Well-crystallized α-FeOOH cocatalysts modified BiVO₄ photoanodes for efficient and stable photoelectrochemical water splitting

Wen Zhang^a, Jiani Ma^a, Lunqiao Xiong^b, Hai-Ying Jiang^{*a} and Junwang Tang^{*b}

^a Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, The Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.

^b Department of Chemical Engineering, University College London, Torrington Place,

London WC1E 7JE, U.K.

* Corresponding author

E-mail: jianghy@nwu.edu.cn (H. Jiang)

E-mail: junwang.tang@ucl.ac.uk (J. Tang)

ABSTRACT

Monoclinic bismuth vanadate (BiVO₄) is a potential photoanode for photoelectrochemical (PEC) water splitting, but it suffers from poor electron-hole separation. Here, a reproducible chemical bath deposition method was employed to immobilize well-crystalized α -FeOOH on the BiVO₄ photoanode, resulting into a nearly unity faradaic efficiency and more than 21-fold higher solar to fuel conversion efficiency compared with pure BiVO₄ photoanode. The precursor containing Fe²⁺ ions has been identified to be crucial for preparation of this well-crystallized α -FeOOH cocatalyst. Systematic studies revealed that the high efficiency and excellent stability of α -FeOOH(P-II)/BiVO₄ photoanode were attributed to the well-crystallized α -FeOOH that facilitated the charge carrier separation and transfer for PEC water splitting. Our findings thus not only demonstrated a highly stable and efficient photoanode for PEC water splitting, but also provided a promising strategy for the rational design of well-crystallized α -FeOOH.

KEYWORDS: crystallized α-FeOOH, BiVO₄, photoanode, stability, water splitting.

■ INTRODUCTION

Photoelectrochemical (PEC) water splitting has emerged as a promising pathway for converting solar energy into sustainable hydrogen fuels. One of the key challenges in PEC water splitting is to accelerate the oxygen evolution reaction (OER), the rate-limiting step with a four-electron process, which occurs at the interface of a photoanode and electrolyte.¹⁻³ Up to now, monoclinic bismuth vanadate (BiVO₄) has been regarded as an ideal photoanode in PEC water splitting, due to its unique features of suitable bandgap energy, favorable band-edge position, non-toxicity as well as earth-abundance. Nevertheless, the reported photocurrents of pure BiVO₄ photoanodes are much lower than its theoretical expectation of 7.5 mA cm⁻² (AM 1.5 G, 100 mW cm⁻²), suffering from poor electron-hole separation and sluggish oxygen evolution reaction.⁴⁻⁷ To handle these issues, a proper oxygen evolution cocatalyst (OEC) is crucial to improve the PEC activity of BiVO₄ by enhancing the electron-hole separation and facilitating the O₂ evolution kinetics.⁸⁻¹²

Among various cocatalysts, p-type VIII metal oxy-hydroxides, extensively used as electrocatalysts for OER, are particularly attractive because of their high efficiency and low cost.¹³⁻¹⁷ Previous studies demonstrated that loading FeOOH,^{18,19} NiOOH²⁰ or CoOOH²¹ cocatalyst on BiVO₄ photoanodes can effectively improve the O₂ evolution kinetics. Also, Choi *et al.*²² suggested that FeOOH is indeed more effective than the others to reduce the interface recombination of photocarriers for the OECs/BiVO₄ junction compared with that of NiOOH, which has stimulated the majority of studies on FeOOH. As known, electro-deposition and photo-deposition are widely used for

loading FeOOH layer on BiVO₄ photoanodes. Note that the obtained FeOOH catalysts generally possess an amorphous structure and highly unstable in alkaline electrolytes at a high anodic potential.²³⁻²⁵ Recently, chemical bath deposition (CBD) method, owing to its simplicity, convenience and low-cost, has attracted considerable attention for the deposition of metal oxy-hydroxides thin films.^{26,27} In our previous research, we synthesized α -FeOOH by the CBD method and found that the crystalline α -FeOOH electrocatalyst was much more stable than amorphous FeOOH in alkali solution, without compromising the catalytic performance.²⁸ In terms of practical application, finding a rational approach to design an efficient and stable FeOOH cocatalyst is crucial. Building on the successful study of the crystalline α -FeOOH as electrocatalyst, to immobilize the highly crystallized α -FeOOH on BiVO₄ photoanode would be a promising approach for constructing a high performance and stable PEC photoanode.

In this study, we present an efficient chemical bath deposition method for growing well-crystallized α -FeOOH layer with high stability for PEC water splitting. To obtain the high performance of α -FeOOH/BiVO₄ photoanodes, BiVO₄ films were treated with different FeCl_x precursor solutions, including FeCl₂, FeCl₃ and their mixture (FeCl₂/FeCl₃) to immobilize the stable OER cocatalysts. After loading α -FeOOH on BiVO₄, all samples showed an increased photocurrent compared with pure BiVO₄. The synthesized crystalline α -FeOOH(P-II)/BiVO₄ photoanode exhibited the highest photocurrent density of 2.64 mA cm⁻² at 1.23 V *vs*. RHE, nearly 1.5-fold higher than that of amorphous FeOOH(P-III)/BiVO₄ and even 8-fold higher than that of pristine BiVO₄ (0.35 mA cm⁻²). Remarkably, stable PEC water splitting of crystalline

FeOOH(P-II)/BiVO₄ photoanode could be achieved for over 20 hours without any obvious decay. The reason behind this enhanced performance was then discussed.

EXPERIMENTAL SECTION

Preparation of different α-FeOOH/BiVO4 photoanodes. BiVO4 photoanodes were prepared by referring to the previous research reported by Choi and coworkers.²² Different α-FeOOH modified BiVO4 photoanodes were synthesized by a facile chemical bath deposition method, as illustrated in Scheme 1. Three different reaction solutions, including FeCl₂ (0.02 M), FeCl₃ (0.02 M) and their mixture (0.01 M FeCl₂ and 0.01 M FeCl₃), were selected as Fe source. Before impregnation, the pH values of solutions were adjusted to 3.42 by adding 1 M NaOH or HCl. Then, the obtained BiVO4 photoanodes were treated with different FeCl_x as the reaction precursor for 24 h at room temperature. The resultant electrodes were denoted as α-FeOOH(P-II)/BiVO4, α-FeOOH(P-III)/BiVO4 and α-FeOOH(P-II/III)/BiVO4, correspondingly.

To optimize the photoanodes, the different α -FeOOH/BiVO₄ photoanodes were also prepared in solutions with different pH values (Table S2) and impregnation time (16 h, 24 h, 36 h).

Scheme 1. Schematic illustration of the fabrication procedure and corresponding SEM images of the BiVO₄, α -FeOOH(P-II)/BiVO₄, α -FeOOH(P-III)/BiVO₄ and α -FeOOH(P-III)/BiVO₄

photoanodes.

Characterization. Scanning electron microscopy (SEM, Hitachi SU8010) was used to investigate the morphologies of the as-prepared samples. The chemical compositions, morphologies and nanostructures of the samples were characterized by high-resolution transmission electron microscopy (HR-TEM, FEI Tecnai G2 S-Twin F20). X-ray diffraction (XRD) patterns were performed on Bruker AXS-D8 diffractometer by using Cu K α radiation ($\lambda = 0.15418$ nm) with the 2 θ range from 10° to 80° at a scanning rate of 0.1° s⁻¹. X-ray photoelectron spectroscopy (XPS) was carried out by using a PHI5000 VersaProbeIII XPS spectrometer. The binding energy of the spectrometer was calibrated by using the C1s peak at the position of 284.6 eV. ICP-MS (Agilent 7900 ICP-MS) was employed to analyses the elemental composition of the samples. UV-vis diffuse reflectance spectra were executed on UV-vis spectrometer (UV-2401PC, Shimadzu) equipped with integrated sphere method and employed BaSO₄ as the reflectance standard reference. Fourier-transform infrared spectroscopy (FT-IR) (Nicolet 6700, Thermo Fisher) was employed to study the chemical bonds of the prepared samples. Raman spectra were obtained from Renishaw Ramascope (Confocal Raman Microscope, Renishaw, Gloucester-shire, U.K.) with a He-Ne laser ($\lambda = 532$ nm).

PEC measurements. PEC performance measurements were carried out by employing a CHI660E electrochemical workstation (CH Instruments, Shanghai, China) with a typical three-electrode arrangement. The as-obtained α-FeOOH/BiVO₄,

Ag/AgCl (saturated KCl) and a platinum foil (1 cm×1 cm) were used as the working, reference and counter electrodes, respectively. The simulated solar illumination was obtained by the light from a Xe 300 W lamp through an AM 1.5 G filter and the light intensity was carefully calibrated to 100 mW cm⁻² by a thermopile optical detector (Newport, Model 818P-040-25). Samples were illuminated from the back side (FTO substrate side), and the illuminated areas were 1.2 cm^2 . $0.2 \text{ M Na}_2\text{SO}_4$ solution (pH 7) was used as the electrolyte for all PEC measurements. Photocurrent-potential curves were obtained using linear sweep voltammogram (LSV) in a voltage window of -0.4 V~1.1 V *vs*. Ag/AgCl with a scan rate of 10 mV s⁻¹. All the potentials *vs*. RHE were converted from the potentials *vs*. Ag/AgCl according to the Nernst equation:

$$E_{\text{RHE}} = E_{\text{Ag/AgCl}} + 0.059 \text{ pH} + E_{\text{Ag/AgCl}}^{\theta}$$

Where E_{RHE} refers to the converted potential vs. RHE. $E_{\text{Ag/AgCl}}$ is the experimentally measured potential and $E_{\text{Ag/AgCl}}^{\theta} = 0.209 \text{ V}$ (vs. Ag/AgCl) at 25 °C.

Incident-photon-to-current conversion efficiency (IPCE) was obtained using an Oriel Cornerstone 260 1/4 m monochromator coupled with a 300 W Xe arc lamp passed through an AM 1.5G filter as the simulated light source. IPCE was measured at 1.23 V *vs*. RHE in 0.2 M Na₂SO₄ solution using the three-electrode system described above for PEC measurements. IPCE values were calculated as follow:

IPCE(%) =
$$\frac{1240 \times J \,(\text{mA cm}^{-2})}{P_{\text{light}} \,(\text{mW cm}^{-2}) \times \lambda \,(\text{nm})} \times 100$$

Where J presents the photocurrent density obtained from the electrochemical workstation, λ is the wavelength of incident light, and P_{light} is the measured light power density at that wavelength.

Supposing 100% faradaic efficiency, applied bias photon-to-current efficiency (ABPE) can be calculated using the following equation:

ABPE (%) =
$$\frac{J (\text{mA cm}^{-2}) \times (1.23 - V_{\text{bias}})}{P_{\text{light}} (\text{mW cm}^{-2})} \times 100$$

Where *J* is the photocurrent density obtained from the electrochemical workstation. V_{bias} refers to the applied bias *vs* RHE (V), P_{light} is the total light intensity of AM 1.5 G (100 mV cm⁻²). Electrochemical impedance spectroscopy (EIS) was recorded with an AC voltage amplitude of 10 mV at the open circuit potentials of the films under AM 1.5 G illumination (frequency range: 0.01 Hz~100 kHz).

Photoelectrochemical H₂ and O₂ evolution were measured using a two-electrode system (working electrode and the counter electrode) in an airtight single cell with a bias of 0.9 V in 0.2 M Na₂SO₄ solution (pH 7). H₂ and O₂ evolution were analyzed according to the standard H₂ or O₂ evolution curve by a gas chromatograph (SP-3420A, Beifen-Ruili). The amount of gas was determined by taking 100 μ L of gas from the headspace of the cell and injecting it into a gas chromatograph every ten minutes.

RESULTS AND DISCUSSION

Figure 1. (a) XRD patterns of α -FeOOH(P-II)/BiVO₄ (red), α -FeOOH(P-II/III)/BiVO₄ (magenta), α -FeOOH(P-III)/BiVO₄ (blue) and BiVO₄ (olive) photoanodes. (b) HAADF and corresponding EDS elemental mapping images of (c) Bi, (d) V, (e) Fe, (f) O and (g) overlapping elements, respectively. (h and i) HR-TEM images of α -FeOOH(P-II)/BiVO₄.

The crystalline phase structures and chemical compositions of pristine BiVO₄ and as-synthesized three α -FeOOH/BiVO₄ samples were characterized by XRD first. It can be seen in Figure 1a, all peaks could be well indexed to monoclinic BiVO₄ (JCPDS No.14-0688) and FTO, demonstrating that the crystal structure of BiVO₄ is not affected by immobilization of α -FeOOH *via* chemical bath deposition. Upon impregnation of FeCl₂ on BiVO₄ (α -FeOOH(P-II)/BiVO₄), two evident characteristic peaks with 2 θ values of 26.3° and 33.2° were detected in XRD pattern, which matches well with the (120) and (130) crystal planes of the standard crystalline phase of α -FeOOH (JCPDS No. 29-0713). It clearly reveals the formation of well-crystallized α -FeOOH on the

surface of BiVO₄ photoanode. In contrast, after impregnating BiVO₄ in mixture of FeCl₂ and FeCl₃ precursor solution, only a weak diffraction peak (33.2°) can be found in XRD pattern. When impregnating BiVO₄ in FeCl₃ solution, the diffraction peaks of α -FeOOH can be hardly observed. The decrease in the intensity of (120) and (130) for α -FeOOH supports the fact that FeCl₂ instead of FeCl₃ as the reaction precursor is beneficial to grow well-crystallized α -FeOOH.

To further investigate morphology and distribution of the prepared samples, SEM, HR-TEM, HAADF and corresponding EDS elemental mappings for α -FeOOH(P-II)/BiVO₄ photoanodes were carried out. The typical top-view SEM image of BiVO₄ is shown in Scheme 1. Compared with pristine BiVO₄, no evident morphological changes are observed after immobilizing α -FeOOH on BiVO₄, which may be due to the relatively low amount and ultrathin thickness of α -FeOOH nanolayers. Figure 1 (b-g) display that iron element in α -FeOOH(P-II)/BiVO₄ is well distributed in the whole regions, implying the uniform dispersion of α-FeOOH nanolayers on BiVO₄. HR-TEM image of α -FeOOH(P-II)/BiVO₄ (Figure 1h) clearly reveals that α -FeOOH nanolayer with a thickness of ~3 nm is tightly attached on the surface of BiVO₄. More importantly, the HR-TEM image in Figure 1(i) indicates the fringe spacing of 0.338 nm, which well agrees with the (120) lattice plan spacing of α -FeOOH in XRD pattern (Figure 1a), thus confirming the formation of α -FeOOH on BiVO₄. Moreover, according to the elemental mappings of a-FeOOH(P-II/III)/BiVO4, a-FeOOH(P-III)/BiVO4 in Figure S1a and Figure S1d, there are an even distribution of iron elements on the BiVO₄ surface after being prepared in the mixture of FeCl₂/FeCl₃ or FeCl₃ solution. However, we cannot observe the lattice fringes of α-FeOOH in α-FeOOH(P-II/III)/BiVO₄ and α-FeOOH(P- III)/BiVO₄ samples (Figure S1) due to the low crystallinity or amorphous of α -FeOOH, which is consistent with the lattice observations in the XRD patterns (Figure 1a). Therefore, combining the results of XRD analysis, SEM and HR-TEM images, it adequately confirms that using FeCl₂ as the Fe precursor is more beneficial to grow α -FeOOH with the high crystallinity on the surface of BiVO₄.

Figure 2. (a) FTIR and (b) Raman spectra of BiVO₄, α -FeOOH(P-III)/BiVO₄, α -FeOOH(P-III)/BiVO₄ and α -FeOOH(P-II)/BiVO₄. XPS high-resolution spectra of (c) Fe2p, (d) O 1s, (e) Bi

4f and (f) V 4f for different photoanodes.

To verify the presence of α -FeOOH on the surface of BiVO₄, FT-IR and Raman spectra were also observed. Figure 2a illustrates the FT-IR spectra of the as-prepared samples. For pure BiVO₄ sample (black line), a broad peak at \sim 3443 cm⁻¹ is ascribed to the stretching vibration of O-H bond from the physically adsorbed water, and the sharp peak at 738 cm⁻¹ is attributed to the symmetrical stretching vibration of the Bi-O bond. Compared with BiVO₄, three as-prepared α-FeOOH/BiVO₄ photoanodes show much stronger absorption peak at ~3443 cm⁻¹. The increased absorption band at around ~3443 cm⁻¹ should be ascribed to the stretching vibration of O-H band from α -FeOOH. Typically, the peaks at 426 and 476 cm⁻¹ in as-prepared α -FeOOH/BiVO₄ photoanodes can be assigned to Fe-O vibrational mode, 29,30 which implies that the α -FeOOH could be successfully immobilized on BiVO₄. To further confirm this conclusion, Raman spectroscopy was also acquired. Raman spectrum of the pristine BiVO₄ is shown in Figure 2b (black line), the peak at 828 cm⁻¹ belongs to V-O symmetric stretching vibrations, and the peaks at 369 cm^{-1} and 331 cm^{-1} are interpreted as VO₄³⁻ symmetric bending vibrations. The characteristic peaks above match well with the bands of BiVO₄.²¹ Notably, the as-prepared α -FeOOH/BiVO₄ photoanodes have typical peaks at ~279 cm⁻¹, which can be assigned to the Fe-O bending vibrations.^{31,32} Compared with BiVO₄, the obtained α-FeOOH/BiVO₄ photoanodes show negatively shifted and broadened peaks for V-O symmetric stretching vibrations (828 cm⁻¹) and VO4³⁻ symmetric bending vibrations (369 cm⁻¹ and 331 cm⁻¹). Importantly, α -FeOOH(P-II)/BiVO₄ photoanode exhibits significant broadening of various VO₄³⁻ deformation

modes. These results clearly reveal that crystalline α -FeOOH could affect the local coordination of V in the bulk BiVO₄ sample.

To investigate the chemical states of Fe, the as-obtained photoanodes were studied by high-resolution Fe2p XPS spectra, as shown in Figure 2c, which confirms that both Fe²⁺ and Fe³⁺ exist in all samples while α -FeOOH(P-III)/BiVO₄ sample has highest amount of Fe³⁺. Furthermore, ICP-MS measurements (Table S1) indicate that the Fe loading are 1.64 μ g cm⁻² and 1.87 μ g cm⁻² in α -FeOOH(P-II)/BiVO₄ and α -FeOOH(P-III)/BiVO₄ photoanode, respectively. Based on the XRD, HR-TEM, FTIR and Raman spectra one can make a conclusion that some iron ions exist in crystalline structure and the other in amorphous structure. Meanwhile, the high-resolution XPS spectra of O 1s in the three samples are also shown in Figure 2d. Two peaks at the binding energy of 529.8 eV and 531.3 eV can be assigned to Fe-O and Fe-OH bonds, respectively.³³ Furthermore, XPS spectra also reveal that the Bi 4f (Figure 2e) and V 2p (Figure 2f) peaks of three α-FeOOH/BiVO₄ samples are shifted to higher binding energy. For a metal atom, the XPS binding energy is proportional to the density of outer electrons.³⁴ When $BiVO_4$ is combined with α -FeOOH, the balance of the Fermi level between BiVO₄ and α -FeOOH is formed by electron transfer from BiVO₄ to Fe, resulting in decreased electron densities of Bi and V. More Fe³⁺ ions, more shift of the XPS spectra, indicating highest amount of Fe^{3+} in the sample of α -FeOOH(P-III)/BiVO₄ although they are in amorphous structure, consistent with the XPS analysis of Fe ions. Based on the observation above, it is reasonable to state that α -FeOOH nanolayers are successfully immobilized on BiVO4 while only crystalline α-FeOOH was obtained

when using FeCl₂ as the precursor. The α -FeOOH(P-III)/BiVO₄ has a higher Fe content as indicated by both ICP-MS and XPS but with an amorphous structure, which is believe due to the different reaction pathway, eg. a-FeOOH(P-III)/BiVO4 by a hydrolysis process of Fe³⁺ and α -FeOOH(P-II)/BiVO₄ by a very slow oxidation process. The latter process operated at room temperature provides a feasible route for crystalline FeOOH synthesis with small particles size.

 (100 mW cm^{-2}) illumination at a scan rate of 10 mV s⁻¹. (b) UV-vis absorbance spectra of different photoanodes. (c) α -FeOOH(P-II)/BiVO₄ photoanode prepared by 0.02 M FeCl₂ (pH = 3.42) for 16, 24 and 36 h, respectively. (d) α -FeOOH(P-II)/BiVO₄ prepared in various pH of 0.02 M FeCl₂ solution for 24 h.

PEC performance of as-prepared α-FeOOH/BiVO₄ photoanodes were evaluated in

0.2 M Na₂SO₄ under AM 1.5G simulated solar light (100 mW cm⁻²). In Figure 3a, pristine BiVO₄ shows a photocurrent density of 0.35 mA cm⁻² at 1.23 V vs. RHE with an onset potential of around 0.8 V vs. RHE. After loading α-FeOOH cocatalyst on BiVO₄ films, the photocurrent densities of three photoanodes are increased dramatically and obvious cathodic shifts of the onset potential are observed. The results reveal that the immobilization of α -FeOOH cocatalysts indeed promote the water oxidation activity of the BiVO₄ photoanode, consistent with the reported that amorphous FeOOH could improve the photoactivity of BiVO₄ photoanode.³⁵ Surprisingly, the crystalline α -FeOOH(P-II)/BiVO₄ displays a remarkable photocurrent density of 2.64 mA cm⁻² at 1.23 V vs. RHE, which is nearly 1.5-fold higher than that of amorphous FeOOH(P-III)/BiVO₄ photoanode (1.84 mA cm^{-2}), and even 8-fold higher than that of pristine BiVO₄ (0.35 mA cm⁻²). The performance of α -FeOOH(P-II/III)/BiVO₄ (1.97 mA cm⁻²) is between the crystalline α -FeOOH(P-II)/BiVO₄ and amorphouse FeOOH(P-II)/BiVO₄ III)/BiVO₄ photoanodes. These findings imply that the crystalline α -FeOOH(P-II)/BiVO₄ photoanode obtained by FeCl₂ as Fe precursor at pH value of 3.42, exhibits the best PEC performance for solar water splitting. In order to find out the underlying mechanism of the dramatic improvement of PEC activity, UV-vis spectra of the pristine BiVO₄ and various α-FeOOH cocatalysts modified BiVO₄ photoanodes were tested. In Figure 3b, the prepared BiVO₄ presents visible-light absorption with the absorption edge at ca. 510 nm, which is consistent with the reported BiVO₄ with a band gap of 2.4-2.5 eV.^{11,36} All the α -FeOOH/BiVO₄ photoanodes exhibit similar light absorption spectra, indicating that the influence of light absorption on the photocurrent density is negligible. Overall, testing results illustrate that the light absorption plays a minor role in the improvement of PEC activity, the best performance of the as-obtained α -FeOOH(P-II)/BiVO₄ photoanode could be attributed to the highly crystallized α -FeOOH.

Considering that the preparation time and pH value of FeCl_x solution play important roles on the growth of α -FeOOH crystal, PEC performances of different α -FeOOH/BiVO₄ photoanodes obtained in different FeCl_x solutions with various pH values and reaction times were also investigated to optimize the preparation condition of photoanodes. According to *J*-*V* curves in Figure 3c and Figure 3d, the pH value of 3.42 and preparation time of 24 h were chosen as the optimum conditions for further testing. Meanwhile, the optimized preparation condition of other α -FeOOH/BiVO₄ photoanodes at 1.23 V *vs*. RHE are shown in Table S2. The photocurrent densities of those photoanodes at 1.23 V *vs*. RHE are shown in Table S2. These findings suggest that no matter which solution was selected, the best PEC performance was obtained on the α -FeOOH/BiVO₄ photoanodes prepared in FeCl_x solution with the pH value of 3.42 for 24 hours. Remarkably, the maximum photocurrent density has been obtained using the crystalline α -FeOOH(P-II)/BiVO₄ and α -FeOOH(P-III)/BiVO₄.

Figure 4. EIS curves of BiVO₄, α -FeOOH(P-III)/BiVO₄, α -FeOOH(P-II/III)/BiVO₄ and α -FeOOH(P-II)/BiVO₄ (inset: equivalent circuit).

To gain further insight into the kinetics of solar-driven PEC water splitting process over α -FeOOH/BiVO₄ photoanodes, electrochemical impedance spectroscopy (EIS) measurements of all the photoanodes were carried out under AM 1.5 light illumination, and the results were fitted according to the equivalent circuit model (Figure 4). R_s is the system resistance, and R_{ct} represents the charge transfer resistance. According to the fitting results (Table S3), the obtained α -FeOOH/BiVO₄ photoanodes have remarkably reduced R_{ct} , compared with pristine BiVO₄. Meanwhile, the smallest charge transfer resistance (257.3 Ω) at α -FeOOH(P-II)/BiVO₄ indicates that the highly crystallized α -FeOOH provides an efficient pathway for facilitating the charge carrier separation and water oxidation reaction, achieving a remarkable photocurrent density.^{37,38}

and α -FeOOH(P-II)/BiVO₄ photoanodes. IPCE measured over the wavelength range of 400 nm to 550 nm at an applied potential of 1.23 V (*vs.* RHE). (c) Detection of H₂ (red) and O₂ (blue) produced by α -FeOOH(P-II)/BiVO₄ at 0.9 V *vs.* counter electrode. Black line represents the amount of H₂ calculated assuming 100% faradaic efficiency. (d) Stability testing of the α -FeOOH(P-II)/BiVO₄ photoanode at 0.9 V (*vs.* RHE) for 20 h. Electrolyte: 0.2 M Na₂SO₄ (pH = 7).

To quantitatively evaluate PEC water splitting efficiency, the applied bias photon to current efficiencies (ABPE) of all the photoanodes were calculated by *J*-*V* curves,³⁹ as displayed in Figure 5a. It is observed that the ABPE value of pure BiVO₄ is only 0.028% at 0.9 V *vs*. RHE, whereas the ABPE values of the α -FeOOH(P-II/III)/BiVO₄ and α -FeOOH(P-III)/BiVO₄ photoanodes reach 0.419% and 0.421%, respectively, which means that the surface modification of α -FeOOH cocatalysts effectively promote the

ABPE. Amazingly, the proposed α -FeOOH(P-II)/BiVO₄ photoanode can further boost the ABPE to 0.59%, which is over 21-fold higher than that of pure BiVO₄. The excellent photo-conversion efficiency at low potential is highly preferable.⁴⁰ These results reveal that the crystalline α -FeOOH(P-II)/BiVO₄ is more photoactive than amorphous α -FeOOH(P-III)/BiVO₄ for OER. Furthermore, the incident photon to current conversion efficiencies (IPCE) of different photoanodes were analyzed by measuring the photocurrent under monochromatic light at 1.23 V vs. RHE, as shown in Figure 5b. Over the entire photocurrent responsive region of 400-520 nm, all the α -FeOOH/BiVO₄ photoanodes exhibit the similar profiles to the pure BiVO₄, consistent with the UV-vis absorption spectra (Figure 3b), revealing that the primary photo-response comes from the BiVO₄ rather than α -FeOOH. IPCE of bare BiVO₄ is 14.7% (420 nm), similar to the reported value, 21,41 whereas the prepared α -FeOOH(P-II)/BiVO₄ photoanode in this work presents a marked improvement and near 5-fold enhancement. Apparently, chemical bath deposition of α -FeOOH is able to create an adequate junction onto BiVO₄, which improves the kinetics for water oxidation and suppresses surface recombination of photocarries, through its function as a surface cocatalyst. Overall, at 420 nm, the order of IPCE is α -FeOOH(P-II)/BiVO₄ (62.7%) > α -FeOOH(P-II/III)/BiVO₄ (45.2%) > α -FeOOH(P-III)/BiVO₄ (43.6%) > BiVO₄ (14.7%), demonstrating that the wellcrystallized α -FeOOH can indeed improve the electron injection efficiency, so more efficient than the low-crystallized/amorphous counterparts. Thus, the superior solar-tocurrent conversion performance for PEC water oxidation of α-FeOOH(P-II)/BiVO₄ is mainly attributed to the highly crystallinity of α -FeOOH.

H₂ and O₂ evolution were then measured using a two-electrode system in an airtight single cell with a bias of 0.9 V in 0.2 M Na₂SO₄ solution (pH = 7). As seen from Figure 5c, the α -FeOOH(P-II)/BiVO₄ photoanode continuously produces H₂ (14.5 µmol) and O₂ (7.2 µmol) for 60 min. The produced amount of H₂ and O₂ presents a stoichiometric ratio of 2:1. The corresponding faradaic efficiency of the α -FeOOH(P-II)/BiVO₄ photoanode was calculated to be ~92%, revealing that the produced photocurrent can be efficiently utilized to generate H₂ and O₂. 8% difference might be due to the reverse reaction of water splitting as both H₂ and O₂ were produced in a single cell.

In terms of practical application, long-term operational stability of photoelectrodes is highly required, which is also one of the advantages of the crystallized α -FeOOH electrocatalyst.²⁵ Therefore, the stability of α -FeOOH(P-II)/BiVO₄ photoanode for PEC water splitting was tested by a long time run (Figure 5d). Remarkably, stable photocurrent density of α -FeOOH(P-II)/BiVO₄ can be observed for 20 hours and no sign of decay is visible, which proves an excellent stability for PEC water oxidation, being consistent with our hypothesis. Moreover, the composition of α -FeOOH(P-II)/BiVO₄ before and after 20 hours PEC test was also compared by XPS spectra of Fe2p and O1s (Figure 6). It is clear that XPS spectra of the well-crystallized α -FeOOH(P-II)/BiVO₄ remain unchanged after such long time run, further indicating its excellent stability.

Figure 6. XPS high-resolution of (a) Fe 2p and (b) O 1s spectra of α -FeOOH(P-II)/BiVO₄ photoanode before and after 20 hours test.

On the basis of above results, the PEC water splitting by α -FeOOH(P-II)/BiVO₄ is summarized in Scheme 2. Under illumination, photogenerated electron-hole pairs are generated by BiVO₄. The photogenerated holes can be efficiently transferred from the VB of BiVO₄ to the α -FeOOH layer owing to the well-crystallized α -FeOOH interfaces matching well with BiVO₄, which could facilitate the hole trapping and migration.²² During the water oxidation process, the Fe³⁺ is reduced to Fe²⁺ by obtaining electrons from H₂O to produce O₂. Furthermore, owing to the photoholes with high oxidation capacity, the Fe³⁺ can be regenerated by photohole oxidation of Fe²⁺. Simultaneously, the electrons are transported to the Pt cathode for H₂ generation.

Scheme 2. Illustration of charge separation and transfer in the α -FeOOH(P-II)/BiVO₄ photoanode during PEC water splitting.

CONCLUSIONS

In summary, a well-crystallized and amorphous α -FeOOH was successfully immobilized on the surface of BiVO₄ photoanodes through a reproducible chemical bath deposition method. We found out that Fe precursor, pH value and reaction time were crucial for preparation of the well-crystallized α-FeOOH. As reported, all α-FeOOH improved the PEC performance of BiVO₄ photoanodes for water splitting, and the sample of α -FeOOH(P-II)/BiVO₄ shows the best performance. The remarkable high performance of the well-crystallized α -FeOOH(P-II)/BiVO₄ photoanode remained steady over 20 hours. A 92% faradaic efficiency and the 2:1 H₂ to O₂ ratio also proved the nature of the high PEC performance, which is due to water splitting for H₂ fuel production. Finally, we found that BiVO₄ film exhibited an ABPE value of only 0.028% at 0.9 V vs. RHE while crystalline α -FeOOH(P-II)/BiVO₄ photoanode represented an ABPE to 0.59% under same condition, more than 21 times higher compared with the BiVO₄ photoanode. Based on the characterizations of XRD, HRTEM and XPS, the performance of the as-obtained α-FeOOH(P-II)/BiVO₄ photoanodes could be related to the crystallinity of α -FeOOH. Further analysis of EIS indicates effective charge carrier separation and transfer was facilitated by the well-crystallized α -FeOOH. All these resulted into the best photoanode of the crystalline α -FeOOH(P-II)/BiVO₄. The new findings will pave the way toward economically viable, efficient and stable cocatalysts for photoelectrochemical water splitting.

ASSOCIATED CONTENT

Supporting Information.

The Supporting information is available free of charge

Experimental section, HRTEM, J-V curves and photocurrent densities of samples prepared at different pH and under different reaction conditions, ICP-MS analysis and EIS data.

AUTHOR INFORMATION

Corresponding Author

Hai-Ying Jiang- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, The Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China. E-mail: jianghy@nwu.edu.cn

Junwang Tang-Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K. orcid.org/0000-0002-2323-5510; E-mail: junwang.tang@ucl.ac.uk

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

W. Z and H.-Y. J. are grateful for the financial supports of this work from Supported by National Natural Science Foundation of China (No. 21703170). L. Q. X. and J. W. T. are thankful for financial support from UK EPSRC (EP/N009533/1), RS International Exchanges 2017 Cost Share Award (IEC\NSFC\170342), Royal Society-Newton Advanced Fellowship grant (NA170422) and the Leverhulme Trust (RPG-2017-122).

REFERENCES

(1) Choi, D.; Nam, S. K.; Kim, L.; Moon, J. H. Enhanced Photoelectrochemical Water Splitting Through Bismuth Vanadate with A Photon Upconversion Luminescent Reflector. *Angew. Chem. Int. Ed.* **2019**, 58, 6891–6895.

(2) Li, Z. S.; Luo, W. J.; Zhang, M. L.; Feng, J. Y.; Zou, Z. G. Photoelectrochemical Cells for Solar Hydrogen Production: Current State of Promising Photoelectrodes, Methods to Improve their Properties, and Outlook. *Energy Environ. Sci.* **2013**, 6, 347–370.

(3) Zhang, H. P.; Wang, Z. Y.; Huang, B. B. Fabrication of BiVO₄ Photoanode Consisted of Mesoporous Nanoparticles with Improved Bulk Charge Separation Efficiency. *Appl. Catal. B: Environ.* **2018**, *238*, 586–591.

(4) Kim, J. H.; Lee, J. S. Elaborately Modified BiVO₄ Photoanodes for Solar Water Splitting. *Adv. Mater.* **2019**, *31*, 1806938.

(5) Moniz, S. J. A.; Zhu, J.; Tang, J. W. 1D Co-Pi Modified BiVO₄/ZnO Junction Cascade for Efficient Photoelectrochemical Water Cleavage. *Adv. Energy Mater.* **2014**, *4*, 1301590.

(6) Chen, S. Y.; Yang, J. S.; Wu, J. J. Three-Dimensional Undoped Crystalline SnO₂ Nanodendrite Arrays Enable Efficient Charge Separation in BiVO₄/SnO₂ Heterojunction Photoanodes for Photoelectrochemical Water Splitting. *ACS Appl. Energy Mater.* **2018**, *1*, 2143–2149. (7) Tan, H. L.; Wen, X. M.; Amal, R.; Ng, Y. H. BiVO₄ {010} and {110} Relative Exposure Extent: Governing Factor of Surface Charge Population and Photocatalytic Activity. *J. Phys. Chem. Lett.* **2016**, *7*, 1400–1405.

(8) Wang, S. C.; He, T. W.; Yun, J. H.; Hu, Y. X.; Xiao, M.; Du, A. J.; Wang, L. Z. New Iron-Cobalt Oxide Catalysts Promoting BiVO₄ Films for Photoelectrochemical Water Splitting. *Adv. Funct. Mater.* **2018**, *28*, 1802685.

(9) Jian, J.; Xu, Y. X.; Yang, X. K.; Jia, L. C.; Friedrich, D.; van de Krol, R.; Wang, H. Q.
Embedding Laser Generated Nanocrystals in BiVO₄ Photoanode for Efficient
Photoelectrochemical Water Splitting. *Nat. Commun.* 2019, *10*, 2609.

(10) Wang, R. R.; Luo, L.; Zhu, X. L.; Yan, Y.; Zhang, B.; Xiang, X.; He, J. Plasmon-Enhanced Layered Double Hydroxide Composite BiVO₄ Photoanodes: Layering-Dependent Modulation of the Water Oxidation Reaction. *ACS Appl. Energy Mater.* **2018**, *1*, 3577–3586.

(11) Xia, L. G.; Bai, J.; Li, J. H.; Zeng, Q. Y.; Li, L. S.; Zhou, B. X. High-Performance BiVO₄ Photoanodes Cocatalyzed with an Ultrathin α-Fe₂O₃ Layer for Photoelectrochemical Application. *Appl. Catal. B: Environ.* **2017**, *204*, 127–133.

(12) Malara, F.; Fabbri, F.; Marelli, M.; Naldoni, A. Controlling the Surface Energetics and Kinetics of Hematite Photoanodes through Few Atomic Layers of NiO_x. *ACS Catal.* **2016**, *6*, 3619–3628.

(13) Lei, F.; Sun, Y.; Liu, K.; Gao, S.; Liang, L.; Pan, B.; Xie, Y. Oxygen Vacancies
Confined in Ultrathin Indium Oxide Porous Sheets for Promoted Visible-Light Water Splitting. *J. Am. Chem. Soc.* 2014, *136*, 6826–6829.

(14) Wang, S. C.; Liu, G.; Wang, L. Z. Crystal Facet Engineering of Photoelectrodes for Photoelectrochemical Water Splitting. *Chem. Rev.* 2019, *119*, 5192–5247.

(15) She, H. D.; Yue, P. F.; Ma, X. Y.; Huang, J. W.; Wang, L.; Wang, Q. Z. Fabrication of BiVO₄ Photoanode Cocatalyzed with NiCo-layered Double Hydroxide for Enhanced Photoactivity of Water Oxidation. *Appl. Catal. B: Environ.* **2020**, *263*, 118280.

(16) García-Tecedor, M.; Cardenas-Morcoso, D.; Fernández-Climent, R.; Giménez, S. The
 Role of Underlayers and Overlayers in Thin Film BiVO₄ Photoanodes for Solar Water Splitting.
 Adv. Mater. Interfaces 2019, 6, 1900299.

(17) Ho-Kimura, S.; Moniz, S. J. A.; Handoko, A. D.; Tang, J. W. Enhanced Photoelectrochemical Water Splitting by Nanostructured BiVO₄-TiO₂ Composite Electrodes. *J. Mater. Chem. A* 2014, *2*, 3948–3953.

(18) Singh, A. P.; Sainia, N.; Mehta, B. R.; Hellman, A.; Iandolo, B.; Wickman, B. Hydrogen Treatment and FeOOH Overlayer: Effective Approaches for Enhancing the Photoelectrochemical Water Oxidation Performance of Bismuth Vanadate Thin Films. *Catal. Today* 2019, 321-322, 87–93.

(19) Ye, K. H.; Wang, Z. L.; Gu, J. W.; Xiao, S.; Yuan, Y. F.; Zhu, Y.; Zhang, Y. M.; Mai,
W. J.; Yang, S. H. Carbon Quantum Dots as a Visible Light Sensitizer to Significantly Increase
the Solar Water Splitting Performance of Bismuth Vanadate Photoanodes. *Energy Environ. Sci.* **2017**, *10*, 772–779.

(20) Arunachalam, M.; Ahn, K. S.; Kang, S. H. Oxygen Evolution NiOOH Catalyst Assisted V₂O₅@BiVO₄ Inverse Opal Hetero-Structure for Solar Water Oxidation. *Int. J. Hydrogen Energy* **2019**, *44*, 4656–4663.

(21) Zhang, B. B.; Huang, X. J.; Hu, H. Y.; Chou, L. J.; Bi, Y. P. Defect-Rich and Ultrathin CoOOH Nanolayers as Highly Efficient Oxygen Evolution Catalysts for Photoelectrochemical Water Splitting. *J. Mater. Chem. A* **2019**, *7*, 4415–4419.

(22) Kim, T. W.; Choi, K. S. Nanoporous BiVO₄ Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. *Science* **2014**, *343*, 990–994.

(23) Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt–Iron (oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism. *J. Am. Chem. Soc.* **2015**, *137*, 3638–3648.

(24) Chemelewski, W. D.; Rosenstock, J. R.; Mullins, C. B. Electrodeposition of Ni-doped
FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting. J.
Mater. Chem. A 2014, 2, 14957–14962.

(25) Lee, D. K.; Choi, K. S. Enhancing Long-Term Photostability of BiVO₄ Photoanodes for Solar Water Splitting by Tuning Electrolyte Composition. *Nat. Energy* **2018**, *3*, 53–60.

(26) Hu, C. W.; Yamada, Y.; Yoshimura, K. Fabrication of nickel oxyhydroxide/palladium(NiOOH/Pd) thin films for gasochromic application. *J. Mater. Chem. C*, **2016**, *4*, 5390.

(27) Li, Z. H.; Feng, S. L.; Liu, S. Y.; Li, X.; Wang, L.; Lu, W. Q. A three-dimensional interconnected hierarchical FeOOH/TiO2/ZnO nanostructural photoanode for enhancing the performance of photoelectrochemical water oxidatio. *Nanoscale*, **2015**, *7*, 19178.

(28) Luo, W. J.; Jiang, C. R.; Li, Y. M.; Shevlin, S. A.; Han, X. Y.; Qiu, K. P.; Cheng, Y. C.; Guo, Z. X.; Huang, W.; Tang, J. W. Highly Crystallized α-FeOOH for a Stable and Efficient Oxygen Evolution Reaction. *J. Mater. Chem. A* 2017, *5*, 2021–2028.

(29) Zhang, Y. X.; Jia, Y. A Facile Solution Approach for the Synthesis of Akaganéite (β-FeOOH) Nanorods and their Ion-Exchange Mechanism toward As(V) Ions. *Appl. Surf. Sci.* **2014**, *290*, 102–106.

(30) Yan, J. Q.; Li, P.; Ji, Y. J.; Bian, H.; Li, Y. Y.; (Frank) Liu, S. Z. Earth-Abundant Elements Doping for Robust and Stable Solar-Driven Water Splitting by FeOOH. *J. Mater. Chem. A* **2017**, *5*, 21478–21485.

(31) Zhan, F. Q.; Yang, Y. H.; Liu, W. H.; Wang, K. K.; Li, W. Z.; Li, J. Facile Synthesis of FeOOH Quantum Dots Modified ZnO Nanorods Films via a Metal-Solating Process. *ACS Sustainable Chem. Eng.* **2018**, *6*, 7789–7798.

(32) Wang, L.; Yang, Y.; Zhang, Y. J.; Rui, Q.; Zhang, B. B.; Shen, Z. Q.; Bi, Y. P. One-Dimensional Hematite Photoanodes with Spatially Separated Pt and FeOOH Nanolayers for Efficient Solar Water Splitting. *J. Mater. Chem. A* **2017**, *5*, 17056–17063.

(33) Park, G.; Kim, Y.; Kim, Y. H.; Park, M.; Song, H.; Nam, K. M. Preparation and Phase Transition of FeOOH Nanorods: Strain Effects on Catalytic Water Oxidation. *Nanoscale* 2017, 9, 4751–4758.

(34) Liu, C.; Zhou, J. L.; Su, J. Z.; Guo, L. J. Turning the Unwanted Surface Bismuth Enrichment to Favourable BiVO₄/BiOCl Heterojunction for Enhanced Photoelectrochemical Performance. *Appl. Catal. B: Environ.* **2019**, *241*, 506–513.

(35) Kim, J. Y.; Youn, D. H.; Kang, K.; Lee, J. S. Highly Conformal Deposition of an Ultrathin FeOOH Layer on a Hematite Nanostructure for Efficient Solar Water Splitting. *Angew. Chem. Int. Ed.* **2016**, *55*, 10854–10858.

(36) Tan, H. L.; Abdi, F. F.; Ng, Y. H. Heterogeneous Photocatalysts: An Overview of Classic and Modern Approaches for Optical, Electronic, and Charge Dynamics Evaluation. *Chem. Soc. Rev.* **2019**, *48*, 1255–1271.

(37) Chong, R. F.; Du, Y. Q.; Chang, Z. X.; Jia, Y. S.; Qiao, Y.; Liu, S. H.; Liu, Y.; Zhou,
Y. M.; Li, D. L. 2D Co-Incorporated Hydroxyapatite Nanoarchitecture as a Potential Efficient
Oxygen Evolution Cocatalyst for Boosting Photoelectrochemical Water Splitting on Fe₂O₃
Photoanode. *Appl. Catal. B: Environ.* 2019, 250, 224–233.

(38) Xie, Z. R.; Tan, H. L.; Wen, X. M.; Suzuki, Y.; Iwase, A.; Kudo, A.; Amal, R.; Scott, J.; Ng. Y. H. The Importance of the Interfacial Contact: Is Reduced Graphene Oxide Always an Enhancer in Photo(Electro)Catalytic Water Oxidation? *ACS Appl. Mater. Interfaces* **2019**, *11*, 23125–23134.

(39) Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E.A.; Lewis, N. S. Solar Water Splitting Cells. *Chem. Rev.* 2010, *110*, 6446.

(40) Vo, T. G.; Chiu, J. M.; Tai, Y.; Chiang, C. Y. Turnip-Inspired BiVO₄/CuSCN Nanostructure with Close to 100% Suppression of Surface Recombination for Solar Water Splitting. *Sol. Energy Mater. Sol. Cells* **2018**, *185*, 415–424.

Z.; Yang, Q. H. Boosting Charge Separation and Transfer by Plasmon-Enhanced MoS₂/BiVO₄ p-n Heterojunction Composite for Efficient Photoelectrochemical Water Splitting. *ACS Sustainable Chem. Eng.* **2018**, *6*, 6378–6387.

(41) Pan, Q. G.; Zhang, C.; Xiong, Y. J.; Mi, Q. X.; Li, D. D.; Zou, L. L.; Huang, Q. H.; Zou,

For Table of Contents Only

