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We unambiguously identify, in experiment and theory, an overlooked holographic interference pattern in
strong-field ionization, dubbed “the spiral,” stemming from two trajectories where the potential and laser field
are equally critical. Because of the strong interaction with the core of the two trajectories, the spiral could be
employed as an optimal tool for probing the target after ionization and for revealing obfuscated phases in the
bound states. We find that the spiral is responsible for interference carpets, formerly ascribed to direct trajectories,
and that the carpet-interference condition is derived from the field symmetry. This case of mistaken identity may
have prevented the spiral from being used as a holographic tool.
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I. INTRODUCTION

Matter in intense laser fields (I = 1013 W/cm2 or higher)
has led to the inception of attoscience. Attoseconds are some
of the shortest timescales in nature, which allows real-time
probing of electron dynamics and, potentially, target recon-
struction [1–9]. In order to reconstruct targets, one must
measure both amplitudes and phase differences. This require-
ment has caused the development of ultrafast photoelectron
holography [10–13], exploiting the quantum interference of
different paths that an electron can take during strong-field
ionization to produce a holographic image, which includes the
phase information. Typically, there is a direct (reference) path-
way and one that reinteracts with the target (probe). Phases
imprinting structural information are acquired when the probe
returns close to the parent ion. Hence, for optimal imaging one
should minimize the closest distance from the core upon re-
turn. Examples of holographic patterns are spider-like [12,14],
fan-shaped [15,16], and fish-bone-type fringes [17].

The fan and the spider result from the interference of direct
trajectories [18,19] and two types of forward-scattered trajec-
tories [12,14,19], respectively. Despite a brief interaction with
the core, they can still be used to probe the target. Enhance-
ments in the fan were related to electron-nuclear coupling in
H2 [20], while the spider has been shown to be sensitive to
molecular orientation [21] and the dynamics of nodal planes
[22]. Still, the above-stated effects either relate to the struc-
tureless Coulomb tail or to phase differences obtained prior
to ionization in the target’s initial bound states. Nonetheless,
there is a strong motivation to image changes that happen
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subsequently to ionization, such as polarization, charge migra-
tion, or multielectron dynamics. Thus, a stronger interaction
with the core during continuum propagation is desirable. The
fish-bone structure reported in Ref. [17] is associated with
backscattered trajectories but was obfuscated by the spider-
like fringes, which made an elaborate scheme necessary in
order to retrieve the structure.

Instead, one may seek holographic structures in regions
where the spider is suppressed, such as for final momenta per-
pendicular to the laser-field polarization. Interference carpets
occur in such a region [23–31], but were attributed to direct
strong-field approximation (SFA) orbits and their interplay
with above-threshold ionization (ATI) rings [23,24]. How-
ever, this interpretation is debatable. First, the energy region
for which they are observed is much higher than the direct
ATI 2Up cutoff, where Up is the ponderomotive energy [32].
Second, a theoretical study [27] concluded that the Coulomb
tail enhanced forward-scattered trajectory yields in carpet-like
interferences. This invites the question of why rescattering is
not important for interference carpets.

We show that the above explanation for the carpet-like
structure is incomplete. In the high-energy photoelectron
region, we find a spiral-like pattern resulting from the interfer-
ence between Coulomb-distorted back- and forward-scattered
electron trajectories, which is responsible for the carpet-like
structure and could be used as a holographic tool. This spiral-
like pattern is clearly visible in our experiments.

The orbits causing the spiral have no counterpart in the
SFA, either direct or rescattered. SFA-like approaches are
Born-type series which establish artificial boundaries be-
tween “direct” and “rescattered” orbits and exclude those
in between [33]. There are, however, orbit-based meth-
ods that incorporate the residual potential and the driving
field on an equal footing [13]. One such method, used
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in this work, is the Coulomb quantum orbit strong-field
approximation (CQSFA).

This article is organized as follows. In Sec. II, we provide a
brief account of the theoretical (II A) and experimental (II B)
methods used in this work. Subsequently, in Sec. III, we
discuss our results with regard to the structure itself (III A),
its phase sensitivity (III B), and its universality (III C). Our
conclusions are stated in Sec. IV.

II. BACKGROUND AND METHODS

A. Coulomb quantum-orbit strong-field approximation

The CQSFA enables an incredibly clear picture of quantum
interference that has revealed a whole host of previously over-
looked patterns [18,19,33–35]. It employs the exact transition
amplitude for single-electron strong field ionization [36]:

M(p) = −i lim
t→∞

∫ t

−∞
dt ′〈ψp(t )|Û (t, t ′)HI (t ′)|�0(t ′)〉, (1)

where |�0(t ′)〉 = eiIpt ′ |�0〉 is the initial state and |ψp f (t )〉 is
a final plane-wave state with momentum p f . The time evolu-
tion operator Û (t, t ′) relates to the full Hamiltonian Ĥ (t ) =
p̂2/2 + V (r̂) + ĤI (t ), where V (r̂) is the binding potential and
ĤI (t ) = r̂ · E(t ) is the interaction with the field. Using a path-
integral formalism and the saddle-point approximation, this
becomes the sum

M(p f ) ∝ −i lim
t→∞

∑
s

{
det

[
∂ps(t )

∂rs(ts)

]}−1/2

C(ts)eiS(ps,rs,t,ts ) (2)

over s quantum orbits. The action along each orbit reads

S(p, r, t, t ′) = Ipt ′−
∫ t

t ′
[ṗ(τ ) · r(τ ) + H (r(τ ), p(τ ), τ )]dτ,

(3)

where the momentum p and coordinate r have been
parametrized in terms of the time τ . The integral in Eq. (3)
diverges at the lower bound; this is fixed using a regularization
procedure [37–39]. The variables ts, ps, and rs are determined
by the saddle-point equations

[p(t ′) + A(t ′)]2/2 + Ip = 0, (4)

ṗ(τ ) = −∇rV [r(τ )] and ṙ(τ ) = p(τ ) + A(τ ), (5)

and C(ts) is given by

C(ts) =
√

2π i

∂2S(ps, rs, t, ts)/∂t2
s

〈p + A(ts)|HI (ts)|�0〉, (6)

where |�0〉 refers to the initial electronic bound state of the
electron, computed with GAMESS-UK [40] for xenon, neon,
and helium. We use a monochromatic field throughout in the
CQSFA simulations. This is a widely used approximation for
sufficiently long pulses [41], for which the field cycles will be
practically identical. In this long-pulse regime, increasing the
number of cycles will increase the contrast of the interference
patterns but will not alter their energy position. For that rea-
son, monochromatic waves or combinations thereof have been
extensively used in previous SFA computations in comparison
with experiments and ab initio simulations [23,24,42,43]. In

FIG. 1. (a) Example trajectories for orbits 3 and 4 with final
momentum components marked by green spot at the top of panel
(b). (b) Spiral-like interference in the photoelectron momentum dis-
tribution computed using the CQSFA for a laser intensity I = 7 ×
1013 W/cm2 and wavelength of 800 nm over a single cycle for a
xenon target with Ip = 0.446 a.u.

practice, the ionization times t ′ are restricted to a finite range,
with an arbitrary unit cell. This choice may lead to an offset
phase, which may lead to a certain asymmetry with regard to
the p⊥ axis for a single cycle. This offset will vanish as the
ionization time range is increased. Unless otherwise stated
(see, e.g., Fig. 1), we employ a four-cycle range for t ′. The
CQSFA, in its implementation, is propagated for a finite time
t , and thus care must be taken regarding the use of a final
plane wave momentum state; see Refs. [44,45] for details.
For the propagation times used in this work, we estimate that
for an electron with a final momentum below |p f | = 0.2 a.u.
(E = 0.54 eV) some differences may be present compared
to if we employed exact scattering states. These low-energy
electrons do not make it into the so-called asymptotic regime,
where this approximation is considered valid [45]. In this
work, we do not focus on the low-energy electrons.

In contrast to previous calculations [18,33–35,37,46],1

here we employ the single-electron effective potential [47,48]

V (r(τ )) = −1 + f (r(τ ))
r(τ )

, (7)

where f (r) = a1e−a2r + a3re−a4r + a5e−a6r and r(τ ) =√
r(τ ) · r(τ ), and the ai values used are listed in Table I. We

will denote hydrogenic and xenon potentials as VH and VXe,
respectively. Similar to previous work [19], one may simplify
the action using

ṗ(τ ) · r(τ ) = V (r(τ )) − f ′(r(τ )). (8)

The four orbits are classified as in Ref. [49]. In orbit 1
(direct), the electron tunnels toward the detector and reaches
it directly. In orbit 2 (forward deflected) and orbit 3 (forward
scattered), the electron tunnels away from the detector and
then turns around to reach the detector. For orbit 3, the elec-
tron’s transverse momentum changes sign, while for orbit 2
it does not. In orbit 4 (backscattered), the electron is freed
toward the detector but backscatters off the core. For details,
see our previous work [33] and the review [13]. One should
note that orbit 3 has no counterpart in the SFA, and is present
only in Coulomb-distorted approaches that treat the potential

1For the tunneling step, the species is already fully accounted for
and thus an effective potential is not required.
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TABLE I. The ai parameters for the single-electron effective
potential for noble gases. Values for xenon are used in Figs. 2–3 and
those for helium and neon in Fig. 5. Values taken from Refs. [47,48].
For hydrogen ai = 0 ∀ i.

Atom a1 a2 a3 a4 a5 a6

Helium 1.231 0.662 −1.325 1.236 −0.231 0.480
Neon 8.069 2.148 −3.570 1.986 0.931 0.602
Xenon 51.356 2.112 −99.927 3.737 1.644 0.431

and the field on equal footing (see, e.g., Refs. [34,49] for
details).

In Fig. 1(a), we show the CQSFA orbits 3 and 4, whose
interference gives spiral-shaped fringes, shown in Fig. 1(b)
[33]. The spiral-shaped fringes are most clearly observed in
the high-energy part of the distribution close to the perpendic-
ular momentum axis. For clarity, we have considered a unit
cell within a single cycle of the field. This is a precaution in
order to exclude the above-threshold ionization (ATI) rings,
which are typically quite prominent, and single out the spiral.
The asymmetry is due to the choice of the unit cell within a
field cycle, which were chosen in order to render both orbits
continuous and to best display the features in the spiral.

B. Experimental setup

In the experiment, we employed a commercial laser system
(FEMTOPOWER Compact PRO, Femtolasers Produktions
GmbH) with a broadband femtosecond oscillator and a mul-
tipass chirped-pulse amplifier. The system delivered 30-fs
pulses (FWHM) with a maximal output energy of 0.8 mJ,
a central wavelength of 800 nm, and a repetition rate of
5 kHz. The pulse energy from the amplifier was adjusted by
means of a broadband achromatic half-wave plate followed
by a thin-film polarizer. The linearly polarized pulses were
focused into the interaction chamber by an on-axis spherical
mirror with a focal length of 75 mm. The gas was fed into
the interaction chamber through a needle valve. The ejected
electrons were detected using a velocity map imaging (VMI)
spectrometer [50]. Images were recorded using a delay-line

position-sensitive detector. Retrieval of the velocity and angu-
lar distribution of the measured photoelectrons was performed
by using the Gaussian basis-set expansion Abel transform
method [51]. The pulse length was determined to be of 11
cycles, which is enough to render the cycles approximately
identical and carrier-envelope phases (CEP) effects irrele-
vant. Hence, the monochromatic wave in Sec. II A is a good
approximation.

III. RESULTS AND DISCUSSION

A. The spiral in experiment

In Fig. 2(a), we show experimental results for strong-field
ionization of xenon compared with CQSFA computations
[Figs. 2(b) and 2(c) and Figs. 3(a) and 3(b)]. Figure 2 is
plotted over the photoelectron emission angle (θ ) and energy
(E ) in order to distinguish the spiral (V shape) from ATI rings
(horizontal lines). There is excellent agreement between the
experiment and the CQSFA, Figs. 2(a) and 2(b), respectively,
aside from a slight shift of 0.7 eV, which can be explained
by polarizability of xenon [54]. In the high-energy region
around θ ≈ 90◦, the V-shaped (spiral) and the horizontal (ATI
rings) fringes combine to make oval shapes. In Fig. 3(b), the
contributions of orbits 3 and 4 are plotted. Both the V-shaped
structure and ovals are reproduced in the energy region of
interest. If orbit 4 is removed, the carpet-like structure dis-
appears [Fig. 2(c)], clearly illustrating the importance of orbit
4 in the high-energy region. Hence, the spiral is unambigu-
ously identified as the cause of these high-energy fringes. The
combination of the spiral-like structure and ATI rings in this
energy region leads to the interference carpets. In the lower
energy regions, our results show that other CQSFA orbits start
to play a role in the interference carpets at and away from the
θ = 90◦ axis. Thus, in that region, the carpets result from the
interference of several types of orbits and the explanation in
terms of orbits 1 and 2 is not sufficient.

One of the main features is that, along the line θ = 90◦,
there is a spacing of 2ω between the ovals (see Fig. 2) obeying

Ip + Up + Ek = 2nω, (9)

where n is an integer and Ek = 1/2p2
⊥ is the electron’s kinetic

energy [23,24]. This gap stems from the mirror symmetry

FIG. 2. Photoelectron signal for ATI of xenon. (a) Experimental data using an 11-cycle pulse of peak intensity I = 7 × 1013 W/cm2 and
wavelength λ = 800 nm (ω ≈ 1.55 eV). Theory employing the CQSFA for the same parameters but over four laser cycles. Panel (b) includes
all orbits, and panel (c) includes all orbits except orbit 4. All theoretical results are focally averaged [52]. The spiral-like fringes in panel (a) are
traced by white dotted lines and superimposed over panel (b). The 2Up cutoff is marked by a green dashed line. The central (outer) dotted
rectangle(s) mark the region where the spiral (spider) is dominant. A logarithmic scale is used over four orders of magnitude. The scale is in
arbitrary units and normalized by the peak value in each panel.
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FIG. 3. Photoelectron signal for ATI of xenon computed using
the CQSFA [(a), (b)] and SFA [(c), (d)]. The same target and field
parameters were used as in Fig. 2. Panel (a) includes only orbits 1 and
2; panel (b) includes only orbits 3 and 4. (c) Theoretical results using
the direct SFA orbits [24]. (d) Signal computed using high-order
rescattered ATI (HATI) (see Refs. [33,53]). The HATI prefactors
have been neglected. All theoretical results are focally averaged [52].
The spiral-like fringes are traced by white dotted lines in panel (b).
The 2Up cutoff is marked by a green dashed line. A logarithmic scale
is used over four and eight orders of magnitude for panels (a) and
(b) and panels (c) and (d), respectively. The scale is in arbitrary units
and normalized by the peak value in each panel.

about the r⊥ axis for pairs of interfering trajectories sepa-
rated by exactly one half cycle, which leads to almost all
phases canceling out, including those related to the Coulomb
potential. In Appendix A, we show analytically that Eq. (9)
is universal and is satisfied by pairs of direct and rescattered
(high-order) ATI (HATI) SFA orbits and CQSFA trajectories.
Equation (9) is due to a fundamental symmetry present for
linear monochromatic fields and can be framed as a dipole
selection rule. Demonstrating that a model satisfies Eq. (9)
is not sufficient evidence of the physical mechanism for the
carpet.

There are fundamental discrepancies for the carpet-like
structure between the present CQSFA interpretation and the
direct SFA previously given in Refs. [23,24] [see Fig. 2(b) vs
Fig. 3(c)], namely, (1) the signal associated with direct orbits
is very low in the region of interest, while the contributions of
orbits 3 and 4 dominate, and (2) although the carpet structure
is reproduced at exactly θ = 90◦, away from this the inter-
ference of direct SFA orbits lead to sharp V-shaped fringes,
for which there is significant disagreement with experiment
[Fig. 2(a)]. If one uses CQSFA orbits 1 and 2 [Fig. 3(a)], the
fringes are slightly straighter and fan-like [19,34], worsening
the agreement with experiment. In Fig. 3(d), we plot contribu-
tions from two pairs of high-order above-threshold ionization
(HATI) orbits [55], computed using the SFA, with ionization
times separated by half a cycle. The HATI SFA trajectories
neglect the Coulomb interaction except for a single rescatter-
ing event at the origin. In this case, there is almost no signal
in the region of interest and the interference washes out very
rapidly away from θ = 90◦. It should be noted that this is only
one pair out of many possible HATI quantum orbits, including

FIG. 4. Top row: Trajectories responsible for spiral (a) and spider
(b) for the same target (xenon) and field parameters as Fig. 2, with a
final energy E = 9.5 eV and angles θ = 53◦ and θ = 24◦ for panels
(a) and (b), respectively. Solid lines [dashed lines] computed with
the VH [VXe] potential. Bottom row: CQSFA photoelectron signal for
spiral (c) and spider (d) for an energy E = 9.5 eV. Orange lines [blue
dashed lines] consider VH [VXe] in the continuum. Inside [outside]
the vertical black dashed line is the region where the spiral [spider]
is dominant; see Fig. 2.

some forward-scattered trajectories which contribute to high
energies for 90 deg [56–58]. However, it is unclear whether
interference of these quantum orbits could replicate the spiral-
like interference pattern. Because the CQSFA and the SFA
with rescattering are structurally different, there is not a one-
to-one correspondence of the orbits in both models. For de-
tails, see our previous publication [33]. An exhaustive search
through all the HATI quantum orbits is beyond the scope of
this work. Thus, the direct SFA fails to replicate the interfer-
ence carpet, while it is uncertain if HATI quantum orbits could
do so. In contrast, the use of orbits 3 and 4 in our work are
found to qualitatively well reproduce the spiral structure.

B. Sensitivity of the spiral-like structure

Three reasons make the spiral an ideal candidate for
extracting information about the residual core via electron
holography. First, it is visible without any additional ma-
nipulation because in the angle-energy region of interest
only electron orbits 3 and 4 are dominant. Second, for θ =
90◦, phase differences that are usually hidden can be ex-
tracted [46]. Third, these two trajectories revisit the ion core
very closely, undergoing strong interaction with the binding
potential.

In Figs. 4(a) and 4(b), the orbits for the spiral and spider are
plotted. To demonstrate the large Coulomb interaction in the
spiral orbits upon the electron’s return, we compare the effect
of replacing VXe for VH in the dynamics and Coulomb phase.
For the spiral, the orbits follow noticeably different paths if VH

or VXe is used, while for the spider this difference is small. The
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TABLE II. Comparison of the spiral and spider patterns sensitiv-
ity to atomic structure. The second column shows the closet point of
the trajectories given by rc. Column 3 gives the ratio of the effective
potential VXe vs the Coulomb VH . Columns 4 and 5 give the deviation
in position and height, respectively, of the peaks from Figs. 4(c) and
4(d).

Pattern rc (a.u.) VXe(rc )/VH (rc ) angle dev peak dev

Spiral 2.9 1.58 4.5◦ 0.66
Spider 6.0 1.06 1.7◦ 1.11

electron’s closest distance to the core is roughly twice as large
for the spider than the spiral (see Table II). At the tunnel exit,
the photoelectrons will be too far from the core to differentiate
VH or VXe. However, the close return of the spiral trajectories
makes them sensitive to the structural information encoded
in the effective potential. In Figs. 4(c) and 4(d), we compare
the spiral and the spider directly by plotting the photoelectron
signal as a function of the emission angle for a fixed energy
E = 9.5 eV. The maximum deviations in position and height
of the peaks, given in Table II, are much greater for the spiral.
This confirms a much stronger sensitivity to the target via
structural phases.

The strong sensitivity to changes in the Coulomb potential
after ionization of the spiral-like interference pattern means
this is the most promising interference pattern candidate for
performing dynamic imaging. Tracking the peaks of the inter-
ference carpet away from θ = 90◦, which shift and distorted
with differences in the potential, allows information about the
residual binding potential to be collected. A future prospect
could be to fit experimental data with results from the CQSFA
or a TDSE model incorporating changes to a model potential,
which could be used to “image” and track the dynamics of
the potential. By employing a pump probe scheme or tailored
fields, the delay between fields could be varied, effectively
time stamping the data and helping to reconstruct dynamics.

C. Alternative targets and comparison with ab initio methods

In Fig. 5, we compare CQSFA [Figs. 5(a) and 5(c)] and
TDSE [Figs. 5(b) and 5(d)] calculations for helium and neon.
In the TDSE computations, a four-cycle a trapezoidal pulse
envelope was used with a four-cycle constant top. We have
verified that by changing the pulse length the ATI peaks
become much sharper, but the position of the interference
structures is not affected (not shown).

The spiral-like fringes are visible in the highest energy re-
gion near θ = 90◦, but are less prominent than for xenon. This
demonstrates that the spiral-like interference is not limited to
xenon or those particular laser parameters. As before, lines
have been placed on the figures to trace the spiral fringes.
The lines are shifted by a single photon energy (≈1.55 eV)
between helium and neon. This is due to orbits 3 and 4
leaving from opposite sides of the atom, and the valence
orbitals of helium and neon having opposite (even and odd,
respectively) parities. This leads to the two sets of fringes
being out of phase. Note that the fringes between the CQSFA
and QPROP calculation are shifted but crucially both models
show out-of-phase fringes between targets. Comparing two

FIG. 5. CQSFA (left) and time-dependent Schrödinger equation
(TDSE) computations performed with QProp [59] (right) for helium
(top) and neon (bottom) for the same frequency and number of
cycles as Fig. 2 with an intensity I = 1.2 × 1014 W/cm2. The TDSE
computations have been performed for an trapezoidal pulse with a
four-cycle flat top. The results have been focally averaged [52]. The
2Up cutoff is marked by a green dashed line. The spiral-like fringes
are traced by dotted white lines.

targets, such as N2 and neon in Ref. [46], allows the spiral
to be exploited as a sensitive probe of orbital parity. It should
be noted that recently it has been shown in Ref. [44] that the
window operator, employed in these QPROP computations, can
lead to aberrations and overestimation close to θ = 90◦.

IV. CONCLUSIONS

In conclusion, we have found a holographic spiral-like
structure first predicted in Ref. [33], both in experiment and
theory, and have identified it as the cause of interference
carpets. We find that the 2ω gap in the interference carpets
is a universal feature inherent to the field symmetry, which
can be satisfied by many pairs of trajectories across different
models for ATI.

The spiral has been overlooked until now, for the following
reasons. First, the original explanations for the interference
carpets [23,24,28,29] were based on the direct SFA. Second,
there was lack of proper theoretical treatment of a wide range
of orbits considered by the CQSFA, for which both the po-
tential and the field are equally important. In particular, the
Couloumb-distorted orbits 3 and 4 do not exist in any SFA
models, and their interference has only been described using
the CQSFA. Thus, the prospects of the spiral for holographic
imaging have not been realized.

Attributing the carpet interference to direct electron path-
ways has deterred any previous study into using it for
holographic imaging. So far, interference carpets have solely
been used for determining initial phases such as those stem-
ming from bound-state parity. Yet, the spiral is ideal for
holographic imaging due to its high sensitivity to structural
Coulomb phases. Furthermore, in contrast to the fish-bone
structure [17], it requires no further manipulation to be
observed. Finally, the half-cycle separation between the path-
ways that form the spiral means that ultrafast dynamics could
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be resolved. All this makes the spiral the ideal structure for
imaging and photoelectron holography and we hope that this
work can stimulate further research in this direction.
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APPENDIX A: DERIVATION OF CARPET
INTERFERENCE CONDITIONS

The Appendices complement the article by showing
that carpet-like interference conditions are universal. In
Appendix A, we show analytically that this holds for direct
and rescattered ATI orbits in the strong-field approximation
and for the CQSFA orbits. Our proof is exact for monochro-
matic linearly polarized fields, and a good approximation for
sufficiently long pulses. Subsequently, in Appendix B, we pro-
vide examples that confirm the analytic conditions for angle
θ = 90◦ (p‖ = 0).

We demonstrate the universality of the carpet interference
patterns for p‖ = 0, which are caused by the symmetry of
the field. A linearly polarized monochromatic laser field will
change sign every half-period T/2; i.e., the vector potential
satisfies A(t ) = −A(t ± T/2). Hence, there is symmetry for
time translations t → t + T/2 combined with a reflection
p‖ → −p‖ of the momentum component in the direction of
the laser-field polarization. In Refs. [23,24], this was dis-
cussed in the context of direct long and short orbits for the
SFA. However, below we demonstrate that the carpet condi-
tion along θ = 90◦ holds for the direct SFA (Appendix A 1),
rescattered SFA (Appendix A 2), and the Coulomb quantum-
orbit strong-field approximation (CQSFA) (Appendix A 3) for
monochromatic linearly polarized fields.

1. Direct SFA

For the direct SFA, the action (with vector potential added
explicitly) is

S(p, t ′) =
(

Ip + Up + 1

2
|p|2

)
t ′ + 2

√
Up p‖
ω

sin(ωt ′)

+ Up

2ω
sin(2ωt ′) (A1)

and the saddle-point equation is

[p + A(t ′)]2 = −2Ip, (A2)

where t ′ denotes the ionization time, Up is the ponderomotive
energy, and Ip is the ionization potential. Let us assume that t ′

1
solves the saddle-point Eq. (A2) for the final momentum p1,
and consider t ′

2 = t ′
1 + T/2 and p2‖ = −p1‖. Inserting these

into Eq. (A2) and considering the property upon A(t ) above
yields

[p2 + A(t ′
2)]2 = [−p1‖ − A(t ′

1)]2 + p2
1⊥

= [p1 + A(t ′
1)]2 = −2Ip. (A3)

Thus, t ′
2 solves Eq. (A2) for p2. Now if p1‖ = p2‖ = 0, then

p1 = p2 = p and the two solutions can interfere. Using the
form given for the action by Eq. (A1), we can work out an
interference condition


S12 = S(p, t ′
2) − S(p, t ′

1) = 2πn

= (
Ip + Up + 1

2 |p|2)T/2. (A4)

Substituing T = 2π/ω, we obtain(
Ip + Up + 1

2 p2
⊥
) = 2ωn, (A5)

which is the carpet condition as stated in Refs. [23,24].

2. Rescattered SFA

For rescattered ATI [53], the action (with vector potential
added explicitly) is

S(p, k, t ′′, t ′) = (Ip + Up)t ′ − 1

2
k2(t ′′ − t ′) + 1

2
p2t ′′

− 2
√

Upk

ω
[sin(ωt ′′) − sin(ωt ′)]

+ 2
√

Up p‖
ω

sin(ωt ′′) + Up

2ω
sin(2ωt ′), (A6)

where t ′ and t ′′ give the ionization and rescattering times,
respectively, and k gives the intermediate electron momentum.
The saddle-point equations are

[k + A(t ′)]2 = −2Ip, (A7)

[k + A(t ′′)]2 = [p + A(t ′′)]2, (A8)

k = − 1

t ′′ − t ′

∫ t ′′

t ′
A(τ )dτ. (A9)

We now assume that parameters t ′
1, t ′′

1 , and k1 solve saddle-
point Eqs. (A7)–(A9) for a final momentum p1. Then we let
the following variables have the relation t ′

2 = t ′
1 + T/2, t ′′

2 =
t ′′
1 + T/2, and k2 = −k1, while the final momentum p2‖ =
−p1‖. We will now show that this set of variables also solves
Eqs. (A7)–(A9).

[k2 + A(t ′
2)]2 = [−k1 − A(t ′

1)]2

= −2Ip.

For the second saddle-point equation

[k2 + A(t ′′
2 )]2 = [−k1 − A(t ′′

1 )]2

= [p1 + A(t ′′
1 )]2

= [−p2‖ − A(t ′′
2 )]2 + p2

⊥
= [p2 + A(t ′′

2 )]2.
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Finally, for the third,

k2 = −k1 = 1

t ′′
1 − t ′

1

∫ t ′′
1

t ′
1

A(τ )dτ

= 1

t ′′
2 − t ′

2

∫ t ′′
2 −T/2

t ′
2−T/2

A(τ )dτ

= − 1

t ′′
2 − t ′

2

∫ t ′′
2

t ′
2

A(τ )dτ.

Thus, variables t ′
2, t ′′

2 , and k2 solve Eqs. (A7)–(A9) for a final
momentum p2. As before, when p1‖ = p2‖ = 0, p1 = p2 = p
and these two solutions can interfere. As in the previous case,
we can compute the interference fringe condition,


S12 = S(p, k2, t ′′
2 , t ′

2) − S(p, k1, t ′′
1 , t ′

1) = 2πn

= (
Ip + Up + 1

2 |p|2)T/2, (A10)

which leaves the carpet condition(
Ip + Up + 1

2 p2
⊥
) = 2ωn, (A11)

as before. Thus, the carpet condition at θ = 90◦ is as universal
as ATI rings and appears in both rescattered and direct ATI.
However, both of these fail to replicate the experiment, while
CQSFA succeeds. In the following section, we will show that
a similar condition can be derived for the CQSFA.

3. Coulomb-quantum orbit strong-field approximation

To proceed again, we need the action and saddle-point
equations. The CQSFA action [19,34] reads

S(p, r, t, t ′) = (Ip + Up)t ′ + 1

2
p2

f t
′
r + i

2
p2

0t ′
i + Up

2ω
sin(2ωt ′)

+ 2
√

Up

ω
[p0‖ sin(ωt ′) − (p0‖ − p f ‖) sin(ωt ′

r )]

−
∫ t ′

r

t ′
V (r0(τ ))dτ − 1

2

∫ t

t ′
r

PPP (τ ) · [PPP (τ )

+ 2p f + 2A(τ )]dτ − 2
∫ t

t ′
r

V (r(τ ))dτ,

(A12)

where p0 = p(t ′), p f = p(t ), where t ′ and t denote the ioniza-
tion and detection times, respectively,

r0(τ ) =
∫ τ

t ′
[p0 + A(τ ′)]dτ ′ (A13)

is the tunnel trajectory, and p(τ ) = PPP (τ ) + p f . In Eq. (A12),
t ′
r = Re[t ′] and t ′

i = Im[t ′]. This has been chosen so that all
the integrands go to zero for large τ . The saddle-point equa-
tions are given by

[p(t ′) + A(t ′)]2 = −2Ip (A14)

ṗ(τ ) = −∇V (r(τ )) (A15)
and

ṙ(τ ) = p(τ ) + A(τ ). (A16)

As before, let t ′
1, p1(τ ), and r1(τ ) solve Eqs. (A14)–(A17) for

a final momentum p1 f . For clarity, let us define the reflection

matrix

σ‖ =
(−1 0

0 1

)
, (A17)

given in two dimensions, but the proof will hold for three di-
mensions as well. Then let t ′

2 = t ′
1 + T/2, p2(τ ) = σ‖p1(τ −

T/2)), and r2(τ ) = σ‖r1⊥(τ − T/2). Again, we can show
these satisfy Eqs. (A14)–(A17) for a final momentum p2 f =
(−p1 f ‖, p1 f ⊥).

The saddle-point equation (A14) then reads

[p2(t ′
2) + A(t ′

2)]2 = [−p1‖(t ′
1) − A(t ′

1)]2 + p2
1⊥

= [p1(t ′
2) + A(t ′

1)]2

= −2Ip. (A18)

Inserting p2(τ ) into the left-hand side of Eq. (A15) gives

ṗ2(τ ) = σ‖p1(τ − T/2)

= − σ‖∇V (r1(τ − T/2)).

Bringing the reflection matrix inside the argument of the po-
tential then yields

ṗ2(τ ) = −∇V (σ‖r1(τ − T/2))

= −∇V (r2(τ )). (A19)

Finally, one can also show that Eq. (A17) gives

ṙ2(τ ) = σ‖(p1(τ − T/2) + A(τ − T/2))

= p2(τ ) − σ‖A(τ )

= p2(τ ) + A(τ ). (A20)

Thus t ′
2, p2(τ ) and r2(τ ) solve the saddle-point Eqs. (A14)–

(A17) for a final momentum p2 f . As before, if p1 f ‖ = p2 f ‖ =
0, then p1 f = p2 f and these two solutions can interfere. The
difference in their action is given by


S12 = S(p2, r2, t, t ′
2) − S(p1, r1, t, t ′

1) = 2πn

= (
Ip + Up + 1

2 |p f |2
)
T/2 + 
I,

where 
I are all the integral terms. Very similar cancellations
can be made as the HATI case, leaving

(
Ip + Up + 1

2 p2
f

) = 2nω − ω

π

I. (A21)

In order to recover the carpet condition, we must show the
integral terms also cancel or go to 0. We split this into
three parts, 
I = 
IV1 + 
Ip + 
IV2 , which correspond to
the terms as they appear in order in the action given in
Eq. (A12):


IV1 =
∫ t ′

1r+T/2

t ′
1+T/2

V ([σ‖r10(τ − T/2)])dτ −
∫ t ′

1r

t ′
V (r10(τ ))dτ,

where that r10(τ ) is given by Eq. (A13). If the first integral is
transformed by τ̃ → τ − T/2, then the two integrals become
the same besides the reflection matrix σ‖ in the argument of
the potential of the first integral. As the potential takes the
square of r, the reflection matrix is applied twice, which gives
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the identity and both terms cancel. Hence, 
IV1 = 0, and


Ip = −1

2

∫ t

t ′
1r+T/2

σ‖PPP1(τ − T/2) · [σ‖PPP1(τ )

+ 2σ‖p f + 2σ‖A(τ − T/2)]dτ

+ 1

2

∫ t

t ′
1r

PPP1(τ ) · [PPP1(τ ) + 2p f + 2A(τ )]dτ.

The σ‖ matrices will multiply through to identity matrices.
Then the same transformation τ̃ → τ − T/2 can be made as
for IV1 , which simplifies to


Ip = −1

2

∫ t−T/2

t ′
1r

PPP1(τ ) · [PPP1(τ ) + 2p f + 2A(τ )]dτ

+ 1

2

∫ t

t ′
1r

PPP1(τ ) · [PPP1(τ ) + 2p f + 2A(τ )]dτ

= 1

2

∫ t

t−T/2
PPP1(τ ) · [PPP1(τ ) + 2p f + 2A(τ )]dτ,

(A22)

which is a single integral over the interval (t − T/2, t ). Given
PPP1(t ) → 0 as t → ∞, then 
Ip → 0 as t → ∞. For the final
integrals, a similar logic is used:


IV2 = −2
∫ t

t ′
1r+T/2

V (σ‖r1(τ − T/2))dτ + 2
∫ t

t ′
1r

V (r1(τ ))dτ.

Using the same simplifications and transformation as above,
we find


IV2 = 2
∫ t−T/2

t
V (r1(τ ))dτ. (A23)

As before V (r1(t )) → 0 as t → ∞; hence 
IV1 → 0 as t →
∞. Thus, in the limit as t → ∞, 
I → 0 and we recover
the carpet interference pattern. This, together with the previ-
ous proofs, shows that the carpet condition is not unique to
direct ATI.

APPENDIX B: CARPET PLOTS

In this section, we provide examples that confirm the va-
lidity of the carpet condition derived above. In Fig. 6, we
plot the photoelectron spectra along θ = 90◦. Here we show
signal from the pairs of orbits in different models that give
rise to the carpet condition. The direct SFA spectrum was
computed using long and short orbits, the CQSFA computa-
tion incorporates the orbits that lead to the fan and the spiral
(i.e., orbits 1 and 2, and orbits 3 and 4, respectively) and the
HATI spectrum considers two orbits separated by a half-cycle.
All models give clear regularly spaced 2ω gaps. However, the
minima and maxima occur in different places for each model;
thus they will not all be appropriate for replication or analysis
of experimental results. In Fig. 7, we plot the photoelectron

FIG. 6. ATI spectra for xenon at a fixed emission angle of θ =
90◦ for a peak laser intensity of 7 × 1013 W/cm2 over a single laser
cycle for different approaches. The remaining parameters are the
same as Fig. 2. The vertical grid marks intervals of ω = 1.55 eV.

probability distributions over energy and θ for the same pairs
of orbits. The spiral-like interference is radically different
from the direct CQSFA and SFA pairs in Figs. 7(a) and 7(b),
demonstrating that the Coulomb potential is crucial. The fact
that the HATI results in Fig. 7(d) do not reflect the spiral
suggests that this interference pattern is present only in models
that account for Coulomb distortion of electron trajectories.
Thus, we have demonstrated analytically and numerically that
the carpet condition universally holds for many ATI physical
mechanisms and models, due to a symmetry of the driving
field. However, despite this, there are large qualitative dif-
ferences between the resulting interference fringes and thus
care should be employed when using these fringes to interpret
experimental results.

FIG. 7. Energy vs θ density plots for pairs of orbits that can lead
to carpet-like distributions. The same field and target parameters and
labeling convention has been used as Fig. 6. The black vertical line
in each panel corresponds to θ = 90◦, for which the cross section in
Fig. 6 were computed. Note these have not been focally averaged and
are plotted over log scale. Each plot is normalized by the peak value.
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Paulus, and H. Walther, Adv. At. Mol. Opt. Phys. 48, 35 (2002).
[37] A. S. Maxwell, S. V. Popruzhenko, and C. Figueira de Morisson

Faria, Phys. Rev. A 98, 063423 (2018).
[38] S. V. Popruzhenko, J. Phys. B 47, 204001 (2014).
[39] S. V. Popruzhenko, V. D. Mur, V. S. Popov, and D. Bauer,

J. Exp.: Theor. Phys. 108, 947 (2009).
[40] M. F. Guest, I. J. Bush, H. J. Van Dam, P. Sherwood, J. M.

Thomas, J. H. Van Lenthe, R. W. Havenith, and J. Kendrick,
Mol. Phys. 103, 719 (2005).

[41] X. Liu and C. Figueira de Morisson Faria, Phys. Rev. Lett. 92,
133006 (2004).

[42] X. Xie, T. Wang, S. G. Yu, X. Y. Lai, S. Roither, D. Kartashov,
A. Baltuška, X. J. Liu, A. Staudte, and M. Kitzler, Phys. Rev.
Lett. 119, 243201 (2017).

[43] W. Quan, X. Y. Lai, Y. J. Chen, C. L. Wang, Z. L. Hu, X. J. Liu,
X. L. Hao, J. Chen, E. Hasović, M. Busuladžić, W. Becker, and
D. B. Milošević, Phys. Rev. A 88, 021401(R) (2013).

[44] B. Fetić, W. Becker, and D. B. Milošević, Phys. Rev. A 102,
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