±

- 1 Title:
- 2 Offspring sex and risk of epithelial ovarian cancer: a multinational pooled analysis of 12
- 3 case-control studies
- 4
- 5 Authors:
- 6 Francesmary Modugno^{1,2}
- 7 Zhuxuan Fu³
- 8 Susan J. Jordan^{4,5}
- 9 AOCS Group⁵⁻⁷
- 10 Jenny Chang-Claude^{8,9}
- 11 Renée T. Fortner⁸
- 12 Marc T. Goodman¹⁰
- 13 Kirsten B. Moysich¹¹
- 14 Joellen M. Schildkraut¹²
- 15 Andrew Berchuck¹³
- 16 Elisa V. Bandera¹⁴
- 17 Bo Qin¹⁴
- 18 Rebecca Sutphen¹⁵
- 19 John R. McLaughlin¹⁶
- 20 Usha Menon¹⁷
- 21 Susan J. Ramus^{18,19}
- 22 Simon A. Gayther²⁰
- 23 Aleksandra Gentry-Maharaj¹⁷

- 24 Chloe Karpinskyj¹⁷
- 25 Celeste L. Pearce^{21,22}
- 26 Anna H. Wu²³
- 27 Harvey A. Risch²⁴
- 28 Penelope M. Webb⁵
- 29

30 Author affiliations:

- Womens Cancer Research Center. *Magee-Womens Research Institute and Hillman Cancer Center*. Pittsburgh, PA: USA; 15213.
- 332.Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and
- Reproductive Sciences. *University of Pittsburgh School of Medicine*. Pittsburgh,
 PA: USA; 15213.
- 36 3. Department of Epidemiology. *University of Pittsburgh Graduate School of Public* 37 *Health*. Pittsburgh, PA: USA; 15213.
- School of Public Health. *University of Queensland*. Herston, Queensland:
 Australia.
- 40 5. Population Health Department. *QIMR Berghofer Medical Research Institute.*
- Locked Bag 2000 Royal Brisbane Hospital, Brisbane, Qld, Australia 4029.
- 42 6. *Peter MacCallum Cancer Center*. Melbourne, Victoria: Australia; 3000.
- 43 7. Centre for Cancer Research, The Westmead Institute for Medical Research. *The*
- 44 University of Sydney. Sydney, New South Wales: Australia; 2145.
- 45 8. Division of Cancer Epidemiology. German Cancer Research Center (DKFZ).
- 46 Heidelberg: Germany; 69120.

47	9.	Cancer Epidemiology Group, University Cancer Center Hamburg. University
48		Medical Center Hamburg-Eppendorf, Hamburg, Germany
49	10.	Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and
50		Genetics Program. Cedars-Sinai Medical Center. Los Angeles, CA: USA; 90048.
51	11.	Division of Cancer Prevention and Control. Roswell Park Cancer Institute.
52		Buffalo, NY: USA; 14263.
53	12.	Department of Public Health Sciences. University of Virginia. Box 800717.
54		Charlottesville, VA: USA; 22908.
55	13.	Department of Gynecologic Oncology. Duke University Medical Center. DUMC
56		3079. Durham, NC: USA; 27710.
57	14.	Cancer Prevention and Control Program. Rutgers Cancer Institute of New
58		Jersey. New Brunswick, NJ: USA; 08903.
59	15.	Epidemiology Center, College of Medicine. University of South Florida. Tampa,
60		FL: USA; 33612.
61	16.	Public Health Ontario. Samuel Lunenfeld Research Institute. Toronto, ON:
62		Canada; M5T3L9.
63	17.	MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology.
64		University College London. London: UK; WC1V 6LJ.
65	18.	University of NSW Sydney, School of Women's and Children's Health, Faculty of
66		Medicine, Sydney, New South Wales: Australia; 2052.
67	19.	Adult Cancer Program, Lowy Cancer Research Centre. University of NSW
68		Sydney. Sydney, New South Wales: Australia; 2052.

69	20.	Center for Bioinformatics and Functional Genomics and the Cedars Sinai	
70		Genomics Core. Cedars-Sinai Medical Center. Los Angeles, CA: USA; 90048.	
71	21.	Department of Epidemiology. University of Michigan School of Public Health.	
72		Ann Arbor, MI: USA; 48109.	
73	22.	Department of Preventive Medicine, Keck School of Medicine. University of	
74		Southern California Norris Comprehensive Cancer Center. Los Angeles, CA:	
75		USA; 90033.	
76	23.	Department of Preventive Medicine, Keck School of Medicine. University of	
77		Southern California. Los Angeles, CA: USA; 90033.	
78	24.	Department of Chronic Disease Epidemiology. Yale School of Public Health.	
79		New Haven, CT: USA; 06510.	
80			
81	Corre	sponding author:	
82	Franc	esmary Modugno, PhD, MPH	
83	Department of Obstetrics, Gynecology and Reproductive Sciences		
84	University of Pittsburgh School of Medicine		
85	Magee-Womens Hospital of UPMC, Suite 2130		
86	300 Halket Street		
87	Pittsb	urgh, PA 15213	
88	(412)	(412) 641 5418 (ph); (412) 641 5417 (fax)	
89	modu	gnof@upmc.edu; fm@cs.cmu.edu	

- 91 Running title: Offspring sex and ovarian cancer
- 92
- 93 Keywords: epithelial ovarian cancer; offspring sex; mucinous ovarian cancer;
- 94 endometrioid ovarian cancer; case-control study; pooled analysis.

95

- 96 **Conflict of Interest:** Usha Menon has stock ownership awarded to her by UCL in
- 97 Abcodia. No other authors report conflicts of interest.

98

99 Funding:

The Ovarian Cancer Association Consortium was supported by a grant from the
 Ovarian Cancer Research Fund thanks to donations by the family and friends of
 Kathryn Sladek Smith (PPD/RPCI.07).

103

Funding for individual studies: **AUS:** The Australian Ovarian Cancer Study (AOCS) was supported by the U.S. Army Medical Research and Materiel Command (DAMD17-01-1-0729), National Health & Medical Research Council of Australia (199600, 400413 and 400281), Cancer Councils of New South Wales, Victoria, Queensland, South Australia and Tasmania and Cancer Foundation of Western Australia (Multi-State Applications 191, 211 and 182). AOCS gratefully acknowledges additional support from Ovarian Cancer Australia and the Peter MacCallum Foundation; **CON**: National Institutes of

111	Health (R01-CA074850; R01-CA080742); DKE: Ovarian Cancer Research Fund; GER:
112	German Federal Ministry of Education and Research, Programme of Clinical Biomedical
113	Research (01 GB 9401) and the German Cancer Research Center (DKFZ); HAW: U.S.
114	National Institutes of Health (R01-CA58598, N01-CN-55424 and N01-PC-67001); HOP:
115	University of Pittsburgh School of Medicine Dean's Faculty Advancement Award (F.
116	Modugno), Department of Defense (DAMD17-02-1-0669) and NCI (K07-CA080668,
117	R01-CA95023, MO1-RR000056 R01-CA126841); NCO: National Institutes of Health
118	(R01-CA76016) and the Department of Defense (DAMD17-02-1-0666); NJO: National
119	Cancer Institute (NIH-K07 CA095666, R01-CA83918, NIH-K22-CA138563, and P30-
120	CA072720) and Rutgers Cancer Institute of New Jersey; SON: National Health
121	Research and Development Program, Health Canada, grant 6613-1415-53; TBO:
122	National Institutes of Health (R01-CA106414-A2), American Cancer Society (CRTG-00-
123	196-01-CCE), Department of Defense (DAMD17-98-1-8659), Celma Mastery Ovarian
124	Cancer Foundation; TOR: NIH grants R01 CA063678 and R01 CA063682; UKO: The
125	UKOPS study was funded by The Eve Appeal (The Oak Foundation) with investigators
126	supported by the National Institute for Health Research University College London
127	Hospitals Biomedical Research Centre and MRC core funding (MR_UU_12023); USC:
128	P01CA17054, P30CA14089, R01CA61132, N01PC67010, R03CA113148,
129	R03CA115195, N01CN025403, and California Cancer Research Program (00-01389V-
130	20170, 2110200);

132 Acknowledgements

We are grateful to the family and friends of Kathryn Sladek Smith for their generous support of the Ovarian Cancer Association Consortium through their donations to the Ovarian Cancer Research Fund. We thank the study participants, doctors, nurses, research staff, clinical and scientific collaborators, health care providers, and health information sources who have contributed to the many studies contributing to this manuscript.

139

140 Acknowledgements for individual studies: AUS: The AOCS also acknowledges the cooperation of the participating institutions in Australia, and the contribution of the study 141 nurses, research assistants and all clinical and scientific collaborators. The complete 142 AOCS Study Group can be found at <u>www.aocstudy.org</u>. We would like to thank all of the 143 women who participated in this research program; **CON**: The cooperation of the 32 144 Connecticut hospitals, including Stamford Hospital, in allowing patient access, is 145 gratefully acknowledged. This study was approved by the State of Connecticut 146 Department of Public Health Human Investigation Committee. Certain data used in this 147 study were obtained from the Connecticut Tumor Registry in the Connecticut 148 149 Department of Public Health. The authors assume full responsibility for analyses and interpretation of these data; **GER:** The German Ovarian Cancer Study (GER) thank 150 Sabine Behrens for competent technical assistance; UKO: We particularly thank I. 151 Jacobs, M. Widschwendter, E. Wozniak, A. Ryan, J. Ford and N. Balogun for their 152 contribution to the study. 153

154

155 ABSTRACT

BACKGROUND: While childbearing protects against risk of epithelial ovarian cancer
(EOC), few studies have explored the impact on maternal EOC risk of sex of offspring,
which may affect the maternal environment during pregnancy.

159

- 160 **METHODS:** We performed a pooled analysis among parous participants from 12 case-
- 161 controls studies comprising 6,872 EOC patients and 9,101 controls. Odds ratios (ORs)
- and 95% confidence intervals (CIs) were calculated using multivariable logistic
- 163 regression for case-control associations and polytomous logistic regression for
- 164 histotype-specific associations, all adjusted for potential confounders.

- 166 **RESULTS:** In general, no associations were found between offspring sex and EOC risk.
- 167 However, compared to bearing only female offspring, bearing one or more male
- 168 offspring was associated with increased risk of mucinous EOC (OR=1.45; 95%CI=1.01-
- 169 2.07), which appeared to be limited to women reporting menarche before age 13
- ¹⁷⁰ compared to later menarche (OR=1.71 vs 0.99; P-interaction=0.02). Bearing increasing
- 171 numbers of male offspring was associated with greater risks of mucinous tumors
- (OR=1.31, 1.84, 2.31, for 1, 2 and 3 or more male offspring, respectively; trend-p =
- 173 0.005). Stratifying by hormonally-associated conditions suggested that compared to
- bearing all female offspring, bearing a male offspring was associated with lower risk of
- endometrioid cancer among women with a history of adult acne, hirsutism, or polycystic

176	ovary syndrome (OR=0.49, 95%CI=0.28-0.83) but with higher risk among women
177	without any of those conditions (OR=1.64 95%CI=1.14-2.34; P-interaction=0.003).
178	
179	CONCLUSION: Offspring sex influences the childbearing-EOC risk relationship for
180	specific histotypes and conditions. These findings support the differing etiologic origins
181	of EOC histotypes and highlight the importance of EOC histotype-specific epidemiologic
182	studies. These findings also suggest the need to better understand how pregnancy
183	affects EOC risk

186 INTRODUCTION

Ovarian cancer is the fifth most common cancer among women in developed countries 187 188 and the most fatal gynecological malignancy(1). In 2018, more than 295,000 women 189 were newly diagnosed with the disease and over 185,000 women died from it 190 worldwide(1). More than 70% of cases are diagnosed at late stages when 5-year 191 survival is less than 30%(2). This high fatality coupled with the lack of a screening test 192 for early detection(3) makes it critical to understand risk factors in order to help inform 193 prevention strategies(4). 194 Ever bearing children is associated with about a 30% decrease in risk of epithelial 195 ovarian cancer (EOC) in general (5) and increasing parity increases protection (6), 196 although the magnitudes of the relationship vary by histotype (7, 8). The exact 197 mechanism underlying the protective effect of pregnancy remains unknown, although it 198 is frequently attributed to ovulation suppression that accompanies pregnancy(9). 199 However, an ovulation alone cannot explain the magnitude of the protective effect(10), 200 suggesting that other pregnancy-associated factors may impact EOC risk. Alterations in 201 202 the maternal hormonal and immune milieus may be such factors(11-13). Fetal sex 203 potentially affects these environments during pregnancy(14-21), can impact maternal 204 physiology(22, 23), and is associated with conditions that have long-term maternal 205 health consequences (24, 25). Together these data support the possibility that offspring 206 sex may impact maternal EOC risk.

207

208	Few epidemiologic studies have explored the relationship between offspring sex and
209	EOC, and results have been inconsistent(26-30). Methodological limitations including
210	small sample sizes overall and for specific histotypes may account for these disparate
211	findings. EOC is a heterogeneous disease consisting of distinct histotypes exhibiting
212	varied risk factor profiles(8) and likely having distinct etiologic pathways(31). The main
213	aim of this study was to evaluate the associations between offspring sex and EOC in an
214	international collaborative investigation using pooled data from 12 case-control studies
215	participating in the Ovarian Cancer Association Consortium (OCAC). Secondarily, we
216	wished to evaluate associations by histotype. The large sample size of the pooled
217	analysis enabled more robust estimates of the associations between offspring sex and
218	EOC overall and by histotype than previously reported. In addition, the pooled analysis
219	enabled exploration of potential interactions with hormonally-associated exposures.
220	

221 METHODS

222 Study population

223 OCAC was established in 2005 to promote collaborative research on epidemiologic and genetic factors associated with EOC(32). The present analysis included participant-level 224 225 data for parous women from 12 OCAC case-control studies conducted in Australia, 226 Canada, Germany, the United Kingdom, and the United States with available information on offspring sex(33-45). Characteristics of the studies are shown in Table 227 1. Because offspring sex was inconsistently reported for non-singleton births across 228 studies and because non-singleton births may differentially impact EOC risk relative to 229 singleton births, we excluded subjects with any non-singleton births (n=528) from 230

current analyses, resulting in 16,343 parous women with all singleton births. We then
excluded women missing covariate data (n=35) and women missing offspring sex
information (n=335), resulting in a total sample of 15,973 participants for data analysis
(6,872 EOC patients and 9,101 controls). All participants provided informed consent and
all participating institutions obtained approval from relevant ethics committees.

236

237 <u>Study variables</u>

Information on offspring sex for each pregnancy lasting six months or longer (full-term) 238 239 was self-reported. Based on our previous work, we classified women according to the number of male offspring(26). Ever having given birth to a boy was defined as reporting 240 at least one male offspring among all singleton full-term births. Giving birth to all boys 241 was defined as reporting a male offspring for each full-term, singleton pregnancy. The 242 number of boys was calculated by summing the total number of pregnancies resulting in 243 male offspring. The number of girls was calculated by subtracting the number of boys 244 from the total number of full-term pregnancies. The fraction of births that were boys was 245 defined as the total number of male offspring divided by the number of full-term 246 247 pregnancies.

248

249 Information on other relevant variables and potential confounders was obtained from the

250 OCAC core dataset and included age at diagnosis (cases) or interview (controls), race,

education, body mass index (BMI) at 18 years of age, recent BMI (defined as previously

reported as BMI 1 year prior or 5 year prior to diagnosis/interview or at

diagnosis/interview(46)), total duration of oral contraceptive (OC) use, number of fullterm pregnancies (parity), family history of ovarian or breast cancer, smoking status,
and history of endometriosis, adult acne, hirsutism, polycystic ovary syndrome (PCOS),
and irregular periods.

257

258 <u>Statistical analysis</u>

We used unconditional logistic regression to estimate odds ratios (ORs) and their 95% 259 confidence intervals (95%CIs) for associations between bearing male offspring and 260 261 EOC risk among parous women. The main multivariate model was adjusted for study 262 site, age at reference (continuous), duration of OC use (never, less than 1 year, 1-4 years, 5-9 years, 10+ years), parity (1, 2, 3, 4, 5+ offspring) and race (white, black, 263 Asian, other). We also considered adjustment for additional ovarian cancer risk factors 264 265 including education (less than high school, high school, post-high school, college graduate, post graduate), family history of ovarian or breast cancer (yes/no), history of 266 breastfeeding (yes/no), BMI at 18 (<18.5 / 18.5-24.9 / 25-30 / >=30 kg/m²), recent BMI 267 (<18.5 / 18.5-24.9 / 25-30 / >=30 kg/m²), history of endometriosis (yes/no), history of 268 269 irregular periods (yes/no), history of polycystic ovary syndrome (PCOS), adult acne, or 270 hirsutism (yes/no), smoking history (never, ever), and age at menarche (<13 years/ 271 >=13 years). These factors did not change the association between bearing a male offspring and EOC risk in general by more than 10% and were therefore not included in 272 final models. Where they did alter associations by more than 10%, we present both the 273 parsimonious model and the more adjusted model. 274

276	Random effects meta-analyses across study sites of all cancer histotypes showed no
277	evidence of heterogeneity (I ² =0.0%; p-het=0.57 Figure 1). Consequently, all analyses
278	were performed using the pooled dataset adjusted for study site. We performed
279	polytomous logistic regression to evaluate associations between bearing male offspring
280	and EOC risk by the main histotypes (high-grade serous, mucinous, endometrioid, clear
281	cell). We further stratified analyses by number of full-term births to separate
282	associations with offspring sex from those with parity. We also explored models
283	containing terms for total number of male and total number of female offspring and
284	models containing terms for total number of full-term pregnancies and fraction of boys.
285	
286	To identify potential interactions between offspring sex and hormonally-associated
287	exposures for EOC in general and by specific histotypes, we performed stratified
288	analyses by history of endometriosis (associated with excess estrogens(47) or reduced
289	progesterone(48)), history of acne or hirsutism or PCOS (associated with excess
290	androgens(49-51)), age at menarche less than 13 (which is associated with excess
291	estrogens and increased ovulations(52-54)), recent BMI greater than or equal to 30
292	kg/m ² (which is associated with hormonal imbalances(55, 56)), history of irregular
293	periods (associated with hormonal dysregulation(57)), history of ever using oral
294	contraceptives (associated with altered hormonal milieu(58-60)), and history of ever
295	smoking cigarettes (associated with anti-estrogenic effects(61)). Interactions and linear
296	trends were assessed with Wald statistics. Stata/SE version 15.1 (StataCorp, College

Station, TX) was used to conduct all analyses. All tests were two-sided with significancelevel of 5%.

299

300 **RESULTS**

Among parous controls, the study-specific frequency of never bearing a male offspring ranged from 17% to 31%, whereas among parous cases it ranged from 19% to 36% (Table 1). Compared to controls, women with EOC were less likely to have used OCs, had more than one child, attained a college education, reported a history of acne, hirsutism, or PCOS, and reported a history of irregular periods. Case women were more likely to have higher recent BMI, reported histories of endometriosis, and family histories of breast or ovarian cancer (Table 2).

308

309	Compared to bearing all females, ever having borne a male was not associated with
310	EOC overall (OR=1.05; 95%CI=0.96-1.14; Table 3); however, bearing a male offspring
311	was associated with increased risk of mucinous histotype (OR=1.25; 95%CI=1.02-1.54).
312	This association strengthened when we further adjusted for hormonally-associated
313	conditions (endometriosis, irregular periods, acne or PCOS or hirsutism, smoking,
314	history of early menarche and recent BMI; OR=1.45; 95%CI=1.01-2.07). Similarly,
314 315	history of early menarche and recent BMI; OR=1.45; 95%CI=1.01-2.07). Similarly, giving birth only to boys was not associated with EOC risk overall, whereas compared to
315	giving birth only to boys was not associated with EOC risk overall, whereas compared to

95%CI=0.99-1.84). Increasing number of male offspring was associated with increasing
risk of mucinous ovarian cancer in both the most parsimonious model (OR=1.16, 1.56,
1.55, for 1, 2 and 3 or more male offspring compared to all female offspring,
respectively; trend-p = 0.006) and in a model additionally controlling for hormonallyassociated conditions (OR=1.31, 1.84, 2.31, for 1, 2 and 3 or more male offspring,
respectively; trend-p = 0.005). There were no associations between increasing number
of male offspring and EOC risk overall or for any other histotypes.

326

327 In models including separate quantitative terms for total number of male offspring and total number of female offspring, each additional offspring was associated with about an 328 329 8% decrease in EOC risk overall regardless of whether the offspring was male (OR=0.93; 95%CI=0.90-0.96) or female (OR=0.92; 95%CI=0.89-0.95) (Table 3). While 330 331 the point estimates for high-grade serous, clear cell, and endometrioid subtypes were similar for both male and female offspring, for the mucinous histotype, each additional 332 female offspring was associated with a 12% decrease in risk (OR=0.88; 95%CI=0.81-333 0.96) whereas each male offspring was not associated with risk (OR=1.03; 334 335 95%CI=0.95-1.11). The results from models controlling for total number of full-term births also showed that a 25% increase in the fraction of births that were boys was 336 associated with a 9% increase in risk of mucinous EOC (OR=1.09; 95%CI=1.03-1.16). 337 Fraction of male births was not associated with risk of the other subtypes. 338

Stratifying by number of offspring (Table 3) yielded similar patterns of risk associated with increasing male offspring for the mucinous histotype. Among women with exactly one full-term birth, bearing a male offspring was associated with a 22% increased risk of mucinous cancer compared to bearing a female offspring. Among women with exactly two births, compared to bearing all female offspring, bearing exactly one male offspring was associated with a 16% increased risk of mucinous tumors, whereas bearing two male offspring was associated with a 58% increased risk (P-trend=0.01).

348	For mucinous histotype, we further observed interactions with age at menarche (Table
349	4). Compared to never giving birth to a boy, ever bearing a male offspring was
350	associated with an increased risk of mucinous cancer among women with menarche
351	before age 13 (OR=1.71, 95%CI=1.23-2.38) but no increased risk associated with
352	menarche at a later age (OR=0.99, 95%CI=0.76-1.30; P-interaction=0.02). Results were
353	similar when we examined interactions between menarche and giving birth to all boys
354	(OR=1.55 for early menarche versus OR=1.08 for later menarche; P-interaction=0.08).
355	Among women with menarche prior to age 13, increasing number of male offspring was
356	associated with increasing risk of mucinous tumor (ORs for bearing 1, 2, 3+ male
357	offspring: 1.54, 2.34, 2.24 compared to no male offspring; P-trend =0.002). Among
358	women with later menarche no trend was observed (ORs for bearing 1, 2, 3+ male
359	offspring: 0.94, 1.16, 1.20; P-trend=0.32; P-interaction=0.10). Consistent with this
360	observation, each 25% increase in fraction of male offspring was associated with a
361	significant 18% increase in mucinous cancer among women with earlier menarche but
362	no increase in women with later menarche (P-interaction=0.01). We also observed an

363	interaction between age at menarche and bearing female offspring, with each female
364	offspring associated with a significant 21% reduced risk of mucinous tumors among
365	women with earlier menarche but little or no association among women with later
366	menarche (OR=0.79 versus 0.94 for each female offspring in women with and without
367	early menarche, respectively; P-interaction=0.02). There was no interaction between
368	age at menarche and bearing male offspring (OR=1.04 versus 1.01 for each male
369	offspring in women with and without early menarche, respectively; P-interaction=0.51)

371 No other interactions between hormonal-associated exposures and EOC were observed, except for self-reported history of acne or hirsutism or PCOS and risk of 372 373 endometrioid cancer (Table 5). Compared to bearing all female offspring, bearing at least one male offspring was associated with reduced risk of endometrioid cancer 374 among women with a history of any of those conditions (OR=0.49, 95%CI=0.28-0.83), 375 but an increased risk among women with no history of any of those conditions (OR=1.64 376 377 95%CI=1.14-2.34; P-interaction=0.003). Results were similar when we examined the interaction between reported history of acne/hirsutism/PCOS and number of male 378 379 offspring (ORs for bearing 1, 2 or 3+ male offspring: 0.47, 0.52, 0.47 versus 1.69, 1.59. 0.78, for women with and without this history, respectively, P-interaction=0.007). An 380 interaction was also observed between reported history of those androgenic conditions 381 382 and bearing female offspring, with each female offspring associated with reduced 383 endometrioid cancer risk in women with no reported history compared to those with 384 such a history (OR=0.80 vs 1.02 for each female offspring in women without and with a history, respectively; P-interaction 0.03). There appeared to be no interaction between 385

a history of those androgenic conditions and bearing male offspring (OR=0.82 vs 0.87
 for each male offspring in women without and with a history, respectively; P interaction=0.44).

389

390 DISCUSSION

In this pooled analysis of data from 6,872 parous women with EOC and 9,101 parous 391 controls, sex of offspring was not associated with maternal EOC risk overall. However, 392 bearing male offspring was associated with less protection against mucinous cancers. 393 When examining the per-pregnancy association, offspring sex was not associated with 394 395 EOC risk overall or for high-grade serous, clear cell, and endometrioid histotypes, but was associated with risk of mucinous tumors. In particular, bearing female offspring was 396 associated with decreased risk of mucinous tumors among parous women, whereas 397 398 bearing male offspring appeared to have no relation to that histotype. We observed no interactions between offspring sex and hormonally-associated exposures, except 399 among women with mucinous tumors and menarche prior to age 13 and among women 400 with endometrioid tumors and a history of acne, hirsutism, or PCOS. Among women 401 with menarche before age 13, bearing male children was associated with higher risk of 402 403 mucinous cancer than in women with later menarche. Among women with a history of acne, hirsutism, or PCOS, bearing male children was associated with lower risk of 404 endometrioid cancer than in women without those conditions. 405

406

407 Five studies have reported the association between offspring sex and ovarian cancer 408 risk(26-30), including two studies included in this pooled analysis (HOPE and AUS). In 409 the HOPE Study, conducted in western Pennsylvania, USA from 2003-2008, compared 410 to bearing all female offspring, bearing any male offspring was associated with lower 411 risk of EOC (OR=0.92) and bearing all male offspring was associated with even lower 412 risk (OR=0.86)(30). A earlier population-based study of 511 cases and 1136 controls conducted in eastern Pennsylvania, USA from 1994-1998 by the same group reported 413 similar findings - relative to all female offspring, bearing all male offspring was 414 associated with decreased EOC risk (OR=0.80)(26). These findings were supported by 415 a nested case-control study within the population-based Swedish Fertility Register that 416 417 included 7,407 women diagnosed with EOC between 1961 and 2001 and 37,658 418 controls(27): compared to bearing all female offspring, bearing a male child was associated with reduced EOC risk in a dose-response fashion (ORs: 0.92, 0.87, 0.82, 419 for 1, 2 or 3+ boys, compared to all girls)(27). In contrast, the Australia-wide 420 population-based study (AUS) conducted between 2002 and 2005 and included in this 421 422 pooled analysis reported no association between offspring sex and EOC for parous 423 women in general but a 2-fold increased risk of the mucinous histotype associated with 424 bearing only male offspring(29). Notably, excluding AUS data from the current analysis 425 did not appreciably affect the observed association with mucinous tumors. A 426 population-based cohort study of 5,092 EOC cases in the Norwegian national registry also reported no EOC-offspring sex association in general (28). However, that study 427 reported an increased risk of endometrioid tumors among women who gave birth only to 428

girls compared to those who gave birth only to boys (incidence ratio 1.35 based on 475cases).

431

432 Although there are histotype differences in the magnitude of the protective effect. 433 greater parity has consistently been associated with reduced EOC risk(7, 8), especially among non-mucinous disease; however, the mechanism underlying this association 434 remains unknown. Two theories have dominated the literature: suppressed ovulation(9) 435 and lowered gonadotropin levels (62). Pregnancy, regardless of fetal sex, should equally 436 affect ovulation and gonadotropin secretion; thus, our results suggest the possibility of 437 additional mechanisms. Reducing inflammation(12) and altering circulating steroid 438 hormones(11) have been postulated. During pregnancy, both maternal hormonal and 439 immune milieus differ by fetal sex. Carriage of a male fetus is associated with lower 440 maternal levels of estradiol and hCG(14, 15, 18) and higher maternal levels of 441 progesterone(16) and testosterone(19). While the role of hCG in EOC etiology is 442 443 unclear, progesterone is believed to protect against EOC while estrogens and androgens may increase risk(11) in a histotype-specific way(20, 21). Whether the 444 445 observed maternal hormonal differences by fetal sex are large enough to matter in the context of the high hormonal levels of pregnancy is unknown. Women carrying male 446 fetuses also exhibit more proinflammatory/proangiogenic immune milieus than women 447 carrying female fetuses(17). Pregnancy outcomes also vary by offspring sex, with 448 preterm birth, higher birth weight, and gestational diabetes associated with males(63-449 450 65), and increased risk of maternal hypertensive disorders and asthma flares associated with females(66, 67). Genetic and metabolic profiles of the placenta also 451

452 vary by fetal sex(68), and both hormones and cells derived from the fetoplacental unit persist in maternal circulation for years after pregnancy ends(69). Moreover, male-origin 453 454 microchimerism, which arises predominantly but not exclusively from fetal cells acquired 455 during pregnancy(70) and persists for decades after pregnancy(71), has recently been 456 associated with reduced rates of ovarian cancer(72). Fetal sex also influences maternal 457 physiology(22, 23), and pregnancy conditions that differ by fetal sex, such as preeclampsia and gestational diabetes, may impact future maternal health outcomes(24, 458 25). Together, these observations suggest that fetal sex-based differences can have 459 long-term health consequences and support a potential link between offspring sex and 460 461 EOC risk.

462

Despite this apparent biologic plausibility, the results of this study did not show any
overall relationship between offspring sex and EOC risk. However, we did observe
relationships with offspring sex for the mucinous histotype in general and specifically for
women with menarche prior to age 13. We further observed an association for
endometrioid tumors in relation to maternal androgenic conditions.

469 It is now accepted that while pregnancy protects against EOC in general, the protection

470 varies by histotype. In the Ovarian Cancer Cohort Consortium (OCCC), ever bearing

471 offspring provided a 31% decrease in risk in general, with a greatest protection seen for

the clear cell histotype (RR=0.35, 95%CI:0.27-0.47) and the least protection observed in

the serous histotype (RR=0.81, 95%CI=0.73-0.90) (8). The Million Women Study also

474 reported a differing protective effect against EOC associated with every bearing

475	offspring based on histotype, with the greatest effect seen among clear cell cases and
476	the least seen among serous cases (7). Both studies also report histotype differences
477	based on the number of offspring. Given these differences in protective effect of
478	pregnancy by hisotype, it is possible that the relationship between offspring sex and
479	EOC could also vary by histotype.
480	
481	Thus, while our histotype-specific observations are plausible, the underlying biologic
482	reasons for these observations are unclear. Mucinous EOC is a relatively infrequent
483	histotype, representing some 5-20% of cases(73); however, epidemiologic evidence
484	supports a substantially different risk-factor profile than that of the other histotypes(74).
485	Notably, apart from pregnancy, the relationships between hormonal exposures and
486	mucinous tumors are less pronounced or perhaps nonexistent compared to other
487	histotypes(74), suggesting that alteration in the hormonal milieu may not account for our
488	mucinous-disease findings in general and among women with menarche prior to age
489	13. In addition to higher endogenous estrogen exposure, earlier age at menarche is
490	associated with earlier and more prolonged ovulation(52, 53). That observation,
491	however, cannot explain the mucinous-specific association because increasing lifetime
492	ovulations are associated with increased ovarian cancer risk overall(75-77). Moreover,
493	histotype-specific results show no relationship between lifetime ovulations and the
494	mucinous subtype(77). Similarly, it is unclear why the relationship between offspring sex
495	and endometrioid tumors should vary based on history of androgenic conditions, as
496	endometrioid tumors are more closely associated with estrogenic exposures(78-80) and
497	possibly higher circulating androgen levels in the post-menopause(20).

499	Regardless of the underlying biology, our findings underscore the need to further
500	understand the mechanisms whereby pregnancy impacts EOC risk. Moreover, they
501	reflect the heterogeneous etiologic nature of ovarian cancer(81), which is no longer
502	believed to be a single disease but a group of diseases with separate etiologic origins.
503	EOC histotypes exhibit differing clinical behavior and are believed to have different or
504	differentially evolved cells of origin leading to distinct carcinogenic pathways(82).
505	Epidemiologic studies further support the multifactorial origin of EOC, with most well-
506	established risk factors exhibiting substantial heterogeneity by histotype(8, 74). Our
507	results lend further population-based support to the distinct etiology of EOC histotypes,
508	and in particular for that of mucinous tumors compared to the others(8, 74).
509	
510	A strength of the present study is the use of participant-level data from 12 population-
511	based case-control studies spanning three continents. The large sample size resulted
512	in increased statistical power to examine histotype-specific associations, which
513	individual studies could not adequately do. In addition, pooling data from population-
514	based case-control studies with detailed lifestyle, reproductive, and medical history data
515	enabled us to control for potential confounders and to stratify by hormonally-associated
516	exposures, which the population-based registry studies were unable to do. The
517	included studies were all population-based, and the majority of studies used in-person
518	interviews to obtain data on offspring sex and other exposures, increasing the
519	generalizability of findings. Study-specific data were carefully cleaned, harmonized, and

allowing us to adjust for a single set of standard confounders. Finally, all available
 OCAC studies with information on offspring sex were included, thus mitigating the
 possibility of publication bias.

524

525 Despite these strengths, some limitations should be considered. First, data were self-526 reported; thus, potential confounding variables could be influenced by case/control status, which could distort our findings. Moreover, due to missing data, we were not 527 able to assess relationships between offspring sex and some factors that may influence 528 ovarian cancer risk, such as age at first pregnancy. We also can not eliminate the 529 possibility of unknown confounders influencing results. Selection bias is also a concern 530 as controls participating in these studies may differ from cases by factors related to 531 532 offspring sex or EOC risk, including unknown factors that could not be accounted for in the analyses. Validation in prospective cohorts is needed to address these concerns. 533 534 Because our study population was predominately white, we could not evaluate the impact of offspring sex in non-white women and how it may differ across race. Finally, 535 we cannot eliminate the possibility that our findings are due to chance. 536 537 538 In conclusion, offspring sex appears to affect differentially EOC risk based on histotype

and, possibly, in combination with other host factors. Our findings support the distinct etiologic pathways among EOC histotypes and suggest that current etiologic models of EOC may be incomplete. Our findings also suggest the need to better understand how pregnancy affects EOC risk. Confirmation of these findings in prospective cohorts is

- needed to improve our understanding of EOC etiology, thereby paving the way for new
- 544 avenues of prevention research for this highly fatal disease.

547 **REFERENCES**:

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer
 statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36
 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.

551 2. Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Kosary CL, et al. SEER

552 Cancer Statistics Review, 1975-2014, National Cancer Institute. Bethesda, MD,

553 <u>https://seercancergov/csr/1975_2014/</u>, based on November 2016 SEER data

submission, posted to the SEER web site, April 2017.

5553.Moyer VA. Screening for ovarian cancer: U.S. Preventive Services Task Force

reaffirmation recommendation statement. Ann Intern Med. 2012;157(12):900-4.

Modugno F, Edwards RP. Ovarian cancer: prevention, detection, and treatment
 of the disease and its recurrence. Molecular mechanisms and personalized medicine
 meeting report. Int J Gynecol Cancer. 2012;22(8):S45-57.

5. Cho KR, Shih le M. Ovarian cancer. Annu Rev Pathol. 2009;4:287-313.

6. Sung HK, Ma SH, Choi JY, Hwang Y, Ahn C, Kim BG, et al. The Effect of

562 Breastfeeding Duration and Parity on the Risk of Epithelial Ovarian Cancer: A

563 Systematic Review and Meta-analysis. J Prev Med Public Health. 2016;49(6):349-66.

564 7. Gaitskell K, Green J, Pirie K, Barnes I, Hermon C, Reeves GK, et al. Histological
565 subtypes of ovarian cancer associated with parity and breastfeeding in the prospective
566 Million Women Study. International journal of cancer. 2018;142(2):281-9.

567 8. Wentzensen N, Poole EM, Trabert B, White E, Arslan AA, Patel AV, et al.

568 Ovarian Cancer Risk Factors by Histologic Subtype: An Analysis From the Ovarian

569 Cancer Cohort Consortium. J Clin Oncol. 2016;34(24):2888-98.

570 9. Fathalla MF. Incessant ovulation--a factor in ovarian neoplasia? Lancet.

571 1971;2(7716):163.

10. Risch HA, Weiss NS, Lyon JL, Daling JR, Liff JM. Events of reproductive life and

the incidence of epithelial ovarian cancer. Am J Epidemiol. 1983;117(2):128-39.

11. Risch HA. Hormonal etiology of epithelial ovarian cancer, with a hypothesis

575 concerning the role of androgens and progesterone. J Natl Cancer Inst.

576 1998;90(23):1774-86.

12. Ness RB, Cottreau C. Possible role of ovarian epithelial inflammation in ovarian

cancer. J Natl Cancer Inst. 1999;91(17):1459-67.

13. Toriola AT, Grankvist K, Agborsangaya CB, Lukanova A, Lehtinen M, Surcel HM.

580 Changes in pre-diagnostic serum C-reactive protein concentrations and ovarian cancer

risk: a longitudinal study. Ann Oncol. 2011;22(8):1916-21.

582 14. Obiekwe BC, Chard T. Human chorionic gonadotropin levels in maternal blood in

583 late pregnancy: relation to birthweight, sex and condition of the infant at birth. Br J

584 Obstet Gynaecol. 1982;89(7):543-6.

585 15. Adamcova K, Kolatorova L, Skodova T, Simkova M, Parizek A, Starka L, et al.

586 Steroid hormone levels in the peripartum period - differences caused by fetal sex and

delivery type. Physiol Res. 2018;67(Supplementum 3):S489-s97.

16. Boroditsky RS, Reyes FI, Winter JS, Faiman C. Serum human chorionic

589 gonadotropin and progesterone patterns in the last trimester of pregnancy: relationship

to fetal sex. Am J Obstet Gynecol. 1975;121(2):238-41.

591 17. Enninga EA, Nevala WK, Creedon DJ, Markovic SN, Holtan SG. Fetal sex-based 592 differences in maternal hormones, angiogenic factors, and immune mediators during

593 pregnancy and the postpartum period. Am J Reprod Immunol. 2015;73(3):251-62.

18. Toriola AT, Vaarasmaki M, Lehtinen M, Zeleniuch-Jacquotte A, Lundin E,

595 Rodgers KG, et al. Determinants of maternal sex steroids during the first half of

596 pregnancy. Obstet Gynecol. 2011;118(5):1029-36.

597 19. Steier JA, Ulstein M, Myking OL. Human chorionic gonadotropin and

testosterone in normal and preeclamptic pregnancies in relation to fetal sex. Obstet

599 Gynecol. 2002;100(3):552-6.

20. Ose J, Poole EM, Schock H, Lehtinen M, Arslan AA, Zeleniuch-Jacquotte A, et

al. Androgens Are Differentially Associated with Ovarian Cancer Subtypes in the

602 Ovarian Cancer Cohort Consortium. Cancer Res. 2017;77(14):3951-60.

21. Trabert B, Michels KA, Anderson GL, Brinton LA, Falk RT, Geczik AM, et al.

604 Circulating androgens and postmenopausal ovarian cancer risk in the Women's Health

Initiative Observational Study. Int J Cancer. 2019;145(8):2051-60.

606 22. Clifton VL, Murphy VE. Maternal asthma as a model for examining fetal sex-

specific effects on maternal physiology and placental mechanisms that regulate human

fetal growth. Placenta. 2004;25 Suppl A:S45-52.

609 23. Stark MJ, Dierkx L, Clifton VL, Wright IM. Alterations in the maternal peripheral

610 microvascular response in pregnancies complicated by preeclampsia and the impact of

611 fetal sex. J Soc Gynecol Investig. 2006;13(8):573-8.

612 24. Kim C, Newton KM, Knopp RH. Gestational diabetes and the incidence of type 2
613 diabetes: a systematic review. Diabetes Care. 2002;25(10):1862-8.

614 25. Ying W, Catov JM, Ouyang P. Hypertensive Disorders of Pregnancy and Future
615 Maternal Cardiovascular Risk. J Am Heart Assoc. 2018;7(17):e009382.

616 26. Gierach GL, Modugno F, Ness RB. Gender of offspring and maternal ovarian
617 cancer risk. Gynecol Oncol. 2006;101(3):476-80.

E18 27. Baik I, Lambe M, Liu Q, Cnattingius S, Mucci LA, Riman T, et al. Gender of

offspring and maternal risk of invasive epithelial ovarian cancer. Cancer Epidemiol
Biomarkers Prev. 2007;16(11):2314-20.

621 28. Albrektsen G, Heuch I, Thoresen S, Kvale G. Twin births, sex of children and

maternal risk of ovarian cancer: a cohort study in Norway. Br J Cancer.

623 2007;96(9):1433-5.

224 29. Jordan SJ, Green AC, Nagle CM, Olsen CM, Whiteman DC, Webb PM, et al.

Beyond parity: association of ovarian cancer with length of gestation and offspring

626 characteristics. Am J Epidemiol. 2009;170(5):607-14.

Sum Strain Str

629 31. Committee on the State of the Science in Ovarian Cancer R, Board on Health

630 Care S, Institute of M, National Academies of Sciences E, Medicine. Ovarian Cancers:

631 Evolving Paradigms in Research and Care. Washington (DC): National Academies

Press (US) Copyright 2016 by the National Academy of Sciences. All rights reserved.;

633 2016.

634 32. Ramus SJ, Vierkant RA, Johnatty SE, Pike MC, Van Den Berg DJ, Wu AH, et al.

635 Consortium analysis of 7 candidate SNPs for ovarian cancer. Int J Cancer.

636 2008;123(2):380-8.

33. Merritt MA, Green AC, Nagle CM, Webb PM. Talcum powder, chronic pelvic
inflammation and NSAIDs in relation to risk of epithelial ovarian cancer. Int J Cancer.
2008;122(1):170-6.

640 34. Risch HA, Bale AE, Beck PA, Zheng W. PGR +331 A/G and increased risk of

epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev. 2006;15(9):1738-41.

642 35. Royar J, Becher H, Chang-Claude J. Low-dose oral contraceptives: protective
643 effect on ovarian cancer risk. Int J Cancer. 2001;95(6):370-4.

644 36. Goodman MT, Lurie G, Thompson PJ, McDuffie KE, Carney ME. Association of

two common single-nucleotide polymorphisms in the CYP19A1 locus and ovarian

cancer risk. Endocr Relat Cancer. 2008;15(4):1055-60.

647 37. Lo-Ciganic WH, Zgibor JC, Bunker CH, Moysich KB, Edwards RP, Ness RB.

648 Aspirin, nonaspirin nonsteroidal anti-inflammatory drugs, or acetaminophen and risk of

649 ovarian cancer. Epidemiology. 2012;23(2):311-9.

50 38. Lurie G, Wilkens LR, Thompson PJ, McDuffie KE, Carney ME, Terada KY, et al.

651 Combined oral contraceptive use and epithelial ovarian cancer risk: time-related effects.

652 Epidemiology. 2008;19(2):237-43.

39. Schildkraut JM, Iversen ES, Wilson MA, Clyde MA, Moorman PG, Palmieri RT, et
al. Association between DNA damage response and repair genes and risk of invasive
serous ovarian cancer. PLoS One. 2010;5(4):e10061.

40. Bandera EV, King M, Chandran U, Paddock LE, Rodriguez-Rodriguez L, Olson

657 SH. Phytoestrogen consumption from foods and supplements and epithelial ovarian

cancer risk: a population-based case control study. BMC Womens Health. 2011;11:40.

41. Risch HA, Marrett LD, Howe GR. Parity, contraception, infertility, and the risk of
epithelial ovarian cancer. Am J Epidemiol. 1994;140(7):585-97.

42. Pal T, Permuth-Wey J, Betts JA, Krischer JP, Fiorica J, Arango H, et al. BRCA1

and BRCA2 mutations account for a large proportion of ovarian carcinoma cases.

663 Cancer. 2005;104(12):2807-16.

43. Balogun N, Gentry-Maharaj A, Wozniak EL, Lim A, Ryan A, Ramus SJ, et al.

665 Recruitment of newly diagnosed ovarian cancer patients proved challenging in a

666 multicentre biobanking study. J Clin Epidemiol. 2011;64(5):525-30.

44. Ness RB, Cramer DW, Goodman MT, Kjaer SK, Mallin K, Mosgaard BJ, et al.

Infertility, fertility drugs, and ovarian cancer: a pooled analysis of case-control studies.

669 Am J Epidemiol. 2002;155(3):217-24.

45. Wu AH, Pearce CL, Tseng CC, Templeman C, Pike MC. Markers of inflammation

and risk of ovarian cancer in Los Angeles County. Int J Cancer. 2009;124(6):1409-15.

46. Olsen CM, Nagle CM, Whiteman DC, Ness R, Pearce CL, Pike MC, et al.

Obesity and risk of ovarian cancer subtypes: evidence from the Ovarian Cancer

Association Consortium. Endocr Relat Cancer. 2013;20(2):251-62.

47. Chen P, Wang DB, Liang YM. Evaluation of estrogen in endometriosis patients:

676 Regulation of GATA-3 in endometrial cells and effects on Th2 cytokines. J Obstet

677 Gynaecol Res. 2016;42(6):669-77.

48. Al-Sabbagh M, Lam EW, Brosens JJ. Mechanisms of endometrial progesterone
resistance. Mol Cell Endocrinol. 2012;358(2):208-15.

49. Nisenblat V, Norman RJ. Androgens and polycystic ovary syndrome. Curr Opin

681 Endocrinol Diabetes Obes. 2009;16(3):224-31.

682	50.	Diamanti-Kandarakis E. Polycystic ovarian syndrome: pathophysiology,
683	molec	cular aspects and clinical implications. Expert Rev Mol Med. 2008;10:e3.
684	51.	Goodman NF, Cobin RH, Futterweit W, Glueck JS, Legro RS, Carmina E.
685	Amer	ican association of clinical endocrinologists, Amercian college of endocrinology,
686	and a	ndrogen excess and PCOS society disease state clinical review: guide to the best
687	practi	ces in the evaluation and treament of polycystic syndrome part 1. Endocr Pract.
688	2015;	21(11):1291-300.
689	52.	Apter D, Vihko R. Early menarche, a risk factor for breast cancer, indicates early
690	onset	of ovulatory cycles. J Clin Endocrinol Metab. 1983;57(1):82-6.
691	53.	Vihko R, Apter D. Endocrine characteristics of adolescent menstrual cycles:
692	impac	ct of early menarche. J Steroid Biochem. 1984;20(1):231-6.
693	54.	Bernstein L, Pike MC, Ross RK, Henderson BE. Age at menarche and estrogen
694	conce	entrations of adult women. Cancer Causes Control. 1991;2(4):221-5.
695	55.	Kopelman PG. Hormones and obesity. Baillieres Clin Endocrinol Metab.
696	1994;	8(3):549-75.
697	56.	Pasquali R. Obesity and androgens: facts and perspectives. Fertil Steril.
698	2006;	85(5):1319-40.
699	57.	Rosenfield RL. Clinical review: Adolescent anovulation: maturational
700	mech	anisms and implications. J Clin Endocrinol Metab. 2013;98(9):3572-83.
701	58.	Gaspard UJ, Romus MA, Gillain D, Duvivier J, Demey-Ponsart E, Franchimont P.
702	Plasm	na hormone levels in women receiving new oral contraceptives containing ethinyl

estradiol plus levonorgestrel or desogestrel. Contraception. 1983;27(6):577-90.

704	59.	Brenner PF, Mishell DR, Jr., Stanczyk FZ, Goebelsmann U. Serum levels of d-
705	norge	strel, luteinizing hormone, follicle-stimulating hormone, estradiol, and
706	proge	sterone in women during and following ingestion of combination oral
707	contra	ceptives containing dl-norgestrel. Am J Obstet Gynecol. 1977;129(2):133-40.
708	60.	Mishell DR, Jr., Thorneycroft IH, Nakamura RM, Nagata Y, Stone SC. Serum
709	estrad	iol in women ingesting combination oral contraceptive steroids. Am J Obstet
710	Gyneo	col. 1972;114(7):923-8.
711	61.	Baron JA, La Vecchia C, Levi F. The antiestrogenic effect of cigarette smoking in
712	wome	n. Am J Obstet Gynecol. 1990;162(2):502-14.
713	62.	Cramer DW, Welch WR. Determinants of ovarian cancer risk. II. Inferences
714	regard	ling pathogenesis. J Natl Cancer Inst. 1983;71(4):717-21.
715	63.	Zeitlin J, Saurel-Cubizolles MJ, De Mouzon J, Rivera L, Ancel PY, Blondel B, et
716	al. Fet	al sex and preterm birth: are males at greater risk? Hum Reprod.
717	2002;	17(10):2762-8.
718	64.	Di Renzo GC, Rosati A, Sarti RD, Cruciani L, Cutuli AM. Does fetal sex affect
719	pregn	ancy outcome? Gend Med. 2007;4(1):19-30.
720	65.	Retnakaran R, Kramer CK, Ye C, Kew S, Hanley AJ, Connelly PW, et al. Fetal
721	sex ar	nd maternal risk of gestational diabetes mellitus: the impact of having a boy.
722	Diabe	tes Care. 2015;38(5):844-51.
723	66.	Shiozaki A, Matsuda Y, Satoh S, Saito S. Impact of fetal sex in pregnancy-
724	induce	ed hypertension and preeclampsia in Japan. J Reprod Immunol. 2011;89(2):133-9.
725	67.	Clifton V. Maternal asthma during pregnancy and fetal outcomes: potential
726	mecha	anisms and possible solutions. Curr Opin Allergy Clin Immunol. 2006;6(5):307-11.

727	68.	Gong S, Sovio U, Aye IL, Gaccioli F, Dopierala J, Johnson MD, et al. Placental
728	polya	mine metabolism differs by fetal sex, fetal growth restriction, and preeclampsia.
729	JCI Ir	nsight. 2018;3(13).
730	69.	Nelson JL. Microchimerism and human autoimmune diseases. Lupus.
731	2002	;11(10):651-4.

732 70. Gammill HS, Nelson JL. Naturally acquired microchimerism. Int J Dev Biol.
733 2010;54(2-3):531-43.

734 71. Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal

progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl

736 Acad Sci U S A. 1996;93(2):705-8.

737 72. Hallum S, Jakobsen MA, Gerds TA, Pinborg A, Tjønneland A, Kamper-

Jørgensen M. Male origin microchimerism and ovarian cancer. International Journal ofEpidemiology. 2020.

740 73. Seidman JD, Kurman RJ, Ronnett BM. Primary and metastatic mucinous

adenocarcinomas in the ovaries: incidence in routine practice with a new approach to

improve intraoperative diagnosis. Am J Surg Pathol. 2003;27(7):985-93.

743 74. Risch HA, Marrett LD, Jain M, Howe GR. Differences in risk factors for epithelial

ovarian cancer by histologic type. Results of a case-control study. Am J Epidemiol.

745 1996;144(4):363-72.

746 75. Yang HP, Murphy KR, Pfeiffer RM, George N, Garcia-Closas M, Lissowska J, et

al. Lifetime Number of Ovulatory Cycles and Risks of Ovarian and Endometrial Cancer

Among Postmenopausal Women. Am J Epidemiol. 2016;183(9):800-14.

749 76. Webb PM, Green A, Cummings MC, Purdie DM, Walsh MD, Chenevix-Trench G. Relationship between number of ovulatory cycles and accumulation of mutant p53 in 750 751 epithelial ovarian cancer. J Natl Cancer Inst. 1998;90(22):1729-34. 77. 752 Trabert B, Tworoger SS, O'Brien KM, Townsend MK, Fortner RT, Iversen ES, et 753 al. The Risk of Ovarian Cancer Increases with an Increase in the Lifetime Number of 754 Ovulatory Cycles: An Analysis from the Ovarian Cancer Cohort Consortium (OC3). Cancer Res. 2020;80(5):1210-8. 755 78. Lee AW, Ness RB, Roman LD, Terry KL, Schildkraut JM, Chang-Claude J, et al. 756 Association Between Menopausal Estrogen-Only Therapy and Ovarian Carcinoma Risk. 757 758 Obstet Gynecol. 2016;127(5):828-36. 759 79. Beral V, Gaitskell K, Hermon C, Moser K, Reeves G, Peto R. Menopausal hormone use and ovarian cancer risk: individual participant meta-analysis of 52 760

761 epidemiological studies. Lancet. 2015;385(9980):1835-42.

762 80. Pearce CL, Templeman C, Rossing MA, Lee A, Near AM, Webb PM, et al.

Association between endometriosis and risk of histological subtypes of ovarian cancer:

a pooled analysis of case-control studies. Lancet Oncol. 2012;13(4):385-94.

765 81. Kurman RJ, Shih le M. Molecular pathogenesis and extraovarian origin of

repithelial ovarian cancer--shifting the paradigm. Hum Pathol. 2011;42(7):918-31.

767 82. Jarboe EA, Folkins AK, Drapkin R, Ince TA, Agoston ES, Crum CP. Tubal and

ovarian pathways to pelvic epithelial cancer: a pathological perspective. Histopathology.

769 2009;55(5):619.

Figure 1: Association Between Offspring Sex and Epithelial Ovarian Cancer (EOC) among Participants in 12 Population-Based, Case-Control Studies in Australia, Europe, and North America from 1989-2010.

	D		N gave birth to at least one boy		N gave birth to at least one		Odds Ratio (All cancer),
Study F	Region	in controls	in controls	boy in cases	boy in cases		Random (95% Cl
JSC (USA	362	1308	212	902	.	1.17 (0.95, 1.44)
AUS /	Australia	233	972	218	914		1.11 (0.89, 1.40)
NCO I	USA	207	700	206	706 -	•	1.07 (0.84, 1.37)
HOP (USA	315	1207	146	508 -	•	0.94 (0.73, 1.20)
HAW (USA	181	715	128	483 —	•	1.06 (0.80, 1.41)
ι οאנ	UK	180	648	98	342 —	<u>.</u>	1.05 (0.76, 1.45)
CON U	USA	105	348	90	283 —	•	1.09 (0.76, 1.56)
SON (Canada	88	379	82	243	#	0.76 (0.53, 1.10)
FOR (Canada	48	233	164	690 —	<u>.</u>	1.04 (0.71, 1.52)
GER (Germany	125	306	75	136	4	0.70 (0.47, 1.05)
NJO I	USA	92	275	41	116 —		1.12 (0.69, 1.82)
гво (USA	23	51	18	71 —	↓ •	1.53 (0.60, 3.89)
Overall	(I-square	d = 0.0%, p =	0.565)			\$	1.04 (0.95, 1.13)

Β.

		never gave	birth to at	never gave	gave birth to		Odds
		birth to a boy	least one boy	birth to a	at least one		Ratio (Mucinous),
Study	Region	in controls	in controls	boy in cases	boy in cases		Random (95% CI)
HAW	USA	181	715	25	86	_	1.14 (0.67, 1.94)
USC	USA	362	1308	19	63	*	0.92 (0.52, 1.64)
AUS	Australia	233	972	16	108	<u>+</u>	<u> </u>
TOR	Canada	48	233	23	103	<u>_</u>	1.34 (0.73, 2.46)
NCO	USA	207	700	14	68	 •	2.27 (1.16, 4.45)
SON	Canada	88	379	12	48	• ¦	0.81 (0.40, 1.67)
HOP	USA	315	1207	10	30		0.97 (0.43, 2.17)
UKO	UK	180	648	11	28		1.17 (0.51, 2.69)
GER	Germany	125	306	9	18 —	•	0.77 (0.30, 1.99)
CON	USA	105	348	6	31		→ 1.70 (0.66, 4.41)
Overal	I (I-squared	d = 5.7%, p = 0	.389)			\Diamond	1.25 (1.00, 1.56)
NOTE:	Weights a	re from random	effects analysi	s			

Footnote: Results presented according to study site and overall and are adjusted for age at diagnosis/reference date (continous), race (Black, White, Asian, Other), duration of oral contraceptive use (never, less than 1 years, 1-4 years, 5-9 years, and more than 10 years) and number of full-term pregnancies (1, 2, 3, 4, 5+). Association for (a) EOC in general and for (b) the mucinous histotype.

Click here to access/download;table;Table 1.pdf

Response Rate % Controls, n(%) All cancer, n(%) Mucinous, n(%)							Response Rate %	Rate %	-			Controls	Controls, n(%)			Controls, n(%) All cancer, n(%)	All cancer, n(%)	
7	Region	Study Name	Study Period	Study Type	Method of Data Collection	Matching Variables	Cases (Controls	num pa	Total number of parous women ²	Age (years), mean (SD)	Age Never (years), gave mean birth to (SD) a boy	Age (years), gave gave mean birth to birth to (SD) a boy a boy	Age Age Never Ever Never (years), gave gave gave gave for a birth to birth	Age Never Ever (years), gave gave mean birthto birthto (SD) a boy a boy	Age Age Never Ever Never Ever Adjusted (years), gave gave gave OR mean birth to birth to birth to birth to birth to (95% CI) a boy a boy a boy a boy model ³	Age (years), (SD)Never Bave birth toNever Bave birth toNever Bave Bave birth toNever 	Age Age Never Ever Never Ever Adjusted (years), gave gave gave OR mean birth to birth to birth to birth to birth to (95% CI) a boy a boy a boy a boy model ³
AUS	Australia	a Australian Ovarian Cancer Study	2002-2005	Population-based	Self-administered questionnaire	Age (5-year categories)	84	47	2337		57.9 (11.1)	233 (19.3)		233 (19.3)	233 972 218 914 (19.3) (80.7) (19.3) (80.7)	233 972 218 914 (19.3) (80.7) (19.3) (80.7)	233 972 218 914 1.11 16 (19.3) (80.7) (19.3) (80.7) (0.89, 1.40) (12.9)	233 972 218 914 (19.3) (80.7) (19.3) (80.7)
CON	USA	Connecticut Ovarian Cancer Study	1998-2003	Population-based	In-person interview	Age (3 age groups: 35-49 years, 50-64 years, and 65-79 years)	69	61	826		55.70 (10.96)	55.70 105 (10.96) (23.2)		105 (23.2)	105 348 90 283 (23.2) (76.8) (24.1) (75.9)	105 348 90 283 (23.2) (76.8) (24.1) (75.9)	105 348 90 283 1.09 6 (23.2) (76.8) (24.1) (75.9) (0.76, 1.56) (16.2)	105 348 90 283 (23.2) (76.8) (24.1) (75.9)
GER	Germany	y Germany Ovarian Cancer Study	1993-1996	Population-based	Self-administered questionnaire	Age and study region	58	51	642		56.3 (10.6)	125 (29.0)		125 (29.0)	125 306 75 136 (29.0) (71.0) (35.6) (64.5)	125 306 75 136 (29.0) (71.0) (35.6) (64.5)	125 306 75 136 0.70 9 (29.0) (71.0) (35.6) (64.5) (0.47, 1.05) (33.3)	125 306 75 136 (29.0) (71.0) (35.6) (64.5)
HAW	USA	Hawaii Ovarian Cancer Case- Control Study	1993-2008	Population-based	In-person interview	Age (5-year categories, race/ethnicity)	78	80	1507		56.5 (13.9)	181 (20.2)		181 (20.2)	181 715 128 483 (20.2) (79.8) (21.0) (79.0)	181 715 128 483 1.06 (20.2) (79.8) (21.0) (79.0) (0.80, 1.41)	181 715 128 483 1.06 25 (20.2) (79.8) (21.0) (79.0) (0.80, 1.41) (22.5)	181 715 128 483 1.06 (20.2) (79.8) (21.0) (79.0) (0.80, 1.41)
НОР	USA	Hormones and Ovarian Cancer Prediction Study	2003-2008	Population-based	In-person interview	Age (5-year categories), Race, Telephone prefix	71	68	2176		59.4 (12.4)	315 (20.7)		315 (20.7)	315 1207 146 508 (20.7) (79.3) (22.3) (77.7)	315 1207 146 508 0.94 (20.7) (79.3) (22.3) (77.7) (0.73, 1.20)	315 1207 146 508 0.94 10 (20.7) (79.3) (22.3) (77.7) (0.73, 1.20) (25.0)	315 1207 146 508 0.94 (20.7) (79.3) (22.3) (77.7) (0.73, 1.20)
NCO	USA	North Carolina Ovarian Cancer Study	1999-2008	Population-based	In-person interview	Age (5-year categories, race/ethnicity)	67	60	1819		56.5 (11.0)	207 (22.8)		207 (22.8)	207 700 206 706 (22.8) (77.2) (22.6) (77.4)	207 700 206 706 (22.8) (77.2) (22.6) (77.4)	207 700 206 706 1.07. 14 (22.8) (77.2) (22.6) (77.4) (0.84, 1.37) (17.1)	207 700 206 706 (22.8) (77.2) (22.6) (77.4)
NIO	USA	New Jersey Ovarian Cancer Study	2002-2008	Population-based	In-person interview	No matching	47	40	524		62.4 (11.1)	92 (25.1)		92 (25.1)	92 275 41 116 (25.1) (74.9) (26.1) (73.9)	92 275 41 116 (25.1) (74.9) (26.1) (73.9)	92 275 41 116 1.12 2 (25.1) (74.9) (26.1) (73.9) (0.69, 1.82) (40.0)	92 275 41 116 (25.1) (74.9) (26.1) (73.9)
SON	Canada	Southern Ontario Ovarian Cancer Study	1989-1993	Population-based	In-person interview	Age (3 age groups: 35-49 years, 50-64 years, and 65-79 years)	71	65	792		56.7 (11.7)	88 (18.8)		88 (18.8)	88 379 82 243 (18.8) (81.2) (25.2) (74.8)	88 379 82 243 (18.8) (81.2) (25.2) (74.8)	88 379 82 243 0.76 12 (18.8) (81.2) (25.2) (74.8) (0.53, 1.10) (20.0)	88 379 82 243 (18.8) (81.2) (25.2) (74.8)
тво	USA	Tampa Bay Ovarian Cancer Study	2000-present	Population-based	In-person interview	Age (5-year categories, race)	68	60	163		61.3 (10.2)	23 (31.1)		23 (31.1)	23 51 (68.9) 18 71 (31.1) 51 (68.9) (20.2) (79.8)	23 51 (68.9) 18 (31.1) 51 (68.9) (20.2)	23 51 (68.9) 18 71 1.53 0 (31.1) 51 (68.9) (20.2) (79.8) (0.60, 3.89) (0.0)	23 51 (68.9) 18 71 1.53 (31.1) 51 (68.9) (20.2) (79.8) (0.60, 3.89)
TOR1	Canada	Familial Ovarian Tumour Study (FOTS) AND Health Watch (HW)	FOTS: 1995- 1999 and 2000- 2003; HW: 1995-	Population-based	In-person interview	Age (5-year categories)	50	80	1135		57.3 (12.2)	48 (17.1)		48 (17.1)	48 233 164 690 (17.1) (82.9) (19.2) (80.8)	48 233 164 690 (17.1) (82.9) (19.2) (80.8)	48 233 164 690 1.04 23 (17.1) (82.9) (19.2) (80.8) (0.71, 1.52) (18.3)	48 233 164 690 (17.1) (82.9) (19.2) (80.8)
UKO	UK	United Kingdom Ovarian cancer Population Study	2006-2010	Hospital-based	In-person interview	No matching	86	97	1268	_	63.5 (8.0)	180 (21.7)		180 (21.7)	180 648 98 342 (21.7) (78.3) (22.3) (77.7)	180 648 98 342 1.05 (21.7) (78.3) (22.3) (77.7) (0.76, 1.45)	180 648 98 342 1.05 11 (21.7) (78.3) (22.3) (77.7) (0.76, 1.45) (28.2)	180 648 98 342 1.05 (21.7) (78.3) (22.3) (77.7) (0.76, 1.45)
USC	USA	Los Angeles County Case- Control Studies of Ovarian Cancer	1993-2009	Population-based	In-person interview	Age (5-year categories, race/ethnicity)	73	73	2784		56.9 (11.2)	362 (21.7)		362 (21.7)	362 1308 212 902 (21.7) (78.3) (19.0) (81.0)	362 1308 212 902 1.17 (21.7) (78.3) (19.0) (81.0) (0.95, 1.44)	362 1308 212 902 1.17 19 (21.7) (78.3) (19.0) (81.0) (0.95, 1.44) (23.2)	362 1308 212 902 1.17 (21.7) (78.3) (19.0) (81.0) (0.95, 1.44)
Pooled			ı						15973	ω		58.0 1959 (11.6) (71.5)	58.0 1959 (11.6) (21.5)	58.0 1959 7142	58.0 1959 7142 1478 5394 (11.6) (71.5) (78.5) (71.5) (78.5)	58.0 1959 7142 1478 5394 1.04	58.0 1959 7142 1478 5394 1.04 147 (11.6) (21.5) (78.5) (78.5) (78.5) (78.5) (20.0)	58.0 1959 7142 1478 5394 1.04 (11.6) (21.5) (78.5) (21.5) (78.5) (0.95.1.13)

³ Adjusted for age at diagnosis/reference date (continous), race (Black, White, Asian, Other), duration of oral contraceptive use (never, less than 1 years, 1-4 years, 5-9 years, and more than 10 years) and number of full-term pregnancies (1, 2, 3, 4, 5+)

table 1

table 2

	Europe, and North A		-•
	Controls (N=9101)		P-Value
	n (%)	(%)	
Age, years, mean (SD)	57.5 (11.8)	58.6 (11.3)	< 0.0001
Race			0.42
White	7544 (83.0)	5633 (82.2)	
Black	331 (3.6)	269 (3.9)	
Asian	331 (3.6)	276 (4.0)	
Other	880 (9.7)	677 (9.9)	
Education			<0.001
Less than High School	1233 (15.5)	1336 (22.4)	
High School	2530 (31.9)	1958 (32.9)	
Post High School Training	1964 (24.8)	1419 (23.8)	
College Graduate	1194 (15.1)	710 (11.9)	
Post graduate	1011 (12.7)	535 (9.0)	
Body Mass Index (BMI) at 18, kg/n	n^2		0.064
<18.5	1246 (16.3)	792 (15.4)	
18.5-24.9	5689 (74.3)	3788 (73.8)	
25-29.9	551 (7.2)	429 (8.4)	
≥30	168 (2.2)	121 (2.4)	
Recent Body Mass Index (BMI), kg	/m^2		
<18.5	108 (1.67)	68 (1.50)	0.006
18.5-24.9	2874 (44.43)	1906 (42.07)	
25-29.9	1975 (30.53)	1370 (30.24)	
≥30	1512 (23.37)	1187 (26.2)	
Duration of Oral Contraceptive Use	e, years		<0.001
0	3031 (33.7)	2917 (43.0)	
<1	1203 (13.4)	1070 (15.8)	
1-4	1986 (22.1)	1277 (18.8)	
5-9	1466 (16.3)	894 (13.2)	
10+	1316 (14.6)	619 (9.1)	
Number of Full Term Pregnancies	()		<0.001
1	1493 (16.4)	1356 (19.7)	
2	3659 (40.2)	2632 (38.3)	
3	2282 (25.1)	1664 (24.2)	
4	1010 (11.1)	726 (10.5)	
4 5+	657 (7.2)	494 (7.2)	
Endometriosis	037 (7.2)	<i>→J</i> +(/.∠)	<0.001
No	0201 (01 E)	6190 (02 E)	~0.001
	8381 (94.5) 485 (5.5)	6180 (92.5) 501 (7.5)	
Yes Smoking Status	485 (5.5)	501 (7.5)	0.22
Smoking Status		2206 (52 4)	0.33
Never Smoker	4426 (54.7)	3206 (53.4)	

Table 2. Characteristics of Participants in the Ovarian Cancer Association Consortium (Australia, Europe, and North America), 1989-2010¹

Former Smoker	1171 (14.5)	902 (15.0)	
Current Smoker	2501 (30.9)	1894 (31.6)	
Acne or Hirsutism or Polycystic ova	ry syndrome (PCOS)		0.004
No	3906 (77.1)	2831 (79.7)	
Yes	1157 (22.9)	720 (20.3)	
Irregular periods			0.001
No	5692 (81.3)	4079 (83.6)	
Yes	1308 (18.7)	798 (16.4)	
Age at Menarche			
<13 years	4068 (44.96)	2972 (43.51)	0.069
≥13 years	4981 (55.04)	3859 (56.49)	
Family History of Breast or Ovariar	Cancer in first-relative		<0.001
No	7516 (85.4)	4846 (80.7)	
Yes	1285 (14.6)	1156 (19.3)	

⁺ Missing data are as follows: race 15 controls, 17 cases; education 1169 controls, 914 cases; BMI at 18 1447 controls, 1742 cases; recent BMI 2632 controls, 2341 cases; duration of oral contraceptive use 99 controls, 95 cases; endometriosis 235 controls, 191 cases; smoking 1003 controls, 870 cases; acne or hirsutism or PCOS 4038 controls, 3321 cases; irregular period 2101 controls, 1995 cases; age at menarche 52 controls, 41 cases; family history of breast or ovarian

Та	table 3
Table 3: Ac	ω
Adjuste	
d Poole	
d Odds	
Ratios f	
djusted Pooled Odds Ratios for the Associa	
ssociati	
ation Betwee	
/een Offspr	
spring S	
ex and I	
:pithelia	
nd Epithelial Ovarian Cancer Amon	
n Cancei	
^r Among	
Parous	
Women	
with O	
nly Singl	Click I
eton Bir	nere to a
ths in th	access
ong Parous Women with Only Singleton Births in the Ovarian Cancer Association	Click here to access/download;table;Table 3.pc
in Cance	oad;tat
r Assoc	ole;Tab
iation	ile 3.pc

					Conso	rtium (Austra	Consortium (Australia, Europe, and North America), 1989-2010	and Nor	th America),	1989-2010						
	Controls		All Cancers			HGSOC			Mucinous			Clear cell			Endometriod	ğ
	N(%)	Cases, n (%)	Cases, n Adjusted OR ¹ (%) (95% Cl)	Adjusted OR ² (95% Cl)	Cases, n (%)	Cases, n Adjusted OR ¹ (%) (95% Cl)	Adjusted OR ² (95% Cl)	Cases, n (%)	Cases, n Adjusted OR ¹ (%) (95% Cl)	Adjusted OR ² (95% Cl)	Cases, n (%)	Cases, n Adjusted OR ¹ (%) (95% Cl)	Adjusted OR ² (95% Cl)	Cases, n (%)	Adjusted OR ¹ (95% Cl)	Adjusted OR ² (95% Cl)
Gave birth to a boy																
Never	1959 (21.5)	1478 (21.5)	ref	ref	548 (20.4)	ref	ref	147 (20.0)	ref	ref	88 (23.7)	ref	ref	181 (23.4)	ref	ref
Ever	7142 (78.5)	5394 (78.5)	1.05 (0.96, 1.14)	1.06 (0.93, 1.21)	2135 (79.6)	1.06 (0.94, 1.20)	1.03 (0.87, 1.22)	587 (80.0)	1.25 (1.02, 1.54)	1.45 (1.01, 2.07)	283 (76.3)	1.14 (0.87, 1.49)	1.06 (0.70, 1.61)	593 (76.6)	1.03. (0.85, 1.25)	1.06 (0.78, 1.44)
Gave hirth to all house																
Cave billing an boys																
No	7077 (77.8)	5257 (76.5)	ref	ref	2133 (79.5)	ref	ref	521 (71.0)	ref	ref	269 (72.5)	ref	ref	589 (76.1)	ref	ref
Yes	2024 (22.2)	1615 (23.5)	0.99 (0.91, 1.08)	1.02 (0.90, 1.16)	550 (20.5)	0.91 (0.81, 1.02)	0.96 (0.82, 1.13)	213 (29.0)	1.29 (1.07, 1.55)	1.35 (0.99, 1.84)	102 (27.5)	1.02 (0.79, 1.31)	0.90 (0.60, 1.35)	185 (23.9)	0.93 (0.77, 1.13)	0.80 (0.58, 1.10)
Number of boys																
No boy	1959 (21.5)	1478 (21.5)	ref	ref	548 (20.4)	ref	ref	147 (20.0)	ref	ref	88 (23.7)	ref	ref	181 (23.4)	ref	ref
1 boy	3826 (42.0)	2910 (42.3)	1.04 (0.95, 1.13)	1.05 (0.92, 1.20)	1130 (42.1)	1.08 (0.95, 1.22)	1.04 (0.87, 1.24)	309 (42.1)	1.16 (0.93, 1.44)	1.31 (0.90, 1.91)	186 (50.1)	1.20 (0.91, 1.57)	1.19 (0.78, 1.82)	339 (43.8)	1.03. (0.84, 1.26)	1.07 (0.78, 1.48)
2 boys	2244 (24.7)	1723 (25.1)	1.09 (0.98, 1.21)	1.12 (0.96, 1.31)	683 (25.5)	1.05 (0.90, 1.22)	1.05 (0.86, 1.29)	193 (26.3)	1.56 (1.20, 2.02)	1.84 (1.18, 2.87)	74 (20.0)	1.00 (0.70, 1.42)	0.70 (0.39, 1.24)	195 (25.2)	1.10 (0.86, 1.41)	1.11 (0.75, 1.64)
3 or more boys	1072 (11.8)	761 (11.1)	0.99 (0.86, 1.15)	0.93 (0.75, 1.16)	322 (12.0)	0.95 (0.77, 1.16)	0.86 (0.65, 1.13)	85 (11.6)	1.55 (1.08, 2.23)	2.31 (1.24, 4.29)	23 (6.2)	0.75 (0.43, 1.31)	0.75 (0.34, 1.67)	59 (7.6)	0.68 (0.47, 1.00)	0.54 (0.29, 1.02)
P for Trend			0.90	0.65		0.56	0.32		0.006	0.005		0.24	0.28		0.08	0.07
Continuous ³																
number of boys	9101 (100.0) 9101	6872 (100.0) 6872	0.93 (0.90, 0.96) 0 92	0.91 0.87, 0.96) 0 91	2683 (100.0) 2683	0.95 (0.91, 0.99) 0 96	0.93 (0.87, 0.99)	734 (100.0) 734	1.03 (0.95, 1.11) 0.88	1.02 (0.88, 1.17) 0 80	371 (100.0) 371	0.70 (0.62, 0.80) 0 73	0.73 (0.60, 0.88) 0.81	774 (100.0) 774	0.81. (0.74, 0.88) 0 85	0.80 (0.70, 0.91) 0 88
number of girls	(100.0)	(100.0)	(0.89, 0.95)	(0.87, 0.96)	(100.0)	(0.92, 1.00)	(0.90, 1.02)	(100.0)	(0.81, 0.96)	(0.69, 0.94)	(100.0)	(0.64, 0.82)	(86	(100.0)	(0.78, 0.92)	(0.77, 1.00)
Fraction of births that were boys, per 25% increase ⁴	9101 (100.0)	6872 (100.0)	1.01 (0.99, 1.04)	1.01 (0.98, 1.05)	2683 (100.0)	1.00 (0.96, 1.03)	1.00 (0.95, 1.04)	734 (100.0)	1.09 (1.03, 1.16)	1.13 (1.03, 1.24)	371 (100.0)	1.01 (0.94, 1.09)	0.98 (0.87, 1.09)	774 (100.0)	1.00 (0.95, 1.06)	0.97 (0.89, 1.06)

Among with exactly 1 birth Girl 742 (49.7 Boy 751 (50.3 Boy 873 (23.9	742 (49.7) 751 (50.3) 751 s births 873 (23.9)	651 (48.0) 705 (52.0) (52.0) (52.2)	ref 1.02 (0.88, 1.20) ref	ref (0.87, 1.41) ref	230 (52.0) 212 (48.0) 217 217 (21.4)	Stra ref 0.96 (0.76, 1.20) ref	Stratified by number of birth episodes ⁵ ref 71 ref 1.06 95 1.22 0) (0.77, 1.47) (57.2) (0.86, 1.7) ref 56 ref ref 56 ref	er of biri 71 (42.8) 95 (57.2) (57.2) 56 (19.4)	1	th episodes ⁵ ref 1.22 (0.86, 1.72) ref	th episodes ⁵ ref ref 1.22 1.31 (0.86, 1.72) (0.73, 2.34) ref ref	2)	ref 45 1.31 (43.7) 2) (0.73, 2.34) (56.3) ref 29 ref 29	ref 45 (43.7) 2) (0.73, 2.34) (56.3) (0. ref 29 ref 29	ref 45 1.31 (43.7) 2) (0.73, 2.34) (56.3) ref 29 ref 29	ref 45 ref ref (43.7) 1.31 (2) (0.73, 2.34) (56.3) (0.80, 1.86) (0.79, 3.15) ref 29 ref ref
ong women with exa	ctly 2 births															
No boy	873 (23.9)	558 (21.2)	ref	ref	217 (21.4)	ref	ref	56 (19.4)	ref		ref		29 (19.5)	29 (19.5) ref	29 ref ref (19.5)	29 ref ref 76 (19.5) (24.4)
1 boy	1924 (52.6)	1423 (54.1)	1.14 (1.00, 1.30)	1.02 (0.84, 1.25)	564 (55.6)	1.20 (1.00, 1.44)	1.01 (0.78, 1.30)	146 (50.7)	1.16 (0.83, 1.61)	÷	1.27 (0.71, 2.25)	1.27 87 (0.71, 2.25) (58.4)	1.27 87 1.30 (0.71, 2.25) (58.4) (0.84, 2.01)	1.27 87 1.30 1.00 (0.71, 2.25) (58.4) (0.84, 2.01) (0.52, 1.90)	1.27 87 1.30 (0.71, 2.25) (58.4) (0.84, 2.01)	1.27 87 1.30 1.00 (0.71, 2.25) (58.4) (0.84, 2.01) (0.52, 1.90)
2 boys	862 (23.6)	651 (24.7)	1.15 (0.99, 1.35)	1.12 (0.89, 1.40)	233 (23.0)	1.07 (0.86, 1.33)	1.01 (0.75, 1.36)	86 (29.9)	1.58 (1.10, 2.28)	28)	1.89 28) (1.02, 3.52)	1.89 33 (1.02, 3.52) (22.1)	1.89 33 1.15 (1.02, 3.52) (22.1) (0.69, 1.93)	1.89 33 1.15 0.61 (1.02, 3.52) (22.1) (0.69, 1.93) (0.27, 1.42)	1.89 33 1.15 0.61 69 (1.02, 3.52) (22.1) (0.69, 1.93) (0.27, 1.42) (22.2)	1.89 33 1.15 (1.02, 3.52) (22.1) (0.69, 1.93)
P for trend			0.07	0.35		0.56	0.95		0.01		0.04	0.04	0.04 0.59		0.59	0.59
Among women with exactly 3 births	ctly 3 births															
No boy	262 (11.5)	209 (12.6)	ref	ref	79 (11.4)	ref	ref	15 (9.3)	ref	-	f		ref	ref 12 (15.6)	ref 12 (15.6) ref	ref 12 (15.6) ref ref
1 boy	822 (36.0)	562 (33.8)	0.86 (0.69, 1.08)	0.91 (0.66, 1.27)	250 (36.1)	1.02 (0.75, 1.37)	1.06 (0.69, 1.62)	53 (32.9)	1.21 (0.65, 2.26)	L .26)	2.08 (0.59, 7.35)	2.08 28 (0.59, 7.35) (36.4)	2.08 28 0.71 (0.59, 7.35) (36.4) (0.35, 1.42)	2.08 28 0.71 0.82 (0.59, 7.35) (36.4) (0.35, 1.42) (0.27, 2.51)	2.08 28 (0.59, 7.35) (36.4)	2.08 28 0.71 0.82 (0.59, 7.35) (36.4) (0.35, 1.42) (0.27, 2.51)
2 boys	874 (38.3)	682 (41.0)	0.97 (0.78, 1.20)	0.97 (0.70, 1.34)	277 (40.0)	1.03 (0.77, 1.39)	1.10 (0.72, 1.66)	68 (42.2)	1.52 (0.83, 2.81)	.81)	2.33 (0.67, 8.09)		2.33 27 0.66 (0.67, 8.09) (35.1) (0.33, 1.34)	2.33 27 0.66 0.54 (0.67, 8.09) (35.1) (0.33, 1.34) (0.17, 1.71)	2.33 27 (0.67, 8.09) (35.1)	2.33 27 0.66 0.54 (0.67, 8.09) (35.1) (0.33, 1.34) (0.17, 1.71)
3 boys	324 (14.2)	211 (12.7)	0.82 (0.63, 1.06)	0.79 (0.54, 1.18)	87 (12.6)	0.89 87 (12.6) (0.62, 1.29)	0.92 (0.55, 1.52)	25 (15.5)	1.44 (0.72, 2.89)	.89)	2.59 (0.66, 10.10)	2.59 10 (0.66, 10.10) (13.0)	2.59 10 0.63 (0.66, 10.10) (13.0) (0.26, 1.50)	2.59 10 (0.66, 10.10) (13.0)	2.59 10 0.63 (0.66, 10.10) (13.0) (0.26, 1.50)	2.59 10 0.63 0.55 (0.66, 10.10) (13.0) (0.26, 1.50) (0.13, 2.22)
P for trend			0.23	0.31		0.57	0.78		0.22		0.16			0.16	0.16 0.28	0.16 0.28

¹ Adjusted for study sites, age at diagnosis/reference date (continous), race (Black, White, Asian, Other), duration of oral contraceptive use (never, less than 1 years, 1-4 years, 5-9 years, and more than 10 years) and number of full-term pregnancies (1, 2, 3, 4, 5+); Two hundrad twenty three women with missing data in race or oral contraceptive use were excluded from the analysis.

² Further adjsuted for endometriosis (yes, no), smoking (ever, never), acne or hirsutism or PCOS (yes, no), irrgular periods (yes, no), recent BMI (<18.5, 18.5-24.9, 24.9-30, 230), and age at menarche (<13 years).

³ Models did not adjust for total number of full term pregnancies

⁴ Models adjust for total number of full term pregnancies as a continous variable

⁵ Adjusted for study sites, age at diagnosis/reference date (continous), race (Black, White, Asian, Other) and duration of oral contraceptive use (never, less than 1 years, 1-4 years, 5-9 years, and more than 10 years)

s Ratios for the Association Between Offspring Sex and Mucinou istory of Estrogenic Conditions Among Parous Women with Only <u>Association Consortium (Australia, Europe, and North America), 1</u> Age at Menarche <13 years Adjusted OR Controls Cases Adjusted OR Controls Cases Adjusted OR NI%) NI%)				Births in the Ovaria	Ovarian Cancer Str	Table 4: Adjusted H	
os for the Association Between Offspring Sex and Mucinous Epithelial of Estrogenic Conditions Among Parous Women with Only Singleton ation Consortium (Australia, Europe, and North America), 1989-2010 ¹ Menarche <13 years Adjusted OR Controls Cases Adjusted OR Cases Adjusted OR Controls Cases Adjusted OR	N(%)	Controls	Age at	an Cancer Associa	atified by History	² ooled Odds Rati	
Association Between Offspring Sex and Mucinous Epithelial nic Conditions Among Parous Women with Only Singleton ortium (Australia, Europe, and North America), 1989-2010 ¹ 13 years Adjusted OR Age at Menarche ≥13 years Adjusted OR Controls Cases Adjusted OR (95% CI) N(%) N(%) (95% CI)	N(%)	Cases	Menarche <1	ation Conso	of Estroge	os for the /	
een Offspring Sex and Mucinous Epithelial mong Parous Women with Only Singleton Europe, and North America), 1989-2010 ¹ Age at Menarche ≥13 years Controls Cases Adjusted OR	(95% CI)	Adjusted OR	L3 years	ortium (Australia,	nic Conditions A	Association Betw	
Sex and Mucinous Epithelial Vomen with Only Singleton North America), 1989-2010 ¹ t Menarche ≥13 years Cases Adjusted OR	N(%)	Controls	Age a	Europe, and I	<mark>nong Parous V</mark>	een Offspring S	
cinous Epithelial h Only Singleton ica), 1989-2010 ¹ 13 years Adjusted OR	N(%)	Cases	<mark>t Menarche</mark> ≥	North Amer	Vomen witl	ex and Mu	
	(95% CI)	Adjusted OR	13 years	ica), 1989-2010 ¹	h Only Singleton	cinous Epithelial	

Births in the Ovarian Cancer Association Consortium (Australia, Europe, and	Cancer Assoc	iation Conso	rtium (Australia	, Europe, and	North Americ	North America), 1989-2010 ¹
	Age a	Age at Menarche <13 years	3 years	Age	at Menarche ≥13 years	3 years
	Controls	Cases	Adjusted OR	Controls	Cases	Adjusted OR
	N(%)	N(%)	(95% CI)	N(%)	N(%)	(95% CI)
Gave birth to a boy						
Never	916 (22.52)	56 (18.24)	ref	1032 (20.72)	91 (21.46)	ref
Ever	3152 (77.48)	251 (81.76)	1.71 (1.23, 2.38)	3949 (79.28)	333 (78.54)	0.99 (0.76, 1.30)
P for interaction			0.02			
Gave birth to all boys						
Not all boys	3124 (76.79)	205 (66.78)	ref	3913 (78.56)	314 (74.06)	ref
All boys	944 (23.21)	102 (33.22)	1.55 (1.18, 2.04)	1068 (21.44)	110 (25.94)	1.08 (0.83, 1.40)
P for interaction			0.08			
No. of boys						
No boy	916 (22.52)	56 (18.24)	ref	1032 (20.72)	91 (21.46)	ref
1 boy	1663 (40.88)	132 (43.00)	1.54 (1.09, 2.18)	2137 (42.90)	176 (41.51)	0.94 (0.71, 1.24)
2 boys	1010 (24.83)	86 (28.01)	2.34 (1.55, 3.53)	1222 (24.53)	105 (24.76)	1.16 (0.82, 1.63)
3 or more boys	479 (11.77)	33 (10.75)	2.24 (1.27, 3.98)	590 (11.85)	52 (12.26)	1.20 (0.75, 1.93)
P for trend			0.002			0.32
P for interaction			0.10			
Number of boys ²	1919 (100.00)	132 (100.00)	1.04 (0.92, 1.18)	4981 (100.00)	424 (100.00)	1.01 (0.90, 1.12)
P for interaction			0.51			
Number of girls ²	1919 (100.00)	132 (100.00)	0.79 (0.69, 0.91)	4981 (100.00)	424 (100.00)	0.94 (0.84, 1.05)
P for interaction			0.02			
Fraction of births that						
were boys,						
25% increase ³	1919 (100.00 <mark>)</mark>	132 (100.00)	1.18 (1.09, 1.28)	4981 (100.00 <mark>)</mark>	424 (100.00)	1.03 (0.95, 1.11)

² Adjsuted for each other ¹ Adjusted for study sites, age at diagnosis/reference date (continous), race (Black, White, Asian, Other), duration of oral contraceptive use (never, less than 1 years, 1-4 years, 5-9 years, and more than 10 years) and number of full-term pregnancies (1, 2, 3, 4, 5+)

³ Models adjust for total number of full term pregnancies as a continous variable

0
=
~
ดี
Ĩ.
here to
G
ດນ
ត
8
8
Ś
access/downloa
9
≥
2
S.
B
-77
ad;tal
<u>o</u>
<u>.</u>
<u>a</u>
2
Ø
Table 5.pdf
g
뎍
14
μŦ

	History of Acne or Hirsutism or PCOS	Births in the Ovarian Cancer Association Consortium (Australia, Europe, and North America), 1989-2010	Ovarian Cancer Stratified by History of Androgenic Conditions Among Parous V	Table 5: Adjusted Pooled Odds Ratios for the Association Between Offspring Sex and Endometrioid Epithelial	
Controlo	No history	, Europe, anc	Among Parous	en Offspring S	
C	y of Acne or Hi	l North Amei	s Women wit	ex and Endo	
	of Acne or Hirsutism or PCOS	rica), 1989-2010 ¹	Women with Only Singleton	metrioid Epithelial	
			J	lia	

Controls Cases Adjusted OR Controls Cases Adjusted OR
N(%) N(%) (95% CI) N(%) N(%) (95% CI)
Gave birth to a boy
Never 253 (21.9) 28 (34.1) ref 832 (21.3) 48 (18.8) ref
54 (65.9) 0.49 (0.28, 0.83) 3074 (78.7)
0.003
Gave birth to all boys
Not all boys 894 (77.3) 65 (79.3) ref 3075 (78.7) 197 (77.3) ref
eraction 0.56
No. of boys
No boy 253 (21.9) 28 (34.1) ref 832 (21.3) 48 (18.8) ref
1 boy 492 (42.5) 27 (32.9) 0.47 (0.27, 0.85) 1606 (41.1) 127 (49.8) 1.69 (1.18, 2.44)
464 (11.9) 16 (6.3)
P for trend 0.21 0.47
P for interaction 0.007
Number of boys ² 1157 (100.0) 82 (100.0) 0.77 (0.60, 0.99) 3906 (100.0) 255 (100.0) 0.82 (0.71, 0.95)
n 0.44
Number of girls ² 1157 (100.0) 82 (100.0) 1.02 (0.81, 1.30) 3906 (100.0) 255 (100.0) 0.80 (0.69, 0.93)
P for interaction 0.03
hat

table 5 **Table**

³ Models adjust for total number of full term pregnancies as a continous variable