Interface-modulated nanojunction and microfluidic platform for photoelectrocatalytic chemicals upgrading

Zhenao Gua,c,1, Xiaoqiang Anb,1, Ruiping Liub, Lunqiao Xiongd, Junwang Tangd, Chengzhi Hua, Huijuan Liub, and Jiuhui Qua,c,*

a Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
E-mail: jhqu@rcees.ac.cn

b Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China

c University of Chinese Academy of Sciences, Beijing 100049, China

d Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.

1 These authors contributed equally to this work.

Abstract: Photoelectrocatalytic oxidation provides a technically applicable way for solar-chemical synthesis, but its efficiency and selectivity are moderate. Herein, a microfluidic photoelectrochemical architecture with 3-D microflow channels is constructed by interfacial engineering of defective WO\textsubscript{3}/TiO\textsubscript{2} heterostructures on porous carbon fibers. Kelvin probe force microscopy and photoluminescence imaging visually evidence the charge accumulation sites on the nanojunction. This efficient charge separation contributes to 3-fold enhancement in the yield of glyceraldehyde and 1,3-dihydroxyacetone during glycerol upgrading, together with nearly doubled production of high value-added KA oil and S\textsubscript{2}O\textsubscript{8}2− oxidant through cyclohexane and HSO\textsubscript{4}− oxidization, respectively. More importantly, the microfluidic platform with enhanced mass transfer exhibits a typical reaction selectivity of 85%, which is much higher than the conventional planar protocol. Integrating this microfluidic photoanode with an oxygen reduction cathode leads to a self-sustained photocatalytic fuel cell with remarkably high open-circuit voltage (0.9 V) and short-circuit current (1.2 mA cm−2).

Keywords: chemicals upgrading; photoelectrocatalysis; microflow channels; charge separation; photocatalytic fuel cells

1. Introduction
Oxidative production of value-added chemicals is a fundamental transformation process in the fine chemical, pharmaceutical, biological, and agrochemical realms [1-3]. For example, the oxidation of glycerol to glyceraldehyde (GLAD) and/or 1,3-dihydroxyacetone (DHA) could essentially increase the commercial value by thousands of times [4,5]. The oxidation of other biomass-derived alcohols (benzylic alcohols and 5-hydroxymethylfurfural) [6,7], the activation of C-H bonds [8], as well as the production of various oxidizing reagents (S₂O₈²⁻, ClO⁻, and H₂O₂) [9] are also of significant importance for the chemical industry. However, the commonly employed thermo- and electrochemical routes not only rely greatly on adscititious oxidants and noble metal catalysts (e.g., Pt, Pd, and Au), but also require massive energy consumption, thus seriously hindering their potential applications [3,10-12]. The alternative green oxidation process to produce valuable building-block chemicals remains one of the most important challenges of modern chemistry.

In recent years, selective organic transformation using earth-abundant semiconductors as catalysts and solar energy as the driving force has spurred tremendous research activities toward green synthesis [13-16]. Unfortunately, low quantum yields of particulate photocatalysts (<5% in most cases) and difficulties in the recovery of nanosized catalysts make the suspension systems less economically viable [17,18]. In this regard, immobilized photoelectrodes with electric-field-enhanced charge separation should be more promising for generating value-added products with low energy input. In the photoelectrochemical (PEC) processes, photon utilization and charge separation are two of the most important factors affecting the overall energy conversion efficiency. Recently, various strategies have been reported to enhance photon absorption and electron-hole separation efficiency, such as constructing multijunction structure [19-21], tuning crystal facets [22-24], as well as defect engineering [25-27]. Although promising PEC performances have been achieved, the charge transfer mechanisms remain unclear and are still under debate in many cases [28,29]. On the other hand, the mass transfer of reactants and their subsequent adsorption on the electrode surface are also essential factors determining the reaction rate and efficiency [30,31]. However, most current prevailing approaches for PEC oxidative upgrading focus on planar photoelectrodes, which suffer from low efficiency caused by limited reactants diffusion around the semiconductor-liquid interface [32-35]. Moreover, sluggish mass transfer unavoidably results in the overoxidation of valuable chemicals into undesired byproducts [36-38]. Microfluidic nanostructures can
provide new opportunities to circumvent the above drawbacks, due to the intensified mass transfer and improved reaction kinetics in the 3-D channels for precise product control [39-43]. Nevertheless, the combination of photoelectrodes with microfluidic architectures for PEC oxidative upgrading is less explored by far.

Herein, we set out to construct 3-D microfluidic PEC architecture with significantly enhanced charge and mass transfer for the oxidative upgrading of various chemicals. In such a miniaturized system, branched WO₃ nanostructures decorated by TiO₂ overlayer were used as photoactive materials, with carbon fibers as flexible, robust, and low-cost support for electron collection (Scheme 1) [44]. Kelvin probe force microscopy (KPFM) and photoluminescence imaging (PL) techniques were originally employed to visualize the spatial distribution and interfacial transfer of charge carriers in WO₃/TiO₂ heterostructures. Our results revealed that microfluidic nanojunction with oxygen vacancy defects exhibited exceptional PEC activity and selectivity for chemical upgrading reactions, such as the oxidation of glycerol and cyclohexane. We further presented the inspiring principle of self-sustainable photocatalytic fuel cell by integrating the microfluidic photoanode with an oxygen reduction cathode.

Scheme 1. Schematic diagram of the 3-D microfluidic PEC architecture with WO₃/TiO₂ nanojunction for oxidative upgrading of alcohols, hydrocarbon, and inorganic chemicals to their corresponding value-added products.

2. Experimental section

2.1 Preparation of m-H-WO₃

The electrode was fabricated by a seed-assisted hydrothermal method, as illustrated in Scheme 2 [45]. Briefly, a seed solution was prepared by adding 400 mg WCl₆ and 2 mL 30% H₂O₂ into 20 mL ethanol. Carbon cloth with a size of 1.5 cm × 3 cm was
dipped into the seed solution for 1 min and then dried at 40 °C for 30 min in an oven.
After repeating this dip-coating process three times, the carbon cloth was annealed in
air at 400 °C for 2 h. Then, 330 mg Na₂WO₄·2H₂O was dissolved in 90 mL deionized
water, followed by adding 6 mL of 6 M HCl and 1.8 g oxalic acid dihydrate. After
stirring for 30 min, 20 mL of the mixture was transferred into a 50 mL Teflon-lined
stainless autoclave. The seeded carbon cloth was held by a self-made PTFE holder and
placed vertically in the autoclave (Fig. S1). The autoclave was then sealed and heated
at 180 °C for 8 h. This hydrothermal treatment was repeated one more time with a
refreshed precursor solution to obtain a dense layer of WO₃. After the reaction, the
carbon cloth was taken out and rinsed with deionized water. Finally, the sample was
annealed in air at 500 °C for 2 h with a heating rate of 2 °C min⁻¹ and referred to as m-
WO₃. To obtain defective m-WO₃ film (denoted as m-H-WO₃), the electrode was
placed in a tube furnace with 50 mL min⁻¹ gas flow (10% H₂ and 90% Ar) and annealed
at 350 °C for 2 h with a ramping rate of 2 °C min⁻¹. The fabrication of pl-H-WO₃ is
similar to m-H-WO₃ except that the substrate is FTO conductive glass.

Scheme 2. Schematic diagram of the preparation process for m-H-WO₃/TiO₂
photoanode.

2.2 Preparation of m-H-WO₃/TiO₂

A facile wet chemical method was employed to prepare m-H-WO₃/TiO₂ [29]. In brief,
m-WO₃ film was placed in an aqueous mixed solution of 30 mM ammonium
hexafluorotitanate and 150 mM boric acid in a water bath at 30 °C for 24 h. Then, the
film was washed with deionized water and dried at room temperature. After that, the
electrode was annealed in air at 350 °C for 2 h with a ramping rate of 2 °C min⁻¹ to
obtain the m-WO$_3$/TiO$_2$ heterostructure. The defective m-H-WO$_3$/TiO$_2$ film was obtained by replacing the air with 50 mL min$^{-1}$ gas flow (10% H$_2$ and 90% Ar).

2.3 Preparation of H-WO$_3$/TiO$_2$ heterojunction for KPFM measurements

Graphite was used as the conductive support for the loading of defective WO$_3$/TiO$_2$ heterostructure to represent the interfacial contact of WO$_3$ and carbon cloth. Firstly, a piece of graphite plate (1 cm × 3 cm) was polished by abrasive paper and ordinary printing paper to obtain a shiny surface. Then the graphite plate was placed in a Teflon-lined stainless autoclave containing 2 mM Na$_2$WO$_4$·2H$_2$O, 70 mM HCl, and 7 mM ammonium oxalate with the smooth side facing down. The autoclave was then sealed and heated at 120 °C for 3 h. After the hydrothermal reaction, the sample was annealed in air at 500 °C for 2 h. TiO$_2$ nanoplate with exposed (001) facet was prepared using a well-established method [46]. In brief, 25 mL aqueous solution containing 2.67 mM TiF$_4$ and 70 mM HF were added to a Teflon-lined autoclave, followed by heating up to 180 °C for 12 h. The obtained TiO$_2$ nanocrystals were washed several times and dispersed in deionized water. Then, a certain amount of TiO$_2$ dispersion was drop-casted onto the graphite plate with WO$_3$. The defective H-WO$_3$/TiO$_2$ was finally obtained after annealing the sample at 350 °C for 2 h with 50 mL min$^{-1}$ gas flow (10% H$_2$ and 90% Ar). For comparison, a similar WO$_3$/TiO$_2$ heterostructure without defect was annealed in air to investigate the impact of oxygen vacancies on the interfacial charge transfer. The similar method was used to prepare WO$_3$/TiO$_2$ samples on glass for PL measurements.

2.4 Characterization

The morphology of samples was characterized by a scanning electron microscope (SEM, JSM-7001F). Transmission electron microscopy (TEM) and the corresponding energy-dispersive X-ray spectroscopy (EDS) were taken on a transmission electron microscope (JEM-2100F) with an acceleration voltage of 200 kV. Electron spin resonance (ESR) analysis was carried out using a Bruker E500 spectrometer. X-ray diffraction (XRD) patterns were recorded on a PANalytical X-ray diffractometer with Cu Kα radiation. X-ray photoelectron spectroscopy (XPS) spectra were recorded on a Thermo ESCALAB250Xi spectrometer with a monochromated Al-Kα X-ray source. The photoluminescence (PL) images of WO$_3$/TiO$_2$ heterojunction were recorded on
Leica TCS SP8 nanoscope with an excitation wavelength of 405 nm and emission wavelengths of 450–500 nm.

2.5 KPFM measurement

The surface potential images were taken with a Bruker Dimension Icon system under ambient atmosphere in an amplitude-modulated (AM)-KPFM mode [47]. The lift mode was adopted with a lift height of 100 nm and the AC voltage was set to 0.5 V. The Pt/Ir-coated Si tip (PIT-V2) was used with a spring constant of 1.5–6 N m\(^{-1}\) and resonant frequency of 50-100 kHz. The light from a 500 W Hg lamp (CEL-M500, light intensity ~150 mW cm\(^{-2}\)) was irradiated on the sample with a ~5° grazing angle. The surface photovoltage (SPV) is the difference in the surface potential (or contact potential difference, CPD) before and after illumination, defined as \(\text{SPV} = \text{CPD}_{\text{light}} - \text{CPD}_{\text{dark}}\).

2.6 Computational fluid dynamics (CFD) study

The flow fields in the micro-channels were simulated using COMSOL Multiphysics 5.2. The 3-D geometry “CFD” module was used to solve the flow velocity distribution in the electrodes. For the microfluidic WO\(_3\) electrode, two parallel carbon fibers in the diameter of 8 μm were separated by a distance of 4 μm. WO\(_3\) nanoplates with the dimension of 2 μm × 1 μm × 200 nm were vertically aligned on the surface of both carbon fibers and FTO, with loading densities of about 1 plate per μm\(^2\). The water flow direction in the microfluidic system was set to be perpendicular to the plane of carbon fibers, with an inlet velocity of 1 mm s\(^{-1}\). For the planar system, water flow direction was parallel to the electrode plane and the inlet velocity was also set to be 1 mm s\(^{-1}\).

2.7 Photoelectrochemical measurement

All the photoelectrochemical measurements were carried out on a Gamry Interface 1000 electrochemical workstation. For the typical three-electrode configuration, the saturated Ag/AgCl electrode and Pt-wire electrode were used as the reference and counter electrode, respectively. For the chemical transformation experiments, a two-compartment cell was used, where the same anolyte and catholyte were separated by Nafion 211 membrane. A 500 W Xe lamp (CEL-S500) coupled with an AM 1.5 G filter was used to simulate solar irradiation and the light intensity was calibrated to 100 mW cm\(^{-2}\). Photocurrent-voltage (J–V) curves were measured at a scan rate of 5 mV s\(^{-1}\). Before data collection, the J–V scans were repeated for at least three times to reach a steady state. In all the PEC experiments, oxygen was bubbled into the electrolyte with
a flow rate of 20 mL min$^{-1}$ to ensure efficient oxygen reduction reaction (ORR) and mass transfer.

3. Results and discussion

3.1. Structural characterization

SEM image suggests that the carbon cloth substrate is comprised of an interwoven network of carbon fibers (diameter \approx 8 µm) with massive microflow channels (Fig. 1a). After hydrothermal growth, the staggered carbon fibers were covered with a thick layer of vertically aligned WO$_3$ nanoplates (Fig. S2). The typical thickness and height of these nanoplates are 200 nm and 2 µm, respectively. The formation of hierarchical WO$_3$/TiO$_2$ nanojunctions with a high surface roughness on carbon fibers is clearly revealed by Fig. 1b and 1c. According to the TEM observation, the length of TiO$_2$ nanoprickles is about 50 nm (Fig. 1d and S3). EDS elemental mapping image of m-H-WO$_3$/TiO$_2$ evidences the dense and uniform wrapping of WO$_3$ nanoplates by TiO$_2$ branches (Fig. 1e). The uniform coverage of TiO$_2$ on m-H-WO$_3$ can be also revealed by the appearance of Ti 2p peaks and substantial diminishment of W 4f signal in the XPS spectra of m-H-WO$_3$/TiO$_2$ (Fig. S4). Furthermore, high-resolution TEM (HRTEM, Fig. 1f) image of TiO$_2$ nanopickle presents a lattice spacing of 0.35 nm, which well matches up with the (101) plane of anatase TiO$_2$ [48]. Benefiting from the microfluidic architecture and ample nanojunctions, m-H-WO$_3$/TiO$_2$ could possess higher contact efficiency with the solution in comparison to its planar counterpart (Fig. S5).

Fig. 1. SEM images of (a) carbon cloth and (b,c) m-H-WO$_3$/TiO$_2$ photoanode. (d) TEM image of WO$_3$/TiO$_2$ nanoplate and (e) the corresponding EDS elemental mapping image. (f) HRTEM image of TiO$_2$ nanopickle.
The crystal and electronic structure of these microfluidic electrodes were thereafter comprehensively characterized. As shown in Fig. 2a, m-H-WO₃ displays three strong XRD peaks in the range of 22°–25°, suggesting the monoclinic phase structure of WO₃ (JCPDS 89-4476). After the decoration of TiO₂, the emerging diffraction peaks at 25.3°, 37.8°, and 48.1° can be well indexed to the (101), (004), and (200) planes of anatase TiO₂ (JCPDS 21-1272). UV-visible absorption spectra of m-WO₃, m-H-WO₃, and m-H-WO₃/TiO₂ were measured and displayed in Fig. 2b. All these samples exhibit similar absorption edges of about 450 nm, corresponding to the band gap (2.7 eV) of WO₃. Compared to m-WO₃, m-H-WO₃ shows higher absorption coefficient in the visible region, which can be attributed to the formation of defect states in WO₃ [39]. For m-H-WO₃/TiO₂, there is an additional absorption edge at around 380 nm, which is in accordance with the deposition of TiO₂ (band gap of ~3.2 eV). ESR measurements were then conducted to investigate the electronic structure of m-H-WO₃/TiO₂. As displayed in Fig. 2c, both microfluidic architectures with (m-H-WO₃/TiO₂) and without TiO₂ (m-H-WO₃) exhibit strong signals at g = 2.003, which is a typical sign of oxygen vacancies (Fig. 2c) [25]. As this peak is not observed in the spectrum of m-H-TiO₂, oxygen defects should locate in WO₃ rather than TiO₂. Based on previous reports, this is attributed to the higher structural stability of anatase TiO₂ against thermal reduction [49].

To further confirm the defective structure of WO₃, high-resolution XPS spectra of W 4f were measured (Fig. 2d). The doublet peaks centered at 35.5 eV (W1) and 37.6 eV (W2) are assigned to the characteristic 4f7/2 and 4f5/2 states of W⁶⁺, respectively [50]. Compared to m-WO₃, m-H-WO₃ exhibits two new peaks at 34.8 eV (W3) and 36.6 eV (W4), which can be attributed to the 4f7/2 and 4f5/2 states of W⁵⁺, respectively. The low valence of W confirms the introduction of oxygen vacancies and unpaired electrons into m-H-WO₃. The impact of oxygen vacancies on the electronic structure of WO₃ was thereafter examined by valance band (VB) XPS spectra. As shown in Fig. 2e, both m-WO₃ and m-H-WO₃ display similar band edges at ~2.40 eV, corresponding to the VB maximum of WO₃. For m-H-WO₃, it is evident that an additional electronic state emerges at 0.25 eV. This mid-gap state can be assigned to the localized electrons in the d-orbitals of low-valence W species, with enhanced electron migration and increased carrier density [51]. Compared to bare WO₃, m-H-WO₃/TiO₂ shows a smaller VB maximum value of 2.28 eV. This upward shift of band edge indicates a higher VB position of TiO₂ than WO₃, as schematically illustrated in Fig. 2f. Considering the larger band gap of TiO₂ than WO₃, the conduction band (CB) of TiO₂ would also locate at a
higher position than that of WO$_3$. A type-II heterojunction can therefore form between WO$_3$ and TiO$_2$, which is likely to provide a driving force for the charge separation. The photogenerated holes can migrate from WO$_3$ to TiO$_2$ for surface oxidation reactions, while the electrons would transfer in the opposite direction, thus achieving spatial separation of photocarriers. Moreover, the gap state located near the CB of WO$_3$ can act as an electron mediator and further accelerate the charge transfer process [52].

Fig. 2. (a) XRD patterns, (b) UV-visible absorption spectra, (c) ESR spectra, (d) W 4f XPS spectra, and (e) VB XPS spectra of different microfluidic photoelectrodes. (f) Schematic diagram of the band alignment between WO$_3$ and TiO$_2$.

3.2. Charge separation behavior

The photoelectrochemical performance of microfluidic electrodes was evaluated using a standard three-electrode system under simulated solar irradiation (AM 1.5 G, 100 mW cm$^{-2}$). According to the chopped J–V curves in Fig. 3a, m-WO$_3$ photoanode achieves a photocurrent density of 0.8 mA cm$^{-2}$ at 1.23 V vs. RHE, while the value for m-H-WO$_3$ is slightly higher. The formation of WO$_3$/TiO$_2$ heterointerface significantly improves the photoresponse of microfluidic photoanodes, together with the negatively shifted onset potential of 0.4 V vs. RHE for m-WO$_3$/TiO$_2$. It is also worth noting that the introduction of oxygen defects into WO$_3$/TiO$_2$ heterostructure gives rise to a further increase in the photocurrent, reaching 1.3 mA cm$^{-2}$ at 1.23 V vs. RHE for m-H-WO$_3$/TiO$_2$. The much higher photocurrent density of m-H-WO$_3$/TiO$_2$ in comparison to m-H-WO$_3$ and m-WO$_3$/TiO$_2$ validates the synergistic effect between oxygen defects
and heterostructured interface for charge separation. The improved charge transfer kinetics of interface-modulated nanojunction was further evaluated by EIS measurements. Profiting from the good conductivity of carbon support, all the microfluidic photoanodes possess low series resistance of less than 5 Ω (Fig. 3b). In the Nyquist curves, m-H-WO$_3$/TiO$_2$ exhibits the smallest arc radius compared to the other photoanodes, demonstrating the remarkably decreased charge transfer resistance. The important contribution of oxygen defects to the photostability of microfluidic photoanodes was thereafter evaluated by the time course of photocurrent, where both m-WO$_3$ and m-WO$_3$/TiO$_2$ photoanodes experience obvious decrease in photocurrent density during 1 h operation (Fig. 3c). XPS results indicate that one of the O 1s peaks of m-WO$_3$ located at relatively high binding energy almost disappeared after the polarization treatment (Fig. S6), which corresponds to the passivation of surface states. We can therefore draw a conclusion that the PEC reactive sites of WO$_3$ are strongly correlated with the surface oxygen-related defects [25,53]. Indeed, m-H-WO$_3$ and m-H-WO$_3$/TiO$_2$ with massive surface defects show excellent photostability, further indicating the pivotal contribution of interface modulation to the high performance of microfluidic photoanodes. Furthermore, the wavelength-dependent incident photon to current efficiency (IPCE) measurements of m-H-WO$_3$ and m-H-WO$_3$/TiO$_2$ were conducted and displayed in Fig. 3d, where the enhancement factors contributed by TiO$_2$ were also calculated and shown. To circumvent the problem of different reaction kinetics on WO$_3$ and TiO$_2$ surface, glycerol was added to the electrolyte to scavenge holes. It can be observed that TiO$_2$ contributes to about 1.5-fold IPCE enhancement factor in both UV and visible region, with the highest IPCE reaching nearly 75% for m-H-WO$_3$/TiO$_2$. The excellent performance of TiO$_2$ decoration throughout the entire photoresponse region suggests that the accelerated charge separation induced by TiO$_2$, rather than the enhanced light absorption, may be the main reason for its high photon utilization efficiency.
Fig. 3. (a) Chopped J–V curves, (b) EIS Nyquist plots, and (c) photocurrent-time curves of different microfluidic photoanodes. The electrolyte is 0.5 M Na$_2$SO$_4$ buffered by 0.1 M borate solution (pH = 6) The steps or abrupt increase appearing in the solid line in panel c are due to the abrupt burst of oxygen bubbles that formed and adhered to the Teflon electrode holder. (d) IPCE spectra of m-H-WO$_3$ and m-H-WO$_3$/TiO$_2$ measured at 1.23 V vs. RHE with the existence of 0.1 M glycerol.

To achieve a fundamental insight into the charge transfer process in the interface-modulated nanojunction, KPFM, a powerful tool to measure the surface potential with high spatial resolution, was utilized to visibly probe the charge separation at WO$_3$/TiO$_2$ interface. A model heterostructure, with anatase TiO$_2$ crystal deposited onto defective WO$_3$ microplate (H-WO$_3$), was assembled onto the graphite substrate (Fig. S7). This model structure with the WO$_3$/TiO$_2$ interface and oxygen defects exhibits enhanced PEC activity in a similar manner with the microfluidic photoanode, as demonstrated in Fig. S8. Therefore, it is reasonable to utilize this modeled photocatalyst to probe the spatial charge transfer and separation at the nanometer scale. By subtracting the surface potential measured under dark from that under light conditions (Fig. S9), we obtained the surface photovoltage (SPV) image of H-WO$_3$/TiO$_2$ heterojunction as depicted in
Fig. 4a. The representative cross-sectional SPV profiles associated with the dashed line in Fig. 4a are shown in Fig. 4b. It can be observed that TiO$_2$ and the major part of H-WO$_3$ show positive SPV signals of about 140 mV and 40 mV, respectively, indicating the presence of photogenerated holes on both H-WO$_3$ and TiO$_2$ [54]. The SPV value around the heterojunction interface decreases to 0 mV, which suggests the migration of electrons from TiO$_2$ to WO$_3$ and the accompanied holes migration from WO$_3$ to TiO$_2$ (Fig. 4b). In comparison, a much higher SPV value (60 mV) was observed in the interfacial region of WO$_3$/TiO$_2$ nanojunction without defect modulation (Fig. 4c and S10). Meanwhile, the SPV value of TiO$_2$ deposited on defect-free WO$_3$ was about 110 mV, which is much smaller than that on H-WO$_3$. The relative small potential difference across the WO$_3$/TiO$_2$ interface visually demonstrates its slow charge separation process. On the contrary, the charge separation on defective WO$_3$/TiO$_2$ nanojunction is faster, evidencing the important role of defects on interfacial charge transfer.

The unique feature of defective WO$_3$/TiO$_2$ interface was further confirmed by spatially resolved photoluminescence (PL) measurements using a similar model structure on glass, as the PL emission is directly associated with the electron-hole recombination [52,55]. Compared to the isolated one, junctional TiO$_2$ nanocrystal on defective WO$_3$ plate exhibits almost no fluorescence (Fig. 4d and S11), indicating the inhibited recombination of electrons and holes. In contrast, the integration of TiO$_2$ and defect-free WO$_3$ results in a negligible change in the fluorescence intensity (Fig. 4e). It can therefore be deduced that defect engineering can provide more opportunity for efficient charge separation in nanojunctions, which is in accordance with the KPFM results. As illustrated in Fig. 2f and 4f, WO$_3$ and TiO$_2$ form type-II heterostructure based on their energy band alignment, where the oxygen vacancies (V$_{O}$) in WO$_3$ introduce intraband state for charge reservation. The intraband V$_{O}$ state with the fundamental role as an electron mediator can unambiguously enhance the charge separation in WO$_3$/TiO$_2$ nanojunction [52]. With accelerated electrons transfer from TiO$_2$ to H-WO$_3$, more photogenerated holes can accumulate on the surface of TiO$_2$, thereby speeding up the oxidation reaction (Fig. 4f).
Fig. 4. (a) SPV image of H-WO₃/TiO₂ and (b) the representative cross-sectional SPV profiles associated with the dashed line in panel a. (c) The representative cross-sectional SPV profiles of defect-free WO₃/TiO₂ heterostructure. Spatially resolved PL images of (d) defective and (e) defect-free WO₃/TiO₂ heterostructure. (f) Schematic diagram of charge separation across the defective WO₃/TiO₂ interface. The energy band alignment and defect state induced by oxygen vacancies are also shown.

3.3. Flow field simulation

Apart from the photon utilization efficiency, the mass transfer of reactants on the photoelectrode surface is also of great significance. Therefore, the impact of microfluidic channels on the flow velocity and mass diffusion of reactants was investigated by computational fluid dynamics (CFD) simulation. A reaction box with the modeled structure in it was constructed, where the solution was allowed to pass through the catalyst with an initial velocity. For comparison, the planar structure with a liquid flow direction parallel to the electrode was also modeled and tested. Fig. 5 shows the liquid velocities of microfluidic and planar electrodes in the cross-sectional area, respectively. It can be observed that the spacings of carbon fibers provide unique microchannels for the liquid to flow through. As a consequence, the liquid flow rate near the catalyst surface is almost identical to that in the bulk, significantly compressing the diffusion layer and enabling the rapid diffusion of reactants and products in the microfluidic electrode (Fig. 5a) [41]. In contrast, the liquid velocity on the surface of planar electrode is almost zero, with an obvious laminar layer setting between the catalyst and bulk electrolyte (Fig. 5b). To have a closer look at the hydrodynamic
characteristics of planar electrode, a similar model with the inflow direction perpendicular to the electrode was constructed (Fig. S1). The planar electrode indeed acted as a physical barrier against the water flow and resulted in a 90° turn in the fluid direction. In this context, the outflow direction is always parallel to the planar electrode no matter what the inflow direction is, with a relatively low liquid velocity and limited mass transfer on the surface of planar electrode. The slow reactant diffusion would cause great restraint on the surface reaction, unavoidably leading to low hole utilization efficiency and overoxidation of organic molecules. This comparison indicates that the microfluidic architecture should possess fast reaction kinetics and high solar-to-chemical efficiency for PEC upgrading reactions.

Fig. 5. CFD simulations of the flow velocity distribution in (a) microfluidic and (b) planar electrode.

3.4. PEC chemicals upgrading

Considering the fast reactants diffusion and nanojunction-enhanced hole accumulation on the surface of TiO₂, our 3-D hierarchical structure should be an ideal platform for PEC chemicals upgrading with high efficiency. To verify this hypothesis, microfluidic photoelectrodes were employed to upgrade glycerol into value-added fine chemicals [5]. For a reasonable comparison, planar WO₃ photoanodes with and without TiO₂ decoration were prepared on FTO conductive glass and referred to as pl-H-WO₃/TiO₂ and pl-H-WO₃, respectively. As a consequence of PEC oxidation, the addition of glycerol into the electrolyte solution leads to a significant increase of photoresponse (Fig. S13). The photocurrent density of m-H-WO₃/TiO₂ reaches 2.89 mA cm⁻² at 1.23 V vs. RHE, which is much higher than those of pl-H-WO₃ and pl-H-WO₃/TiO₂ (Fig. 6a). This well demonstrates the synergistic contribution of charge separation and mass transfer to the photon utilization in m-H-WO₃/TiO₂ photoanode. PEC glycerol oxidation was thereafter conducted at different applied potentials (0.6, 0.9, and 1.2 V vs. RHE) and the products were analyzed by HPLC and ¹H NMR methods (Fig. S14
The glycerol consumption and product yields are listed in Table 1, with the generation rates of oxidation products on pl-H-WO₃ and m-H-WO₃/TiO₂ shown in Fig. 6b. It can be concluded that the microfluidic photoanodes can efficiently convert glycerol into value-added glyceraldehyde (GLAD) and 1,3-dihydroxyacetone (DHA), with a small amount of formic acid (FA), glycolic acid (GA), and CO₂ as by-products. For m-H-WO₃/TiO₂ photoanode, the generation rate of valuable products (GLAD + DHA) reaches 35.3 μmol cm⁻² h⁻¹ at 1.2 V vs. RHE, with a selectivity of 85% (Fig. 6c) and faradaic efficiency (FE) of 70% (Fig. 6d). The production rate is about 3 times higher than that of conventional planar photoanode (pl-H-WO₃, 13.3 μmol cm⁻² h⁻¹). Meanwhile, the selectivity and faradaic efficiency of pl-H-WO₃ toward (GLAD + DHA) generation are 61% and 42% at 1.2 V vs. RHE, respectively, which are much smaller than those of m-H-WO₃/TiO₂. Profited from the enhanced diffusion of glycerol molecules and their oxidation derivatives in microflow channels, the microfluidic platform not only exhibits exceedingly high activity over the entire range of potentials (0.6–1.2 V vs. RHE), but also inhibits the overoxidation of glycerol into by-products such as formic acid and glycolic acid (entry 1–6 in Table 1 and Fig. 6b–d) [56]. It should also be noted that CO₂, the complete oxidation product of glycerol, only accounts for less than 6% of the total carbonaceous products in the microfluidic systems, while those values for the planar systems are about 20% (Table 1). No difference in product compositions is observed for m-H-WO₃ and m-H-WO₃/TiO₂. Thus, the type of semiconductors presents little impact on the reaction selectivity. Finally, to rule out the possible generation of toxic compounds, cytotoxicity tests were conducted on the glycerol solutions before and after PEC oxidation on m-H-WO₃/TiO₂. The glycerol sample after PEC oxidation showed a promoting effect on the cell viability (Fig. S16), demonstrating that the oxidation products of glycerol are rather nutrient than toxicant. All these results demonstrate the inherent advantages of microfluidic platform, contributing to the state-of-the-art PEC performance of m-H-WO₃/TiO₂ photoanode for glycerol upgrading [56-58].

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>m-H-WO₃/TiO₂</td>
<td>0.6</td>
<td>10.2</td>
<td>44.4</td>
<td>GLAD 29.1</td>
<td>DHA 9.9</td>
<td>FA 2.7</td>
</tr>
<tr>
<td></td>
<td>m-H-WO₃/TiO₂</td>
<td>0.9</td>
<td>21.2</td>
<td>93.0</td>
<td>59.4</td>
<td>20.1</td>
<td>5.7</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>m-H-WO₃/TiO₂</td>
<td>1.2</td>
<td>29.2</td>
<td>123.6</td>
<td>77.7</td>
<td>28.2</td>
<td>7.2</td>
</tr>
<tr>
<td>2</td>
<td>m-H-WO₃</td>
<td>0.6</td>
<td>4.1</td>
<td>18.3</td>
<td>12.0</td>
<td>4.2</td>
<td>1.2</td>
</tr>
<tr>
<td>3</td>
<td>m-H-WO₃</td>
<td>0.9</td>
<td>12.4</td>
<td>54.9</td>
<td>34.8</td>
<td>12.3</td>
<td>3.3</td>
</tr>
<tr>
<td>4</td>
<td>m-H-WO₃</td>
<td>1.2</td>
<td>17.5</td>
<td>75.9</td>
<td>50.1</td>
<td>15.9</td>
<td>4.8</td>
</tr>
<tr>
<td>5</td>
<td>pl-H-WO₃/TiO₂</td>
<td>0.6</td>
<td>7.3</td>
<td>25.5</td>
<td>12.6</td>
<td>4.8</td>
<td>5.4</td>
</tr>
<tr>
<td>6</td>
<td>pl-H-WO₃/TiO₂</td>
<td>0.9</td>
<td>15.3</td>
<td>54.6</td>
<td>25.2</td>
<td>9.0</td>
<td>11.4</td>
</tr>
<tr>
<td>7</td>
<td>pl-H-WO₃/TiO₂</td>
<td>1.2</td>
<td>24.2</td>
<td>81.6</td>
<td>36.3</td>
<td>12.9</td>
<td>12.6</td>
</tr>
<tr>
<td>8</td>
<td>pl-H-WO₃/TiO₂</td>
<td>0.6</td>
<td>4.5</td>
<td>18.9</td>
<td>9.5</td>
<td>3.2</td>
<td>3.7</td>
</tr>
<tr>
<td>9</td>
<td>pl-H-WO₃/TiO₂</td>
<td>0.9</td>
<td>13.3</td>
<td>51.2</td>
<td>23.1</td>
<td>8.7</td>
<td>9.8</td>
</tr>
<tr>
<td>10</td>
<td>pl-H-WO₃</td>
<td>1.2</td>
<td>18.1</td>
<td>65.4</td>
<td>29.6</td>
<td>10.4</td>
<td>10.7</td>
</tr>
</tbody>
</table>

Reaction conditions: 20 mL 0.5 M Na₂SO₄, 0.1 M borate buffer, and 0.1 M glycerol, pH = 6, electrode area = 3 cm², 30°C.

We then employed cyclohexane and HSO₄⁻ as the representative hydrocarbon and inorganic substrates to verify the versatility of this microfluidic PEC electrode. Selective oxidation of cyclohexane is intrinsically important in the chemistry of C-H activation and the commercial synthesis of Nylon [59]. As shown in Fig. 6e, m-H-WO₃/TiO₂ photoanode can efficiently and selectively transform cyclohexane into value-added KA oil (cyclohexanol and cyclohexanone). The yield of KA oil on m-H-WO₃/TiO₂ reaches 64 μmol cm⁻² after 5 h reaction, which is nearly 2 times higher than that of pl-H-WO₃. Benefitting from the numerous reaction sites, m-H-WO₃/TiO₂ maintains a relatively high faradaic efficiency in comparison to its planar counterpart (Fig. S17). Similar results can be observed for the oxidation of HSO₄⁻ to S₂O₈²⁻, where 99% faradaic efficiency can be realized by m-H-WO₃/TiO₂ in the first 20 minutes of oxidation (Fig. 6f and S17). As a strong oxidant, S₂O₈²⁻ is of great value and widely used for many chemical and environmental reactions [9]. About 4 mM S₂O₈²⁻ can be obtained by m-H-WO₃/TiO₂ after PEC oxidation for 2 hours, which is much higher than that of pl-H-WO₃ (2.4 mM) (Fig. 6f). In this context, the nanojunction-enhanced microfluidic PEC platform offers more opportunity for PEC oxidative upgrading of various chemicals.
Fig. 6. (a) Chopped J–V curves of pl-H-WO₃ and m-H-WO₃/TiO₂ photoanodes. (b) PEC production rates of glycerol oxidative products. (c) Selectivities and (d) faradaic efficiencies of pl-H-WO₃ and m-H-WO₃/TiO₂ for the production of valuable products (GLAD + DHA). The electrolyte for panel a–d is a mixture of 0.5 M Na₂SO₄, 0.1 M glycerol, and 0.1 M borate buffer (pH = 6). (e) Generation of KA oil in the PEC oxidation of cyclohexane. Electrolysis was conducted at 0.8 V vs. Ag/Ag⁺. The electrolyte was a mixture of 18 mL cyclohexane, 12 mL t-BuOH, and 2 mL HNO₃. (f) Generation of S₂O₈²⁻ in the PEC oxidation of HSO₄⁻. Electrolysis was conducted at 1.2 V vs. RHE in 20 mL 0.5 M H₂SO₄ solution.

3.5. PEC pollutants degradation

With numerous flow channels and oxidation sites, m-H-WO₃/TiO₂ should also be a good candidate for the PEC degradation of organic pollutants. Bisphenol A (BPA), a representative environmental contaminant with adverse effects on endocrine systems of human and aquatic organisms, was used to evaluate the potential of this microfluidic
photoanode for pollutant removal. Before photoelectrocatalytic degradation, the photoanodes were immersed into BPA solution for 60 min under dark conditions to reach the adsorption-desorption equilibrium. Compared to planar electrodes, the adsorption capacities of BPA on microfluidic electrodes are much higher, verifying their ample reaction sites (Fig. 7a). Upon illumination, more than 99% of BPA was decomposed over m-H-WO₃/TiO₂ after 90 min, while the degradation efficiency of pl-H-WO₃ was only 67%. Both TiO₂ decoration and construction of microflow channels contribute to the fast BPA elimination, with the BPA degradation efficiencies of pl-H-WO₃/TiO₂ and m-H-WO₃ being 81% and 98%, respectively. It can be therefore deduced that in comparison to charge separation on photoanode, the mass transfer of BPA is more important for its fast PEC degradation. To have a quantitative analysis on BPA degradation process, pseudo-first-order kinetics was employed to simulate all the PEC degradation plots (Fig. 7b). It can be observed that m-H-WO₃/TiO₂ exhibits an apparent rate constant (k) of 0.060 min⁻¹ for BPA degradation, which is 5-fold higher than that of pl-H-WO₃ (0.012 min⁻¹). Furthermore, the rate constant of m-H-WO₃ (0.039 min⁻¹) is relatively higher than that of pl-H-WO₃/TiO₂ (0.018 min⁻¹). This proves the significant contribution of mass transfer in microflow channels to the fast PEC degradation. The decolorization of methylene blue (MB) was also tested to investigate the versatility of m-H-WO₃/TiO₂ photoanode. As shown in Fig. 7c, the solution was totally decolorized over m-H-WO₃/TiO₂ after 90 min, with nearly 5-fold higher reaction kinetics (k = 0.064 min⁻¹) than pl-H-WO₃ (k = 0.014 min⁻¹). The extraordinary performance of microfluidic photoanode in BPA and MB elimination suggests its potential applicability for environmental remediation. More importantly, m-H-WO₃/TiO₂ shows a negligible decrease of activity during five cycling runs, indicating its good photostability (Fig. 7d). In this regard, the nanojunction-enhanced microfluidic PEC platform demonstrates great potential for the fast elimination of various aquatic pollutants.
Fig. 7. (a) PEC degradation of BPA and (b) the corresponding kinetics plots over different photoanodes. (c) PEC degradation of MB and the corresponding kinetics plots. (d) Cycling degradation of BPA over m-H-WO$_3$/TiO$_2$. The degradation experiments were conducted at 1 V vs. RHE in 0.1 M Na$_2$SO$_4$ solution containing 10 mg L$^{-1}$ pollutants (pH = 6) under simulated solar-light irradiation (AM 1.5 G, 100 mW cm$^{-2}$).

3.6. Photocatalytic fuel cell

Having demonstrated the extraordinary performance of microfluidic photoanode for oxidative chemicals upgrading, we attempted to design a bias-free PEC system for self-sustained organic synthesis. As illustrated in Fig. 8a, a two-electrode photocatalytic fuel cell (PFC) was constructed by using m-H-WO$_3$/TiO$_2$ as the photoanode and Pt/C coated carbon paper as the cathode for oxygen reduction reaction (ORR) [60]. When glycerol is employed as the organic source, an open-circuit potential of 0.9 V and a short-circuit current of 1.2 mA cm$^{-2}$ are realized using such an integrated device (Fig. 8b). Correspondingly, a maximum output power density of 130 μW cm$^{-2}$ is obtained, which is among the highest values reported to date (Table S1). Besides, this photocatalytic fuel cell can maintain a stable current of ~1.2 mA cm$^{-2}$ at 0 V vs. CE (i.e. without external electric bias), demonstrating its good stability for electricity generation (Fig. 8c).
By connecting two of above photocatalytic fuel cells in series, a higher output voltage can be easily realized, which is sufficient to power common electronic devices with the nominal voltage of 1.5 V, such as electronic timer (Fig. 8d and Video S1) and calculator (Fig. 8e and Video S2). The above results demonstrate that we can simultaneously obtain value-added chemicals and electricity by this PFC system.

Fig. 8. (a) Schematic diagram of the PFC system with microfluidic photoanode and ORR cathode. (b) Chopped J–V curve of the PFC system. The output power density is also shown and calculated by multiplying the photocurrent density by the output voltage. (c) Chopped photocurrent-time profiles of the PFC system at short circuit. Photographs showing (d) an electronic timer and (e) an electronic calculator powered by two of the PFC cells connected in series.

4. Conclusion

In conclusion, we demonstrated an efficient photoelectrochemical platform based on WO$_3$/TiO$_2$ nanojunction with engineered defects and microfluidic structure. Profiting from the nanojunction-enhanced charge separation and microchannel-facilitated mass transfer, this 3-D nanoarchitecture exhibited unprecedented activity and selectivity for
chemical upgrading of various organic and inorganic compounds. The impressive production rates of high value-added chemicals by glycerol oxidation (35.3 μmol cm$^{-2}$ h$^{-1}$) and cyclohexane activation (12.8 μmol cm$^{-2}$ h$^{-1}$) were nearly 3 and 2 times higher than those of conventional planar system. The interface-modulated photoanode also contributed to 5-fold higher degradation kinetics for the removal of two representative organic pollutants (BPA and MB). A highly efficient photocatalytic fuel cell with high open-circuit potential (0.9 V) and short-circuit current (1.2 mA cm$^{-2}$) was finally constructed based on this nanojunction-enhanced microfluidic photoanode. We thus can simultaneously obtain value-added chemicals and electricity by this two-in-one photocatalytic fuel cell system. Thus, this work not only provides an inspiring approach to visualize the charge separation in heterostructured architectures, but also demonstrates the great potential of microfluidic PEC system for solar energy utilization toward a sustainable and low-carbon society.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51978372 and 51538013) and the National Key R&D Program of China (Grant No. 2019YFA0705802). The authors would like to thank Prof. Aijie Wang for her help in glycerol oxidation products analysis. We also thank Dr. William A. Jefferson for proofreading this manuscript.

Supplementary data

Experimental procedures, SEM and TEM images, O 1s XPS spectra, KPFM results, spatially resolved photoluminescence image, identification of reaction products, faradaic efficiencies for the production of KA oil and S$_2$O$_8^{2-}$, cytotoxicity results, performance comparison of photocatalytic fuel cells, Assembly of two photocatalytic fuel cells to power common electric devices (Videos).

References

