
1 
 

Developing data-driven models for energy-1 

efficient heating design in office buildings 2 

Zhichao Tiana, Shen Weib, Xing Shic,d*  3 

a. School of Architecture, Southeast University, 210096, Nanjing, P.R. China; 4 

b. The Bartlett School of Construction and Project Management, University London College, WC1E 7HB, London, UK; 5 

c. College of Architecture and Urban Planning, Tongji University, Shanghai, P.R. China;  6 

d. Key Laboratory of Ecology and Energy-saving Study of Dense Habitat (Tongji University), Ministry of Education, 7 

P.R. China 8 

*Corresponding author: 20101@tongji.edu.cn 9 

Abstract 10 

Data-driven methods have been widely applied in the prediction of energy consumption in buildings. 11 

However, existing well-established data-driven models can hardly be used for energy-efficient design. 12 

This study aims to explore the underlying causes and propose an innovative method to exclusively 13 

develop models for energy-efficient design. First, a conventional modeling process was implemented, 14 

which includes data precession, statistical analysis, feature selection, and Random Forest classification. 15 

Second, an innovative two-step method was proposed to develop data-driven models for energy-16 

efficient design. The first step involves identifying important designable features that can be designed 17 

through classification. The second step involves developing classification models for developing energy-18 

efficient design. The experiments were performed on the Commercial Building Energy Consumption 19 

Survey (CBECS) dataset that contains 6720 non-residential buildings. The models were built with 20 

conventional methods to realize high classification accuracy. However, they cannot be used for energy-21 

efficient design because they lack design variables such as the thickness of wall insulation. The main 22 

contributions of this study include the identification of important designable features and development 23 

of data-driven models exclusively for energy-efficient design. The proposed method can benefit 24 

designers in developing useful data-driven models for building energy-efficient design. 25 
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1. Introduction 28 

Buildings utilize approximately 40% of the overall energy consumed in advanced countries [1-3]. In 29 

the United Kingdom, space heating accounts for over 60% of total building energy consumption [1]. As 30 

a result, designers, energy policymakers, and building owners are aware of the necessity of reducing 31 

heating energy by adopting high-performance envelopes, heating, ventilation, and air-conditioning 32 

systems(HVAC) and improved operations [4, 5].Furthermore, building energy standards, such as the 33 

China Energy Standard for Public Buildings [6], have posed stricter requirements for envelopes and 34 

HVAC. Building energy-efficient design is a critical step for realizing low-cost construction and operation 35 

[7-9]. Building heating design involves adjusting heating related designable variables including building 36 

shape, opaque envelopes, transparent envelops, shading, passive heating, and heating equipment.[10]. 37 

In the design stage, design teams should determine the wall’s insulation thickness and heating system, 38 

which are termed as “designable features”. Conversely, some architecture features are pre-fixed, such 39 

as building area, functions, and the number of floors. 40 

Several design methods have been proposed in the past several decades to realize energy-efficient 41 

design, which mainly refer to heating/cooling load design and simulation-based building energy-42 

efficient design [8, 11]. Energy-efficient design based on heating/cooling load calculation refers to 43 

procedures for selecting building variables that minimize the heating load. Given that the 44 

heating/cooling load calculation only considers satisfying indoor thermal comfort during winter or 45 

summer days, it cannot guarantee high-efficient operation throughout the year. Due to its simplicity, 46 

this method is typically used in the early design stage [12]. However, in recent years, designers are 47 

abandoning this approach. Simulation-based building energy-efficient design entails detailed dynamic 48 

building energy simulation for weighing competing design options. Therefore, the impacts of a variety 49 

of energy-efficient measures, such as double-skin facades, can be quantified with energy simulation. 50 

However, this method has been widely questioned due to the performance gap, which refers to the 51 

huge difference between simulated and measured performances [13-15]. Furthermore, building energy 52 

simulation is heavily criticized due to its long modeling time, steep learning curve, and trial-error 53 

characteristics [16]. 54 

Conversely, data-driven building energy-efficient design (DDBED) has recently attracted significant 55 

attention owing to the rapid accumulation of building data. For example, the U.S. Building Performance 56 

Database contains over 750,000 entries [17]. Data-driven models can overcome the shortcomings of 57 

energy simulation [18]. DDBED generally adopts machine learning methods, typically classified as 58 

regression, classification, clustering, and deep learning. In this field, data-driven models have been built 59 

in many studies for addressing building energy issues with realistic building data [19-21]. 60 

DDBED aims at realizing high-efficient solutions. Hence, in theory, after appropriate training and 61 

testing, these data-driven models can be applied to develop high-energy-efficient solutions. For this 62 

purpose, the candidate building is assumed to be high-energy-efficient (y=1), and the model is used 63 

determine X, as shown in Eq. 1. Classification is suitable for accomplishing this work. If a regression 64 
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model was built, the design team should evaluate the energy consumption of different design solutions. 65 

In the building field, collected data exhibits significant amount of uncertainties due to various reasons 66 

such as misunderstanding the meaning of a variable [13, 15]. From the perspective of data-driven 67 

energy-efficient design for buildings, a range of values are much more resilient than a value point used 68 

by a regression model. 69 

𝑓(𝑋) = 𝑦 (Eq. 1) 

Previously, data-driven models have been built in many studies for building energy prediction [19, 70 

22-25]. However, a large proportion of these models cannot be applied for building design. The main 71 

reason may be that those models contain few designable features [19, 23-25]. For example, Robinson 72 

et al. [19] deployed 10 regression algorithms in predicting building energy consumption. Even though 73 

high predicting accuracies were obtained, those models merely had four features, i.e., building area, 74 

heating/cooling degree day, and principle building activity. A building energy simulation model contains 75 

a large number of building variables related to architecture, envelopes, HVAC systems, human behavior, 76 

and operations [26]. However, data-driven models for energy analysis usually contain several variables 77 

[16, 25, 27]. When developing data-driven models for energy prediction, engineers mainly consider 78 

prediction accuracy other than energy-efficient design [19]. As a result, these models are good at 79 

predicting energy, other than energy-efficient design. Even though several data-driven models utilized 80 

designable features for energy analysis, designers lack a specific method for developing data-driven 81 

models exclusively for energy-efficient design. Hence, data-driven models have hardly been used for 82 

design applications. 83 

In this study, an attempt had been made to accelerate the application of data-driven methods for 84 

energy-efficient design. There are three major objectives in this study: 1) identifying determinant 85 

features of heating energy consumption for office buildings in the cold region, 2) exploring reasons as 86 

why traditionally developed models are hardly applied for building energy-efficient design, 3) proposing 87 

an innovative two-step method to develop models for DDBED. The remaining part of this paper consists 88 

of five sections. An elaborate literature review on data-driven building energy analysis is given in Section 89 

2. In Section 3, the methodologies of this study, including data preprocessing (Section 3.1), Random 90 

Forest (Section 3.2), conventional data-driven model development (Section 3.3), and the proposed two-91 

step method (Section 3.4) are described. Section 4 demonstrates the results of the experiments. Hence, 92 

certain in-depth discussions with respect to the results are provided in Section 5. The major conclusions 93 

of the study are highlighted in Section 6. 94 

2. Literature Review 95 

Large amounts of measured building energy data can reveal essential information about energy usage 96 

patterns [17, 28]. Shahrokni et al. [29] compared the energy-efficient potentials of buildings in different 97 

age ranges and concluded that if the existing buildings were retrofitted to satisfy the current codes, the 98 

heating energy can be reduced by one-third. Moreover, buildings constructed between 1946 and 1975 99 
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were verified to exhibit the largest energy reduction potentials. Household electricity use for heating 100 

and cooling was proposed by Wang et al. [30] as a metric to evaluate the effectiveness of China Building 101 

Energy Efficiency Standards on residential buildings. The results indicated that households that adopt 102 

the energy standards save approximately 41% energy. 103 

Data-driven methods have been applied in several studies to unearth determinant variables of 104 

building energy consumption. With energy data of 713 mixed-use buildings in Abu Dhabi, Lin et al. [31] 105 

analyzed the impacts of dependent variables on the electricity by using the decision tree algorithm. The 106 

results indicated that the chiller quality plays the most significant role in energy consumption. In a study 107 

of the energy data of 1052 convenience stores in Taiwan, Kuo et al. [32] integrated data-driven 108 

evaluators and optimization search methods to determine the key attributes of energy consumption. 109 

They reported that business area lighting, no directing lighting, and the capability of freezer cabinet LED 110 

lighting were the top influential factors. In addition to conventional building variables, Ma and Cheng 111 

[33] investigated the effects of features related to education, population, economy, environment, and 112 

transportation using Random Forest on energy usage data of New York City. 113 

Measured building energy data can also be used to evaluate different design solutions. To date, 114 

energy-efficient studies that are conducted with data-driven methods mainly involve energy prediction 115 

[21, 23, 33, 34] and energy-saving evaluations for retrofitting [25, 35-37]. A few studies conducted data-116 

driven energy analysis on office buildings. Khayatian et al. [38] proposed building energy retrofit index 117 

to support retrofit decision-making. They validated the idea with multi-layer perceptron, autoencoders, 118 

and k-means algorithms on 4767 office buildings. Deb et al. [25] built artificial neural networks to predict 119 

the pre- and post-retrofit energy savings on 56 office buildings. To overcome the shortcoming of 120 

engineers’ knowledge and experience, Tian et al. [16] proposed a method to select high-energy-efficient 121 

HVAC systems with hundreds of high-energy-efficient buildings via the Bayesian Network algorithm. 122 

Building energy database plays a key role in the DDBED. Currently, the Commercial Building Energy 123 

Consumption Survey (CBECS) dataset, the California Commercial End-Use Survey, and Building 124 

Performance Database are three well-established building energy datasets in the United States [39]. By 125 

using the CBECS dataset, Deng et al. [40] compared the prediction accuracy of several machine learning 126 

algorithms, including Support Vector Machine (SVM) and Random Forest, in predicting building end-127 

uses energy. The results indicated that SVM and Random Forest exhibit better results when compared 128 

with other statistical and simple machine learning algorithms. To quantify the impact of improved 129 

operations, Azar and Menassa [5] conducted a three-phase study, namely data gathering, energy 130 

modeling, and parametric variation. In the case study, they applied the proposed method mainly on the 131 

CBECS dataset. 132 

3. Methodology 133 

To address the aforementioned problems, this study proposes a two-step approach to develop data-134 

driven models for building energy-efficient design. The first step involves identifying important 135 
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designable features that can be designed by classification. The second step involves developing 136 

classification models for the designable features. Before implementing the proposed method, a 137 

conventional classification modeling process is conducted to explore potential reasons as to why 138 

existing models are hardly used for energy-efficient design. Classification is an effective technique to 139 

predict the energy levels of a building [21, 32]. When compared with regression, classification is more 140 

likely to realize high accuracy prediction, as it only predicts several finite categories [32]. Random Forest 141 

is adopted to generate data-driven models that can accurately predict the heating energy consumption 142 

of the office buildings. 143 

3.1. Data and preprocessing 144 

The analyses were conducted on the CBECS 2012 dataset due to its large sample size (6720 non-145 

residential buildings) and over 100 useful features[41]. This dataset was developed by the U.S. Energy 146 

Information Administration with the aim to gain a better understanding of the energy consumption of 147 

560 million existing commercial buildings in the USA. The dataset consists of various building attributes 148 

related to the building characteristics and energy consumption. Although it is known as a commercial 149 

dataset, the data consists of substantial number of non-commercial buildings, such as hospitals and 150 

schools. In this study, only office buildings were included to conduct the experiments because different 151 

types of buildings exhibit diverse energy use patterns [23, 42]. 152 

For a green building certification, dividing buildings into several categories based on their energy 153 

usage intensity (EUI) is a typical practice for calculating their energy scores [32]. In this study, office 154 

buildings with heating degree days (based on 65 °F) greater than 2000 were selected to ensure basic 155 

heating demands. Based on their heating EUIs, the remaining 814 buildings were classified into low- 156 

(75%–100%), medium- (25%–75%), and high-efficient groups (0%–25%). 157 

The main purpose of the models being developed is to design high heating-efficient buildings. Hence, 158 

the data labeled as ‘high-efficient’ and ‘low-efficient’ were used in training and testing those models. 159 

This leads to two evident advantages: 1) reducing the number of categories to two, which can increase 160 

prediction accuracy [32]; 2) increasing the difference between the two remaining categories to easily  161 

recognize the impact of influential factors. Additionally, the medium buildings are less useful because 162 

high energy efficiency is a more important objective in the design state when compared to “medium 163 

energy efficiency”.  164 

The entries of many features can potentially be missing. Features that miss more than 80% of values 165 

were removed from the dataset. In the CBECS dataset, missing value implies that the value is not 166 

applicable. In the remaining data, some records that miss important values, such as energy consumption, 167 

were also removed. Hence, missing features, mainly related to RENINS, BLDSP, and RENHVC, were filled 168 

with 0 (not applicable), which is one of the common practices adopted in machine learning [43]. After 169 

preprocessing, 53 features were left. In practice, the pool of candidate features should be further 170 

curtailed. Hence, a group of features that may affect the heating energy was selected. Table 1 lists 25 171 

features (in bold) relevant to heating energy-efficient levels (HPLV) of office buildings, with their 172 
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abbreviations. 173 

Table 1 Building features used in this study 174 

Abbreviation Explanation Abbreviation Explanation 

BLDSP Building shape PUBCLIM Building America climate region 

CENDIV Census division REGION Census region 

ELHT1 Electricity used for main heating RENHVC HVAC equipment upgrade 

GLSSPC Percent exterior glass RENINS Insulation upgrade 

HDD65 Heating degree days RENWLL Exterior wall replacement 

HEATPC Percent heated RFCNS Roof construction material 

MAINHT Main heating equipment SQFT Square footage 

MONUSE Months in use HTPMPH Heat pumps for heating 

NFLOOR Number of floors WINTYP Window glass type 

NWKERC Number of employees category WKHRC Weekly hours category 

HT2 Energy used for secondary heating WLCNS Wall construction material 

OPNWE Open on weekend YRCON Year of construction 

BOILER Building owner HPLV Heating energy-efficient levels 

 175 

3.2. Random Forest classifiers 176 

Building energy consumption is a heterogeneous process, which involves many uncertainties and 177 

nonlinear characteristics. Powerful classification algorithms are required to realize high accurate 178 

predictions. Fortunately, an increasing number of algorithms are available. Previously, a variety of data-179 

driven algorithms have been applied to analyze building energy, for instance, linear models [22, 31], 180 

logistic regression [44], decision trees [21], Artificial Neural Network (ANN) [25, 45], SVM, and ensemble 181 

learning [33, 42]. Advanced machine learning algorithms, such as ensemble learning and deep learning, 182 

usually outperform simple algorithms such as linear models and decision trees [25, 40, 42, 46]. 183 

Ensemble learning adopts multiple simple machine learning models to create a synthesized 184 

algorithm that individually outperforms any one of the algorithms that is part of the ensemble, as shown 185 

in Fig. 1. Boosting and bagging are two types of commonly used ensemble learning mechanisms. The 186 

boosting learning endorses a set of algorithms for converting weaker learners to strong learners based 187 

on a proven theory that states that weakly and strongly learnable problems are equal. Bagging deploys 188 

multiple bootstrap samples to gain subsets that can be used to train the base learners. Based on the 189 

inputs, the ultimate output corresponds to the average output of the base learners [43]. 190 
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 191 

Fig. 1. Mechanism of ensemble learning [47] 192 

As an ensemble learning method, Random Forest uses multiple decision trees as base learners. 193 

During training, each tree is distributed with a slice of bootstrap samples. The ultimate predicted result 194 

of a test pointer corresponds to the majority voting of the combined classifiers or arithmetic mean of 195 

the combined regressors. The randomization in ensemble learning relates to two aspects, i.e., bootstrap 196 

sampling and the best split of a node [47]. Furthermore, Sklearn [48], which is a python machine 197 

learning algorithm library, was used to build the Random Forest classifiers. 198 

To increase credibility, training and testing sets are typically randomly divided. For example, random 199 

80% of the data are set as training set and the remaining 20% of the data are set as testing set. In this 200 

condition, a classifier can accidentally classify the testing set easily. The problem that the testing set 201 

contains known training data can lead to overfitting or selection bias [49]. Therefore, several effective 202 

solutions, including K-fold cross-validation, bootstrap resampling, and bagging, can be used to solve this 203 

problem. K-fold cross-validation divides the original data randomly into k equal-sized parts, which are 204 

called folds. In the training stage, each fold is treated as the testing set and remaining k-1 folds are 205 

treated as the training set. With this method, a machine learning model is trained and tested K times. 206 

The mean value of performance measures (e.g., error rate) and its variance are treated as new 207 

performance criteria. Generally, k can be selected as either 5 or 10. Furthermore, K-fold cross-validation 208 

is well-received for its effectiveness in minimizing the imperfect effect of partitioning data. In this study, 209 

K is set to 4 in the feature selection process. Additionally, in this study, the Area Under Receiver 210 

Operating Characteristics Curve (ROC-AUC) is adopted as the classification assessment criterion. 211 

3.3. Conventional model development 212 

The conventional data-driven modeling process entails data preprocessing, statistical analysis, and 213 

classification learning. As depicted in the above section, feature selection is an indispensable process 214 

for classification modeling of building energy. In machine learning, it involves a process of selecting a 215 

subset of relevant features for model development. Filter, wrapper, and embedded methods are three 216 

types of feature selection methods [50]. Improving prediction accuracy, producing more cost-effective 217 

estimators, and gaining a deeper understanding of the data are the three main objectives of feature 218 
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selection [50]. This study was planned to determine the extent to which each feature affects the heating 219 

energy consumption and to probe the preferable combination of features for predicting heating energy 220 

consumption levels. In this study, a conventional classification model development was implemented 221 

including statistical analysis and step forward wrapper feature selection.  222 

3.3.1. Statistical analysis 223 

Statistical analysis can be used to not only describe the basic information of the data but also explore 224 

the relationship between each feature and energy consumption. In this section, filter methods are 225 

adopted to delve into the effect of each feature on heating energy. The filter method calculates the 226 

dependence of each feature on the output variable without considering the overall modeling 227 

performance [50]. Due to its simplicity, scalability, and empirical success, many studies have adopted 228 

this method as a preliminary feature selection method [50]. In this study, the Pearson correlation 229 

coefficient and Chi-square testing were adopted for selecting features, by analyzing the relationship 230 

between each independent variable, such as HDD65, and the dependent variable, HPLV. The Pearson 231 

correlation coefficient was used to quantify the linear correlation between two continuous variables, 232 

ranging between -1 and +1, as presented in Eq. (2). The value indicates a positive or negative relationship 233 

between variables. As the absolute value increases, the significance of the correlation between the two 234 

tested variables increases. 235 

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 (2) 

where cov(X,Y) denotes the covariance of two variables, X and Y; 𝜎𝑋 denotes the standard derivation 236 

of X; and 𝜎𝑌 denotes the standard derivation of Y. 237 

The Chi-square test measures the distribution of a categorical variable in one or more groups. The 238 

Chi-square is defined as:  239 

𝜒2 =∑
(𝑜𝑗 − 𝑒𝑗)

2

𝑒𝑗

𝑘

𝑗=1

 (3) 

where 𝑜𝑗  denotes the observed frequency in event j; 𝑒𝑗  denotes the expected frequency in event j; K 240 

denotes the total number of events. The sample distribution of 𝜒2 is close to a Chi-square distribution. 241 

The p-value of the Chi-square determines whether to accept the null hypothesis. In this study, the Chi-242 

square test is conducted for each feature on high- and low-energy-efficient buildings. 243 

3.3.2. Step forward wrapper 244 

Although features related to heating energy consumption can be selected with filter methods, a 245 

major limitation of filter methods is that they ignore the overall performance of the developed Random 246 

Forest models. To tackle this issue, step forward feature selections were deployed. For this method, the 247 
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first step involves evaluating the classification performance for every feature. Specifically, the feature 248 

that provides the best performance is appointed as the first feature. In the second step, each of the 249 

remaining features are grouped sequentially with the first feature to determine the best combination 250 

of two features. These types of trials involving the aforementioned combinations are repeated many 251 

times until all features are ranked. In this study, the step forward wrapper method was carried out with 252 

Mlxtend [51], a python library for data analysis and machine learning. 253 

3.4. Proposed model development 254 

The conventional model development emphasizes on the prediction accuracy other than the 255 

practicability of energy-efficient design. Previous studies showed that supervised learning models can 256 

be built only with several features [25]. This implies that if a feature was not used by a model, then it 257 

cannot be designed. Hence, it is necessary to identify features that can be designed via classification 258 

and to develop classification models for designing the features. In this section, a two-step procedure 259 

was proposed to fulfill this plan. The first step involves excavating features, termed as important 260 

designable features, that can be designed by classification. The second step involves developing 261 

classification models that mainly adopt important designable features. The following two sub-sections 262 

discuss and describe detailed approaches to fulfill the aforementioned steps.  263 

3.4.1. Identifying important designable features with SHAP 264 

values 265 

Before applying data-driven models for building energy-efficient design, it is important to identify 266 

as to which features can be designed. We assumed that features that significantly impact the outcome 267 

of Random Forest models are important features. Important designable features correspond to a union 268 

of important features and designable features, as shown in Fig. 2. Hence, weighting the effect of each 269 

feature on the outcome is prioritized for identifying important designable features.  270 

Unlike decision tree and linear regression, the outcomes of advanced machine learning models, 271 

including Random Forest, are hard to interpret [52]. To solve this problem, Lundberg et al. proposed the 272 

SHapley Additive exPlanations (SHAP) method to explain the outcomes of advanced machine learning 273 

models [53]. This method allows engineers to quantify the impact of each feature on outcomes of a 274 

model. In this study, this method was used to quantify the impacts of each feature on energy prediction. 275 

Then, important designable features were selected based on their SHAP values.  276 
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 277 

Fig. Relationship between designable features and important features 278 

3.4.2. Models for energy-efficient design 279 

Once the important designable features are identified, the next step involves developing a Random 280 

Forest model for designing them. When considering existing feature selection approaches, the 281 

optimization-based wrapper feature selection is a practical choice because it can explore the effects of 282 

different combinations of features. Furthermore, it can set important designable features as default. 283 

Given that the prediction accuracy is the sole objective of optimization, Single Objective Genetic 284 

Algorithm (SOGA) can be used to explore feasible feature combinations. Inspired by Darwin’s evolution 285 

theory, Genetic Algorithm was introduced for generate high-quality solutions with operators such as 286 

reproduction, mutation, recombination, and selection. GA has been successfully applied to solve feature 287 

selection problems [54-56]. In this study, the optimization process aims at minimizing the objective 288 

function by attempting various input values wherein the statue of each feature is represented with a 289 

value of either 0 or 1, as per the binary system. Typically, the initial population is randomly seeded [57]. 290 

All variables are initialized to 1. Table 2 lists the detail settings of SOGA. In the proceeding population, 291 

a fitness function is used to generate a new generation based on a part of existing generations. A merit 292 

function penalizes unfeasible variables by using an exterior function. Replacement sets the mechanism 293 

for replacing certain selected members to continue the next generation. A favorable feasible type 294 

replacement firstly considers feasible as a selection standard. If it cannot realize a winning solution, 295 

then it considers the fitness value. This implies that a favor feasible type replacement enforces the 296 

fitness assessor. The crossover type defines as to how the genetic information of two parents is used 297 

for generating a child. Shuffle random type crossover randomly selects a design variable from two or 298 

more parents. Each variable is expected to be equally distributed between 0 and 1. An offset_uniform 299 

mutation type enables the mutation of a variable value by using a uniform distribution. Furthermore, 300 

Dakota toolkit, which is developed by Sandia National Laboratory of U.S., provides a variety of iterative 301 

methods and meta-algorithms for optimization, sensitive analysis, uncertainty analysis, and parameter 302 

studies [58]. Due to its open source characteristics and ready to use python API, Dakota optimization 303 

engine was deployed to fulfill the SOGA process. 304 

Table 2 Detailed settings of SOGA 305 
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Fitness type Replacement type Convergence type Crossover type Mutation type 

Merit function Favor feasible Best fitness tracker Shuffle random Offset uniform 

4. Results 306 

4.1. Traditional modeling 307 

As previously stated, the Pearson correlation coefficient is used to measure the correlation between 308 

dependent and independent continuous variables. The significance of the correlation is proportional to 309 

its absolute value. Before conducting the correlation analysis, logarithmic transforms were 310 

implemented on features that are akin to exponential distribution, including SQFT, NWKERC, and 311 

MONUSE. Then, these continuous features were implemented with normality tests to verify whether 312 

they follow the normal distribution. The results indicated that all continuous features passed the 313 

normality test with the exception of GLSSPC. After these analyses, the Pearson correlation coefficient 314 

analysis was conducted on continuous variables and heating energy consumption intensity (HEUI). Table 315 

3 lists the Pearson correlation coefficients for those continuous variables. If the threshold of the Pearson 316 

correlation coefficient is set as 0.10 to decide the significance of contribution as suggested in [59], then 317 

HDD65, YRCON, and HEATP are considered as important features of the building heating energy 318 

consumption. 319 

Table 3 Pearson correlation coefficients between the continuous variables and HEUI 320 

Feature SQFT HDD65 NWKERC NFLOOR WKHRSC YRCON MONUSE HEATP 

Corr -0.12 0.25 -9.8e-2 -7.2e-2 5.2e-3 -0.19 5.9e-2 0.10 

Furthermore, the Pearson correlation coefficients of pair-wise features were also calculated. Table 321 

4 lists the pair-wise features, whose correlation coefficients are higher than 0.5 and present 322 

explanations for a significant correlation between these features.  323 

Table 4 Pair-wise features (Corr>0.5) 324 

Feature Feature Explanation 

SQFTC NWKERC As the building size increases, the number of people who may work in this building 

increases. 

REGION  CENDIV Both used to describe buildings’ locations. 

RENWLL RENHVC Once a building was renovated, the HVAC system and exterior wall could be retrofitted. 

RENWLL RENINS Renovations of insulation is also a type of renewing the wall. 

RENHVC RENINS Once a building was renovated, the HVAC system and the exterior wall could be 

retrofitted. 

 325 

The p-value of the Chi-square test provides evidence of whether the tested feature is statistically 326 
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significant to HPLV. Table 5 lists p-values for each categorical feature. If the significance level is set as 327 

0.01, then the selected features correspond to BOILER, CENDIV, ELHT1, MAINHT, HT2, PUBCLIM, 328 

MAINCL, REGION, RENHVC, and HTPMPH.  329 

Table 5 P-values for Chi-test for categorical features in different heating energy-efficient groups 330 

Feature BLDSP CENDIV ELHT1 MAINHT HT2 OPNWE BOILER PUBCLIM  

P-value 8.87e-2 8.94e-10 1.14e-21 2.31e-8 7.99e-6 0.107 8.73e-5 1.74e-13  

Feature REGION RENHVC RENINS RENWLL RFCNS HTPMPH WINTYP WLCNS  

P-value 2.26e-8 8.86e-3 1.41e-2 1.19e-2 0.105 2.20e-8 3.90e-2 0.226  

Table 6 lists the selected features at each step and their corresponding prediction accuracy. It can 331 

be observed that the overall modeling accuracy varies at each step, and it realizes the highest accuracy 332 

at Step 2. Hence, HPLV can be predicted only with two features, i.e., ELHT1 and PUBCLIM.  333 

Table 6 Features raised by the step forward wrapper method 334 

Step 1 2 3 4 5 6 7 

Accuracy 0.770 0.844 0.838 0.844 0.843 0.845 0.855 

Feature ELHT1 PUBCLIM HT2 HTPMPH CENDIV MAINHT HEATP 

Step 8 9 10 11 12 13 … 

Accuracy 0.847 0.840 0.839 0.832 0.818 0.804 … 

Feature REGION BOILER WINTYP YRCON HDD65 RENHVC … 

Table 6 shows that the Random Forest model can be built only with two features, i.e., ELHT1 and 335 

PUBCLIM. It is likely that ELHT1 undermines the impact of MAINHT because ELHT1 is a derivation of 336 

MAINHT, and thereby represents whether a building uses electricity for heating. For this reason, ELHT1 337 

was deleted from candidate features, and the model was thus rebuilt. Table 7 demonstrates the features 338 

raised by the step forward wrapper feature selection method after deleting ELHT1. Table 7 shows that 339 

the best model is realized with PUBCLIM, MAINHT, and HTPMPH. 340 

Table 7 Features selected by the step forward wrapper method without ELHT1 341 

Step 1 2 3 4 5 6 7 

Accuracy 0.731 0.815 0.821 0.821 0.806 0.809 0.809 

Feature PUBCLIM MAINHT HTPMPH BOILER HT2 CENDIV REGION 

Step 8 9 10 11 12 13 … 

Accuracy 0.802 0.799 0.815 0.796 0.789 0.789 … 
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Feature HEATP HDD65 YRCON RENHVC MAINCL CENDIV … 

 342 

4.2. Two-step modeling 343 

Figure 3 shows the distribution of SHAP values of each feature for each data point. In this figure, 344 

features were ranked based on the summations of their SHAP values, and only the top 20 features were 345 

plotted. Figure 4 shows the mean value of SHAP values for the top 20 features. This diagram clearly 346 

demonstrates that ELHT1 exhibits the highest impact on the Random Forest classification. Within the 347 

top 10 features, only MAINHT and BOILER are designable. Hence, the developed classification models 348 

can mainly be used to design these two features. Fig. 5, the intersection of two sets of feature groups 349 

demonstrates these important designable features. Given that the BOILER is derived from the MAINHT, 350 

Random Forest models can be developed just for designing MAINHT in the next step.  351 

 352 

Fig. 3. Scatter diagram of the SHAP values of each feature 353 

 354 

Fig. 4 Bar diagram showing the mean of SHAP values for different features 355 
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 356 

Fig. 5 Intersection of two sets of feature groups 357 

Table 8 shows the feature combinations selected by the SOGA-based wrapper method. The results 358 

indicated that these models exhibit acceptable accuracy. Hence, they can be applied to design MAINHT, 359 

i.e., the main heating equipment.  360 

Table 8 Top 4 Random Forest models developed by the SOGA-based wrapper feature selection 361 

Model ID Feature combination ROC_AUC 

303 MAINHT, CENDIV, PUBCLIM, WLCNS, HEATP, NFLOOR 0.793 

301 MAINHT, CENDIV, PUBCLIM, WLCNS, NFLOOR 0.786 

761 MAINHT, PUBCLIM, REGION, WINTYP, WLCNS, MONUSE, HDD65, NFLOOR 0.785 

566 MAINHT, CENDIV, WINTYP, HEATP, NFLOOR  0.782 

 362 

5. Discussion 363 

In the conventional modeling process, statistical analysis was used to sort determinant features 364 

related to heating energy consumption. The Pearson correlation coefficient method was used to identify 365 

three important features, i.e., HDD65, YRCON, and HEATP. The Chi-square test targeted CENDIV, 366 

PUBCLIM, MAINCL, MAINHT, REGION, HT2, ELHT1, BOILER, and HTPMPH, which exhibit a strong 367 

relationship with heat energy consumption. One of the drawbacks of these methods is that they failed 368 

to identify the effect of specific observations of the determinant features. For example, it is not clear as 369 

to which heating system is most frequently used in low-energy-efficient buildings. A visual solution 370 

involves comparing the distribution of observations in different groups of buildings. Figure 6 describes 371 

the distribution of each heating system in high-, medium-, and low-energy-efficient buildings. Hence, it 372 
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can be observed that many more heat pumps were installed in the high-energy-efficient buildings.  373 

 374 

Fig. 6 Distribution of heating systems in different building groups 375 

The best model generated by the step forward method exhibits only two features, i.e., ELHT1 and 376 

PUBCLIM. Although the ROC_AUC value of 0.844 is high enough for predicting whether a building is 377 

high-efficient or low-efficient, it is almost impossible to conduct energy-efficient design due to the lack 378 

of designable features. After deleting ELHT1 from the candidate features, MAINHT was selected by the 379 

step forward wrapper method as a key feature in predicting HPLV. This process requires a good 380 

understanding of the meaning of every feature. In practice, it is a trial-and-error process that can be 381 

significantly time-consuming and unconvincing.  382 

The SHAP method can eliminate the phenomenon that the features selected by the wrapper feature 383 

selection method undermine the impacts of other features. In this study, the ELHT1 undermines the 384 

effect of MAINHT and BOILER. Based on the Chi-square test, designers are required to provide a 385 

significance level for the SHAP values to determine the important features. Although, these Random 386 

Forest models contain other designable features, Random Forest models should not be used to design 387 

the important features.  388 

6. Conclusions 389 

In this study, the development of data-driven models for building energy-efficient design is explored. 390 

The traditional data-driven modeling process successfully led to several Random Forest models that 391 

realize high prediction accuracy. However, these models cannot be used for building energy-efficient 392 

design because they lack designable features. The proposed two-step modeling method can be used to 393 

identify important designable features and develop Random Forest models for designing them. Based 394 

on the ROC_AUC values, the Random Forest models exhibited acceptable results. The results indicated 395 

that Random Forest models can be used to design the main heating equipment (MAINHT), a dominant 396 

feature of heating energy consumption in office buildings in the cold region. 397 
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The proposed techniques are useful for policymakers and building energy consultants. It can aid the 398 

local governments to formulate energy policies for important designable features. Furthermore, the 399 

techniques allow designers to build classification models for building energy-efficient design for 400 

applications other than just energy prediction. 401 

Given that only the design of important designable features was addressed in the present study, it 402 

should be examined to develop suitable methods for building energy-efficient design for other 403 

designable features. Possible avenues for pursuing this include recommending design solutions for non-404 

determinant features with unsupervised learning. 405 
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