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Abstract 

One of the most replicable findings in psychology is that individual differences in cognitive abilities are 

universally positively correlated. The developmental origin of this positive manifold is crucial to its 

understanding. In a large (N = 785) longitudinal (566 both waves, mean interval 1.48 years) cohort of 

adolescents and young adults (age range 14-25) we examined developmental changes in two core cognitive 

domains, fluid reasoning and vocabulary. We use bivariate latent change score models to compare three 

leading accounts of cognitive development: g factor theory, investment theory and mutualism. We show that a 

mutualism model, which proposes that basic cognitive abilities directly and positively interact during 

development, provides the best account of age related changes. We find that individuals with higher scores in 

vocabulary show greater gains on matrix reasoning and vice versa. These dynamic coupling pathways are not 

predicted by other accounts, and provide a novel mechanistic window into cognitive development. 
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Introduction 

Among the most reproducible findings in the literature on general cognitive ability is the positive 

manifold, which captures a pervasive positive correlation between distinct cognitive abilities (Deary, 

2012; Spearman, 1927). This positive manifold allows the extraction of a single factor, often called 

‘g’ (for ‘general intelligence’) that summarizes a considerable proportion of shared variance across 

abilities within a single index. g has remarkable predictive ability for a variety of life outcomes 

including health, income, mortality, mental health, educational attainment and socio-economic 

status (Aichele, Rabbitt, & Ghisletta, 2015; Gottfredson & Deary, 2004; Penke et al., 2012). Although 

the presence of a positive manifold and the g factor as a statistical entity is beyond question, its 

ontology and ontogeny are more contentious. 

One challenge arises out of the fact that the g factor is almost always based on cross-

sectional data, and this can obscure developmental patterns that are not adequately accounted for 

in many influential theories. For instance, van der Maas (2006) has noted that one of the most 

influential modern works on the g factor (Jensen, 1998) fails to address the issue of development. 

This is despite observations of a relatively rapid increase in higher cognitive abilities such as 

reasoning, knowledge and mental speed during adolescence, a trajectory mirrored by an increasingly 

steep decline in old age (Schaie, 1994). Moreover, very different hypotheses regarding the 

underlying nature of g can give rise to mathematically equivalent statistical patterns in cross-

sectional data (van der Maas et al., 2006). 

Here we ask whether a lack of attention to development has limited a comprehensive 

understanding both of the g factor, as well as its development over time. Lifespan changes in 

cognitive abilities provide a crucial inroad into the ontological status of g, enabling one to ask 

whether there truly is an underlying general factor that plays a causal role during cognitive 

development or, alternatively, whether a positive manifold arises out of a more complex 

developmental process. We consider three possible accounts of cognitive development: g factor 

theory, investment theory, and mutualism, each of which provides distinct causal accounts of the 
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emergence of cognitive abilities during development. Crucially, developments in structural equation 

modelling (McArdle, 2009) allow each of these accounts to be translated into psychometric models, 

enabling us to compare them directly using the same longitudinal dataset.   

g-factor theory (Gignac, 2014; Jensen, 1998) posits a single underlying general ability that is 

used in various domains. For example, Gottfredson (2002) states ‘g is a highly general capability for 

processing complex information of any type’. A simple developmental perspective based on the g 

factor proposes that during (early) development, an individual’s general ability increases over time, 

which in turn affects (increases) scores across a variety of abilities that depend directly or indirectly 

on g. A defining feature of this account is an absence of direct causal links between cognitive 

abilities. Evidence for this g factor account comes from Gignac (Gignac, 2014, 2016), who suggested 

that the g factor structure is relatively stable between ages of 2.5 and 10 (Gignac, 2014) and that the 

residual structure of lower cognitive factors (Gignac, 2016) is more compatible with g factor theory 

than competing accounts such as mutualism. Contrary evidence comes from McArdle (McArdle, 

Ferrer-Caja, Hamagami, & Woodcock, 2002), who showed that developmental trajectories across 

abilities vary considerably not just in their developmental order, but also in their shape, concluding 

‘….a single g factor yields an overly simplistic view of growth and change over age’. 

A second influential account is Cattell’s investment theory (Cattell, 1971). This is based on a 

division of cognitive abilities into crystallized (knowledge-based) and fluid abilities (flexible skills not 

dependent on acquired knowledge or skills). The theory makes a central developmental claim, 

namely that fluid abilities are invested in order to acquire crystallized abilities. Recent work 

(Weiland, Barata, & Yoshikawa, 2014) suggests that executive function scores at the beginning of a 

preschool year predict improvements in vocabulary performance at the end of the year but not vice 

versa. A large cross-sectional sample studied (Valentin Kvist & Gustafsson, 2008) found that the 

factor structure of general and fluid abilities within, and across, groups was compatible with 

investment theory. However, findings are ambiguous (Valentin Kvist & Gustafsson, 2008), with 
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others finding no effect (Christensen, Batterham, & Mackinnon, 2013), only the reverse pattern 

(Fuhs & Day, 2011), or an effect only in one cohort (Ferrer & McArdle, 2004). 

A third developmental account is the mutualism model. This model suggests causal 

interactions between multiple basic cognitive abilities across developmental time, such that 

cognitive abilities mutually facilitate growth over time. Under this assumption, developmental 

change will yield a positive manifold even from a starting point of completely uncorrelated cognitive 

abilities. The model predicts positive coupling between multiple basic cognitive abilities across 

(early) development. The strongest empirical evidence for mutualistic processes comes from a 

lifespan cohort study that observed coupling effects between speed and block design, memory and 

vocabulary and digit span and block design and forward digit span (McArdle, Hamagami, Meredith, 

& Bradway, 2000). Similarly, Schmidt and Crano (1974) used cross-lagged panel analysis to test 

investment theory, but found evidence that both crystallised and fluid abilities are related over time, 

concluding investment theory cannot account for this pattern. Contrary evidence from a cross-

sectional sample suggests that an increase in g factor strength expected in the strongest version of 

mutualism is not unambiguously observed (Gignac, 2014).  

Method 

Several challenges preclude strong inferences regarding the best model of cognitive development. 

First, the studies discussed above sample from various points in the lifespan, which may be governed 

by different developmental mechanisms. Second, several reports have relied on statistical 

techniques such as cross-lagged panel models (Schmidt & Crano, 1974) not ideally suited to study 

change (McArdle, 2009). Third, other studies have relied on cross-sectional cohorts which limit the 

range of inferences that can be made (e.g. (Gignac, 2014; Valentin Kvist & Gustafsson, 2008). Most 

importantly, although several studies test specific theories, or compared a subset (Ferrer & McArdle, 

2004; Ghisletta & Lindenberger, 2003; McArdle et al., 2002, 2000) to the best of our knowledge no 

study has yet directly compared these three prominent accounts of development. Our aim in this 

study was to fill this gap by exploiting innovations in structural equation modelling (McArdle, 2009) 
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that are uniquely suited to directly compare these three developmental accounts. To do this we 

exploit data from a large (N = 785, age 14-25) developmental cohort measured on two domain-

representative (crystallized and fluid), standardized tests (WASI matrix reasoning and WASI 

vocabulary). Raw scores are shown in Figure 1, 

descriptive statistics given in Table 1.  

Using a latent change score modelling 

framework we modelled the three theoretical 

accounts of change in cognitive abilities as three 

different versions of the (B)LCS, shown in Figure 2A-

2C, with key parameters in red. First, for the g-factor 

model (Fig 2A) we conceptualize model scores on 

vocabulary and matrix reasoning as a function of an 

underlying g score for each time point. To ensure 

comparability of factor change scores across T1 and 

T2 for the g factor model, we tested for longitudinal 

measurement invariance (Widaman, Ferrer, & 

Conger, 2010). We found that imposing weak 

invariance across time points (factor loadings) led to negligible decrease in model fit (ΔCFI = 0.004) 

(Cheung & Rensvold, 2002). Imposing strong invariance (equality of both factor loadings and 

thresholds) also led to acceptable decrease in model fit (ΔCFI = 0.014). This suggests longitudinal 

measurement invariance is tenable, and we can interpret changes in factor scores accordingly. 

 Second, investment theory implies that scores in fluid abilities (here indexed by matrix 

reasoning) should positively influence the degree of change in crystallized abilities (vocabulary), such 

that individuals with greater fluid ability will, on average, improve more in crystallized abilities than 

peers with lower matrix reasoning scores on T1. This process is modelled by a single coupling 

parameter from matrix scores at T1 on the vocabulary change factor at T2 (Figure 2B in red). Finally, 

Fig. 1. Raw scores on WASI-II matrix reasoning (top) and 

Vocabulary scores (bottom), lines connecting the same 

individual across testing sessions. 
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the mutualism model (2C) predicts bivariate coupling between both cognitive abilities, such that 

higher starting points in vocabulary would lead to larger gains in matrix reasoning and vice versa. In 

all models we add age as a covariate to account for differences in baseline scores, but do not include 

age anywhere else in the model (i.e. we hypothesize that the dynamics of change are fully captured 

by the change dynamics proposed by each theory).  

 

Task N Mean Min Max SD Skewness Excess Kurtosis 

Matrix reasoning T1 785 29.04 14 35 3.18 -0.87 1.33 

Matrix reasoning T2 565 29.63 17 35 2.88 -0.84 0.85 

Vocabulary T1 785 58.57 27 78 7.85 -0.26 0.05 

Vocabulary T2 566 58.99 20 77 7.74 -0.56 1.17 

  

Sample 

As part of the Cambridge-UCL Neuroscience in Psychiatry (NSPN) cohort, we enrolled 785 

participants (402 female; mean age: 19.05, range 14.1 to 24.99 years), shown to be a sufficient 

sample size to fit moderately complex SEM’s with adequate power (e.g. Rast & Hofer, 2014; Wolf, 

Harrington, Clark, & Miller, 2013), with 566 participants tested a second time, on average 1.48 years 

later (range: 0.65 – 2.62 years). Those who returned for a second wave did not differ from those who 

did not on time 1 vocabulary scores (t(366.5)=.27, BF01 = 10.86), time 1 matrix reasoning scores 

(t(361.57)= 0.54, BF01 = 9.64) or sex (χ2 (1)= 0.7254, BF01 = 8.11), current or past treatments for 

emotional, behavioural or mental health problems (current: t(271.6)= -1.47, BF01 = 2.08), past: 

current: t(348.04)= -0.95, BF01 = 6.8) or parental education (mothers school leaving age: t(156.51)= -

0.85, BF01 = 4.93; fathers school departure age: t(159.4)= -0.49, BF01 = 4.93). Those with complete 

data were slightly younger at the time of first testing (M = 18.81) than those who did not (M = 

19.67), t(415.62)= -3.77, BF10 = 64.7, and had slightly higher Barratt Impulsivity Scores (BIS-11; 

Stanford et al., 2009)) (M = 60.52 vs. 63.30, t(389.9)= -3.58, BF10 = 46.77). Implementing either 

Complete Case Analysis or excluding individuals with above cut-off (72) BIS scores did not 

Table 1. Raw scores and key moments for WASI-II matrix reasoning and Vocabulary scores across two waves. 
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meaningfully affect model parameters or model comparisons reported below. The role of age is 

discussed in more detail below. Full ethical approval was provided prior to the study (reference: 

12/EE/0250). Data and code needed to reproduce analyses are available online1.  

Participants were tested on the Wechsler Abbreviated Scale of Intelligence-II (Wechsler, 

2011), consisting of two subtests: Matrix reasoning and Vocabulary knowledge. Matrix reasoning 

measures fluid and visual intelligence by means of a series of incomplete visual matrices, requiring 

participants to pick one out of five options that best completes the matrix. The vocabulary subtest 

measures the breadth of word knowledge and verbal concepts by asking participants to verbally 

define words and describe words or concepts orally presented by the examiner. Both subtests have 

excellent inter-rater reliability (.98 and .95), split half reliability (.90-.92) and concurrent validity (.71-

.92) with comparable tests such as the WISC-IV and WAIS-IV (Wechsler, 2011, key points 

summarized in McCrimmon & Smith, 2013, p. 339). The highly similar reliabilities of the measures 

ensure comparable interpretation of cross-domain effects. Prior to further modeling scores on both 

tests at time 2 were rescaled to equate intervals across individuals using the score difference and 

the inter-test interval, as proposed by Ferrer & McArdle (2004).  

 

Modelling framework 

To tease apart candidate mechanisms of development we fit a series of Latent Change Score 

(LCS) models (Kievit et al., 2017; McArdle & Hamagami, 2001; McArdle et al., 2000). These models 

conceptualize differences between successive measurements as a latent change factor. Crucially, 

this allows us to directly model within subject changes as a function of structural parameters, 

making these models more suitable for our purposes than latent growth curve models or cross-

lagged regressions (McArdle, 2009). The basic equation of the latent change score model specifies 

the score of person i on test Y at time t as a sum of score at time t-1 and a change, or difference, to 

the score at t-1 as follows: 

                                                           
1https://osf.io/rvcph/ 
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(1) 𝑌𝑖,𝑡 = 𝛽𝑡,𝑡−1𝑌𝑖,𝑡−1+Δ 
𝑖,𝑡

 

A key step in the LCS specification is to set the regression weight 𝛽𝑡,𝑡−1 to 1 (McArdle & Hamagami, 

2001), allowing us to rewrite the change scores as follows: 

(2) Δ𝑖,𝑡 = 𝑌𝑖,𝑡 − 𝑌𝑖,𝑡−1 

These change scores are then modelled as perfect indicators of a latent change score factor. 

In case of only one observed variable, or indicator, per construct being available, the latent change 

factor is construed as the difference between these indicators over time. In the absence of coupling 

the intercept of the simple LCS gives approximately identical results as a paired t-test when testing 

for differences across two measurement occasions, but it allows a modelling of two additional 

parameters of considerable theoretical importance: the variance in change scores (i.e. do individuals 

change homogeneously, or not, over time) and the covariance between scores at t-1 and change 

scores. We can extend the basic univariate LCS to a Bivariate Latent Change Score model with 

abilities Y1 and Y2 (McArdle et al., 2002) by modelling the change scores on two domains Y1 and Y2 

(here vocabulary and matrix reasoning) as the function of two processes: a self-feedback process 

(beta) and a coupling process (gamma), as follows: 

(3) Δ𝑌1𝑖,𝑡 = 𝛽1 ∗  𝑌1𝑖,𝑡−1+𝛾12 ∗  𝑌2𝑖,𝑡−1 
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The self-feedback parameter beta is thought to reflect a combination of effects including 

regression to the mean and a dampening effect induced by an end horizon for rapid development 

(i.e. individuals reaching their performance ceiling). The coupling parameter gamma is of special 

importance for several developmental accounts. It captures whether the change in Y1 is determined 

by the t-1 scores in Y2 (and vice versa for Y2), and thus captures the degree to which cross-domain 

change is affected by the level of a cognitive ability in some other domain, above and beyond the 

self-feedback parameter. These gammas are conceptually similar to the M matrix in the mutualism 

model (van der Maas et al., 2006) 

 

Model fit and comparison 

Models were estimated in Lavaan version 5.22 (Rosseel, 2012) using Full Information 

Maximum Likelihood with robust standard errors to account for missingness and non-normality. No 

observations were excluded. We assess overall model fit via the chi-square test, the RMSEA 

(acceptable fit<0.08, good fit <0.05), the CFI (acceptable fit .95-.97, good fit >0.97), the SRMR 

(acceptable fit .05-.10, good fit <0.05) (Schermelleh-Engel, Moosbrugger, & Müller, 2003). We 

Fig. 2A-2C. Three developmental accounts as Latent Change Score models. Defining features include the presence of a 

general factor (A) and the presence of univariate (C) or bivariate (D) coupling parameters. Voc: WASI vocabulary test 

(capturing crystallized abilities), mat: WASI matrix reasoning test (capturing fluid abilities). Key parameters shown dashed. 
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compare model fit using chi-square test (for nested models), information criteria (AIC and BIC) and 

Akaike Weights, which express the relative likelihood of a set of models given the data 

(Wagenmakers & Farrell, 2004). 

Results 

Before fitting the models shown in Figure 2, we fit two univariate latent change score models to 

Vocabulary and Matrix Reasoning scores in order to quantify change within each domain. Both 

models fit the data well: Matrix Reasoning: χ2(1)= 2.59, p = 0.108, RMSEA = 0.045 [0.00 0.114], CFI = 

0.996, SRMR = 0.013, Yuan-Bentler scaling factor= .917; Vocabulary: χ2(1) = 0.033, 

p = 0.85, RMSEA = 0.00 [0.00 0.049], CFI = 1.0, SRMR = 0.001, scaling factor= 1.052). Both models 

show evidence for change over time (unstandardized change score intercepts2: Matrix reasoning = 

10.171, SE = 0.769, z = 13.22, Vocabulary: 9.0, SE = 1.22, z = 7.36), evidence for negative feedback 

(higher scores at T1 are associated with less improvement, compatible with regression to the mean 

and/or developmental ceiling effects; Matrix: -0.331, SE = 0.026, z = -12.82; Vocabulary: -0.147, SE = 

0.21, z = -7.15), and significant evidence for individual differences in change scores (variance of 

Matrix reasoning change scores: 2.85, SE = 0.23, z = 12.73, Vocabulary change scores = 11.67, SE = 

1.11, z = 10.47).  

Having shown, as expected, a growth in scores in both domains, we next fit all three models 

(g factor, investment and mutualism) to determine which provides the best account of longitudinal 

development in these two cognitive domains across two measurement occasions. We use model 

comparison to compare the three models in three ways: overall model fit (cf. Schermelleh-engel et 

al., 2003), by comparing Information Criteria (AIC and BIC) and by computing Akaike weights 

(Wagenmakers & Farrell, 2004), which use differences in AIC to quantify the relative likelihood of a 

model being the best among the set of competitors, given the data. Next, we fit Model B 

                                                           
2Note that these intercept parameters can only be interpreted in the context of the full latent change score 
model that includes age as covariate and the self-feedback pathway. The model implied score increases in the 
absence of coupling are 0.370 (Vocabulary) and 0.559 (Matrix Reasoning), raw scores are shown in Table 1. 
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(investment) and Model C (Mutualism), differing only in the presence of a vocabulary to reasoning 

coupling parameter.  

In Table 2 we report the fit statistics for each of the three competing models. This 

comparison suggests that the mutualism model fits the data best, showing excellent model fit on all 

indices. The two alternative models show comparable model fit among each other, and any 

difference is marginal according to conventional guidelines. As the mutualism model is also the most 

complex model, we plot information criteria (AIC and BIC) for each of the three models to explicitly 

weigh parsimony, as shown in Figure 3A. This comparison shows a superior fit on both indices for the 

mutualism model. Finally, we compute Akaike weights. This measure is based on the difference in 

AIC, and allows us to quantify how likely a model is to be best among a set of competitors given the 

data (cf. 36). These are shown in Figure 3B, illustrating that the mutualism model has by far the 

highest normalized probability (>99.99%) of being the best model given our data. Compared to the 

other two models, the mutualism model is 1.98*107 times more likely to be best model. As the 

investment model is nested within the Mutualism model, we can compare the two with a chi-square 

test, which again shows the mutualism model outperforming the investment model (χ2Δ = 22.75, df 

Δ =1, p < 0.001). 

  χ2 df RMSEA CFI SRMR 

g factor 30.078 3 0.107 [0.077 0.140] 0.979 0.029 

Investment 26.28 3 0.099 [0.068 0.135] 0.982 0.039 

Mutualism 0.132 2 0.000 [0.000 0.020] 1 0.001 

 

Having established the superior fit of the mutualism model, we next investigated its estimated 

parameters in more detail. The full model with all estimated parameters is shown in Figure 4. 

Supplementary Table 1 contains all parameters estimates and 95% confidence intervals. As 

expected, reasoning and vocabulary at T1 are positively correlated, and age at first testing predicts 

scores on both tasks at T1. In addition to significant intercepts (i.e. increasing scores), fixing the 

variance of change scores to 0 led to a substantial drop in model fit (χ2Δ = 83.16, dfΔ =1, p < 0.001 

Table 2. Fit statistics for each of the three models. 
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for matrix reasoning, χ2Δ = 13.44, df Δ = 1, p < 0.001 for vocabulary), suggesting considerable 

individual differences in change between T1 and T2. Crucially, as predicted by the mutualism model, 

both coupling parameters are positive, such that individuals who start out with a higher matrix 

reasoning score improve more on vocabulary, and vice versa. The coupling effect from vocabulary T1 

scores on gains in reasoning score is r = 0.203, for an r2 of 4.1%, and the (fully standardized) estimate 

of reasoning on vocabulary gains is 0.144, for r2 of 2.1%, corresponding to ‘typical’ and ‘small to 

typical’ effects respectively (Gignac & Szodorai, 2016). Together the self-feedback and coupling 

parameters account for 30.8% of the individual differences in matrix reasoning score changes, and 

for 11.7% of the individual differences in vocabulary score changes, illustrating the considerable 

importance of longitudinal kinematics in cognitive development. Even in the presence of the 

bivariate coupling parameters the residual change scores are still positively correlated. This is 

compatible with (although not direct evidence for) additional, unmeasured, cognitive abilities driving 

change in both vocabulary and matrix reasoning ability. Further control analyses suggested the 

mutualism model could be equality constrained across sexes without notable drop in model fit (χ2Δ = 

17.184, df Δ =18, p = 0.51).  

 

 

 

Fig. 3. Information criteria (AIC and BIC) for each of the three models (left), and normalized probabilities for each of the 

three models using Akaike weights (right).  
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Using equation 3 and the estimated parameters of the full model (Figure 4) we can visualize 

the expected change between T1 and T2. Inspired by vector field plots (e.g. Petscher et al. 2016), 

each arrow represents a (hypothetical) bivariate score at T1 (base of each arrow) and model-implied 

expected score at T2 (end of arrow) across a range of possible scores. Figure 5 shows the vector field 

plot and highlights regions where the mutualistic effects are easiest to see. 

 

 

 

 

 

 

Fig. 4. Estimated parameters for best fitting model (mutualism). Values show fully standardized parameter 

estimate above and unstandardized parameter estimates/standard errors below paths. Further details are 

given in Supplementary Table 1. 



14 
 

 

 

Although analytic work (van der Maas et al., 2006) has demonstrated that a g factor may 

arise through mutualism even in the complete absence of individual differences at the beginning of 

development, we think it most likely that g-factor and mutualistic processes operate in tandem. For 

example, it may be that children show (smaller or larger) consistent individual differences from very 

early ages (e.g. Gignac, 2014), which are then amplified by developmental processes such as 

mutualism. This is in line with previous suggestions of gene-environment interactions (Briley & 

Tucker-Drob, 2013, p. 7) whereby initial differences lead to a ‘reciprocal feedback loop between the 

phenotype and the environment’  that serve to amplify initial differences (Briley & Tucker-Drob, 

2013; see also Dickens et al., 2001), a phenomenon observed even in genetically identical mice 

Figure 5: Dynamic change plot. Each dot represents a random subset of raw data at T1, and each arrow represents a model-
implied change between T1 and T2. We highlight two sections illustrating mutualism. The blue rectangle (left to right) 
highlights the positive benefit of higher vocabulary scores on expected change in fluid abilities: The far left arrow is flat, 
indicating no expected improvement, whereas the far right arrow is pointed upwards, indicating an expected gain of 
approximately 2.5 points for those with high vocabulary starting scores. Similarly, the red rectangle (top to bottom) 
illustrates negligible expected vocabulary improvement for low matrix reasoning ability (bottom arrow), but considerable 
expected vocabulary improvement for those with high reasoning starting scores (top arrow). The ellipse shows the 90% 
confidence interval for the raw data – model-implied change is most reliable within this region. 
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(Freund et al., 2013). Such models can also reconcile the high heritability of higher cognitive abilities 

(Briley & Tucker-Drob, 2013) with considerable environmental impacts, and may serve to partially 

reconcile more puzzling facts about heritability and cultural load of cognitive tasks (Kan, Wicherts, 

Dolan, & van der Maas, 2013).  

The role of age 

In the model above we included age as a linear covariate predicting key scores to account for 

individual differences due to age at T1 (we discuss alternative parametrizations of age in the 

discussion). This reflects a hypothesis that age affects scores at T1, but that all aspects of 

development over time can be captured within the model. Allowing age to directly predict change 

scores did not improve model fit (χ2Δ = 0.13, dfΔ =2, p = .93), in line with this hypothesis. Notably, 

this does not necessarily imply that cognitive development occurs at the same rate across 

development. The decelerating improvement in late adolescence age is captured by the negative 

self-feedback parameter in reasoning and vocabulary. A second analytic choice is to assume a linear 

effect of age on scores at T1. An age squared term as predictor of scores at T1 could be fixed to 0 

without decrease in model fit (χ2Δ = 3.79, dfΔ =2, p = .15) suggesting a linear term suffices. Third, 

above we include age as a predictor of the raw vocabulary and matrix reasoning scores at T1 for the 

mutualism and investment model, but only allow age to predict the g factor in the g model (under 

the assumption that this factor captures the ‘true’ shared variance). Although this is in line with the 

conceptualisation proposed here, we wanted to ensure this analytic choice did not (dis)favour the g 

model artificially. We therefore fit two additional versions of the g factor model, by including age 

either as a covariate of only the observed scores at T1 (alternative A), or as covariates of both the 

observed scores and the g factor (alternative B). The mutualism model was preferred to all three 

conceptualisations of the g model (ΔBIC: 28.94 (original g factor model), ΔBIC 46.17 (alternative A); 

ΔBIC 7.09 (alternative B). Together, these analyses suggest that a linear effect of age is sufficient 

within this sample, that differences in change scores are not affected by age beyond the indirect 
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effect, and that the mutualism model provides a compelling account of dynamic processes during 

cognitive development. 

Discussion 

In a large (N = 785) development cohort we compared three competing accounts that could explain 

age-related changes in key cognitive abilities. Using model comparison of data from a sample of 

adolescents and young adults, we show that mutualism outperforms alternative accounts based on 

g factor and investment theory. Specifically, we find evidence for bivariate coupling between matrix 

reasoning (as an index of fluid abilities) and vocabulary (as an index of crystallized abilities), such 

that higher starting points in one cognitive domain are associated with greater developmental gains 

in the other domain. Our findings refine our understanding of cognitive development in several 

ways. They suggest that covariance between cognitive abilities is, at least in part, a consequence of a 

developmental process rather than a single underlying causal entity g. Our data provide strong 

evidence that a model of intellectual development that omits coupling parameters is incomplete.  

We can hypothesize several mechanisms to explain the coupling parameters, both direct and 

indirect. One direction pathway may be that a greater facility with vocabulary and verbal skills allows 

for swifter, more accurate decomposition into such rules, as well as lower working memory 

demands for maintenance, especially in younger adults. A more indirect pathway, in line with gene-

environment correlations mentioned previously, is that greater vocabulary may be an easily 

detectable marker of high cognitive ability, which leads to environmental feedback effects in the 

form of more academically challenging classes or environments to support perceived ability in a 

manner that generalized to other domains. A final, intriguing possibility is that traditionally fluid 

tasks such as matrix reasoning may in fact reflect a hybrid of purely fluid abilities (or learning 

potential) with more strategic, verbal components akin to crystallized abilities (Kühn & Lindenberger, 

2016). This would explain both the lifespan trajectories of fluid abilities and the considerable secular 

gains in fluid abilities in the 20th century (Flynn, 1987). 



17 
 

Our findings suggest a need for a shift away from a narrow focus on desirable cognitive end 

goals (i.e. adequate performance on abilities such as vocabulary or mathematics) and the 

incorporation of a simultaneous view across abilities that may have less intrinsic interest, but are 

essential in their capacity to support successful development. For example, skills such as processing 

speed or working memory may be less important in isolation, but may have coupling to other 

cognitive skills across the lifespan (Kail, 2007) which in turn may affect later life socioeconomic 

outcomes. In other words, to facilitate early detection and possibly even effective intervention, it 

may pay off to focus on abilities that have the strongest coupling strengths, rather than solely on 

desirable outcomes that are currently below some desirable threshold. For example, Quinn et al. 

(2015) used dynamic models to show that vocabulary was a leading indicator of gains in reading 

comprehension, but not vice versa. Such a finding offers insight into the causal pathways of children 

with reading difficulties, as well as informing appropriate interventions. Similarly, disruptions to 

typical development were observed by Ferrer et al. (2010) showing that within a subgroup with 

dyslexia (or ‘persistently poor readers’), the coupling between IQ and reading ability observed in 

typical groups was absent. This suggests not only a possible mechanism for developmental disorders, 

but shows how multivariate longitudinal models can allow for early detection of developmental 

challenges that are likely to self-reinforce over time.  

Although we compare various developmental models and quantify longitudinal coupling, our 

sample has certain limitations. First and foremost, we focus on two cognitive subtests alone, yielding 

a relatively simplistic g model. Although both are well validated, have highly similar reliabilities and 

represent broad cognitive domains, it will be desirable in future studies to represent cognitive 

abilities by more than one indicator variable, and to sample a wider range of cognitive abilities. Our 

sample was measured on two occasions, and undoubtedly measurement on more occasions would 

allow a more precise decomposition of kinetics and kinematics, such as the modelling of lead-lag 

relations using bivariate dual change score models (e.g. Ghisletta & Lindenberger, 2003). Here we 

show that baseline scores are positively associated with cross-domain rates of change. With three or 
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more waves it is possible to use the change scores at T themselves to predict the change scores at 

T1. Moreover, if age is sampled at sufficient frequency, it is possible to examine latent changes as a 

function of age itself (∆𝑌𝑎𝑔𝑒𝑖), rather than as testing occasion (∆𝑌𝑡𝑖), obviating the need for 

covariates by ‘binning’ individuals’ scores into age bins and estimating models using methods that 

account for missingness (e.g. Grimm, An, McArdle, Zonderman, & Resnick, 2012; Voelkle & Oud, 

2017). 

An additional challenge with repeated measures data is improvement in test scores due to 

practice effects, which may inflate developmental gains or attenuate age-related decline (Lövdén, 

Ghisletta, & Lindenberger, 2004; Rabbitt, 2001; Salthouse & Tucker-Drob, 2008). Although in our 

sample practice effects may have led to greater increases between T1 and T2, it is unlikely that these 

effects impact our conclusions regarding mutualism. First, such practice effects will lead to an 

increase in test scores that are a combination of true (developmental) gains and increases due to 

practice effects (although see (Lövdén et al., 2004) on the interpretation of practice effects). 

Notably, if one interprets the gains between T1 and T2 as a combination of ‘true’ gains and practice 

effects, this would entail an underestimate of the mutualism effect (as the effect size reflects the 

prediction on the total gains rather than the non-practice related gains). In principle, a sufficiently 

large number of time points spaced at unequal retest intervals would allow for a decomposition of 

re-test effects, but both practical challenges as well as the inherent collinearity of re-test occasions 

with time intervals has proved methodologically challenging (Hoffman, Hofer, & Sliwinski, 2012). 

Finally, we observe our effects in adolescents and young adults, limiting the generalizability 

to this developmental period alone. We hypothesize that the coupling effects we observe are likely 

to be stronger earlier in life, and the self-feedback parameters weaker, as developmental change in 

higher cognitive abilities is most rapid in during pre- and early adolescence. The other end of the 

lifespan provides for several intriguing questions. It is conceivable that mutualism only occurs during 

early development, with other processes and mechanisms taking over after initial peaks are reached. 

However, we suggest that studying later life decline from the perspective of mutualism might prove 
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a promising avenue of future work. If dynamic coupling is crucial for maintenance of cognitive 

abilities in later life, this may explain why declines are often strongly correlated (see Ghisletta & 

Lindenberger, 2003; Tucker-Drob, 2011 for further exploration of this hypothesis). Large longitudinal 

cohorts using similar tests across the entire lifespan will allow for the investigation of possible 

‘regime changes’ within the same cohort.  

Future work should study multi-wave, multi-domain cognitive data using principled model-

selection methods to better fully capture the underlying dynamics of cognitive development. Data of 

high temporal resolution would allow us to move beyond group level dynamics of individual 

differences to the ultimate goal, namely that of estimating individual differences in intra-individual 

dynamics over time. The investigation of individual coupling parameters across domains, and across 

the lifespan, is likely to yield a wealth of information on cognitive development in health and 

disease. The recent convergence of novel modelling techniques, large scale data gathering facility via 

tools such as smartphones and the integration of behavioural datasets with data from neural and 

genetic sources of evidence together promise to provide new insight into some of the most elusive, 

yet fundamental, questions in cognitive psychology. 
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Regressions Estimate se z-value p-value lower 95%  CI upper 95% CI 

t1ssmatrix~Age 0.135 0.037 3.626 <0.001 0.062 0.207 

t1ssvocab~Age 0.742 0.087 8.5 <0.001 0.571 0.913 

etamat~T1Vocabulary 0.051 0.011 4.829 <0.001 0.031 0.072 

etamat~T1Matrix -0.374 0.028 -13.559 <0.001 -0.428 -0.32 

etavoc~T1Matrix 0.163 0.048 3.396 0.001 0.069 0.257 

etavoc~T1Vocabulary -0.169 0.021 -7.92 <0.001 -0.211 -0.127 

       

(Co)Variances       

etamat~~etamat 2.727 0.214 12.723 <0.001 2.307 3.147 

T1Matrix~~T1Matrix 9.946 0.647 15.372 <0.001 8.678 11.214 

etavoc 11.445 1.106 10.349 <0.001 9.278 13.613 

T1Vocabulary~~T1Vocabulary 56.75 3.112 18.236 <0.001 50.651 62.85 

T1Matrix~~T1Matrix 9.946 0.647 15.372 <0.001 8.678 11.214 

Age~~Age 8.723 0.305 28.615 <0.001 8.126 9.321 

etavoc~~etamat 0.561 0.236 2.378 0.017 0.099 1.023 

T1ssmatrix ~~  T1Vocabulary 8.486 0.967 8.776 <0.001 6.591 10.381 

       

Intercepts       

etamat 8.403 0.8 10.507 <0.001 6.835 9.97 

t1ssmatrix 26.476 0.728 36.388 <0.001 25.05 27.902 

etavoc 5.54 1.558 3.555 <0.001 2.486 8.595 

age1 19.052 0.105 180.74 <0.001 18.846 19.259 

t1ssvocab 44.428 1.645 27.009 <0.001 41.204 47.652 

 

 

 

 

 

 

 

 

Supplementary Table 1. Raw parameter estimates and confidence intervals 
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