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Abstract  

The high order structure of mitotic chromosomes remains to be fully elucidated. How nucleosomes 

compact at various structural levels into a condensed mitotic chromosome is unclear. Cryogenic 

preservation and imaging have been applied for over three decades, keeping biological structures 

close to the native in vivo state. Despite being extensively utilized, this field is still wide open for 

mitotic chromosome research. In this review, we focus specifically on cryogenic efforts for 

determining the mitotic nanoscale chromatin structures. We describe vitrification methods, current 

status, and applications of advanced cryo microscopy including future tools required for resolving 

the native architecture of these fascinating structures that hold the instructions to life.  
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Introduction   

Chromosomes were first discovered over a century ago1 with microscopy having been applied for 

decades to image these fascinating structures that hold the instructions for life. The basic building 

block of mitotic chromosomes is chromatin, the DNA-protein complex composed of discrete 

nucleosomes, which can be thought of as the “atoms” of the chromosome structure. To date, our 

understanding of how these nucleosomes are organized into highly compact chromosomes so-

called the ‘high-order structure’ is largely unknown. Approximately 2 meters of DNA is packaged 

inside each cell nucleus that is approximately 10 µM in diameter.2 Nucleosome compaction and 

de-compaction plays an essential role in packaging DNA during vital biological processes 

including transcription, gene expression, DNA replication, faithful separation and repair.3-6 The 

most compact state of chromatin occurs in the mitotic state of the cell cycle, in which chromosomes 

condense before cell division and then segregate into identical daughter cell copies after significant 

conformational changes.7,8 This mechanism involves the formation of chromatin loops that tether 

the axial structure of the chromosome.8 For understanding how chromatin is organized into mitotic 

chromosomes, several different experimental approaches have been explored including 

sequencing,9 chromosome conformation capture that includes HiC10,11 and direct imaging.12,13,14 

A range of imaging technologies have been applied for nanoscale elucidation of chromatin at 

various compaction states ranging from the 2 nm thick DNA fiber to the compact mitotic 



chromosome.13 Advanced microscopy using X-rays revealed the nucleosome’s crystal structure 

consisting of DNA (145-147 bp) wrapped approximately 1.65 times around eight histone proteins 

(core histone octamer composed of H2A, H2B, H3 and H4).15,16 This nucleosome-histone octamer 

exhibits a 11 nm diameter bead on a string like structure observed by electron microscopy (EM) 

in vitro,17 with H1 histone involved in linking and directing compaction of nucleosomes.18,19 

Cryogenic electron microscopy (cryoEM) showed the linker DNA to have a stem-like organization 

upon entering and exiting the nucleosome particle.20 The tetra nucleosome structure has also been 

resolved using x-rays,21 EM,22 and cryoEM.23 Further, this 11 nm bead on a string like structure 

gives rise to the controversial high order 30 nm structure that is the most debated topic in the 

field,24-28 with many models proposed.14,26,29,30 CryoEM has shown an interdigitated one-start 

solenoid model displaying 30 nm fibers31 whereas other cryo studies do not favor this structure.32 

Apart from nucleosomes being the building blocks, the overall mitotic chromosome compaction 

is dependent on numerous proteins with over 158 been identified33,34 that include the non-histone 

scaffold proteins such as cohesion, condensin and topoisomerases.35 The various stages of 

chromatin structure condensation is partly understood with several factors implicated.25,35,36,37  

Imaging chromatin structures close to the native state at nanoscopic resolution is vital for 

understanding the architecture of these compact and complex structures. In this mini-review, we 

summarize our current knowledge of higher-order mitotic chromosome structure from chemically 

preserved samples. We then focus on the need of cryo technology for mitotic chromatin nanoscale 

structure determination. We highlight vitrification methods including cryo microscopy studies 

used for unraveling the high order structure of intact mitotic chromosomes. Further, we discuss 

current limitations and the future need for cryo technology for elucidating the high order hierarchy 

of these fascinating structures.  

 

Lessons from fixed chromosome samples 

1n 1956, the correct number of human diploid chromosomes (46) was identified38 utilizing 

standard optical microscopy at its highest resolution of 200 nm.39 To unravel the nanoscale 

chromatin structure, advanced microscopy has been applied, revolutionizing our understanding of 

chromosome structure.40 Even though useful structural information was provided, these studies 

heavily relied on preserving/fixing samples using harsh chemicals, mainly aldehydes, dehydration 



steps and staining. Such harsh conditions influence the native sample configuration and hence what 

is observed is a reproducible artifact not the actual native state.41,42 These chemically preserved 

chromosome samples have been imaged using different ultra-high-resolution microscopes that are 

mentioned below and summarized in Table 1. 

Super resolution microscopy (SRM), an advanced fluorescence imaging method provides high 

resolution (~10 to 30 nm) 43-45 and has been extensively used for interphase chromatin structures.46-

47 SRM to a lesser extent has been explored for unraveling mitotic chromatin structures. Stimulated 

emission depletion (STED) SRM on fixed HeLa cells showed sub-chromosomal localization of 

immuno-stained condensin II subunit CAP-H2 protein along the length of mitotic chromosomes 

being enriched mainly around the longitudinal chromatid axis.48 Three-dimensional structured 

illumination microscopy (3D-SIM) together with focused ion beam (FIB) milling EM done on 

HeLa cells showed distribution of chromosome scaffold proteins condensins and topoisomerase 

Iiα having two main lateral strands twisted around each other within the chromatid axis.49  

Single molecule localization microscopy (SMLM) using a modified Spectral Position 

Determination Microscopy (SPDM) approach50 displayed a mean localization accuracy around 14 

nm from high-quality DNA density maps of mitotic HeLa chromosomes after staining with 

Hoechst 33342.51 DNA single-molecule Photo-activated Localization Microscopy (PALM) 

showed sub 20 nm structure resolution in unstained HeLa chromosomes with nucleotide density 

variations and fine features on chromatids.52 PALM revealed ∼70 nm structures composed of 35-

nm stripes on  Drosophila mitotic chromosomes after labeling with H2AvD-EGFP, a histone H2A 

variant.53 

EM is a contrast imaging method that  provides detail at high resolution.54 Scanning electron 

microscopy (SEM) has provided surface information on B-lymphocyte chromosomes showing 

chromatin fibers ranging between of 25-35 nm diameters.55,56 Often a nucleoplasm layer is seen on 

the surface of the chromosomes that hinders high resolution chromatin substructure 

determination56 This has been overcome by applying 3D serial block face SEM (SBFSEM) that 

embeds the sample into resin followed by automated diamond knife sectioning providing or 

resulting in nanoscale resolution of B-lymphocyte chromosomes that were isolated57 and within a 

prophase nucleus.58This study showed porous network structures on chromosomes with sister 

chromatids having conserved diameters of around 765 nm.58 An alternative method to SBFSEM 



is focused ion beam SEM (FIBSEM) that uses an ion beam for sectioning and has provided 

structural information of barley chromosomes59 Centromeres displayed parallel fibrils whereas 

both chromosome arms (p and q) showed extended cavities also known as chromomeres 59. 

Transmission electron microscopy (TEM) provides angstrom resolution but is not suitable for 

studying intact mitotic chromosomes due to their thickness.60 Studies on chromatin using TEM 

have been explored in 2D extensively and are reviewed elsewhere61. 3D TEM tomography has 

been applied on chemically flattened HeLa chromosomes that revealed 26 to 58 nm structures 

displaying a 30 nm fiber distribution.62 ChromEM tomography (ChromEMT) a multitilt EM 

tomography and a labelling method showed irregular disordered chains of nucleosomes with 5 and 

24 nm diameters, indicating that the 10 nm fiber is heterogeneous.63 A helical structure composed 

of chromatin loops was detected when the CAP-E protein, a condensin subunit, was labeled with 

gold nanoparticles after the chromosome was isolated by FIB and imaged using ET.64 

Atomic force microscopy (AFM) provides atomic resolution with surface topology information 

and has been applied for determining chromosomal detailed structures and reviewed in detail 

elsewhere65-67. Giemsa (G) banded chromosomes displayed ridges and grooves corresponding to 

heterochromatin (dark) and euchromatin (light) bands, respectively. This technique revealed 

highly twisted chromatin fiber loops with stronger compaction in the ridged regions than grooved. 

Additionally granular and/or fibrous 50-60 nm structures were also seen on the surface67.  

Mitotic chromosomes have also been imaged at nanoscale resolution using x-rays that can 

penetrate the sample with no sectioning needed68 as they have a shorter wavelength69. Soft x-ray 

displayed 70 nm resolution showing varied chromosome thicknesses ranging from 150 to 750 nm 

from metaphase to anaphase, respectively.70 A pioneering hard x-ray diffraction study displayed 

30 nm and 120 nm structures in 2D and 3D, respectively of unstained intact mitotic 

chromosomes.71 

 

Cryo preservation methods suitable for mitotic chromosomes   

Cryobiology refers to biological samples subjected to temperatures below their normal range.72 

Imaging biological samples near-native state is achieved after vitrifying the biological sample in 

amorphous ice, known as cryopreservation, cryofixation or cryo-immobilization.73-75 This allows 



instant fixation of all molecules present in the sample that remain at the set position displaying a 

true representation of the sample at the given point of freezing.76 For vitrification, the sample 

temperature has to remain below −140°C with freezing that should occur rapidly within 

microseconds at high rates (~104 °C/s or higher).77,78 Ice crystal growth is prevented in this 

procedure allowing macromolecule immobilization and allowing the specimen to be in an 

amorphous (close to native) state.79,80 The in laboratory procedure involves rapid plunging (plunge 

freezing) into liquid ethane or propane after the sample is prepared on EM grids and blotted83 but 

is only useful for vitrifying thin samples below 1 µm.78,84 Slam freezing is also an alternative but 

can be used for samples up to 10 µm thickness78 Thicker volume samples (200 µm and larger) 

require high pressure freezing that uses pressure of approx. 2100 atmospheres (or bar) for a few 

milliseconds in order to freeze the sample with no ice crystal damage.85,86 Thicker biological 

samples after freezing can be cryosectioned using cryo-ultramicrotomy and is a method referred 

to as cryoelectron microscopy of vitreous sections (CEMOVIS).41 Obtaining thin sections (40–100 

nm) prior to imaging is extremely challenging as well as time consuming.41 To image samples at 

room temperature, freeze substitution can be performed where the sample (water) is replaced using 

organic solvents (acetone or methanol) at low temperatures (approx. -78° to -90°C). In many cases, 

osmium tetroxide or glutaraldehyde fixatives are included in the acetone to provide fixation that 

is achieved by raising the temperature slowly (typically 5°–10°C/h) in order to achieve the 

reaction.87 These sample are then placed into resin after staining and sectioned at room temperature 

before imaging.88 Again these procedures are technically challenging, time consuming, can cause 

artifacts and are costly (Figure 1).  

Cryo imaging of mitotic chromosomes 

Cryo-EM serves as a useful label free approach for imaging frozen hydrated biological samples 

close to native state.89,90 The cryo-electron tomography (cryo-ET) known as the 2016 "Method of 

the Year"91 was later awarded the 2017 Nobel prize for cryo-EM development including 

determination of high-resolution biomolecule structures in solution.92 cryo-ET provides 3D 

position of the sample inside cells at ∼4-nm resolution.93 Both cryoEM and cryo-ET have 

enhanced our understanding in resolving atomic structures of the nucleosome94-95 and interphase 

chromatin organization, 96-99 respectively. The number of microscopy studies on mitotic nanoscale 

structure under cryo conditions has been limited (Figure 1). 



CryoEM/ET cannot be applied directly for mitotic chromosome imaging as this technology 

requires the thickness of the sample to be below 1 µM. 100,101 Therefore the CEMOVIS method.41 

has proven critical for mitotic chromosomes. The CEMOVIS method after 100-150 nm sections 

has been applied directly on unstained Chinese hamster ovary (CHO) and HeLa cells with 11 nm 

chromatin filaments.102 30 nm fibers were not seen in 40 nm cryosections of chromosomes within 

mitotic HeLa  cells, instead highly disordered and interdigitated structures were visulised.96 

Compact stacked multilaminated plates were seen after applying CryoEM on HeLa and chicken 

lymphocyte cells that orientated perpendicular to the chromatid axis.103 A recent 3D cryoTEM 

study that used HeLa cells showed that frozen hydrated DNA is densely packed, forming stacked 

sheets of chromatin, is planar and forms multilaminar plates that are stabilized by interactions 

between nucleosomes. Having a 13 nm thickness between the two layers (single layer 7.5 nm) 

implicated that nucleosomes in the layers interdigitate. Together with small angle X-ray scattering 

(SAXS) data, a chromosome model was proposed composed of stacked chromatin layers 

positioned perpendicular to the axis of the chromosome.104  

Mitotic chromatin in frozen-hydrated Schizosaccharomyces pombe displayed megacomplexes and 

pockets, showing more compaction at the oligo-nucleosome than the di-nucleosome level 

compared to interphase chromatin.105 Mitotic chromatin organization showed no evidence of 30 

nm fibers in budding yeast Saccharomyces cerevisiae106 and picoplankton.107 A X-ray cryo-

ptychography experiment has been attempted on human chromosomes but required more work in 

optimizing the setup before any concrete conclusion could be made.108 

 

What next? Is there a need for Cryo? 

Even though cryo imaging has proven useful for numerous chromatin-based studies including 

complexes, it has not been fully exploited for intact mitotic chromosome investigation. Freezing 

of chromosomes can be achieved using the different vitrification methods but chemical 

preservation or freeze substitution will be the only option if the microscope of choice does not 

have cryo capability for sample cooling during imaging. Current high-throughput structure 

determination has been prevented due to several limitations that include: i) thickness of the 

compact mitotic chromosomes; ii) challenging cryo sample preparation steps, handling and 



preservation; iii) powerful nanometer cryo imaging microscopes with sufficient resolution, and iv) 

computational tools for image acquisition and detailed processing.  

The number of studies done on mitotic chromosomes has not been fully exploited using cryo 

technology. However we are now witnessing an increase in the number of studies (see timeline) 

using advanced cryo technologies that recapitulate the close to native state of mitotic chromatin 

structure. The CEMOVIS method41 is so far the widely explored on mitotic chromosomes (see 

timeline). No interspecies structural variation was observed for the presence of the 30-nm 

chromatin structure apart from one study that occasionally showed this on HeLa chromosomes. 
104HeLa is a cancer cell line109 and has been widely used for determining human nanoscale 

chromatin structures in both chemical preserved (Table 1) and cryo studies (Figure 1).  HeLa cells 

are extremely complex and heterogeneous and display abnormal karyotypes110,111 that can add to 

the variability reported in current imaging studies and may not represent the ‘true ‘picture’.  

We are now witnessing various imaging approaches that are enhancing our knowledge in cryo 

imaging of biological samples but are yet to be explored for mitotic chromosomes. SBFSEM does 

not yet have a cryogenic stage for the instrument therefore the samples have to be imaged at room 

temperature after resin embedding.57 Therefore freeze substitution of chromosomes after high 

pressure freezing and SBFSEM would be a positive way forward.112 Alternatively cryo-FIB that 

has full cryo capability113 would be useful providing close to native state imaging and is yet to be 

experimented directly on vitrified chromosomes. Another potential method that needs exploring is  

STORM SRM under cryogenic conditions as this using a allowed 12 nm resolution to be achieved 

on bacterial cells using a low-cost super-hemispherical solid immersion lens (superSIL).114,115  

A combination of microcopy approaches is also being used and looks promising113. 3D CLEM 

performed using light and SBFSEM has been performed to understand the role of Ki-67 in 

metaphase chromosomes at ultra-structural resolution.116 This correlative technology using with 

3D SIM, SMLM and FIB-SEM has been applied on mammalian cells after combining vitreous 

freezing and is known as cryoCLEM.112 This SRM combined with FIBSEM may serve useful for 

DNA/protein structural interactions on mitotic chromosomes.  

As cryo preservation only allows a snapshot of a biological process at a single time point therefore 

it is key to trace dynamic chromatin movement in vivo. SRM using PALM and tracking of live 

cells has shown ∼140 nm and ∼200 nm mitotic chromatin domain that were suggested to be 



retained throughout the cell cycle.118 Furthermore new microfluidic based technology allows direct 

correlation of live imaging and room-temperature electron microscopy with millisecond time 

resolution after the sample is cryofixed.119 Recently, this technology has been combined with cryo-

FIB to prepare frozen hydrated electron transparent sections for cryo-ET.120 This powerful 4D high 

resolution space-time correlative light and electron microscopy (st-CLEM) method is useful but 

needs to be explored on mitotic chromosomes. The use of DNA painting that allows blinking after 

binding of short dye-labeled ('imager') oligonucleotides to their complementary target ('docking') 

strands is serving useful for chromosome nanoscale SRM imaging.121,122 

The future of chromosome imaging without doubt is moving towards full cryogenic settings that 

will be crucial for answering fundamental biological questions in the chromosome field. We must 

consider mitotic chromatin complexity from current studies (Figure 1, Table 1) considering 

variations in different organisms, developmental stages including pluripotency and epigenetic 

states, cell types (undifferentiated vs differentiated), cell cycle stages (interphase vs metaphase), 

chromosome types ((sub)metacentric/acrocentric), compaction states (g-bands) e.g. 

heterochromatin vs euchromatin and telomeres/centromeres. Furthermore cryo imaging has been 

performed both on isolated chromosomes and on chromosomes inside a cell after performing the 

CEMOVIS/cryoEM method (Figure 1) indicating no major structural variability seen so far and 

this would have to be carefully considered for future studies. Powerful and affordable 3D cryo-

microscopes with nanoscale resolution together with faster image processing tools, correct sample 

and labeling choice will be essential for unravelling nucleosome-nucleosome with other 

protein/DNA interactions. Overall this would assist in identifying disease specific signatures 

relating to genome disorganization especially in cancer where chromosomal aberrations take place.  
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Microscope Species Cell type Isolated 
chromosomes or 

intact cells

Staining Findings Publication

STED Human HeLa Intact Cells mEGFP-CAP-H2 Condensin II subunit CAP-H2 protein enriched around longitudinal chromatid axis 48

SPDM (SMLM) Human Hela isolated  Hoechst 33342 Density maps displaying a mean localization accuracy around 14 nm 50

PLM (SMLM) Human HeLa isolated  auto fluorescence Nucleotide density variation in chromatids and fragile site like features 52

SIM Human Hela isolated anti-Topo Iiα, anti-

histone H3,

anti-hCAP-E,
anti-KIF4A

Two main lateral strands with a twisted axial distribution of scaffold proteins (FIB 

included)

49

PALM Drosophila Embryo cell H2AvD-EGFP 70-nm filamentous blocks composed of stripes of 35-nm sub-filaments 53

SEM Human Lymphocytes isolated Metal coated Irregular, twisted and entangled 25- 35 nm chromatin fibers on chromatids 55

SEM Human B-lymphocyte isolated platinum-based 

dye

Globule chromatin size between 15 and 30 nm, with characteristic diameter of 

around 20nm

56

SBFSEM Human B-lymphocyte isolated platinum blue Internal structural cavities seen using MAA samples only 57

SBFSEM Human B-lymphocyte Inside cells platinum blue Porous network structure on chromosome arms with 50 nm resolution in 3D 58

FIBSEM Barley Seeds -Hordeum
vulgare

Isolated platinum blue

immunogold

labeled for 
phosphorylated 

histone H3

Parallel fibrils seen at centromere and extended cavities on chromosome arms

Strong labeling in the pericentric regions with a signal at the centromere

59

TEM Human HeLa isolated uranyl acetate Chromosome fibers of 25–60nm are seen 62

TEM Human Primary human small 

airway epithelial and 

U2OS cells

Intact cells DRAQ5 followed 

by osmium 

tetroxide

Chromatin forms flexible chains with diameters between 5 and 24 nm 63

TEM Human HeLa isolated ionic liquid

anti-CAP-E , 

Fluoronanogold

CAP-E observed at central axis in each chromatid and diffused in arms displaying 

helical structure 

64

AFM Human Lymphocytes

B-ALL-1

isolated Giemsa and metal 

staining

Structure of chromatid arm not uniform. ridges and grooves seen that correspond 

to  G-positive and G-negative bands

67

X-ray Human B-lymphocyte Isolated platinum blue Internal fibrous ultrastructurs observed 68

X-ray Human Fibroblast cell line, 

NIH3T3 cells

isolated - Thickness of the chromosome varied from 150nm to 750nm 70

X-ray Human HeLa isolated - Chromosome axial structure determined using both 2D and 3D 71

Table 1. Comparison of microscopy studies that used chemical preservation for investigating chromatin structure

Abbreviations

SMLM - Single molecule localization 
microscopy 
STED - Stimulated emission depletion 
SPDM - Spectral Position Determination 
Microscopy 
PLM - Photon localization microscopy 
SIM – Structured illumination microscopy 
PALM - Photoactivated Localization 
Microscopy
SEM - Scanning electron microscopy 
SBFSEM - 3D serial block face SEM 
FIBSEM - focused ion beam SEM
TEM - Transmission electron microscopy
AFM - Atomic force microscopy 
HeLa - Human epithelial cells
U2OS - Human osteosarcoma cells
B-ALL-1 - B-cell acute lymphoblastic 
leukemia
NIH3T3 - immortalized mouse embryonic 
fibroblast cell line.
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