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A B S T R A C T   

The analysis of big data is deemed to define a new era in urban research, planning and policy. Real-time data 
mining and pattern detection in high-frequency data can now be carried out at a large scale. Novel analytical 
practices promise smoother decision-making as part of a more evidence-based and smarter urbanism, while 
critical voices highlight the dangers and pitfalls of instrumental, data-driven city making to urban governance. 
Less attention has been devoted to identifying the practical conditions under which big data can realistically 
contribute to addressing urban policy problems. In this paper, we discuss the value and limitations of big data for 
long-term urban policy and planning. We first develop a theoretical perspective on urban analytics as a practice 
that is part of a new smart urbanism. We identify the particular tension of opposed temporalities of high- 
frequency data and the long durée of structural challenges facing cities. Drawing on empirical studies using big 
urban data, we highlight epistemological and practical challenges that arise from the analysis of high-frequency 
data for strategic purposesand formulate propositions on the ways in which urban analytics can inform long-term 
urban policy.   

1. Introduction 

Big data and, more generally, digital technologies are regarded as 
paramount in the governance and planning of smart cities. Numerous 
scholars in urban research argue that a new type of big data analytics 
promises benefits in terms of real-time prediction, adaptation, higher 
energy efficiency, higher quality of life and greater ease of movement 
(Batty, 2019; Batty et al., 2012; Kourtit et al., 2017; Townsend, 2013). 
Ubiquitous digital technology embedded in the physical structure of the 
city makes these desired outcomes possible. The vision is that assem
blages of sensing devices linked through the Internet of Things to 
computing platforms process incessant streams of data and thus enable 
new ways of decision-making, which, in some contexts, can be auto
mated with little human intervention (Harrison et al., 2010; Rathore 
et al., 2016). 

Urban analytics, which we define as big data analytics applied for 
the purpose of urban governance and planning (Kang et al., 2019), is 
held to be central to shaping and running smart cities. The belief is that, 
as the availability of real-time data and the necessary computing power 
continue to increase, so does the possibility of detecting patterns in the 
everyday life of urban systems and developing applications that re
spond to these patterns in real-time (Batty et al., 2012). Among the 
various applications in urban transport, energy or policing, intelligent 

traffic management is perhaps most established. New systems, such as 
Siemens's Real Time Optimiser currently developed for London (TfL, 
2018), employ analytics to predict traffic congestion and enable effi
cient use of road space in real-time. The system is also expected to 
achieve strategic policy goals including increased road safety, improved 
air quality and public health. The assumption is that analytics of urban 
high frequency data can contribute to the solution of long-standing 
challenges in cities. 

Yet, widely articulated visions on the strategic value of big data for 
cities bridge fundamentally different temporal scales of urban dy
namics: the short-term scale of fast dynamics or real time and the long- 
term, much slower dynamics of urban structure and policy. This ten
sion, which arises in part out of the contradictory ‘timescape’ of smart 
cities (Kitchin, 2019), warrants closer examinations with regard to the 
practical conditions under which big data and urban analytics can 
productively contribute to strategic urban policy and planning. 

The contrasting temporalities of high-frequency data and real-time 
response on the one hand and the long durée of structural urban dy
namics on the other hand generate several epistemological challenges, 
some of which can be associated with positive feedbacks or unintended 
consequences. To take our previous example, analytics-powered, in
telligent traffic management may make day-to-day travel smoother and 
thus in turn encourage further travel - a phenomenon known as 

https://doi.org/10.1016/j.cities.2020.102992 
Received 2 October 2019; Received in revised form 23 June 2020; Accepted 7 October 2020    

⁎ Corresponding author. 
E-mail addresses: j.kandt@ucl.ac.uk (J. Kandt), m.batty@ucl.ac.uk (M. Batty). 

Cities 109 (2021) 102992

Available online 20 November 2020
0264-2751/ Crown Copyright © 2020 Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

T

http://www.sciencedirect.com/science/journal/02642751
https://www.elsevier.com/locate/cities
https://doi.org/10.1016/j.cities.2020.102992
https://doi.org/10.1016/j.cities.2020.102992
mailto:j.kandt@ucl.ac.uk
mailto:m.batty@ucl.ac.uk
https://doi.org/10.1016/j.cities.2020.102992
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cities.2020.102992&domain=pdf


‘induced demand’ in transport planning. Beyond travel choices, 
smoother travel may encourage residents to move and take advantage 
of lower housing cost further away from their workplace, thus influ
encing the diurnal and residential geography of the city. Such changes, 
though they are triggered by momentous and, in this case, algorithmic 
responses, unfold over very different time scales and in turn alter those 
high-frequency data streams affecting system responses, whose con
sequences and socio-spatial implications are hard if not impossible to 
predict (Batty, 2018). 

Such epistemological and strategic challenges call for a critical 
discussion of how the fast temporal scale of big data can be reconciled 
with the slow dynamics of the socio-spatial organisation of cities. In 
particular, the different temporalities compound the problem of caus
ality, that is how observations in high-frequency data can inform the 
causal insights needed in urban policy and planning. Being mindful of 
powerful social science critiques of urban analytics with their renewed 
concerns about technocratic, data-driven approaches to urban govern
ance (Kitchin, 2014a; Rabari & Storper, 2015; Wyly, 2014), we wish to 
join efforts in critically gauging the value of big data (Kitchin, 2016a;  
Singleton & Arribas-Bel, 2019) by specifically focusing on issues of 
temporality and causality in urban systems (Batty, 2018; Kitchin, 
2019). Our aim is to highlight the conditions under which urban ana
lytics of high frequency data can realistically and productively inform 
long-term urban policy. 

In the following, we first summarise current debates on and cri
tiques of data-driven smart urbanism and urban analytics. We then 
draw on contemporary social science theory to chart the social genesis 
of urban analytics and conceptualise its practices in the context of hy
permobile societies. Subsequently, we highlight salient characteristics 
of urban analytics and identify practical, epistemological issues arising 
from the analysis of fast urban dynamics for long-term urban policy. 
Finally, we develop six propositions to identify the conditions under 
which urban analytics can productively inform strategic, long-term 
urban policy. We conclude with suggestions for research investigating 
and extending these propositions. 

2. Smart cities and urban analytics 

The term urban analytics has arisen in the context of processing big 
data for a range of applications in cities, in particular 'smart' cities 
(Batty, 2019). Smart cities are variously characterised as the emerging, 
future version of the city that runs in part on streams of data con
tinuously flowing between physical objects, actors and institutions that 
define, inhabit and govern cities (Batty, 2020; Batty et al., 2012;  
Townsend, 2013). Smart cities are collections of numerous sentient and 
connected built environments, which possess components that learn 
from patterns of daily activity and adapt automatically to changes in 
such behaviours. This is made possible by the scaling down of com
puters to the point where they can be embedded in the everyday objects 
and activities alongside advances in sensing and computing power, all 
of which allow for the ubiquitous integration of microelectronics into 
the physical world. To employ the physico-digital infrastructure that 
collects and processes data and integrates them in decision-making, 
cities and private sector companies regularly team up together in 
public-private partnerships to carry out the necessary large-scale in
vestments (Hollands, 2008; Kitchin, 2014b). 

Smart city initiatives have now been subject to extensive academic 
debates, which range from attempts to develop formal definitions to 
radical, social-science critiques. Existing notions and perceptions of 
urban analytics are closely linked to those debates, which, to a degree, 
can be associated with different epistemological viewpoints that prevail 
in the social sciences. One strand in the literature conceives of the smart 
city as a distinct, definable and specifiable thing that is or will become 
physically and institutionally manifest, thus knowable and measurable 
(Albino et al., 2015; Komninos, 2011; Komninos et al., 2013; Neirotti 
et al., 2014). Conforming to positivistic conceptualisations of the social 

world, this literature views the smart city as a value-free, technological 
solution built on objective evidence on urban activities and inevitable 
human progress. Smart cities are presumed to embody a consensus on 
how cities should be organised, designed and managed and thus as such 
they represent a desirable urban vision. Consequently, research and 
development should be devoted to specifying appropriate system ar
chitectures, management frameworks and universal technical standards 
(Abella et al., 2017; Babar & Arif, 2017; Rathore et al., 2016; de 
Santana et al., 2019; Zygiaris, 2013). In this context, urban analytics is 
a set of technical methods, which are applied to the digital infra
structure and include the development of algorithms. The methods are 
scientific in character; they ensure optimal data processing to enable 
intelligent, efficient and automated responses while affording factual 
insights into urban systems to decision-makers. 

A second strand in the literature that views smart cities as deeply 
political projects designed to surveil and control urban citizens and to 
extract profit from such activities. The most radical critiques portray 
smart cities as hegemonic projects within the neoliberal political 
economy, in which governments and corporations ally to employ digital 
technology to consolidate and extend their power over all domains of 
society across the globe (Greenfield, 2013, 2017; Hollands, 2015; see 
also Zuboff, 2019). Softer, critical accounts identify networks of cor
porations, policy advocates and technocrats as particularly powerful 
actors who persuade often under-resourced city governments to adopt 
wholesale smart city solutions (Barns et al., 2017; Gaffney & Robertson, 
2016; Söderström et al., 2014). Examples include the corporate-led 
urban projects of Songdo or Masdar or supposedly off-the-shelf infra
structure products such as urban ‘operating systems’, control centres or 
data stores in Rio de Janeiro or New York. Even in more state-regulated 
societies, such as Singapore, large IT companies are leading the drive to 
automate and monitor people's movements associated with e.g. more 
efficient use of various kinds of transit. Urban analytics is viewed as a 
core ally in the ‘datafication’ and ‘dataveillance’ that is central to such 
smart city projects (Kitchin, 2016b). Here, urban analytics is a political 
tool of control through ‘software-sorting’ (Graham, 2005), profiling 
people and places according to their characteristics and potentials in 
terms of risk or propensity to conform. It is deliberately presented as 
data-driven, value-free and pragmatic but really designed to reproduce 
if not amplify prevalent power relations (cf. Kitchin, 2014b; Söderström 
et al., 2014; Vanolo, 2014). At best, urban analytics is employed na
ively, lacks transparency and suffers from unacknowledged social bias, 
a view that resonates with more general critiques of positivism and its 
politics. 

In a third perspective, smart cities are principally imaginaries of 
future cities that drive contemporary approaches to city making. Such 
imaginaries are produced, articulated and mobilised by agents situated 
in multiple, social networks, of which international networks have 
gained particular significance (Kitchin et al., 2017; Luque-Ayala & 
Marvin, 2015). Participants in these networks of corporations, experts, 
advisers, think tanks and scientists act in contexts in which certain 
beliefs, ideologies and practices prevail. Through diverse practices in
volving visits, face-to-face meetings, policy papers and smart city 
benchmarking exercises (Bok & Coe, 2017; Campbell, 2012; Prince, 
2015), smart urbanism becomes manifest as a new way of planning and 
governing cities, a perceived imperative of technological progress to 
confront the challenges in and of the 21st century. Yet there is no 
guarantee that visions will be implemented in perhaps the hegemonic 
way in which some powerful players would like to see them (Kong & 
Woods, 2018; Wiig, 2015). For example, city governments in Europe, 
being situated actors, often seek to balance demands arising from smart 
city visions against the content of their political mandates (Bunders & 
Varró, 2019), although they are regularly receptive to smart city solu
tions as part of their wider entrepreneurial orientations (Hollands, 
2008; Vanolo, 2014). Projects may therefore be contested, redefined, 
modified, adapted or even terminated, thus exhibiting the well docu
mented dynamics of policy mobility (Peck & Theodore, 2010). 
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In all these perspectives, it is clear that there are influential groups 
and networks that promote a smart urbanism in which processing of 
high frequency data is implicated in various ways. We therefore suggest 
that urban analytics comprises a set of practices that are themselves 
part of a bundle of practices that constitute smart urbanism, and in 
parts, a data-driven form of city-making (Boeing et al., 2020). The 
growing attention to data science in city governments attests to the 
proliferation of beliefs and convictions about the success and desir
ability of quantitative prediction, which align with positivistic and 
technocratic visions of society (Delmelle, 2019; Kitchin et al., 2015;  
Wyly, 2014). Urban analytics practitioners tend to share beliefs, 
ideologies, unconscious subjective orientations and dispositions - pro
fessional or otherwise - that prevail in networks promoting smart ur
banism; but they are also increasingly located in certain parts of aca
demia, exemplified by the rise of ‘computational social science’ 
(gesis.org/en/institute/departments/computational-social-science), 
and marked by increasingly distinct scientific practices focused upon 
data mining, pattern detection, machine learning and prediction. 

Therefore, we can say that, rather than a set of clearly defined 
technical methods, urban analytics comprises a set of practices that are 
carried out in specific social, political and academic contexts. This 
‘practice notion’ of urban analytics can be related to a wider body of 
theories of ‘social practices’ as conceived by sociologists (Bourdieu, 
1977; Giddens, 1984) and reworked in the context of 21st century 
mobilities (Sheller, 2017; Urry, 2007). Before we examine urban ana
lytics as a practice and its possible role in urban policy more closely, we 
chart the societal trends that give rise to the wide-spread embedding of 
sensing and processing technologies in urban environments. 

3. Mobilities and big urban data 

Among the long-standing debates concerned with the rise of digital 
technology and its implications for cities (Batty, 1997; Castells, 1996;  
Graham & Marvin, 1996, 2001; Larsen et al., 2006; Lash, 2002; Thrift & 
French, 2002; Urry, 2000, 2007), the Mobilities paradigm offers a re
cent, practice-based perspective through which the embedding of di
gital technology in cities can be conceptualised. The core tenets are that 
mobilities define social relations in the 21st century (Sheller & Urry, 
2006; Urry, 2007, 2012) as the dialectically linked co-evolution of 
Transportation, Information and Communication Technology (which 
we refer to as TICT henceforth) and socio-spatial relations that have 
resulted in social interactions that are increasingly far flung. Social 
relations are now formed and sustained over larger distances through 
travel as well as new and vast amounts of electronic communication, 
including virtual face-to-face contact. Despite the existence of tele and 
electronic communication, strong social links marked by trust still re
quire direct face-to-face contact and co-presence (cf. Giddens, 1984, 86;  
Urry, 2007, 166). Notwithstanding the possibility that this sociological 
law might change in the future, it implies that, as social agents form 
many more weak links through increased travel and virtual presence, 
further, physical travel is necessary to advance and sustain these social 
links. 

As a result, social relations and, to a degree, the functioning of so
ciety requires travel and digital communication over increasing dis
tances, which depend on TICT bundled up in increasingly complex in
frastructure, or what Urry (2007) calls ‘mobility-systems’. Such systems 
include railway networks, the car, mobile phone networks, airports, in 
fact one could add entire multi-modal systems if not even the smart city 
itself in its entirety, which in many senses is all about enabling mobility 
and organising flows of people, goods and information. In so doing, any 
mobility-system becomes indispensable in sustaining the communica
tions and flows that are crucial to the functioning of society, and in a 
self-reinforcing loop, generate further far flung social interactions, 
which demand ever more travel and communications. 

In sustaining and expanding the space-time distanciation of social 
relations, mobility systems have become increasingly digital in the 

sense that digital technologies have become more widely embedded in 
the physical environment. As social interactions over larger distances 
result from digitally infused and controlled TICT, which in turn drive a 
barely reversible process of further digitalisation and growing reliance 
on expert forms of knowledge (see also Kitchin & Dodge, 2011, 10), we 
may argue that, in processing the data generated by physico-digital 
mobility systems, urban analytics is a practice that forms part of the 
expanding mobilities that characterise 21st century society. Increased 
computational power arising out of the same social and economic forces 
fuel the new practice of urban analytics and engender the new analy
tical, big data procedures of real-time processing, pattern detection and 
statistical learning used to identify and execute optimal, automated 
responses. 

Mobilities thus offer a social explanation for more enthusiastic vi
sions and advocacy of smart cities, such as proposed data-driven, in
tegrated urban management and planning (Babar & Arif, 2017; Rathore 
et al., 2016; de Santana et al., 2019) and the recently enacted ISO 
certified smart city standards, which specify everything from data in
teroperability to urban governance arrangements (BS ISO 37106:2018, 
2018). We can also observe a trend in which movement is increasingly 
tied to digital identities linking up various digital traces of individuals, 
be they biometrics, GPS locations, credit card purchases or social media 
activity. Recent examples include the Known Traveller Programme 
(WEF, 2018) or Social Credit Systems (Merics, 2017), which can be 
used to ‘software-sort’ and regulate the behaviour of individuals, or
ganisations or institutions (Graham, 2005; Wood & Graham, 2006). 

In the same vein, the emergence of the computational social sci
ences can be viewed as a result of contemporary mobilities. This dis
cipline, characterised by frequent cross-sector collaborations between 
academia and business, are supported by remote processing and cloud 
computing, which further mobilities-related technologies enabling 
collaboration and joint analysis over large distances. Such novel prac
tices occur against a wider backdrop of a mobilities-dependent aca
demia, which, much like any other profession, sustains access to net
works, knowledge and other resources through electronic 
communication, online publications and, until recently, increased in
ternational travel (Storme et al., 2017). 

Finally, much like mobilities, we can expect that urban analytics 
develop self-perpetuating qualities, which go beyond the satisfaction of 
specific needs. Circulation can be a source for profit, perhaps best ex
emplified by the car industry. The potential profits arising from pro
viding the technology for processing big data reinforces urban analy
tics, its endorsements and associated practices. A few examples include 
an actively voiced enthusiasm about the detail and volume offered by 
new, big data sources, an appreciation of efficient, optimised urban 
operations, an interest in the fast dynamics of the city and real-time 
prediction, and the promotion of data-driven decision-making (see for 
example, Provost & Fawcett, 2013). We can expect that irrespective of 
its potential contribution to social goals, urban analytics is actively 
promoted by the same ‘epistemic communities’ and ‘advocacy coali
tions’ (Kitchin et al., 2017) that mobilise smart urbanism in a wide 
range of contexts. 

It is clear then that mobility systems and their physical and digital 
components have a profound impact on practices and relationships 
between actors of all kinds. Kitchin (2019) describes how digital and 
mobile technologies alter the pace and rhythms of daily lives of both 
citizens and city operations. ‘Realtimeness’ (Kitchin, 2019, 786), en
abled by big data, its underpinning digital and networked technologies 
and the practice of urban analytics that they make possible, produce 
this temporality that characterises smart urbanism. Kitchin perceives a 
tendency in city operations to privilege real-time response over plan
ning, reflection and long-term strategizing. This tendency may be fur
ther amplified by an awareness of the amount of financial commitment 
that is necessary to sustain ‘realtimeness’ across areas and sectors in the 
city. 

For the relationship between urban analytics and policy, the 
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question of temporality poses two epistemological and thus practical 
problems. First, there is a need to examine the conditions under which 
high frequency data can help us understand cities beyond momentary, 
fast, perhaps transient phenomena. In other words, what kind of ‘un
derstanding’ of the city is promoted by the analysis of fast dynamics, 
and to which degree do insights apply to general and deep-seated causal 
dynamics urban policy is typically concerned with? 

A second problem relates to the fact that urban analytics uses the 
same technologies that algorithmically alter, synchronise or regulate 
the practices of urban actors to study and understand cities (Batty, 
2019). Transit smart cards both capture but also alter travel demand 
through the automated interventions the systems are designed for (e.g. 
dynamic peak/off-peak pricing of fares), which affect our ability to 
understand people's mobility through their data. As a consequence, any 
patterns we observe are as much a product of human subjects as of the 
workings of the technologies themselves; their genesis is rooted in the 
human and institutional dynamics of mobilities of contemporary so
ciety. This fundamental question of causality alongside the bias in
herent in big data (Boyd & Crawford, 2012; Taylor, 2015) are critical 
issues for long-term urban policy and planning, which, with their ob
jective to organise and improve cities, essentially seek to intervene into 
complex, causal relationships in urban systems. 

4. Making sense of urban analytics 

To identify the salient characteristics of urban analytics as a prac
tice, we now review a number of urban analytics research applications 
that come from a wider array of real time analysis of mobilities using 
travel smart card data. Travel smartcards automatically collect fares on 
public transport systems and thus produce large volumes of travel re
cords pertaining to the vast majority of passengers. The advantage 
compared to traditional data sources such as surveys of passengers are 
their coverage, large sample size and precision. Although smartcard 
schemes have arisen out of the need to facilitate and refashion transit 
fare collection to make daily travel smoother, the data source is also 
widely viewed as a strategic asset for transport planning (Anda et al., 
2017; Pelletier et al., 2011). While the vast majority of studies process 
smartcard data for transport modelling purposes, some studies seek to 
characterise travel demand in novel ways drawing on the detail such 
data offer. Only a very small number extend the analysis beyond a few 
months to a longer time frame. 

4.1. Characterising fast urban dynamics in daily movement. 

Numerous studies demonstrate how the coverage and precision of 
smart card records enable novel characterisations of travel demand 
(e.g. Goulet Langlois et al., 2016; Liu et al., 2019; Reades et al., 2016;  
Zhong et al., 2014; Zhong et al., 2016). The analytical approaches to 
process smart card records are diverse but often contain a crucial step of 
exploratory data mining to extract patterns. Many studies focus on 
developing novel ways to characterise urban mobility and limit their 
analysis to one snapshot in time. 

To demonstrate the extent to which the volume of this type of high 
frequency data set can inform policy applications, we turn to our own 
analysis of Oyster card data in London. Oyster card data are now used 
to pay for 85% of the journeys taken on the London Underground (the 
Tube). During a typical weekday, up to 5 million passenger journeys are 
made on the tube, there are 11 underground lines and 270 stations. We 
use the journeys extracted from the card which lets a passenger tap into 
a station at the start of the trip and ensures that they tap out at the other 
end, otherwise incurring a penalty. The data have no attributes other 
than the time and place of the tap-in and tap-out, the status of the card 
with respect to payment, and whether or not a passenger is a senior, 
child or disabled person. 

This data set is comprehensive and detailed with respect to the 
origin (O) and destination (D) of the trip (the stations), not the route on 

which the passenger travels. We infer the routes by determining the 
shortest route from any one station to any other using a variant  
Dijkstra's (1959) standard algorithm and then extracting the origins and 
destinations for each trip and tagging this with the shortest path. The 
distribution of these paths in and of itself provides detailed and novel 
information as to the redundancy in all possible routings within the 
transit system. But such trajectories also help to capture and char
acterise the heterogeneity of travel habits at the level of minutes. 
Various studies suggest that daily activities of travellers can be inferred 
from the space-time characteristics of repeated trips over a given time 
period (Reades et al., 2016; Zhong et al., 2014, 2016). 

Examining any profile of trips for any station over the shortest time 
period we consider analytically acceptable such as 1, 2, 5, 10 min, we 
find that the temporal incidences of individual trips differ on each day 
of the week. This is because passengers cannot arrive at exactly the 
same time each day at a station but it is also because there is great 
heterogeneity in the profile of each traveller with respect to the 
working week. From the data we can extract how many people have 
similar profiles with respect to any particular station and the time of 
entering or exiting. We find that only about one third of passengers use 
the same tube stations for exit and entry twice a day, which would 
imply the kind of regularity associated with a journey to work or some 
regular daily visit associated with two different places. Although the 
morning and evening peaks and the late-night evening peak in the 
centre of London are clearly marked routines, their composition day-to- 
day is quite varied implying that more than half of all passengers do not 
have regular routines. Such findings remain masked in aggregate and 
low sample data; they can only be identified through mining high-fre
quency data at the scale of individual records. 

To explore regularities in disaggregate patterns, we aggregate across 
stations and profile them with respect to similarities between any and 
every pair of trajectories. We choose any two time periods and compute 
the similarities between the volumes of trips at each station – the 
number of taps in and out – with respect to how they compare across all 
270 stations. In short, this comparison is between any two times (from 
72 in total) with respect to the volumes of trips at each of these time 
periods across all 270 stations. Time is measured in 20-minute intervals 
over the 24-hour data, thus giving 72 time periods. We chose this in
terval as it is both sufficiently granular to highlight in sufficient detail 
how different any one time period is from any other across the 24 h of 
the analysis. Of course, big data allow flexible granularities any finer 
time bins can be chosen. The 20-minute time bins allow us to examine 
the patterns visually and guide decision on further analysis. 

The profiles with respect to any pair of time periods are shown in  
Fig. 1 where the first map (A) shows the correlation density between 
any pair of time periods with respect to the volume of trips across all 
stations; that is the correlation is a suitably normalised function based 
on comparing the variations of the flows in all stations over any two 
time intervals. We have also computed the similarity between any two 
trajectories with respect to the ranks not the volumes of trips. Here we 
rearrange the profiles according to the rank of volume and then make 
the comparison as a normalised difference between each pair of the 
ranked profiles over stations in each time period. We show the pattern 
in Fig. 1(B) while in Fig. 1(C) we compute the same set of similarities 
but this time in terms of the absolute volumes. This figure is closer to  
Fig. 1(A) for the measure used simply smooths the patterns while in  
Fig. 1(B), the structure of the travel profiles is sharpened. 

It is clear from Fig. 1(A) that the morning peak – the first set of rows 
with high correlations between 7 and about 9–20 in the morning imply 
that these are fairly similar trip distributions. This means the volumes 
across all stations correlate with each quite highly in the 20-minute 
intervals that define this peak. Then from about 10 am to 3.30 pm there 
is a similar block, which can be interpreted as being a different se
quence of profiles for the hours in the middle of the day. There are a lot 
fewer changes in total trips then and a lot less overall number but the 
matrix still brings out the similarities in the temporal patterns not the 
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total volumes. Then from about 4 pm to 7 pm there is the evening peak 
and this blurs both into the middle of day and the mid-to-later evening 
volumes. When we sharpen the data by rank ordering everything and 
computing a similarity coefficient between the ranks as in Fig. 1(B), the 
same pattern emerges but this is much clearer. The middle of the day 
and the early evening peak merge into one another while the block of 
evening travel profiles are quite distinct. Fig. 1(C) is something of a 
halfway house which simply differs from Fig. 1(A) due to a different 
measure being applied to the same data profile. 

To provide detailed interpretations of the travel profiles, we note 
that one needs to make informed assumptions about the nature of urban 
travel and the place in question, including the structure of trip dis
tribution in western cities during the working week and the associated 
peaks in demand at various times indicating different urban activities. 
In the case of data where we have to extract the structure, then even the 
ways of visualising the data, including the size of time bins, need to be 
known before analysis begins. Therefore, visualising, recognising and 
interpreting patterns is a circular process that relies on external data, 
information and theory about how the urban system functions. This 
reliance increases in analyses of high-frequency data for long-term 
applications. 

4.2. High frequency data for longer time frames 

Studies that process smart card data over time frames that are 
longer than a few months are rare. Chu (2015) analyses smartcard re
cords spanning two years and to extract travel trends at individual and 
aggregate levels. Briand et al. (2017) link all transactions recorded in 
February across five years to characterise year-on-year change in bus 
use. Their segmentation-based data mining approach reveals a complex 
assemblage of changing temporal travel patterns masked within an 
overall trend of stable bus patronage. Huang et al. (2018) process a 
small sample of smartcard transaction over seven years to investigate 
interdependencies between residential mobility, job change and daily 
travel. The emphasis of this small number of pioneering studies lies on 
characterising trends at different levels rather than systematic attempts 
to explain them. 

The question of causality is central in our own research exemplified 
by Kandt and Leak (2019), who process six years of smartcard data in 
the metropolitan region of Birmingham, UK. The region's transport 
authority, Transport for West Midlands, has recorded a steady decline 
in bus patronage in particular among older residents, who are entitled 
to travel for free. The decline in public transport patronage stand in 
direct opposition to the city's long-term goal of ensuring environmental 
sustainability, social inclusion and health in parts through ensuring 
equitable access to public transport. 

Smartcards were introduced in 2010 to record all concessionary 
journeys for the purpose of reimbursing operators. Sequence analysis is 
an unsupervised data mining technique that can detect profiles of si
milar temporal trends in in longitudinal data (Gauthier et al., 2014).  
Fig. 1 shows an extraction of six temporal profiles found in 300 million 
smartcard transactions made by passengers aged 66 or older between 
2011 and 2016 (source: Kandt & Leak, 2019). Two of the groups in
dicate a pronounced decline in boardings during the six years. 

In order to interpret the patterns in terms of causality, we drew on 
low-frequency contextual data, the UK Census neighbourhood statistics 
and official mid-year population estimates. The contextualisation sur
prisingly revealed that a particularly sharp decline in patronage oc
curred in poorer neighbourhoods, where dependence on free bus travel 
is usually higher. Based on the contextualisation and some considera
tions mainly drawn from the travel demand literature, we were able to 
develop policy-relevant causal hypotheses (Table 1). This process led to 
a final step – triangulation, gauging the plausibility of hypotheses, using 
another set of small and low-frequency data as evidence, including 
reports on online shopping trends and pensioner poverty and testimo
nial pieces of evidence, such as the time when and the way in which e- 

hailing services where permitted in the region. 
The study shows that the derivation of any potential causal insights 

from high-frequency data for long-term policy requires a number of 
elements: theory-informed interpretation, contextualisation and trian
gulation. This contrasts with a purely computational approach, which 
would consist in taking the patterns per se and designing applications 
prompting passengers matching a particular profile to change their 
choices in order to help reverse the trend. Such an automated approach, 
often envisaged as part of smart urbanism, may be effective in 
achieving short-term goals, such as increasing revenue through better 
targeted marketing (Singleton & Arribas-Bel, 2019, 10). But in an urban 
planning and policy context, this would equate to treating symptoms 
and not the structural or social causes of issues related to inclusive 
mobility. Such social causes may find expression in sensed data, but 
they cannot be read off from these emergent patterns themselves. 

How then do we interpret patterns in big data? While we are not 
aware of any empirical work investigating the cognitive processes in
volved in interpreting big data, social practice theory and its supporting 
evidence suggests that interpretations will inherently be influenced by 
the beliefs, day-to-day experience and subjective orientations of the 
interpreter and those beliefs and dispositions that prevail in the net
works the interpreter is situated in (see also Boyd & Crawford, 2012;  
Taylor, 2016). The influence and elusiveness of tacit interpretation 
constitutes a fundamental difference to the processing of conventional 
data sources, such as purposefully designed surveys, where alongside 
data, the data subjects ‘speak for’ themselves, and thus the space for 
interpretation is more transparent if not significantly narrower. 

In the context of urban analytics, it is useful to draw on the theo
retical perspective on smart urbanism in order to identify the domains 
in which causal forces may be located. First, we discern the two di
mensions involved in the genesis of the data: technology (smartcards) 
and the subjects (passengers), which in turn are an expression of how 
the data-capturing technology has been deployed, what passengers do 
and how technology and subjects interact in everyday life. The tech
nology dimension can be further divided into the cards and the linked 
network and storage infrastructure that is embedded in a changing 
transport system. The dimension of data subjects encompasses the time 
and location of boardings as well as the changing everyday context of 
senior citizens. Indeed, the reasoning about smart urbanism from a 
Mobilities perspective suggests that the contextual changes of both 
transport and senior citizens' lives may be driven by the same tech
nologies and, in turn, the wider socio-economic circumstances gov
erning their deployment; that is smart urbanism as a practice infused 
with the desire to facilitate and regulate mobility, save cost and in
crease efficiency within market-oriented styles of governance as part of 
a wider economic ideology, all of which simultaneously affect the 
public transport sector, built environments as well as the social, geo
graphical and material living conditions of the elderly. 

To summarise, urban analytics, and its salient practical elements of 
pattern detection, theorisation, contextualisation and interpretation 
offers potential to generate new and novel strategically relevant hy
potheses that would not have been derived without processing of big 
data; but we note that in none of the studies, big data delivered answers 
to causal questions. We therefore argue that urban analytics contributes 
to our understanding of urban systems insofar as it supports the fast 
generation of novel hypotheses that can be theoretically grounded and 
contextualised using small, low frequency data. 

5. Discussion: urban analytics and planning 

What promises does urban analytics hold for urban policy and 
planning? We have identified the following defining, practical char
acteristics of urban analytics:  

• A focus on real-time, fast dynamics captured in high-frequency data, 
which contrasts with the slow dynamics of cities' structural changes; 
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• The greater degree and role of subjectivity in interpreting patterns 
found in big data;  

• The political character of the deployment of sensing and computing 
technologies; and  

• The compound nature of captured data in a sense that big data are 
compound signals of the sensing technology's workings, the activ
ities of data subjects and the mutual impact they have on each other. 

With those characteristics in mind, we formulate the following 
propositions on the value of urban analytics for strategic policy and 
planning.  

1. Big urban data generate new hypotheses. 
Big urban data captures activities of both human subjects and sen
tient environments and are thus like no other type of data source. 

Fig. 1. Patterns in the data: correlations and similarities between different time periods. 
The grey columns are temporal periods where the statistics are not computed due to closure of the tube during these hours. The range from black to red provides the 
level of correlation and/or degree of similarity (black low, red high correlation/similarity) where the matrices are obviously symmetric and the main diagonal is 
computed to give maximum correlation or similarity. The rows and columns are labelled from 00 to 24 h with the size of each row and column being 20-minute 
intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Six temporal profiles of public transport patronage detected from smartcard data (source: Kandt & Leak, 2019). 
In each chart, each line represents an anonymous passenger coloured on a red to blue scale according to the volume of boardings in a four-week time bin. The 
trajectories are ordered with respect to their relative frequencies of boarding and non-boarding which make the patterns a little clearer. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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But patterns derived from urban analytics are hardly sufficient to 
identify a programme of actions for urban policy and planning. As in 
the case studies, where we can use smartcard data to uncover trends 
and patterns that would not have been identified otherwise, the 
patterns as such did not deliver causal insights. Instead, by drawing 
on geotemporal contextualisation and the theoretical perspective of 
urban analytics, new hypotheses as to what may cause the patterns 
could be developed. 
We therefore submit that urban analytics rarely if ever provides 
direct answers to urban policy problems; instead, we would argue 
that new levels of understanding urban systems can indirectly be 
attained through using big urban data as exploratory material for 
the development of new hypotheses. This implies that the major 
change big data bring to urban research and policy – and perhaps to 
the social sciences more generally – is a faster pace and new manner 
of hypothesis generation. Using the new, extended material of big 
urban data, urban researchers in the big data era may spend more 
time on formulating and exploring novel causal hypotheses that may 
be strategically relevant to cities.  

2. Theory becomes more, not less important. 
As the number of datasets and generated patterns increase, theory 
becomes more crucial than ever in interpreting emergent patterns. 
Interpretation is a partly cognitive process that necessarily is theory- 
informed, even if or indeed because it can occur tacitly and sub
consciously. A ‘lay’ daily user of the London Underground is ideally 
placed to formulate hypotheses about the causes of patterns found in 
the Oyster card data based on reflexive yet less scientifically struc
tured interpretations of everyday experience. Everyday conscious 
and unconscious theorisations are necessary human acts as part of 
practically navigating day-to-day social life (cf Giddens, 1984, 26). 
We can expect that the same subjective processes are at work when 
interpreting patterns in big data and thus profoundly influence our 
ability to make sense of them. 
In the two case studies above, the interpretation of patterns and 
results found in the smart card data required assumptions about the 
daily mobility practices of urban residents. The tacit ‘domain’ 
knowledge could be derived from existing empirical research and 
practical experience. But in order to transparently identify plausible 
causal domains, the combined social context of observed data sub
jects and the data-collecting technology needed to be considered, 
too. Since the practice-theoretical perspective identifies big urban 
data as compound signals of human actions, increasingly sentient 
environments and their open or hidden interactions, we believe that 
this perspective offers a pertinent framework for structuring inter
pretation according to a full range of causal domains.  

3. Small data become more, not less important. 
As shown in the case studies, big data do not displace small data; in 
fact, additional sets of small data are needed to be drawn on to 
establish the geotemporal characteristics of the patterns (con
textualisation), which enabled the generation of hypotheses, and to 
informally gauge the plausibility of new hypotheses for further 

investigation (triangulation). As big urban data enables us to gen
erate more hypotheses faster, our need to test, confirm and reject 
them expands. 
Big data may thus render conventional data sources strategically 
more important in long-term research, policy and planning, because 
the certainty arising from controlled, scientifically structured data 
collection is critical for both contextualisation and triangulation. 
Although it may well be that traditional research data collection 
methods, such as sampled surveys, will become less successful 
(Burrows & Savage, 2014), the use of such sources may still increase 
as part of big data analytics. Notwithstanding the uncertain future of 
large-scale surveys, the hypotheses generated from big data can 
guide new research using established empirical methods, while the 
contextualised patterns themselves can inform sample designs of 
quantitative or qualitative inquiries into their causes.  

4. Strategic insights depend on long-term evidence. 
For urban policy that is concerned with causal relations, short-term 
insights generated from urban analytics need to be framed within 
long-term trends. In the research case studies, the different patterns 
associated with a decline in patronage could only be generated from 
long-term activity records, whereas it is at the resolution of minutes 
where the patterns could be uniquely characterised by changes in 
destinations, timing of travel, trip duration to name a few. Rather 
than understanding causes, which pertain to the ‘why’, big data then 
allow an exceptionally refined description of the recorded activities, 
the ‘what’. When we are able to view those fast dynamics over 
longer time periods, big data undoubtedly make a powerful resource 
to uncover and characterise deep-seated challenges in contemporary 
urban systems. 
Progress has hitherto been hampered by practical limits with regard 
to data transfer and storage as well as data sharing restrictions, 
privacy concerns and commercial or governmental sensitivity 
(Engin et al., 2020). Although the cost of storage is continuously 
decreasing, it is our experience that organisations regularly delete 
historical high frequency data due to limits in storage and proces
sing. Transport for London do not yet systematically use their Oyster 
card data for any management or policy function and simply archive 
it as it is collected. While there is extensive work on data visuali
sation in urban analytics to make big data accessible, the specific 
challenge in the context of long-term urban policy will be to decide 
what of the continuously growing data volume should be kept, ex
tracted, summarised or discarded so that they may form assets for 
strategic decisions in cities. We suggest that, in the context of urban 
policy, long-term data infrastructures cannot be dissociated from 
cities' specific political agendas.  

5. Insights from big data rely on contextual analysis. 
In view of the cyclical nature of urban analytics – that is using the 
same technology that change cities to study them – the motivation 
of technology deployment and modes of operation need to become 
integral to the quantitative data analysis. There is little experience 
with a formal integration of data processing and contextual analysis 

Table 1 
Hypotheses about the causes of the decline in bus travel by concessionary passholders derived from smart card data spanning six 
years in the West Midlands, UK. 
(Source: Kandt and Leak (2019).)    

Hypothesis Triangulated evidence  

1. Online shopping replaces out-of-home trips. Moderate 
2. Senior residents, particularly women, have greater access to the car. Moderate 
3. Greater poverty among pensioners leads to fewer out-of-home activities. Stronger 
4. Premature mortality rates are increasing. Weak 
5. Earlier onset of mobility-limiting disability or ill-health among vulnerable groups. Weak 
6. Cuts in bus routes have reduced accessibility. Weak 
7. Extension of the tram attracts demand away from buses. Stronger 
8. Emergence of new ride-sharing and e-hailing modes attracts demand away from buses. Stronger 
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of urban sensing technologies, which, instead, tends to occur in
formally at the stage of interpretation. As we have argued, the 
theoretical perspective on urban analytics and smart urbanism can 
help guide the stage of interpretation by starting with the tech
nology-subject nexus to unpack the compound signals of the two 
dimensions. 
In a more formal approach, we may identify and include relevant 
meta data capturing the operational data. This contextual analysis 
may include formally codified decisions and events, for example, 
variables that capture changes to the public transport network, 
which may have been prompted by observations of demand patterns 
in smart card data. Such codified ‘logs’ can then be viewed alongside 
the thus newly altered patterns in travel demand. Some research 
collaborations are beginning to explore such approaches (https:// 
mobility.mit.edu/london). 
A wider contextual analysis would include the decisions of influ
ential actors, such as private companies, consultancies, academia 
and city departments who may actively promote the deployment 
and operation of technologies to ensure continuing return on data 
infrastructure investments. Such considerations link to the wider 
critical research agenda of how urban institutions operate, how they 
deploy the instrumentation of sensors and devices in the urban en
vironment, how they invest in and use the urban informatics plat
forms the data feed into, and how this affects the kinds of causal 
reasoning needed in long-term urban policy.  

6. Urban analytics should embrace alternative rationalities. 
Being part of smart urbanism, urban analytics is directly involved in 
changing cities, most obviously through real-time analysis. Many 
critics have pointed out that the instrumental rationality that pre
vails in this form of urbanism is likely to produce the adverse social 
consequences, including institutionalisation of stigmatisation, social 
bias and unequal opportunities (Hollands, 2015; Kitchin, 2016b;  
Rabari & Storper, 2015). We would suggest that the powers of urban 
analytics – novel characterisation and fast hypothesis generation – 
can be recast in alternative rationalities to frame novel policy ap
plications. 
In urban planning, Alexander (2006) identifies substantive, strategic 
and communicative rationality in addition to instrumental. Hence, 
under-explored alternative urban analytics applications include the 
interim and ex-post evaluations of specific urban policy interven
tions or the collection of evidence on unintended social con
sequences of smart urbanism over different time frames. An eva
luation of smart urbanism in terms of success on or conflict with 
other goals and agendas (Martin et al., 2018) would be of both 
substantive and strategic relevance to cities. Applications based on 
communicative rationality could focus on the degree to which 
analytics-powered characterisation and visualisation can engage a 
wider range of civil society members in city-making. More con
ceptual and empirical work on urban analytics applications that 
embrace non-instrumental rationalities are needed; and we would 
argue that such work alongside reflexive, theoretical framing 
grounded in contemporary, accelerated forms of Mobilities and 
smart urbanism as a practice are necessary steps to enable urban 
analytics to make positive contributions to urban policy and plan
ning in terms of a social, egalitarian vision. 

6. Concluding remarks 

Although it remains uncertain how the practice of urban analytics 
will influence the way we might plan cities, social science critiques 
demonstrate that, if data-driven urban policy is enacted through in
strumental rationality, automated ‘software-sorting’ will become fun
damental to organising cities (Kitchin & Dodge, 2011; Wood & Graham, 
2006). This reshaping of urban institutions is likely to reproduce ex
isting power relations and amplify the influence of technical experts, as 
reliance on increasingly complex, physico-digital systems increases 

(Kitchin, 2019). 
Against this social and political backdrop, we identified important 

epistemological and practical challenges that arise when high-fre
quency data are analysed for purposes of strategic urban policy. We 
found that big data and urban analytics advance our understanding of 
urban systems insofar as they generate new and novel hypothesis per
haps at a faster pace than before. Concurring with Singleton and 
Arribas-Bel (2019), we would argue that the plausibility, relevance and 
thus strategic value of hypotheses materialise through transparent 
theoretical grounding and geotemporal contextualisation. In this pro
cess, the importance of long-established, low-frequency knowledge as
sets will increase not despite but because of the rise of big data. 

It is clear that there is further need for conceptual and empirical 
work on urban analytics that addresses the epistemological, practical 
and normative challenges that arise in the context of urban policy. In 
discussing our six propositions on urban analytics, we identified a 
number of research needs that would usefully contribute to the dis
cussion. 

First, more attention should be paid to the cognitive processes that 
are involved in interpreting patterns found in big data within specific 
institutional settings. As we have shown, the room for and discretion in 
interpretation is larger than in survey data, where data subjects actively 
and discursively provide information as part of a scientifically designed 
inquiry. Thus, theoretical reasoning and steps to contextualise play a 
much greater yet more elusive role in the practice of big data analytics. 

Second, in view of the regulatory nature of sensing and computing 
technologies, more research is needed on the ways in which the tech
nologies that enable urban analytics are invested in and deployed in 
particular social, geographical and temporal contexts. But the con
textual sensitivity of big data also implies that urban analytics should 
expand the focus from what we can learn about human ‘data’ subjects to 
human-technology interactions, their institutionalisation and the 
character of new socio-technical assemblages. In other words, urban 
analytics should abandon its often behaviourist orientation and focus 
on the compound signals of human actions, institutional, technical and 
regulatory characteristics recorded in increasingly sentient and re
sponsive environments. Such reorientations may be accompanied by 
conceptual work that identifies ways of urban analytics to adopt non- 
instrumental types of rationality to inform new and novel policy actions 
addressing long-term social challenges facing cities. 

Finally, research should advance a fuller framing of the fast dy
namics recorded in real-time within long-term trends in cities. Big 
urban data will soon be available over long-term periods eliminating 
issues of aggregation and temporal scale. We will then enter an era 
where short and long term begin to merge and this may have major 
implications for the theories and methods we adopt in our under
standing of cities. But inasmuch as opportunities for data mining and 
hypothesis-generation over larger time frames increase, so too does the 
need for contextualisation and triangulation. Integrating all forms of 
data – fast and slow, big and small, quantitative and qualitative – will 
be an essential step in promising applications of big data in urban policy 
and planning. 
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