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ABSTRACT

Familial hypercholesterolaemia (FH) is a monogenically inherited disorder of
lipoprotein metabolism caused by a mutation in the low density lipoprotein receptor
gene (LDLR). However in a few individuals, the defect lies in the gene for
apolipoprotein B (APOB), the ligand for the LDL-receptor, and this is called familial
defective apolipoprotein B-100 (FDB), while in others the receptor function is
apparently normal and the defect must lie elsewhere. Mutation studies are the most
practical way in which one can identify the cause of heterozygous
hypercholesterolaemia.

A genetic diagnostic service for FH has been established and the various aspects of
setting up are described, with unusual cases being reported. The mutations identified
are described and mutation detection rates were calculated for groups of paediatric and
adult probands from the UK. The feasibility of alternative mutation screening methods
and the specificity and sensitivity of reducing the number of tests has been assessed

from the results obtained over the last four years.

A quantitative fluorescent multiplex PCR screen was adapted to analyse LDLR
rearrangements which would improve the genetic diagnosis of FH individuals. One
assay based on exons 1, 8, 10, 12 and 16 were optimised and tested on known major
rearrangements. A group of FH probands from the USA were then analysed with this
multiplex assay. The inter and intra-assay variation were very wide, so a second
method was designed to overcome these problems, universal primer quantitative
fluorescent multiplex PCR (UPQFM-PCR). The multiplex set developed analysed
exons 3, 5, 8, 14, and 17 of LDLR, and the method could also be used to detect major
rearrangements in other genes. The method was evaluated by conducting a trial on 15
reported deletions and duplications. Two groups of FH patients from the UK were
screened with this UPQFM-PCR assay.

The influence of LDLR & APOB mutations on the cholesterol-lowering response of the
HMG-CoA reductase inhibitor simvastatin was investigated in patients with
heterozygous FH. Data suggest that there may be a difference in cholesterol-lowering
between ‘severe’ and ‘mild’ LDLR mutations.

Future developments and transferring the findings into a clinical genetic service are

discussed.
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Chapter 1: Introduction

1.1. Coronary heart disease

Cardiovascular disease is the main cause of death in the UK, accounting for nearly
300,000 deaths per year. As in the rest of the developed world, this represents
approximately 26% of all deaths. It is the major cause of premature death in both
sexes, although there are differences. Males are affected more often, one in three men
are affected compared to one in four women, but disease also occurs at an earlier age.
The origins of coronary heart disease (CHD) lie in the development of atherosclerosis, a
process which may begin in childhood. Many common multifactorial diseases such as
hypertension, hyperlipidaemias, diabetes and obesity contribute to the development of
CHD. Together these cost the National Health Service (NHS) approximately £1.5
billion a year, most of which is spent on treatment and surgery and only 1% is spent on
health promotion and prevention (Betteridge & Morrell, 1998).

Clinical investigations of CHD patients manifesting qualitative or quantitative
abnormalities of the plasma lipoproteins have led to the current knowledge of lipid
metabolism. Discoveries of major gene mutations affecting the apolipoproteins, the key
enzymes that control lipid transport, and the cellular receptors that recognise specific
apolipoproteins, have contributed greatly to the understanding of lipoprotein
metabolism. Despite these advances the basis of population variation in lipoprotein
concentrations remains poorly understood. Genetic and environmental factors interact
in the development of CHD in humans. The genetic factors may be divided into two
groups; firstly there are single gene defects, such as familial hypercholesterolaemia
(FH), and secondly compiex disorders where a combination of genetic variants in one
or more genes combine to have a cumulative effect in predisposing an individual to
CHD. Since FH is the primary research focus of this thesis, general aspects of CHD
and risk factors will be related to FH where possible. The molecular cause of most
monogenic disorders have been discovered but there are many factors which influence
the severity of the phenotype. Often these factors can be altered, and may be
activated/enhanced by particular events in the environment such as diet, smoking, stress
and physical inactivity. Extensive research has been undertaken to elucidate the risk
factors involved in the aetiology of atherosclerosis and CHD but little is known about
the gene:gene or gene:environment interactions in multifactorial coronary disorders.
Some associations have been identified but large, long-term epidemiological studies are
required to dissect further factors.



1.2. Atherosclerosis

In recent years much has been leamnt about the atherosclerotic process which can be
divided into three main stages; the formation of the fatty streak, the fibrous plaque and
finally the complicated lesion (reviewed by Stary et al, 1994, Libby et al, 1996; Allen,
1998). The initial injury to the endothelium primarily occurs at the branch points of
arteries where specific adhesive glycoproteins appear on the surface of endothelial cells.
Monocytes and T-lymphocytes attach to these cells, migrate between them and embed in
the sub-endothelial space. All of these processes are influenced by growth regulatory
molecules and chemoattractants released by the altered endothelium, the adherent
leukocytes and smooth muscle cells (reviewed by Ross, 1993). The monocytes acquire
the characteristics of macrophages, which engulf lipid and become lipid-laden foam
cells. The foam cells, the T-cells and the smooth muscle cells form a fatty streak, the
initial lesion of atherosclerosis. They can occur in the aorta as early as three years old
and usually by the age of 15 in the coronary arteries. Fatty streaks can regress, slowing
the atherosclerotic process, but the next stage is irreversible. The lesions continue to
accumulate more cells, the macrophages scavenge more lipids and some of the foam
cells migrate back into the bloodstream by pushing the endothelial cells apart. These
areas may then become thrombogenic leading to the aggregation of platelets and thrombi
formation (reviewed by Ross, 1999). The thrombi can release various growth
regulators and cytokines leading to the formation of a fibrous plaque (reviewed by
Libby et al, 1996). Calcification, necrosis, thrombosis and ulceration may cause the
plaque to become a complicated lesion giving rise to the clinical symptoms of
atherosclerosis, ischaemia and infarction from thrombosis and thromboembolism. One
or more of the branches of the coronary artery may be narrowed to less than 25% of its
original diameter. The major lipid constituent (45%) of this advanced lesion is
cholesterol, derived almost entirely from the blood and not from local synthesis
(reviewed by Allen, 1998).

Goldstein & Brown showed that the low density lipoprotein (LDL) taken up by
monocytes was chemically modified and that the process appeared to be receptor-
mediated. The receptor was named the scavenger receptor and it lacks down-regulatory
mechanisms which would function to prevent overload when cellular cholesterol
increases (Brown & Goldstein, 1983). Later it was shown by studying the effects of
antioxidants in experimental atherosclerotic animals that the in vivo LDL modification
was peroxidation (Steinberg et al, 1989). Antioxidants inhibit LDL modification, reduce
LDL uptake into the arterial wall and this stems the atherosclerotic process. Oxidised
LDL may contribute to atherosclerosis in many ways, direct cytotoxicity to arterial
endothelium, stimulation of monocyte adhesion and monocyte chemotaxis and
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interaction with the coagulation system through increased expression of thromboplastin
and plasminogen activator inhibitor-1 (PAI-1) (Robbie et al, 1996). These effects
promote the activation of the coagulation cascade (reviewed by Heinecke, 1998).

The susceptibility of LDL to oxidation may be explained by LDL structure. Four
subclasses, divided according to their size, density and lipoprotein content, can be
separated by density gradient ultracentrifugation (Krauss & Burke, 1982). In healthy
subjects the most abundant IDI. subclass is LDL-II although women have
proportionately more of the larger, less dense LDL-I particles than men whilst men have
more of the smaller, denser LDL-III particles. Itis the LDL-III particles that have been
strongly related to CHD (Austin ef al, 1988) and possible explanations include the
slower fractional catabolic rate of dense LDL and its increased susceptibility to
oxidation.

1.3. Risk factors in coronary heart disease ,
Over the last decade many CHD risk factors have been determined which has probably
contributed to the decline in CHD in the western world. Intervention against
hypercholesterolaemia with view to the reduction of CHD morbidity and mortality has
been shown to be effective. Gradually genetic and environmental risk factors are being
identified through large epidemiological studies such as the Framingham Heart study
and the USA Multiple Risk Factor Intervention study (MRFIT) (reviewed by LaRosa et
al, 1990). These factors, summarised below in Table 1.1, include both modifiable and
non-modifiable factors, with most having genetic and non-genetic components.

Table 1.1; Modifiable and non-modifiable factors associated with increased CHD risk.

Non-modifiable risks

Age

Modifiable risk factors
Hyperlipidaemia (especially high LDL-c,
low HDL and high triglyceride, low HDL)

Hypertension Sex

Diabetes mellitus and impaired glucose Family history of CHD
intolerance

Smoking Personal history of CHD

Excess alcohol consumption

Physical inactivity

Coagulation factors

|| Pyschosocial factors i

Risk factors seldom occur in isolation and tend to cluster in individuals. For example,

individuals with low HDL and high triglyceride may also have truncal obesity,
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hypertension and impaired glucose tolerance with hyperinsulinaemia, which collectively
form the insulin resistance syndrome (Reaven 1988). The effect of the risk factors is
often multiplicative but for several risk factors there are no clearly defined threshold

levels at which increased risk begins.

1.3.1. Non-modifiable risk factors

1.3.1.1. Age

The relative risk of CHD declines with age evident in polygenic hypercholesterolaemia
as well as FH, for example in the Multiple Risk Factor Intervention Trial (MRFIT) there
was an ~8-fold increase in cholesterol in ages 35-39 years falling to 2.4-fold in men
aged 55-57 (Stamler ez al, 1986). The relative risk of fatal CHD is 100-fold greater in
young heterozygous FH adults aged 20-39, although patients who survived through
middle age appear to no longer to be at a substantially increased relative risk (Simon
Broome Steering Committee, 1991 &1999).

1.3.1.2. Gender

Males are more susceptible to CHD mortality than females (4:3 ratio) throughout the
world and although the ratio decreases with age it does not disappear (Slack, 1969).
The rate of increase of CHD rises equally in men and women after the menopause, but
women still appear to lag ten years behind men in the presentation of CHD and this
continues to beyond the age of 75. For women with FH, aged 20-39, despite
treatment, the relative risk of a fatal coronary event was increased 125-fold and the
annual coronary mortality was 0.17% whilst in men aged 20-39 the relative risk was
increased 48-fold and the annual coronary mortality was 0.46% (Simon Broome
Steering Committee, 1999). The annual coronary mortality for men and women aged
60-70 was 1.1% representing a significant excess in mortality for women (relative risk
2.6) but not for men (relative risk 1.1) (Simon Broome Steering Committee, 1999).
Examining other risk factors, women tend to have higher cholesterol levels, blood
pressure, fibrinogen levels, are more obese and have more diabetes than men.
Favourable factors include higher HDL levels throughout their life, lower triglyceride
levels, less central obesity and a protective effect from oestrogens.

1.3.1.3. Family history of CHD

Family history reflects genetic and environment risk factors which are hard to
differentiate. The Framingham heart study showed that even after excluding the clear
contributions from patients with genetic hyperlipidaemias, a history of CHD in parents
is associated with a 30% increased risk (LaRosa et al, 1990).



1.3.1.4. Personal history of CHD

Patients with a history of CHD are at increased risk of further events. One study over a
10-year period showed the risk of dying from CHD was increased more than 20 times
in men with previous MI (Pekkanen et al, 1990). Although the personal history of
CHD cannot be changed, modifiable risk factors, discussed later can slow the

progression of atherosclerosis.

1.3.2. Modifiable risk factors

1.3.2.1. Total and LDL-cholesterol

Hypercholesterolaemia was one of the earliest identified risk factors for CHD (Kannel
etal, 1971). For any individual cholesterol levels are determined by a combination of
genetic and environmental components and are potentially modifiable. Clinical trials
have demonstrated that cholesterol lowering will reduce the occurrence of new CHD
events and CHD mortality. A 10% reduction in total cholesterol has been found to
correspond to a 20% reduction in CHD risk even at low levels in an individual on a
western diet (5.0-4.5mmol/l) (Smith ez al, 1993). Lipid-lowering drugs (section 1.9)
delay CHD and slow or halt the atherosclerotic process (Scandinavian Simvastatin
Survival Study (4S), 1994).

1.3.2.2. High density lipoprotein

High density lipoprotein (HDL) was shown in the 1970’s to be a powerful and
independent predictor of CHD and this has been confirmed in all recent studies e.g. in
the Framingham Heart study (Schaefer et al, 1994). The relationship is inverse, low
levels of HDL being associated with increased risk of CHD. The relationship is
particularly important in women. Low levels of HDL often reflect obesity, smoking,
lack of exercise or impaired glucose tolerance but genetic influences may also be
responsible. Levels below 0.9mmol/l in men and below 1.1lmmol/l in women are
negative risk factors whilst levels greater than 1.5mmol/l in men and greater than
1.7mmol/l in women are protective (Schaefer et al, 1994).

1.3.2.3. Triglycerides

Evidence for triglycerides as an independent risk factor has been hard to determine
(reviewed by Gotto, 1998). Triglyceride levels are subject to greater measurement
variability and patients must fast for 18 hours to obtain a reliable estimate. HDL shows
a strong, inverse correlation with triglycerides and studies that take into account or
adjust for HDL usually find no independent association for triglycerides. In the
Framingham heart study, individuals with high triglyceride in the presence of low HDL
seemed to be at increased CHD risk (Castelli, 1992). Evidence from clinical studies
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such as the PROCAM (Prospective Cardiovascular Munster) study (Assmann et dl,
1998) have linked hypertriglyceridaemia with potentially important atherogenic factors;
intermediate density lipoprotein (IDL), small dense LDL and increased cholesteryl ester
exchange. This may provide a greater understanding of atherogenesis and provide
potential sites for therapeutic intervention (reviewed by Durrington, 1998; Sprecher,
1998).

1.3.2.4. Lipoprotein (a)

Elevated plasma lipoprotein (a) [Lp(a)] is an independent risk factor for the
development of premature CHD (Bostom et al, 1996). In the Framingham heart study
elevated Lp(a) had a similar attributable risk as a total cholesterol level of 6.2mmol/l or
more, or an HDL level less than 0.9mmol/l (Bostom et al, 1996). Lp(a) is composed of
lipid, apoB-100 and glycoprotein [apo(a)]. There is considerable sequence homology
between apo(a) and its close neighbour on chromosome 6 (<50kb), plasminogen.
Lp(a) contains one kringle 5-like domain, a serine protease domain and 12-51 tandem
repeats resembling the fourth kringle of plasminogen (reviewed by Utermann, 1995).
Several different electrophoretic isoforms of apo(a) have been reported, the size of
which varies from 400,000-700,000 daltons, due to the number of kringle 4-like units
(Lackner et al, 1993). Family studies showed that the apo(a) isoforms are inherited as
an autosomal quantitative genetic trait (Utermann et al, 1987). The lower the number of
repeats the higher the plasma Lp(a) levels (Boerwinkle et al, 1992). Variation at the
APO(a) locus affects plasma Lp(a) levels but it only explains approximately 90% of the
variability of this trait (Boerwinkle et al, 1992), thus additional genes and/or
environmental factors may affect Lp(a) levels.

1.3.2.5. Homocysteine

Elevated plasma homocysteine is another independent risk factor for CHD (Boushey et
al, 1995). Homocysteine in the plasma arises solely from the breakdown of the dietary
amino acid methionine. Dietary homocysteine does not appear, under normal
circumstances, to influence plasma homocysteine so the level of plasma homocysteine
is rigorously controlled and kept within a narrow range in normal subjects. The plasma
level of homocysteine is dependent on genetically regulated levels of essential enzymes
and the dietary intake of their cofactors, folic acid, vitamin B6 and vitamin B12.
Impaired renal function, increasing age and pharmacological agents (e.g. nitrous oxide,
methotrexate) can also contribute to increased levels of homocysteine (reviewed by
Duell & Malinow, 1997). The mechanism of the involvement of homocysteine in
atherogenesis may include promotion of platelet activation and enhanced coagulability,

increased smooth muscle cell proliferation, cytotoxicity, induction of endothelial
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dysfunction, and stimulation of LDL oxidation (reviewed by Duell & Malinow, 1997).
Folate supplementations and pharmacological doses of vitamin B12 may normalise and
reduce homocysteine levels but further research is required to determine the efficacy of
this intervention in reducing morbidity and mortality associated with atherosclerotic
vascular disease (Malinow et al, 1997).

1.3.2.6. Angiotensin-converting enzyme

Circulating levels of angiotensin-converting enzyme (ACE) in humans are linked with
an insertion (I)/deletion (D) polymorphism in the ACE gene: DD individuals have
higher levels of ACE than either ID or Il individuals. Controversy exists as to whether
the ACE DD genotype increases the risk of CHD. Studies have suggested that the DD
genotype is associated with increased plaque instability and possible mechanisms
include interactions with neointimal formation, coronary artery spasm and coronary
thrombosis (Salmani et al, 1996). ACE inhibitors are used in patients with heart failure
and hypertension and may be useful in the prevention of MI and stroke (reviewed by
Yusuf & Lonn, 1998).

1.3.2.7. Thrombogenic factors

The role of thrombogenic factors in the development of unstable angina, MI and sudden
death was not clearly established until the early 1980’s. The Northwick Park Heart
Study (Meade et al, 1986) demonstrated a positive relationship between fibrinogen and
CHD. High fibrinogen levels are most common in smokers (10% higher) and the rise
is proportional to the number of cigarettes smoked. Factors VII (Meade et al, 1986;
Junker et al, 1997) and VIII (Meade et al, 1986) and low fibrinolytic activity (Hamsten
et al, 1985) have also been associated with CHD. Plasma fibrinogen is not routinely
measured in CHD risk assessment but has been shown to increase blood viscosity and
platelet aggregation which leads to plaque thrombosis (Ernst & Resch, 1993).

1.3.2.8. Hypertension

Hypertension has been established as one of the major independent risk factors for
CHD (reviewed by Kannel, 1996; Schwartz & Sheps, 1999). The consequences of
hypertension are stroke, heart disease leading to heart failure, renal vascular disease and
peripheral vascular disease. Lipid risk factors coexist in the hypertensive individual
more often than by chance even when confounding variables are taken into account.
Hypertension is a continuous variable and the higher the level, the greater the
cardiovascular risk. It is a reversible risk factor, although there is a strong genetic
component, but in most cases it is treatable (MacMahon ef al, 1986).










































































































































































































































































































































































































































































































































































































































































































































































































































































































































