate test. By running cycles of different amplitude while always maintaining
o <oy, then the deformation history independence of «#, (and hence «#(, — equation 6.17) at
given o* can be verified. There have been no published results attempting to show this.

The behaviour of the &, — element is conveniently investigated by interrupting the cyclic
constant inelastic strain-rate test at various stress levels, in order to conduct load relaxations.
These relaxations are at constant of because since o decreases during the relaxation, the
deformation that occurs in it is controlled by the strongest barriers sampled at its beginning.
The cyclic test is a good method of pre-straining because it provides a complex deformation
path by which to investigate the deformation history independence of the constant o curves.
Moreover it provides the value of & necessary to evaluate o, (equation 6.21) and the value of
o#C, (through «#(, and equation 6.17) necessary to evaluate ¢, (equation 6.22). Alexopoulos et
al. (1982) published suites of o5 curves obtained in this way (figure 6.6a,b). These curves share
the same properties as the macroplastic o* curves, being concave downward in log o / log ™
space at high homologous temperatures and concave upward at low homologous temperatures,
while also having the scaling property. This supports the proposed form for the constitutive
relations of the &, — element and suggests that as for macroplastic deformation, at low T, the
weak barrier circumventing processes are mechanically activated so that glide friction is
microplastic strain-rate controlling, whilst at high T7,, the barrier circumventing processes are
thermally activated and they are rate controlling. Given that at high homologous temperatures
Oy > oy then the curves of figure 6.6a may be transformed into log o, /log &, space using
equations 6.9 and 6.11 (remembering that as long as the maximum stress on the cycles is less
than oy, da;=0)
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FIG. 6.6. Stress / inelastic strain-rate data obtained for (a) aluminium and (b) Type 316
stainless steel from load relaxations conducted at the indicated points in room temperature,
constant displacement-rate tension/compression cycles. The stresses all lie in the
microplastic region. The aluminium displays high homologous temperature behaviour and
the stainless steel low homologous temperature behaviour (redrawn after Alexopoulos et
al., 1982).
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op = O - oMy (eM-ay) : 6.21)

&, = [1+(Hy]H,)]6M - [&] 4, ] 6.22)
and the parameters in the constitutive equations 6.5 and 6.6 determined from them. With the
observation that at low homologous temperatures o, ~cy the parameters in the friction
element can be determined directly from the log o / log é™ curves, and these should agree with
those parameters as determined under glide friction controlled macroplastic deformation. This
has yet to be systematically verified. .
6.1.3.4 Stress dip tests : The typical response to a stress reduction during a constant stress
creep test is shown schematically in figure 6.7a. Prior to the reduction the specimen undergoes
steady creep under an applied stress o and at strain-rate £,. After the reduction to oy there is a
transient region during which there is a rearrangement of the mobile dislocation structure,
before a new creep rate £|; is established. The immediately post-transient behaviour is described
as isostructural because since the strains encompassed by the transient region are small, the
mechanical state of the specimen as given by the immobile dislocation structure, is effectively
unchanged. As creep continues however, the state does change and a new steady strain-rate £,
is developed.

In terms of the refined model, the transient region can be considered as a continued
forward flow through the strong barriers at a reduced stress with concurrent anelastic and
microplastic back flow. Korhonen et al. (1985a) observed that the nature of the back flow is
most easily considered when the forward flow decays rapidly, which is the case when o} oy
or oy = 0. In this situation the stress dip test is effectively a creep recovery test in which strain
versus fime data are recorded after a stress drop. The results of such tests are conveniently
plotted as remaining recoverable strain &, versus strain-rate, because &, = a, is proportional to
the stored internal stress o,;. Generally these plots display two regions of different back flow
kinetics, a high strain-rate anelastic region and a low strain-rate microplastic region (figure
6.7b). For the case where o; =0 and where there is no microplastic flow, then the anelastic
back flow is given by equation 6.13

ém = a*(|o,|/GM

a* (oA /GYM |a M
a* (46 | GYM |ay - ayp M (6.23)
where a,, is the value of g, at the end of anelastic relaxation when o, =0. Hence on a log ¢,

versus log (™ plot the anelastic region is concave upward (figure 6.7b,c). If the temperature is
sufficient, when the driving force for friction controlled flow is small, thermally activated
barrier circumventing processes become rate competitive. This is the case when o,=0 at
which point o, =- 0, and &, =- §,. Consequently, from equation 6.2, 6.3, 6.4 and 6.17
Gy=a,-a,=-Gp// andso €M = ofé, /M. Also e=a; =0,/ /. Hence a plot of
log &, versus log ™ should describe the ¢, —element constitutive relation (equation 6.5),
provided o remains constant during the test (which is reasonable given that the stress is
decreasing). Such plots will then display a change in concavity as the deformation changes
from anelastic to microplastic (figure 6.7b,c).

6.1.3.5 Stress relaxation test : A final deformation response of the refined model that is of
particular interest is that occurring in a stress relaxation conducted after reloading to just below

the initial stress of a prior relaxation run. Several such experiments have been reported (e.g.



(a)

STATE | | STATE | STATE

INELASTIC STRAIN

(b)
LOG STRAIN-RATE (s7))
. - - K7 ' 55
. 85 80 15 70 65 60 30
ANELASTIC RELAXATION
' 35 5
Q
40 B
g
&
45 g
MICROPLASTIC RELAXATION A
lso 3
2
{ss o
50

(c)

LOG ANELASTIC STRAIN, q;

_— .
Obscrved strain-ratc range

LOG ANELASTIC STRAIN-RATE, 4,
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test in which the load is completely removed). (c) Schematic representation of the creep
recovery characteristics shown in (b) but extended over a much wider strain-rate range (all
figures redrawn after Korhonen et al., 1985a).
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Hart and Solomon, 1973 ; Korhonen and Li, 1982). Typically the high strain-rate part of the
log o versus log éM curve produced in the second relaxation has a much greater stress
sensitivity than the corresponding part of the initial curve, but at low strain-rates the two curves
merge and are thereafter coincident (figure 6.8a).

Both the original and the refined model can account for this behaviour. Upon reloading
after a stress relaxation, the mobile dislocations pile up behind the barriers to their motion.
Strong barrier passage does not become significant until the flow stress is attained.
Consequently, if reloading is stopped before the flow stress is reached, the initial part of the
relaxation is dominated by anelastic and (in the refined model given that the reloading stress is
sufficient for weak barrier passage) microplastic deformation. This remains the case until the
strain-rate has decreased sufficiently for the strong barrier circumventing processes to become
rate competitive, at which point the relaxation curve follows that predicted by the constitutive
relation for the macroplastic element. Since during reloading the strong barrier structure
remains unaltered, the mechanical state of the material is the same for the two relaxations, and
so the low strain-rate portions of the two relaxation curves should be the same.

The original Hart model predicts that the reloading transient defines a broad upwardly
concave curve in log o / log é™ space. This may be seen by rearranging equation 5.12 for of
and substituting it and equation 5.9 into equation 5.7. Then on rearranging

(o - oHa)]G = (€M ]ax)UM (6.24)
Now the integrated form of the stress relaxation equation (equation 5.17) when the deformation
is entirely anelastic is
(o - 0pg) = x(a - ap) (6.25)
where the subscript O refers to the start of the relaxation. This may be rewritten (entirely by
algebraic manipulation, § Al1.3) as

(0-o#a) _ (_(1_} ) %)(G (0g-Kay)

G * Iy -1 (6.26)
Then defining
1 _ (1 _ & : @ o —(%0~Kdo)
—a = (¢ &) o oY= /o) - 11 6.27)
and equating equations 6.24 and 6.26
[0 - @]/ /@ = (&M ] a*)1M (6.28)

which, since aa(“) and o/ @ are constants, is the same form as the equation for the low
homologous temperature constant o* curves (equation 6.24 with o, = «#a = c*).

For real materials equation 6.28 yields very flat anelastic relaxation curves over the strain-
rates of interest and cannot properly describe the results shown in figure 6.8a. In the refined
model the anelastic initial portion of the curves is also described by equation 6.28, since
equations 5.12, 6.1, 6.2, 6.3 and 6.17 together yield the same equation 6.24, given a=a;=a,
which is satisfied through the definition of a, in equation 6.25. However, in the refined model,
before the second relaxation curve merges with the initial one it passes through an ¢&, — element
controlled region where the shape of the curve is given by equation 6.5. Jackson et al. (1981)
determined the material parameters in the constitutive relations of the refined model for high

purity aluminium and then carried out a numerical simulation of the experiments shown in
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FIG. 6.8. The room temperature load relaxation behaviour of aluminium after reloading
(lower curves) to a stress below that at the start of an initial relaxation (upper curve in each
figure). (a) Observed behaviour (redrawn after Hart and Solomon, 1973). (b) and (c)
Numerical simulations using the material parameters for aluminium ; (b) in Hart’s original
model and (c) in the refined model (redrawn after Jackson et al., 1981).

figure 6.8a. The results are shown in figure 6.8c and compared with a simulation for the
original model (figure 6.8b). The refined model is seen to be an excellent description.

6.1.4 Further observations. The refined model described above envisages, during
microplastic deformation, that mobile dislocations move among barriers whose strength and

distribution remain fixed as deformation proceeds. This is presumably an oversimplification but
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FIG. 6.9. The correlation between o* and the spacing of well defined subgrain boundaries
on the activated slip planes in Type 316 stainless steel deformed at room temperature
(redrawn after Alexopoulos et al., 1982).

the success of the model suggests that it is a good approximation. At the temperatures at which
the refined model has been tested the weak barrier structure remains stable against thermal
recovery. However, it may be expected that the influence of such recovery will commence at
lower temperatures than the 0.45 T,, found for macroplastic flow.

Alexopoulos et al. (1982) attempted to correlate the structural parameters o*, 0¥, «#(; and
o#, with features in the deformation microstructure of Type 316 stainless steel. They found
that o* correlated with the spacing of well defined subgrain boundaries on the activated slip
planes (figure 6.9), and o with the spacing of partially developed subgrain boundaries between
the activated slip planes. The ratio of the square of the spacing between the well defined and the
partially developed subgrain boundaries was found to be inversely proportional to the ratio of
o4, and o/, (cf. equation 5.58).

6.2 Parameterization of -7, a* and M

Hart (1976) introduced the parameters «# (equation 5.9) and 4* and M (equation 5.12) as
material constants and in a number of experimental studies they have been treated as such.
However, comparison of equations 5.9 and 5.12 with theoretically derived expressions provides
a physical interpretation of these parameters which indicates that «# and &* are a function of
o* and that all three parameters are a function of 7.
6.2.1 Parameterization of the anelastic modulus. In presenting the continuum dislocation
theory analysis of Hart’s model (§ 5.3.2), it was found that the anelastic modulus «# was
given by (equation 5.58)

M = G|(xPe?) (6.29)
where G is the rigidity modulus, / is the half distance between the long range barriers to
dislocation motion and #° is a slip-zone density. With increasing o*, / may be expected to
decrease and 47 to increase. Hence «# will be some function of o*. With increasing T at
given o*, [ remains constant, «#° increases (as more slip-zones are activated) and G decreases.
Hence o7 should decrease with increasing T. '
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There have been no systematic studies of the mechanical state and temperature
dependencies of the anelastic modulus. However, Alexopoulos et al. (1981) determined -/ at
different o* in high purity aluminium and although they did not state it, it is apparent from their
figure of the results that «# increased with o*. A decrease in o/ with increasing T has been
observed by Wire et al. (1981) in their analysis of the results of pressurization tests on Type
316 stainless steel tubes.

6.2.2 Parameterization of 4* and M for o* and 7. The mechanical state and temperature
dependencies of ¢* and M can be ascertained by comparing equation 5.12 with two other
commonly employed descriptions of the kinetics of dislocation glide ; the Johnston-Gilman
equation and the absolute reaction rate equation for thermally activated glide.
6.2.2.1 Mechanical state dependence : Orowan (1940) showed that when isothermal plastic
deformation is rate controlled by the kinetics of dislocation glide
& = Pbp, 7 . (6.30)

where @ is a geometric factor, b is the magnitude of the Burgers vector, p,, is the mobile
dislocation density and ¥ is the mean dislocation velocity. Johnston and Gilman (1959)
suggested, and Gupta and Li (1970) confirmed, that

v = vo(op/G)M (6.31)
where vy and M* are material constants. Combining equations 6.30 and 6.31 yields the
Johnston-Gilman equation

& = ®bp,vy(c;/G)M* ‘ (6.32)

Equating equation 5.12 and 6.32 using ™ =& gives
a* = dbp,v, (6.33)
M = M* (6.34)

Beyond plastic yielding during the isothermal loading of a polycrystal, it can be reasonably
expected that (@b), v, and M* are constant. It therefore follows from equations 6.33 and 6.34,
that M is independent of o* and that 4* varies with o* according to the dependence of p,, on
o*. Furthermore, given these conditions p,, must be uniquely specified by o* (and does not
change for example, during a load relaxation conducted at constant o*), and the scaling slope u
for constant o* curves in log o — log & space must be given by (equation 4.46)
£ = (M+9log a*/dlog o*)1 = (M*+ dlogp,, /dlog o*)-1 (6.35)

a result which has been obtained elsewhere (Tanoue and Matsuda, 1982 ; Povolo and Marzocca,
1983c). Equation 6.35 indicates that if there is a linear scaling slope then there must be (at least
empirically) a power law relationship between p,, and o* (cf. equation 4.48).

The o* independence of M is a prerequisite for the scaling behaviour of constant o* curves
in logo/logd space (§4.1.2.2). The variation of ¢* with o* has not been studied
systematically although Korhonen ez al. (1985b) observed a linear relation between 4*-1/M and
o* in Type 316 stainless steel at room temperature. No use has yet been made of equation 6.35
because of the notoriously difficult problem of distinguishing mobile from immobile
dislocations in micrographs of deformation textures (e.g. Kocks et al., 1975, pp. 89-93).

Although the assumption that (@b), vy and M* are constant beyond plastic yielding is
reasonable in polycrystals, in single crystals all three terms can be expected to change as new
slip systems become active. The implication from equations 6.33 and 6.34 is that 4* and M will
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FIG. 6.10. The change in scaling slope of constant o* curves during three stage work
hardening in aluminium single crystals deformed at -86°C (redrawn after Tanoue et al.,
1988).

show corresponding variations but that between activation of new slip systems they will
demonstrate the same relationship with o* as observed in polycrystals. This has been confimed
by Tanoue et al. (1988) and Tanoue (1991) who found that although the scaling slope u for
constant o* curves in log o /log & space changed as single crystals of aluminium, zinc and
copper passed through three stage work hardening, within each stage u was constant (figure
6.10).
6.2.2.2 Temperature dependence : Absolute reaction rate theory indicates that the temperature
dependence of dislocation glide can be described by an Arrhenius equation of the form

&m = ¢exp[-Gp(op)/kT] | (6.36)
in which é{)’" is a constant, G (oy) is the Gibbs free energy of activation for the glide process
and k is the Boltzmann constant (e.g. Kocks et al., 1975). By equating equations 5.12 and 6.36
then it follows that Gf(af) must be (at least empirically) of the form

G = A-Bln(o/G) 6.37)
where A and B are constants. Then
¢m = %0, IGM = [éexp (-A/KT)](0, /1G)" (6.38)
so that
a* = ég’) exp(-A/kT) (6.39)
M = B/kT (6.40)

The temperature dependence of M has been investigated in polycrystalline molybdenum by
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FIG. 6.11. The change in M with temperature in molybdenum. The constancy of MT
validates equation 6.40 (redrawn after Tanoue and Matsuda, 1984).

Tanoue and Matsuda (1982 ; 1984) and Tanoue et al. (1983). They observed that MT was
constant (figure 6.11) as predicted by equation 6.40. Huang et al. (1977 ; 1979) reported M to
be temperature independent in Type 316 stainless steel and zircaloy-4, but this may be due to
the method they used to determine it from their load relaxation curves (§ 11.2.3).

The temperature dependence of * has not been studied systematically. Huang et al. (1977)
observed that G/ a*1/M decreased with increasing temperature in Type 316 stainless steel, but
not exponentially. However, again this conclusion is severely compromised by their method of
determining M (§ 11.2.3).

6.3 The accommodation of other material characteristics / deformation variables

Hart’s inelastic deformation model has been presented for a material which is nominally
pure (i.e. one in which any impurities are of no consequence for the material behaviour) and
which has grain-size independent mechanical properties. It has also been assumed that the only
extrinsic variables of interest for characterizing the deformation at given T, are o and (™. The
mechanical state o* of the deforming material is then controlled by the strong barrier network
(effectively the evolving deformation microstructure) which is uniquely specified by o and £,
while the material parameters are controlled by dislocation-defect interactions and are material
constants or are uniquely specified by o* and/or T. |

In real deforming materials both grain-size and impurities (i.e. impurity solutes or finely
dispersed inclusions) exert an influence on the deformation behaviour. In addition other
features of the deformation environment such as the isostatic pressure or the presence of fluids
may be significant. If Hart’s deformation model is to have general application therefore, then it
must be able to accommodate the effects produced by these factors.

The potential for incorporating the aforementioned factors into Hart’s model is considered
below. Although the influence of each on inelastic deformation properties has received
extensive theoretical and experimental attention, there have been few attempts to treat them
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within the context of Hart’s analysis. Consequently, the discussion of each factor begins with a
qualitative deduction of its effects on the results of load relaxation tests conducted after constant
displacement-rate loading (here referred to as multiple relaxation experiments). This not only
provides a basis for considering the potential for extending Hart’s model to include such effects,
but also allows those experiments influenced by them to be identified so that (in lieu of such
extensions) they are not used in fitting the equations of state.

6.3.1 Solute impurities. Solute impurities influence inelastic deformation behaviour through
their elastic, electrostatic and/or chemical interactions with the dislocations in the solvent
phase. Elastic interactions arise when the solute atoms differ in size and in elastic properties
from the solvent atoms. The size effect reflects the interaction of the elastic strain fields
associated with both solute and dislocation, while the effect of the difference in elastic
properties arises from the fact that a dislocation has to do less work when moving through an
area of lattice containing elastically softer solutes (and conversely more when moving through
an area with elastically harder solutes) than when moving through the pure lattice. Electrostatic
interactions occur between electrostatically charged impurities and dislocations in ionic
materials which carry a local excess of charge (or in metals where the dislocation has an
asymmetric distribution of the conduction electrons). Chemical interactions may arise when the
structural changes associated with stacking faults lead to variations in cohesive energy between
the atoms, and hence variations in the local equilibrium concentration of solute impurities.

These interactions present a driving force for the segregation of solute atoms towards or
away from dislocations, and thereby effectively attempt to limit dislocation mobility to that of
the impurities. In order to move, a dislocation must either to overcome these interactions or to
drag an accumulating solute atmosphere with it. If unable to do either it is rendered immobile.
6.3.1.1 Factors influencing the magnitude of the solute effect : The significance of solute
impurities for dislocation motion depends upon their composition, concentration, distribution
and mobility.

Solute composition exerts its influence through the effect that the size, elastic properties,
valence and electronic structure of the solute atoms have on the solute-dislocation interactions.
This effect varies with temperature. Thus for example, the significance of the dimensional
mismatch between the solute and solvent atoms (i.e. of the elastic interaction) decreases with
increasing temperature as the solvent lattice is able to tolerate larger distortions.

The solute distribution influences the mechanism by which dislocations must overcome the
impurities. In materials in which the solute is ordered into a superlattice it is energetically
favourable for dislocations to move in pairs or groups such that the total Burgers vector of the
group is equivalent to the identity distance of the superlattice in the slip direction. If the solute
atoms are clustered, then each cluster may act like a crystallographically incoherent inclusion
and require the dislocations to undergo large changes in curvature in overcoming them (cf.
§ 6.3.2). Solutes interacting with the mobile dislocations (i.e. located near them) are more
significant than those located in the immobile dislocation network.

Solute mobility determines whether the solute can redistribute itself in the solvent lattice in
response to the solute-dislocation interactions. The consequences for dislocation motion are
complex, because although high mobilities increase the concentration of impurities in the
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neighbourhood of (i.e. interacting with) a dislocation, they also increase the ability of the solute
to move with it. The significance of solute mobility and the factors (most notably temperature)
which affect it, is therefore strongly dependent on the magnitude of the solute-dislocation
interactions and the factors which affect them.

6.3.1.2 The effect of solute impurities on multiple relaxation experiments : The effect of solute
impurities on multiple relaxation experiments is described for a solute of given composition
which is initially uniformly and randomly distributed through the solvent.

At low temperatures the solutes are approximately immobile and so dislocations must be
able to break-free of their interactions with them before they can move. In such circumstances
there is no change in solute concentration in the neighbourhood of the dislocations, either
during or between relaxations i.e. the solute impurity effect remains constant throughout the
experiment. Hence the suite of relaxation curves generated differ only from that for the pure
material through the values of the material parameters in the appropriate equation of state. Such
behaviour has been observed by Tanoue and coworkers (Tanoue et al., 1983 ; Tanoue and
Matsuda, 1984) in some experiments on polycrystalline molybdenum specimens of varying
purity, i.e. they observed that at given temperature and specimen purity the relaxation curves
demonstrated good scaling behaviour, but that both the scaling slope and its dependence on
temperature were a function of impurity content (figure 6.12a,b).

At slightly higher temperatures the solute mobility is insufficient to allow diffusive solute
segregation during the load relaxations, but may be sufficient to allow those solutes
encountered by the mobile dislocations during the loading phase to be dragged with them.
Because the solute mobility is low, only a small increase in concentration near the dislocation is
required to render it immobile. This serves to concentrate the solutes in the immobile
dislocation network, leaving the rest of the lattice relatively ‘clean’ for the later dislocations. In
such cases the relaxation curves do not form a one parameter family because the effective
solute concentration is changing between (though not during) relaxations. No experiments
conducted within the context of Hart’s analysis have shown this type of behaviour. However,
Gupta and Li (1970) observed that in impure niobium and tantalum M* (= M, equation 6.34)
decreased rapidly during the first few percent strain, asymptoting to the value for the pure
material.

At higher temperatures diffusive solute segregation leads to a significant redistribution of
the impurities during load relaxation. As the relaxation progresses and the drag exerted by the
impurity atmosphere increases, the slope of the relaxation curve becomes progressively smaller
than observed in the absence of segxégation. With increasing pre-strain this effect decreases
because the affected dislocations become part of the immobile network, and consequently the
relaxation curves do not form a one parameter family. When relaxation is affected by ongoing
solute segregation, the subsequent reloading stress / strain curves show reloading peaks. These
peaks reflect the fact that because of the solute segregation there are relatively few dislocations
which can move at the velocity required by the imposed reloading strain-rate. To accomplish
the deformation the velocity of those few dislocations, and therefore the stress, must be high
(¢f. equations 6.30 and 6.31). At some critical stress (the yield peak) the dislocations are able to
break-free of their solute atmospheres (or dislocation sources become active) so that the
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average dislocation velocity, and with it the stress, decreases. The deviation of the relaxation
curve from that generated in the absence of segregation, and the size of the subsequent yield
drop on reloading, vary with temperature in correspondence with the magnitude of solute-
dislocation interactions and solute mobility. In general, with increasing temperature they rise to
a maximum beyond which they decrease as the driving force for segregation diminishes and the
solute mobility becomes too great to hinder dislocation motion. All these features have been
observed by Huang et al. (1979) in zircaloy-4 (figure 6.13a-c). The reload stress / strain curves
show yield drops which decrease in size with increasing strain and which increase to a
maximum size at about 300°C (figure 6.13a), while the low strain-rate portions of the relaxation
curves deviate from the curves predicted in the absence of solute segregation in a manner which
decreases with increasing strain (figure 6.13b). From the results shown in figure 6.13c, it is
apparent that the changing significance of solute segregation with strain means that the
observed relaxation curves do not belong to a one-parameter family.

As temperature is further increased, the solute mobility becomes too great to hinder the
mobile dislocations and the yield peaks disappear. However, near the end of a relaxation when
the driving force for further deformation is low, the segregated solute concentration may still be
sufficient to reduce the rate of relaxation. This may then lead to a sigmoidal relaxation curve
(cf. figure 6.14a).
6.3.1.3 Towards a solute parameterization. (a) General remarks : Solute impurities affect the
rate of dislocation motion rather than the scale of the strong barrier network, and hence are
appropriately included in Hart’s model by a parameterization of ¢* and/or M (friction element),
and £* and/or A (plastic element). Such a parameterization must describe the change in
magnitude of the material parameters as a function of the solute-dislocation interaction, and
accordingly must include some specification of the solute-dislocation interaction as a function
of solute composition, concentration, distribution and mobility. The large number of factors
influencing the form of these functions makes this a formidable task. The best prospect of a
solution lies in combining empirical observations of the solute effect on the parameters with
theoretical models of solute impeded dislocation motion. This in turn requires a detailed
physical interpretation of those material parameters.
6.3.1.4 Towards a solute parameterization. (b) The friction element : The task of determining
the effect of solute impurities on the material parameters of the friction element is simplified by
the possibility of conducting experiments under conditions in which the solutes are immobile.
Hence the influence of solute composition, concentration and distribution on ¢* and M may be
directly determined by conducting suites of relaxations on specimens where these variables are
controlled. The experiments of Tanoue and coworkers cited above (§ 6.3.1.2) may be used in
this way. Their observation that the scaling slope of the relaxation curves generated from
specimens of different purity was a function of purity, means that M and/or the power law
exponent in the relationship between d* and o* is a function of solute concentration (equation
6.35). By using the Gupta-Li method to determine M* (= M, equation 6.34), Tanoue and
Matsuda (1984) showed that in their experiments the value of M* equals the reciprocal of the
scaling slope (i.e. dlog ¢* / dlog o* = 0), and hence it follows that the power law exponent in
the relationship between 4* and o* is independent of purity but that M is not. Tanoue and
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coworkers did not consider the effect of impurity concentration on the magnitude of d*.
However, Gypen and Deruyttere (1982) applied the absolute reaction rate equation for
dislocation glide (equation 6.36) to the deformation of various tantalum based alloys and found
that ég') was independent of solute content. The implication is that solute concentration does not
affect 4* at given temperature (equation 6.39). '

The observation that ¢* is independent of solute concentration implies that solutes do not
affect v, or the p,, (o*) function (equation 6.33). If this is true in general, then the retarding
effect of solutes on relaxation-rates in tests where ongoing segregation is significant, does not
result from a reduction in the mobile dislocation density (the relaxation is at constant o*) i.e.
the solutes do not completely pin the dislocations, or if they do then new dislocations are
generated to take their place. The dependence of M on solute concentration is difficult to
interpret. For almost all theoretical dislocation glide models where glide is rate-controlled by

the lattice resistance, the activation energy can be expressed as
_ q /]
Gi(a)) = Gy[1 - (a;/0,)"] (6.41)

in which Gy, is the value of G, when oy =0, g, is the Peierls stress and ¢, and g, are constants
which depend on the model or more specifically, on the profile of the Peierls-Nabarro hills
(Kocks et al., 1975). This functional form for Gf(crf) differs from that prescribed by equation
6.37 but since the latter arises from a purely empirical relation (i.e. the constitutive relation for
the friction element, equation 5.12), all that is required is that G be given by a function that can
be approximated by equation 6.37. Calculating G (o) from a fit of equation 6.37 to their data,
and assuming that Gfo and o, are constant, Tanoue and Matsuda (1984) showed that their
changes in M with composition correlated with changes in g; and g, i.e. with the profile of the
Peierls-Nabarro hills,

6.3.1.5 Towards a solute parameterization. (c) The plastic element : The task of determining
the effect of solute impurities on the material parameters in the plastic element is complicated
by the fact that at the temperatures where the plastic element controls the deformation
behaviour diffusive solute segregation is important. Hence during a relaxation the solute effect
changes. Even a qualitative consideration is rendered difficult because the constitutive relation
for the plastic element (equation 5.10) does not correspond to the form of any of the
theoretically derived dislocation creep equations.

The effect of solute impurities on the plastic element reflects their influence on long range
barrier circumvention. Such an influence arises for example, from the effect of solute impurities
on stacking fault energy (and hence on rates of cross-slip), or from impurities filling the vacant
lattice sites (i.e. the jogs) along a dislocation during its ‘wait-time’ at the barrier. In the absence
of a theoretical interpretation of A and ¢*, then to gain some understanding of their physical
meaning which can serve as a basis for considering the solute effect, it is nécessary to fit both
equation 5.10 and the theoretical creep equations to the same data in the same variable space.
The only published attempt to do this is by Povolo and Marzocca (1981). Comparing equation
5.10 with a creep equation based on the thermally assisted motion of jogged screw dislocations
(that of Barrett and Nix, 1965), they found that A was a function of the stress exponent of the
stress dependence of the mobile dislocation density (assuming a power law dependence of p,,
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on the flow stress), and that ¢* was a function of the self-diffusion coefficient, temperature and
the average spacing between jogs. If it is then assumed that the stress exponent of the stress
dependence of the mobile dislocation density is unaffected by the presence of solute impurities,
it follows that the solute effect is contained wholly within £*. In the case that solute impurities
exert their influence solely through their effect on vacancy concentration and mobility, the
solute effect is like that of temperature and reduces an effect on the jump frequency parameter
fo (equation 5.11). '

There is some experimental support for these predictions. Lemmer and Kohlstedt (1982)
found that the high strain-rate portion of the sigmoidal relaxation curves generated in Cd2*
doped AgCl single crystals (figure 6.14a) superpose onto the relaxation curves generated from
the pure material. This implies that the solutes do not influence A. Korhonen and Li (1982)
reported a time dependent variation of é* in some room temperature load relaxations conducted
on commercial purity aluminium. They conducted a number of relaxations after reloading to a
stress just below the the initial stress of a prior relaxation run, and found that instead of merging
with the initial curve (§ 6.1.4.5, figure 6.8a), the later relaxations crossed over the earlier ones
(cf. figure 6.14b). By fitting the equation of state to the curves they found that A and o* were
constant for each relaxation but that é* decreased with each successive run. Although the
variation of £* was not explained it is compatible with the expected influence of an increasing
segregation of solute impurities, the importance of which is emphasized by the reported
observation of a yield drop during reloading after the last relaxation. Wire et al. (1981) also
reported a time dependent £* (but constant A) in Type 316 stainless steel, and were able to
accommodate all the variation within f;,.
6.3.1.6 Towards a solute parameterization. (d) Summary : Before a full parameteriiation of
Hart’s model for the effect of solute impurities is attempted, a much closer comparison of his
equations with theoretical solute impeded dislocation glide / creep models is required. The
limited experimental evidence described above suggests that solute impurities change the
magnitude of M but not 4* (friction element) and #* but not A (plastic element), and that such
effects are a function of temperature. Until a solute parameterization is obtained, it is therefore
important to recognize the potential for interpretative difficulties when applying Hart’s analysis
to impure materials. _

6.3.2 Finely dispersed inclusions. Finely dispersed inclusions / second phase particles
influence inelastic deformation behaviour by presenting barriers to dislocation motion which
the dislocations must either cut through or go around. In considering this effect, of interest are
only those particles which are similar in size to the strain field of a single dislocation. The
influence of larger particles is considered elsewhere (§ 6.6.1).

6.3.2.1 Factors influencing the magnitude of the effect due to inclusions : The significance of
the effect due to inclusions depends upon the work required for the dislocations to overcome
them.

To cut through an inclusion (figure 6.15a) work must be done (a) to overcome the elastic
interactions between dislocation and inclusion, (b) to force the dislocation through the inclusion
lattice, and (c) to create new matrix-inclusion boundaries (i.e. a step oﬁ either side of the
inclusion). The magnitude of the elastic dislocation-inclusion interactions depends upon the
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FIG. 6.14. Effect of solute impurities on the plastic element. (a) Slightly sigmoidal load
relaxation curves generated from Cd?+ doped AgCl single crystals at room temperature.,
The sigmoidal form is attributed to the progressively increasing influence of solute
segregation as the driving force for relaxation diminishes (redrawn after Lemer and
Kohlstedt, 1982). (b) Crossing load relaxation curves generated from commercial purity
aluminium at room temperature after reloading to stresses below the initial stress of the first
relaxation. The crossing behaviour results from changes in £* induced by solute segregation
during the relaxations (redrawn after Rohde et al., 1981).
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(a)

®

FIG. 6.15. The circumvention of finely dispersed inclusions by dislocations. (a) The
dislocation cuts through the inclusion or (b) it bows around it.

difference in atomic volume between matrix and particle. The work required to force a
dislocation through the inclusion enters the problem because if the mechanical properties of
matrix and inclusion differ, then there is a corresponding difference in the stress needed to
move the dislocation through the inclusion rather than the matrix. The work required to create
new matrix-inclusion boundaries depends upon their interfacial energy. If the inclusion has an
ordered lattice, work must also be done to create a disordered interface across the slip plane.
Furthermore, if the lattice parameters of matrix and inclusion differ, misfit dislocations must be
created at the matrix-inclusion interface.

To go around an inclusion (figure 6.15b) work must be done to force the dislocation to
undergo large changes in curvature. The necessary changes in curvature depend upon inclusion
size, shape and spacing, and upon the magnitude of the elastic dislocation-inclusion
interactions. Since the radius of curvature of a dislocation is inversely proportional to the
applied stress, the work required is also a function of those variables. However, usually when
the inclusions are mechanically strong, incoherent and widely spaced, it requires less work to
go around an inclusion than to cut through it.

In summary, the significance of the inclusion effect depends on microstructural (particle
size, shape, number and distribution), crystallographic (the difference between the inclusion
and matrix lattices) and mechanical (the difference in mechanical properties between inclusion
and matrix) factors. All of these may vary with temperature. Variations in microstructure
induced by temperature changes (e.g. the precipitation, growth or redistribution of the
inclusions) are particularly significant because they may lead to a change in the way the
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dislocations overcome the inclusions. However, the variation of the other factors may also be
important. Thus for example, the elastic dislocation-inclusion interactions may vary
considerably with temperature if the thermal expansion coefficients of matrix and inclusion are
significantly different.

6.3.2.2 The effect of inclusions on multiple relaxation experiments : The effect of a random
dispersion of inclusions on a load relaxation at given o* and T is a function of stress. At high
stresses, the dislocations can readily overcome the inclusions and the relaxation proceeds as for
the pure material. However, as the stress decreases the inclusions become more significant and
the rate of relaxation diminishes faster than observed in the inclusion-free material. Finally at
low stresses the rate of relaxation is controlled by the rate at which the inclusions can be
overcome, and the relaxation then proceeds as for the pure material but displaced to a higher o*
curve than the one on which it began. The influence of inclusions on the shape of the relaxation
curve decreases with increasing o* as the barriers posed by the immobile dislocation network
become more significant relative to those presented by the inclusions. Those relaxations most
heavily influenced show yielding peaks on the reloading stress / strain curves as the mobile
dislocations are forced to break-free of the inclusions before they can move. The effect of
inclusions on multiple relaxation experiments is therefore qualitatively similar to that produced
by diffusive solute segregation (§ 6.3.1.2). However, there is a less systematic temperature
dependence in inclusion influenced experiments, reflecting the complex effect temperature has
on determining the inclusion circumvention mechanism and its potential for permitting
microstructural evolution.

The effect of inclusions on multiple relaxation experiments has been observed by Lerer
and Kohlstedt (1982). They compared the room temperature deformation of pure AgCl single
crystals with that of AgCl single crystals containing ultravioletly induced (prior to the
deformation) Ag0 particles. The resulting relaxation and reloading stress / strain curves (figure
6.16a-c) show all the features described above. The effect of an evolution in the inclusion
microstructure during relaxation has been invoked by Povolo and coworkers (Povolo and
Tinivella, 1984a,b ; Povolo and Reggiardo, 1988) to explain the failure of various stainless
steels (at 300 and 500°C) and Inconel (at 500°C) to form a one-parameter family of relaxation
curves,
6.3.2.3 Towards a parameterization for the inclusion effect : Finely dispersed inclusions affect
the scale of the strong barrier network rather than the rate of dislocation motion, and hence are
most appropriately included in Hart’s model by a parameterization of the o* evolution
equation. This parameterization must express the changing role of the inclusion as a barrier to
dislocation motion, as a function of both o and o*. It must also be specified as a function of the
inclusion circumvention mechanism. This follows from for example, the observation that when
a dislocation goes around an inclusion by the mechanism shown in figure 6.15b, a dislocation is
left ringing the inclusion, thereby opposing further slip on the slip plane and forcing the
material to work harden (i.e. increase in o*) more rapidly than if the inclusion had been cut
through.

The dependence on the inclusion circumvention mechanism complicates the
parameterization task because of the large number of factors influencing that mechanism. This
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FIG. 6.16. The effect of finely dispersed Ag0 particles on the load relaxation behaviour of
AgCl single crystals at room temperature. (a) The stress/strain curves and (b) the
corresponding load relaxations. The sigmoidal form of the relaxation curves is attributed (c)
to the increasing significance of the Ag? particles as strong barriers to dislocation motion as
the driving force for relaxation diminishes (redrawn after Lerner and Kohlstedt, 1982).

is emphasized by the difficulty of predicting the temperature dependence of the inclusion effect,
and is particularly problematic when the inclusion microstructure evolves during deformation.
It seems probable that before any parameterization can be attempted, a much closer comparison
of Hart’s equations with theoretical creep and work hardening models will be required.

6.3.3 Grain-size. Grain-size affects the inelastic deformation behaviour of polycrystalline
materials through the role grain boundaries play in the deformation. Grain boundaries
demarcate regions of polycrystal which are of different crystallographic orientation and which
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consequently respond differently to a given stress field. They therefore present both obstacles to
dislocation motion and sites where large strain gradients must be accommodated if strain
compatibility between neighbouring grains is to be maintained.

As obstacles to dislocation motion, grain boundaries force dislocations to pile up behind
them. When the resulting stress concentration becomes sufficient to activate dislocation sources
in the neighbouring grain (or grain boundary), the deformation is able to propagate across the
boundary. This stress concentration increases with the number of contributing dislocations,
which in turn increases with the distance between dislocation source and barrier. Given that the
maximum distance available between source and barrier decreases with grain-size, decreasing
grain-size decreases the stress concentration and therefore makes the propagation of the
deformation more difficult (i.e. strengthens the material).

The large strain gradients in the grain boundary are mechanically significant because they
require a proportionately large number of dislocations to accommodate them. While these
dislocations do not achieve the general strain (i.e. they are only geometrically necessary), they
do increase the local dislocation density and hence increase the strength of the grain boundary
as an obstacle to dislocation motion. This effect increases with the volume fraction of grain
boundaries and hence contributes to the strengthening of materials as grain-size decreases.

Empirically it is found that the dependence of the flow stress on grain-size is given by the
Hall-Petch equation

G = Oy + khpd'll2 (6.42)
where o}, and k;,, are material parameters and d is the grain-size. In the case that the grain-size
sensitivity is independent of strain (i.e. the magnitudes of oy, and k,, are deformation
independent), equation 6.42 predicts that the stress/ strain curves generated in isothermal
constant strain-rate tests on specimens of different grain-size, differ only by a translation
parallel to the stress axis. However, if the grain-size sensitivity is strain dependent, such stress /
strain curves crosscut.
6.3.3.1 Factors influencing grain-size sensitivity : The extent to which the inelastic
deformation properties of a material are grain-size sensitive depends upon the importance of the
grain boundary as a barrier to dislocation motion relative to those factors limiting dislocation
motion within the grain. This is expressed in equation 6.42 by the relative magnitudes of o,
(which reflects the within grain factors) and &y, d-172 (reflecting the significance of the grain
boundaries). Anything increasing oy, relative to ky, d-1/2 therefore decreases the grain-size
effect.

The rate of dislocation motion in the grain interiors is affected, as discussed previously, by
temperature, solute impurities and finely dispersed inclusions. The importance of the grain
boundaries as obstacles to dislocation motion is determined primarily by the number of slip
systems available and by the structure of the grain boundary. A large number of slip systems
enables deformation to propagate across the grain boundary more easily while also making it
easier to accommodate the large strain gradients near the boundary. The structure of the grain
boundary, which may be affected by temperature, solute impurities and finely dispersed
inclusions, determines the ease with which it can act as a dislocation source and hence assist in
propagating the deformation. In general therefore, grain-size sensitivity (i.e. the magnitudes of
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Oyp and ky,) is a function of impurity content and temperature.

The grain-size sensitivity may also be strain dependent if the role of solute impurities and
finely dispersed inclusions, both on within grain dislocation motion and on grain boundary
structure, varies during the deformation. Similarly the development of a crystallographic
preferred orientation may change the role played by the number of available slip systems, by
altering the ease with which deformation may be propagated between grains, and by affecting
the number of geometrically necessary dislocations required.
6.3.3.2 The effect of grain-size on multiple relaxation experiments : Except for ultrafine
grained materials where the obstacle posed by the grain boundary dominates the strong barrier
network, grain-size does not influence within grain dislocation motion and hence should not
affect load relaxation behaviour. This has been confirmed by Tanoue and coworkers (Tanoue et
al., 1983 ; Tanoue and Matsuda, 1984) who deformed pure molybdenum specimens of various
grain-sizes (17 — 1500 pm) at several different temperatures in the low homologous temperature
regime. Good scaling behaviour was observed in each suite of relaxations with the scaling slope
being grain-size independent.
6.3.3.3 Towards a grain-size parameterization : By being obstacles to dislocation motion and
sites of high dislocation density, grain boundaries can be expected to influence the development
of the strong barrier network during deformation but not the barrier circumvention or
dislocation glide processes themselves. Hence the equations of state in Hart’s model should be
grain-size independent (as indicated by the results of Tanoue and coworkers, § 6.3.3.2) but the
o* evolution equation (equations 5.14 — 5.16) should not be.

Where the grain-size sensitivity is independent of strain, it may be fully incorporated by

parameterizing the term o for grain-size (¢f. § 4.2.2.3). Where there is a strain dependence,
other parameters in equations 5.14 —5.16 will be affected. A closer comparison of Hart's
equations with theoretical work hardening models is required before further conclusions can be
drawn.
6.3.4 ‘Unusual’ deformation variables. Inelastic deformation is affected by several features
of the deformation environment besides o, (" and T. Among the most significant of these are
the isostatic pressure, the composition and pressure of any fluids (liquid or gaseous) present,
and the presence of a source of irradiation. The incorporation of the effects of these extra
deformation variables into Hart’s analysis must be done on a case by case basis and be founded
upon an account of the way in which variable of interest exerts its influence on the deformation.
To illustrate this procedure, an attempt to incorporate the effects of a source of irradiation
(which is the only one of these variables to have received attention within the context of Hart's
analysis) is described.

On entering a crystalline solid, fast moving atomic particles emitted from a radiation
source generate vacancy and interstitial point defects which may develop, either in situ or by
diffusion, into vacancy or interstitial dislocation loops. If the particle is of sufficient energy, the
knock-on effects after a collision may involve many hundreds of atoms and lead to locally
depleted zones of lattice. Both the vacancy / interstitial loops and the depleted zones can form
strong obstacles to dislocation motion and thereby strengthen the irradiated material. However,
isolated excess vacancies may enhance diffusive accommodated barrier circumvention
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processes and lead to a weakening effect. The incorporation of irradiation into Hart’s analysis
therefore requires both a description of the effect of the accumulated microstructural damage
due to the radiation fluence, and a description of the effect of the supersaturation of point
defects due to the current radiation fJux.

Hart and Li (1977) proposed that the fluence effect could be accommodated into the
equation of state for the plastic element (equation 5.10) by changes in o* and é* (i.e. 4 is
unaffected), while the flux effect could be accommodated wholly by changes in £* (since it acts
like temperature). If correct then irradiation should result in a rigid body translation of the
constant ¢* curves in log o — log & space (figure 6.17a). There is some experimental support
for this. Lemner and Kohlstedt (1982) found that vy - irradiated single crystals of AgCl produced
a family of o* curves which had a different scaling slope to that of the unirradiated crystals
(implying a change in é* through m, equation 5.11 and § 4.1.2.1), but that the two families
superposed after a rigid translation (figure 6.17b). Similar results were obtained for 7y -
irradiated single crystals of NaCl (Lerner and Kohlstedt, 1981). There has been no attempt to
quantify the fluence or flux effects, nor to determine their effect on either the equation of state
for the friction element or the o* evolution equation.

Although the experimental data is limited, there seems little reason to doubt that Hart’s
analysis can accommodate the effects of irradiation. The ability of the analysis to incorporate

other environmental variables remains to be determined.

6.4 Deformation occurring at T > 0.45 T,,.. (a) Recovery

In the preceding discussion (prior to § 6.3) it has been assumed that inelastic deformation
is fully accommodated by the grain matrix, and that the plastic mechanical state can be changed
only by such deformation under the action of an applied differential stress (cf. § 2.1). However,
at temperatures above 0.45 T, diffusive processes become sufficiently active to allow the
operation of grain boundary sliding processes, and to cause thermally induced, nominally
deformation independent changes in mechanical state (i.e. recovery). Before Hart’s analysis can
be extended to higher temperatures it is therefore necessary that some description be found for
both these aspects of high temperature deformation.

The incorporation of high temperature recovery into Hart’s analysis has received little

attention and consequently the following discussion is concerned primarily with outlining a
possible approach to this problem. The accommodation of grain boundary sliding has been
given much greater consideration and is described in § 6.5.
6.4.1 Recovery processes. By definition, a recovery process is one that provides a negative
contribution to the athermal work hardening-rate. The athermal work hardening-rate is a
measure of the rate of increase of elastic strain energy accompanying the accumulation of
dislocations. Hence any process which either removes dislocations or rearranges them into a
lower energy configuration is a recovery process.

It has been conventional to refer to recovery occurring during deformation as dynamic, and
that occurring after deformation as static. However, in the following discussion a recovery
process will be considered dynamic only if it requires a differential stress to be active. By
default all other recovery processes will be regarded as static, even when they operate during
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FIG. 6.17. The effect of irradiation on constant g* curves. (a) The predicted effect on a
given point of a o* curve (redrawn after Hart and Li, 1977). (b) The effect of y - irradiation
on the relaxation curves of AgCl single crystals at room temperature. The irradiated and
unirradiated curves superpose but the scaling direction is influenced by the irradiation
(redrawn after Lerner and Kohlstedt, 1982).

deformation. This stronger definition is more suited to Hart’s analysis and is apposite on
mechanistic grounds.

6.4.1.1 Dynamic recovery processes (sensu stricto) : Dynamic recovery is driven by an
externally applied differential stress and, as defined here, results only from the annihilation of
dislocations during strong barrier circumvention (¢f. § 5.3.1.4). In anisotropic materials it may

in principle, also result from the elimination of dislocations during stress induced boundary
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migration. However, the driving force for this boundary migration — the difference in elastic
strain energy (reflecting the anisotropy of the elastic constants) between two subgrains / grains
differently oriented with respect to the applied differential stress — is in general, insufficient to
make the process important (Paterson, 1973). The rate of dynamic recovery is therefore a
function of those factors influencing the rate of strong barrier circumvention i.e. o and ¢& (and
hence o*), T (the strong barrier circumventing processes are thermally activated, § 5.3.1.1), and
material characteristics such as purity and grain-size (§ 6.3).

In restricting dynamic recovery to these processes, the assumption is made that apparently
dynamic recovery processes (e.g. subgrain formation) are actually static processes which occur
at enhanced rates under applied differential stress because of the maintenance of high levels of
o* (through the continuous generation of new dislocations).
6.4.1.2 Static recovery processes (sensu lato) : Static recovery processes are driven by the local
elastic stresses arising from the presence of lattice defects. These stresses may cause (a)
dislocation motion, leading to the annihilation of the dislocations of opposite sign which meet
each other and to the rearrangement of dislocations into low energy configurations (i.e. into a
subgrain network), and (b) strain induced boundary migration leading to the elimination of
dislocations in the migrating grain boundary. ’

In a material of given purity and grain-size, the rate of static recovery is, by definition, a
function only of o* and T. Since the driving force for such recovery is relatively small, a high
concentration and mobility of vacancy point defects is required. Static recovery by dislocation
motion becomes rate significant at 7> 0.45 T,,, although it may be important at slightly lower
temperatures if the vacancies generated by deformation are of sufficient concentration. It is
influenced by solute impurities, finely dispersed inclusions and grain-size through the way that
these affect dislocation mobility (§ 6.3). Static recovery by boundary migration becomes rate
significant at T> 0.5 T, if the driving force is sufficient. It is strongly dependent on the vacancy
concentration at the boundary for this determines the number of sites on either side of the
boundary that atoms can jump to or from. Hence boundary mobility increases with increasing
o*, with increasing misorientation of the lattices across the boundary, and with decreasing
grain’-sizé. It is also strongly influenced by impurity solutes and finely dispersed inclusions for
these interact with the boundaries in the same way that they interact with dislocations (§ 6.3.1.1
and 6.3.2.1).

The relative importance of dislocation motion and boundary migration as agents of static
recovery reflects the influence of the factors described above on the relative mobility of
dislocation and boundary. At comparatively low temperatures and mechanical states, the grain
boundaries are immobile and recovery occurs entirely through dislocation annihilation and
subgrain formation. In the presence of an externally applied differential stress, the continual
generation of new dislocations and their accommodation into the subgrain walls may reduce the
dislocation spacing in those walls and thereby lead to a progressive increase in the
misorientation of the lattices across the subgrain boundary. Eventually the misorientation may
be such that the subgrain becomes a new grain (rotation recrystallization). At higher
temperatures and mechanical states, the subgrain / grain boundaries become mobile. This allows

recovery to proceed by the formation of relatively strain-free nuclei which then grow rapidly to
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replace the deformed aggregate (migration recrystallization). The recrystallization nuclei may
be formed by the grain boundary bulging mechanism or by the progressive misorientation of
subgrains with respect to their neighbours (by incorporation of increasing numbers of
dislocations in the subgrain walls, by subgrain impingement and/or by grain coalescence, figure
6.18). Growth occurs at some critical lattice misorientation across the boundary which is a
function of the boundary structure and the difference in strain energy across it. In general, at
given temperature increasing the concentration of solute impurities and of finely dispersed
inclusions increases the mechanical state required for the onset of boundary migration.
However, the precise effect depends on the magnitude of the solute / inclusion interactions with
the dislocations / boundaries, for this determines whether the dislocations / boundaries break-
free of the solutes / inclusions, whether they drag them with them, or whether they are pinned
by them. Solute impurities may even enhance boundary migration if differences in impurity
concentration across the boundary lead to significant differences in chemical potential (and
hence to chemically induced boundary migration). Decreasing grain-size at given temperature
lowers the mechanical state required for boundary migration.
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FIG. 6.18. Mechanisms of forming recrystallization nuclei.

(a) Rotation recrystallization — the progressive misorientation of neighbouring subgrains
through the removal of dislocations from the subgrain interiors to the subgrain walls,

(b),(c) Subgrain boundary migration—(b) the progressive misorientation of
neighbouring subgrains through the incorporation of those dislocations encountered by the
migrating boundaries into the subgrain walls ; (c) the formation of a relatively mobile
subgrain wall through the consumption of a relatively highly strained intervening subgrain
(subgrain impingement).

(d), (¢) Grain boundary migration —(d) the formation of a subgrain wall by the
coalescence of two grains of similar orientation through consumption of the intervening
grains (grain coalescence); (e) the grain boundary bulging mechanism which must be
assisted by one or more of (a) to (d) to close the bulge.

In the figures the heavy solid lines are grain boundaries, the dashed lines are subgrain
boundaries, the light lines indicate the lattice orientation and N the recrystallization nuclei,
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6.4.2 The effect of recovery processes on mechanical behaviour. The effect of recovery
processes on the mechanical properties of an isotropic, pure material of given grain-size is
described for recovery occurring before and after constant displacement-rate deformation. It is
assumed that any changes in grain-size are insufficient to make grain boundary sliding rate-
significant.

6.4.2.1 Recovery during deformation : The operation of recovery processes during deformation
characteristically leads to three types of constant displacement-rate stress / strain curves.

Under conditions where the grain boundaries are immobile the stress / strain curves show a
progressively decreasing rate of work hardening as the deformation proceeds (curve 1, figure
6.19a). Rotation recrystallization has no important effect on the curves except for the
strengthening that results from the decrease in the grain-size (§ 6.3.3).

Under conditions where the boundaries are mobile and where o* is large (when grain
boundary migration begins at large stresses or in materials of large grain-size), the stress / strain
curves show a single peak stress followed by strain softening (curve 2, figure 6.19a). This
behaviour results from successive cycles of recrystallization which are out of phase (figure
6.19b) because there are large strain (i.e. o*) gradients across individual grains. Such
recrystallization leads to ‘necklace’ type textures and can be described as growth controlled
because the growth of the new grains ceases when the driving force for it is destroyed by the
concurrent deformation.

Under conditions where the boundaries are mobile and where o* is small (when grain
boundary migration begins at small stresses or in materials of small grain-size), the stress /
strain curves display periodic oscillations in stress (curve 3, figure 6.19a). This behaviour also
results from successive cycles of recrystallization, but in this instance the magnitude of the
strain gradients across individual grains is smaller and the cycles are more in phase (figure
6.19c). The growth of new grains is terminated by boundary impingement and so the
recrystallization can be described as nucleation controlled.
6.4.2.2 Recovery after deformation : The effect of recovery processes operating after
deformation can be investigated by loading a specimen to a given strain and by then offloading
and annealing it for a given period. The specimen may then be removed for analysis of the
recovered microstructure or it may be reloaded under the original deformation conditions to
determine the amount of recovery. In such interrupted constant displacement-rate tests, the
amount of recovery is estimated from a comparison of the deformation behaviour before and
after the anneal (most commonly from a comparison of the reloading yield stress with the flow
stress at the end of the initial loading, but see § 14.1.1 for an extended discussion), and is
presented as curves of fractional recovery versus log anneal time for given pre-strain and
anneal temperature (figure 6.20a,b). Under conditions where the boundaries are mobile such
curves are typically sigmoidal with slopes that vary from shallow to steep to shallow as time
increases. Microstructural observations show that the initial shallow portion of the curve
corresponds to recovery by dislocation annihilation and subgrain formation, while the steep
portion marks the onset and progression of migration recrystallization (cf. the indicated
percentage recrystallization figures on the curves shown in figure 6.20a). The final shallow
portion of the curves corresponds to the further reorganization of those dislocations remaining
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FIG. 6.19. The mechanical consequences of recrystallization during constant strain-rate
tests. (a) The behaviour of 99.9% nickel deformed in torsion at 934°C and the indicated
strain-rates. The strain-rate is used to control the stress at which recrystallization begins
(redrawn after Sellars, 1978). The form of the stress/strain curves for (b) growth-
controlled and (c) nucleation-controlled migration recrystallization may be interpreted in
terms of the length g, of each recrystallization cycle relative to the critical strain &, required
to initiate the cycle (redrawn after Luton and Sellars, 1969).

after complete recrystallization. Increasing the mechanical state and/or the temperature steepens
the initial shallow portion of the recovery curve by enhancing the efficiency of the dislocation
annihilation and reorganization processes, while it also translates the steep portion of the curve
towards short times by decreasing the incubation time required for recrystallization.

6.4.3 Incorporation of recovery into Hart’s analysis. Within the context of Hart’s analysis,
recovery processes are those processes which diminish the rate of increase of g* given by the
athermal (I"*) term in the o* evolution equation (equation 5.13). Rewriting equation 5.13 to
make the recovery terms explicit yields

d(lno*)/dt = &[I'*(o*) - R*(c*, a,)] - R(c*,T) (6.43)
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FIG. 6.20. Fractional recovery curves produced from interrupted constant displacement-rate
tests. (a) Recovery of OFHC copper at 550°C after deformation to four different pre-strains.
Recovery was estimated using equation 14.4 and the numbers on the curves indicate the
volume fraction recrystallization (redrawn after Kwon and DeArdo, 1990). (b) Recovery of
20% cold-worked Type 316 stainless steel at five different anneal temperatures. Recovery
was estimated by the 0.2% yield stress at 538°C which is approximately equal to o*
(redrawn after Alexopoulos ef al., 1982 ; data is that of Paxton, 1974).

where the athermal term I'*(o*) is given by equation 5.15, and R*(o*, o,) and R(o*,T)
describe dynamic recovery (sensu stricto) and static recovery (sensu lato) respectively.
Dynamic recovery is fully accommodated within the I"(c*, g,) function in equation 5.13, and
so R*(o*, 0,) may be determined from equations 5.14 - 5.16. Since this is unnecessary, the
following discussion is restricted to the R(o*, T') function. It is assumed that the R(c*, T)
function can be expressed as the sum of a component due to dislocation motion and a
component due to boundary migration.

6.4.3.1 Static recovery by dislocation motion : To determine the component of R(c*, T') due to



dislocation motion, it is necessary to find some function which describes the time rate of
change of mechanical state prodﬁced by dislocation annihilation and subgrain formation in
terms of the current value of o* and the temperature. This may be done using interrupted
constant displacement-rate tests to construct curves of do* versus anneal time for various
annealing temperatures and after different pre-strains. The deformation must be conducted
under conditions where o* is determinable as a function of loading strain (i.e. at 7<0.45 T,),
and if recovery by a boundary migration mechanism occurs during the anneal, only data from
the shallow sloping portions of the fractional recovery curves should be used. .

The only attempt to determine such a recovery function is that of Yamada (1977). He
annealed 20% cold worked Type 316 stainless steel for various durations at temperatures of 600
to 700°C, and determined o* after each anneal from room temperature load relaxations
conducted just beyond the plastic yield point. He observed that o* decreased monotonically to a
temperature dependent limiting value o¥ (figure 6.21a), and so assumed that do* /dt was
proportional to the difference between the current and asymptotic value of o*

R(o*,T) = -d(lnoc*)/dt = -(o*-0%)/(0*t) (6.44)
where ¢, is a temperature dependent time constant.

Yamada’s results were complicated by the formation of precipitates during annealing,
thereby raising questions concerning the general applicability of equation 6.44 and the
existence of o at long (e.g. geological) times. Static recovery by dislocation processes is more
commonly represented as (e.g. Honeycombe, 1968)

x = A - B(lnt-H,./RT) (6.45)
where x is some increment of a physical or mechanical property above that of the undeformed
material, A and B are constants, and an Arrenhius temperature compensated time has been
employed. Using x = 0%, Yamada’s results are equally well described by equation 6.45 (figure
6.21b). Equation 6.45 iniplies that do* / dt is independent of o*, suggesting that o* affects
merely the scale of the dislocation recovery processes (e.g. subgrain-size) and not their kinetics.
However, as presented here it yields a function for R which contains time as a variable.

Further theoretical and experimental work is required before a general R function for
dislocation processes can be determined. In addition some function describing the progression
of rotation recrystallization and the resulting grain-size is required for use in the grain-size
parameterized I'(o*, o,) function (§ 6.3.3.3).
6.4.3.2 Static recovery by boundary migration : To determine the component of R(o*, T) due
to boundary migration, it is necessary to find some function which describes the time rate of
change of mechanical state during a recrystallization cycle (i.e. as the volume fraction of
recrystallized grains increases), while expressing the rate of recrystallization as a function of o*
and T. '

Within the context of Hart’s analysis the only attempts to describe recovery by boundary
migration have been to employ empirical fits to the steeply sloping portions of the recovery
curves shown in figure 6.20b (Wire et al., 1979 ; 1981). However, deformation induced
recrystallization like other phase transformations, may be treated formally as a nucleation and
growth process in which the important parameters are the nucleation and growth rates of the
recrystallizing grains. The volume fraction X, of the recrystallized material is then described
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FIG. 6.21. Towards a recovery function. (a) The change in o* during static annealing of
20% cold-worked Type 316 stainless steel. The value of o* after annealing was determined
from room temperature load relaxations conducted at just beyond the plastic yield point.
The curves are the fits of the data to equation 6.44 (redrawn after Yamada, 1977). (b) The
data of (a) replotted according to equation 6.45. (c) The effect of the parameters A and B in
the Avrami equation (equation 6.46) on the fractional recrystallization curves predicted by
that equation.

by the Avrami equation (e.g. Tiller, 1991)
X, = 1 - exp(-AtB) (6.46)

(cf. figure 6.21c) where A is a constant which depends on the nucleation and growth rates, and
B is constant which reflects the geometry of the nucleation / growth situation. It follows that
the R(o*, T) function can be found by fitting equation 6.46 to data supplied from the
microstructural analysis of interrupted constant displacement-rate tests, while using the
mechanical data from those tests (after subtracting the component of recovery due to
dislocation motion) to determine do* as a function of X,,. The c* and T dependence of the
recovery function then resides in A and reflects the dependence of the nucleation and growth
rates on those variables. Since the nucleation and growth rate dependence of A is specified in
various theoretical models, this approach has the benefit of allowing experimentally determined
values of A to be given a physically meaningful interpretation (thereby easing the consideration



of, for example, solute impeded boundary migration).

The Avrami equation has been applied successfully to the results of interrupted constant
displacement-rate tests in several studies (e.g. Laasraoui and Jonas, 1991), and A has been found
to be a well behaved function of pre-strain, loading strain-rate and temperature. This suggests
that equation 6.46 can be used to describe the boundary migration component of R(o*, T).
However, further work is necessary, particularly with respect to the complications that might
arise from the simultaneous operation of several different nucleation mechanisms, before this
possibility can be fully evaluated. Some function describing the recrystallized grain-size is also
required, both for use in the grain-size parameterized I'(c*, o,) function and to allow for the
effects of that grain-size on any subsequent cycles of recrystallization.
6.4.3.3 Employing the recovery function during deformation : The approach to characterizing
recovery outlined here relies on the interrupted constant displacement-rate test for parameter
evaluation and is therefore most suited to describing changes of o* after deformation. Two
practical limitations may arise in using it to describe recovery during deformation. Firstly, since
static recovery processes are operative at all 7> 0.45 T,,, the I'(c*, o,) function (incorporating
dynamic recovery) at these temperatures must either be determined from constant
displacement-rate tests using a previously determined R(o*, T') function, or by extrapolating I"
from its observed temperature dependence at T <0.457,, (equations 5.14 and 5.16). Both
alternatives carry potentially large errors, the former reflecting the errors in determining R, and
the latter the errors in determining the temperature dependence of I" under conditions in which
that dependence is relatively small. Secondly, the use of the interrupted constant displacement-
rate test to determine the parameters in R(o*, T) underestimates the contribution of recovery
mechanisms which rely on o* being dynamically maintained. This problem is particularly
pertinent under circumstances where the formation of recrystallization nuclei by the subgrain
misorientation is important. The significance of these problems is difficult to evaluate in the
absence of experimental data. However, once an R(o*, T) function has been determined, they
can be investigated by using it to simulate appropriate deformation experiments and then by
comparing the simulations with actual experimental results (cf. § 7.2).

The method of applying the recovery functions described here when modelling
deformation at T> 0.45 T,, would be similar to that used by Luton and Sellars (1969) to model
constant strain-rate stress / strain curves during cyclic recrystallization. They used the Avrami
equation to determine the (volume fraction) increment of recrystallization X,(,’;) occurring in
uniform increments of time (strain) once a critical strain g, for initiating recrystallization had
been attained. As each increment recrystallized it was assumed that its flow stress fell
instantaneously to zero and then followed the initial (¢ < &,) stress / strain curve. Hence the flow
stress (! of each increment was obtained after each increment of time. The flow stress o, of
the unrecrystallized material was assumed to follow the extrapolation of the unrecrystallized
material, so that the bulk stress was given by

| Ly i
o = ZX,‘,?G,Q’ + (1 -ZXL?)GW (6.47)

0 0

A new recrystallization cycle was assumed to begin again in each volume increment when the



critical strain was attained (cf. figure 6.19b,c). In the present analysis the application of the
Avrami equation would be governed by some critical value of o* (not ¢.) and the stresses of)
and o, by Hart’s equations (incorporating the recovery function for recovery by dislocation
motion).

6.5 Deformation occurring at T > 0.45 T,,,. (a) Grain boundary sliding

Grain boundaries are approximately planar regions with a thickness of atomic dimensions
within a polycrystal. Being regions of a relatively high degree of atomic disorder, their
mechanical properties differ from the grain matrix and hence a resolved shear stress acts along
them during deformation. This stress induces a boundary parallel shear which is termed grain
boundary sliding. At T<0.457T, the shear is accommodated by recoverable elastic and
anelastic deformation, but at higher temperatures the enhanced activity of diffusive processes
allows it to produce a permanent plastic strain.

An extension of Hart’s analysis to incorporate grain boundary sliding has been developed
by Li and coworkers (Li, 1981 ; Alexopoulos et al., 1982). In the following discussion this
extended model is described.

6.5.1 Hart’s deformation model extended to include grain boundary sliding. The extension
of Hart’s model proposed by Li and coworkers is shown in analogue form in figure 6.22a. It
comprises a grain matrix branch (labelled 1) connected in parallel with a grain boundary sliding
branch (labelled 2). Each branch contains an elastic (E) and a grain matrix (M) element
connected in series, while branch 2 has an additional grain boundary (GB) element. The elastic
elements account for the elastic deformation (matrix and boundary) of the aggregate and to
simplify the present discussion are assumed to be linear with a common Young’s modulus E.
The grain matrix elements account for the grain matrix inelastic deformation and each have the
same structure as Hart’s original model (figure 5.3, or its refinement, figure 6.3b). The grain
boundary element accounts for inelastic grain boundary sliding. The constraint equations for the
model are
o = Po; + (1-P)o, (6.48)

£0 = 4 4 &M = 40 4 &) + g (6.49)
where the numerical subscripts refer to the branch labels, £ is the grain boundary shear-rate
and P is a stress partitioning factor which effectively indicates the stress concentration in the
grain boundary ‘phase’. The model reduces to Hart’s original model if there is no grain
boundary sliding because at the elastic limit (and consequently for all greater strains where
éfM=0),0=0,=0,since ) = £{¢) = £f°).

Given this extended model, the problem of incorporating grain boundary sliding reduces to
one of prescribing a suitable constitutive relation for the GB — element. Figure 6.22b shows
schematically a segment of grain boundary containing grain vertices, steps and second phase
particles. In principle, if this representation contains all the features that are significant in
controlling the rate of grain boundary deformation, then the GB — element can be depicted by
the same analogue model as chosen to represent grain matrix deformation (figure 6.22c). The
constraint equations and constitutive relations are once more

Oy = O, + Op, (6.50)
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FIG. 6.22. Extension of Hart’s deformation model to include grain boundary sliding. (a) An
analogue representation of the extended model. (b) A schematic representation of a
segment of grain boundary showing grain vertices, steps and second phase particles. (¢} An
analogue representation of the grain boundary (GB) element (figures modified after Li,
1981).

g, = &, + daldt (6.51)
Oag = My, (6.52)

In (0 /o,g) = (&))" (6.53)
&Y = a¥(o, /G (6.54)

In this instance the a,— and £, — elements acting together constitute grain boundary
anelasticity. The constitutive relation of the £, —element, which represents the frictional
resistance to grain boundary shear, reflects grain boundary sliding rates controlled by grain
boundary diffusive mass transfer processes. The constitutive relation for the ¢, — element,

which represents the resistance to boundary shear posed by the steps and other inhomogeneities
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in the boundary, reflects boundary sliding rates controlled by grain matrix deformation at the
sites of these obstacles.

6.5.2 Experimental results. Discussion of the experiments investigating grain boundary
deformation processes is here restricted to those conducted from the perspective of the state
variable analysis.

6.52.1 Grain boundary anelasticity : Nir et al. (1976) investigated the room temperature
anelastic deformation of high purity aluminium, both in single crystals and in polycrystals.
Using stress dip tests they identified the grain boundary anelastic component as that part of the
deformation absent in the single crystals. They observed that it was very small in comparison
with the grain matrix anelasticity, that equation 6.54 recast in its anelastic form (c¢f. equation
5.20)

4, = darl(o, - o#,a,)/G1'"s (6.55)
was obeyed with M, =1, and that 4} was such that the grain boundary anelastic deformation
was completely recovered within one second of the stress dip (figure 6.23a). Similar results
have been reported for Type 316 stainless steel (Nir et al., 1977) suggesting that grain boundary
anelasticity can in general be neglected at low temperatures (as it has been throughout the
preceding discussion).

Grain boundary anelasticity has an important influence on the shape of the stress / strain
curves generated in constant displacement-rate tests. Between the elastic and anelastic limits
e = gf) + apy (6.56)
where ayy; is the strain of the anelastic element in the matrix element of branch 1 (equation
6.49). For a constant displacement-rate test it then follows that _
do,/de® = [(1/E)+(1/s#6)]" 6.57)
(§ 10.1). At low temperatures (i.e. T <0.45 T,,,) grain boundary sliding is negligible, and so
~do=do)=do, (§ 6.5.1) and equation 6.57 describes the slope of the stress / total strain curve.
At intermediate temperatures this is not the case because do, # do,. However, at very high
temperatures, the grain boundary element becomes sufficiently weak to accommodate all the
deformation required of branch 2. Above the elastic limit then do, = 0 and hence from equation
6.48 do ~ Pdo;. Substituting this result into equation 6.57 yields '

do/de® = P/[(1/E)+(1/4)] (6.58)
which is significant because it allows P to be determined. This method of evaluating P has been
successfully employed in characterizing the grain boundary sliding behaviour of pure nickel
(Li, 1981 ; Alexopoulos et al., 1982). It was found essential to take a series of measurements at
several temperatures so that the influence of boundary sliding could be unambiguously
demonstrated, and it was also observed that the condition do, =0 held only at stresses
considerably above the elastic limit (figure 6.23b).
6.5.2.2 Permanent grain boundary sliding : The influence of permanent grain boundary sliding
on load relaxation curves has been reported in several experiments (Wire et al., 1974 ; Roberts,
1974 ; Woodford, 1976 ; Huang et al., 1979 ; Keusseyan et al., 1981 ; and others reported in
Ellis et al., 1975 ; Li et al., 1976 ; Li, 1981 ; Korhonen et al., 1987). In these studies the grain

boundary sliding component was identified by comparison with sliding-free curves either
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FIG. 6.23. Grain boundary anelasticity. (a) The remaining recoverable strain in a stress dip
test conducted on high purity polycrystalline aluminium at room temperature. Comparison
with the results from single crystals shows that the grain boundary anelasticity is
responsible for the strain recovered in the first second of the test (redrawn after Nir ef al.,
1976). (b) Stress / strain data for pure nickel at 600°C in a constant displacement-rate
loading / unloading cycle where the peak stress is less than the anelastic limit. The solid
line is a simulation using the full grain boundary sliding model shown in figure 6.22a
(redrawn after Alexopoulos et al., 1982).

generated from single crystals or calculated using the equation of state as determined at
T <0.45 T,, and extrapolated to the experimental conditions.

The results show that relaxation curves at given o* but different T may be superposed by a
translation parallel to the log é™ axis in log o /log (™ space (figure 6.24a,b). At large (" the
material follows a grain matrix (sliding absent) o* curve, but as (™ decreases there is a
progressive deviation from this curve until the material merges with another matrix curve of
lower o*. In some materials the slope of the relaxation curve between the two matrix curves is

steep enough for it to take a sigmoidal form (figure 6.24c). For relaxation curves generated at
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Fig. 6.24 contd. (d), (¢) Curves of approximately constant initial o* generated at room
temperature in Sn-5% Bi alloy polycrystals of various mean grain-size. The curves of
different grain-size may be superposed along the indicated scaling direction (redrawn after
Tonejc and Poirier, 1975 ; original data of Alden, 1967).

given T but different o*, increasing o* increases the strain-rate at which the deviation from the
upper curve begins i.e. increasing o* acts like increasing T (figure 6.24a,c).

Results from commercial purity lead (Wire et al., 1974) and Sn - 5% Bi alloy (Tonejc and
Poirier, 1975) indicate that decreasing grain-size (which increases the viability of grain
boundary sliding processes) increases the slope of the relaxation curve between the two matrix
curves and/or increases the strain-rate at which deviation from the upper matrix curve begins
(figure 6.24d). In the Sn-5% Bi alloy, curves generated at given o* but different grain-size
could be superposed along a linear translation path (figure 6.24d,¢).

The form of the relaxation curves indicates that grain boundary sliding processes are a
significant influence on the rates of deformation only at intermediate strain-rates. Within the
context of the grain boundary sliding model (figure 6.22a) this may be rationalized in the
following way. At high strain-rates the grain boundaries are essentially rigid in comparison to
the grain matrix (i.e. é&!") = (), and so they remain unrelaxed and the deformation proceeds as in
Hart’s original model. At intermediate strain-rates both boundary sliding rates and matrix
deformation are important. However, at low strain-rates the grain boundaries are able to slide
very easily. The GB - element accommodates all the deformation in branch 2 and the matrix
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element on branch 1 controls the relaxation-rate. It then follows that the logarithmic stress
difference between the two matrix curves is the stress factor P. The magnitude of P determined
in this way matches that determined from the constant displacement-rate tests (Li, 1981 ;
Alexopoulos et al., 1982) and thereby supports the validity of the grain boundary sliding model.
6.5.3 A simplification of the GB - element. Since grain boundary anelaéticity is small, the
GB - element can be approximated as a one component element. Two possibilities arise for the
constitutive relation

In (c¥/c,) = (814" (6.59)

&V = ak(o,/G)" (6.60)

The former represents grain boundary - sliding accommodated wholly by grain matrix
deformation at the sites of the boundary inhomogeneities ; the latter grain boundary sliding
accommodated wholly by grain boundary diffusion. The portion of the relaxation curves
influenced by the GB - element can be modelled by either equation, and so to distinguish
between the two alternatives it is necessary to determine more precisely the component of the
deformation which is due purely to boundary sliding. In principle this may be done by
calculating and subtracting the grain matrix deformation from relaxation curves. However, this
in turn requires a precise knowledge of the static recovery function which, as discussed above
(§ 6.4), is lacking. In advance of a rigorous characterization of static recovery, it may be that
some constraints can be provided from experiments conducted under superplastic conditions
where grain boundary sliding dominates the matrix deformation.

6.6 Inhomogeneous deformation

The incremental deformation equation on which the state variable analysis is based
(equation 2.2), is applicable only within regions of homogeneous deformation. However, Hart’s
analysis may be applied to inhomogeneously deforming materials if it is possible to delimit
subareas which deform homogeneously.
6.6.1 Deformation of polyphase materials. The deformation of polyphase materials is
inherently heterogeneous because of the different mechanical properties of the constituent
phases. If the heterogeneous nature of the polyphase flow is on a large scale in comparison with
the scale of the inherently non-uniform deformation of crystal plasticity involving dislocations
(i.e. if strong interactions between the phases at the dislocation scale are negligibly small), then
the mechanical behaviour of the component phases is the same whether or not they are in a
single-phase or a polyphase aggregate, and the polyphase deformation problem becomes one of
determining how the aggregate mechanical properties depend upon those of its constituents.

‘Strong interactions between the phases arise when the grain-size of one of the phases is
sufficiently small for that phase to influence directly the motion of individual dislocations in the
others, or when the grain-size of one or more of the phases is sufficiently small for its work
hardening behaviour to be influenced by the interactions between its statistically necessary and
geometrically necessary dislocations (respectively, dislocations which produce the deformation,
and dislocations which merely solve strain incompatibility problems at the grain boundaries
without contributing to the deformation, ¢f. § 6.3.3 ; Ashby, 1971). It therefore follows that the
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single-phase mechanical properties of a material may be used in polyphase aggregates when the
grain-size of all the phases is large (the coarse microstructure approximation). Apart from this
intuitive argument, there is no theoretical justification for the coarse microstructure
approximation. However, it is widely employed in continuum models of polyphase deformation
(e.g. Chen and Argon, 1979), and experimental results from various metal alloys suggest that it
is valid wherever the grain-sizes of all the phases exceeds a few microns (Fischmeister and
Karlsson, 1977). Deformation under circumstances where there are strong interactions between
the phases has been discussed previously (§ 6.3.2).
6.6.1.1 Geometric constraints on polyphase deformation : The relationship between the
stresses and strains experienced by the phases in a polyphase aggregate may be derived from
the fundamental stereological relationship

(Li/L) = (A4/4) = (Vi V) (6.61)
where (L;/L,) is the mean length fraction of the ith phase on test lines through the aggregate,
(A;/A,) is the mean areal fraction of the ith phase on a section through the aggregate, and (V;/
V;) is the volume fraction of the ith phase in the aggregate (Underwood 1970). This relation
holds independently of the orientation of the test lines / surfaces and also of the size, shape,
orientation and distribution of the ith phase, provided the measurements are obtained from
statistically representative lines / sections / volumes. By resolving the total force % acting on
the aggregate into partial forces . acting on each phase

A= XA = X AMUI4) (6.62)

where A; are the respective phase areas. Dividing by the total area A, and using equation 6.61,
then

o = Y (iV)e (6.63)

in which o; is the stress acting on the aggregate and o; is the total stress acting on the ith phase.
Similarly, resolving the total shortening AL, of the aggregate in terms of its components in the
two phases

AL, = Y AL, = Y AL (LQ/LY) (6.64)
7 7
where the superscript 0 refers to the initial length. Dividing by L{*) and using equation 6.61
g = Y (VilV)g (6.65)
7

in which ¢, is the engineering strain acting on the aggregate and ¢; is the total engineering strain
acting on the ith phase.

Equations 6.63 and 6.65 provide geometric constraints on the deformation of polyphase
aggregates. In two-phase aggregates they become (using strain-rates for the strain terms in
equation 6.65)

& = (1-X5)el) + Xgf) (6.67)

where o, o5 and £, ég) are the stresses and strain-rates in the o and B phases, X; is the B phase
volume fraction, and by convention § is the strong phase. Equations 6.66 and 6.67 take no
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account of the distribution of the two phases through the aggregate. Hence the component
stresses and strains are defined as if all the grains of given phase are arranged in an end-loaded,
single-phase polycrystal. In real microstructures however, the phases are, in general,
discontinuously distributed. The stresses in the strong phase therefore reflect not pure end-
loading,- but rather an end-load component (equalling the stress in the weak phase), plus a
component which is due to the transfer of load from the weak to strong phase through the shear
stresses generated by the difference in deformation-rates across their shared boundaries. The
potential extent of this load transfer depends upon the strong phase / strong phase boundary area
(i.e. it increases as that boundary area decreases). Hence it is to be expected that equations 6.66
and 6.67 will be modified by some microstructural variable which accounts for this area. Strong
phase contiguity is precisely such a variable,

Contiguity is defined for a phase as the fraction of the total surface area of that phase
which it shares with itself. Accordingly, the strong phase contiguity Cg is defined as

Cg = 283/ (28g8 + Sep) (6.68)

where Sgg is the shared boundary area between f-grains and S,z is the area of interphase
boundary, both per unit volume. Existing experimental results on synthetic two-phase

aggregates can be described by
g = (1-CpXp)el) + CpXpef) (6.70)

(Gurland, 1979 ; Bloomfield and Covey-Crump, 1992). In the case that all the grains of the
strong phase are arranged in a continuous framework in the loading direction, Cg=1 and
equations 6.69 and 6.70 reduce to equations 6.66 and 6.67. However, for Cg =1 there is as yet
no theoretical justification for equations 6.69 and 6.70.
6.6.1.2 Towards a state variable model for two-phase deformation : Equations 6.69 and 6.70,
together with the constitutive relations interrelating the stress and strain-rates of the constituent
phases, are four sets of equations in the variables o, &%), o, £, 03, ég), Cp and X, These are
bulk properties which must each be defined over the whole of some statistically homogeneous
domain of the aggregate. In any conceivable two-phase deformation problem, two of these
variables (typically &) and Xg) are prescribed, and so two more equations are required to
complete the deformation model. These must be relationships describing the evolution of strong
phase contiguity and the stress or strain-rate partitioning with deformation. No attempt to posit
such relationships has yet been made.
6.6.2 The growth of deformation instabilities. There have been several attempts to use the
incremental deformation equation (equation 2.2) to determine the growth-rate of instabilities
following creep-rate minima (see Lin ez al., 1981). In these studies, the incremental equation is
applied separately to stable and unstable areas of the deforming material, and the development
of spatial differences in load bearing capacity across the sample is calculated. Typically the two
types of area are assumed to have the same mechanical properties throughout the growth of the
instability despite their grossly different deformation histories, and consequently there can be a
large overestimate of the instability growth-rate (Ferron and Mhila-Touati, 1982). Hart’s
analysis provides a means of overcoming this problem.

There have been no studies of this type. However, the analyses of deformation instability
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growth-rates generally lead to predictions of the creep-rupture strains. In circumstances where
the creep-rupture strain is constant, the state variable analysis may be used to predict creep-
rupture times. This time ¢,,, is given by
tp = Opplé (6.71)

where ap,, is the failure strain. Substituting the equation of state for the plastic element
(equations 5.10 and 5.11) for & and rearranging

Int,, = A+ (1/A)In[ln(cf,/0,)] + H/RT (6.72)
where o, is the magnitude of o* at the rupture strain and A is a constant. Johnson er al.
(1977) found that equation 6.72 provided an excellent description of creep-rupture times in
Type 316 stainless steel and two other commercial alloys.



110

7 NUMERICAL MODELLING WITH THE STATE VARIABLE ANALYSIS

The constitutive equations which comprise Hart’s analysis can be integrated with time to
determine the mechanical response of a given material along any specified thermomechanical
path. There have been numerous attempts to carry out such integrations, both to simulate
deformation experiments to test the descriptive capability of the equations, and to solve
boundary value problems to evaluate the potential of the equations for engineering applications.
In the following discussion the procedure that has been employed in this deformation modelling
is outlined and the results described.

7.1 Simulation of deformation experiments

The integration of Hart’s model to simulate isothermal uniaxial deformation experiments is
particularly simple.
7.1.1 Formulation of the problem. The goveming equations for the problem are

(a) kinematic

&0 = glo) 4 g (7.1)
(b) constitutive
ée) = 6/E (7.2)
&M = f(o,q,,T) (7.3)
4 = 8(0,q.T) 74)

where g, are the internal state variables and all other variables are as defined previously. The
constitutive equations 7.3 - 7.4 depend on the particular version of Hart’s model that is
employed. The equations for the original model (figure 5.3) where g, =o*, are restated in
figure 7.1a for ease of reference.

Equations 7.1 - 7.4 are subject to the loading history prescribed by the type of deformation
test. This loading history should be cast in terms of &. For example it is easy to show that creep
under constant load yields (§ A2.2.1)

6 = cém (7.5

(or for constant stress creep, 6 =0), while deformation at constant displacement-rate yields
(§ A22.2)

& = k[(Z°/L) + &) (7.6)
(or for constant inelastic strain-rate, & = 6,) where x is an effective modulus for the specimen
and load train, .27 is the apparatus crosshead displacement-rate and L is the elastic length of the
specimen (§ 8.4).
7.1.2 Solution strategy. The following solution strategy (figure 7.2) was specified by
Korhonen et al. (1987).
7.12.1 Initial conditions : The initial values of o*, o, and £(" are prescribed, together with the
initial applied stress o. The value of o, may be prescribed by that of £(". For example, if at the
start time £(™ = 0, then @ = 0 and hence from equation F3, g, = 0. |
7.1.2.2 Calculation of the rates : Using equations F1, F2, F4 and F5 (where the F refers to the
equation numbering in figure 7.1) the strain-rates ™, 4 and & are calculated. The stress-rates
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FIG. 7.1 A summary of the inelastic equations for Hart’s original model.
(a) Uniaxial equations

& = g+ a F1)
o = 0,+ 0 F2)
o, = Ha F3)
€M = a*(a;/ GYM (F4)
s\ 7-1/4 *\M _
« = [m(%)] (7)) he(zT) - ®
6% = ao*I'(c* a,) - a*R(c*,T) (F6)

(b) Multiaxial equations for infinitesimal strains given that ékfz’)=0 (i.e. the inelastic deformation is
incompressible).

&M = a; + g F7)
s = s+ sg5 (F8)
¢ = (3/2)(&™/apsf
&; = (3/2)(¢/a,) s F9)

a; = (3/2)(alao,) s
o= [(3/2) 55102 5 & = [(2/3)&PefP 11
0, = [(3/2)s@sfO12 ;&= [(2/3) ;0,1 (F10)
o =1[3/2)sPsP12 5 a=1[(2/3)a;a;1
and where equations F3 - F6 apply.

(c) Multiaxial equations for finite strains given that d,f,:‘)=0 (i.e. the inelastic deformation is
incompressible).

dm = dP + §.. F11)
ij Y Y
s; = sfd + s (F12)
dfr) = (3/2)(d(")/af)sg’
d¥ = (3/2)(d?/a,) s F13)

a; = (3/2)(alq,)sf
o= [(3/)sys;12 ;4™ = [(2/3)dfP df) ]
0, = [(3/2)s@sf@1v2 5 dP =[(2/3)d{ dfp) 11 F14)
o =[(3/2)sPsP12 5 a=1[(2/3)a;a;1"

o, = oHa (F15)
d™ = a*(a;/ GYM (F16)

® _ *\1 " (o*\" -H
= [ ()]"(F) 5w (i8)
&% = dP g*I (0%, a,) - o* R(a*,T) F18)

6*, 6, and & then follow from equations F3 and F6 and the appropriate loading condition (e.g.
equation 7.5 or 7.6), while £ and £(") are given by equations 7.1 and 7.2. In the instance that
&M =0, 0,=0 and hence & = 0 (equation F5) and o; = & (equation F2). £ is then given by
equation F4 and g = (™ (equation F1). Finally &, follows from equation F3 and, in the absence
of static recovery, 6* = 0 (equation F6).

7.12.3 Time integration : The values of 6*, g, and £™ are determined at a new time ¢ + At by
using their values and time-rates of change at ¢ and a suitable numerical integration scheme (i.e.
new value = old value + rate X time increment).
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FIG. 7.2. Flow diagram illustrating the solution strategy for the simulation of isothermal
uniaxial deformation experiments.

The time integration of Hart’s equations is complicated by the fact that they are not only
highly non-linear, but that they are also, in some regimes, mathematically stiff (i.e. they cannot
be integrated with an explicit integration algorithm without there being a loss of stability).
Mathematical stiffness is a problem inherent in all systems of constitutive equations for time-
dependent plasticity because an elastic regime is not assumed and so the flow laws must be
capable of approximating such a regime whilst also showing yielding behaviour, i.e. the plastic
strain-rate must inevitably be a strongly increasing function of the applied stress (Bammann and
Krieg, 1987). In Hart’s equations the stiffness arises when o, = o* (i.e. at high strain-rates / low
homologous temperatures, figure 5.5), for then the equation for the plastic element (equation
F5) becomes almost singular. Two strategies have been employed to overcome this. One is to
retain Hart’s equations as they are and to employ an implicit time integration scheme which is
unconditionally stable (Cordts and Kollmann, 1986). The other is to employ an amended form
of equation FS when o, exceeds a critical fraction of o*, and then to use an explicit integration
scheme with tight, automatic time-step size control. The advantage of using an explicit scheme
lies in its simplicity and hence the ease with which it may be implemented. For this reason this
is the strategy which has been preferred.

The amended form of equation F5 which has been employed is

& = éM/[1+(c*I'/#)] 7.7
which may be easily derived by algebraic manipulation of equations F1, F3 and F6 on the
assumption that when o, =o* then 6,=d6* (§ Al.4.1). This so-called ‘viscoplastic limit’
approximation is typically applied if o,>0.99 o* Its effect on the deformation modelling
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results has been investigated both theoretically and numerically and been shown to be
negligible (Hui, 1985).

The choice of integration scheme has been investigated by Kumar et al. (1980) who, after
comparing several different schemes, found that for the specific task of integrating Hart’s
equations a simple Euler strategy yielded results of practically the same accuracy as more
elaborate methods. The Euler scheme is easily illustrated with the example of a single

differential equation
dyldt = f(y,1) (7.8)
Expanding y,,, in terms of y; (Hildebrand, 1968, pp. 93f)
Yesi = i+ An(f + AL + A% + ...) 1.9

where Af,=f,-fi, is the first backwood difference of fy. Assuming that the rates of the
quantities being integrated remain constant over a small time-step Az, then
Vet = Yi + Aty (7.10)

The success of the scheme is highly dependent on the selection of the size of the time-step At;.
If the step at any time is too large then the assumption of constant rate over the step is violated,
while if it is too small excess computational effort is required. Some automatic time-step size
control is therefore necessary. This may be done by monitoring the rates during the simulation
and varying A, such that it always falls between prescribed limits of some suitably defined
‘error’. Kumar er al. (1980) defined their error estimate e as

e = |AnAf|/|y (7.11)
and found the optimum error bounds to be
lmax = 103 ; e, = 10° (7.12)

The time-step size control algorithm then proceeds as follows
enax < e : teplacedr, by At /2 ; recompute e
e< e, : acceptAt,; calculate y;
with the time-step for the next step 4¢,,, being decided according to
emin<eS e, ' At =41
e ey, Aty 1 =244
Banthia and Mukherjee (1985) observed that since the variable y, reflects the entire prior
deformation history, the use of equation 7.11 means that the choice of time-step is influenced
by that history. They achieved a considerable improvement in the efficiency of the integration
scheme by defining
4t |Af, |

e =
MAX[If, [, £ ]

(7.13)

and using only an upper error bound, optimally defined by
Cmax = 2X10°6/éMm (7.14)
By choosing an error bound which is inversely proportional to the inelastic strain-rate, Banthia
and Mukherjee exploit the fact that the equations become stiffer as the inelastic strain-rate
increases. ,
In the numerical integration of Hart's equations the stress, internal state aﬁd strain
variables are integrated. Hence the time-step chosen must be the optimum one for all these
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variables. In this case equation 7.8 is generalized for a system of equations
dyijdt = Oy, ¢) (7.15)
and an error vector e(!) obtained. Adjustments to A¢, can then be made by using a suitable
vector norm L%*
e = L% (e) (7.16)
Three commonly utilized norms are

Wi o = [Se]
i i

L® = MAX e (7.17)
7.12.4 Calculation of new rates : Once the new values of the primary stress variables and
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inelastic strain have been determined, the new strain-rates may be calculated in the manner
described in § 7.1.2.2. A further time integration can then be conducted, and so on until the
final desired time.

7.1.3 Results of such simulations. Constant stress creep, constant strain-rate, stress and strain-
rate dip and load relaxation tests have all been simulated using the constitutive equations of
Hart’s original model (Li et al., 1976 ; Kumar et al., 1980 ; Li, 1981 ; Suzuki et al., 1982 ;
Suzuki and Okubo, 1984). In figure 7.3a a measured constant stress creep curve for nickel at
424°C is compared with that simulated using parameters determined from constant
displacement-rate and load relaxation experiments (Li, 1981). The excellent agreement between
the two emphasizes the descriptive power of Hart’s model.

Simulations with the refined Hart model (figure 6.3b) have also been conducted. Figure

7.3b compares experimental and simulated stress/ inelastic strain data for a constant
displacement-rate tension / compression cycle where the maximum stress is in the microplastic
region. Simulations of a variety of other loading histories using the refined model are described
in Jackson et al. (1981) and Korhonen et al. (1985a).
7.1.4 Multiaxial deformation experiments. In the preceding discussion it has been assumed
that the effects of material rotations in the specimen during deformation are negligible.
However, in some loading configurations, most notably in combined tension -torsion tests, such
material rotations form an integral part of the test because they permit testing of material
properties under a much broader range of loading stresses than in the uniaxial configuration.

The extension of the foregoing analysis to incorporate genuinely multiaxial loading has
been described by Van Arsdale er al. (1980). They replaced equations 7.1 - 7.4 with the
following tensor relations

d(') = d(”) - (g(e). d(") + d("). 8(8)) + é‘.(e) (718)
@ = 1 (5. 2 .

£ 50 (0' 1+Vpa 1) (7.19)

d™ = f(c,q,T) (7.20)

g = 8(o,q,T) (7.21)

where the deformation-rate tensors are used in place of the strain-rates (§ 5.2.2.2), I is the
identity tensor and v, is Poisson’s ratio. The elastic strain is measured with respect to the
current configuration of the body (hence the form of equation 7.18), and hence the elastic
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FIG. 7.3. Numerical simulations of uniaxial deformation experiments. (a) Simulated and
experimental constant load creep curves for 3% cold-worked nickel at 424°C using Hart’s
original model (redrawn after Li, 1981). (b) Simulated and experimental constant
displacement-rate tension / compression loops in Type 316 stainless steel at room
temperature using the refined Hart model. The maximum stress is less than the macroplastic
yield stress (redrawn after Alexopoulos et al., 1982).

strain-rate £(®) is the convective derivative. The other time derivatives are specified as Jaumann
derivatives which become for the internal state variables (since they are scalars in Hart's
equations) the material derivative g, (§ 5.2.2.1). As before the constitutive equations 7.20 - 7.21
depend on the particular version of Hart’s model that is employed. The equations for the
original model are restated in figure 7.1c. Also as before, it is assumed that the stress-rate is
prescribed as a function of time by the loading configuration.

The solution strategy proceeds as described in § 7.1.2 except that in the multiaxial
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formulation the viscoplastic limit equation (equation 7.7) becomes (§ A1.4.2)

s dM/ o
? = y v a
d T+ *T /%) (7.22)
Van Arsdale er al. (1980) expanded the full tensor relations 7.18 - 7.21 to solve the

problem of the isothermal torsion of a thin-walled cylinder at low homologous temperatures.

By introducing a novel vector representation of the deformation variables, Hart (1982)
simplified the solution to this problem and extended it to include a superimposed axial loading.
Little attempt has been made to compare the predictions of the simulations with experimental
results, although Van Arsdale ez al. (1980) observe a qualitative agreement.

7.2 The solution of boundary value problems

Hart’s equations have been utilized in both infinitesimal and finite strain boundary value

problems for viscoplasticity.
7.2.1 Infinitesimal strain problems. The use of Hart’s equations in boundary value problems
where rigid body motions can be assumed negligible has been overviewed by Mukherjee
(1982). The approach adopted is one devised for three dimensional isotropic bodies subjected to
specified time-varying loads and temperature distributions. It formulates the problem in terms
of real time rates and thereby defines an inhomogeneous linear boundary value problem for the
stress or displacement-rates. This linear boundary value problem is solved to find the rates of
the variables of interest throughout the body at any time, and then these rates are integrated
forward in time to obtain their time histories.

The method outlined is not restricted to use with Hart’s analysis but may be used with any
model of inelastic deformation in which the constitutive relations have the mathematical
structure given by equations 7.27 and 7.28.
7.2.1.1 Formulation of the problem : The governing differential equations of the problem, in
terms of rates are

(a) kinematic

£ = &0+ 4+ &1 = (i + i) (7.23)
or equivalently the compatibility equation
VxelxV = ¢l +8)-80,-80, =0 (7.24)
(b) equilibrium ,
Ved + F: = d'y,]'f' F." = O (7'25)
(c) constitutive
.(e) - 1 P - VP o
eij = "2—(';‘ 0"]- m O'kksij) (7.26)
8.'5") = flj (O'y, d» T) (7'27)
4 = gij(o'ij, q,T) (7.28)
¢l = ors; (7.29)

where the subscript comma notation represents a partial derivative with respect to the
coordinates x;, € g )is the thermal strain, u; the displacement vector, F; the body force vector per
unit volume and @ the coefficient of linear thermal expansion. In general the mechanical state
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variables g, are tensor quantities (i.e. they should be represented as qlg.") ), but since in Hart’s
equations they are scalars the notation is here simplified. As observed previously (§ 7.1.1 ;
7.1.4) the constitutive equations 7.27 and 7.28 depend on the particular version of Hart’s model
that is employed, although only those for the original model (figure 7.1b) have ever been used.

Equations 7.23 - 7.29 may be combined to define a boundary value problem in either
stress-rates or displacement-rates. The stress-rate formulation uses equations 7.23, 7.26 and
7.29 to rewrite the compatibility condition (equation 7.24) as

V x [%(a - I—VL-&-I)] x V
+ . (7.30)
= -Vx&xV-Vx[OTIIxV

The traction boundary condition is
6',]- n = 1t (7.31)

where n; is the unit normal vector to the surface S of the body and 7; is the surface traction
vector which is prescribed on S. Equation 7.30 is linear in stress-rates. Furthermore the
inhomogeneous term on the right-hand side is known at any time provided the stresses, state
variables, temperature and body forces are known at that time. ‘

The displacement-rate formulation uses equations 7.23, 7.26 and 7.29 to rewrite the
equilibrium equation (equation 7.25) as

) ) F, w . 20+v) ;
Gy Tyt = TG Y 5% 1o, €D 03D
The boundary conditions involve stresses
'f,- on S = d',] nj
_ . . 2vp . - 1+, X 3
= G (uiJ+ uj’,.)nj + 1_7571,““"" -2 &'n + I-ZVPQTn" (7.33)
and/or displacements
l.il' = Ai on S (7.34)

where 4; is the prescribed displacement vector on the surface of the body. Equations 7.32 and
7.33 are linear in displacement-rates and the inhomogeneous terms are determinable at any time
if the stresses, state variables, temperature and body forces are known at that time.

7.2.1.2 Solution strategy : The solution strategy (figure 7.4) is similar in general features to that
described for the simulations of deformation experiments (§ 7.1.2).

The initial inelastic strain is taken to be zero and the initial distribution of the internal state
variables throughout the body {0 (x;) is prescribed. The total initial strain then has only elastic
and thermal components and so can be determined from the thermoelastic problem with
identical material and geometry i.e.

0 (2,0 = o%(x) 5 € (%,0) = e(x) = & (x,0) + £l (x;,0)
e (x,0) =0 ; g (x,0) = q(°)(x,~) (7.35)

where 0',.](0) and sij(.o) correspond to the thermoelastic solution. Thus for example, in the stress-
rate formulation o-i}o) and sé.o) are obtained by solving the problem
v,
e = L (a“” - 2 5O, 1) + OTO]

2G 1+Vp
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1 o _ % o, © -
V’x[E (0' —1+Vpa I)]xV + VX[OTYI] xV 0 (7.36)

Veo® = _FO : gOep = 7O
where equations 7.36 are tensor relations and T©, F(©® and 7(® are the temperature, body force
and traction distributions at ¢ = 0.

Having obtained the initial stresses from the thermoelastic problem, and given q,fo)(x,-), the
next step is to determine the value of the inhomogeneous term in equation 7.30 or 7.32 at =0,
so that either of these equations may be solved for the stress / displacement-rate at that time. Of
the factors in the inhomogeneous term, T and F; are assumed to be independently determinable
for all times by prescription. If the temperature is not constant, then provided thermal steady
state conditions hold and assuming there is no thermomechanical coupling, T(x;, 1) is the
solution to the heat conduction equation subject to time varying thermal boundary conditions on
the surface S. The remaining factor in the inhomogeneous term is £[" (x;, 0). This is
determined with the constitutive relations (equations 7.27 and 7.28), using the known values of
o;; and g, and utilizing the fact that the initial inelastic strains are taken to be zero (¢f. § 7.1.2.2).

The next step is to determine the rates of the displacements, stresses and total / elastic
strains. In the stress-rate formulation the stress-rate at # =0 is determined by solving equations
7.30 and 7.25 subject to the boundary condition 7.31. The elastic strain-rate is then given by
Hooke’s law (equation 7.26) and the total strain-rate from the first half of eciuation 7.23. In the

Thermoelastic solution
at zero tim

e
Elastic and thermal strains,
stresses, displacements
I Inelastic constitutive equations |-————

Inelastic strain-rates,
rates of state variables

Equilibrium, kinematic and
elastic constitutive equations

displacement-rates,
total and elastic strain-rates,
siress-rates

Time integration

Displacements,
stresses, state variables etc.
at next time step

No

FIG. 7.4. Flow diagram illustrating the solution strategy for boundary value problems in
infinitesimal strain (modified after Mukherjee, 1982).
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displacement-rate formulation the displacement-rate at ¢ = 0 is determined by solving equation
7.32 subject to the boundary condition 7.33 or 7.34. The total strain-rate is given by the second
equality of equation 7.23 and the elastic strain-rate from the first equality of that equation (i.e.
éij.e) = éij(.’) - éé") ). Finally the stress-rate is obtained from the inverted form of Hooke's law.

Time integration to determine the new inelastic strains, stresses, internal state variables
proceeds as described previously (§ 7.1.2.3). The viscoplastic limit approximation is equation
7.22 with the deformation-rates changed to the appropriate strain-rates

(a) 4(n)
s ¥ & o
& = y a (7.37)
1 + (o*TI /)
while the inelastic strain-rate used in Banthia and Mukherjee’s error bound on the time-step

size (equation 7.14) is the maximum inelastic strain-rate in the body at the integration time.

Since the integrated variables in these problems are functions of space as well as time, the error
vector (equation 7.16) is obtained by discretizing each dependent variable at a finite number of
space points so that the only difference from the uniaxial deformation case is that a much larger
system of equations (equation 7.15) is defined.

Once the new values of inelastic strain, stress and internal state variables are obtained, the
constitutive relations (equations 7.27 and 7.28) are used to determine the new rates of inelastic
strain and internal state variables and so on as described above, until the final desired time.
7.2.1.3 Results of problems modelled in this way : The modelling of multiaxial problems is
complicated by the boundary value problem posed by equations 7.25, 7.30 and 7.31 (or
equations 7.32 — 7.34), the solution of which is required to find the stress (or displacement)
rates at any time. Closed form solutions for this problem are only possible for simple
geometries and loading conditions. Published solutions which have been tested with Hart’s
equations include a thick-walled spherical shell under internal and external pressure, a close-
ended thick-walled cylinder under internal and external pressure with an axial force and torque,
and a thin circular disc rotating at constant angular velocity (Kumar and Mukherjee, 1976 ;
1977a,b,c). In all these solutions the pressures, forces and temperature distributions were
assumed invariant with time. Subsequently the solutions for the spherical shell and the cylinder
were generalized to include time-varying (but thermally steady) temperature distributions and a
prescribed internal radial displacement (Mukherjee et al., 1978 ; Mukherjee and Harkness,
1979 ; Wire et al., 1981). The problem of the bending of a beam symmetric about the plane of
bending under a time-varying moment has been solved by Chang et al. (1979). Some of these
solutions have been obtained both by a direct combination of the governing differential
equations and by the boundary integral method.

Problems involving more complex geometries require use of either finite element or
boundary element techniques to solve for the stress / displacement rates at each time increment
(and possibly also for the solution of the initial thermoelastic problem). Such techniques have
been successfully applied to model the creep of arbitrarily shaped planar bodies (i.e. under
plane stress and plane strain conditions) under arbitrary loading histories (Mukherjee and
Kumar, 1978 ; Morjaria and Mukherjee, 1980a ; Morjaria et al., 1980), the inelastic bending of
arbitrarily shaped thin plates with clamped or simply supported edges (Morjaria and Mukherjee,
1980b), the inelastic torsion of prismatic shafts of arbitrary cross section (Mukherjee and
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Morjaria, 1981), and the inelastic deformation of a thick-walled cylinder under unsteady
temperature conditions (Morjaria and Mukherjee, 1981). Many of these problems have been
solved using both finite elements and boundary elements, and for special cases (where possible)
these solutions have been compared with the results generated by direct numerical integration.
The comparisons with the direct integrations indicate that both finite element and boundary
element methods yield accurate results but that the latter are computationally much more
efficient (Morjaria et al., 1980 ; Mukherjee, 1982).

The engiﬂeering application of the solutions to these problems has as yet been limited.
Wire et al. (1981) used the solution to the problem of a closed-ended thick-walled cylinder
under time-varying temperatures and internal pressures, to simulate the response of the Type
316 stainless steel fuel element cladding tubes used in nuclear reactors, to the extreme
mechanical loads and thermal environments they experience during normal service conditions.
For the simulations the constitutive relations listed in figure 7.1b were used, together with
equation 4.57 for the I" function and an empirical description of the curves shown on figure
6.20b for the R function. The material parameters were empirically adjusted to account for
grain boundary sliding and any thermally induced changes not accommodated in R. The
solutions were presented as curves of outside circumferential strain versus : temperature during
heating at constant internal pressure and temperature-rate, internal pressure at constant
temperature, and time at constant temperature and internal pressure. The results for the first two
of these simulations are compared with those directly obtained in experiment in figure 7.5a,b,
and it can be seen that the agreement is remarkable given the complexity of the thermal /
deformation history.

7.2.2 Finite strain problems. The use of Hart’s equations in large strain boundary value
problems has been overviewed by Mukherjee and Chandra (1984). The approach adopted is one
devised for three dimensional isotropic bodies subjected to specified time-varying loads at
uniform and constant temperature,

7.22.1 Some definitions : Referring to the same set of spatially fixed orhogonal cartesian
coordinates, the position of a material point in a reference configuration of a three dimensional
body is specified by coordinates X;, and in the current configuration by coordinates x;. The
displacement vector u; is given by the difference between the two (equation 5.30), and the
velocity of the material point is denoted by v;.

Of the two conventional measures of strain used in finite strain theory (i.e. the Almansi and

the Green strains, e.g. Fung, 1965, pp. 434f), the Green strain defined as
ou; . 9U  Ju,du
£ = 1 (a—x, Lol a_xka_xf) (7.38)
is the one most suited to the following analysis, because in the Lagrangian formulation of the
finite strain problem employed, its material derivative equals the deformation-rate, i.e.

E;, = d; (7.39)

i
(Mukherjee and Chandra, 1984).

The usual distinctions between the Cauchy, Lagrange and Kirchhoff stress tensors are
observed (e.g. Fung, 1965, pp. 436f). The Cauchy (or Eulerian) stress tensor refers the stress to

the instantaneous (current) area of the surface element on which the force vector acts and is the
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FIG. 7.5. Comparison of measured and simulated behaviour of thin-walled Type 316
stainless steel tubes. (a) Qutside circumferential strain as a function of temperature at
various constant internal pressures (indicated) and constant temperature-rate. (b) Outside
circumferential strain as a function of internal pressure at constant temperature. Simulations
were conducted with the multiaxial infinitesimal strain equations for Hart’s original model
(redrawn after Wire et al., 1981).

stress that has been utilized throughout the preceding discussion. The Lagrangian and Kirchhoff
stress tensors (also known respectively, as the first and second Piola-Kirchhoff stress tensors)
refer the stress to the initial area of the surface element (as for example, engineering stress
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does). The Lagrangian stress resolves. the force vector in its current orientation on the initial
area, whereas the Kirchhoff stress, before resolving the force vector on the initial area, applies
the same transformation to it as experienced by the surface element during the deformation.
Thus
njc;dS = dI; :
n® o) ds® = a1, = a1 (7.40)
n® o ds® = (3X;/0x)dT; = dT®

where o, of) and %(K) are the Cauchy, Lagrange and Kirchhoff stress tensors respectively, T;
is an applied force vector in its current orientation, 7,/ and T,X) the force vector as referred
back to the initial (reference) configuration of the element in the Lagrange and Kirchhoff
schemes respectively, and the superscripted O refers to the initial (reference) configuration of
the element. In general, the Lagrange stress tensor is not symmetric but the Kirchhoff stress
tensor is. Consequently, although the Lagrange stress leads to a relatively simple stress
equilibrium equation, the Kirchhoff stress is more convenient to use in stress / strain relations
where the strain tensor is always symmetric. The relationship between the two is therefore
significant, and is given by

&K = 6/ + (opdff) + 0y d) - oy Vix (7.41)
where the superscripted circle refers to a Jaumann derivative and the square to a material

derivative (Hill, 1959). Furthermore, for nearly incompressible deformation

é® = &

i i (7.42)

(Yamada and Hirakawa, 1978).
7.22.2 Governing equations : For the solution of finite strain problems using Hart's equations,
the configuration of the body at time ¢ is used as the reference configuration for the time step ¢
to ¢ + At. In this so-called ‘updated Lagrangian formulation’, the governing equations of the
problem in terms of rates are

(a) kinematic

dP = df+ dY = B(v;; + V) (7.43)
(b) equilibrium
& + pOF® = ¢ (1.44)
(¢) constitutive
e _ 1 ° » oo
= L (o‘ij B akks,.j) (7.45)
d = f;(0y, qpT) (7.46)
ak = gl_] (o-y) q1c9T) (7'47)

where p© and F{® are respectively, the mass density and body force (per unit mass) in the
reference configuration, and where the subscript comma notation in equation 7.43 is the partial
derivative with respect to the coordinates x; (cf. equation 5.32), while in equation 7.44 it is the
partial derivative with respect to the coordinates X;. The elastic constitutive relation (equation
7.45) assumes that the material is hypoelastic i.e. that the components of the (coordinate frame
invariant) stress-rate are homogeneous linear functions of the components of the deformation-
rate (Fung, 1965, pp. 444f).

7.2.2.3 Finite element formulation : The finite element formulation of the problem is described
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in detail by Chandra and Mukherjee (1984a). The governing equations 7.43 - 7.47 are combined
using the principle of virtual work

[ 1880V - [ iPoyas® - [ pOFOSyave = 0 (49
BO® a9B© B©®
where r'“j(L) = é'r,.J(L)nj@) is the traction-rate, B(© is the domain of the body, 9B is that part of
the boundary of the body on which the tractions are prescribed, and dv; is the virtual velocity
field. Again the superscripted O refers to the reference configuration of the body. Substituting
o0 for {1 using equation 7.41 and using the second equality in equation 7.43, equation 7.48

becomes

[ 185y - o, 624 dff - vy, v )1aVO

BO
- [ oy as® - [ pOEOsvavO = 0 (7.49)
aB® BO

Now rearranging equation 7.45 and writing it in matrix form
{6} = [CHd®} = [C1({d"}-[CIHd™}) (7.50)
where the first equality of equation 7.43 has also been used. A discretized form of equation 7.49
may be obtained in the usual manner by choosing shape functions for the velocity field
v = [N]{v} (7.51)
where v on the left hand side of the equation is understood in vector form, [N] is the shape
function matrix and {v} are the nodal velocities. From equations 7.43 and 7.51

(d®y = [B1{v) (7.52)
Using equations 7.42 and 7.50 - 7.52 in equation 7.49 yields in matrix form
([Ks] + [Kgl + [Kc]) {v) = {PM™} + {P®)) (7.53)

where to simplify the discussion the prescribed body forces F{® have been set to zero. The
stiffness matrix [Kg] and the inelastic load vector {P("} derive from the first integral of
equation 7.49. The second stiffness matrix [K;] arises from the second term in equation 7.49
and reflects the inclusion of rotation effects in equation 7.41. The load correction matrix [K]
and the load vector {P()} derive respectively, from the velocity dependent and the velocity
independent terms arising from the surface integral. These two groups of terms arise because
the surface integral includes the traction-rate '?j(L) which is associated with the initial geometry
in the virtual work equation (equation 7.48), but which in general involves a deforming surface
and rotating normal. Hence by using the spin tensor (equation 5.33) in equation 7.41 then it is
observed that
i = 6nd = 6®n, - opdfn; + Qyoun, (1.54)

The solution strategy for the finite element problem is illustrated in figure 7.6. First the
elastic problem (without [K;] and [K]) is solved at zero time to obtain the initial stresses,
strains and displacements. The inelastic deformation-rate di(j") at zero time is obtained from the
constitutive relations 7.46 and 7.47, and {P™} is computed from dig."). The matrices [K] and
[K] are evaluated from the initial stresses Cjj. Equation 7.53 is solved for the nodal velocities
{v} and the velocity gradients are obtained at zero time. These velocity gradients are used with
the definition of the deformation-rate tensor (equation 5.32) and equations 7.43 and 7.45 to
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FIG. 7.6. Flow diagram illustrating the solution strategy for boundary value problems in
finite strain. The strategy is given for the boundary element formulation but the finite
element strategy differs only in not containing the convergence loop (modified after
Mukherjee and Chandra, 1984).

determine the initial value of 3;.}., and from this and the definitions of the spin-rate tensor and
the Jaumann and material derivatives (equations 5.33, 5.35 and 5.37), cE}ij is obtained. Time
integration is carried out using the material derivatives so that the integrated values can be
obtained in a spatially fixed coordinate frame as a function of x; and time. The integration
algorithm is as described for the infinitesimal strain problems. After each increment the
geometry and matrix [K;] are updated and the new inelastic deformation-rates are calculated,
et cetera.

7.2.2.4 Boundary element formulation : The boundary element formulation of the problem is
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described in detail by Chandra and Mukherjee (1984b). The governing equations 7.43 - 7.47 are
combined using a form of Betti’s reciprocal theorem
[ sefav® = [ ofELav® (7.55)
BO BO
where o;.](R) and & 5.’*) are reference stress and strain fields respectively, in an elastic body with
the same elastic constants which is undergoing small strain. The equality indicated in equation
7.55 may be seen by observing that in the small strain approximation, o/ and £{%) are related
according to equation 7.26, while &%) and ED,-I(-‘” are related by equation 7.45 (using equation
7.39).

Now using equation 7.26 for the relationship between O}j(R) and s,.;.R), equation 7.23 to
replace ei;.R) by u®), the equilibrium equation (equation 7.44), and Kelvin’s solution for a point
force in an infinite three-dimensional elastic body undergoing infinitesimal deformation, then
equation 7.55 may be rewritten

wp) = [ W, 0)#HQ) - Ty(p.0) V()] dSY
BO

+ [ pOE(@) Uytp . ) aV® + [2GUyu(p.q) dff'q) aVP

B©® B©®
+ [ Ujm(p @) Grin(@) Vi (@) AV (7.56)
B®

where once more fj(l‘) = &;L)nj(o) is the traction-rate, B© is the domain of the body, aB© is
that part of the boundary of the body on which the tractions are prescribed, U; and T}; are the
two point kemels for the displacements and tractions respectively in Kelvin's solution, and p
and q are source and field points respectively (lower-case denoting points inside B and upper-
case points on the boundary 9B(®). The subscript comma notation denotes differentiation at
field point g, and G} arises from writing equation 7.41 as

6 = &1+ Ghyvi (7.57)
A boundary integral equation for the boundary displacement-rates may be obtained from
equation 7.56 by taking the limit as p — P. The velocity gradients may be obtained by
differentiating equation 7.56 at p. Discretization of the three expressions (i.e. for velocity,
velocity gradients and boundary displacement-rates) yields in each case, a system of equations
of the form .

[Al{v} + [B]{ 2} = {b) (7.58)
where [A] and [B] contain integrals of the kernels and the shape functions, and the vector {5}
contains the various quantities from the three domain integrals. As in the finite element problem
the components 1"-'1.”‘) obtained in the local coordinate frame from equation 7.54 must be
transformed into the spatially fixed frame before being used in these discretized equations.

The solution strategy (figure 7.6) is similar to that employed in the finite element problem.
First the velocity gradient version of equation 7.58 is solved with the inelastic deformation-
rates set to zero and the prescribed initial displacements and tractions used instead of velocities
and traction-rates. This yields the initial displacement gradients from which the strains (wholly
elastic), stresses and rotations are obtained. The constitutive relations 7.46 and 7.47 are solved
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to determine the initial inelastic deformation-rates and the material rates of the state variables.
The initial boundary velocities are obtained iteratively using the equations for the boundary
displacement-rates and the velocity gradients, with the first guesses for the boundary velocity
gradients being obtained from a boundary stress-rate algorithm and with the first guesses for the
velocity gradients within the body being zero. Once the boundary velocities are obtained, the
velocities and velocity gradients within the body can be calculated, and armed with these the
solution proceeds exactly as for the finite element problem i.e. 3',.1. and from this 8',.]. are
obtained, and time integration is carried out using the material derivatives.

7.2.2.5 Results of problems modelled in this way : Only problems in either plane strain or plane
stress have so far been considered using the full set of Hart’s equations. The deformation of
planar bodies (with and without traction-free cutouts) which are fixed at one end while being
pulled at constant displacement-rate at the other, has been simulated by Chandra and Mukherjee
(1984b). In each case the finite element and boundary element formulations yielded similar
results but with the finite element solution requiring almost twice the computer time. Although
quantitative comparisons were not made, it was observed that the simulation results showed
qualitative agreement with the published results of deformation experiments conducted on
bodies with the same geometry. The same authors have also used the finite element formulation
to simulate the plane strain extrusion of an aluminium billet through a doubly curving die
(Chandra and Mukherjee, 1984a). Again no quantitative comparisons with real ‘material
behaviour were made, but the potential of the analysis for metal-forming type problems, and in
particular for the calculation of residual stresses in the workpiece, was confirmed,

Eggert and Dawson (1987) used finite elements and a simplified version of Hart's model
(the anelastic element was omitted), to simulate the axisymmetric deformation of Type 304
stainless steel tapered rods during upset welding. They observed that with little extra cost in
computer time, Hart’s model compared rather more favourably with real experimental results
than did equivalent simulations using a hyperbolic sine (steady-state) flow law (¢f. equation
1.3).

7.3 Limitations of the modelling scheme

The time integration of Hart’s inelastic constitutive equations presents the most significant
limitation on the numerical modelling scheme outlined above. As observed previously
(§ 7.1.2.3), this is a problem inherent in any time-dependent model of inelastic deformation
because the constitutive equations must inevitably be a strongly increasing function of stress.
Consequently, despite automatic time-step-size control, the numerical modelling of high strain-
rate problems (e.g. short duration impact of bodies) where the time-steps must be especially
small, remains computationally formidable.

In view of this problem it is important that the description of inelastic deformation used is
simply applied and requires the storage of as few variables as possible during the calculation.

The multiaxial constitutive equations involve the variables s, s{?, s{’, o, o, o, ), ay, ay,

gty oty
e, 4, a, 6*, T and t. In the three dimensional case this involves forty-five scalar components
and hence a considerable memory storage size in finite element applications. However, as

observed by Bammann and Krieg (1987), most of the variables appear only as a convenience in
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explaining the physical motivation for the deformation model and may be eliminated by
appropriate mathematical manipulations (§ A1.5). When this is done the equations of, for
example figure 7.1b (together with the elastic constitutive equation), reduce to

S = 2G(g(€)- g(t')) (7.59)
_— O - O \MT) 8

éig) = 5 (7.60)

o - M(T) -1/2 m -
5, = [d*(a* m (Z2%) ln%;) ) foexp(R—‘;)] (7.61)

dln o* _ o* -1/A a*\" -H

i - ([(+5) @ s} 2en o
c = (15.;',1.?,1)1/2 (7.63)

These equations involve only Sij» O, éu ,o% Tand ¢ (é () is eliminated by substituting equation
7.60 into 7.59), and the number of scalar components is therefore reduced to sixteen. In some
applications this number may be reduced even further. For example, the displacement-rate
formulation of the infinitesimal strain problem requires only éi.(it)’ T and 1, i.e. just eight memory
storage locations are needed. This makes Hart’s description of inelastic deformation very
attractive in terms of storage requirements in comparison with other state variable type models.

The time integration problems of inelastic state variable models require the numerical
modeller to balance the improved description of material behaviour that they afford, against the
computational efficiency of classical yield surface plasticity models. Considerable attention has
been given to the effect of the material parameters in the constitutive equations on the predicted
material response. However, as observed by Bammann and Krieg (1987), a greater appreciation
of their effect on the finite element solution (which is likely to be highly problem specific)
would perhaps be of greater importance from the modelling perspective.
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PART II

THE EXPERIMENTAL INVESTIGATION



129

8 AN OUTLINE OF THE EXPERIMENTAL PROGRAMME

The mechanical data used to illustrate the preceding account comes from a sufficiently
wide range of materials to suggest that Hart’s state variable description of inelastic deformation
can be applied to geological materials aswell. However, this data was obtained from
experiments conducted at room pressure, whereas in the temperature range over which Hart’s
model in its original form applies (i.e. T <0.457,,), most geological materials require the
presence of substantial confining pressures to suppress cataclasis at experimentally accessible
strain-rates. Although confining pressure is not expected to affect the applicability of Hart’s
deformation model (throughout the preceding discussion inelastic deformation has been
approximated as pressure insensitive), it does pose severe technical limitations on the quality of
the mechanical data that can be obtained from the requisite experiments. Consequently, the
possibility remains, that Hart’s description can account for the inelastic behaviour of geological
materials, but that the material parameters in it cannot be evaluated with sufficient accuracy for
the approach to be of interest. The major objective of the experimental programme was to
investigate this possibility by determining the full set of material parameters in Hart’s original
model (figure 5.3) for Carrara marble in compression at a confining pressure of 200 MPa and
T<045T,.

The significance of Hart’s deformation model for characterizing the properties of
geological materials is also highly dependent on the potential for applying them at 7> 0.45T,,.
This reflects not only the fact that geologically significant inelastic deformation occurs at these
temperatures, but also the fact that many important minerals are simply too strong to deform
non-cataclastically in the laboratory at lower temperatures. Hence a second objective of the
experimental programme was to investigate the form of a suitable recovery function R (o*, T)
at these elevated temperatures, again using Carrara marble.

The first part of this account of the experimental programme is an outline of the
experimental methodology / data gathering procedures (§ 8), and a detailed description /
evaluation of the factors which limit the quality of the obtained data (§ 9). The results of the
attempt to evaluate the material parameters in the three elements of Hart’s original model and in
the mechanical state evolution equation are described in § 10, § 11, § 12 and § 13 respectively,
while the results of the investigation of the high temperature behaviour are given in § 14.
Finally the potential of Hart’s approach for geological materials is evaluated and compared with
the more widely used steady-state flow laws (§ 15).

8.1 The experimental task

To determine the material parameters in Hart’s equations of state, the simplest procedure is
to choose experimental conditions for which each element of the analogue model (figure 5.3) is
in turn, deformation rate controlling. This requires that separate experiments be performed :
(a) at temperatures less than 0.457,, and stresses below the macroplastic yield stress to
characterize the anelastic element,

(b) at temperatures less than 0.3 T,,, to characterize the friction element and,



130

0N CONSTANT T
or> o> o

log STRESS

[
r(-)bserve,d strain-rate range

log STRAIN-RATE

(®)

1 CONSTANT o* T,
L>5>T

log STRESS

lee |

"Observed strain-rate range '

log STRAIN-RATE

FIG. 8.1. The log o /log & behaviour predicted by Hart’s original deformation model
showing the effects of (a) changing mechanical state and (b) changing temperature.
Decreasing 0% and T leads to the friction element controlling the deformation within the
experimentally accessible strain-rate range, and hence allows the material parameters in
that element to be determined. Conversely, increasing o* and T allows the parameters in
the plastic element to be evaluated (redrawn after Lerner ef al., 1979).

(c) at temperatures between 0.3 and 0.45 T,,, to characterize the plastic element.
The optimum procedure (in terms of time) is to conduct variants of the isothermal constant
displacement-rate test to determine the function o(a ; o* ; T) for the anelastic element, and to

conduct isothermal load relaxation tests after loading to stresses greater than the macroplastic
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yield stress to determine the functions o* (o , é™ ; T) for the friction and plastic elements. The
maximum temperature of 0.3 7, for investigating the friction element, may to some extent be
increased by increasing the loading strain-rate (figure 8.1). The stress dip and the creep
recovery tests may also be used to determine respectively, the functions o*(c,ém; T) and
o(a; o*;T), but only at a considerable expense in time.

Provided the equations of state have been previously determined, the results of isothermal
constant displacement-rate tests at temperatures less than 0.457T,, may be converted into the
function * (e, o, €M ; T) and used to determine the material parameters in the mechanical
state evolution equation. Again provided the equations of state are known, interrupted constant
displacement-rate tests where the deformation is at 7<0.457,,, and uninterrupted constant
displacement-rate tests at higher temperatures, provide all the mechanical data required to
investigate the recovery function R(c*, T).

The potential utility of Hart’s description for geological materials is therefore determined
by the quality of the data that can be obtained from constant displacement-rate and load

relaxation / stress dip / creep recovery tests under the confining pressures of interest.

8.2 The deformation apparatus employed

All the experiments reported here were conducted on two fluid confining medium

apparatus, subsequently referred to as HEARD1 and as NIMONIC2. The technical
specifications of both apparatus have been outlined elsewhere (see below), and so the present
discussion is restricted to those aspects of the design which influence the quality of the
mechanical data obtained.
8.2.1 Basic design. Both deformation apparatus are similar in basic design. In each the
specimen is deformed within a vertically mounted, externally heated, cylindrical pressure
vessel. Differential loads are applied to the specimen by a screw which is connected to the
loading piston via a non-rotating thrust bearing, and which is driven by a motor through gears
of a ratio that can be varied over five orders of magnitude. A computerized data logging system
allows the millivolt output of the temperature, confining pressure, pore fluid pressure (though
not present in these tests), crosshead displacement and axial load measuring devices to be
recorded throughout the experiment. The fastest logging rate for a complete set of readings is
approximately once every seven seconds (limited primarily by the settling time required for the
digital multimeter as it is switched through the five channels), with a faster rate of once every
0.7 seconds if only one of the readings is required.

The two apparatus differ primarily in the material used for the pressure vessel and hence in
the confining medium which can be employed. Consequently, they are used to access different
temperature ranges.

8.2.2 HEARDI1. HEARDI has a steel (Jessop-Saville H 50 pressure die-casting steel) pressure
vessel and uses silicone oil as its confining medium (figure 8.2). This apparatus was built
initially to a design by H. C. Heard in 1968, but prior to this experimental programme it was
completely (apart from the loading train) re-manufactured. Apart from some minor dimensional
modifications introduced during the reconstruction, the use of silicone oil rather than water as
the confining medium (to enhance the life of the pressure vessel), and the replacement of chart
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FIG. 8.2. The HEARD1 deformation apparatus (redrawn with modifications after Rutter,
1970).

recorders by the computerized logging system, the apparatus is as described in detail by Rutter
(1970 ; 1972).

The confining pressure sealing arrangement may be understood with reference to figure
8.2. The details of the lower pressure seal (which is against the force gauge) are of no
consequence to the present discussion. The upper seal is effected by a tool steel ring which,
during assembly of the test, is forced by a packing sleeve to deform elastically outwards against
the inner surface of the pressure vessel, and inwards against the top piston. During the test the
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upper piston is pushed through the seal once sufficient load has been applied to overcome the
large frictional forces. The confining pressure is measured by a DC - LVDT transducer
operated by the displacement of the bourdon tube inside a bourdon tube pressure gauge located
in the pressure line. The pressure vessel is rated to allow confining pressures of upto 400 MPa,
although the maximum pressure that can be maintained for long periods is about 250 MPa,

Temperature is supplied by two furnace halves which fit closely around the outer diameter
of the pressure vessel. The furnace power supply is controlled by a variable transformer, while
the furnace temperature is regulated by a platinum resistance, thermometer actuated,
temperature controller which interrupts the power supply according to the output from a control
thermocouple placed in a low thermal capacity part of the furnace element. The specimen
temperature is measured by a chromel-alumel thermocouple which is placed in a one-eighth
inch (3.175 mm) diameter hole drilled in the wall of the pressure vessel opposite the specimen
position. The output obtained is given with respect to a temperature regulated (nominally 30°C)
reference thermocouple. Water cooling coils positioned at the top and bottom of the axial
column maintain a constant thermal gradient along the pressure vessel. The maximum operating
temperature of the apparatus is limited by the polymerization of the confining medium, which
becomes significant at temperatures greater than about 420°C,

Crosshead displacement is measured by a DC - LVDT transducer. The body of the
transducer is clamped to the apparatus frame, and the movable core rests via a steel ball, on top
of the screw which drives the loading piston. The upper part of the core is connected, via a
brass rod, to a 0.001 inch (0.0254 mm) divided dial gauge which spring loads the LVDT core.

The axial load acting on the specimen is measured by the elastic distortion of a hollow, tool
steel column (the force gauge, figure 8.6), which lies directly under the lower piston and
experiences the same load as the specimen. An unstressed rod connects the top of this column
with the core of a DC - LVDT transducer, the body of which is housed within a water cooled
block which is in turn rigidly attached to the other end of the column. In response to the axial
deformation of the column, this rod moves through the transducer and produces an output
which can be calibrated against the differential load applied. No correction for seal friction is
required because the actively deforming length of the force gauge lies entirely between the
upper and lower pressure seals.

The pressure, displacement and force transducers are all served with the same regulated 24

volt power supply.
8.2.3 NIMONIC2. NIMONIC2 has a Nimonic 105 alloy pressure vessel and uses de-ionized
water as its confining medium (figureA 8.3). This apparatus was designed and built within the
laboratory by R.F. Holloway and E. H. Rutter and carries the additional difference from
HEARDI in that the load is applied from the bottom of the axial column, not the top, an
innovation which shortens the turaround time between tests considerably. It has been operated
successfully since 1984 and has been described in detail by Walker (1991). |

As with HEARDI the lower confining pressure seal, which is here the moving piston seal,
lies below the active part of the force gauge and has no direct influence on the quality of data
obtained from the apparatus. The upper seal arrangement is contained within a stainless steel
unit (the top sealing block) which is held in place by eight high tensile bolts which pass through
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a thick collar above the unit, into another collar around the top of the pressure cylinder below it
(figure 8.4). The seal is effected by an O-ring which is squeezed by a gland nut between the
upper piston and the inner surface of the steel unit. The piston is held in place by a retaining
screw, while the seal between the steel unit and the top of the pressure cylinder is effected by a
stainless steel delta ring placed at the contact between the two faces, and deformed elastically
against the walls of its seat by the force exerted from the eight bolts. The confining pressure is
measured both by a pressure transducer and by a bourdon tube gauge, which are connected
separately in the pressure line. The pressure vessel is rated to allow confining pressures of upto
300 MPa, but the maximum pressure that can be maintained for long periods is about 180 MPa.
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FIG. 8.4. The upper closure assembly of NIMONIC2 (redrawn with modifications after
Walker, 1991).
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The temperature is supplied in the same way as for HEARDI, except that the fumace
temperature is regulated with a combined thyristor and silicon diode power rectifier, operating
in fast cycle mode and controlled by a thermocouple located against the outside of the pressure
vessel opposite the specimen position, The temperature is measured using a chromel-alumel
thermocouple inserted through the pore fluid inlet in the upper piston such that its tip lies a few
millimetres from the top of the specimen. Again the temperature is given with respect to a
temperature regulated (at 30°C) reference thermocouple, and water cooling coils at either end
of the axial column serve to maintain a constant thermal gradient along the axis of the pressure
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vessel. The maximum working temperature is controlled by the strength characteristics of the
Nimonic 105 alloy used for the pressure vessel. At 300 MPa confining pressure the maximum
operating temperature is approximately 700°C. Temperatures of upto 800°C can be accessed if
the confining pressure is decreased, but no such tests were conducted in this study.

Crosshead displacement is measured by a DC - LVDT transducer. The body of the
transducer is clamped to the apparatus frame and the movable core is fixed to the bottom of the
screw which drives the loading piston. A 0.0001 inch (0.00254 mm) dial gauge separately
attached to the rig also measures the displacement of the bottom of the loading screw.

The axial load acting on the specimen is measured, like HEARD], by the elastic distortion
of a hollow, tool steel column as indicated by the displacement of an unstressed rod connecting
to the top of the column to the core of a DC - LVDT transducer (figure 8.6). However, on
NIMONIC?2 the force gauge is located inside the loading piston (figure 8.5). The transducer
body is forced firmly by a steel spring against the base of a T-section tube, which in turn is
pushed against a shoulder situated midway up the interior of the force gauge column above the
level of the moving piston pressure seal. During loading any elastic distortion of the piston
below the top of the T-section tube is accommodated by the spring, and the displacement
measured by the transducer is due entirely to the shortening of the column between the top of
the T-section tube and the top of the unstressed rod. Hence as for HEARDI, the actively
deforming length of the force gauge lies entirely between the pressure seals and no correction
for seal friction is required.

The pressure, displacement and force transducers are served from two (between them) 12
volt stabilized power supplies.

8.3 Experimental procedures

All the experiments conducted in this study were either load relaxations or variants of the
constant displacement-rate test. All were conducted in compression at constant temperature
(during the deformation phase) and constant confining pressure, and in each case the stress field
applied to the specimen was of uniaxial symmetry. HEARD1 was used to determine the
material parameters in Hart’s original model, while NIMONIC2 was used to investigate the
static recovery function.
8.3.1 The starting material. Carrara marble is a white marble, quarried for monumental
purposes at Carrara in the Northern Apennines of Italy. It was used in the seminal triaxial rock
deformation studies of von Kdrman (1911, or see Jaeger and Cook, 1979, pp. 152 /Kirby and
McCormick, 1984, pp. 155) and von Boker (1915, or see Kirby and McCommick, 1984,
pp. 255). More recently, it has been used in several experimental deformation studies of calcitic
aggregates to characterize their brittle behaviour (Cooper, 1977 ; Atkinson, 1979, 1984 ; also
see Atkinson and Meredith, 1987), their semi-brittle behaviour (Edmond and Paterson, 1972 ;
Fredrich et al., 1989 ; Fischer and Paterson, 1989), to determine steady-state flow laws in the
intracrystalline slip and grain boundary sliding deformation regimes (Rutter, 1972 ; 1974 ;
Schmid et al.,, 1980), and to observe the development of deformation textures by
intracrystalline slip under both coaxial and non-coaxially applied differential loads (Rutter and
Rusbridge, 1977 ; Owens and Rutter, 1978 ; Casey et al., 1978 ; Spiers, 1981 ; Laurent et al.,
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1981 ; Schmid et al., 1987 ; Rowe and Rutter, 1990).

8.3.1.1 Characterization : Carrara marble forms part of Alpi Apuane metamorphic complex
which is exposed as a large (300 km?) tectonic window through an unmetamorphosed cover
sequence. It is derived from Lower Liassic massive limestones which were compressively
deformed and metamorphosed at mid-crustal levels during the Eocene, which were then
extended during the Miocene, and which were finally brought rapidly to the surface during the
isostatic uplift and denudation that foﬂowed the extensional event (Carmignani and Kligfield,
1990). Despite a large number of thermobarometric and dating studies on the metamorphic
complex, details of the precise form of the pTt curve remain unclear from the information
published in the English language literature. The compressional deformation is dated on
stratigraphic grounds and by K-Ar and 40Ar/3%Ar studies to 27 Ma (Kligfield et al., 1986).
Post-kinematic chloritoid and kyanite porphyroblasts are used to suggest that the metamorphic
peak occurred shortly after the deformation. Petrogenetic grid considerations and calcite-
dolomite geothermometry suggest that the peak metamorphic conditions were approximately
400 MPa and 5C0°C with a small decrease in temperature from the west to the east of the
complex (Di Pisa et al., 1985). Cooling to below 300°C following the metamorphic peak must
have been very rapid in order to avoid the complete resetting of the argon systems in the
metamorphic phengites and the magnesium in the Mg-calcites. Syn-kinematic phengites have
been used to date (by 40Ar/3%Ar methods) the onset of the extension to 12 Ma, while the dates
of post-kinematic phengites and various stratigraphic arguments suggest that the deformation
was completed by 8 Ma (Kligfield er al., 1986). The syn-kinematic mineral assemblages
(chlorite plus coexisting muscovite and phengite) have been used to infer that the extensional
deformation occurred at about 300 MPa and 300°C. The timing of the subsequent rapid uplift to
the surface is constrained by apatite fission track data (reported in Carmignani and Kligfield,
1990).

Despite this complex tectonothermal history, and despite the observation that breccia units
stratigraphically above, below and within the marble formation record large strains (Kligfield et
al., 1981), in thin section the rock appears as a granoblastic calcite polycrystal with few
deformation features (figure 8.7). The grain-size is uniform with a mean linear intercept of
147 £ 9 pm (where the error is at the 95% confidence level from eight counts — with an average
of 141 grains sampled per count — made from non-overlapping areas using a circular intercept
counting net, Abrams, 1971). The grain boundaries are well defined although not straight,
suggesting that they have been at least partially mobile at some time. Most grains show an
undulose extinction, and many contain a few, mostly thin, straight-sided deformation twins.
However, there is no significant shape fabric, and by optical inspection there is little evidence
for any crystallographic preferred orientation. |

Dark grey inclusion trails, arranged on approximately parallel planes, form a prominent
feature of the hand specimen. In thin section these are seen to be composed of widely

- disseminated but very fine-grained opaques. Where they are particularly concentrated the
calcite grain-size may be greatly reduced (to as little as 20 - 30 pm, figure 8.7), but this is only
rarely the case and in general the inclusions appear to have no influence on the texture of the
marble. In occasional thin sections isolated euhedral crystals of quartz and albite may be found.
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FIG. 8.7. Photomicrographs of the Carrara marble starting material used in the experiments,
(top) The typical microstructure. The base of this photomicrograph is 3125 pm. (bottom)
An area of the microstructure in which there is a particularly high concentration of finely
dispersed opaques and in which correspondingly, the calcite grain-size is much reduced.
Tire base of this photomicrograph is 1250 pm.
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These are similar in size to the calcite. The calcite is extremely pure with respect to solute
impurities. An ICP analysis of material from the block used for the experiments reported here,
yielded the following results

Sr = 97 ppm Mn = 27 ppm Ce = 7ppm Y = 13ppm
Mg = 2250 ppm Be < 0.2 ppm Zn = 1.5ppm Ti = 24 ppm
Fe = 12 ppm Cr = 27 ppm V < 0.8 ppm P = 6ppm
Cu < 1ppm Zr < 27 ppm K = 4ppm

(where the potassium result was determined by AAS).

For the purposes of this study therefore, Carrara marble is an approximately isotropic, pure
calcite polycrystal which is in an almost completely undeformed state. The implicatioh is that
the block of marble used for this work came from a part of the Apuane complex which was
locally only mildly affected by the extensional deformation, and that the texture is the product
of a recrystallization process involving significant grain boundary migration after the
completion of the Eocene compressional event.
8.3.1.2 Specimen preparation procedures : All specimens used in this study were right circular
cylinders cored in an arbitrary but constant direction from the same block of marble. Two
different core diameters were employed ; 0.25 inch (6.35 mm) for the static recovery tests and
0.375 inch (9.525 mm) for all the others. The cores were allowed to oven-dry at 105°C until
required for use. Final preparation procedures included cutting the cores to length (a length /
diameter aspect ratio of about 2.35 was employed for the recovery tests ; 2.60 for the others),
squaring the ends to better than 0.001 inch (0.0254 mm), washing the resulting specimens in
alcohol and returning them to the oven for a few minutes.

All specimens were deformed in a thin-walled (0.01 inch, 0.254 mm) commercial purity
copper jacket, which served to isolate the specimen from the confining medium (the assembly
arrangement is illustrated in figure 9.9a). The jackets were annealed immediately prior to test
assembly by heating rapidly to red heat in a butane flame. They were then quenched in cold tap
water, soaked for a few seconds in nitric acid to remove the copper oxide formed during the
heating, washed in tap water and in alcohol, and were finally placed in the oven for a few
minutes to dry.

8.3.2 The deformation experiments. The deformation conditions and types of test that can be
employed to evaluate the material parameters in Hart’s model, are dictated by the need to
access its various elements under circumstances where deformation processes not
accommodated by the description have a negligible influence on the mechanical behaviour. For
Carrara marble this requires that the effects of cataclasis and mechanical twinning be avoided.
The strategy adopted was to attempt to negate the former by the choice of deformation
environment and the latter, as far as possible, by the choice of the type of test.

8.3.2.1 The choice of deformation conditions : At strain-rates of 103 s-! at room temperature,
cataclasis is significant (i.e. for the purposes of this discussion, the interconnected porosity
increases above 0.01) at all confining pressures under 300 MPa (Fredrich et al., 1989), while at
the same strain-rate and at effective pressures below 150 MPa it remains significant upto
temperatures of 400°C (Fischer and Paterson, 1989). These pressures are near to the maximum
long term confining pressures that can be maintained by the two apparatus, and so if cataclasis
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is to be avoided it is necessary that the confining pressures and temperatures be as high as
possible while the maximum strain-rates investigated be as low as possible. Set against this are
the observations made during the course of the experimental programme, that static recovery
becomes important at temperatures above 400°C, and that the transition between deformation
rate controlled by the friction element and that controlled by the plastic element, occurs at
approximately 240°C. Furthermore decreasing the strain-rates during the loading prior to load
relaxation, decreases the strain-rate range over which the relaxation data is gathered, while also
increasing the time required to complete the experiments.

Given these constraints the confining pressures chosen for the experiments were 200 MPa
for the HEARDI tests and 170 MPa for the NIMONIC2 tests, each of which is close to the
maximum long term working pressure for the respective apparatus. The minimum temperature
investigated was 120°C, which permits a 120°C temperature range for the investigation of the
parameters of the friction element. The maximum strain-rate employed was 6 x 104 sl where
the results suggest that the influence of cataclasis is just detectable (§ 13.2).
8.3.2.2 The choice of the type of test : Mechanical twinning is an important deformation
process in Carrara marble throughout the range of conditions that can be accessed by the
deformation apparatus. However, it is a process which is critically dependent on the magnitude
of the applied differential stress and so can, in principle, be avoided by employing tests in
which the mechanical data of interest is collected at stresses below the maximum the specimen
has previously experienced.

In all the types of test which have been used previously to determine the material
parameters in the friction and plastic elements (i.e. the load relaxation, stress dip and creep
recovery tests), the data is collected at lower stresses than experienced by the specimen at the
end of pre-straining, and so mechanical twinning is not a problem. The parameters in those
elements were evaluated in this study by interrupting a constant displacement-rate test several
times to conduct load relaxations. At elevated confining pressure the load relaxation test is
simpler to conduct, and the required data is more quickly obtained and easier to interpret, than
for stress dip and creep recovery tests. In addition, this method of generating a several
relaxations from one sample at different strains (i.e. mechanical states), removes the effect of
specimen variability from results produced at otherwise identical conditions, and permits the
absence of any deformation independent changes in mechanical state during the test to be
verified (through comparison of the reload stress /strain curves with the stress /strain curve
generated from a test without relaxations). Eight different temperatures were investigated at
40°C intervals in the range 120 to 400°C. At each temperature about twelve load relaxations
were conducted at approximately 0.015 strain intervals in the range 0.01 to 0.20 logarithmic
strain. The average duration of each relaxation was two days, although those at low temperature
and low strain were frequently of only one day, while those at high temperature and high strains
were of upto ten days. In this way relaxation data was obtained routinely from the loading
strain-rate to strain-rates of 109 s-!. For the tests conducted at 120 and 160°C the loading
displacement-rate was 0.8 mm / min corresponding to a strain-rate of approximately 6 x 1041,
while for the remaining temperatures the displacement-rate was 0.333 mm /min corresponding
to a strain-rate of 2 x 104 s-1 (where the strain-rates are those at a strain of 0.1).
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The parameters in the anelastic element were determined from constant displacement-rate
tests (at 0.0333 mm /min i.e. 2 X 10- 1) as interrupted for complete unloading and reloading at
several different strains in the range O to 0.3. The required parameters were evaluated from the
reload curves and hence were determined at stresses lower than previously experienced by the
specimen. Experiments were conducted at 200 and 399°C while a further experiment at 318°C
was repeatedly loaded and unloaded at a strain of 0.10 and displacement-rates of 0.333, 0.0333
and 0.00333 mm /min to verify the strain-rate independence of the parameters.

The evaluation of the parameters in the mechanical state evolution equation must involve
tests in which mechanical twinning is significant, because any method of changing the
magnitude of o* inevitably also involves twinning. Hence the only way to prevent a
deformation history dependence in the evaluations of the material parameters, is to identify and
remove the effect of twinning from the acquired mechanical data (cf. § 9.4.2). In this study the
required parameters were determined from constant displacement-rate tests conducted without
interruption at the same eight temperatures as the relaxations, and at six different displacement
rates corresponding to the strain-rate range 6 x 104 to 6 x 107 s°1, In addition, three suites of
relaxation curves were generated at 310°C after pre-straining at displacement-rates
corresponding to strain-rates of 6 x 10-5,2 x 105 and 6 x 10651,

The static recovery behaviour was investigated by means of constant displacement-rate
tests corresponding to a strain-rate of 3 x 104s-1, which were conducted at 420°C (for the
choice of temperature see § 9.2.2). After deforming the specimen to a pre-determined strain, the
load was removed from the sample and the temperature rapidly raised to a desired value. The
specimen was left to anneal for a given period, and was then re-deformed under the initial
deformation conditions to allow a comparison between the initial and reload stress/ strain
curves. Annealing was conducted at 500, 550, 600, 650 and 700°C, all after a pre-strain of 0.17,
and at 600°C after pre-strains of 0.08, 0.17 and 0.2725. At each annealing condition about six
annealing periods were investigated, equally spaced in log time between 3 hours and 40 days.

8.4 Data reduction

For a deformation experiment in which the applied loads have uniaxial symmetry and the
confining pressure and temperature remain constant, the task of the data reduction exercise is to
determine at any instant the seven variables

o, el), gle), gm), g(1), gle) g(n)
where o is the differential stress acting on the specimen normal to the deformation axis, and the
strain and strain-rate terms are axial. The supplied data is a time record of the differential load
# acting on the specimen and the displacement .2° of the apparatus crosshead. The initial
specimen dimensions are given as a length L, and a cross sectional area A, (respectively,
parallel with and normal to the deformation axis).

Defining @# and Z as the cross sectional area and length of the specimen at any instant,
and L as the specimen “elastic length” (i.e. the initial length less the component of inelastic
deformation) at that instant, then

o = Fleyd 8.1
e® = In(XZ/Ly) 8.2)
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The deformation of the specimen at any instant during the experiment is given by

L= AL + ALy, (8.11a)

= AL, + AL, + 4L, (8.11b)

which may be solved for Z and L using equations 8.8 — 8.10 if any two of AL,,,, AL, and AL,
can be determined. £ and L are given by the time derivatives of £ and L. To complete the
reduction problem, some function relating @¥and £ must be specified so that o can be found.
8.4.1.1 The additional relations : In the subsequent derivations constant volume deformation is
assumed so that

of = AgLy/ £ 8.12)
ALy, is given by calibrations of the apparatus stiffness &

ALy, = P11 (8.13)
AL, is specified by the Young’s modulus E of the specimen

c = EAL,/L ' (8.14)

where the elastic length of the specimen has been used. Substituting equations 8.1 and 8.12 into
equation 8.14 yields
AL, = FZXZL/AQLyE (8.15)

8.4.1.2 The complete solution : Substituting equation 8.13 into 8.11a, and rewriting for 4.2
using equation 8.9

Z = Ly- L+ (FP|F) (8.16)
Substituting equations 8.13 and 8.15 into equation 8.11b, rewriting for AL, with equation 8.10
and simplifying with equation 8.16

L = X2+ (PLLIAJLYE) 8.17)
which solving for L yields
L = Z/[1-(FL/AJLyE)] (8.18)
Differentiating equations 8.16 and 8.18 with respect to time
£ = -P+ (F1S) (8.19)
and
L = [Z+(FPL/ALyE)]1/(ZL/L)? (8.20)

(appendix § A2.1.3) where may be found by differentiating the observed load record with
respect to time.

8.4.2 The data reduction procedures employed. The data reduction equations derived above
were applied as they stand, to the data recorded during the deformation experiments. No
correction was applied to the differential load data to account for that part of the load supported
by the copper jacket (cf. § 9.3).

The initial specimen dimensions were determined using a 0.001 inch (0.0254 mm) divided
micrometer. The length was specified as the mean of two measurements, while the cross
sectional area was determined from the mean of six diameter measurements using the equation
for the area of a circle. No correction was applied to account for the compression of the sample
under confining pressure or for the thermal expansion of the sample during heating to the test
conditions.

Data processing for each test was conducted in three stages, with the output of each being
stored as a data file. First, representative sets of data (where each set comprises the millivolt



146

output of the five recorded channels plus the time at which the set was logged) were selected
visually from the complete data record. Typically about fifty sets were chosen for a constant
displacement-rate test with the greatest concentration in the first 0.01 increment of strain, while
for a relaxation test about one hundred were selected (the exact number varying with the
amount of relaxation) with the density of data reflecting the relaxation-rate.

The second processing stage involved the conversion of the selected millivolt data into SI
units using the apparatus calibration information.

The final step was to apply the data reduction formulae derived above. For the constant
displacement-rate tests equations 8.12, 8.16 and 8.18 were applied to find o, £(*) and & (the
Young’s modulus used is discussed in § 10.1.1). £ was determined for the ith data set from

&0 = [(Z;- L) Z£iq1 ] [4-14] (8.21)
where ¢ is the time of the data set. Equations 8.19 and 8.20 were not used because of the effort
required to determine 2. For the load relaxation tests, the full set of equations 8.12, 8.16 and
8.18 ~ 8.20 were used to determine o, (), (™, £(t) and £, Fwas determined by fitting a least
squares polynomial of requisite order (usually fourth, fifth or sixth) to /# plotted as a function
of In¢

i
# = Y qnry 6
i=0
so that on differentiating
. np
F = Y ig(n)il/e (8.23)

i=1
where g; are the polynomial coefficients and n, is the order of the polynomial. Considerable
effort was expended to ensure that the slope of the polynomial provided a true reflection of the
data (figure 8.9). It was usually the case that this was only a problem at each end of the data
range, and if necessary the data was fitted in two, or occasionally three, segments. Given the
polynomial fit, the time for each data set was then used with equations 8.22 and 8.23 to

determine % and %, for insertion into the reduction equations.
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FIG. 8.9. Typical load / time data produced during the load relaxation experiments, together
with the polynomial fits to the data. (a) Relaxation B produced at 121°C and yielding a
concave upward relaxation curve (cf. figure 11.1). (b) Relaxation K produced at 360°C and
yielding a concave downward relaxation curve (cf. figure 12.1).
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9 AN EVALUATION OF THE FACTORS LIMITING DATA QUALITY

Two types of problem serve to undermine the quality of the data obtained from the
experimental programme. Firstly there are the technical problems associated with the need to
maintain confining pressure whilst keeping the confining medium out of the specimen. These
have the following consequences :

(a) they require that the deformation variables be determined remotely during the test and hence
introduce calibration errors ;

(b) they restrict the ability to change the deformation environment instantaneously and hence
undermine the quality of the data obtained from the load relaxation and recovery experiments
where it is necessary to change the crosshead displacement-rate and the temperature
respectively, as quickly as possible, and ;

(c) they introduce errors into the determination of the differential load experienced by the
specimen because of the presence of a jacket around the specimen which supports some of the
load. |

All these problems are unavoidable, although their significance may be reduced by appropriate
design or procedural improvements.

The second type of problems are associated with approximations made about the specimen
deformation behaviour which become important, not during data collection, but during.the data
interpretation stage. These approximations are of two kinds :

(a) those concerning material behaviour i.e. that cataclasis, mechanical twinning and impurities
have an identifiable and separable effect on the data, and ;

(b) those made for the convenience of data reduction and parameter fitting i.e. that the
deformation is homogeneous, that any variability in confining pressure, temperature and strain-
rate between tests under nominally the same condition with respect to those variables is
insignificant, and that only one element of Hart’s model is controlling the deformation under
given conditions.

These problems are, in principle, avoidable, but if the approximations can be made, they
simplify the data analysis considerably.

9.1 Calibration and data measurement errors

Extensive calibrations (each of six weeks duration) of both deformation apparatus were
conducted prior to the experimental programme, and a further two shorter (four weeks)
calibrations were conducted on NIMONIC2 following maintenance operations on the force
gauge.
9.1.1 HEARDI. The calibration of HEARD1 was conducted in August/September 1988,
following the reconstruction of the apparatus.
9.1.1.1 Confining pressure : The output of the pressure LVDT was calibrated against the
apparatus bourdon tube pressure gauge at intervals of 1500 psi (10 MPa) in the range 0 to
60000 psi (0 - 414 MPa). The dependence was approximately linear but a least squares cubic
polynomial was fitted giving a root mean square error of 137 psi (0.9 MPa). Most of this error
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reflects friction acting on the transducer core.

9.1.1.2 Temperature : The calibration data for the specimen thermocouple was provided by the
manufacturer at 5°C intervals in the range 0 to 1100°C. The data in the range 0 to 500°C was
linearly regressed, presenting a root mean square error of 1.2°C. This error is smaller than that
of the manufacturer’s data which is quoted at £ 3°C for temperatures below 400°C.

The thermal profile along the specimen axis was investigated using a 0.25 inch (6.35 mm)
diameter, 0.5318 inch (13.51 mm) long serpentinite specimen with a hole drilled through its
axis. Steel spacers placed under the lower piston located the base of the serpentinite at a level
corresponding to the middle of a specimen in the usual assembly. A thermocouple was inserted
through the pore fluid inlet in the upper piston to the bottom of the specimen, and then at
10000 psi (69 MPa) confining pressure and at 91, 209, 304 and 397°C (as given by the normal
specimen thermocouple), the thermocouple was withdrawn and the temperature difference
between it and the specimen thermocouple noted at 1 or 2 mm intervals. The results suggested
that at all temperatures, the temperature given by specimen thermocouple is approximately that
which the base of a specimen in the normal assembly would experience, while the top of a
specimen in the normal assembly would be upto 5°C cooler (the difference increasing to this
figure as the test temperature is increased to 400°C). However, given the greater size of the
specimen in the normal assembly (effectively replacing the spacers) and hence a corresponding
decrease in axial thermal conduction, this thermal gradient must be an overestimate. Even in the
worst case i.e. tests conducted at 400°C, the thermal gradient along the specimen axis is
therefore less than the error in temperature measurement.
9.1.1.3 Differential load : The displacement of the unstressed rod used to measure the
differential load, is affected by temperature and confining pressure, both because the stiffness
of the force gauge column is affected by those variables, and because both variables add a
component of force gauge deformation which is independent of the applied differential load.

The calibration of the force gauge at zero differential load (the FGZ calibration) was
conducted by determining the output of the force transducer at 2500 psi (17 MPa) increments
during depressurization in the range 5000 to 40000 psi (34 - 276 MPa), at each of five
temperatures, room, 89, 208, 305 and 398°C. At each temperature the pressure dependence was
described by a least squares fitted cubic polynomial. The temperature dependence was
accommodated by fitting each of the cubic coefficients as a function of temperature in two
linear segments. In this way the FGZ could be calculated at any temperature and pressure with a
root mean square error of about 0.02 mV, where all readings are determined to the nearest
0.01 mV, in the range 0 to 20 mV.

The force gauge stiffness was determined using a previously calibrated load cell placed in
the position of the thrust block (figure 8.2). The load cell was calibrated against a 10 tonf
(99640 kN) proving ring placed in series in a hydraulic press and loaded /unloaded full range
three times. Data collected at 0.5 tonf (4982 N) increments, was subsequently linearly regressed
producing a fit with a root mean square error of 0.03 tonf (300 N). The force gauge stiffness
was then determined at six equally spaced confining pressures in the range 10000 to 50000 psi
(69 - 345 MPa) at room temperature, by loading from O to 2.5 tonf (0 - 24910 N). At each
pressure at least five loadings were conducted, and for each loading the output of the force
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transducer and the load cell was continuously recorded on an x-y chart recorder. Best linear fits
were applied visually to the traces and the resulting stiffnesses linearly regressed as a function
of pressure. The force gauge stiffness decreased with increasing confining pressure ; the root
mean square error of the fit is 0.005 tonf /mV (50 N/mV) which is approximately 1.5% of the
force gauge stiffness back extrapolatéd to room pressure. The force gauge stiffness was not
calibrated directly as a function of temperature because the load cell could not be heated.
Instead the observed FGZ dependence on temperature was used with the thermal linear
expansion coefficient of tool steel, the active length of the force gauge (i.e. that part which
deforms under differential load, figure 8.6) and the displacement calibration of the forcé LVDT,
to calculate an effective temperature of the force gauge (i.e. that required to produce the same
thermal expansion of the force gauge if there were no thermal profile along it) as a function of
specimen temperature. This was then used with the Young’s modulus of tool steel and its
dependence on temperature, to correct the force gauge stiffness for temperature.

Given these calibrations the differential load is determined at any instant in an experiment
by (a) noting the ‘initial’ force gauge (FGZ), temperature and pressure outputs immediately
before load is applied to the specimen, (b) calculating the ‘current’ FGZ by using the ‘current’
temperature and pressure and applying a correction using the ‘initial’ temperature, pressure and
FGZ readings and the FGZ calibration, (c) subtracting the ‘current’ FGZ from the force gauge
output and, (d) by applying the force gauge stiffness as calculated from the ‘current’
temperature and pressure to the remainder. The effect of the errors in the force gauge
calibration are illustrated in figure 9.1 using the stress / strain curve for a Carrara marble
specimen of typical dimensions (for HEARD1) deformed at 279°C and 2.5 x 104571,

The primary source of error in the FGZ calibration is the presence of friction acting on the
transducer core. This is manifest in a small (0.01 mV) hysteresis in the forward and reverse
sense movement values of the FGZ (i.e. the FGZ calibrated during pressurization rather than
during depressurization) which affects the magnitude of the FGZ but not the slope of the
pressure dependence. In principle such friction could mean that the specimen starts loading
before the force gauge registers it, thereby leading to an observed differential load which is
smaller than real. However, this effect is barely detectable even for an error on the FGZ value
five times that of the calibration error (figure 9.1a).

The errors on the force gauge stiffness are more significant. The calibration procedure,
comparing as it does the load experienced by the load cell on one side of the moving piston
pressure seal with that experienced by the force gauge on the other, carries the implicit
assumption that the frictional forces acting on the moving piston remain constant during
loading. If they increase the calibrated stiffness will be an overestimate ; if they decrease the
stiffness will be underestimated. The fact that when the upper pressure seal is over-tightened
the upper piston progresses by stick-slip events at high temperatures, indicates that the
frictional forces change in a complex manner during loading (Jaeger and Cook, 1979, pp. 63-
65), as might be expected given that different parts of the piston come into contact with the
sealing rings. The observed decrease in force gauge stiffness with increasing confining pressure
runs counter to the increase in the Young’s modulus of tool steel with that variable, and is at
least an order of magnitude too big to be explained by changes in the dimensions of gauge as
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FIG. 9.1 The effect of the HEARDI force gauge calibration errors on a Carrara marble
stress / strain curve generated at 279°C and 2.5 x 104 s°1,

determined from the compressibility data of tool steel. This therefore suggests that as confining
pressure is increased, the frictional forces tend in the direction of decreasing as loading
progresses, thereby implying that the force gauge stiffness tends towards an underestimate with
increasing confining pressure. It provides no indication of whether this corrects an already
overestimated stiffness or worsens an already underestimated one.

The error of 0.005 tonf/mV in the calibration runs produces only a small error in the
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differential load calculations (figure 9.1b). Of more importance are the temperature corrections
to the force gauge stiffness. The calculations of the effective temperature of the force gauge
derive from measurements of the differential expansion of the force gauge column and the
unstressed rod, and hence must be an underestimate. At 400°C the effective temperature is
84°C, which expresses a thermal gradient from about 400°C at the top of the gauge to 20°C in
the water cooled block, and this is an underestimate of perhaps about one half. The effect of
treating the effective temperature as equal to the specimen temperature is to lower a differential
stress of 400 MPa by about 30 MPa (figure 9.1b), and hence it may be expected that the
indeterminancy of the force gauge stiffness temperature correction alone leads to an
overestimate of the differential stress of upto 15 MPa,

The reloading constant displacement-rate experiments used for the evaluation of the
parameters in the anelastic element provide some constraint on the force gauge stiffness
problem, because provided the assumptions that cataclasis and mechanical twinning are
negligible during reloading are valid, the slope of the elastic portion of the reloading stress /
strain curves should be given by the Young’s modulus of calcite. In fact it is observed that the
slope almost always underestimates Young’s modulus (table 10.1), suggesting that the force
gauge stiffness is underestimated. The implication is that at all temperatures the differential
loads are underestimated, but that with increasing temperature this error is reduced because of
the underestimated temperature correction.
9.1.1.4 Specimen displacement : From equation 8.16 it is apparent that to determine the
deformation of a specimen it is necessary to know the crosshead displacement and the
component of apparatus deformation.

The crosshead displacement was calculated during the tests by multiplying the crosshead
displacement-rate (always zero or constant in these experiments) by the duration of loading.
The crosshead displacement-rate was calibrated by dividing the displacement achieved in
several hours at low gear ratio (as given by the displacement dial gauge), by the time elapsed.
The error is about £ 2.5%.

The output of the displacement LVDT was also calibrated against the displacement dial
gauge reading for use in the calibration of apparatus deformation. This output was recorded at
0.0015 inch (0.04 mm) intervals over a range of 0.4 inch (10.16 mm), and the data linearly
regressed to provide a fit with root mean square error of 0.0001 inch (0.00254 mm).

The component of apparatus deformation is given by the stiffness of the axial column
which varies as a function of temperature and pressure. The apparatus stiffness was determined
by sealing the two pistons together with a shortened copper jacket. An x-y chart recorder was
used to continuously record the output of the displacement and force transducers during loading
from O to 2.5tonf (0 - 24910 N) at 10000, 20000, 30000, and 40000 psi (69, 138, 207,
276 MPa) confining pressure at each of room, 100, 237 and 377°C. At each temperature /
pressure condition at least three loadings were conducted. A best linear fit was determined
visually for each loading trace and the results converted into apparatus stiffness using the force
gauge stiffness and displacement transducer calibrations. At each temperature the pressure
dependency of the apparatus stiffness was linearly regressed, and the temperature dependency
was accommodated by fitting the two regression coefficients as a function of temperature. In
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FIG. 9.2. The effect of the HEARD1 apparatus stiffness and crosshead displacement-rate
calibration errors on a Carrara marble stress/strain curve generated at 279°C and
25x 10471,

this way the apparatus stiffness could be determined at any temperature and pressure to within
3 tonf /in (1.18 x 108 N /m), which is about 2% of the back extrapolated room temperature and
pressure value,

In figure 9.2 it may be seen that the error in the determination of apparatus stiffness has
negligible effect on the experimental stress/strain curves, but that the error on the
displacement-rate becomes significant at strains of greater than 0.1. At strains of 0.2 the error in
the specimen strain due to the uncertainty in the displacement-rate is 0.015. The magnitude of
the apparent differential stress error this uncertainty produces is determined by its effect on the
cross sectional area calculation (equation 8.12) which is small, and by the slopé of the stress /
strain curve.

9.1.2 NIMONIC2. The following discussion refers to the most recent calibration (June 1991),
although the procedures and errors in the two previous calibrations were similar.

9.1.2.1 Confining pressure : The output of the pressure transducer was calibrated against the
apparatus bourdon tube pressure gauge at intervals of 500 psi (3.5 MPa) in the range O to
40000 psi (0 - 276 MPa). The data was linearly regressed giving a root mean square error of
125 psi (0.9 MPa).

9.12.2 Temperature : The calibration data for the specimen thermocouple, provided by the
~ manufacturer at 5°C intervals in the range 0 to 1100°C, was fit by least squares to a cubic
polynomial. The root mean square error is 0.8°C which is smaller than the error in the
calibration data, quoted at + 3°C for temperatures below 400°C and + 0.75% at higher
temperatures. .

The thermal profile along the specimen axis was determined by R. Maddocks in January
1984 and was not repeated. He followed the same procedure as described for HEARD1 (except
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that it was the specimen thermocouple that was retracted), using a 0.25inch (6.35 mm)
diameter, 0.5700inch (14.48 mm) long specimen (which is of similar dimensions to the
specimens used in this study). Thermal profiles were determined at 10000 psi (69 MPa)
confining pressure at 338, 461, 592 and 735°C. At each temperature the hottest point was at the
base of the specimen with the difference in temperature between the top and bottom of the
specimen increasing from 1 to 5°C as the temperature was increased. This difference is smaller
than the error in the thermocouple calibration data.

9.1.2.3 Differential load : The NIMONIC2 force gauge is affected by temperature and
confining pressure in the same manner as that of HEARDI, and consequently again FGZ and
force gauge stiffness calibrations are required.

The FGZ calibration was conducted by determining the output of the force transducer at
500 psi (3.5 MPa) increments during two pressurization / depressurizations in the range 5000 to
40000 psi (34 - 276 MPa), at each of eight temperatures equally spaced in the range room to
700°C. At each temperature the pressure dependence was linearly regressed and the
temperature dependence accommodated by fitting the two regression coefficients as a function
of temperature. In this way the FGZ could be calculated at any temperature and pressure with a
root mean square error of about 0.035 mV, where all readings are determined to the nearest
0.01 mV, in the range -1 to 6 mV. This error reflects primarily the hysteresis between the
pressurization and depressurization data, which nevertheless have an indistinguishable pressure
dependence.

The force gauge stiffness was determined using the arrangement shown in figure 9.3
which, by locating the reference load cell in a cool position, allows the temperature aswell as
the pressure dependence of the force gauge stiffness to be determined directly. The load cell
employed for the HEARDI] calibrations was used, but after recalibration in the range O to 7 tonf
(0 - 69748 N) against an externally calibrated (according to National Physics Laboratory
standards) Instron loading device. The root mean square error of the linear fit to the load / mV
data remains 0.03 tonf (300 N). The force gauge stiffness was determined at six equally spaced
confining pressures in the range 5000 to 30000 psi (34 - 207 MPa) at each of eight temperatures
equally spaced in the range room to 700°C. At each pressure / temperature condition two or
three loadings from 0 to 3 tonf (0 - 29892 N) were conducted and the load cell and force gauge
outputs continuously recorded on a y-t chart recorder. Best linear fits were applied visually to
the traces and these were converted into stiffnesses. The stiffnesses were then multiply
regressed on temperature and pressure, treating the data from temperatures below 350°C
separately from that above. The root mean square error of the fits is approximately 0.0015 tonf /
mV (15 N/mV) which is 0.8% of the calculated stiffness at room temperature and pressure.

The differential load during an experiment is determined with these calibrations in the
same way as for HEARDI. The effect of the errors in the force gauge calibration are illustrated
in figure 9.4 using the stress / strain curve for a Carrara marble specimen of typical dimensions
(for NIMONIC2) deformed at 417°C and 3.4 x 104571,

As for HEARDI1 the error in the FGZ calibration has a negligible effect on the calculated
stress /strain curves (figure 9.4a). However, it is frequently observed that after large
movements of the loading piston especially when accompanied by large temperature changes
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FIG. 9.3. The NIMONIC?2 upper closure assembly used for the calibration of the force
gauge stiffness (¢f. figure 8.4).

(i.e. between experiments), there are differences of upto 0.5 mV in the value of the FGZ under
the same pressure / temperature conditions (this effect was circumvented in the calibrations by
not moving the piston until all the FGZ calibrations had been completed). 0.6 mV represents a
transducer core displacement of just 0.00012 inch (3.05 pm) which may be the result of oxide
particles opening a gap between the transducer body and the T-section tube or, more probably,
at the top of the T-section tube where it is pressed against the interior of the force gauge
column. If so, and if during loading the gap is closed (a change of + 0.3 mV in the force gauge
output would not be noticed in the initial stages of loading), the effect would be an error in the
initial FGZ which at 0.6 mV corresponds to about 20 MPa differential stress for the
NIMONIC?2 experiments in this study. A reproducibility error of this magnitude is observed
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FIG. 9.4. The effect of the NIMONIC2 force gauge calibration errors on a Carrara marble
stress / strain curve generated at 417°C and 3.4 x 104 s,

(figure 9.6).

The error in the force gauge stiffness calibration has a negligible effect on the observed
stress / strain curves (figure 9.4b). However, as for HEARD1 the calibration procedure carries
the implicit assumption that during loading the rate of change of differential load experienced
by the load cell is the same as that experienced by the force gauge i.e. in this case that the
frictional forces acting between the O-ring and the upper piston remain constant during loading.
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The lower frictional forces and smaller (only elastic) displacement through the seal, suggests
that this assumption is less significant for NIMONIC?2, but again the magnitude of the problem
is difficult to evaluate precisely. ’

9.1.2.4 Specimen displacement : The output of displacement LVDT and the displacement dial
gauge reading were recorded at 0.01inch (0.254 mm) intervals over a range of 0.5inch
(12.7 mm), and the data linearly regressed to provide a displacement transducer calibration with
root mean square error of 0.002 inch (0.05 mm).

The apparatus stiffness was determined with a tungsten carbide dummy in place of the
specimen at six equally spaced confining pressures in the range 5000 to 30000 psi (34 -
207 MPa) at each of eight temperatures equally spaced in the range room to 700°C. At each
pressure / temperature condition two or three loadings from O to 3 tonf (0 - 29892 N) were
conducted and the displacement LVDT and force gauge outputs continuously recorded on a y-¢
chart recorder. Best linear fits were applied visually to the traces and these were converted into
stiffnesses using the displacement transducer and force gauge stiffness calibrations after
subtracting the elastic deformation of the tungsten carbide dummy. The stiffnesses were then
multiply regressed on T2, T and p, where T is the temperature and p the confining pressure. The
root mean square error of the fits is approximately 0.6 tonf/in (2.35 x 10° N/m) which is 0.8%
of the calculated stiffness at room temperature and pressure.

The crosshead displacement-rate was determined as the average of the displacement-rates
calculated, from the time elapsed and the amount of displacement achieved, in each loading
used for the apparatus stiffness calibration. The error is about £ 2.5%.

The error in the determination of apparatus stiffness has negligible effect on the
experimental stress /strain curves while the error on the displacement-rate, being the same
magnitude as that of HEARDI, has the same effect on the stress / strain curves (figure 9.5).
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FIG. 9.5. The effect of the NIMONIC? apparatus stiffness and crosshead displacement-rate

calibration errors on a Carrara marble stress/strain curve generated at 417°C and
34x104s1,
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9.1.3 Summary of the data measurement problems. The data measurement problems
described above have various degrees of significance for the determination of the deformation
variables.
9.1.3.1 Confining pressure : On both apparatus the error on the confining pressure
measurement is less than & 1 MPa,
9.1.3.2 Temperature : For temperatures below 400°C the error on the temperature
measurement is + 3°C, while at higher temperatures it rises to about + 5°C at 700°C. These
errors reflect the small thermal profile that exists along the specimen axis and errors in the
thermocouple calibration data,
9.1.3.3 Strain : For both apparatus, the error in the specimen strain increases from 0 to + 0.01
at a strain of 0.3 due primarily to the uncertainty in the crosshead displacement-rate. This is
reflected in an error of + 2.5% on the strain-rates as calculated from equation 8.21 at a strain of
0.1.
9.1.3.4 Differential stress : On HEARDI the differential stress is underestimated by an amount
which decreases with increasing temperature. This is due to the uncertainty in the force gauge
stiffness calibration and although it is difficult to evaluate, it is considered to be of the order of
10 - 20 MPa. On NIMONIC2 the unpredictable variability of the FGZ produces an error of upto
1 10 MPa on the differential stress determined in different tests. The error on the NIMONIC2
force gauge stiffness calibration is believed to be small. A

In principle, a comparison of the stress / strain curves generated under identical conditions
on HEARDI1 and NIMONIC2 offers some constraint on the differential load calibration
problems because the seal friction effects are very different for each apparatus. In figure 9.6, a

400 - HEARDI

STRAIN

FIG. 9.6. Comparison of the stress/strain curves of two Carrara marble specimens
deformed under nominally the same conditions, one in HEARDI1 and the other in
NIMONIC?2. Both curves are corrected for the load supported by the copper jacket. The
shaded area indicates the reproducibility band of the NIMONIC2 experiments that were
conducted to a total strain of 0.17.
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curve generated at 2.6 x 10451, 418°C and 206 MPa on HEARDI1 is compared with a
NIMONIC?2 curve produced at 3.4 x 10451, 417°C and 174 MPa (and lying near the middle of
the + 10 MPa range produced by the FGZ variability). The curves have been corrected for the
differential load supported by the copper jacket, which is easily done for a constant
displacement-rate test (§9.3.2.2) and which is necessary in this instance because of the
different specimen diameters (and hence different cross section areal fraction of copper).
Beyond a strain of 0.01 the NIMONIC?2 curve is about 25 MPa weaker, a difference which if
the statements made above concerning the force gauge stiffness calibrations are accurate, must
be in reality even larger. The differences in the strain-rates and confining pressures are too
small to account for this discrepancy, and hence the source of the problem is not understood.
However, it is observed that under the smaller loads experienced by the NIMONIC2 specimen
(the specimen is smaller), 25 MPa corresponds to a force gauge transducer core displacement of

the order of only 3.5 pm, and hence may simply reflect a force gauge design limitation.

9.2 Problems caused by instantaneous changes in the deformation variables

The apparatus design poses significant limitations on the ability to change the deformation

variables instantaneously during a test. For the experiments undertaken here, this affects on
HEARDYI, the load relaxation test where it is necessary to change instantly the displacement-
rate to zero, and on NIMONIC?2, the interrupted constant displacement-rate tests where the
temperature must be changed as quickly as possible.
9.2.1 The load relaxation test. To commence a load relaxation test after a period of loading,
the motor driving the crosshead is stopped. However, the inertia of the loading train is such that
the loading piston continues to move (for upto two seconds at the highest displacement-rates)
until overcome by the frictional forces in the moving piston seal. This has two consequences for
the quality of data obtained from the relaxation. First, it makes it difficult to define the start of
the relaxation. However, this problem becomes insignificant after a few seconds because the
interesting features of a relaxation occur over a logarithmic timescale.

The second consequence derives from the load differential which, by the manner in which
the piston comes to rest, is inevitably set up between either side of the moving piston seal. If
sufficiently large this load differential is re-equilibrated during the relaxation, thereby reloading
the specimen and introducing anelastic effects into relaxation curves which, in this
experimental programme, are used to determine purely plastic properties.

The task of correcting relaxation curves for anelastic effects introduced by load re-
equilibration is sufficiently formidable for it to have been decided to abandon any experiment
in which it was detected. The problem posed by such load changes then reduces to one of
detection. Load re-equilibration may occur either by a stick-slip event which instantaneously
reloads the specimen or by a gradual ‘creep-through’, both recognizable on the load /time
curve by small rises in load during the relaxation (figure 9.7). Detection difficulties arise when
‘creep-through’ type re-equilibration is too slow relative to the rate of relaxation for the total
load to rise. To circumvent this detection problem as far as possible, the first relaxation of a
suite was always conducted at low strain (0.015) and for a long time (several days). In such
circumstances the rate of relaxation rapidly becomes very small. A further check is afforded by
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FIG. 9.7. The effect on the load / time data of a re-equilibration of the load differential set
up on either side of the HEARD1 moving piston seal prior to/at the onset of a load
relaxation test. (a) Stick-slip type behaviour. (b) ‘Creep-through’ type behaviour.

the fact that ‘creep-through’ if present should vary with temperature and between tests (since
the occurrence of load re-equilibration reflects factors influencing seal friction i.e. it varies with
temperature, with the condition of the sealing rings and with the tightness of the seal), and
consequently will affect the ability to describe the relaxation curves generated at different
temperatures and on different samples as members of a single family. Hence if such a family is
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found then it can be inferred that ‘creep-through’ was negligible (although the failure to find
such a family does not mean necessarily that ‘creep-through’ occurred). All the relaxations
conducted in this programme were closely inspected for indications of ‘creep-through’ and if it
was suspected then the relaxations from that specimen were discarded.

9.2.2 The interrupted constant displacement-rate tests. The use of interrupted constant
displacement-rate tests to determine the change in mechanical state during a given anneal
period, provides data which must be treated (in the first instance at least) as if the heating /
cooling periods at either end of the anneal are instantaneous (i.e. as if no recovery occurred
during them). However, the use of an externally heated pressure vessel of large thermal mass
constrains the rate of temperature change that can be applied. The presence of a finite heating /
cooling time requires an arbitrary definition of the start and end of the anneal period and
therefore introduces an error into the measured duration of annealing. Moreover, it restricts the
minimum anneal period that can be investigated. The presence of a large thermal mass also
means that there is inevitably a temperature overshoot during heating if the temperature is
increased rapidly. ‘

To minimize these problems, the cold-working in the experiments reported here was
conducted at a temperature which was as high as possible without the deformation being
influenced by the recovery processes under investigation, Figure 9.8 shows a typical thermal
history of a specimen from the end of initial loading to the start of reloading. Heating / cooling
times were upto 40 minutes (depending on the anneal temperature) with a further 30 minutes
required for complete thermal equilibrium. Temperature overshoots of about 15°C during
heating were usual. The anneal period was defined from the moment the anneal temperature
was attained (before equilibrium) until the moment cooling was initiated. For all tests longer
than 3 hours the error in anneal duration is negligible given that the interesting changes are
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FIG. 9.8. The typical thermal history of a specimen during the anneal period of an
interrupted constant displacement-rate test conducted on NIMONIC?2.
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measured over a logarithmic timescale. The shortest duration anneal investigated given the
aforementioned difficulties was 3 hours. This minimum period poses a highly significant
constraint for it accounts for the first four of the seven orders of magnitude of anneal time
investigated.

Although the heating / cooling rates in the recovery experiments were constrained by the
design of the apparatus, the large thermal expansion anisotropy of calcite also constrains the
rate of temperature change that can be applied. At the fastest cooling rates in this study (7°C/
min) this is just sufficient to cause a minor amount of mechanical twinning, and hence if
twinning influences the mechanical state of the calcite, then still faster temperature change rates

would have introduced errors into the calculations of the change of o* with anneal duration.

9.3 Problems caused by the copper jacket

The data reduction procedures employed in the experimental programme (§ 8.4) make no
correction for that part of the total differential load supported by the specimen jacket, and
therefore overestimate the differential load experienced by the specimen. No attempt was made
to accommodate this error because although the jacket correction for a constant displacement-
rate test is simple to determine and apply, this is not the case for a load relaxation test.
9.3.1 Formulation of the problem. The jacket sealing arrangement employed in these
experiments is shown in figure 9.9a. To apply a jacket correction it is necessary to replace the
single branch analogue model of the deformation of the specimen assembly (figure 8.8), with
the two branch model of figure 9.9b. The identity of the elements of this analogue remains the
same as before, but one branch represents the elastic / inelastic deformation of the specimen
while the other represents the elastic / inelastic deformation of the jacket.

Using the same definitions as previously but with the subscripts spec and jack to refer to
the specimen and jacket elements respectively, and observing that the axial shortening of the
jacket equals that of the specimen, then in response to the displacement of the crosshead there is

a total shortening of the assembly given by

AL = (4Z )spec
= (ALe)spec + (ALp)spec (9.1a)
= (A,Z )jack
= (AL)jck + (ALp)juk (9.1b)
so that
£ = LO - 4L )spec
= Ly - (ALe).rpec - (ALp)Jpec (9.2a)
= Ly, - (4% )jack
= Ly - (AL)jger - (ALy)jgcr (9.2b)
and also
(L )spec = Ly - (ALp)spec
= Z + (AL,_,)WC (9.3a)
(L)jack Ly - (ALp)jgck
= £ + (ALe)jack (9.3b)

In response to a total differential load # the deformation of the specimen assembly is specified
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FIG.9.9. Correcting for the load supported by the copper jacket. (a) The specimen
assembly in both the HEARD1 and NIMONIC2 experiments. (b) An analogue model
representing the deformation of the apparatus axial column during a deformation
experiment and which distinguishes the differential load supported by the jacket from that
supported by the specimen (cf. figure 8.8).
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by the four equations
F o= Pspec + (Pjack _ (9.4a)
AR AZ + ALy, (9.4b)
= (AL,)gpec + (ALp)gpee + ALgy, (9.4c¢)
= (AL)jgex + (ALp)jack + ALgyp 9.4d)

which may be solved completely from equations 9.1 - 9.3 if any four of (AL,)gp,c, (AL, )specs
(AL,)jgcks (ALp)jgck and AL, are determinable. In practice, AL, is given from the apparatus
stiffness calibration by equation 8.13, and (AL,),,. and (AL, );,; are given by

(ALe)spec = (f)spec >4 (L ).rpec / (AO)spec LO (E )spec (9.5a)
(AL)jack = (Pjack £ (L)jack / (Aodjack Lo (Ejack (9.5b)
(¢f. equation 8.15). Using equations 8.13 and 9.5, then equations 9.4 become (cf. equation 8.18)
P = (Ppec + (Pjack (9.6a)
Lhipee = L1 - [P pee L/ (A)gpec Lo (Edgpec 1} (9.6b)
(LYjack = L1 - [(PjackL | (A0)jack Lo (Ejack 1 } (9.6¢)

which contains the four unknowns (* Yipecs Cd Yiacks (L)specs (L )jack' Hence the jacket correction
problem reduces to one of determining (L ),y OF ()¢ during the experiment.

9.3.2 Special case solutions. Two special cases exist where the jacket correction is readily
determinable.

9.3.2.1 Purely elastic deformation : For purely elastic deformation

(ALp)gpec = (ALp)jger = 0 9.7)
so that from equations 9.2
(L).spec = (L)jack = Z 9.8)
Using this result to equate equations 9.6b and 9.6c¢, substituting 9.6a and rearranging, then
(f)spec = f/ { 1 + [ (AO)]ack (E)]ack] / [ (AO)spec (E)Jpec] } (9-9)

which is the result given by Murrell and Chakravarty (1973).

9.3.2.2 Constant displacement-rate test : During a constant displacement-rate test the jacket
and specimen deform independently (although at the same rate). By replacing the specimen with
a dummy made of the jacket material, the data reduction equations derived in § 8.4 may be used
to determine the stress supported by the jacket as a function of strain at the temperatures,
confining pressures and strain-rates of interest. Then in a normal test the stress supported by the
jacket can be determined at any instant from the jacket strain (as given from equation 9.4b), and
this in turn can be converted into (), by using the constant volume deformation assumption.
Data reduction can then proceed as outlined in § 8.4 but with (P )spec (determined from equation
9.6a) in place of 7.

9.3.3 The errors arising from neglecting a jacket correction. The possibility of making an
empirical correction for the load supported by the jacket in a constant displacement-rate test
derives from the fact that the jacket and specimen deform independently. However, during a
load relaxation test this is not the case because although once more the total length of each (i.e.
Z) remains equal, in this instance that length is controlled by the relaxation behaviour of
whichever of the two supports the greater load (this determines the apparatus deformation) and
not by external bounds on the deformation (i.e. the position of the crosshead). Given this
constraint the deformation of jacket and specimen proceeds as illustrated in the analogue model
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of the deformation system (figure 9.9b) where it may be seen that although the total length of
each branch is the same, the partitioning of the deformation between the elastic and inelastic
elements within each branch can change. In such circumstances, and for all subsequent reloads
(the reload jacket stress / strain curve cannot be expected to retrace the uninterrupted one), the
jacket correction can only be determined if a deformation history independent set of
constitutive equations for the inelastic deformation of the jacket material is known. These can
then be integrated using the boundary condition £ (supplied by equation 9.4b) and the elastic
behaviour of the jacket (equation 9.5b) to determine (7);, at any instant. In this study this
requires that the whole experimental programme be first conducted on commercial purity
copper dummies.

9.3.3.1 The deformation behaviour of commercial purity copper : A substantial number of
experiments (23 constant displacement-rate tests and approximately 200 load relaxations
ranging in duration from a few minutes to several days) were conducted at the beginning of the
experimental programme to characterize the deformation behaviour of commercial purity
copper. Dummies of the same dimensions as the HEARD1 specimens (§ 8.3.1.2) were
manufactured from commercial purity copper rod obtained from three different sources
(referred to as IMPERIAL1, IMPERIAL2 and MANCHESTER1). The same preparation
procedure as used for the jackets was followed, and the deformation experiments were
conducted on HEARD1 under the same conditions as those for the Carrara marble experiments
on that apparatus.

Figures 9.10a and 9.10b show some of the stress /strain curves produced at 200 MPa
confining pressure and at the same displacement-rate but various temperatures, and at the same
temperature but various displacement-rates, respectively. The solid curves on each figure were
generated by IMPERIAL?2 dummies and are reproducible to within + 5 MPa on repeat runs. The
dashed curves were produced by the MANCHESTER1 dummies and are consistently about
15 MPa (i.e. approximately 10%) weaker under identical conditions than those of IMPERIAL2.
This difference is interpreted to be due to the different impurity content of copper from the
different sources but this has not been confirmed.

The reloading stress / strain curves generated after load relaxation experiments indicate
that in the IMPERIAL2 dummies the mechanical state of the copper is influenced by recovery
during relaxation at all temperatures greater than about 320°C. At lower temperatures the
relaxation curves are either poorly reproducible or are difficult to fit to the Hart’s model. This
may reflect the influence of the impurities on the relaxation behaviour but was not
systematically investigated. At 310°C and a strain-rate of 10°s!, some of the
MANCHESTER1 dummies have oscillating stress / strain curves. This is diagnostic of dynamic
recrystallization and indicates that in these dummies recovery of the mechanical state begins at
lower temperatures than in those from the IMPERIAL?2 source.
9.3.3.2 Assessment of the copper jacket effect : The aim of determining a set of deformation
history dependent equations for commercial purity copper was abandoned when the variability
of mechanical properties with the source of the copper dummies was discovered, and when it
became apparent that a full recovery function for temperatures greater than about 300°C would
have to be determined.
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FIG. 9.10. Stress / strain curves generated from constant displacement-rate tests conducted
at 200 MPa confining pressure on commercial purity copper. (a) Tests at the same strain-
rate but various temperatures. (b) Tests at the same temperature but various strain-rates.
The solid curves were generated from the IMPERIAL2 copper rod ; the dashed curves from
the MANCHESTERI1 rod.
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else
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where at T < 450°C
A; = 39.28959271 + (3.443423349 x10-2T) - (1.962290763 x10-4 T2) + (3.37448856 x10°7 T'3)
A, = 2793.882471 - (1.162773073 T) + (2.127590118 x10-2T2) - (2.706149075 x10-5T3)
A; = -18162.94807 + (24.80883337 T) + (3.022451074 x10-2T2) - (1.831462956 x 104 T3)
A4 = 77934.08551 + (29.82777344 T) - (1.113252883 T'2) + (2.677767568 X 10-3 T'3)
A; = -185231.1141 - (243.3340883 T) + (4.001695313 T2) - (9.117138557 x10-3T3)
Ag = 177964.6477 + (266.0696135 T) - (4.307180142 T'2) + (9.962335836 x10-3 T3)
and at T > 450°C
A; = -115.8386299 + (1.05263833 T) - (2.086639432 x10-3 T2) + (1.225451325 x10-6 T3)
A, = 459.9577153 + (12.64131453 T) - (3.832193036 x10-2T2) + (2.846288227 x 10-5 T3)

Ay = 60885.45432 - (463.6351646 T') + (0.9673320211 T2) - (6.190932299 x10-4 T3)
A, = -495905.2483 + (3360.5932T) - (6.707451139 T2) + (4.193048608 x 10-3 T'3)
As = 1424254.574 - (9328.29781 T) + (18.3279034 T2) - (1.134604515 x10-2T3)
Ag = -1395729.067 + (8992.187824 T) - (17.50635764 T2) + (1.076597566 x10-2 T3)

FIG. 9.11. The fitted stress / strain curves for the IMPERIAL2 commercial purity copper
rod at 200 MPa confining pressure and 2 x 104 s strain-rate. The curves for T < 450°C
were obtained on HEARD1 and those for 7>450°C (not required in this study) were
obtained by A. N. Walker on NIMONIC?2. All stresses are in MPa ; all temperatures in °C.
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To evaluate the effect of neglecting the jacket correction each of the IMPERIAL?2 stress /
strain curves in figure 9.10a was fitted to a fifth order least squares polynomial and the six
polynomial coefficients were each described as a function of temperature by cubic polynomial
fits. The resulting calculated stress / strain curves (figure 9.11) agree within 5 MPa to the
experimental ones. Using this calibration it is found that the jacket supports about 4% of the
total differential load in the HEARD1 specimens and 7% in the NIMONIC?2 specimens (figure
9.12a). This corresponds to about 15 and 20 MPa respectively, in the stress / strain curves
generated at 420°C. The same Carrara marble stress / strain curve as employed to indicate the
errors caused by the apparatus measuring devices in figures 9.1 and 9.2, is shown with and
without the jacket correction in figure 9.12b. This specimen was deformed at 279°C, at which
temperature the neglect of the load supported by the jacket leads to an overestimate of about
20 MPa in the differential stress.

The real load relaxation curve of a Carrara marble specimen is bracketed by the curve
produced under the assumption that the load on the jacket is zero throughout the relaxation (i.e.
as assumed in the results reported here) and that produced assuming that the load remains the
same as that supported at the start of the relaxation. Figure 9.13a shows these ‘brackets’ for two
Carrara marble relaxations of opposite concavity. The real curve must migrate from the high
strain-rate end of the lower bracket towards the upper bracket as strain-rate decreases, and
hence the real marble relaxation curves exhibit less concavity than those reported here. The
load supported by the jacket remains an approximately constant fraction of the total load at
strains greater than 0.01 (figure 9.12a) indicating that the separation of the bracketing curves is
similar for all the relaxations conducted. However, the rate of migration away from the lower
bracket may be expected to change with factors influencing the copper relaxation-rate. Hence
the overestimate of the concavity of the real relaxation curve increases with pre-strain and
temperature. The worst case situation arises if the copper recrystallizes during the relaxation
(figure 9.13b), but this is a potential problem only in the highest temperature relaxations
conducted in this study. All these factors, if significant, will be reflected in the quality of the fit
of the relaxation data to a single family of curves.

9.4 Assumptions about material behaviour

In fitting Hart’s equations it is assumed that the results from different specimens, deformed
under different conditions, are directly comparable. For the Carrara marble experiments this
entails the assumptions that the effects of cataclasis, mechanical twinning and impurities in the
starting material can be avoided, or at least identified and separated from the observed
mechanical behaviour.
9.4.1 Cataclasis. The primary problem posed by cataclasis is that by accommodating a strain,
it complicates the determination of I" = d In 6* / dax. Given the choice of deformation conditions
employed in this study, cataclasis if present will affect only those tests conducted at the highest
strain-rates and lowest temperatures (§ 8.3.2.1). The influence of any cataclasis on the shape of
the stress / strain curve is therefore easily identified by plotting the stress supported at given
strain as a function strain-rate and temperature respectively to determine if the high strain-rate /
low temperature data exhibits an anomalous (in comparison with the rest of the data)
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study) ; (P);, = constant represents the curve where the load on the jacket is assumed to
remain the same as at the start of the relaxation ; (% )jack # 0 represents the true relaxation
curve. (a) The effect on relaxation curves of opposite concavity (relaxation A at 121°C in
figure 11.1, and the highest strain relaxation at 320°C in figure 12.1). The (f)jackatO
curves are schematic. (b) The complicating influence of rapid recovery / recrystallization in
the jacket material (again schematically drawn),
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dependence on those variables.

Since the mechanical data used to evaluate the parameters in the three elements of Hart’s

model is obtained at stresses below those experienced previously by the specimen, it is inferred
that any cataclasis effects on the evaluations of those parameters should be negligible. For the
friction and plastic elements, the quality of the fit of all the relaxation curves obtained at
different temperatures (and hence presumably under different amounts of cataclasis) to a one
parameter family serves as a test of this assumption. The presence of cataclasis in the reloads
used to determine the parameters of the anelastic element, is in principle (excepting the effects
of all other errors), indicated by a deviation of the initial part of the stress / strain curve from
that predicted by the Young’s modulus.
9.4.2 Mechanical twinning. The primary problem presented by mechanical twinning is, like
cataclasis, posed for the determination of I". In the range of conditions investigated it is a
deformation process which is inevitably involved in any experiment which increases the
magnitude of o*, and so unlike cataclasis it cannot be sidestepped. The effects of twinning on
the determination of I" are potentially twofold. Firstly, twinning accommodates a strain which
must be subtracted from the stress / strain curves before I is evaluated. In principle, this strain
may be calculated from a function relating volume fraction twinning and differential stress.
Secondly, by presenting obstacles to dislocation motion, twin boundaries may exert an
influence on the work hardening behaviour similar to that of grain boundaries (§ 6.3.3). Since
the spacing of twin boundaries is large (tens of microns or more), it is anticipated that this
effect is small, but again in principle, this can be tested by varying the deformation history
(specifically the stress history and hence the twin density) used to attain given values of o*. No
attempt to correct for the effects of twinning has been made in this study. Consequently, the
mechanical state evolution equation presented may be deformation history dependent.

The influence of mechanical twinning on the evaluation of the material parameters in the
three elements of Hart’s model is believed to be negligible, again because the mechanical data
was obtained at stresses lower than those previously experienced by the specimen. As for
cataclasis, this assumption is tested by the quality of the fit of all the relaxation curves, obtained
after straining to different stresses (and hence different twin density), to a one parameter family
(friction and plastic elements), and by comparison of the slope of the initial portion of the
reloading stress / strain curves with that predicted by Young’s modulus (anelastic element).

The effects of mechanical twinning may be of significance for the static recovery function

because twin boundaries are potential nucleation sites for recrystallization. Hence when
recovery is accommodated by recrystallization, the recovery-rate may be a function of twin
density. Microstructural examination of the annealed textures is required to evaluate the
importance of this effect.
9.4.3 The effect of impurities. Any effect that the solute and second phase impurities in
Carrara marble have on the deformation behaviour, can be recognized and accommodated as
described in § 6.3.1 and § 6.3.2. If these effects are present but are not recognized, then they
will be reflected in an anomalous variation of the material parameters with the deformation
variables and, for the second phase impurities (given their non-uniform distribution), in a poor
reproducibility of the results obtained from different specimens.
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9.5 Assumptions made for the convenience of the data processing

A number of assumptions have been made to simplify both the data reduction and the

fitting of the material parameters.
9.5.1 Assumptions used in the data reduction. Implicit in the use of equation 8.12 is that as
deformation proceeds, the specimen remains a perfectly parallel-sided cylinder of constant
volume, and that the differential load is applied over the entire cross sectional area. These
assumptions are approximations because as deformation proceeds the pistons do not increase in
cross sectional area at the same rate as the specimen. The lateral constraint then posed at the
ends of the specimen by the jacket, leads to a cone-shaped region of low strain immediately
adjacent to each piston, with a geometrically forced zone of high shear strain separating it from
a zone of more uniformly distributed strain in the centre of the specimen (figure 9.14a). The
result is that for specimens with an initial length / diameter ratio greater than 2.5 (i.e. of
HEARDI1 dimensions) only the central portion of the specimen remains parallel-sided, while
for lower initial aspect ratios (i.e. of NIMONIC2 dimensions), there is a tendency for the
specimen to barrel (figure 9.14b). For specimens with an aspect ratio of about 2.5, the deviation
in shape is small relative to the total cross sectional area, being visually noticeable only at
strains greater than about 0.25. Hence the error arising in the calculated differential stresses
must be small.

A further deviation from a perfectly cylindical shape arises when the axis of deformation

does not exactly coincide with the axis of the specimen. In such circumstances the specimen
tends to develop a ‘kidney’ shape (figure 9.14b). Again the deviations in shape are small but if
significant, they will be reflected in the reproducibility of the stress / strain curves.
9.5.2 Assumptions used for parameter fitting. In determining the material parameters in
Hart’s equations the deformation is treated as if it is homogenous i.e. as if local variations in the
deformation variables within the specimen have a negligible influence on the analysis. Given
the strain heterogeneities arising within a specimen because of the end constraints (§ 9.5.1,
figure 9.14), this is clearly an approximation, but no attempt has been made to evaluate its
significance (through for example, comparison with the results of tension tests).

It is assumed that any variations of confining pressure throughout the experimental
programme have no effect on the fitted equations. This primarily involves the assumption, used
to determine the evolution of o* in the recovery tests, that the difference in confining pressure
between the HEARD1 and NIMONIC2 experiments (about 30 MPa) and between experiments
conducted on the same apparatus (upto 10 MPa), has a negligible influence on the mechanical
behaviour. However, also included is the assumption that any gradual pressure leaks during a
given test are insignificant. In a six week experiment in which a suite of relaxations was
obtained, these latter leaks were upto 20 MPa. '

Similarly it is assumed that any temperature fluctuations during a test (always less than
* 1.5°C and usually less than + 1°C) have negligible significance.

~ An important approximation for the evaluation of the o* evolution equation is that the
constant displacement-rate tests can be treated as constant plastic strain-rate tests. For the
specimen dimensions used here the plastic strain-rate increases linearly with strain by about
150% between strains of 0.01 and 0.30. This is small compared with the strain-rate range
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FIG. 9.14. Inhomogeneous deformation in the tests. (a) The strain distribution within a
specimen deformed in compression and (b) the consequences of that heterogeneous strain
distribution on the external morphology of the deformed specimens.

investigated but is sufficiently large to allow at strains greater than 0.01, the further simplifying
approximation £(m = (), The errors that result are negligible because the o* evolution equation
is not very strain-rate sensitive at the deformation conditions investigated (§ 13.2).

A final assumption employed in fitting the material parameters is that at each temperature
investigated, in the strain-rate range of interest, only one element of Hart’s analogue model
(figure 5.3) is deformation rate controlling. This assumption has been widely used for fitting
Hart’s equations in the materials’ science literature, although non-linear data correlation
procedures which do not require it have been formulated (appendix A3.2).
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9.6 Summary

The most significant factors limiting the quality of the data obtained in this experimental
programme concern the determination of the differential stress acting on the specimen. For the
HEARDI1 experiments it is considered that the stress / strain curves are approximately accurate,
with the underestimate in differential load due to inaccuracies in the force gauge stiffness
calibration being cancelled by the neglect of a copper jacket correction. The neglect of the
jacket correction however, leads to an overestimate of the concavity of the the load relaxation
curves, For the NIMONIC2 experiments there is an uncertainty of + 10 MPa due to the
variability of the FGZ, while the neglect of the jacket correction means that the differential
stresses are overestimated by an additional 20 MPa. There remains however, a discrepancy of
unknown origin between the stresses given by the two apparatus.

Of the other problems, the most significant is the influence of mechanical twinning on the
data utilized from constant displacement-rate tests. Although this can in principle, be
accommodated, no attempt to do so has been made here. All other problems are either negligible
or can be identified and accounted for when significant.
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10 EQUATION OF STATE 1. THE ANELASTIC ELEMENT

The anelastic element in Hart’s original model is described by (equation 5.9)

o, = Ma (10.1)
where the anelastic modulus «# is an unspecified function of mechanical state and temperature
(§ 6.2.1). In this study «# was evaluated using the constant displacement-rate test, but in other
investigations it has also been determined from the results of stress dip tests (§ 5.1.3.3).

10.1 Fitting the anelastic modulus

In a deformation experiment at stresses between the elastic and anelastic limits, the total
strain is given by (equation 2.1)

et = gle) + g (10.2)
Differentiating equation 10.2 with respect to the applied stress and using equation 5.7
de _ de® | da _ de da
doc = do "do = do ' do,+do (103)
Also between the elastic and anelastic limits
&M = a = &/ (10.4)

Hence if in the test it can be shown that & is constant, then it follows that £ and therefore
(equation 5.12) oy are also constant. Equation 10.3 then becomes, with equation 10.1

de®|do = (1/E) + (1/#) (10.5)
where E is the Young's modulus of the specimen.

Over a small strain interval in a constant displacement-rate test & is approximately constant
if the stress / total strain curve in that interval is linear. Hence it follows that if the stress / total
strain curve between the elastic and anelastic limits in a constant displacement-rate test is
linear, then its slope is described by equation 10.5, and given E, «# may be determined.

10.1.1 The Young’s modulus of calcite. The Young’s modulus of calcite used in this study
was calculated from the bulk and rigidity moduli given by Sumino and Anderson (1984) as
Voight-Reuss-Hill averages of the calcite elastic constants (original data of Dandekar, 1968a,b ;
Dandekar and Ruoff, 1968) :
Ky = 7.612x1010Pa ;
Ky, = 7468x1010Pa ; G,
(dK/dp)r = 538

Q
o
|

= 3.174x1010Pa
3.181 x 1010 Pa

(dK/dT), = -285x107Pa/°C
(dG/dp)y = -1.50
(dG/dT), = -9.70x105Pa/°C

where K is the bulk modulus and G the rigidity modulus and the subscript O indicates the room
temperature / pressure value (for which there are two estimates for each modulus). The Young's
modulus is given by

E = 9KG/(3K+G) (10.6)
(e.g. Fung, 1965, pp. 130). The temperature dependency of E was determined by calculating K
and G (using their temperature dependencies) and hence E (using equation 10.6) at ten equally
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spaced intervals in the range 0 to 1000°C (room pressure) and then linearly regressing the
results. This was repeated for each K, G, pair and the fractional change in E with temperature
(the slope divided by E at 20°C) for each fit was averaged. The pressufe dependency was
determined in the same way in the range 0 to 500 MPa (room temperature). Hence

E = 8.358x1010{1 - [3.334x 1011 p] - [3.151 x 104 (T -293)]} (10.7)
- where E and p are in pascals and T is in kelvin, and where the error on the estimate of E
produced by the linear fits is far smaller than that introduced by the different values of K, and
Gy.
10.1.2 Determining the elastic and anelastic limits. In order to determine the slope of the
stress / total strain curve between the elastic and anelastic limits it is necessary that those limits
be clearly defined. Provided there is a sufficient difference in the magnitudes of E and.#C, the
elastic limit is easily determined. The anelastic limit may, in principle, be located precisely by
plotting &(" against o, since below the anelastic limit d#(™ /do = 0 (i.e. the slope of the stress /
strain curve is constant), while above it dé™ /do increases (i.e. the slope of the stress / strain
curve decreases).

The inability to determine the elastic and anelastic limits in the reloading curves in the load
relaxation experiments and in the unloading curves from these anelasticity experiments
prevents those curves from being utilized to yield additional values of «#. In the former case,
reloading generally begins at stresses close to or above the elastic limit, while in the latter case
seal friction problems complicate the form of the stress / strain curve in the anelastic region (i.e.
in the latter stages of unloading, figure 6.2a).

10.2 Results

The composite stress / strain curves generated in multiple loading / unloading tests at 200
and 399°C are shown in figure 10.1. In each case except for the highest strain reload at 399°C,
the reloading curve rejoins that obtained in an uninterrupted constant displacement-rate test.
Hence it is inferred that apart from the one exception in which some recovery apparently took
place, o* remained constant during each unloading.

Apart from the first two reloads at 399°C where the anelastic region covered too small a
stress range, the initial part of all of the reload stress / strain curves can be described
unambiguously by two linear segments (figure 10.2a), corresponding to the elastic and anelastic
regions respectively (cf. figure 6.2b). Where both linear regions can be discerned, the £
against o plots show that dé(™ /do =0 below the anelastic limit (thereby validating the use of
equation 10.5), and that dé / do increases sharply beyond the limit (figure 10.2b).

10.2.1 Parameter evaluation. The full results of the fitting procedure to determine «# are
presented in table 10.1 in the following form ;

(i) the strain is the total inelastic pre-strain experienced prior to reloading as calculated from the
differential stress supported at the end of the previous loading period using the stress / total
strain curve generated under identical conditions without unload / reload interruptions ;

(ii) the strain-rate is the total strain-rate corresponding to a strain of 0.10 during an
uninterrupted test conducted at the same displacement-rate on a specimen of the same
dimensions ;
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(iii) the differential stress is that supported at the end of the previous loading ;
(iv) the value of the mechanical state is that calculated from the appropriate equation of state
(§ 11.2.4 and § 12.2.4) using the total strain-rate (and the approximation (" = £, § 9.5.2), and
the final stress achieved in the previous loading (cf. § 13.1.1). For the final reload at 399°C the
reload macroplastic yield stress was used, which is equivalent to assuming that none of the
observed static recovery occurred during the reloading phase ;
(v) E,,, is the slope of the observed stress / strain curve in the elastic region as defined by a
visual fit made with the aid of a rule ;
(vi) E is the Young’s modulus calculated from equation 10.7 ;
(vii) o/, is given by equation 10.5 using E (not E,,,) and the slope of the observed stress /
strain curve in the anelastic region (defined as for E,; by a visual fit made with the aid of a
rule) ;
(viii) «# is the final value used for the anelastic modulus as given by

ot = tan[(tan! E)- (tan'! E ;) + (tan1est ;) ] (10.8)
i.e. it is the value given by rotating the observed stress / strain curve about (0,0) so that E
becomes coincident with E.
10.2.2 The observed values of the anelastic modulus. The values of «# given in table 10.1
yield an o« /E ratio of approximately 2.5 which is similar to that observed for pure aluminium
(Alexopoulos et al., 1981). They are plotted as a function of mechanical state and temperature
on figure 10.3 where it may be seen that «# decreases with both o* and T. Repeated reloads at
the same mechanical state and strain-rate, and at the same mechanical state but different strain-
rates, show that «# is both reproducible at given o* and is strain-rate independent.

The decrease of «# with o* is linear and independent of T, and so the values of < at 200
and 399°C together with the arithmetic mean of the values of «Z€ at 318°C, were multiply
regressed on the equation

M = A+ Bo* + CT (10.9)
where A, B and C are the regression coefficients. The resulting regression equation (shown on
figure 10.3) is

M = 5304x 101 - 70430* - 1.940x 103 T (10.10)

where the stress dimensions are pascals, T is in kelvin, and the root mean square error is
5166 MPa.

10.2.3 Uncertainties in the values of the anelastic modulus. Although the results presented
on figure 10.3 show that «# varies systematically with mechanical state and temperature, and
that it is reproducible and independent of strain-rate, the slope of the stress / strain curve
between the elastic and anelastic limits is not very sensitive to «# given the range of values
found in these experiments (figure 10.4), and consequently any uncertainties in «# are of
considerable significance.

Accurate knowledge of the specimen dimensions at the start of each reload is important for
the calculations of both differential stress and strain during reloading. Two sources of error arise
in the calculations of these dimensions. Firstly, although strictly they are given by the initial
dimensions less the prior plastic strain, in the data reduction procedures émployed here they
were given as the initial dimensions less the inelastic strain i.e. a small error is introduced by the
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incorrect subtraction of the anelastic deformation. Secondly, the method of calculating the
specimen pre-strain from the stress /strain curves of uninterrupted tests, assumes that the
stress / strain curves from the interrupted tests reproduce them perfectly at the end of the
reloading. This strategy was preferred over the alternative of summing the strains in the
previous loadings because it does not allow the errors arising from the inaccurate location of the
initiation of loading in each reload (due to moving seal friction effects) to accumulate.
Measurements of the final lengths of the specimens made after disassembly of the experiments
correspond to within a strain of 0.004 with those calculated for the end of the final loading, and
hence the errors on «# due to inaccurate knowledge of the specimen dimensions must be small.

A further source of error is that introduced by the visual fitting. The accuracy of these fits
is increased as the ‘length’ of the fitted curve (i.e. the difference between the elastic and
anelastic limits) is increased for this serves to define the anelastic limit more clearly. This is
important because, although plots of £ against o show that (" rises sharply from a constant
level at the anelastic limit (figure 10.2b), the onset of this increase is not defined sufficiently
precisely to aid the fitting. The error introduced by the fitting is most significant at low o*
where o/ is largest (and deviations in the fitted slope have their biggest influence on </,
figure 10.4) and the difference between the elastic and anelastic limits smallest. By doing repeat
fits the error on «# was found to be less than + S000 MPa, and was generally much smaller.

By far the largest potential source of error lies in the procedure of correcting «# ,; to o7
using equation 10.8. The use of equation 10.8 is an attempt to remove errors introduced by any
factor which affects the data quality in these experiments (§ 9). The most significant of these
errors (given the small strain interval and rapidly rising stress) arise from the uncertainty on the
force gauge stiffness (§ 9.1.1.3) and from any permanent strain occurring at stresses below the
anelastic limit (e.g. by cataclasis / mechanical twinning, § 9.4, or by ‘early’ yielding of the
more highly stressed grains of the polycrystal). The magnitude of neither of these errors is
precisely determinable, although it was found for the reloading curves that the difference
between E,,, and E was approximately half (in terms of angle) that for the initial loading
curves, suggesting that the procedure of using reloads to estimates#¢ in order to avoid the effect
of permanent strains at low stresses was at least partially successful. The use of equation 10.8
assumes that all the deviation of E,;,, from E results from these errors and, as suggested by the
fact that the stress /strain curves are linear in the elastic and anelastic regions, that the net
magnitude of the errors remains linearly dependent on stress upto the anelastic limit.

10.2.4 Final statement of the equation of state. The constitutive equation for the anelastic
element is given by
o, = Ha
where
| o6 = 5304x 101 - 704.30* - 1.940x 108T
and ST units have been employed.

10.3 Discussion
The behaviour of the anelastic element is as envisaged by Hart’s original model. As
required, the value of </ at given o* and T is strain-rate and deformation history independent
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(§5.1.1.1, §5.1.3.3). Furthermore, as anticipated from the continuum dislocation theory
analysis of Hart’s model where o/ is shown to be given by
M = G/(xl24°) (10.11)

in which [ is the half distance between the long range barriers to dislocation motion and «#?is
the slip-zone density, it is also a function of o* and T (§ 6.2.1). The decrease G%VWith o*
implies a corresponding increase in (/2.4#?). Similarly, since the decrease in «# with T is an
order of magnitude greater than that of G, (/24°) must also increase with temperature. It is
unlikely that / increases in either instance, and so it is inferred that the decrease in «# with
temperature and mechanical state reflects primarily the increased activation of slip-zones.

Although the results described here fit the anticipated behaviour of the anelastic element,
they are strongly dependent on the validity of using equation 10.8 to determine o« frome# ;.
Since there is no independent justification of this procedure the results should be treated with
caution. It is for this reason that a more extensive investigation of the variation of «# with o*
and T was not attempted, and it is a problem which must be addressed before any attempt is
made to apply the refined Hart model (figure 6.3).

Table 10.1. The data used to fit the anelastic element.

&) & (s°1) o (MPa) o* (MPa) E,,, (MPa) E (MPa) oMy, MP2) oA (MPa)
T =200°C
0.0164 2x 103 193 183 58635 78254 131988 303012
0.0467 2x10% 255 241 62636 78254 148086 280382
0.0867 2x10° 312 294 62636 78254 131988 227798
0.1297 2x10% 360 338 56637 78249 101290 200173
0.1636 2x 105 392 368 64892 78246 123797 183559
0.2087 2x10% 429 402 58448 78243 91438 151336
T=318°C
0.0978 2x10° 303 313 64509 75141 130301 182452
0.0978 2x10% 303 313 72507 75139 159703 173057
0.0978 2x10% 303 313 73374 75139 194035 206884
0.0994 2x10% 305 321 70941 75139 168762 194622
0.1044 2x104 309 315 737117 75139 193894 203589
T=399°C
0.0791 2x10% 275 294 67328 73019 155568 189738
0.1257 2x 103 302 - 328 72815 73017 172797 173926
0.1606 2x10% 316 345 74695 73017 168875 160534
0.2013 2x 103 327 360 67754 73014 123398 142028

The variations in the values of E at nominally the same conditions are due to small changes in the confining pressure. The fitted
data was taken to ten significant figures.



(@)

0r 200°C _-

300 -

STRESS (MPa)
8
t

100
1 1 1
00 0.1 0.2 03
STRAIN
®)
500 ~
399°C
400 -
g 300F ’/"__Kr/r
7] ,”
é 200'/
100 |-
1 i )
00 0.1 0.2 03
STRAIN

FIG. 10.1. The composite stress / strain curves generated in multiple loading / unloading
constant displacement-rate experiments at a strain-rate of 2 x 10~ s! and at (a) 200°C and
(b) 399°C. The dashed stress / strain curves are from uninterrupted constant displacement-
rate experiments conducted on different specimens at the same conditions,
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FIG. 10.2. The fourth loading (third reloading) conducted at 200°C. (a) The stress / strain
curve showing the excellent definition of the elastic and anelastic regions. (b) The
corresponding inelastic strain-rate / stress curve. The ragged form of the strain-rate / stress
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FIG. 10.3. The variation of the anelastic modulus with mechanical state together with the
fitted curves expressing this variation (equation 10.10).
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FIG. 10.4. The slope of the stress / strain curves in the anelastic region for various values of
the anelastic modulus as determined from equation 10.5 using a Young’s modulus of
78285 MPa (200°C and 200 MPa confining pressure). For large «# the slope of the curves
is not very sensitive to the magnitude of «# and hence there are potentially large errors in
its evaluation.
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11 EQUATION OF STATE II. THE FRICTION ELEMENT

The friction element in Hart’s original model is described by (equation 5.12)

£ = a*(o/G)M (11.1)

where in pure polycrystalline materials
a* = a*[(o*/G)Bexp(C/T)] (11.2)
M = M(1/T) (11.3)

in which B and C are material constants (§ 6.2.2). In this study values for 4* and M were
obtained from the load relaxation test, but in other investigations they have also been
determined from the results of stress dip tests (§ 5.1.3.3).

11.1 Fitting the parameters
The following procedure for determining ¢* and M from load relaxation curves depends
upon the assumption that both remain constant during any given relaxation, and that each
relaxation is isothermal and truly at constant o*.
11.1.1 Determining M. From equation 5.7 and the approximation o,=o* (§ 5.1.3.2), then
equation 11.1 becomes
&M = g*[(o-0*)/GIM (11.4)
which may be rewritten as
o = c* + ovM (11.5)
where v = dlog o/ dlog éM (§ A3.1.1). Hence, when plotted as o against ov, relaxation data
should be linear with slope M and intercept o*. This method of obtaining M is to be preferred
over the use of the reciprocal of the scaling slope (widely employed in the literature) which
ignores the expected dependence of 4* on o* (§ 6.2.2.1).
11.1.2 Determining 4*. Rearranging equation 11.4
o = o* + [G/a*x(UM][¢m]QIM) (11.6)
The relaxation data should therefore be linear, with slope [G/4*(1/M)] and intercept o*, when
plotted as o against [£™](1/M), Hence, with the value of M given by equation 11.5, and using
G = 3.1775x1010 - 1.5p - 9.7x 105(T -293) (1.7
(§ 10.1.1, where the arithmetic mean of the two values of Gy is used), 4* may be calculated.

11.2 Results

The stress / strain curves generated in the multiple load relaxation experiments at 120, 160,
200 and 240°C, together with the corresponding relaxation curves, are shown in figure 11.1.
The stress / strain curves show reloading peaks which become less pronounced with increasing
stress and decreasing temperature. These peaks are, however, transient features, and within a
reload strain of 0.01 the stress/strain curves rejoin those obtained from uninterrupted
experiments, with the implication that the cause of the peaks does not also cause a change in o*
during the relaxation.

The relaxation curves show a decreasing degree of upward concavity as temperature
increases, and by 240°C they contain an inflexion point such that they become concave
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downward at low strain-rates. The concave upward portions of all curves generated at given
temperature may be superposed onto one master relaxation curve by a rigid body translation in
fixed direction, but the shape of the master curve and the translation direction changes with
temperature (figure 11.2).
11.2.1 Parameter evaluation. The full results of the fitting procedure as applied to the
relaxation curves shown in figure 11.1 are given in table 11.1. The stresses and strains in the
table are those at the start of each relaxation as given by the data reduction procedure (§ 8.4).
The values of 4*, M and o* for each relaxation curve were determined in the following way :
(i) the log o/ log (" data were fitted to a cubic polynomial ;
(if) using the experimentally observed strain-rates to calculate o from the cubic polynomial and
v from the derivative of that equation, the data was replotted as o against ov and linearly
regressed to determine M (M, in table 11.1) ;
(iii) the mean value of M, at each temperature was determined and these were then linearly
regressed in accordance with equation 11.3, on the equation
MT = A + BT (11.8)
where A and B are the regression coefficients ;
(iv) using the values of M given by equation 11.8 and the relaxation temperature, the
experimentally observed stress / strain-rate relaxation data were replotted as o against [#M™](1/
M), and linearly regressed to determine a* (d%,, in table 11.1) and o* ;
(v) the values of d%,, and o* determined in (iv) were multiply regressed in accordance with
equation 11.2, on the equation
Ing* = A+ Bln(o*/G) + (C/T) (11.9)
where A, B and C are again regression coefficients.
11.2.2 The observed values of the material parameters. The values of M cover almost the
entire range of values recorded for other materials. They are plotted according to equation 11.8
on figure 11.3a. The regression equation is
MT = 8489 - 13.61T (11.10)
where T is in kelvin and the root mean square error on M T is 62.71 K.
The observed values of g* are plotted according to equation 11.9 on figure 11.3b. The
regression equation is
Ing* = -99.19 - 5369In(c*/G) + (45280/T) (11.11)
where the stress dimensions are pascals, the rate dimensions are per second and temperature is
in kelvin. The root mean square error on In 4* is 0.7799 which corresponds to a root mean
square error on the log (™ location of the relaxation curves of 0.3387. Comparison with other
materials is difficult because of the extreme dependence of 4* on the value of M, but the
observed values of [G/ @*(1/M)] are of the same order of magnitude.
11.2.3 Uncertainties in the values of the material parameters. Figure 11.4a-c shows
example plots from the three relaxation data curve fitting exercises — parts (i), (ii) and (iv) of
the parameter fitting procedure. The root mean square errors on the log o /log & fits at all
temperatures are about 1 MPa, whereas on the other two fits they are generally substantially
less than 0.5 MPa.
The errors on the fits suggest that the value of M, which controls the shape of the fitted
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relaxation curve, and that of ¢*, which controls its strain-rate location, are well constrained for
each relaxation. However, there is a broadly defined increase in M with o* at all temperatures
(¢f. M, table 11.1) which was ignored in fitting equation 11.10 on the assumption that it was
within error (and in particular within the error on v arising through neglect of the opper jacket
correction, § 9.3.3.2). In fact the shape of the fitted relaxation curves is not very sensitive to the
choice M within the observed range of values (figure 11.5a), and consequently by appropriate
changes in ¢*, a wide range of M values can be made to fit the data. This is emphasized in
figure 11.5b, where using M = 10 for all the relaxation data plotted in figure 11.4 irrespective of
the observed M value (which for these curves lies between 2.9 and 5.5), apparently has no
significant effect on the linearity of the o versus [£(](1/M) curves. The consequences for the
values of g* are enormous — the g* obtained from the M =10 fits are fifteen orders of
magnitude larger than the corresponding ones in table 11.1. Under these. circumstances, the
fitting procedure used to determine the values of M and g* is clearly of great importance and
presents a highly significant constraint on their interpretation.
11.2.4 Final statement of the equaiion of state, The constitutive equation for the friction
element is given by
&) = g% (O'f/G)M
where
a* = 8.322x 104 (0*/G)3-3%9 exp (376 500/RT)
G = 3.1775x 1010 - 1.5p - 9.7x 106(T-293)
M -13.61 + (8489/T)
and SI units have been employed. The fits to the relaxation data using this equation (in the form
equation 11.4) and the values of o* in table 11.1, are shown on figure 11.1. With the exception
of the highest stress relaxations at 120°C, the fits describe the relaxations within the regression

error on a*.

11.3 Discussion

In principle, the linear scaling behaviour of the relaxation curves suggests that the friction
element behaves as envisaged for Hart’s original model. As anticipated, the scaling slope is
given by

u = (M + 9loga*/dlogo*)1 (11.12)
(equation 4.46) with the implications that 4* and M are constant during each relaxation, that M
is not a function of o*, and that there is a power law relationship between 4* and o* (§ 4.1.2.2).
However, MT is not constant as expected (§ 6.2.2.2), and the rate parameter ¢* decreases with
increasing temperature. Moreover, a* decreases with increasing o*, leading to the unlikely
conclusion that the mobile dislocation density decreases with increasing strain (§ 6.2.2.1).

The exceptionally small slope of the relaxation curves at low strain-rates (particularly at
low o* and at relatively high T') and the existence of the reloading peaks, suggest that the
observed mechanical behaviour may be influenced by impurities (cf. § 6.3.1.2, § 6.3.2.2). Of
the impurities in the Carrara marble only the Mg solutes and the finely dispersed opaque
inclusions are present in sufficient amounts to be of potential significance (§ 8.3.1.1). Since no
correlation between the mechanical properties and the amount of inclusions in the starting
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specimen was observed in this experimental programme, it is inferred that any impurity effect
must be due to the Mg solutes. The systematic variation of the size of the reloading peaks with
temperature and strain is consistent with this inference. At given temperature the size of the
peaks is expected to be largest at low strains before the impurities have been incorporated into
the immobile dislocation network, and after the longest duration relaxations reflecting the
increased amount of solute segregation during the relaxation. The former is evident from figure
11.1 ; the latter is confirmed by the observation that the reloading peaks in the 200°C
unloading / reloading tests used to characterize the anelastic element, are very small (figure
10.1a). With increasing temperature the size of the reloading peaks is expected to rise to a
maximum and then to decrease in correspondence with the magnitude of the solute-dislocation
interactions and with changes in the solute mobility. Again the results are in accord with this
expectation ; the peaks increase to their maximum size at 240°C (figure 11.1) and then diminish
to non-existence at 320°C (figure 12.1).

The limited experimental data available suggests that solute impurities affect M but not g*
(§ 6.3.1.4). The implication is that ongoing solute segregation during relaxation causes a
corresponding decrease in M which is not sufficient to affect significantly the linearity of the o
versus [£M](/M) curves, and which does not sufficiently depend on the pre-strain or the
relaxation duration to prevent scaling. However, this decrease in M is sufficient to affect the
evaluation of 4* and hence the apparent dependence of 4* on o*. It may be that the Mg solute
concentration is simply too small to produce the expected breakdown in scaling behaviour at
given temperature, and hence the solute effect is made apparent only through its temperature
dependence.

In view of these comments it is apparent that while the inelastic deformation of Carrara
marble at 200 MPa confining pressure and low homologous temperatures can be described by
the constitutive relation for the friction element, the material parameters evaluated in this study
are probably strongly influenced by the effect of Mg solute impurities. Hence prior to a full
parameterization for solute impurity effects, it seems inevitable that the equation of state
presehted here will not be applicable to other calcitic aggregates of different impurity
composition.



Table 11.1. The data used to fit the friction element.
o (MPa)

T(°O)
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121
121
120
120
120
121
121
121
121
121
121
120
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162
161
161
161
161
161
161
161
161
161
161
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200
200
200
200
200
200
200
200
200
200
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200
200
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240
241
241
241
241
241
241
241
241
241
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+ data which was not used in the fits. The fitted data was taken to ten significant figures.

£

0.020
0.032
0.043
0.055
0.068
0.081
0.095
0.112
0.133
0.161
0.195
0.239

0.020
0.031
0.042
0.054
0.068
0.079
0.091
0.109
0.128
0.147
0.167

0.012
0.020
0.028
0.036
0.046
0.055
0.065
0.076
0.089
0.101
0.114
0.131
0.144
0.161
0.179

0.025
0.037
0.050
0.066
0.088
0.112

0.020
0.028
0.036
0.044
0.053
0.064
0.082
0.102
0.125
0.149
0.176

240
272
299
323
342
364
383
404
426
454
485
524

222
251
276
298
320
340
357
378
398
415
433

182

227
247

280
296
312
329

359
378
393

424

223
247
273
297
324
349

178
222
41
258
273
288
311
335
360
384
407

o* (MPa)

189
219

259
279
300
315
333
354
373
396
422

193
219
242

282
299
313
335
352
369
384

167
190
211
228
243
259
273
287
303
316
328
347
361
an
389

228

272
296
317

191
214
231
247
262
276
297
319
343
364
385

Mop,

5.907
6.144
6.348
8788
6736
7.591
8335
9.268
8.531
10.04
19.54 +
10.56

Mean M, = 8.02

6.683
4474
5.050
6.054
6.226
6.931
6.572
7111
6.137
5.920
6.879
Mean M, = 6.06

3.877
3.990
3274
3.129
3.263
3.502
3456
3.680
3.607
4.166
4.347
4.652
5.464
5.779
5.123
Mean M, = 4.09

3.004
2745
3.034
3.809
4162
5.097

Mean M., = 3.82

3773
2.541
1.803
2.803
3.175
2.888
2.146
2.700
2918
3470
4.069
Mean M, =2.94
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a%, (s

2.122 x 1018
1.663 x 1018
1.368 x 1018
5918 x 1017
6.147 x 1017
4,930 x 1017
2.848 x 1017
1.917 x 1017
1.926 x 1017
5.998 x 1016
2.143 x 1016
7.088 x 1015

1.542 x 1014
1.192 x 1014
9.200 x 1013
6.480 x 1013
5.046 x 1013
3.629 x 1013
1.848 x 1013
1.840 x 1013
8.959 x 1012
8.372x 1012
4.884 x 1012

1312x 1010 ¢
1.552 x 1010
1.855 x 1010
1.120 x 1010
7.908 x 109
5.904 x 109
5.079x 109
2.979 x 109
2325 x 109
1722 x 109
1.235x 109
1.191 x 109
8.886 x 108
6.201 x 108
5.285x108

1.398 x 108
1.834x 108
1.162 x 108
3.842 x 107
1.708 x 107
1.880 x 107

5.064 x 106
5.395 x 106
1.503 x 106
1.694 x 106
1.429 x 106
9.501 x 105
7.347 x 105
4.725 x 105
3.627 x 105
1.691 x 105
1.346 x 105
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FIG. 11.2. The master o* curves for each temperature as generated by translating the
experimental data within the fitted range of strain-rates (generally log £ > -8) in the
indicated directions (given by equation 11.12). Each of the master curves has a different

value of o*.
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12 EQUATION OF STATE III. THE PLASTIC ELEMENT

The plastic element in Hart’s original model is described by (equations 5.10 and 5.11)
In(c*/a,) = (&*/&)* (12.1)

where

& = (o*/G)"fyexp(-H/RT) (12.2)
in which the material parameters A, m, f, and H are all independent of temperature and
mechanical state. In this study values for these parameters were obtained from the load
relaxation test, but in other investigations they have also been determined from the results of
stress dip tests (¢f. § 6.1.3.4 ; Korhonen et al., 1985a). Both types of test provide the same
mechanical information and consequently the method of fitting the parameters is the same in
each case.

12.1 Fitting the parameters _

The following procedure for determining the requisite material parameters from relaxation
curves depends upon the assumption that they all remain constant during any given relaxation,
and that each relaxation is isothermal and truly at constant o*.

12.1.1 Determining A. Making the approximation ¢& = &(" (§ 5.1.3.2), then equation 12.1 can
be rearranged to show that the slope of a constant mechanical state relaxation curve is given by
v = dlogo/dlogém = A(&*/ém)* (12.3)
(§ A3.1.2). Substituting this result back into equation 12.1 and rearranging, then with o =0,
(§5.1.3.2)
Ine = lno* - (v/A) (12.4)
Hence relaxation data should be linear, with slope (-1/4) and intercept In o*, when plotted as
In o against ». :
12.1.2 Determining o* and £*, Rearranging equation 12.1 and using & = é™ and o = g,
Ino = Ino* - (£*)*(1/&m)* (12.5)
The relaxation data should therefore be linear, with slope -(£*)* and intercept In o*, when
plotted as In o against (1/£()2, Hence, with the value of A given by equation 12.4, g* and &*
may be found.
12.1.3 Determining m, f, and H. Rewriting equation 12.2 as
Iné* = min(c*/G) + Infy - (H/RT) (12.6)
then with the values of o* and £* given by equation 12.5 for all the relaxations of interest, and
with
G = 3.1775x 1010 - 1.5p - 9.7x 106(T -293) (12.7)
(§ 10.1.1, where the arithmetic mean of the two values of G is used), then m, f, and H may be
found by conducting a multiple linear regression of In £* on In (¢*/G) and (1/T). For a suite
of relaxations generated at constant temperature, m is also the reciprocal of the scaling slope
(§4.1.2.1).
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12.2 Results

The stress / strain curves generated in the multiple load relaxation expeﬁments at 240, 280,
310, 320, 360 and 400°C, together with their corresponding relaxation curves, are shown in
figure 12.1. The reloading peaks present in the corresponding stress / strain curves at lower
temperatures (figure 11.1) disappear at temperatures above 280°C, and the reloading curves
simply rejoin the uninterrupted stress / strain curve, albeit with a transient which occupies an
increasing strain as the total strain and temperature is increased. Hence, it is inferred that there
were no changes in o* during any relaxation (with the possible exception of the two highest
strain relaxations J and K at 400°C), and that the size of the reloading transients reflects only
increased weak barrier recovery as temperature and o* are increased (§ 6.1.4).

The relaxation curves show an increasing degree of downward concavity as temperature is
increased, but no change in concavity with the loading strain-rate. At each temperature all the
curves may be superposed onto one master relaxation curve by a rigid body translation in a
fixed direction, and this direction is independent of temperature (figure 12.2).

12.2.1 Parameter evaluation. The full results of the fitting procedure as applied to the
relaxation curves shown in figure 12.1 are given in table 12.1. The stresses and strains in the
table are those at the start of each relaxation as given by the data reduction procedure (§ 8.4).
The values of the material parameters were determined in the following way :
(i) the log o /log £(™ data were fitted to a cubic polynomial ;
(ii) using the experimentally observed strain-rates to calculate o from the cubic polynomial and
v from the derivative of that equation, the data was replotted as In o against v and linearly
regressed to determine A ( A, intable 12.1);
(iii) the A, from every utilized relaxation were sorted into size classes 0.05 wide and a value
between the mode and the arithmetic mean was adopted as A ;
(iv) using the value of A obtained from (iii), the experimental stress / strain-rate relaxation data
was replotted as In o against (1/£(™)2, and linearly regressed to determine o* and £* ;
(v) the values of o* and é* given by (iv) for every utilized relaxation, were multiply regressed
on the equation
Iné* = A + Bln(c*/G) + (C/T) (12.8)
and f;, m and H determined from the regression coefficients A, B and C respectively. As a
comparison, a value of m (m,, in table 12.1) was also determined for each suite of relaxations
by linearly regressing the values of o* and £* given by (iv) on
Iné* = A + Blno* (12.9)
where m,,, is the regression coefficient B.
12.2.2 The observed values of the material parameters. The frequency diagram of A,
values is shown in figure 12.3a. The adopted value of A was
A =02 (12.10)
which compares with a mean 4, of 0.25 and a root mean square error about that mean of 0.13.
This value of A is close to the average of that obtained from other materials. _

The observed values of &* are plotted according to equation 12.8 on figure 12.3b. The

regression equation is
Iné* = 4691 + 9.170In (o*/G) - (19880/T) (12.11)
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where the stress dimensions are pascals, the rate dimensions are per second and temperature is
in kelvin. The root mean square error on Iné* is 0.5736 which corresponds to a root mean
square error on the log £( location of the relaxation curves of 0.2491. Hence

fo = 2367x100s1 ; m = 9170 ; H = 165.3kimol! (12.12)
The mean m,, is 9.05 with a root mean square error of 1.03. This value of m lies within the
range observed for other materials.
12,2.3 Uncertainties in the values for the material parameters. Figure 12 4a-c shows
example plots from the three relaxation data curve fitting exercises — parts (i), (ii) and (iv) of
the parameter fitting procedure. The root mean square errors on the log o /log é( fits at all
temperatures are generally less than 0.5 MPa ; for the Ino/v fits at temperatures less than
350°C they are generally less than 0.75 MPa, but at higher temperatures they increase to more
than 5 MPa as the In /v curves become markedly non-linear (figure 12. Sa) while for the
In o/ (1/ (M) fits they are generally less than 1 MPa.

The most significant uncertainty in the values of the material parameters concerns that of
A. A controls the shape of the fitted relaxation curves such that increasing A increases the
concavity of the relaxation curves, although this effect is only noticeable (within the range of 1
values observed in these experiments) near their point of maximum curvature (figure 12.5b).
This latter observation is significant because the relaxation curves at the lower temperatures all
lie to the high strain-rate side of the point of maximum curvature of the master relaxation curve,
whereas those at 360 and 400°C contain this point of maximum curvature near the middle of
their accessed strain-rate range. Hence it may be expected that the most reliable estimates of 4
are those obtained at 360 and 400°C. Unfortunately it is at T> 350°C that the actual fitting
errors are largest, for it is at these temperatures that the In o/ v fits used to evaluate A are least
linear.

The departure of the In o/ v curves from linearity implies, in principle, that one or more of
the material parameters change during relaxation. This would invalidate the use of these plots to
determine A. However, » is extremely sensitive to factors influencing the apparent load / time
data and in particular to the neglect of the copper jacket correction. Since the observed
departure from linearity is such that it indicates that the observed log o /logé(™ relaxation
curves are too linear at low strain-rates, it is assumed that the non-linearity is an artifact of the
neglect of the copper jacket correction under circumstances where rapid recovery/
recrystallization is ongoing in the jacket material (§ 9.3.3.2).

Given these observations, it seems unwarranted to assert that A is dependent on any of the
deformation variables. A,,,; shows no significant variation with o* or with the strain-rate during
pre-straining, and the apparent decrease of A, with temperature for T < 320°C (figure 12.5¢) is
interpreted to reflect the lack of sensitivity of these relatively flat relaxation curves to the value
of A. The adoption of a value of A which is less than the mean A, accords with the higher
temperature values of 4, while also reflecting the observation that overestimates of A produce
a much larger departure from linearity on In o/ (1/£()* plots than underestimates of the same
magnitude. Indeed attempts to fit the relaxation data to A > 0.2 were inadequate at 360 and

400°C and so it is anticipated that the adopted value of A = 0.2 is an overestimate rather than an
underestimate.
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Inspection of figure 12.3b shows that the error on the £* fits reflects primarily the 360°C
results which behave more as if they were generated at 350°C, and the 320°C results which
behave as if they were generated at 330°C. The slope of the curves (i.e. m) is well defined, as is
their temperature location (i.e. H) when considered over the full temperature range. This is
confirmed by the excellent fit of all the relaxations to a single temperature-parameterized,
master o* curve (figure 12.2b). In consequence, excepting the uncertainty introduced into the
magnitude of £* by the uncertainty on A, it is considered that the errors on m, f; and H are
small.

12.2.4 Final statement of the equation of state. The constitutive equation for the plastic
element is given by
In(o*/a,) = (&*/&)*
where
A =02
& = (o*/G)"fyexp(-H/RT)
= 9.170 ; fy = 2367x1020s! ; H = 165.3 kImol!
G = 3.1775x 1010 - 1.5p - 9.7x 10(T-293)
and SI units have been employed unless specified. The fits of the relaxation data using this
equation and the values of o* in table 12.1, are shown in figure 12.1. The fits describe the
relaxations within the multiple regression error on £*.

12.3 Discussion

The behaviour of the plastic element is as envisaged by the original Hart model. All of the
material parameters are apparently independent of the deformation variables and all are of a
comparable magnitude to those found for other materials. The greatest uncertainty concerns the
magnitude of A but the value obtained is nevertheless close to the average found for other
materials, which is significant given that it is often assumed that the value of A is material
independent. |

It appears therefore that of the three elements in Hart’s original model, the fitted equations
for the plastic element are the most reliable. However, given effect of Mg solute impurities on
the parameters of the friction element, the potential influence of those impurities on the
parameters of the plastic element cannot be precluded. An assessment of this possibﬂity and
hence of the general applicability of the evaluated equations to other calcitic aggregates, is
rendered difficult by the lack of a micromechanical interpretation for equations 12.1 and 12.2.



Table 12.1. The data used to fit the plastic element.
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FRE=IHQTMEHnuaQwy

~ZomEYAw>Y

&M =6x10551

Smaoammoaw

241
241
241
241
241
241
241
241
241

281
281
281
282
281
281
281
281
281

320
320
321
322
324
324
324
322
319

362
362
362
363
362
363
362
362
362
362
362
364

=2x104s1

400
399
400
402
402
402
402
401
401

313
313
314
314
314
313
313
314

£

0.083
0.110
0.133
0.154
0.171
0.189
0.209
0.231
0.254

0.024
0.036
0.046
0.062
0.085
0.109
0.140
0.174
0.178

0.014
0.024
0.034
0.043
0.053
0.062
0.075
0.091
0.109
0.129
0.159
0.207

0.008
0.015
0.025
0.035
0.046
0.060
0.075
0.103
0.144

0.033
0.047
0.061
0.077
0.092
0.105
0.120
0.140

o (MPa)

41
258
273
288
n
335
360
384
407

311

361
375
387
401
412
424
438

231

270
297
319

375
381

182

228
249
265
276
289
301

323

379

171
193
210
231
247
259
272
299
326

230
255
275
293
309
318
332
348

o* (MPa)
241
267

312
332
358
380

Mops = 11.27

312
343
365
380
395

418
431
446

210
235

276
306
330

393
398
Mops = 9.62

179

220
243
259
268
287
316
347
Mops = 8.73

236
263
283
302
318
329
343
359

2 obs

0.436
0.816
0.733
0.539
0.553
0374
0420
0.352
0.326

0.405
0.409
0.293
0.337
0.348
0.266
0.277
0.250
0.259

0.393
0.282
0.253
0.169
0.206
0.255
0.249
0.215
0.236

0.153
0.117
0.397
0.150
0.150
0.149
0.136
0.179
0.120
0.132
0.130
0.132

0.118
0.162
0.111
0.167
0.151
0.117
0.131
0.157
0.161

0.317
0.242
0.245
0.217
0218
0.238
0.222
0.147

201

&%, (s1)

5.182 x 1016
1.251 x 1016
5.872x 1017
4323 x 1016
5.863 x 1015
5.116x 1015
9.079 x 10-15
1.299 x 10-14
4.598 x 1014

4.149x 1014
1.050 x 1013
2331x1013
3366 x 1013
6.162x 1013
5.146 x 1013
7.153x 1013
7.252x 1013
1.033 x 1012

2.672x 1014
4811 x 1014
1.651x 1013
3.684 x 1013
1.449 x 10-12
1.768 x 1012
4.664 x 10-12
1.186 x 10-11
8.200 x 10-12

3967 x 1014
1.195 x 10-13
3.969 x 1013
4.609 x 10-13
1.133 x 1012
1.354 x 1012
2.183 x 1012
5.204 x 1012
3.682x 1012
7.291 x 1012
1.347x 1011
4.728 x 10-11

3.131x 1013
1.815x 10712
1.215x 1012
4330x 1012
7.730 x 1012
9.109 x 1012
2.012x 1011
4708 x 10-11
1.120 x 10-10

7.743 x 10-14
1.736 x 10-13
2.687 x 1013
5.053x 1013
1.028 x 1012
9.934 x 1013
1.554 x 1012
2.539x 1012



J
K

£én=2x1035s1

C
D
E
F
G
H
I

J

£ =6x 10651

B
C
D
E
F
G
H
I

J

K

The fitted data was taken to ten significant figures.

T(°0)

313
314

311
K}
n
310
311

. 310

313
313

314
314
314
313
314
313
314
314
313
314

&)

0.163
0.187

0.042
0.056
0.070
0.086
0.100
0.117
0.142
0.178

0.020
0.031
0.041
0.053
0.070
0.087
0.102
0.120
0.136
0.156

o (MPa)
362
374

A7
268
287
305
316
332
350
375

203
226
245
263
282
299
313
326
336
348

ot (MPa)
378
389

My = 8.48

254

297
317
326
347
366
394

My = 8.93

212
236
258
275
295
313
332
345
357
369
My =741

0.175
0.159

0332
0.357

0.232
0.223
0.181
0.151

0176

0.335
0.170
0.279
0.160
0.111
0.075
0.165
0.164
0.163
0.133

202

&%, ()
4.385 x 1012
4400 x 10-12

8.805 x 1014
2.665 x 1013
4.694 x 1013
9.080 x 10-13
6.403 x 10-13
1.689 x 10-12
2.547x 1012
5362 x 1012

3373x 1014
5.882x 10
1455 x 1013
2.300x 1013
2517x 1013
3.880x 1013
1.029 x 10-12
1.196 x 1012
1.606 x 1012
1.750 x 1012
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FIG. 12.1. The stress / strain and corresponding load relaxation curves from the multiple
relaxation experiment at 240°C. The solid relaxation curves are the fits using the final
equation of state (§ 12.2.4) and the values of o* in table 12.1. No log & shift has been

applied to the fitted curves.
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FIG. 12.1 contd. The results of the multiple relaxation experiment at 281°C. The fitted
relaxation curves have been given a log £(® shift of -0.18.
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relaxation data obtained at 400°C showing its markedly non-linear nature.
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13 EVOLUTION EQUATION I. T<045T,,

The mechanical state evolution equation at T'<0.457,, is described by (equations 5.13 -
5.16)

I' = dino*/da = I'*exp[-(&*/&)A] (13.1)

where
r* = [/ (c*-0§1" (13.2)
&* = (I'*)™ fo exp (-H*/RT) (13.3)

in which the material parameters A, £, 11, o, m*, fo* and H* are all independent of temperature
and mechanical state. In this study values for these parameters were obtained from constant
displacement-rate tests conducted at several different displacement-rates and temperatures. This
follows the experimental strategy employed in the only other investigation of these ‘parameters
(Korhonen et al., 1985b), although the temperature dependence of equations 13.1 - 13.3 has
never before been experimentally determined.

13.1 Fitting the parameters

In order to evaluate the parameters in equations 13.1 - 13.3 it is first necessary to determine
curves of In o* against . The slope of these curves is I', and hence the dependence of I" on the
variables o*, & and T may be found from the dependence of that slope on these variables.

The following procedure for determining the requisite material parameters from constant
displacement-rate stress / strain curves, makes the approximations that the anelastic component
of the inelastic strain is negligible so that a=¢™ and & =é£M (§5.1.3.2), and that the
deformation is at constant strain-rate where also ™ = () (§ 9.5.2).

13.1.1 Determining o*. The magnitude of o* at any time in an isothermal constant inelastic
strain-rate test may be determined from the appropriate equations of state using the inelastic
strain-rate, temperature and differential stress supported at that time. At 7<0.37,, the
appropriate equation of state is the constitutive relation for the friction element, while at
T'>0.3T,, it is the constitutive relation for the plastic element. These equations may be solved
for o* using the Newton-Raphson method (§ A3.1.3), by respectively writing them (to avoid
mathematical stiffness problems, § 7.1.2.3) as

0 = [Aexp(C/T)]1[c6*/G]18[(o-0*)/GIM - &M (13.4)

(equations 11.4 and 11.9) and

foexp (- H/RT)
&n

A
0 = lno* - Ino - [ ] [G]*"[o* P (13.5)

(equations 12.1 and 12.2).
13.1.2 Determining A. Equation 13.1 has the same form as equation 12.1 and hence A may be
determined in the same way as A (§ 12.1.1). First I is determined as a function of o* and £
from the isothermal, constant inelastic strain-rate stress / strain data plotted as curves of In o*
against £™), The I data is then plotted as constant o* curves of log I" against log £(™. The slope
of these curves is given by

(dlogI'/ dlog éM) . = A(&*/émn)A (13.6)
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(§ A3.1.4) which on substituting back into equation 13.1 yields
InI" = InIr'* - [(dlogI'/dlogéM)./A] ' 13.7)
Hence the isothermal I' data should be linear with slope (-1/A) and intercept InI"*, when
plotted as constant o* curves of In I” against (dlog I'/ dlog £(™).
13.1.3 Determining I'* and &*. Equation 13.1 may be written as
InI' = InI* - (&*)A(1/ém)A (13.8)
Hence the isothermal I" data should be linear with slope -(&*)4 and intercept InI"*, when
plotted as constant o* curves of InI” against (1/£™)A, Therefore with the value of A given by
equation 13.7, I'’* and &* may be found.
13.1.4 Determining £, n and o§. If 6§ = 0, then equation 13.2 may be written as
Inr* = pln¢ - nlno* (13.9)
Hence the values of I'* given by equation 13.8, when plotted as In I"* against In o*, should be
linear with slope -7 and intercept n1n . If of§ # 0, then equation 13.2 may be written as
o* = of + cr*tm (13.10)
£, n and o§f may then be found from a non-linear least squares fitting routine. Alternatively,
with the correct value of 7 the values of I'* given by equation 13.8, when plotted as o* against
r*Cm), should be linear with slope ¢ and intercept . The value of 7 can then be chosen as
the one which provides the best linear description of the data.
13.1.5 Determining m*, f;* and H*, Rewriting equation 13.3 as
Ing* = m*Inl'* + Infy* - (H*/RT) (13.11)
then with the values of I'* and &* given by equation 13.8, m*, f* and H* may be found by
conducting a multiple linear regression of In &* on InI"* and (1/T). For a suite of isothermal

constant o* curves of logI” against log é™, m* is also the reciprocal of the scaling slope
(§ 4.2.2.3).

13.2 Results

The stress /strain curves generated in the constant displacement-rate experiments are
presented as curves at the same strain-rate but various temperatures in figure 13.1, and as
curves at the same temperature but various strain-rates in figure 13.2. To avoid the errors that
arise from the indeterminancy of the precise time at which loading begins, the stress / strain
curves have been stress and/or strain shifted so that they all have a common stress at a strain of
about 0.01. In practice this shifting was necessary for only a few of the curves (all at the highest
strain-rates), and the shifts applied were always less than a stress of 5 MPa and a strain of
0.005. All the curves demonstrate an excellently systematic decrease in the stress supported at
given strain as temperature is increased and, with the exception of the curves generated at the
highest strain-rate (6x 104s-1), in the stress supported at given strain as strain-rate is
decreased. The difference in the behaviour of the 6 x 104 s™1 curves may reflect the effects of
cataclasis (§ 9.4.1), but is sufficiently small to be ignored.

The stresses supported at £() = 0.10 together with the values of o at this strain are given in
table 13.1. '
13.2.1 Parameter evaluation. The values of the material parameters in equations 13.1 - 13.3
were determined in the following way.
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(i) The stress / total strain curves were digitized using approximately fifty points per curve in
the strain interval 0.01 to 0.32, and were then fitted to a fourth order least squares polynomial
as curves of £() against o.
(ii) Each stress / strain curve was converted to a curve of In o* against £, First the Newton-
Raphson method was used to solve the () /o polynomial of the curve for the stress at fifty
equally spaced (in strain) points in the strain interval 0.015 to 0.30. Then using these stresses,
the inelastic strain was calculated at each point by subtracting the the elastic strain £ from &%),
where

e® = In{1/[1-(c/E)]} (13.12)
(§ A3.1.5) in which E is the calcite Young’s modulus (equation 10.7). The stresses were also
used with the temperature and strain-rate of the test, to calculate o* at each point from either
equation 13.4 or 13.5. Equation 13.4 was used for the curves generated at T < 250°C, and
equation 13.5 for the curves generated at higher temperatures. Finally the In o* / (™ points for
each curve were fitted to a sixth order least squares polynomial.

The final In 6* / £(" curves for each temperature are shown in figure 13.3. At temperatures
below 200°C these curves are strain-rate independent i.e. I" (the slope of the curves) is strain-
rate independent. At higher temperatures a strain-rate dependence to I" becomes apparent at the
smallest strain-rate.

(ii) I" (=dInoc*/de™) was determined from each isothermal constant inelastic strain-rate
In o* / &M curve at 20 MPa intervals of o* in the range 200 to 440 MPa (or the maximum o*
value of the curve). This was done by using the Newton-Raphson method to solve the In 6* /
£™ polynomial for (™ at each required o* value, and then by using the (™ to evaluate the
derivative of that polynomial at that o*.

The results of this exercise are plotted in figure 13.4 as constant o* curves of log I" against
log ™ for all the temperatures investigated. These plots confirm that only at temperatures
above 300°C is I" appreciably strain-rate dependent, and then only at the highest values of o*.
(iv) The constant 6*, log I' / log £(™ data is not sufficiently smooth to permit a reliable estimate
of A by the method described above (§ 13.1.2). Hence it was assumed that A = A as seems to be
warranted from experiments on other materials (§ 4.2.2.3).

(v) Using the value of A given by (iv), the data presented on figure 13.4 (determined in iii) was
replotted as InI" against (1/é™)A, The data belonging to each value of o* and T was then
linearly regressed to determine I"* and ¢&* at those values of o* and 7.

(vi) The values of I'* determined from (v) were plotted as In I"* against In o* and were linearly
regressed on the equation

InI'* = A + Blno* (13.13)

and ¢ and 7 determined from the regression coefficients A and B. For the final fits only the data
from T < 250°C was used. The data from higher temperatures had the same slope (i.e. the same
value of B) but at given I'* were shifted to a value of o* which was 15 MPa larger than that
observed at lower temperatures. Since this is about the same difference in o* as arises from
fitting the equations for the friction and plastic elements to the same mixed concavity relaxation
curves at 240°C (cf. tables 11.1 and 12.1), it was interpreted as reflecting the errors arising from
the use of two different equations of state (equations 13.4 and 13.5) to evaluate o* rather than
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any real change in A.
The InI"* / In o* plot is shown in figure 13.5a and is compared with the o* / I'*(-1/7) plot
generated using the determined value of 7 (figure 13.5b).
(vii) the values &* given by (v) were multiply regressed on the equation
Iné* = A+ Blnl'* + (C/T) (13.14)
and ff, m* and H* determined from the regression coefficients A, B and C respectively. For
each value of &* the value of I'* was determined from equation 13.13 using the appropriate o*
(o* - 15 MPa for all T > 250°C) value. Since many of the InI"/ (1/£™)4 curves of (v) yielded
&* = 0 within the fitting error, only those (&*, I'*, T) data sets in which &* was significantly
greater than zero were used. The remaining data is shown in figure 13.6.
13.2.2 The observed values of the material parameters. From (iv)
A = 02 (13.15)
The regression equation 13.13 is
Inr* = 5052 - 2.522Ino* (13.16)
where the stress dimensions are pascals and the root mean square error on InI"* is 0.0509.
Hence
{ = 494MPa ; n = 2522 ; o§=0 (13.17)
The values of £ and 7 are of similar magnitude to those obtained in other materials, while the
value of o is consistent with the large grain-size of Carrara marble (§ 4.2.2.3).
The regression equation 13.14 is
Ina* = 45.32 - 11.42 InI'* - (29880/7) (13.18)
where the stress dimensions are pascals, the rate dimensions are per second, temperature is in
kelvin, and where the root mean square error on In &* is 1.302. Hence
[ =4787x10¥s1 ; m* = -1142 ; H* = 248.4kJmol? (13.19)
The value of m* is similar to that of OFHC copper, the only other material for which it has been
determined. The value of H* is the same (within error) as reported previously for the apparent
activation enthalpy of exponential law creep (equation 1.1) in Carrara marble (Rutter, 1974).
13.2.3 Uncertainties in the values of the material parameters. Figure 13.7a shows an
example of the &® /o fits from which it is apparent that the fitted polynomials provide an
excellent description of the experimental stress / strain curves. The same is true of the In o* /
e fits (figure 13.3), and hence it follows that these two polynomial fitting exercises do not
introduce any significant error into the determinations of I'(c*, é™). However, the value of I'
is extremely sensitive to the slope of the experimental stress / strain curves. Hence even very
small non-systematic variations in this slope as a function of temperature and strain-rates (i.e.
departures of the stress / strain curves from perfect reproducibility) lead to a scatter when the
data from different experiments is combined to plot a constant o* curve of log I" against log ("
(figure 13.4). This scatter presents a highly significant constraint on the parameter fitting
exercise because it prevents A from being reliably determined, and because it causes a scatter
on the InI"/(1/é™)4 plots (figure 13.7b) which are used to determine I"* and &* and hence
all the other parameters.
The assumption that A =4 seems justified on the grounds that it makes explicit the
correspondence between flow and work hardening behaviour as a function of strain-rate and
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temperature (¢f. equations 12.1 and 13.1), i.e. a tramsition in flow behaviour results in a
transition of work hardening behaviour and vice versa (Korhonen et al., 1985b). Hence since
the uncertainty on A is believed to be small (§ 12.3), then that should also be true of A.

The scatter of the I" data is approximately the same for each constant o* curve, and
consequently it has much less significance on the value of 7 than on ¢ when the magnitudes of
both are determined from the values of I'* given by the intercepts of the InI"/(1/£(M)4 linear
fits. The uncertainty of 7 seems to be small given the quality of the linear fit to the InI"* / In o*
data (figure 13.5a). Moreover, given the quality of the linear fit there is no justification for
fitting o = 0 even though the o* / I'*1/7) plot using 5 =2.522 (figure 13.5b) is linear and
yields o = 63.56 MPa (and { = 445.7 MPa).

The scatter of the I' data on the InT"/(1/é™)4 fits influences significantly the slope of
those fits and hence the value of ¢&*. This problem is compounded by the fact that within the
temperature and strain-rate range investigated the variation in &* is small. The uncertainty on
&* is reflected in the non-linearity observed between In &* and InI"* (figure 13.6). However,
excepting this non-linearity, the slope of the ln&*/InI'* relationship (i.e. m*) and the
temperature dependence of In &* (i.e. H*), both appear to be well constrained,

13.2.4 Final statement of the evolution equation. The o* evolution equation at 7' < 0.457,, is
I' = dino*/do = TI'*exp[-(&*/&)4]
where
A = 02
r* = [¢/(e*-o®)]
{ = 4994MPa ; n = 2522 ; of =0
&* = (I'*)™* ff exp (-H*/RT)
fof = 4787x10¥9s1 5 m* = -1142 ; H* = 248.4kJmol’!
and SI units have been employed unless specified. The fits to the log I" / log #(® data using this
equation are shown in figure 13.4. For all T'> 250°C the fitted curves correspond to a value of
o* which is 15 MPa less than that of the plotted I” data (¢f. § 13.2.1).

13.3 Discussion

Within the parameter fitting constraints posed by the difficulty of precisely reproducing the
values of I'" in different tests, the behaviour of the o* evolution equation is as envisaged by
Korhonen et al. (1985b) and adopted here for use in Hart’s original model. All of the material
parameters are apparently independent of the deformation variables and all are of a magnitude
which corresponds with that expected. However, despite this, the general applicability of the
values obtained for the material parameters remains unclear. This reflects partly the uncertainty
on the parameters due to the fitting errors, and partly the unknown influence of mechanical
twinning on the results. .

To reduce the uncertainty on the parameters due to the fitting errors it is necessary either to
reduce the scatter in I” values primarily responsible for those errors, or to reduce the influence of
that scatter on the parameter fitting procedures. Since the reproducibility of the stress / strain
curves generated in this study is excellent given the technical limitations imposed by
conducting experiments at elevated confining pressure, it seems unlikely that the scatter in I"
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values can ever be significantly reduced. To reduce the influence of the scatter in I" on the
fitting procedures, it is necessary to obtain more data under conditions in which I is strain-rate
sensitive. However, even at the highest permissible temperatures (400°C) this would require
experiments conducted at a strain-rate of at least an order of magnitude slower than the slowest
employed here, while at lower temperatures strain-rates substantially smaller than this would be
necessary. Such tests would be of a prohibitively long duration.

If the observation that off=0 is accurate then it suggests that as expected the overall
deformation behaviour is not significantly influenced by any interactions between the
dislocations and the twin boundaries (§ 9.4.2). However, twinning must be fesponsible for some
of the strain experienced by the aggregate and hence it will affect the apparent value of I
Without knowing the magnitude of this strain as a function of the applied stress, it is difficult to
ascertain precisely how significant this effect is.

If significant, these uncertainties pose considerable problems not only for the application of
the equations to other deformation histories / calcitic aggregates, but also for the extrapolation
of the equations (and hence Hart’s model, § 6.4.3.3) to T > 0.45T,,. In the absence of theoretical
constraints, some insight into the significance of the problems may be gained by using the
equations to simulate deformation tests and by then comparing the results with actual
experimental data (cf. § 7.1). Although this is a simple task, it has yet to be attempted.



Table 13.1. The stresses supported at a total strain of 0.10 in the constant displacement-rate experiments.

T(°0)
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121
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200
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199
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217

240
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240
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281
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281
mn

k)0
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313

320
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320
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418

&0 (s
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2x103
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6x107
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6x105
2x10-3
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6x107
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2x105
6x10%
6x107

2x104
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6x103
2x10-5
6x10%
6x107

6x104
2x104
6x105
2x10-
6x10%
6x107
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6x 105
2x105
6x 106
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6x105
2x10°5
6x 106

6x107 ‘

6x104
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6x105
2x105
6x10-6
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6x 105
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6x106
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2x104

o (MPa)
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360
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320
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3n
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310
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303
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307

302
310
302
302
306
289
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303
297
297
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211
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289

o* (MPa)
309
302
298
299
302
300

302
303
300
301
298
303

293
306
302
304
306
308

307

297
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307
308
312
308

317
321
315
316
317
314

312
315
316
319

307
317
310
311
319
308

305
313
309
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316
305

301
313
302
309
317
291

305
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FIG. 13.1 The stress / strain curves generated in the uninterrupted constant displacement-

rate experiments plotted as a function of temperature at constant ‘strain-rate’.
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FIG. 13.2. The stress / strain curves of figure 13.1 replotted as a function of strain-rate at
constant temperature.
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slope of these curves is I'.
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symbols are merely for presentation purposes.
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FIG. 13.5. The I'* values for T < 250°C plotted according to (a) equation 13.9 and (b)
equation 13.10. The linearity of plot (a) implies that ¢§ = 0 although plot (b) yields a small
value of 64 MPa for this parameter.



InI*

In &* (s1)

400°C

360°C

320°C

FIG. 13.6. The variation of &* with I"* and T together with the fits expressing this variation
(equation 13.18). The slope of these curves is the reciprocal of the scaling slope for the
log I'* / log é(™) curves shown in figure 13.4.

239



(@)

03
02}
E
01
0 pd )
0 100 200 300 400 500
STRESS (MPa)
(b)
3~
o* (MPa)
o o o s o —o0— 185
o« o . b . —e— 205
2o o ° o o —0— 225
L *—o * 4 o— 245
—-o——0—— 00—
. 2 ~—0O o— 265
o—0a_ o a b ~o— 285
~ 22— o ° —o— 305
1k Qo L g
£ w —e— 325
° s e 345
N\“ 365
385
oF
279°C
-1 1 1 1
5 10 15
s A
(1/€™)

FIG. 13.7. Errors in the evaluation of the evolution equation. (a) A typical example of the
strain / stress polynomial fits of the data presented in figure 13.2. (b) Typical fits to the I"
data plotted as InT" vs. [1/¢(]4 in order to determine ¢*. The I data corresponds to that
determined for the appropriate strain-rate at the indicated o* + 15 MPa (i.e. the strategy
employed for all 7> 250°C, § 13.2.1).

240



241

14 EVOLUTION EQUATION II. STATIC RECOVERY

Nominally deformation independent changes in mechanical state at 7> 0.45 T,, (i.e. static

recovery, § 6.4.1) are accommodated within Hart’s original model as the term

dnoc*/dt = -R(c*,T) (14.1)
in the mechanical state evolution equation (equation 5.13). The functional form of R(o*, T)
was not stipulated by Hart, and there have been few attempts to determine it by experiment (cf.
§ 6.4.3). ,

In principle provided the appropriate recovery absent equation of state is known, the
functional form of R(o*, T) may be investigated by interrupting any deformation test
(conducted under conditions where that equation applies) for a period of isostatic annealing at
elevated temperature, and then on completion of the anneal, by continuing the test at the initial
deformation conditions. The equation of state can then be used to calculate o* both before and
after annealing from the corresponding deformation behaviour. By repeating the experiment for
different anneal durations, a curve of o* as a function of anneal time may be generated and
hence dln o*/dt can be evaluated. The functional dependence of dln o*/dt on o* and T may
then be ascertained by generating several such curves at different anneal temperatures and after
different pre-strains (the latter permitting access to a wider range of &*).

This strategy contains the separate problems of (a) evaluating dlno*/dr from a given
experiment, and of (b) finding an appropriate function to describe the observed dependence of
dln o*/ dt on o* and T. In this study only the first of these problems is addressed, although the
second is given some consideration in the discussion of the results (§ 14.4). The changes in o*
during annealing are determined from stress / strain curves generated by constant displacement-
rate tests conducted at 420°C and 3 x 104 51,

14.1 Evaluating the recovery function

The ideal behaviour required for evaluating dln o*/dt from the results of an interrupted
constant displacement-rate test is illustrated in figure 14.1a. The specimen is first loaded to
stress o3, offloaded and then annealed for given period. On reload the specimen yields at stress
o,, where if static recovery has taken place o, < 03, and thereafter retraces the initial stress /
strain curve, although along a path displaced from it by Ae. In such circumstances, the
magnitude of o* both before and after annealing, can be calculated from the appropriate (for the
deformation conditions) equation of state using o3 and o, respectively.

Real behaviour however, is complicated by reloading tramsients. At low homologous
temperatures these may be due to factors such as solute impurities (§ 6.3.1.2), but at T>0.35T,,,
of greater significance are the reloading transients attributable within the framework of the
refined Hart model (§ 6.1) to weak barrier recovery. Weak barrier recovery does not affect the
propensity for the reloading curve to rejoin the stress/strain curve generated in an
uninterrupted test (i.e. it does not affect o*), but it modifies the shape (decreases the observed
stresses at given strains) of the initial part of that curve. Such transients may persist over reload
strains of several percent and hence lead to an underestimate of the post-annealing value of o*
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FIG. 14.1. Methods of estimating recovery from a comparison of the stress / strain curves
generated by constant displacement-rate deformation before and after a period of annealing.
(a) Ideal reloading behaviour permitting recovery to be unambiguously estimated by using
the indicated stresses in equation 14.3. (b) Definition of the various terms (in equations
14.2 to 14.3) used to estimate recovery when there is a reloading transient.

if the latter is calculated using o,.
The influence of weak barrier recovery turns the evaluation of dln o*/dt into a two part

problem. First it is necessary to determine a method for making the comparison of the initial
and reload curves i.e. to determine a recovery estimate, and then secondly, it is necessary to
translate that estimate into a change in o*.

14.1.1 Obtaining an estimate of recovery. In principle, the most suitable (for evaluating
dIn o*/dt) comparison of initial and reload stress / strain curves is to determine Ae (i.e. the
translation parallel to the strain axis required to superpose the reload curve onto the initial
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curve), since this requires the use of the transient-free portion of the reload curve and is
therefore unaffected by weak barrier recovery. Normalizing with respect to the final strain
attained in the first loading ¢, the fractional recovery is
Erpc = Ag/E (14.2)

However, if the slope of the stress / strain curve is small in the strain range of interest, the
estimate of A¢ is highly sensitive to the determined differential stresses and even small errors in
these (reflecting for example, the accuracy of differential load determination) cause large errors
in £l‘ ec*

Two other methods of comparing initial and reload stress / strain curves have been widely
used in static recovery investigations (figure 14.1b). The first is a stress based estimate in which
the fractional recovery is defined as

Cree = (03-03)/(03-07) (14.3)
where o, is the yield stress in the initial loading, o, the yield stress in reloading and o5 the flow
stress that would have pertained at the total strain at which the yielding occurred in the reload,
had the test not been interrupted for annealing. The second is an area based estimate in which
the fractional recovery is defined as

A = (A3-4))/(A3-4A)) (14.4)
where A, is the area under the initial loading curve in a given strain interval, A, is the area
under the reload curve in the same strain interval, and A; is the area under the initial loading
curve that would have pertained in the same interval of total strain as used for A, if the test had
not been interrupted. Both the stress and area based estimates ignore transient effects and
therefore include a component of weak barrier recovery. Since the effect of weak barrier
recovery on the shape of the reloading curves decreases with increasing reloading strain, each
may be expected to be sensitive to the choice of the strains used for defining the yield stresses
and the bounds of the areas respectively, and the area based estimate should be less affected by
weak barrier recovery than the stress based one.

The stress and area based estimates are much more easily determined and subject to far

smaller measurement errors, than the strain based estimate. However, by ignoring transient
effects, they transfer the difficulties posed by weak barrier recovery onto the problem of
converting the recovery estimate into changes in o*.
14.1.2 Correlating the recovery estimate with changes of o*. The value of o* after
annealing may be readily calculated by finding the stress on the initial loading curve which
corresponds to the strain (£ - A¢), and then by using it in the appropriate equation of state. This
presents no problem for the strain based recovery estimate, but for the other two recovery
estimates it becomes necessary to find the functions A¢(o,,.) and Ae(4,,.) respectively. In
principle, this requires a precise knowledge of the effect of weak barrier recovery on the shape
of the stress / strain curves i.e. a weak barrier recovery function is needed. However, in
practice, by determining all three recovery estimates it may be possible to find some empirical
expression for these functions.

14.2 Results I. The recovery estimates
The observation of substantial reloading transients in the multiple relaxation experiments
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conducted at T>300°C (figure 12.1) suggests that weak barrier recovery must have a
significant effect on the reloading behaviour observed in the recovery tests conducted here.
Consequently, all three recovery estimates (equations 14.2 - 14.4) were evaluated for each
experiment,

14.2.1 Procedures employed. The most significant problem in determining the recovery
estimates is that posed by the + 10 MPa error in differential stress due to the NIMONIC2 FGZ
variability (§ 9.1.2.3). The potential errors introduced by this variability are very large, and
consequently the recovery analysis procedures employed here were chosen to minimize their
effect.

14.2.1.1 Characterizing the loading curves : The initial loading behaviour was characterized
by selecting a reference stress / total strain curve from the highest density part of the 20 MPa
range of initial loading curves actually produced from experiments (figure 9.6). The reference
curve was then fitted by a fourth order polynomial (root mean square error of 1.75 MPa) to
allow the stress corresponding to any given strain, and the area under the curve between any two
strains, to be readily determined.

The initial specimen dimensions for use in the data reduction procedure for the reloading
were the elastic length at the end of the first loading (as given by equation 8.18) and the
corresponding cross sectional area (assuming constant volume deformation). Otherwise the
observed stress / strain curve given by the data reduction procedure was used for the reloading
behaviour, with that part of it between reloading strains of approximately 0.008 and 0.100 fitted
by a fourth order polynomial to allow o, and A, to be determined.
14.2.1.2 Evaluating equations 14.2 - 14.4 : Ae for use in equation 14.2 was determined by
finding the translation distance (by visual inspection) required to superpose the observed
reloading curve onto the reference initial loading curve.

The stresses for use in equation 14.3 were those corresponding to the following strains

o, ; total strain = 0.01
o, ; reload strain = 0.01
o3 ; total strain = ¢ - £(¢) +0.01

where the stresses oy and o3 were calculated from the reference initial loading curve polynomial
and o, from the observed reloading curve polynomial, and where ¢ is the total strain at the end
of the initial loading and £(/ is the corresponding elastic component of that strain as given by

g€ = In{1/[1-(c/E)]} (14.5)
where E is the calcite Young’s modulus (equation 10.7) and o is the stress corresponding to £ on
the reference curve (§ A3.1.5).

The areas for use in equation 14.4 were calculated from the areas under the stress / strain
curves between the following strains

A; ; total strain = 0.01 and total strain = 0.06
A, ; reload strain = 0.01 and reload strain = 0.06
Ay ; total strain = £-£() +0.01 and total strain = & - £¢) + 0.06
using for A; and A; the reference initial loading curve polynomial and for A, the observed
reloading curve polynomial, and where ¢ and £(¢) are as defined for the stresses.

14.2.2 The observed values of the recovery estimates. The values of o,,, A,. and &,
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obtained in this investigation are given in table 14.1 and are plotted as a function of time in
figure 14.2 for the two cases constant anneal temperature / various pre-strains, and constant pre-
strain / various anneal temperatures,
14.22.1 A qualitative description of the results : The fractional recovery / log time curves
constructed for each recovery estimate are sigmoidal i.e. the slopes of the curves vary from
shallow to steep to shallow as time increases. The curves at anneal temperatures of less than
600°C show only the top part of this sigmoid, those at temperatures greater than 600°C only the
bottom part, while those at 600°C show the full curve. The effect of increasing the pre-strain
while keeping the anneal temperature constant is to displace the steep portion of the curves to
shorter anneal times. These results are similar to those observed for other materials (§ 6.4.2.2).
14.22.2 A comparison of the recovery estimates : As expected given the predicted influence of
weak barrier recovery on each of the recovery estimates, o, > A,,. > &,.. When plotted
against each other (figure 14.3), it is apparent that the relationship between the estimates is non-
linear, although the non-linearity is only strongly developed at small recoveries, and then
primarily in the relationship between the stress based estimate and the other two.
14.2.3 Errors in the estimates. The most significant errors in the recovery estimates arise
from the reloading part of the experiments. These include the errors resulting from the
assumption of homogeneous deformation, and in particular from the assumption that the
specimen remains a perfect right circular cylinder during deformation (§ 9.5.1), and those
resulting from the + 10 MPa uncertainty in the differential stress due to the FGZ variability
(§ 9.1.2.3). The former are unimportant compared with the latter, but are expected to be more
significant for the high pre-strain experiments where reloading data upto a total strain of 0.45
were used. The error due to the FGZ variability is expected, given the slope of the stress / strain
curve, to be more significant for the estimate of ¢,,. than for the other two estimates, and to be
more important at low pre-strains when the denominator terms in equations 14.2 - 14.4 are
small. These expectations are confirmed by the observed scatter in the data presented in figures
14.2 and 14.3.

All other errors, such as those arising in the calculation of the initial specimen dimensions
for the reloads, and those arising from the polynomial fitting to the reference and reload curves,
are negligible.

14.3 Results II. Changes in mechanical state

All three recovery estimates were utilized to determine the change in o* during a given
annealing period.
14.3.1 Procedures employed. To determine the post-annealing value of o* it is necessary to
select a value for Ae. The values used to determine &,,. may be employed or alternatively, by
fitting some function &,,.(0;,.) or &,,.(4,,.) to the results presented on figure 14.3, A¢ may be
determined using the estimates of o,,. or A, and equation 14.2. A variant of the second
procedure was employed here. First the three recovery estimates from all the experiments were
least squares regressed on the equation

&o = A(0,)? + Bo,,. +CA,,. + D ' (14.6)

where A, B, C and D are the regression coefficients, and the (o,,.)? term is included to
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accommodate the observed non-linear relationship between the recovery estimates. Equation
14.6 was then used with equation 14.2 to calculate Ae for each experiment from the values of
o, and A, for that experiment. '

The stresses used to solve the equation of state for the value of o* before and after
annealing, were respectively those given by the strains ¢ and (&£-4¢), as applied to a
polynomial fit of a £(*)/ o curve generated on HEARD1 under the same deformation conditions
used for the recovery experiments. In this way the apparatus dependent differences between the
HEARD1 and NIMONIC2 experiments (§ 9.1.3.4) were eliminated from the analysis. The
equation of state for the plastic element (§ 12.2.4) in the form given by equation 13.5 was used,
with o* being determined using a Newton-Raphson procedure (cf. § A3.1.3).

14.3.2 The observed changes in mechanical state. The regression equation for the corrected
&, (equation 14.6) is

&, = 02306(c,,)* - 0.60860,,. + 1.2314,,. + 0.0587 (14.7)
with a root mean square error on &,,. of 0.0804. The values given by equation 14.7 are presented
in table 14.1, are shown with respect to the uncorrected &,,, in figure 14.3, and are plotted as a
function of log time in figure 14.4. The features of the fractional recovery / log time plots are
qualitatively the same as described for the three types of recovery estimate.

The corresponding post-annealing values of o* are also given in table 14.1, and are shown

as a function of time in figures 14.5 and 14.6. Plotted as a function of ¢, it is apparent that the
recovery of o* is initially very rapid. Plotted as a function of log #, the change in o* with time
displays the same sigmoidal form as the fractional recovery curves.
14.3.3 Errors in the post-annealing values of o*. The use of equation 14.7 only provides a
consistent relationship between the three recovery estimates determined for each test (primarily
to give a more confident value for ¢,,.) ; it does not remove the errors inherent in those
estimates, and consequently they remain in the values of o*. From figure 14.5 it is apparent that
these errors are of most significance (for dln o*/dt) at long anneal times, when the recovery
rates become very small.

The errors in the equation of state for the plastic element (§ 12.2.3) are present in all the
determined values of o*. In using the same equation of state to determine the pre- and post-
annealing values of o*, it is assumed that any changes that occur during annealing do not also
change the values of the material parameters in that equation. The observation that it is possible
to translate the reloading curves onto the initial loading curves indicates that this assumption is
valid.

14.4 Discussion

Qualitatively, the static recovery behaviour of Carrara marble observed in this study is as
expected. The sigmoidal form of the fractional recovery curves matches that observed in other
materials, suggesting that as for those materials the initial shallow portion of the curves
corresponds to recovery by dislocation annihilation and subgrain formation, the steep portion
marks the onset and progression of migration recrystallization, and the final shallow portion of
the curves corresponds to the further reorganization of those dislocations remaining after
complete recrystallization.



247

Preliminary microstructural analyses of specimens which were annealed but not reloaded,
confirm this interpretation of the results. At 700°C rapid grain boundary migration begins
within minutes of the anneal temperature being attained, and within an hour the whole
aggregate is recrystallized. The grain boundaries in the resulting microstructure are highly
sinuous with the grain-size being approximately the same as in the starting material.
Subsequently over a period of a few days, a second wave of recrystailization begins in which
the recrystallization nuclei are formed by subgrain mechanisms (§ 6.4.1.2). This process
continues upwards of fifty days and leads to a marked reduction in ‘grain-size and the
development of excellent foam textures. Microstructures generated at lower anneal
temperatures verify that the start of the steep portion of the recovery curves corresponds
approximately to the onset of the migration recrystallization, and that prior' to this point
recovery is primarily by dislocation rearrangement.

In the strategy outlined previously for the incorporation of recovery into Hart’s analysis
(§ 6.4.3), it was suggested that two recovery functions may be required, one describing
recovery by dislocation motion, and the other describing recovery by boundary migration. It
was observed that recovery by dislocation motion might be described by (equation 6.45)

c* = A - B(lnt-H,/RT) (14.8)
where A and B are constants and H, is some activation enthalpy, while recovery by boundary
migration might be described via an Avrami type equation (equation 6.46)

Xr = 1-exp (-AtB) (14.9)
where A and B are again constants and X is the volume fraction of recrystallized material. The
results described here are compatible with these suggestions. The data corresponding to
recovery by dislocation motion show a linear dependence of o* on logt (figure 14.6), with
do*/dlogt being temperature sensitive, both as predicted by equation 14.8. Recovery
apparently continues at a rate which is independent of the magnitude of o* until the requisite
incubation time for migration recrystallization is attained. Once migration recrystallization
begins do*/dlog t becomes much larger, as expected from equation 14.9 (¢f. figure 6.21c). The
results from 600°C suggest that the incubation time may be uniquely specified by o* (i.e. the
three o*/log ¢t curves merge) as might be expected, but its extreme temperature sensitivity (i.e.
it is very short at T > 600°C and very long at T < 600°C) renders confirmation of this at other
temperatures difficult.

Further constraints on the recovery function(s) must remain speculative until the
mechanical data presented here is supported with quantitative microstructural information. In
particular information concerning the progress of recrystallization with annealing time is
required in order to test the application of the Avrami equation.
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Table 14.1. The data used to fit the plastic element.

£(s) Orec Apec Erec Esmooth o':nd (MPa)
Tonneal =600°C  £)=008 o, =287 MPa
11520 0.63 0.46 0.06 t 0.33 256
61854 0.75 0.51 0.06 0.36 252
229120 076 0.59 0.25 046 240
231567 0.75 0.59 0.25 0.46 240
503548 0.78 0.60 0.37 046 240
925400 0.80 0.61 0.25 0.47 239
1017144 0.85 0.72 0.66 0.59 220
2222487 0.93 0.75 0.62 0.62 217
Tonnear = 600°C  £0=0.17 a%,, =349 MPa
11423 0.72 0.50 0.29 0.36 314
15388 0.78 0.52 0.26 0.36 313
61548 0.76 0.54 0.40 0.39 309
235963 0.87 0.68 046 0.54 } 287
495420 0.96 0.76 0.63 0.62 272
1109465 1.03 0.86 0.71 0.74 245
2795938 1.02 0.89 0.81 0.77 234
Topnear =600°C  £0=027 o, =385 MPa
11040 0.70 049 0.50 0.35 350
65918 0.85 0.65 0.62 0.51 328
239956 1.06 0.84 0.71 0.71 287
936747 1.04 0.93 0.88 0.82 249
2987020 1.08 0.95 091 0.84 41
Tpneat =500°C  £00=0.17 %, =349 MPa
13346 0.34 0.21 0.14 0.14 337
60223 049 0_.3 1 0.26 0.20 331
63372 0.56 035 0.34 0.22 329
244726 045 0.30 0.26 0.20 331
946538 0.61 0.40 0.26 0.27 324
952624 0.62 0.37 0.23 0.23 328
2060936 0.58 0.42 037 0.30 320
Tomneat =550°C  £0=0.17 o, =349 MPa
10690 0.48 0.28 0.15 0.16 330
60464 0.57 0.38 0.33 0.25 321
218780 G.59 0.42 0.36 030 316
928266 0.62 043 033 0.30 316
1447126 0.67 0.46 0.27 0.32 313
3273781 0.92 0.75 0.76 0.62 268
Tpnear =650°C  e®=0.17 o, =349 MPa
11675 1.05 0.81 0.71 0.67 257
44680 1.09 0.90 0.82 0.78 229
233853 1.08 0.93 0.83 0.82 216
400411 1.03 0.87 0.73 0.75 237
925695 1.19 0.98 0.85 0.87 198
Tunmeat=100°C  £0=0.17 o, =349 MPa
11316 1.07 0.91 0.76 0.79 228
80703 1.10 095 0.83 0.84 212
316983 1.15 1.04 0.94 0.94 165
433517 1.06 0.94 0.83 0.83 215
1050307 1.15 1.02 0.89 0.92 178
2065827 1.16 1.01 0.90 091 184
2413634 112 1.01 0.91 091 183

+ values not used for fitting equation 14.6
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FIG. 14.2, Stress based fractional recovery (equation 14.3) curves for Carrara marble after
annealing at constant temperature but various pre-strains (top) and at constant pre-strain but
various temperatures (bottom). The curves show trends in the data only and are not fits,
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FIG. 14.2 contd. Area based fractional recovery (equation 14.4) curves for Carrara marble.
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are not fits. R is the slope of these curves.
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15 SUMMARY AND COMPARISON WITH STEADY-STATE FLOW LAWS

The research presented in this thesis is an exploration of the possibility of applying a fully
deformation history independent set of constitutive equations to characterize the inelastic
deformation properties of geological materials at elevated confining pressure. For this task the
inelastic constitutive equations proposed by Hart (1976) were chosen, because they have been
successfully applied to a wide range of materials at room pressure, because they contain
material parameters which are relatively easy to evaluate and which are relatively few in
number, and because they have been shown to be particularly efficient in numerical modelling
applications. Carrara marble was chosen as the material for investigation because it is one of the
few geologically significant materials which can be deformed experiméntally at low
temperatures and confining pressures without cataclasis. Hence the choice of both the
constitutive equations and the material present a best case test of the problem.

15.1 Summary of the work

There work presented here had two specific aims
(a) to determine if the material parameters in Hart’s equations could be evaluated with
sufficient accuracy at elevated confining pressures for the equations to be of use in the
geophysical modelling of geological deformation processes and,

(b) to determine the feasibility of extending Hart’s equations to accommodate factors not
initially considered in the initial model (e.g. the role of impurities, deformation at T > 0.457,,)
but which are nevertheless of great importance in the characterization of geological materials.

Hart’s inelastic deformation model was outlined in detail in § 2- 5, and the attempts to
evaluate the material parameters in it for Carrara marble at 200 MPa confining pressure and
T'<0.45T,, described in § 10 - 13. The experimental results demonstrate unequivocally that the
requisite material parameters can be evaluated with sufficient accuracy. However, some of the
parameters appear to be influenced by Mg solute impurities in the marble (§ 11), and hence
there may be problems in applying the evaluated equations to other calcitic aggregates of
different impurity composition. Since the marble is extremely pure (there is only 0.2 wt% Mg),
and since such a concentration of impurities is commonplace in all geological starting materials
(including synthetic aggregates), the importance of extending Hart’s equations to accommodate
solute impurity effects is emphasized.

The extension of Hart’s model to accommodate factors of geological importance was
considered in § 6. Of particular significance is the ability to accommodate compositional,
microstructural (grain-size) and environmental (e.g. the presence of H,0) variables. However,
by far the most significant problem is the extension of the model to 7> 0.457T,, because all the
most important geological materials (i.e. quartz, feldspar, olivine and pyroxene) require such
temperatures if they are to be deformed without cataclasis at experimentally accessible (on fluid
and gas medium apparatus) confining pressures. To augment the semi-theoretical discussion of
how such an extension may be achieved (§ 6.4), the deformation independent change of
mechanical state which occurs during annealing at elevated temperatures was investigated
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(§ 14). Qualitatively, the experimental results support the proposed method of extending Hart’s
model to higher temperatures.

Numerical simulation of performable deformation experiments is required before the
quality of the experimental results can be fully assessed. This has yet to be attempted, although
in principle, it is not a difficult task (§ 7.1).

15.2 Comparison with steady-state flow laws

As a description of material behaviour, a fully deformation history independent
characterization of the inelastic.properties of geological materials is clearly superior to that
provided by the steady-state flow laws usually chosen for this purpose. However, given that
such descriptions are more difficult and time consuming to evaluate, it is important to establish
that they make a significant difference to the results of geophysical models of geological
deformation processes. This can now be done by using the results presented above and the
procedures outlined in § 7.

Modelling of geological deformation processes using Hart’s equations has yet to be
attempted. However, the case for preferring those equations over steady-state flow laws is given
substantial support from a consideration of the problems posed for the latter, by the requirement
that experimental results be interpreted in terms of the steady-state approximation. In the
following discussion the relationship of the steady-state approximation to Hart’s analysis is
described, and the problems of applying it to experimental data are outlined. From this
perspective the results of previous experimental investigations of the steady-state inelastic
deformation properties of Carrara marble are considered, and these are then compared with
those presented here,

15.2.1 The steady-state approximation. The steady-state approximation is widely applied in
two senses. In terms of Hart’s analysis, steady-state deformation occurs when
d(lno*)/dt = ¢(IT'*-R*) -R = 0 (15.1)
(¢f. equation 6.43) i.e. deformation is described as steady-state when it occurs at constant 6*. In
this sense the steady-state flow law is a constant o* curve which describes the relationship
between stress and strain-rate at the steady-state value of o*.
More frequently, isothermal, plastic deformation is described as steady-state when

y =(dno/dx)y, =0 and (dlné&/da), =0 (15.2)
The steady-state flow law then describes the relationship between the stresses and strain-rates
required to satisfy these conditions i.e. it describes a y = 0 curve. This description is well suited
to the widely employed steady-state creep equations (equations 1.1 - 1.3), which are usually
evaluated from constant strain-rate or constant stress experiments conducted at various strain-
rates and stresses respectively.

The two descriptions are not the same. The former requires the deformation to be at
constant material structure. However, the latter does not because although it specifies that a
material deform at constant mechanical state in a constant strain-rate or constant stress test, it
does not require the value of the mechanical state in one steady state condition (i.e. at one
strain-rate or stress) to be the same as that in all others. Hence in a test in which the stress and
strain-rate vary, then provided the steady-state conditions (equation 15.2) hold at every instant,
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the deformation may still be described as steady-state even when the material structure (o*) is
evolving. This difference between the two steady-state descriptions is manifested in the
frequent observation (e.g. Hart, 1970 ; Poirier, 1985, pp. 31-33) that the slope of constant c*
curves is less than the slope of the y =0 curve when both are plotted in log o /log ™ space
(i.e. generally v<1/n, where n and v are defined in equations 1.1-1.3 and equation 2.3
respectively).
15.2.1.1 Problems of evaluating y= 0 steady-state flow laws : In the geological literature
inelastic constitutive equations are almost always of the y = 0 steady-state type. For these to be
successful as steady-state flow laws, it is critical that the deformation is stable when the stress /
strain-rate points used to build up the y = 0 curve are determined. Generally the requisite stress /
strain-rate points are taken as the stress in a constant strain-rate test when the stress / strain
curve becomes flat-topped, or as the strain-rate in a constant stress test when the strain/ time
curve becomes linear. However, in all tests conducted to a sufficiently large strain (where the
deformation is by grain matrix processes), the former is found to be a stress maximum and the
latter a strain-rate minimum. It then becomes necessary to determine if this reflects the
interruption of steady-state deformation by an instability induced by the geometric constraints
acting on the specimen (e.g. § 9.5.1), or whether it is a fundamental consequence of the
deformation mechanism(s) operating and therefore indicates that there is no steady-state
regime. This is not a simple problem.

The starting point of Hart’s analysis is the description of the isothermal, grain matrix,
plastic deformation occurring in some increment of time by (equation 2.2)

dino = yda + vdlna (15.3)
where y and v are (equation 2.3)
y = (dlnoc/ox)y, : v = (dlno/dln&), (15.4)

By definition, unstable deformation occurs when the load bearing capacity of an element of a
deforming specimen decreases with increasing strain. Combining equation 15.3, the assumption
of constant volume deformation and the definitions of stress, strain and strain-rate (cast in terms
of cross-sectional areas), it can then be shown that deformation is unstable in tension if
y+v <1 (15.5)

(Hart, 1967 ; Lin et al., 1981). Since generally v < 1, then when y = 0 the deformation must be
unstable. In fact as observed by Hart (1981), generally v < 1 (cf. figure 12.4b for the values of
v for Carrara marble at 281°C), and hence the deformation is unstable for a considerable range
of values of y greater than zero. The implication is that steady-state deformation can never be
attained in circumstances where the deformation is fully described by equation 15.3, which for
Hart’s analysis is at all T < 0.457,,. It therefore follows that y =0 type steady-state flow laws
cannot be applied to describe inelastic properties at these temperatures.

At higher temperatures, the possibility of stable deformation is permitted by the operation
of nominally deformation independent recovery processes. However, deformation stability may
be difficult to verify as such. When constant o* curves are very closely spaced substantial
strains may be required to produce an observable change in strain-rate (constant stress test) or
stress (constant strain-rate test). For Carrara marble at 400°C the o* curves are indeed

extremely closely spaced at low strain-rates (figure 15.1a). At higher temperatures this region
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1975). '

260



261

of closely spaced curves occurs at strain-rates which are accessible in constant strain-rate and
constant stress experiments. Close spacing of the o* curves is controlled by the values of the
material parameters A and m in the equation of state for the plastic element. Since the values of
these parameters for Carrara marble are similar to those observed in a wide range of other
materials, this may be expected to be a common phenomenon.

The errors that arise from treating inherently unstable deformation as stable are illustrated
in figure 15.1b. When deformation is unstable, curves of constant o* cross. Referring to figure
15.1b, then as the deformation proceeds in a constant stress creep test, the specimen moves
from the curves of to o to o¥ with a corresponding decrease and then increase in strain-rate.
Similarly, in a constant strain-rate test the path from o} to o5 to o¥ leads to an increase and then
decrease in stress (i.e. there is work softening even though o* is increasing). The creep-rate
minimum (or stress maximum) occurs at o¥, but at other stresses (strain-rates) occurs at other
o* such that the locus of strain-rate minima (stress maxima) as a function of stress (strain-rate)
is parallel to the scaling direction of the o* curves. This locus clearly does not provide a steady-
state flow law, although in log o /log & space it is linear and may therefore be confused with
the behaviour expected of power law creep (equation 1.2).

Steady-state flow laws of the ¥ = 0 type therefore carry significant problems of evaluation.
It appears that they cannot be applied to deformation occurring at T<0.457,,. At higher
temperatures it is essential to achieve large strains without geometric constraint problems, in
order to verify that the deformation is truly stable. The observation that the curves of constant
o* for many materials are closely spaced at elevated temperature in the experimentally
accessible strain-rate range, suggests that verification of deformation stability may require
strains too great to be achievable in compression testing, and hence emphasizes the importance
of tension testing in the determination of steady-state flow laws of this type.
15.2.1.2 Problems for evaluating constant o* steady-state flow laws : There have been few
attempts to determine constant structure steady-state flow laws in the geological literature.

At T'<0.45T,, deformation at constant o* requires that the athermal work hardening rate
equal the dynamic recovery (sensu stricto, § 6.4.1.1) rate '

d(lno*)/da = I = I'*-R* = 0 (15.6)
In such circumstances the steady-state o* curve overlies the I'=0 curve in log o /log & space
(figure 4.3b). This has never been observed, and as argued above, it is expected from
deformation stability considerations, that it never will be.

At T > 0.45T,, deformation at constant o* occurs when the rate of increase of o* due to the
deformation equals the rate of decrease of o* due to nominally deformation independent
processes

d(lno*)/dt = &¢I’ - R = 0 15.7)
Such circumstances are entirely feasible from the perspective of Hart’s analysis. However, at
these temperatures the operation of deformation independent recovery processes complicates
the task of determining mechanical properties at constant *. Load relaxation curves are not in
general curves of constant o*, because during relaxation o* is not dynamically maintained, and
so o* must change when R is non-zero. In practice this problem may not be as significant as it
appears. If the constant o* curves are very closely spaced in the accessible strain-rate range,
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then changes in o* during relaxation have little effect on the log o /log & location of the
relaxation curve. As observed above, this may be true for many materials. In the case that the
rates of recovery are critically dependent on o*, then there is a maximum o* curve above
which recovery to that maximum o* is effectively instantaneous, and below which rates of
recovery are negligibly small. The maximum o* curve then provides steady-state properties.
Such a case was postulated by Hart (1981), but the recovery results presented here (cf. figure
14.5) indicate that the o* dependence of the rate of recovery is not sufficiently critical for this
to be true of Carrara marble,

Isostructural properties may be determined from strain-rate or stress change experiments,
but the interpretation of these tests is complicated by the transient period after each change (cf.
figure 6.7a), and by the possibility of recovery induced changes in o* during those transients.

Steady-state flow laws of the constant o* type therefore may also be difficult to evaluate.
At T<045T,, deformation is not expected ever to be at steady-state, while at higher
temperatures nominally deformation independent recovery processes complicate the evaluation
of the steady-state o* curve. The significance of the latter problem depends on the spacing of
the constant o* curves in the strain-rate range of interest. In practice it may be necessary to
confirm that the experimentally determined steady-state o* curve conforms to that expected
from the evaluations of the I" and R functions in equation 15.7.

15.2.2 Previously published flow laws for Carrara marble. Given the previous observations,
it is anticipated that it is impractical to fit any steady-state flow law to describe the inelastic
deformation of Carrara marble at T < 0.45T,, (i.e. at T < 450°C). At higher temperatures steady-
state flow laws of either type may be determined, but the results must be interpreted with
caution with respect to the stability of the deformation (y =0 type) and with respect to the
complicating influence of recovery processes (constant * type).

15.2.2.1 Outline of the previous data : Steady-state flow laws of y = 0 type for Carrara marble
have been published by Rutter (1974) and by Schmid et al. (1980). The experiments of Rutter
were conducted on an apparatus of the same design as HEARDI, in the temperature range 20 to
500°C and at a confining pressure of 150 MPa. The effect of a pore fluid was also investigated
but was shown to be negligible at constant effective confining pressure. The experiments of
Schmid et al. were conducted on a gas medium apparatus, in the temperature range 600 to
1050°C and at a confining pressure of 300 MPa. In both experimental programmes the material
parameters in the steady-state flow laws were evaluated from the stresses supported at a total
strain of 0.10 in constant displacement-rate tests conducted at various displacement-rates. At
their highest temperatures, Schmid et al. also utilize the y = 0 (not isostructural) flow stresses
obtained from strain-rate change tests.

In all the experiments conducted at T < 400°C, the rate of work hardening was sufficiently
large at 0.10 strain to prevent any attempt to fit a steady-state flow law. At higher temperatures
it was considered to be sufficiently small to allow the stress / strain curve to be approximated as
flat-topped. At these higher temperatures, three regimes of deformation behaviour were
recognized ;

(a) at stresses above 100 MPa the mechanical data is described by an exponential flow law
(equation 1.1)
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éM = Aexp(Bo)exp(-H;/RT) (15.8)
where
logA =577(s1) : B =0.08MPal : H, = 260kimoll
(Rutter, 1974, but note his typographic error in the value of B) ;
(b) at stresses between 20 and 100 MPa the data is described by a power law creep equation
(equation 1.2)
ém = Aom"exp(-H;/RT) (15.9)
where
logA = 310 MPa"s1) : n=76 : H;=419Kmol!
(Schmid et al., 1980) ;
(c) at stresses below 20 MPa a power law creep equation also describes the data but with
logA = 8.10(MPa"sl) : n=42 : H =427 kimol!
(Schmid et al., 1980).
At constant temperature the data presented in log o /log #( space therefore defines a broad,
downwardly concave curve which is fitted in three segments.

Schmid ez al. also present some load relaxation curves generated at the end of several of

their constant displacement-rate tests. These show qualitatively the same features as the y =0
data in log o /log £( space but no attempt was made to fit a constant o* type flow law to
them. '
15.22.2 Comparisons with the data presented here : Only Rutter’s results generated at 200 and
400°C may be directly compared with the results of this study. His data includes a correction
for the load supported by the copper jacket in the experiment, and a temperature correction to
the force gauge stiffness which assumes that the force gauge is at the same temperature as the
specimen. Hence to be directly comparable with the data of this study, 20 to 30 MPa must be
added to his stresses at 200°C and 30 to 40 MPa at 400°C (§ 9.1.1.3, § 9.3.3.2). After this
correction the data correspond well (figure 15.2).

At both temperatures, the change in o* with strain is approximately strain-rate independent
in the range of strain-rates employed in these studies (cf. figure 13.4). Consequently, the data
from 0.10 strain are at approximately constant o* (= 305 MPa, table 13.1) and should be
described by a constant o* curve. This is indeed the case (figure 15.2). At 400°C the constant
o* curve may be compared with the fitted exponential creep equation (equation 15.8). Both
describe the data within the error on the data (figure 15.2b). However, it should be recalled that
the constant * curve describes the relaxation data for this o* very closely (relaxation H at
400°C, figure 12.1), i.e. the exponential creep equation is a poor description of that data.
15.22.3 Steady-state deformation in Carrara marble : Clearly the steady-state approximation
cannot be applied to the experimental results generated on Carrara marble at T < 400°C.
Deformation history independent flow laws are therefore the only appropriate characterization
of its inelastic properties at these temperatures, and the results presented in this study are the
first attempt to do this.

The capacity of the fitted exponential steady-state flow law (equation 15.8) to describe the
high stress behaviour at T > 400°C is questionable, With the exception of Rutter’s lowest strain-
rate (less than 1 x 105 s-1) data at 500°C, none of the stress / strain curves from this regime are
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flat-topped, even when plotted over a small strain range (0 to 0.12). The implication is that the
deformation was not at steady-state in these experiments, and this is most certainly true of the
400°C results obtained in this study.

The power law fits (equation 15.9) applicable at lower differential stresses may have
greater validity, particularly at the higher temperatures. However, all the data was obtained at
rather small strains and so the stability of the deformation remains open to question.

The full significance of these conclusions is difficult to ascertain in advance of the results
of numerical modelling using the various equations. ‘

15.3 The scope for further work

Although the experimental results presented in this study indicate that Hart’s description of
inelastic deformation can be applied successfully to mechanical data obtained at elevated
confining pressures, several problems are remain to be addressed if the approach is to have
general application for geological materials. The most significant of these include ;

(a) a parameterization of the equations for the effects of solute impurities, finely dispersed
second phase inclusions and grain-size,

(b) a modification of the equations to accommodate other deformation variables, and in
particular pressure and the presence of fluids,

(c) a closer consideration of the o* evolution equation, particularly with respect to the
complicating influence that mechanical twinning has on the evaluation of the material
parameters in that equation, and with respect to the mechanical significance of a developing
crystallographic preferred orientation / shape fabric as the deformation is taken to large strains,
(d) a full determination of the recovery function with an accompanying quantitative evaluation
of the ability to extend Hart’s analysis to T > 0.457T,,, and

(e) an evaluation the material parameters in the grain boundary sliding extension of the
deformation model.

Problems (b), (c) and (d) may be addressed by further experiments on Carrara marble. Problems
(a) and (e) will inevitably require experiments on synthetic aggregates because of the need to
control carefully the variables under consideration. Experiments conducted in tension will be
necessary for the large strain problems (c and e). Large strain tension experiments will also
provide a more systematic evaluation of the steady-state approximation and hence of the case
for employing non-steady-state inelastic constitutive relations.

Numerical modelling with the equations, both of deformation experiments and of
geological deformation processes, is essential in order to test the evaluated material parameters
and to determine the difference (particularly with respect to steady-state flow laws) the
equations make on the results of such modelling.

Of outstanding geological significance would be the identification of o* with some
observable feature of the deformation microstructure. In principle, it would then be possible to
determine the mechanical state of a material (and hence its deformation properties) merely by
inspection. This in turn would allow a much closer integration of field based metamorphic pTt
type studies with geophysical deformation models.
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Al DERIVATIONS ASSOCIATED WITH THE CONSTITUTIVE EQUATIONS

Al.1 Theory of Pfaffian forms
The expression

=

Fi (%1, X5, ..., xy) dx; (A1.])
1

-
]

in which the F; are functions of some or all of the N independent variables x;,x,,...., Xy is
called a Pfaffian differential form in N variables. The relation

N
Y Fdx, = 0 (A1.2)
i=1 .

is called a Pfaffian differential equation.

Aspects of the theory of Pfaffian forms /equations are described in all introductory texts
concerned with first order, non-linear ordinary differential equations, although the name
Pfaffian is not always applied. The most systematic account, given the requirements of Hart’s
analysis, may be found in Sneddon (1957, pp. 18-42).

Al.1.1 Pfaffian forms in two variables. In the case of two variables, equation Al.2 may be
written
P(x,y)dx + Q(x,y)dy = 0 (A1.3)
or equivalently, as
dyldx = f(x,y) = -P/Q (Al4)
Al.l1.1.1 Existence and uniqueness of a solution to equation Al.3 : The existence of a unique
solution y(x) to the initial value problem
dyldx = f(x,y) ; y(x) = yo (Al)5)
in the rectangle A; <x<A,, B;<y<B,, is guaranteed by the Existence and Uniqueness
Theorem, provided the functions f and Jf /dy are continuous in that rectangle. The proof of this
theorem was first given by Picard in 1890 and is described in many advanced calculus texts
(e.g. Golomb and Shanks, 1950, pp. 315-319 ; Greenberg, 1978, pp. 400-403 ; or see the simpler
discussion of Boyce and DiPrima, 1986, pp. 95-103).
Al.1.1.2 The solution of equation Al.3 : For Pfaffian forms of two variables there always exists
a function f(x,y) and a function Y'(x,y) such that

df(x,y) = Y(x,y)[P(x,y)dx + Q(x,y)dy] (A1.6)
and hence that the equation
Pdx + Qdy = 0 (AL7)
must possess an integral solution of the form
f(x,y) = C _ (Al1.8)

where C is an arbitrary constant. This may be seen as follows. Writing equation Al.8 in
differential form

df = g—idx+ g—;dy = 0 (A1.9)

and substituting equation A1.4, it follows that there always exists a function Y'(x,y) such that
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ll)_g}; = é% =Y (A1.10)
On multiplying equation A1.3 by T
Y(Pdx + Qdy) = 0 (A1.11)
and the result is exact, i.e.
Jd(YP)/dy = 9(YQ)/ox (Al1.12)
Hence there must exist a function f (x,y) such that
df = Y(Pdx + Qdy) (Al.13)

(e.g. Hildebrand, 1976, pp. 32-33).

The function Y which makes the Pfaffian equation exact, is termed the integrating factor. It
is easy to show (Sneddon, 1957, pp. 23-24) that if one integrating factor of a Pfaffian equation
(of any number of variables) exists, then so do an infinity of others.

The general solution to any Pfaffian equation in two variables (i.e. equation A1.8) defines
a one-parameter family of curves in the xy plane. These are isoclines to the direction field given
by equation Al.4 (¢f. Boyce and DiPrima, 1986, pp. 34-35). The uniqueness of the solution
ensures that at constant C there passes through every point of the xy plane, one and only one
curve of the one-parameter system. '
Al.1.2 Pfaffian forms in more than two variables. A Pfaffian form in more than two
variables does not necessarily possess an integrating factor which makes the corresponding
Pfaffian equation exact. This may be illustrated with respect to a Pfaffian equation in three
variables

P(x,y,z)dx + Q(x,y,2)dy + R(x,y,2)dz = 0O (Al.14)
If an integrating factor exists, equation A1.14 has the solution ,
f(x,y,z2) = C (A1.15)
In differential form this yields
of of of =
and so on comparison of equations A1.14 and A1.16, it must be that
1of _ 1of _ 1of _ (A1.17)

Poax = Qoy = Ra:
which is true only if (Sneddon, 1957, pp. 21-23)
X-aurlX = 0 (A1.18)
where X is the vector (P,Q,R). Since this is not necessarily true, an integrating factor does not
necessarily exist.

Pfaffian forms for which an integrating factor exists are said to be integrable, although this
does not imply that non-integrable Pfaffian forms do not have solutions (Sneddon, 1957, pp. 25-
26). There is no reason why N arbitrarily prescribed functions F; (equation Al.1) should in
every case be derivable by differentiation from a single function (cf. equation A1.16).

AL.1.3 Carathéodory’s theorem. The observation for Pfaffian forms of two variables that at
constant C there passes through every point of the xy plane one and only one curve of the one-
parameter system of solutions, implies that from any given point in the xy plane there are
neighbouring points which cannot be reached along curves which satisfy the differential
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equation, i.e. there are points which are not accessible from the given point. This conclusion
may be generalized to state that if a Pfaffian equation of any number of variables is integrable,
then in the neighbourhood of any given point there exist points which are inaccessible along
curves which satisfy the equation. The important contribution of Carathéodory was to prove the
converse i.e. that if in the neighbourhood of a given point there are points which are
inaccessible along curves which are solutions to the Pfaffian equation, then that equation must
be integrable.

Several versions of the proof of Carathéodory’s theorem exist. Sneddon (1957, pp. 35-38)
describes two ; that due to Buchdahl (1949, for a simplification and generalization of this proof
see Buchdahl, 1955 and the references cited therein), and that due to Born (1949).

Al.2 Derivations of the constitutive equations

The following derivations are associated with the equations of § 4.
AlL.2.1 Constraints on the constitutive relations.
Al.2.1.1 Derivation of equation 4.4 . From equation 4.3

F = g(u)-Bix; ; u= Ajx; (A1.19)
Hence
d
g;i: = B%g% - B (A1.20)
multiplying by Ax; and using the notation employed in equation 4.4
Fidx; = g'(u)(A;4x;) - B;Ax; (Al.21)
Al.2.1.2 Derivation of equation 4.7 : From equation 4.5 and 4.6 respectively
Aidx; + AjAx; + Adx, = 0 (Al1.22)
BiAx; + BjAx; + ByAx, = 0 (A1.23)

Rearranging both equation A1.22 and A1.23 for Ax; and equating the two equations, then
equation 4.7 follows from the result by algebraic manipulation.
Al.2.1.3 Derivation of equations 4.15 and 4.16 : When

F = F(xyz) but z = y(xy) (Al.29)
then

9F\ _ 9Fax , oF9y , dFaz

(5), = &5 * 55" 55 (AL25)

Since y is independent of x, dy/dx = 0 and equation A1.25 becomes

oFy _ oJF , dFo:
(a—x y  ox T ax (A1.26)
Rearranging
= % . _9F/ox A12
Ve = o aF/az (Al272)
Similarly
_ oz _ _dF/oy
v = 2 - 32 (A1.27b)

Also
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9%F _ (9 , 920 \(9F , 9z9F
oyox (a_y * 3_y-~8-z)(ax T oxoz (A1.28)

Expanding and rearranging

9% _ _(3*F , 9z 9°F _ 9z 9°F , 9z9z9°F) , (9F

ayaxr - \Gyax T oxdyor T oyozox T dyoxoz ) (5) a1
which is v, and similarly '

9% _ _ (9% _ 9z 9°F , 9z 9°F , 9z9z9°F\ . (oF

oxay oxay * 9y dxoz * 0x9z9y * oxoyazz ) (az (A1.29%)
which is ,,.

From equation 4.12
F(x,y,z) = g(Ajx + Ayy + A32z) - Bjx - B,y - B3z - By (A1.30)
Using equation A1.20 with x,y, z in place of the 1,2,3 nomenclature
oF/ox = g'(u)A, - By ; OF/dy = g'(u)A, - B,
dF/9z = g'(u)A; - B,
d2F/ox2 = g(u)A? ; 92F/3y? = g (u)A}

32F/a2 = g"(u)Al (A131)
92F/oxdy = g'(u)AA, = 92F/dydx
02F/oxdz = g’ (u)A;A; = 9%F/dzox
92F/dyoz = g’ (u)A,A; = 02F/dzdy

Equations 4.15 and 4.16 then follow by substituting the relevant equations A1.31 into equations
A1.27 and A1.29 respectively.
Al.2.2 The equation of state for the plastic element. The equation of state for the plastic
element is
In(o*/o) = (&*%/&)* (Al1.32)

Al.22.1 Derivation of equations 4.26a,b : Rearranging equation A1.32 and making the change
in variables oy=c*and f =4

clo, = exp[-(a/é*)F] (A1.33)
Making the change in variables x=1log (o/g,), y=1log (&/é*) and z=1log 8 equation A1.33
becomes

f(x,y,z) = exp[-(10°)"%] - 10" = 0 (A1.34)
Recalling that z is an implicit function of x and y, the following derivatives are found
of/ox = -(10*In10) (A1.35)
of _ (107N {2 - (107 }
= {emwl-(107 )L [-(107)]
= {exp[ - (10”%)]}{10*" 1 10} (A1.36)

A = fexp[- (10”2 [ - (10”7")])

- {exp[ - (107")]}{10” " m 10} {2 (-¥10%) }

{exp[ - (107")]}{y10*?"* 1 101n 10} (A137)



Applying equation A1.27a

h o= 92 _ _of/ox
ox of/oz

-[-(10*1n10)]
{exp[ - (107)]}{y10""* m101n 10}

10* _ 1
10°y10°?%1n 10 B (&/é%)PIn (a/é%)

Similarly, applying equation A1.27b

_ 3 _ /oy
& =3 T "o

-{exp| - (107'°)]}{10*?" 1n 10)
{exp| -(10‘yl°')]}{y10”1°’1n101n 10}

-1 -1

T ymi0 | W(a/F
Al.222 Derivation of equation 4.31 : Rearranging equation A1.32
Inoc = Inc* - {exp[A (Iné*-Inc)])
Dividing through by In 10 and using
‘log é* = logC + mlogo*

(equation 4.30 with m = 1/u), then equation A1.40 becomes
logo = logo* - {[1/(1n10)] exp[A (In 10) (log C + mo™ - log &)1}
Making the change in variables x =log o, y =log & and z = log o* then
z-y-[1/(In10)] {exp[A (In10) (logC+mz-x)]} = O

Al1.2.2.3 Derivation of equation 4.33 : If

g(Ax + Ayy + A3z) - Byjx - By - B3z - By = 0
(equation 4.12) then equation A1.43 yields (with u=A,x+ A,y + A;3z)

g(u) = -[1/(In10)] {exp[A (In 10) (log C + mz - x)1}

u = -x+ mz
Hence
) dg  d{-[1/(In10)]exp[A(In 10)(log C + mz-x)]}
g = 7z = d(mz-x)
' = Aexp[A(In10) (log C+ mz-x)]

-A (é*/d)'l
Using equation A1.46 in equation 4.17
A(E*/&)Yr = 1/m

and hence from equation A1.32
In(c*/c) # 1/Am
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(A1.38)

(A1.39)

(A1.40)
(A1.41)
(A1.42)
(A1.43)

(A1.44)

(Al1.45)

(A1.46)
(A1.47)

(A1.48)

A1.2.3 The equation of state for the friction element. Making the approximation & = ™, the

equation of state for the friction element is
& = &*[(c-0%)/GIM

(A1.49)

Al.2.3.1 Equivalence of equations 4.35 and 4.37 : Substituting equations 4.36 and 4.38 into
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equation 4.35 and rearranging yields
& = £*{ln[1+(gp/c*)]} 1/ (A1.50)
Taking a Taylor series expansion of equation A1.50 using only the first term, i.e.
f(x) = f(A) + f'(A)(x-A) + ....
f(x) = f(of/0*) = In[1+(oy/0*)]

f'(x) = f'(op/0*) = [1+(o/0%)]1 (A1.51)
then about A =0
In[1+(o;/0*)] = (o7/0*) (A1.52)
Hence
£ {In[1+ (op/c*)]}V/* = &*(op/o*)l/A (A1.53)
On using equation A1.50 this becomes
& = é*(ap/o*)1/2 (Al1.54)
which is the same as equation 4.37 with
1A = M ; & = a*(c*/G)M (A1.55)

Al.2.3.2 Derivation of equations 4.43a,b : Rearranging equation A1.49 and making the change
in variables o= o*, §* = ¢*(c*/G)M and B = 1/M

oloy = 1 + (&/é*)P (A1.56)
Making the change in variables x=log(o/0y), y=1log (&/€*) and z=1log B equation A1.56
becomes

fx,y,z) = 1+ (10°)!° - 10° = 0 (A157)
Recalling that z is an implicit function of x and y, the following derivatives are found
of/ox = -(10*1n10) (A1.58)
% = 10°7"%m10 (A1.59)
o _ -y10% 9 (y10°
I - {10 lnlO}{az (v10%)}
= y10*7"*' 11010 10 (A1.60)
Applying equation A1.27a
h = 9z - _of/ox
dx of/oz
- [-(10* o/o,

y10°7 10101010 B(a/é%)P In(a/é*)
Similarly, applying equation A1.27b

_ o _ oy
& 3y of/oz
- 10" 1010 -1 -1

J10°7 % miomio | yBI0 T W@ (416

Al.2.3.3 Derivation of equation 4.47 : Rearranging equation A1.49

Iné = Ing* - MinG + Mino* + Mhn {[exp(Ins-Inoc*)] - 1} (Al1.63)
Dividing through by In10 and making the change in variables x=1logo, y=logd and
z =log o* then



281

(log a* - Mlog G) + Mz - x + Mlog {exp[In10(y-2)] -1} = 0 (Al.64)
which is equation 4.47. Using
loga* = A + Blogo* (A1.65)
(equation 4.48), then equation A1.64 becomes
(A-MlogG) + (B+M)z - x + Mlog {exp[In10(y-2)] -1} = 0 (A1.66)
Al.2.34 Derivation of equation 4.50 : If
g(A;jx + Ayy + A3z) - Bix - By - B3z -B, = 0 (A1.67)
(equation 4.12) then equation A1.66 yields (with u=A;x+ A,y + A3z)
g(u) = Mlog {exp[ln10(y-2z)] - 1}

u=y-z (A1.68)
Hence V
oy . dg _ diMlog{exp[ln10(y-2)1-1}}
g = au - dy-2)
- { M }{alexp[lnw(y-Z)]-ll}
~ |In10{exp[In10(y-2z)]-1} aAy-z)
_ Mexp[ln10(y-2z)] _ M
T exp[ln10(y-2z)I-1 =~ T-{exp[ln10(z-y)]}
= M/[1-(c*/0)] (A1.69)
Using equation A1.69 in equation 4.17
M/[1-(c*/c)] = B+ M (A1.70)
which on rearranging yields
(o*/c) = B/(B+M) (A1.71)

Al.2.4 Derivation of equation 4.54, The change in mechanical state during deformation is
given by

dlno* = (I'/y)(dlno - vdiné) (A1.72)
(equation 4.52). Along the scaling path for constant 6* curves dIn 6* = dIn o, and so
dino[l - (I'/y)] = -(vI'/y)dne& (AL73)
Also on‘the scaling path (dln o/dln &) = u and therefore
pll - (/N = -vl/y (A1.74)

which on rearranging yields
I = yulu-v) (AL75)

Al1.3 Derivation of the form of anelastic load relaxation curves
During completely anelastic deformation, Hart’s original inelastic model (figure 5.3)
predicts that

c = G(éM/[a*)VM + Ha (A1.76)
(equations 5.7, 5.9 and 5.12). Rearranging
) (0-#a)IG = (éM[a*)1IM (AL1.77)

The integrated form of the stress relaxation equation (equation 5.17) when the deformation is
entirely anelastic is

(o-0p) = x(a-ap) (A1.78)
where « is an effective modulus for the specimen and load train, and the subscript O refers to the
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start of the relaxation.
Rearranging equation A1.78 for a and substituting the result into the left-hand side of
equation A1.77

c-Ma _ o _ oM [(T-0)
G ~ G F[ X *"0]
WA

- ) B (e
= (1. £ oM -
- ((_}‘ )cr * (x‘ A x(x- aflﬂ))(% Kao)
= (1 .% __o# (11 -
- (E Gx)" T CIx/A) - 1] (e//c K)("O x o)
_ (1 (Tg-Kap)
= (- %) (e * mero-m (AL79)
Defining
1 o (1% : @ o ~(F0-Kdp)
@ (G Glc) RO (AN (A1.80)
then equation A1.79 becomes in equation A1.77
[0-0/@1/t6@ = (&M]a*)1/M (A1.81)

Al.4 Derivation of the viscoplastic limit equations

The following derivations apply for Hart’s original inelastic deformation model (figure
5.3).
Al.4.1 The uniaxial case. Substituting equation 5.9 into equation 5.8

&) = (&,//) + & (A1.82)
Making the approximation &, = &*
&M = (6*/4) + & (A1.83)
which on substituting equation 5.13 (assuming R = 0) becomes
&M = (&o*I'[A) + & (Al1.84)
Rearranging equation A1.84
& = éM/[1+ (o*I [#)] (A1.85)
Al1.4.2 The multiaxial case. Substituting equation 5.28 into equation 5.26
f") = (3/2)(a/o, )sf“) + (3/2) (d/aa)s,j(“) (A1.86)
Substituting equation 5 .9
élg-") = (3/2)[6,/(#o,)] s,jf-“) + (3/2)(&/ay,) slg-") (A1.87)
Again using &, = 6* and substituting equation 5.13 (assuming R = 0)
é,g-") = (3/2)[(&éo*I')/(s#0,)] s,g.") + (3/2)(&/oy) suf-") (A1.88)
which on rearranging becomes
= [(2/3) (aae‘,g-”)/s[j“))]/[l + (o*I [4C)] (A1.89)
Observing also that
= [(3/2) s,g-") s,g-“f’)]l/2 (A1.90)

(equation 5.29) which on rearranging becomes
(2/3)(aa/sf?) = s{P]o, (A1.91)
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Substituting equation A1.91 into A1.89 yields

(a) s(n)
s éij / o,

- y
& = TR (A1.92)

For finite strain applications the derivation proceeds in the same manner but with the

substitution of the appropriate rate variables.

ALS Reduction of the number of variables in Hart’s equations

Bammann and Krieg (1987) observe that many of the variables that appear in Hart’s
constitutive equations do so only as a convenience in explaining the physical motivation behind
the deformation model, and that consequently with the appropriate mathematical manipulations,
several may be eliminated. Their method of doing this is outlined here for the multiaxial
infinitesimal strain case.
ALS5.1 Reducing the number of stress and strain-rate variables. From equations 5.28b,c

ajle = ajla = (3/2)(sf]o,) (A1.93)
Substituting equation A1.93 into equation 5.26
g = BIGPlo)e + (312 la,)a (A1.94)
Substituting equation 5.8 into equation A1.94
giem = (3/2)(sfflo,) (A1.95)
Substituting equation 5.28a into equation A1.95
sley = sf?lo, (A196)
Rearranging equation A1.96 for slgﬁ, substituting the result into equation 5.27 and dividing
through by o
sjlo = [slg-") + (q»sy(“)/aa)]/a (A1.97)
Substituting equation 5.7 into the right-hand side of equation A1.97
sjlop = sl{ja) /o, (A1.98)

Hence from equations A1.93, A1.95, A1.96 and A1.98 it follows that

Gjle = agla = é[P]em
(312)(sfPlo,) = (B312)(sPlop) = (3/2)(sy/0) (A199)
This collinearity allows &, d;;, élg."), S;f'a) and szfﬁ to be eliminated by stating them in terms of &,
a, ém, o, and of respectively, along with the directionality of 8-

A1.5.2 Reducing the number of equations. Defining the elastic strain-rate as §;/2G (but cf.
equation 7.26) the kinematic equation (which stipulates that the total strain-rate is the sum of
the elastic and inelastic parts) becomes
S5 = 2G(&ff)-¢fm) (A1.100)
Substituting equation 5.7 into 5.12 to remove oy, the result into equation 5.28a to make
equation 5.12 multiaxial, and using equation A1.99 to remove slgf)/oy, then

O - O ,\M(T) S
) (A1.101)

Differentiating equation 5.9 with respect to time and substituting the result into equation
58

g = G2 e (

S, = oM(EM-a) (A1.102)
Substituting equation 5.7 into 5.12 to remove oy and the result into equation A1.102 to remove
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é(m, and substituting equation 5.11 into 5.10 to remove £* and the result into equation A1.102
to remove ¢ then

6, = M [ a*(c*,T) (d;}o,,)M(T’_ In ?,—: )—1/1 (%*)m £,exp ( % )] (A1.103)

Substituting equation 5.11 into 5.10 to remove é* and the result into equation 5.13 to
remove ¢ then

et - {[(05)" G he @] i) wenn s

Finally from equation 5.29

o = [(3/2)s;s5;12 (A1.105)
Hart’s equations are therefore reduced to equations A1.100, A1.101, A1.103, A1.104 and

A1.105 in which the independent variables are %), s,., ,, 6*, T and time.

,j’
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A2 DERIVATIONS ASSOCIATED WITH THE DATA REDUCTION EQUATIONS

A2.1 Derivation of the data reduction equations
In the following derivations use is made of the familiar product and quotient rules,
respectively

dv du d (%) = v(du/dx) - u(dv/dx) (A2.1)
X

+ v&= : £ (%
d dx dx \Y v2

in which u and v are functions of x.

d -
E(W) =y

A2.1.1 Derivation of equations 8.5 and 8.7. From equation 8.2

&0 = d[In(XZ/Ly)1/dr (A2.2)
where Z is a function of ¢. Therefore
&0 = (Lo/Z)[d(Z/Ly)/dt] (A2.3)
and hence
& = £IL (A2.9)
Similarly
ém = L/L (A25)
A2.1.2 Derivation of equation 8.6. From equation 8.3
£ = d[In(Z/L)]/dt (A2.6)
where both Z and L are a function of ¢. Therefore
g€ = (L/Z)[d(Z/L)/dt] (A2.7)
which from the quotient rule yields
&0 = (LIZ)(LZL - LZL)/L?)] (A238)
and hence ,
ée) = (LZ-LL)ILL (A2.9)
A2.1.3 Derivation of equation 8.20. From equation 8.18
L = d{ZL/[1-(PL[ALyE)]}/dt (A2.10)

where both .Z and . are a function of . Making the substitutions
u=2L ; v=[_0-(FPLIALYE)]
and applying the quotient rule

. ZI1-(PLIALE)] - Zd[1-(FZLIAL,E)]/dt
L = A2
[1-(PLIALE)T? (A2.11)

Making the substitutions
u=4J=~; v=-2LIALE
and applying the product rule

[ L 2 (PLIALE - .Z[-(fZ/AozLoE)-(fZ/AoLoE)] (A2.12)
[1-(PZLIA L E)]

which on clearing terms becomes
L = [Z+(FL2IALGE)]/[1-(PL]/AgLyE)]? (A2.13)

Observing from equation 8.18 that
(Z/L) = 1-(FPZL/AGLyE)] (A2.14)
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then
= [ £+ (FLAGLyE)1/(ZL/L)? | (A2.15)

A2.2 Experimental loading histories cast as stress-rates

In the following derivations use is again made of the product and quotient rules (equation
A2.1).
A2.2.1 Constant load creep test. During any deformation test from equation 8.1

6 = d(F/e¥)/dt (A2.16)
where  and @¥ are a function of . Applying the quotient rule
= (e4F-Fef [es?) (A2.17)
In a constant load creep test # =0 and so
= (-Pef [e¥?) = -o(ed /eF) (A2.18)
Also during any deformation test the rate of change of volume is given by
F = desL)dt = IL + Lo (A2.19)
(using the product rule). Assuming constant volume deformation, equation A2.19 becomes
ZIZL = -ef |eFf (A2.20)
which on substituting into equation A2.18 and using equation 8.5 (equation A2.4) yields
G = océl (A2.21)

A2.2.2 Constant displacement-rate test. During any deformation test the apparatus crosshead
displacement .2° is given by (cf. figure 8.6 and equation 8.11b)

= (P /) + AL, (A2.22)
where AL, is the inelastic shortenmg of the specimen and (/& o) is the combined elastic
shoxtemng of the apparatus and specimen. The combined apparatus and specimen stiffness F
is used to define an effective Young’s modulus x for the combined apparatus and specimen
such that

o = ©Fk/L (A2.23)
In passing it is observed that since
(P1Tg) = ALy, + AL, = (P/T) + PL/ISE (A2.24)
(equations 8.12, 8.13 and 8.15), then (using equation A2.23 in A2.24)
(1/x) = (e¥/LS") + (1/E) (A2.25)

which is the usual definition of x employed in the literature (e.g. Dotsenko, 1979, eqn. 6).
Differentiating equation A2.22 with respect to time

2L = dF |Sgp)ldt + d(AL,)/dt : (A2.26)
From the quotient rule
AP Gp)ldt = (TP - PI ) Tp (A2.27)
Again applying the quotient rule to equation A2.23 then
Ty = xl(Led - eFL)/L?)] (A2.28)
Substituting equations A2.23 and A2.28 into A2.27 and rearranging
#(#) - (TADOHEH @

Substituting equations 8.1 and A2.17 this becomes
d(F|Tg)ldt = 6Lix + oL/x (A2.30)
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Also from equation 8.10
d(dLy)/dt = d(Ly-L)/dt = - L (A2.31)
Substituting equations A2.30 and A2.31 into A2.26 and dividing through by L then with
equation 8.7 (equation A2.5)

LIL = &/x + éM[(c/x)-1] (A2.32)
Since for most deformation apparatus o < x then ‘
LIL = &/ - M (A2.33)

A2.2.3 Load relaxation test. During a load relaxation test .2° =0 and so equation A2.33
becomes
& = xém (A2.34)
In the usually quoted expression for the stress-rate during a load relaxation, the left-hand
side of equation A2.34 is negative. This results from a different sign convention for the change
in length of a specimen during deformation i.e. from prescribing

L =L+ ALp (A2.35a)
(reflecting application to tests conducted in tension) rather than (equation 8.10)
L = Ly- AL, (A2.35b)

(reflecting here application to tests conducted in compression). If equation A2.35a is used in
equation A2.31, then the usual expression results.
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A3 DERIVATIONS ASSOCIATED WITH MATERIAL PARAMETER FITTING

A3.1 The fitting procedures employed in this study
The following derivations support the material parameter fitting procedures outlined in
§ 11 to § 13. Use is made of the differentiation formulae

d _ 1 du

e (logu) = oA dx (A3.1)
d uy — u du A3.2
pr (CAY) CA"InA T ( )

where u is a function of x and A and C are constants.

A3.1.1 Derivation of equation 11.5. The equation of state for the friction element may be
written (equation 11.4)

ém = g*[(o-0o*)/GIM (A3.3)
Rearranging
o = o* + G(éM/a¥)/M (A3.4)
Making the substitutions x = log £ and y = log o
y = loglo* + G(10%/a*)!/M] (A3.5)
At constant o* using equation A3.1
% " Ini0fo*+ Gl( 10%/a* )M} e [0+ 010%™ (439
Using equation A3.2 with
A=10 ; C=G@@""™ ; u=x/M
this becomes
dy _ G(10%/a* )™M (A3.7)
dx M[o*+ G(10%/a* )M
and so
dlog o (n) 1 5% y1/M
= dloggéw _ M[GfiéG (/:(");d* T (A3.8)
Rearranging
G(éM[a*)lM = yM[c* + G(éM/a*)/M] (A3.9)
Substituting equation A3.9 into A3.4
o = o* + vM[c* + G(éM/a*)1IM] (A3.10)
and substituting equation A3.4 into A3.10
o = o* + ovM (A3.11)

A3.1.2 Derivation of equation 12.3. Rearranging the equation of state for the plastic element
(equation 12.1)

Inoc = Ino* - [(é*/&)*] (A3.12)
Making the substitutions x = log & and y =log o
y = logo* - [(£%/10%)*/In 10] (A3.13)

At constant o* using equation A3.2 with
A=10 ; C=-(&)*/m10 ; u=-Ax
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then
dy _ % /10X \A : (A3.14)
y A(£*/10%)
and so
v = dlogo/dlogs = A(é*/&)* (A3.15)

A3.1.3 Determining o* from the equations of state. The magnitude of o* at known o and
£ was determined by using the Newton-Raphson method (e.g. Hildebrand, 1976, pp. 367-370)
to solve the appropriate equation of state i.e. o* was determined iteratively by Wntmg the
appropriate equation of state as f(o*) = 0 and employing the formula
f(of)
(o)

where o} is the value of o* after the kth iteration step.

ok, = of - (A3.16)

A3.1.3.1 The equation of state for the friction element : The equation of state for the friction
element may be written as

&M = [Aexp(C/T)][c*/G1B[(c-0%*)/GIM (A3.17)
(equation 11.4 with equation 11.2 to account for the o* and T dependence of a*). Hence at

constant temperature
f(o*) = 0 = A[0*/G1B[(0-0*)/GIM - W (A3.18)
where
A; = Aexp(C/T) (A3.19)
Employing the product rule (equation A2.1)
MA,(c*/G
Flon = 28 onmigo-gmyap - MALGHOR (o guyut
BA MA,(c*/G)B -o*)M
= =5 ©%/6) (o -on/G1" - LT [0 ]
(n)
[5 - oo i@+ (43.20)

A3.1.3.2 The equation of state for the plastic element . The equation of state for the plastic
element may be written

foexp(-H/RT)
£

Inc = hno* - [ ] (G]*" [o* ] (A3.21)

(equation 12.1 with equation 12.2). Hence at constant temperature

f(c*) = 0 = Ino* - Ay(c*)*™ - Ino | (A3.22)
where
Ay = [fyexp (-H/RT)/éMWP[G™*™] (A3.23)
and :
f'(o*) = [1/0*] - [A;Am(c*)Am-1] (A3.24)

A3.1.4 Derivation of equation 13.6. Rearranging the mechanical state evolution equation
(equation 13.1)
InI' = InT* - [(&*/&)1] (A3.25)
Making the substitutions x = log & and y = logI'
y = logl'* - [(&*/10%)4/In 10] (A3.26)
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At constant I'* (i.e. at constant o*, equation 13.2) using equation A3.2 with

A=10 ; C=-(&*)4/In10 ; wu=-2Ax
then
[dlog &/dlogér] .« = A(a*/&)h (A3.27)
anA3.1.5 Derivation of equation 13.12. The elastic strain is given by
gl = In(Z/L) ' (A3.28)
A:(equation 8.3). Substituting equation 8.18 for L
e = In{1/[1-(FPL/A)LyE)]} (A3.29)
(e Recalling that
c = Fleyd = PLIA)L, (A3.30)
R{equations 8.1 and 8.12) then equation A3.30 becomes
o &€ = Jn{1/[1-(g/E)]) (A3.31)
(equations 8.1 and 8.12) then equation A3.30 becomes
e = In{1/[1-(c/E)]) (A332)

A3.2 Alternative fitting procedures

The fitting procedures employed to evaluate the material parameters of the friction and
plastic elements in this study, require the approximation for any given relaxation curve that
only one of these elements is deformation rate controlling in the fitted strain-rate range
(8§ 9.5.2). This approximation may be avoided by using non-linear fitting routines to fit the full
equation for plastic deformation

o = G(a/a¥)!/M + g*exp[-(&*/&)*] (A3.33)
(equation 5.21) to each relaxation curve. Two attempts to do this have been described in the
literature.

Huang et al. (1977, also see Huang et al., 1979, for a minor modification of this procedure)
use an iterative process to fit a series of constant o* curves all generated at approximately the
same value of o* but at different temperatures. Values of o* and é* were obtained from the
highest temperature curve (which is dominated by the plastic element) using A = 0.15. Using
this value of o*, M was determined from the lowest temperature curve (which is dominated by
the friction element). With the values of 4, o* and M, equation A3.33 was then fitted to the
highest temperature data using a non-linear least squares method to determine G (¢&/a*)1/M and
a better estimate of ¢*. Using a pre-determined activation enthalpy, the value of £* at the
second highest temperature was then calculated. With this value and the previous values of A
and M, the non-linear least squares method was used to fit equation A3.33 to determine G (é&/
a*)UM and an estimate of o* for that temperature. This process was then repeated for all the
temperatures. If the final fits were not satisfactory or the values of o* for each curve were not
sufficiently close together, the whole procedure was repeated using new values of o* and £* for
the highest temperature curve.

Miiller and Hartmann (1989) describe a stochastic optimization method for finding Hart’s
material parameters. In this procedure guesses of the values of each material parameter are
repeatedly modified until a good description of the mechanical data is obtained. The
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optimization is multidimensional i.e. it is carried out over all the material parameters
simultaneously. The modification scheme is designed to simulate biological evolution. Random
‘mutations’ (within prescribed limits) are applied to the parameter vector (i.e. the vector which
has the material parameters as components). If the resulting (daughter) vector describes the data
better, the previous (parent) vector is released and daughter is used as the parent for the next
mutation. This procedure (the asexual heredity stage) is continued until the population of
‘released’ vectors reaches a prescribed size (for Miiller and Hartmann this is 10). Subsequently,
each daughter vector is generated by randomly selecting her components from the vectors in the
population (the sexual heredity stage). Random mutations are also carried out on the daughter.
Whenever a daughter provides a superior description of the mechanical data than the worst
member of the population, she is retained in the population and the worst member is discarded.
In this way the population size is held constant. This process is continued until some prescribed
quality limit is attained, until the difference between the best and worst members of the
population falls below some prescribed limit, or until the number of generations exceeds some
prescribed limit.

Both the method of Huang et al. (1977) and that of Miiller and Hartmann (1989) require
optimizing. As described the method of Huang et al. ignores the expected dependence of M on
T, and therefore although the description of the relaxation curves is very good (figure 3.2e), the
physical interpretation of the evaluated parameters is complicated (§ 11.2.3). Miiller and
Hartmann applied their method to some experimental data for 25CrMo4-steel and found it to be
efficient. However, the quality of their fits is rather poorer than that achieved by the more usual
methods, although again this may reflect the fact that they ignored the dependence of M on T
and of g* on o*. "



