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ABSTRACT
We present complicated dust structures within multiple regions of the candidate supernova remnant
(SNR) the ‘Tornado’ (G357.7−0.1) using observations with Spitzer and Herschel. We use Point
Process Mapping, ppmap, to investigate the distribution of dust in the Tornado at a resolution of
8′′, compared to the native telescope beams of 5−36′′. We find complex dust structures at multiple
temperatures within both the head and the tail of the Tornado, ranging from 15 to 60 K. Cool dust
in the head forms a shell, with some overlap with the radio emission, which envelopes warm dust
at the X-ray peak. Akin to the terrestrial sandy whirlwinds known as ‘Dust Devils’, we find a large
mass of dust contained within the Tornado. We derive a total dust mass for the Tornado head of
16.7 M�, assuming a dust absorption coefficient of κ300 =0.56m2 kg−1, which can be explained by
interstellar material swept up by a SNR expanding in a dense region. The X-ray, infra-red, and radio
emission from the Tornado head indicate that this is a SNR. The origin of the tail is more unclear,
although we propose that there is an X-ray binary embedded in the SNR, the outflow from which
drives into the SNR shell. This interaction forms the helical tail structure in a similar manner to
that of the SNR W50 and microquasar SS433.

Key words: ISM: supernova remnants – infrared: ISM – submillimetre: ISM – stars

1 INTRODUCTION

Known as ‘the Tornado’, G357.7−0.1 (MSH 17-39) is an un-
usual SNR candidate at a distance of 11.8 kpc (Frail et al.
1996), comprising a ‘head’, ‘tail’, and ‘eye’ (Fig. 1). The
head appears as a shell- or ring-like feature in the radio
(Shaver et al. 1985), and a ‘smudge’ or diffuse clump with
a southern peak in the X-ray, with Suzaku (Sawada et al.
2011) and Chandra (see Fig. 2 of Gaensler et al. 2003) re-
spectively. A larger extended radio shell/filamentary struc-
ture exists around the head, with an elongated tail. Finally, a
compact and bright radio source seen to the west of the head
at α = 17h40m05.9s,δ =−30◦59′00′′ (J2000) is the so-called
eye of the Tornado, which is an isolated core embedded in
a foreground Hii region (Brogan & Goss 2003; Burton et al.
2004), unrelated to the SNR structure.

? E-mail: ChawnerHS@cardiff.ac.uk

Its highly unusual structure has led to various origin
theories for the Tornado. From early days, the head of the
Tornado has been attributed to a SNR with its radio power
law index following synchrotron emission, its non-thermal
radio emission, and its strong polarisation (e.g. Milne 1979;
Shaver et al. 1985; Becker & Helfand 1985a), and later its
X-ray emission power-law index (Yusef-Zadeh et al. 2003;
Gaensler et al. 2003). These properties led Gaensler et al.
(2003) to propose that the Tornado is a shell or mixed mor-
phology SNR, as described by Rho & Petre (1998). The ra-
dio head of the Tornado (which is brightest in the south-
west part of the ‘shell’ with a peak in the north-west)
can be attributed to limb brightened emission due to the
interaction with a molecular cloud (Gaensler et al. 2003).
Indeed, shocked H2 gas detected along the north-western
edge of the head (Lazendic et al. 2004), and the presence
of multiple OH masers (Frail et al. 1996; Hewitt et al. 2008)
both support this scenario. Unshocked CO emission is found
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Figure 1. 1.4 GHz VLA continuum image of the Tornado
(Brogan & Goss 2003). The tail, head, and eye are indicated, as

well as the X-ray ‘twin’ of the head, detected by Sawada et al.
(2011). Like Gaensler et al. (2003), we define the head as the

region from which both X-ray and radio emission are strongly

detected. The gold diamond indicates the location of an OH
(1720 MHz) maser.

from a cloud to the north-west slightly offset from shocked
H2, suggesting that there is a dense molecular cloud (nH ∼
104 − 106 cm−3) which could decelerate the shock wave on
this side (Lazendic et al. 2004). However, it is difficult to
explain the shape of the large filamentary structures in the
tail (Fig. 2) with a mixed morphology SNR. In this scenario,
the X-ray emission from the head (detected with Chandra)
originates from the SNR interior, i.e. interior to the limb
brightened radio shell (Gaensler et al. 2003). Outside the
head region, Shaver et al. (1985) suggests that the partial
helical/cylindrical radio filaments could be the result of an
equatorial supernova outburst, or the SN exploded at the
edge of dense circumstellar shell (Gaensler et al. 2003), or
a pre-existing spiral magnetic field structure (Stewart et al.
1994).

Another explanation is that the helical tail is a struc-
ture originating from jets of an X-ray binary, as seen in
the SNR W50 (Shaver et al. 1985; Helfand & Becker 1985;
Stewart et al. 1994). In that system, over the course of 20 kyr
and several episodes of activity, precessing relativistic jets of
the X-ray binary SS443 have shaped the SNR within which
it is found (e.g. Begelman et al. 1980; Goodall et al. 2011).
This has resulted in a huge nebula (208 pc across) which has
a circular radio shell (with a 45 pc radius) from the expand-
ing SNR, and lobes extending to 121.5 and 86.5 pc to the
east and west respectively formed by outflows. Radio obser-
vations of the Tornado show some symmetry, with flared
ends and a narrower central region (Caswell et al. 1989),
and Sawada et al. (2011) suggested the presence of an X-
ray ‘twin’ to the head at the far end. This has lead to the
theory that the Tornado is an X-ray binary, with a powering
source near to the centre of the radio structure, and bipolar
jets which interact with ISM at either end, forming the head
and its ‘twin’.

However, a compact object powering the Tornado sys-
tem has not yet been detected (Gaensler et al. 2003), al-

though Sawada et al. (2011) argued that a central powering
source with an active past may now be in a quiescent state
and is too faint to detect in X-ray emission. Another pro-
posed idea is that the Tornado is a pulsar wind nebula pow-
ered by a high-velocity pulsar (Shull et al. 1989); however,
the spectral slope required to explain the X-ray emission is
too steep (Gaensler et al. 2003). Currently, the origin of the
highly unusual shaping observed in the Tornado is still under
debate.

SNRs are considered to play an important role in the
dust processes in the ISM, by creating freshly formed ejecta
dust and destroying pre-existing interstellar dust. Indeed,
dust thermal emission is widely detected in SNRs in the
mid- and far-infrared (MIR and FIR) regime (Dunne et al.
2003; Williams et al. 2006; Rho et al. 2008; Barlow et al.
2010; Matsuura et al. 2011; Temim et al. 2012; Gomez et al.
2012; De Looze et al. 2017; Temim et al. 2017; Rho et al.
2018; Chawner et al. 2019; De Looze et al. 2019). As SNRs
plough through surrounding interstellar dust clouds, they
form a shell-like structure, whereas ejected material is found
in a compact emission source in the center of the system
(Barlow et al. 2010; Indebetouw et al. 2014). Using MIR
to FIR images of the region from the Spitzer Space Tele-
scope (Spitzer, Werner et al. 2004) and the Herschel Space
Observatory (Herschel, Pilbratt et al. 2010), Chawner et al.
(2020) reported the discovery of thermal emission from dust
in the head and tail of the Tornado (see Section 2). This
paper examines the unusual morphology of dust emission in
the SNR candidate, the Tornado.

2 THE INFRARED VIEW OF THE TORNADO

2.1 Observations

The Herschel data used to discover dust emission in the Tor-
nado is from the HiGal survey (Molinari et al. 2010, 2016),
which covered 360◦ in longitude and | b |≤ 1 and includes
data from 70 – 500 µm. Data processing is described in de-
tail in Molinari et al. (2016) and pipeline-reduced and cal-
ibration corrected fits files are available to the community
via the native HIPE reduction pipeline. Zero-point calibra-
tions for the Herschel SPIRE observations were already ap-
plied prior to data acquisition. The Herschel PACS zero-
point offsets were corrected by comparing the observations
to synthetic observations produced from the Planck fore-
ground maps (Planck Collaboration 2016), and the 100 µm
IRAS IRIS data1. This method is similar to that de-
scribed in e.g. Bernard et al. (2010); Lombardi et al. (2014);
Abreu-Vicente et al. (2016). Spitzer 24 µm data was avail-
able via the IRSA archive. The MIR-submm images of the
Tornado are presented in Fig. 2 (and Fig. B1), where the well
known features are marked by a magenta circle (the head),
arrows (the tail) and a gold circle (the Hii region, the eye).
The tail is brightest in two prong-like structures east of the
head.

Fig. 2 also compares the IR images with other physical
tracers. We make use of the 1.4 GHz VLA radio image (with

1 The zero-point corrections adopted for the G357.7-0.1 region
are: 66.1 MJy/sr and 454.1 MJy/sr for 70 µm and 160 µm respec-

tively.
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Figure 2. G357.7−0.1, The Tornado at FIR, radio, and X-ray - top left: Herschel three colour image made by combining the 70 (blue),

160 (green) and 250 µm (red) images, top middle: Herschel 70 µm image, top right: Spitzer MIPS 24 µm image, bottom left: 1.4 GHz VLA
image, bottom middle: XMM-Newton X-ray image smoothed to 0.5′′ pixels (kindly provided by B. Gaensler et al. private communication),

and bottom right: Suzaku 1.5 – 3.0 keV X-ray smoothed continuum image. The white contours show the radio emission (1.4 GHz VLA)

and the cyan contours show X-ray emission (XMM-Newton). We detect dust emission across all Herschel wavebands from the ‘head’ of
the Tornado, within the pink circle. We also detect FIR emission from the ‘tail’ of the Tornado, and from a fainter filament extending

around the head, as indicated by the arrows. The gold diamond indicates the location of an OH (1720 MHz) maser. (For the single

wavelength panels we use the cubehelix colour scheme, Green (2011).)

spatial resolution of 14′′×11′′, Brogan & Goss 2003) and X-
ray data from the EPIC camera on board XMM-Newton
(kindly provided by B. Gaensler et al. private communica-
tion), with an energy range 0.15-15 keV and spatial resolu-
tion of 6′′. As the source was only weakly detected in the
EPIC MOS detector, here we present data from the PN de-
tector only. We use XMM-Newton rather than Chandra as
we are only interested in the comparison of structures rather
than absolute flux or spectral variations. Furthermore, the
diffuse source concentrated at the south of the head previ-
ously detected with Chandra (Gaensler et al. 2003) is very
faint and requires significant smoothing to bring out the sig-
nal; XMM-Newton may ultimately be more sensitive to dif-
fuse emission given its coarse angular resolution compared
to Chandra. X-ray observations from Suzaku (Sawada et al.
2011) suggest faint diffuse X-ray emission across the head of
the Tornado, in close agreement to the structures observed
in the XMM-Newton image (Fig. 2). We note that the distri-
bution of X-rays as seen in the XMM-Newton image suggest
a shell-like X-ray structure with some emission in the south

which may lie interior to the shell (i.e. potentially originat-
ing from ejecta; see also the peak in the smoothed Chandra
image of Gaensler et al. 2003).

2.2 Comparison of Tracers

Although this region is confused by dust in the interstellar
medium (ISM) in the FIR, we detect clear emission from
dust at the location of the head and tail of the SNR in all
Herschel wavebands, as shown in Fig. 2 and Fig. B1, though
the poorer resolution at 350 and 500 µm makes it more dif-
ficult to distinguish the emission from unrelated structure
along the line of sight. At 70 and 160 µm, the shell-like struc-
ture is clearly seen in the head, and correlates spatially with
the radio and overlaps with X-ray. This is also confirmed in
the Spitzer 24 µm image (Fig. 2). The brightest peak in the
MIR and FIR (to the north and north-west) is opposite to
that seen in the radio emission, and is located towards the
OH (1720 MHz) maser, where shock-heated H2 is also bright
(Lazendic et al. 2004). This dust feature appears confined
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within the radio contours, and is significantly brighter than
the ambient dust seen further north-west where the interact-
ing IS cloud is located (as traced by molecular CO emission;
Lazendic et al. 2004) so there is no doubt that this is asso-
ciated with the emission structures responsible for the radio
and X-ray (i.e. shocked gas). The fainter southern peak in
the X-ray emission correlates with two radio peaks, and the
bright X-ray feature to the west coincides with the brightest
24 µm emission and fainter radio.

Outside of the head, we detect warm dust in the unre-
lated Hii region. We also detect faint 70 µm emission that
appears to correspond to one of the large radio filaments ex-
tending around the eastern side of the head. Dust emission
from the tail is also seen at 24 – 160 µm. Similar to the head,
we see evidence of an anti-correlation between the radio and
FIR in the tail, the FIR correlates with the upper, fainter
of the two radio prongs, indicated by an arrow in Fig. 2.
At longer Herschel wavelengths, we see a bright structure
at the eastern end of the tail which may be associated with
the Tornado, although this is difficult to distinguish from
interstellar dust due to the level of confusion in this region.
We do not discuss this source further.

3 INVESTIGATING THE DUST STRUCTURES
IN THE TORNADO

In the previous Section, we discussed the presence of dust in
the SNR G357.7-0.1, ‘the Tornado’ (Fig. 2). Here we investi-
gate the dust properties in this source further using the point
process mapping technique, ppmap. This technique produces
maps of differential dust column density for a grid of temper-
atures (Marsh et al. 2015, 2017). Observations are taken at
their native resolution, avoiding data loss through degrad-
ing to a common angular scale, and are deconvolved with
circularly average instrument beam profiles, using the point
spread function information, to achieve maps of dust mass
at a high resolution. Finely sampled colour corrections, de-
rived from the Spitzer MIPS and Herschel PACS and SPIRE
response functions, are applied to the model fluxes, as a func-
tion of temperature and wavelength.

The ppmap procedure is described in full in Marsh et al.
(2015, 2017) and its application to investigating the
dust properties in pulsar wind nebulae can be found in
Chawner et al. (2019). In brief, ppmap uses an iterative pro-
cedure based on Bayes’ theorem to estimate a density dis-
tribution of mass in the state space (x, y, T, β ) where x
and y are spatial co-ordinates, T is the dust temperature
and β is the dust emissivity index (the power law slope that
characterises how the dust opacity varies with wavelength).
Throughout the procedure, ppmap acts in the direction of
minimising the reduced χ2, derived from the sums of squares
of deviations between the observed and model pixel values
over each local region, after dividing by the number of de-
grees of freedom. These are estimated by comparing the es-
timated properties of each tile with a modified black-body
model of the form:

Fλ =
MdustBλ (T )κλ

D2 , (1)

where Fλ is the flux at a given wavelength, Mdust is

the mass of dust, Bν (T ) is the Planck function at temper-
ature T , κλ is the dust mass absorption coefficient, and D
is the distance to the source, which is ∼12 kpc in this case.
The variation of κλ at different wavelengths depends on the
value of β as κλ = κλ0

(λ/λ0)−β . We adopt κ300 = 0.56m2 kg−1

(James et al. 2002) in the ppmap analysis.
The process is applied to a multi-band map field to es-

timate the column density over a range of temperatures.
ppmap provides additional information over the standard
modified blackbody technique used to derive dust masses be-
cause it (i) does not assume a single dust temperature along
the line of sight through each pixel, (ii) uses point spread
function information to create column density maps with-
out needing to smooth data to a common resolution, and
(iii) although it first makes the assumption that the dust is
optically thin, it can check this retrospectively. ppmap re-
quires an estimate of the noise levels for each band which
describes the pixel-to-pixel variation. Here, this was derived
from background subtracted Spitzer and Herschel images us-
ing the standard deviation of pixels within apertures placed
in quiet regions (minimal variation in foreground emission)
near the source. This gives noise estimates of 2.18, 5.47,
11.87, 4.10, 1.72, and 0.48 MJy sr−1 for the 24, 70, 160, 250,
350, and 500 µm bands respectively, which are assumed to
be uniform across the entire map.

3.1 Applying ppmap to the Tornado

We initially selected 12 temperature bins centred at
temperatures equally spaced in log(T ) ranging from 20
to 90 K (guided by our previous analysis of SNRs in
C19), we assumed a fixed value for the dust emissiv-
ity index, β = 2, which is typical for silicate ISM dust
(Planck Collaboration XXXI 2016). If we were to assume
a carbonaceous dust with β of 1.0 to 1.5 the estimated dust
temperatures would likely be higher. As we did not find any
related dust at the location of the head in any temperature
bins > 70 K, we re-ran the grid for temperatures ranging
from 15 to 70 K.

In our first runs of ppmap, we found that the itera-
tive procedure did not converge to sensible fits (verified by
checking the ppmap χ2 statistic in each band), even with
hundreds of thousands of iterations. This was due to ppmap
attempting, and failing, to converge to a solution for the
bright point sources, presumably stars with temperatures
much higher than 90 K, in the 24 µm image (and to a lesser
extent in the 70 µm image). To resolve this, we masked the
bright point sources near the Tornado (replacing their pixels
with a local average level in the image) and we artificially
increased the noise for the 24 µm map by a factor of 10; this
effectively stops ppmap from trying to over-fit the 24 µm
band and down-weights the importance of the 24 µm in the
iterative procedure. This may act to slightly reduce any dust
temperatures fit by ppmap, though in practice we found that
it did not affect our results.

The Tornado is in a highly confused region due to its lo-
cation close to the Galactic centre (Fig. 2). To determine the
effect of any potential contamination from unrelated dust
along the line of sight, we ran our ppmap grid (the original
20 – 90 K run) on the Tornado without any background sub-
traction, and then again, after accounting for background
emission. In the former scenario, the results indicate that
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dust structures exist in the head of the Tornado at tem-
peratures of 20-23 K with a warmer dust component in the
north-western part of the head at 26 K, where the source is
believed to be interacting with a molecular cloud (Frail et al.
1996; Lazendic et al. 2004; Hewitt et al. 2008). These cold
dust temperatures are very similar to general interstellar
dust, and the narrow range of temperatures suggest this re-
gion is contaminated by unrelated background emission.

For ppmap to converge in a reasonable time we must
subtract the background from the maps. First we mask
bright, unrelated sources as above, as well as the Tornado
head and tail, and several high signal-to-noise regions to
avoid overestimating the background. The images are then
convolved with a 100 ′′ FWHM Gaussian profile, providing
background maps smoothed to a scale comparable to the
Tornado head. The background maps are subtracted from
the original zero-point calibrated maps (with the two bright
sources masked). Running ppmap with the resulting maps
gives reduced-χ2 values of 0.3, 2.0, 11.0, 9.0, 4.0, and 128.0
for 24, 70, 160, 250, 350, and 500 µm2 We find that the
overall level of the background-subtracted images is nega-
tive, implying the method of background subtraction used is
too aggressive. To account for this, we took the background-
subtracted maps, estimated the mean negative offset for the
whole region at each waveband (again masking the Tornado)
and added this back on to the image in an attempt to bring
the maps back to a zero level. Hereafter we call this the
zero mean background-subtracted method. Running these
images through ppmap the resulting dust temperatures and
components are markedly different to the non-background-
subtracted case: dust structures are observed at a wider
range of temperatures (from 20 - 60 K) with the north-
western dust feature peaking at 30 K. The background sub-
traction has resulted in the dust components in the head be-
ing attributed to warmer dust, as expected. Note that these
warmer dust components agree with the dust structures that
peak in the original Herschel maps peaking at 70 µm. The
resulting ppmap reduced χ2 values are 0.6, 2.2, 6.9, 11.7, 22.5
and 37.6 suggesting the overall fit is formally better than the
previous case. The high χ2 values for the longer wavebands
are most likely due to underestimating the σ value, because
small scale ISM variations cannot be captured by a large
beam, although increasing the noise level constrains ppmap
less, giving more unreliable results across all bands.

The above tests suggest that ppmap is sensitive to
whether the background diffuse interstellar level is sub-
tracted from the maps or not, particularly important in this
case due to the high level of confusion in this region. To
try and qualitatively discriminate between the tests, we cre-
ated synthetic MIR-FIR observations based on the ppmap
outputs for the three scenarios above, and compared them
to the original Spitzer and Herschel images. In each case,
the original dust emission features seen in the head of the
Tornado were recovered well in the synthetic ppmap MIR-
FIR images. The zero mean background-subtracted method

2 These are average reduced-χ2 estimated for the entire map at
the end of the ppmap run. As such they can be greatly influenced
by variations in noise across the map, as well as regions which are

not fit well, including edges (which are sampled less frequently
throughout the ppmap procedure) and areas which may be opti-

cally thick or have a temperature outside of the given range.

provided the closest match to the original features (see Ap-
pendix A), recovering the complex dust emission structures
observed within the head (see the following Section for more
information). We therefore use the ppmap results based on
this method from now on.

Finally we note that synchrotron emission in SNRs can
be a significant contributor to the FIR flux (Dunne et al.
2003; De Looze et al. 2017; Chawner et al. 2019). As this
typically varies as a power law with flux Sν ∝ ν−α where α is
the spectral index, we can directly estimate the contribution
of synchrotron emission to our FIR bands. Prior to running
ppmap we subtract the synchrotron contribution which is
estimated by extrapolating from the flux we measure from
the 1.4 GHz VLA image (Becker & Helfand 1985b; Green
2004), assuming α = −0.63 for the head (Law et al. 2008).
We find that the synchrotron contribution to the SNR head
is in the range of only 0.03 – 2.06 per cent of the total flux for
our MIR–FIR wavebands in the head, as measured on the
original Herschel maps3, where both are measured within
an aperture centred at α = 17h40m12.4s,δ = −30◦58′31.1′′

with a 79′′ radius. We can therefore be confident that we
are observing the thermal emission from dust with negligible
contribution from synchrotron emission in the head.

However, the spectral index does flatten in the tail re-
gion with spectral slope varying from −0.50 < α < −0.33
(Law et al. 2008) indicating that the tail electrons are more
energetic than in the head. We therefore caution that there
could be a higher contribution of synchrotron emission in
the tail.

3.2 Results

The grid of dust mass in each temperature bin for the
Tornado is shown in Fig. 3 assuming a distance of 12 kpc
(Brogan & Goss 2003). Fig. 4 shows a four colour FIR image
created by combining the masses in the temperature slices
at 20, 30, 40, and 61 K, and Fig. 5 shows the total dust mass
distribution across the Tornado head. They reveal dust fea-
tures observed in the Herschel images, but at a resolution of
∼ 8′′ compared to the native telescope beams of 5−36′′.

A temperature gradient is evident in both the head and
tail. Cool, dense dust is found towards the north-eastern
head at the location of a radio filament which extends from
the head towards the northern extent of the object. The
filaments outside of the head were lost in background sub-
traction, but this suggests that they could also contain cool,
dense dust. Slightly warmer material (23 – 30 K) forms a
bubble around the edge of the head and around the larger
X-ray peak. In Fig. 5 we find that the majority of the dust

3 we note that this calculation may underestimate the syn-
chrotron contribution to the IR fluxes since our integrated flux

for the total SNR (head and tail) derived from the 1.4 GHz radio
image using an aperture α = 17h40m29s,δ = −30◦58′00′′ with a

8′ radius, gives 80 and 70 per cent of the flux derived from the
single dish measurements of Green (2004) and Law et al. (2008)
respectively (scaled to the same frequency). This may, in part,

explain the larger χ2 value at 500 µm. However taking the single
dish measurements would produce a maximum synchrotron con-

tribution of 3 per cent. Indeed the biggest source of contamination

in the MIR-FIR aperture measurements is the background level.
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Figure 3. ppmap generated maps of differential dust mass split in

different temperature ranges for the Tornado. The corresponding

dust temperature is indicated in the bottom-left of each panel.

mass follows this bubble shape, with a relative lack of mate-
rial in the central region. Warm material (35 – 40 K) fills the
central region, coincident with both the large X-ray peak
and the warmest dust that we observe (53 – 61 K). It seems
that the hot gas which emits the X-ray emission is heating
the central region of the head, where we see warm, low den-
sity material. We find a large mass of 26 – 30 K dust towards
the north west where interactions with a molecular cloud
may be heating the dust, as well as at the same location as
the smaller region of bright X-ray emission in the south east.
A filament of 35 – 46 K material sits along the eastern edge
of the head, with a warm 53 K peak towards the middle,
filling the radio contours at this location, as seen in Fig.4.
In the tail we find a large mass of cool, 15 – 20 K dust to the
east, as well as slightly warmer, 23 – 30 K material which ex-
tends further north. The temperature increases towards the
west, as 35 – 40 K dust fill the eastern and central contours
with dense regions at the radio peaks, and 46 K material
is found further west. There is some evidence of warm dust
(40 – 46 K) at the X-ray and radio peak to the east of the tail,
although much of this area is lost to background subtraction
as it is a similar level to the surrounding ISM.

The spectral energy distribution of the head of the Tor-
nado is shown in Fig. 6, broken down into the different tem-
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Figure 4. ppmap-generated four colour map of dust mass in
the Tornado created using dust temperature slices from Fig. 3.

Colours show dust at 20 K (blue), 30 K (cyan), 40 K (gold), and

61 K (red). Overlaid contours are from the VLA 1.4 GHz (grey)
and XMM-Newton (pink) images. The magenta dashed circle in-

dicates the location of the head of the remnant, and is also the
aperture used to derive the dust mass. The gold dash-dotted circle

is the location of the eye of the Tornado (unrelated Hii region).

Figure 5. The dust mass within the Tornado head integrated

across all temperature slices of Fig. 3, with VLA 1.4 GHz contours
(grey) overlaid.

perature components revealed by ppmap. We derive the total
dust mass in the head of the Tornado by summing the mass
within the magenta circle shown in Fig. 4 across the tem-
perature grids. This gives a total dust mass for the Tornado
head of 16.7 M� for a dust mass absorption coefficient at
300 µm of κ300 =0.56m2 kg−1 (James et al. 2002). If we only
sum the contribution from dust structures with Td>17 K we
obtain a dust mass of 14.8 M�, and 4.0 M� of mass originates
from dust hotter than 30K.
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Dust Devil 7

Figure 6. The total thermal MIR-FIR SED estimated from the
ppmap results of the head of the Tornado, within the magenta

circle in Fig. 4, indicating how the different temperature compo-
nents shown in Fig. 3 contribute to the thermal emission observed

in the source.

Figure 7. Tornado head and tail region at 70 µm. The shapes
indicate regions from which we detect FIR emission and within

which we compare the flux ratios in Figs. 9 and 10. These are

the Tornado head (blue circle), north-western head (green dashed
ellipse, south eastern head (pink dashed ellipse), Tornado tail

(gold dashed ellipse), and the Tornado eye (white dash-dotted

circle).

4 DUST GRAIN PROPERTIES

In previous investigations both Sawada et al. (2011) and
Gaensler et al. (2003) detected thermal X-ray emission from
the head of the Tornado. This led Gaensler et al. (2003)
to suggest that the head is a mixed-morphology SNR, cen-
trally filled with thermal X-ray emission from shocked gas.
In Figs. 3 and 4 we find that the warmest dust (∼60 K) is
at the location of the XMM-Newton X-ray peak, thus we
investigate whether the dust in the head is likely to be col-
lisionally heated by hot, shocked gas.

We calculate grain temperatures and corresponding
emissivities for grain sizes between 0.001 – 1 µm using DI-
NAMO (Priestley et al. 2019), a dust heating code which
takes into account temperature fluctuations of small grains.
We assume that the dust is heated by gas with the prop-
erties measured by Sawada et al. (2011) (kT = 0.73 keV

Figure 8. Best-fit dust SEDs for the Tornado head assuming
that dust is collisionally heated by hot gas in the top two panels,

and radiatively heated in the bottom panel. We use DINAMO

(Priestley et al. 2019) to fit to the flux within the head aperture
in Fig.7, assuming the gas properties estimated by (Sawada et al.

2011). Although we can fit the SED well to the measured FIR

fluxes with a collisional heating model and carbon grains, this
requires a highly unusual grain size distribution. It is more likely

that the majority of the dust within the Tornado head is radia-

tively heated, with a small proportion of collisionally heated dust.

and ne = 0.49 cm−3), and use optical properties for ei-
ther BE amorphous carbon (Zubko et al. 1996) or MgSiO3
grains (Dorschner et al. 1995). The corresponding opacities
at 300 µm are 0.79 m2g−1 and 0.32 m2g−1 (β = 1.5 and 1.7)
respectively. The minimum equilibrium grain temperature,
for micron-sized grains of either composition, is ∼30 K, so
no set of grain properties result in an emissivity resembling
a 20 – 30 K blackbody, as indicated by PPMAP.

Following the method used in (Priestley et al. 2020), we
fit the IR SED to background-subtracted fluxes within the
blue head aperture in Fig. 7 using a combination of single-
grain SEDs for radii of 0.001, 0.01, 0.1 and 1 µm with the
number of grains (or equivalently the dust mass) of each size
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8 H. Chawner et al.

as the free parameters. We are unable to fit the FIR fluxes
if we exclude 1 µm grains. For carbon grains, shown in the
top panel of Fig. 8, even 0.1 µm grains have a 24/70 µm ra-
tio which is larger than the observed value, while at longer
wavelengths the discrepancy becomes even more extreme.
Silicate grains have the same issue, to a slightly greater ex-
tent. With 1 µm radius grains included, we are able to re-
produce the SED well at all wavelengths. We include IRAC
fluxes (which may have significant non-SN dust contamina-
tion) as upper limits, in order to better constrain the number
of transiently heated small grains, and we find best-fit dust
masses of 8.1 M� for carbon grains and 17.3 M� for silicates.
The best-fit SEDs are shown in Fig. 8.

In order to fit the FIR fluxes, both carbon and sili-
cate grains require the vast majority (∼99 per cent) of the
dust mass to be in micron-sized grains, while also requiring
0.05 – 0.06 M� of small grains with a ≤0.01 µm to repro-
duce the 24 µm emission. The mass of intermediate-sized
grains with radius 0.1 µm is strongly constrained to be be-
low 10−4 M�, where they have a negligible contribution to
the total SED. This distribution of grain sizes is highly un-
usual, both for the high mass fraction of micron-sized dust -
the Mathis et al. (1977) power law does not extend to 1 µm
and even if extended results in only ∼30 per cent of the mass
in the largest grains - and the ‘bimodal’ distribution of small
and large grains. Additionally, assuming a gas to dust ra-
tio of 100, a dust mass of ∼10 M� implies a gas mass of
∼1000 M�, much larger than that indicated by the X-ray
emission (Mgas =23 M�, Sawada et al. 2011). We consider it
more probable that the assumption of all grains being heated
by the X-ray emitting gas is wrong. The synchrotron radi-
ation generated by the shocked gas will heat nearby grains,
both in the unshocked ISM and in any local over-densities
which survive the blast wave, potentially resulting in a pop-
ulation of grains at lower temperatures.

While fully investigating the potential range of spectral
shapes and intensities is beyond the scope of this paper, we
can approximate it by scaling the Mathis et al. (1983) ra-
diation field by a constant factor G. Assuming that the ra-
diatively heated dust follows an MRN size distribution, we
are able to fit the SED without the addition of micron-sized
grains for G = 5 for carbon and 10 for silicates. The best-fit
SEDs, shown in Fig. 8, require 9.1 M� and 0.33 M� of radia-
tively and collisionally heated dust respectively for carbon
grains. The size distribution of the collisionally heated dust
is also reasonable, with the majority of the mass at 0.1 µm
and a negligible fraction of 0.001 µm grains, as would be
expected from an initial size distribution affected by sput-
tering (Dwek et al. 1996). For silicates, the radiatively and
collisionally heated dust masses are 35.7 and 0.76 M� re-
spectively. We note that these dust masses are not autho-
ratative - differences in the assumed grain properties, size
distribution and radiation field could cause significant vari-
ation in the best-fit masses. However, it is clear that a
moderately-enhanced radiation field in the vicinity of the
Tornado, combined with a small mass of dust in the shocked
plasma, can explain the observed IR SED without any ad-
ditional assumptions. Our G = 6 carbon model has a total
cold dust luminosity of 2.6×1037erg s−1 which can be ex-
plained by radiative heating via synchrotron radiation from
the shock wave, given α =−0.63 (Law et al. 2008). We con-
sider this explanation much more reasonable than invoking

an arbitrary, and somewhat unphysical, size distribution for
the dust in the hot plasma. Investigations of the IR-X-ray
flux ratio may give a more detailed description of the pro-
cesses within the Tornado head, as shown for other SNRs
by Koo et al. (2016), although possible absorption by dense
gas and molecular material in the vicinity makes this com-
plicated.

In Section 3.2 we estimated that the head of the Tor-
nado contains a large dust mass of 16.7 M�. This is unex-
pected for the mass within a SNR. However, if the Tornado
head is a SNR, it will have swept up a large mass of dust
from the ISM through expansion. Assuming a simple rela-
tion where the swept up mass is equal to 4

3 πR3ρ, with a stan-

dard ISM density for cool, dense regions of ρ = 10−21 kg m−3,
this gives a mass of ∼ 5.26 M�. As the ISM in this region
is expected to be relatively dense, the swept up mass will
likely be larger than this; assuming a gas density of 104 cm−3

(Lazendic et al. 2004) and dust-to-gas ratio of 100, the total
swept up dust mass could be as large as ∼250 M�. There-
fore, the dust mass of the Tornado head can be explained by
material which has been swept up by an expanding SNR.

5 THE NATURE OF THE TORNADO

The nature of the Tornado is unclear as it has many confus-
ing characteristics, with suggested candidates including an
X-ray binary, a SNR, and Hii region. In Section 3 we revealed
that the Tornado contains large masses of dust, similar to
the sandy whirlwind ‘Dust Devils’ on Earth. In this section
we explore whether the FIR emission from our own Dust
Devil can give us any insight into its nature. We further ex-
amine the IR, radio, and X-ray emission to determine if it
can shine any light on the different origin scenarios.

5.1 Properties of the Tornado

First, we study the emission colours to understand the prop-
erties of the regions from which we detect dust and how they
vary across its features. Within the head, we split our anal-
ysis into two main regions of interest, as indicated by the
green and magenta ellipses in Fig. 7 respectively: the north-
west (NW), where we identified warm dust with ppmap and
where the head is thought to be interacting with a molecular
cloud (Frail et al. 1996; Lazendic et al. 2004; Hewitt et al.
2008), and the south-east (SE), where there is a radio peak.
Our PPMAP analysis in Section 3 gives estimates for the
dust mass within each of these regions as ∼ 3.3M� and
∼ 2.1M� for the NW and SE respectively.

IR – radio flux ratios have been used in previous stud-
ies to identify SNRs, distinguishing from Hii regions (e.g.
Whiteoak & Green 1996). The thermally dominated emis-
sion from Hii regions, with some free-free emission in the
radio, gives an IR-radio ratio of > 500; in contrast, SNRs
are dominated by synchrotron at radio frequencies and
have a considerably smaller IR flux, giving an IR - radio
ratio of 6 50 (Haslam & Osborne 1987; Furst et al. 1987;
Broadbent et al. 1989).

In order to examine the dust emission properties of the
various FIR regions of the Tornado, we follow the analysis of
Pinheiro Goncalves et al. (2011) and compare IR and radio
colours, including I70µm/I21cm, I24µm/I21cm, I8µm/I24µm and
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Dust Devil 9

Figure 9. Flux ratio of individual pixels and integrated flux within the Tornado head, eye, and tail (within the circled regions in Fig. 7),

in comparison with other SNRs and Hii regions. Pixels with very low signal have been removed, where the signal divided by the subtracted

background is <0.1. The fluxes for the NW and SE head, and the tail are measured from the regions indicated in Fig. 7. The text labels
are centred on the integrated flux for the Tornado head and eye, and previously studied SNRs, estimated by De Looze et al. (Cas A and

Crab; 2017, 2019) and Chawner et al. (G11.2, G21.5, G29.7 and G351.2; 2019, 2020). The grey dashed-dotted lines indicate ratios of 50
and 500, used in previous studies as diagnostics of SNRs and Hii regions. The majority of the Tornado head and tail pixels fall within

the SNR region, and are clearly different to the pixels within the eye, which sits very close to the Hii region area of the colour space.

All regions of the Tornado are found towards the upper right of the SNR regions, suggestive of an older remnant. There is a noticeable
variation in the flux ratio of the NW and SE regions of the head.

I70µm/I24µm, for pixels within the Tornado (Figs. 9 and 10),
where pixels are convolved to the lowest resolution data. For
comparison we include the integrated flux of the head, the
dusty region in the tail (see Fig. 7), the eye, and previously
studied SNRs (in Figs. 9 and 10 the SNR and region names
are centred on the respective flux ratios, unless indicated by
an arrow).

In Fig. 9 we find that the IR colours for the ma-
jority of the Tornado head pixels fall within the colour
space for a SNR, and are well distinguished from the
pixels within the ‘eye’ of the Tornado, which is a con-
firmed Hii region with an embedded protostellar source
(Burton et al. 2004). This suggests that the Tornado head
is part of a SNR, rather than a Hii region. Several Galac-
tic SNRs from Pinheiro Goncalves et al. (2011) are ob-
served to have high IR-radio flux ratios, two of which
would be classified as Hii regions by this test (IIR/Iradio >
500: G21.5−0.1 and G23.6+0.3, IIR/Iradio > 50: G10.5+0.0,
G14.3+0.1, G18.6−0.2, and G20.4+0.1). Of these sources,
Anderson et al. (2017) suggested that three were misidenti-
fied Hii regions (G20.4, G21.5, and G23.6), which we have
labelled in Figs. 9 and 10.

As shown in Fig. 10, Pinheiro Goncalves et al. (2011)
found different trends for Hii regions and SNRs when com-

paring their IR colours. In this colour space, we find that
the Tornado falls more in line with the Hii region trend.
However, SNRs and Hii regions inhabit much of the same
colour space in Figs. 9 and 10 and there are other well known
SNRs, including W49B, 3C391, and G349.7−0.2, which also
lie along the Hii region trend. The variation seen in these
individual SNRs from the main SNR trend could instead be
due to a difference in dust properties such as temperature
or emissivity, possibly caused by interactions with molecular
clouds.

It is possible to use the IR and IR – radio colours,
as in Figs. 9 and 10, to determine some of the SNR
properties. Older SNRs tend to have higher IR – radio
colours (e.g. Arendt 1989), placing them towards the upper-
right of the SNR colour space in Fig, 9. Additionally,
Pinheiro Goncalves et al. (2011) found some correlation be-
tween the IR colours in Fig. 10 and the SNR age, suggesting
that older remnants have higher 70 – 24 µm and 8 – 24 µm
flux ratios. Thus, both the FIR – radio and the IR colours
suggest that, if it is a SNR, the Tornado is an older remnant
which has likely swept up a large mass of dust from the
ISM. Pinheiro Goncalves et al. (2011) also suggested that
the IR colours could give some insight into the SNR emis-
sion process. They found tentative evidence that the upper
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10 H. Chawner et al.

Figure 10. Flux ratio of individual pixels within the head, eye, and tail of the Tornado (within the circled regions in Fig. 7), in

comparison with other SNRs and Hii region. Pixels with very low signal have been removed, where the signal divided by the subtracted

background is <0.1. The fluxes for the NW and SE head, and the tail are measured from the regions indicated in Fig. 7. The text labels
are centred on the integrated flux for the Tornado head and eye, and previously studied SNRs, estimated by De Looze et al. (Cas A

and Crab; 2017, 2019) and Chawner et al. (G11.2, G21.5, G29.7 and G351.2; 2019, 2020). We also include ratios for SNRs with known

molecular interactions, atomic fine-structure emission, and PDRs from Pinheiro Goncalves et al. (2011). The purple dashed and the grey
dash-dotted lines indicate SNR and Hii region trends respectively, found by Pinheiro Goncalves et al. (2011). SNRs populate a wider

area in this colour space and several Pinheiro Goncalves et al. (2011) SNR measurements lie along the Hii region trend, including those
highlighted in pink text. The grey dotted lines show the flux ratios expected from a thermal source with β = 2 and the temperature

indicated. The Tornado is found towards the upper right of this colour space, suggestive of an older remnant. It is also found in a region

populated mainly by SNRs with molecular interactions.

right region of the colour space in Fig. 10 tends to be popu-
lated by objects with molecular shock and photodissociation
regions (PDRs), although they admit that this is not a se-
cure correlation given the small sample and that the 8, 24,
and 70 µm bands may contain both dust emission and lines.
We find that the IR flux ratios of the NW region of the
Tornado Head suggests molecular emission, whereas the SE
region is largely undetected at 8 µm. Given that the head
is thought to be interacting with a molecular cloud in the
NW, this supports the relation between the 70 µm – 24 µm
and 8 µm – 24 µm flux ratios and emission type.

In all of the colour plots we find that the NW and SE
regions (Fig.7) of the head are distinct and must have dif-
ferent emission processes. Fig. 9 shows a higher FIR – radio
flux ratio in the NW region, suggesting an increased amount
of thermal emission in the same area in which we see warm
dust in Fig. 3: this dust may be heated through an interac-
tion on this side.

5.2 What the Devil is it?

Gaensler et al. (2003) found that the X-ray emission from
the head can be well explained by thermal models, rather

than synchrotron emission, with a gas temperature of kT ∼
0.6 keV, arising from the interior of a limb-brightened radio
SNR. Indeed, in Fig. 4 we find that the warmest dust is
coincident with X-ray emission in the central region where
hot gas may be heating the dust, as expected for a mixed-
morphology SNR (Rho & Petre 1998; Yusef-Zadeh et al.
2003). Sawada et al. (2011) estimated an X-ray temperature
of 0.73 keV for the head. Using an X-ray temperature of 0.73
keV (T = 8.6 where T is in a unit of 106 K) and assuming that
the Tornado nebula is an SNR, we estimate a shock velocity
(Vs) and age (t) of the SNR using the radius of only the
head and both the head and tail (1.3′ and 5.4′). The shock
velocity is 884 km/s based on Vs = (T/11.)0.5× 1000 kms−1

(Winkler & Clark 1974). The age of the SNR (t = 2/5Rs/V s)
is therefore between 2000 and 8000 yr.

The bizarre shape of the tail is more difficult to ex-
plain with a SNR scenario. Gaensler et al. (2003) sug-
gested the tail could be explained by a progenitor star
moving across the space whilst losing mass, which then
exploded as a SN at the edge of circumstellar material
(CSM; Brighenti & D’Ercole 1994). A similar scenario has
been suggested for the SNR VRO 42.05.01 (G166.0+4.3,
Derlopa et al. 2020) which is much larger than the Tornado
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Dust Devil 11

but morphologically resembles the Tornado head and sur-
rounding filaments. When a progenitor star moves in rela-
tively higher density interstellar medium (ISM), the stellar
motion could cause a bow shock at the site of interaction
between CSM and ISM. Bow shocks have been detected in
the red-supergiants α Ori and µ Cep (Noriega-Crespo et al.
1997; Martin et al. 2007; Ueta et al. 2008; Cox et al. 2012).
In the former, the bow shock has a wide opening an-
gle, whereas the latter has a narrow-angle cylinder-type
bow shock. The cylinder shape of the Tornado’s tail could
therefore be explained by CSM-ISM interaction. However,
the CSM from red-supergiants does not emit synchrotron
emission, so that the radio emission observed in the Tor-
nado’s tail would require additional energy by the SN-
CSM interaction. This requires the SN explosion itself to
be highly elongated with very fast blast winds towards the
east by more than by a factor of 10 to the west, which
is unlikely and not supported by the hydrodynamic model
(Brighenti & D’Ercole 1994). Instead of synchrotron, the ra-
dio tail emission could be free-free; however, in that case,
there should be some major heating and an obvious ionising
source in the tail, which we do not see in the Spitzer 24 µm
image (Fig. 2). Instead of a red-supergiant, the progenitor
star could be a Wolf Rayet (WR) star, which has ionised gas
in the CSM, and hence can emit free-free emission at radio
wavelengths. However, the lifetime of a WR star is too short
to form such a large scale structure while the star is mov-
ing in the local space. The typical lifetime of a WR star is
10 – 36 kyrs (Meynet & Maeder 2003, 2005). At a distance
of 12 kpc, the furthest filament (centred at approximately
α = 17h40m43.8s,δ =−30◦55′44.9′′) is ∼ 25 pc from the cen-
tre of the Tornado head. This requires a progenitor to move
through the ISM at speeds of approximately 1,000 km s−1.
Though not impossible, such a high speed motion is unlikely.
It is therefore difficult to explain the Tornado’s tail with past
mass loss from a SN (SN-CSM interaction).

Although the X-ray and radio emission from the head
can be explained by thermal and synchrotron radiation from
a SNR, the presence of an X-ray binary within the SNR
would explain the length and the morphology of the tail
in radio emission (Helfand & Becker 1985; Stewart et al.
1994). Stewart et al. (1994) detected a spiral magnetic field
around both the head and tail which they proposed could
be explained by outflows from the central source dragging
existing fields along the precession cone. In this instance,
thermal X-ray emission at the location of the head is ex-
pected to arise from interactions between the jets and sur-
rounding nebula, similar to that seen in the X-ray binary
SS433 surrounded by the SNR W50 (Brinkmann et al. 1996;
Safi-Harb & Ögelman 1997). The radio power law index of
the central part of W50 is found to be typical for SNR
(α ∼0.58, Dubner et al. 1998), while a hydrodynamic model
shows that episodic jets from an X-ray binary containing
a black hole compresses the SNR shell, forming a cylin-
der/helical shaped outflow in one direction (Goodall et al.
2011).

If the Tornado is formed by a binary system, the loca-
tion of its source is controversial. In the case of the W50 –
SS433 system, the high mass X-ray binary is located in
the SNR, following which would place the Tornado binary
within the head. However, Sawada et al. (2011) suggested
that there is a Suzaku 1.5 – 3.0 keV band detection of a ‘twin’

source, opposite to where X-ray emission is already detected
in the Tornado head. They propose that this originates from
the interaction between the second jet of an X-ray binary
system and a molecular cloud, placing any potential binary
system source at the middle of the structure seen in Fig. 2,
rather than in the head. In this case, one might expect visible
emission in the IR/FIR wavelengths at the location of the
‘twin’ due to shocked gas/heated dust arising from jet inter-
action with the ISM. In the 24 µm and the Herschel bands
there is emission towards the south-west of this region which
correlates with radio structures in the tail. However, we do
not see any clear evidence for an IR counterpart of the ‘twin’:
in all Spitzer and Herschel maps the flux at the location of
the Suzaku peak is at a similar level to, or lower than, that
of the surrounding area (see Fig. B2). There is some X-ray
emission in the XMM-Newton and Chandra data at the lo-
cation of the ‘twin’, although the emission does not seem
correlated. However, the X-ray emission may be affected by
foreground absorption, making association difficult to deter-
mine, and the region may peak in the 1.5 – 3.0 keV Suzaku
band with much lower emission of softer X-ray, making com-
parison between multiple bands complicated.

As there does seem to be X-ray and radio emission at
the location of the ‘twin’ it is plausible that there is an object
in this region, which may be associated with the Tornado as
suggested by Sawada et al. (2011). However, if there is emis-
sion from such an object in any of the Spitzer or Herschel
bands, it is very faint and is not detected above the level
of the ISM in this region (Fig. B2). This is unlike the head,
from which there is a clear detection in the 5.8 – 500 µm
bands, as well as a very bright radio structure (Fig. B1). It
seems strange that their IR profiles are so different if the two
regions have been formed by a similar process, although we
cannot exclude this as a possibility. If the X-ray ‘twin’ head
is unrelated to the Tornado, it is plausible that the location
of an X-ray binary, if any, could be within the head of the
Tornado as discussed above.

Although the IR-radio emission supports a SNR ori-
gin for the Tornado head, we see no clear indication that
the X-ray emission from the head results from an interac-
tion between X-ray binary jets and the surrounding nebula.
However, the helical shape of the tail, and the presence of its
magnetic field and synchrotron radiation, can be explained
by a jet ploughing into a SNR shell, as observed in W50.
Although there is no detection of a central powering source,
there are cases in which the central X-ray binary may be too
faint to detect at a distance of 12 kpc. Gaensler et al. (2003)
suggest that this would be the case for a high-mass X-ray
binary such as LS 5039 (Paredes et al. 2000), from which
the luminosity may vary with orbital phase and its mini-
mum is slightly higher than the upper limit for detection of
a Tornado central source. It could also be the case that the
Tornado is powered by a low mass X-ray binary in a quies-
cent state, having produced the observed features in a past
period of prolonged activity (Sawada et al. 2011), as seen in
4U 1755–338 (Angelini & White 2003).

6 CONCLUSION

We detect FIR emission from dust in the unusual SNR candi-
date the Tornado (G357.7−0.1), akin to the terrestrial sandy
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whirlwinds known as ‘Dust Devils’. We investigate the distri-
bution of dust in the Tornado using Point Process Mapping,
ppmap. Similar to that found in the radio emission, we find
a complex morphology of dust structures at multiple tem-
peratures within both the head and the tail of the Tornado,
ranging from 20 – 60 K. In the head of the Tornado, we find
warm dust in the region at which the object is thought to be
interacting with a molecular cloud. We also find a filament
along the SE edge coinciding with radio emission, and a cool
dusty shell encapsulating hot dust near to the location of an
X-ray peak. We derive a total dust mass for the head of the
Tornado of 16.7 M�, and we find that the majority of the
dust is most likely heated radiatively, with a small propor-
tion of collisionally heated dust. When considering that the
Tornado may be a SNR, we find that it is aged between 2000
and 8000 yrs and it is plausible that the estimated dust mass
originates from material swept up from the ISM.

The origin of the Tornado is still unclear. We do not find
clear evidence of a FIR counterpart to the Tornado ‘twin’
detected by Sawada et al. (2011), which was suggested to
be the other end of an X-ray binary system. The FIR-radio
colours in the Tornado head are consistent with a SNR origin
for this structure, yet the tail is not easily explained via just
the SN or a SN-CSM interaction. The tail can be explained
via jets from an X-ray binary source within the nebula, sim-
ilar to the W50 SNR. One useful way to distinguish between
the several hypotheses put forward by various authors would
be to measure the velocity of the gas motion in the tail, if it
emits in near-infrared Br α or [Fe II] for example.
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APPENDIX A: SYNTHETIC OBSERVATIONS
WITH ppmap

In order to try to quantitatively distinguish between the out-
puts based on different runs of ppmap with different assump-
tions (and in particular using different estimates of back-
ground subtraction) we produced synthetic observations.
These were created from the output dust column density
maps at a range of temperatures and then reversing the
physical steps ppmap uses to produce maps of flux at each
wavelength, ultimately regridding the pixels and smoothing
back to the resolution of the original data. This also al-
lows us to independently check no artefacts are introduced
in ppmap since these would be obvious in the synthetic im-
ages. Fig. A1 shows a comparison of the synthetic images
from ppmap versus the original data for the zero-mean-
background-subtracted case. Here we see a close agreement
with the dust structures and components seen in the head
of the Tornado in the original data in all wavebands.

APPENDIX B: THE X-RAY TWIN OF THE
HEAD

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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Figure A1. A grid comparing the original Spitzer and Herschel

observations of the Tornado (left) with the synthetic observa-

tions (right) created by taking the results from ppmap and post-
processing them.
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Figure B1. IR, radio, and X-ray view of the location of the Tornado head. Left column: Herschel images, middle column: Spitzer
images, right top: 1.4 GHz VLA image, right second row: XMM-Newton X-ray image, right third row: Chandra X-ray image, and right
bottom: Suzaku 1.5 – 4.0 keV X-ray image. We note that we have not applied a background subtraction or correction for vignetting as

was done by Sawada et al. (2011). The white and cyan contours show the VLA 1.4 GHz and XMM-Newton emission respectively. There
is a clear detection of emission from the head at the Spitzer and Herschel wavebands, between 5.8 and 250 µm, at 3.6, 350, and 500 µm

there is emission which seems associated although it is more confused. There is a clear detection in all of the radio and X-ray images.

(We use the cubehelix colour scheme, Green (2011).)
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Figure B2. IR, radio, and X-ray view of the location of the X-ray twin, detected by Sawada et al. (2011), the scale is increased
compared with the image in Fig 2 to enhance any features in the region. Left column: Herschel images, middle column: Spitzer images,
right top: 1.4 GHz VLA image, right second row: XMM-Newton X-ray image, right third row: Chandra X-ray image, and right bottom:

Suzaku 1.5 – 4.0 keV X-ray image. We note that we have not applied a background subtraction or correction for vignetting as was done by
Sawada et al. (2011). The white contours show the VLA 1.4 GHz emission. In all Herschel and IRAC bands the flux level at the location

of the twin is similar to, or lower than, that of the surrounding ISM. In all other bands there is some emission, although the morphology

is not consistent with the Suzaku features, and at 24 µm this is fainter than much of the surrounding ISM. (We use the cubehelix colour
scheme, Green (2011).)
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