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Abstracf 

Foraminiferal oxygen and carbon stable isotope measurements have become an 

indispensable part of palaeoceanography. It is therefore important to understand and to 

improve the reproducibility of these measurements. We have estimated the 

reproducibility of oxygen and carbon stable isotopes of the planktic foraminifera, 

Globigerina bulloides and Neogloboquadrina pachyderma (sinistral) and the benthic 

foraminifera Uvigerina peregrina. To obtain stable isotope results from planktic 

foraminifera with a reproducibility of better than ±0.2%0 we suggest that: (1) tests 

should be picked from discrete size fractions of less than ±25µrn standardised for each 

species and ocean, and (2) that at least 30 tests are measured per sample. Isotope 

measurement of individual tests of the benthic foraminifera U. peregrina heavier than 

25 µg give good reproducibility. Below 25 µg both standards and measurements of 

individual tests show a deviation of up to 0.7%0 from the the 95% confidence limits of 

larger samples. This we believe is due to a memory effect in the mass spectrometer 

source. This effect can be reduced by allowing a longer pumping out time of at least 

100 seconds between the standard and sample gas measurements. This, however, 

increases measurement time to 20 minutes per sample, and it can not guarantee 

reproducible ol3C as there are vital effects associated with growth below 25 µg. 

1 



Maslin & Hall (1997) 

INTRODUCTION 

Oxygen and carbon isotope analysis has become one of the most important tools 

in the study of palaeoceanography (e.g., Shackleton & Opdyke, 1973 and 1976; 

Shackleton, 1976; Shackleton & Pisias, 1985; Duplessy et al., 1988; Curry et al., 

1988; Duplessy et al., 1993). Over the last decade there has been a significant 

improvement in mass-spectrometer technology measurement with reasonable machine 

accuracy of stable isotopes on single foraminifera tests. 

There are, however, practical limits to the interpretation of isotopic 

measurements on small numbers of foraminifera because of the effects of ontogeny, 

seasonality, sampling and bioturbation. It is imperative that these limits are explored, 

as stqble isotopes are now being employed beyond interglacial-glacial stratigraphy: For 

example oxygen isotopes, can be used to calculate local changes in sea surf ace salinity 

(Duplessy et al., 1991, 1992 and 1993; Maslin, et al., 1995a). For the North East 

Atlantic it has been shown that an analytical error of± 0.1 %0 in 8 1 So represents a 

possible error of up to ±0.3%0 in the salinity estimate (Maslin, et al., 1995a). As the 

maximum salinity shift recorded in the North East Atlantic is 3%o this represents an 

error of ±10%, similarly carbon isotopes, can be used to calculated the carbon shift 

from the oceans to the terrestrial biosphere since the Last Glacial Maximum (LGM). 

An error of ±0.1 %0 in the 813c can cause an error of± 120 GtC, which represents an 

error of between ±10% and ±20% (Maslin et al., 1995b). 

We present here experimental stable isotope results from both planktic and 

benthic foraminifera to determine: (1) the optimum test weight or size, and (2) the 

number of foraminifera tests, which should be measured to obtain reasonable 

reproducibility. 

METHOD 

For this study, material was used from a piston core, BOFS SK (50°41.3'N, 

21 °51.9'W, water depth 3547 m) recovered from the East Thulean Rise in the North 

East Atlantic (McCave, 1989; Maslin, 1993; Manighetti, 1993). The core was sampled 
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in slices of 1 cm thickness. Alternate samples were disaggregated by soaking and 

gentle shaking in distilled water overnight, then washed through a 63µm sieve. After 

washing, the coarse fraction was oven dried at 60°C and weighed. Samples were then 

dried sieved at discrete size fractions and foraminifera picked out for isotope analysis. 

The planktic foraminifera species Globigerina bulloides (d'Orbigny) and 

Neogloboquadrina pachyderma (Ehrenberg) (left coiling = s ) were picked from 

depths where their abundances were greatest to minimise the effect of bioturbation 

(Maslin, 1993): G. bulloides (30%) at 0-1 cm during the late Holocene, and N. 

pachyderma (s) (92%) at 82-83 cm during the LGM. The benthic foraminifera 

Uvigerina peregrina was picked from 187-188 cm (mid Marine Isotope Stage 3) where 

they were in abundance (Thomas et al., 1995). The samples were analysed in a VG 

PRISM mass-spectrometer using a VG ISOCARB automatic common acid bath 

containing 100% orthophosphoric acid at 90°C. The sample CO2 and reference gases 

are admitted to the mass-spectrometer for analysis alternating between them 12 times. 

The average result is then coITected for instrumental effects and for the nature of the 

mass spectra, calibrated by Craig (1957). The results were then calibrated to PDB 

using the standard NBS 19 (U.S. National Bureau of Standards). See Figure 1 for 

summary of the method. 

PLANKTIC FORAMINIFERA 

Test Size Effect 

Planktonic foraminifera display greater isotopic variation than benthics, due to 

the wider range of water mass that they can inhabit and because of vital effects caused 

by symbionts (Wefer, 1983; Wefer & Berger, 1991). The stable isotopic composition 

of planktic foraminifera changes with test size, due to alteration in habitat, with 

ontogeny and changes in metabolic activity (Berger et al., 1978; Fairbanks et al., 1980; 

Kahn & Williams, 1981; Hemleben et al., 1988; Erez & Honjo, 1991; Sautter & 

Thunell, 1991; Wefer & Berger, 1991). 
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In order to investigate the effects of size variations, samples were split into five 

size fractions and fifty specimens of G. bulloides (Holocene sample) and N. 

pachyderma (s) (LGM sample) were picked from each size fraction. Stable isotopes 

values were measured individually for each sample of fifty tests. Figure 2 shows that 

for both species 8180 becomes heavier as test size increases. This is a predictable 

pattern caused by planktic foraminifera living deeper in the water column as they get 

older (Hemleben et al., 1988). The 8180 range of the late Holocene G. bulloides is 

0.65%0 (Fig. 2A) representing a 3°C temperature change (using the temperature 

equation of Shackleton, 1974). This is equivalent to a depth change of up to 75 mat 

the present site in the North East Atlantic (Pflaumann, et al., 1996), and is comparable 

. to 80 m total depth range given for G. bulloides by Hemleben et al. (1988). The 8180 

range of N. pachyderma (s) is 0.90%0 (Fig 2B) representing a temperature change of 

4°C. According to the SIMMAX modern analog technique for calculating sea surface 

temperatures (Pflaumann, et al., 1996) the closest modern analog to the LGM planktic 

foraminifera assemblages of BOFS SK are in the mid-Greenland Sea. This temperature 

shift would represent a depth change much greater than 75 m. A more precise depth 

estimate is not possible because of the complexity of the analog area due to seasonal sea 

ice (Uwe Pflaumann, pers. comm.). 

There was a more complicated, S shaped, relationship between test size and 

carbon isotopes (Fig. 3). Our results are comparable to the measurements of other 

planktic foraminifera species and the resultant theoretical model (Berger et al., 1978; 

Wefer & Berger, 1991). Wefer & Berger (1991) reiterated the suggestion that changes 

in the carbon isotopes associated with the growth of the foraminifera is due to changes 

in metabolic activity and not environment. 

The wide range of isotopes results which can be obtained simply by varying the 

test size selected. suggests that isotopic measurements should be based on carefully size 

selected specimens. This is an important consideration when comparing isotopic 

records from different studies, and suggests standard sizes should be defined for each 

species. Standard size fractions now used at Cambridge, based on this study, for 
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samples from the North East Atlantic are for G. bu.lloides 300-350µm and for N. 

pachyderma (s) 250-300µrn. These have been found to be a good compromise 

between availability of the species and the associated errors; This is especially 

noticeable with the carbon isotope results as the variation seems to plateau with the 

larger tests. These size range are used in the subsequent investigations in this study. 

Sample Size 

A determining factor in the reproducibility of the planktic foraminifera stable 

isotope signal is the number of tests measured. Individual foraminifera in a sample 

may have inhabited very different water masses in life. This is because a sample may 

· represents at best a hundred years of sedimentation. There is, thus, a compound 

problem of combining the isotopic signal of foraminifera which lived during not only 

different seasons but also years. In the case of BOFS SK each 1 cm slice represents a 

time-span of 90 to 170 years (Maslin, 1993). 

Schiffelbein & Hills (1984) investigated this problem theoretically by 

calculating the analytical precision at different confidence limits for varying numbers of 

foraminifera test per sample, using the 'Jackknife' technique (see Miller, 197 4, for full 

review of the technique). They found that obtaining reproducibility of 0.1 %0 at 90% 

confidence would require the measurement of 417 specimens. A reproducibility of 

0.15%0 it would require 55 specimens. They also showed that the 15 individuals 

benthic foraminifera measured by Shackleton & Opdyke (1976) in core V23-239 had a 

reproducibility of 0.25%0 (90% confidence limit). 

To investigate the effect of sample size, sensitivity experiments were perfonned 

by measuring the stable isotopic composition of a distinct number of foraminifera five 

times to obtain a standard deviation. Both G. bu.lloides and N. pachyderma (s) results 

show a rapid decrease in the standard deviation of the sampling distribution (CTN) with 

increasing numbers of specimens (Fig 4.A & B). These results are lower than those of 

Schiffelbein & Hills (1984) due to the lower population variability in our samples from 

the North East Atlantic, compared with those of Pacific. The most variable ol8Q 

5 



Maslin & Hall (1997) 

measurements of G. bulloides were the samples containing one specimen, with an error 

of ±1.2%0. This is comparable with the glacial-interglacial shift in oceanic 8180 due to 

changes in ice volume of over 1.2%0 (Labeyrie et al., 1987; Shackleton, 1987; 

Fairbanks, 1989). The carbon isotope errors are similar to those for the oxygen 

isotopes, but are larger relative to the down core interglacial-glacial ol3C variation 

which has a maximum variation of 1.4%0, while o180 has a maximum variation of 

more than 3%o. 

The standard deviation of the sampling distribution is normal even if the 

population distribution is not (Sage & Melsa, 1971 ). The standard deviation of the 

sampling distribution can thus be used to calculate the standard deviation of the 

population distribution (i.e., the whole sample) using the relationship (Sage & Melsa, 

'1971): 

when: 

CTN= standard deviation of the sampling distribution with N test measured per sample, 

CT= variation of the population distribution, 

N = number of tests in per sample 

The variation of the population distribution (whole sample N=35) of BOFS SK 

was for; the late Holocene G. bulloides ±1.00%0 8180 and ±0.71 for 813C, and for 

the LGM N. pachyderma (s) ±0.54%0 for 818Q and ±0.98%0 for 813c_ Variation of the 

population distribution (whole sample) indicates the overall effects of ontongy, 

seasonality, sampling and bioturbation in the sample. A key objective of future studies 

will be to assess how this variance of the whole sample changes down core and 

between cores. 

It appears that to obtain a reasonable stable isotope estimates, with error below 

0.2%0 per measurement (95% confidence limit) then at least 20 specimens must be 

measured per sample in the North East Atlantic; if this is not possible due to the lack of 

foraminifera in the sample then authors should note the exact number used. It is also 

important that the number of specimens measured per sample is kept constant down-
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core, since varying this adds another time-dependant noise function, which can not be 

taken into account by bioturbation deconvolution models (Bard et al., 1990 and 

Manighetti et al., 1995) or adaptive filtering (Trauth, 1995a and b). As standard we 

measure at Cambridge 30 planktic foraminifera per sample. 

BENTHIC FORAMINIFERA 

Stable isotopes measurements from benthic foraminifera should be more 

reproducible than plank tics as the sediment they inhabit is bathed in deep water of near 

constant temperature (Shackleton, 1974 ). A major cause of variability in benthic stable 

isotopes is bioturbation (Zahn et al., 1986; Vogelsang, 1990). Vogelsang (1990) 

showed in cores from the Greenland Sea that repeat measurements of single 

Cibicidoides wuel/erstorfi gave a range of up to 0.8%0 during both the LGM and the 

late Holocene. We, however, wished to investigate the intrinsic isotopic variability of a 

benthic foraminifera species, the bioturbation problem already being well documented 

(e.g. Zahn et al., 1986; Loubere, 1987; Vogelsang, 1990). To try and minimise the 

bioturbation effect we selected a sample from an interval with a high sedimentation rate 

and with no adjacent major climatic changes. The sample at depth 187-188 cm was 

chosen (mid Stage 3), as it has abundant benthics, a sedimentation rate of 8 cm/kyrs 

(Maslin, 1993; Manighetti, et al., 1995), and is at least 20 cm from the nearest Heinrich 

(ice rafting) event (Thomas et al., 1995; Maslin et al., 1995a). Uvigerina peregrina 

was selected as it is the benthic species most widely used in palaeoceanography (e.g., 

Shackleton, 1974, 1976; Zahn et al., 1986; Zahn et al., 1986 and 1991). We have 

used benthic foramrnifera test weight as it is a better measure of ontogeny than size 

fraction (E. Thomas, pers. comm.). Each test was weighed using a Cahn26 

microbalance and analysed singularly. Dunbar & Wefer (1984) analysed nine benthic 

foraminifera species at six different size fractions and found no influence of size on 

isotopic composition. 

For single Uvigerina peregrina specimens it was found that above 25 µg the 

reproducibility of 8 180 and 813C was within the 95% confidence limits which were 
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estimated from repeat measurements of individuals larger than 99 µg (Fig 5). Below 

25 µg the 8 180 and o 13C of both single Uvigerina peregrina specimens (Fig 5) and the 

Carrcen Z standard show marked deviations from the 95% confidence limits. After 

extensive investigation we have come to the conclusion that this deviation is caused by 

a memory effect in the mass spectrometer source (N.B. not the common acid bath). 

This speculation was tested by repeating the Carrcen Z measurements but with a much 

longer pump-out time between the standard gas and the sample gas measurements. By 

using a pump-out time of 100 seconds (about 20 minutes per sample) compared to the 

normal 15 seconds (3 minutes per sample) we were able to remove most of the memory 

effect (Fig. 7). We believe this approach will be successful when used to measure the 

o l 8Q of small Uvigerina peregrina as the deviation is consistently negative. 

Unfortunately due to the complex nature of the memory effect it has not been possible 

to devise a c01Tection to the existing measurements. The o l3C of small Uvigerina 

peregrina on the other hand deviates both negatively and positively, suggesting that 

below weights of 30-25 µg there are vital effects probably due to changes in metabolic 

activity associated with growth. 

Benthic foraminifera growth and standing stocks are strongly influenced by the 

input of phytodetritus (i.e., food) from the surface waters (Gooday & Turley, 1990). 

In the North East Atlantic the isotopic composition of the phytodetritus is strongly 

influenced by the occurrence, intensity and duration of the spring blooms (Gooday, 

1988; Gooday et al., 1992; Thomas et al., 1995). It has been suggested that changes in 

the isotopic composition of the phytodetritus may have an important effect on benthic 

813C (Thomas et al., 1995). This could explain why the standard deviation of 813C for 

the larger single Uvigerina peregrina (-0.66%0± 0.22%0) is greater than that for 818Q 

(4.45%0 ± 0.17%0). It also suggests that care should be taken interpreting down core 

benthic 813C records in areas with a large range of surface water productivity. 

It appears that reasonably reproducible stable isotope estimates of single 

Uvigerina peregrina can be obtained if individuals larger than 25 µg are used. If 

reproducible 8 180 is required on individual Uvigerina peregrina below 25 µg then we 
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recommend a pump-out time between the standard gas and the sample gas 

measurements of at least 100 seconds. 

CONCLUSION 

If 818Q and 813C are to be used beyond interglacial-glacial stratigraphy, i.e., for the 

determination of surface water salinity or global carbon storage, then this type of error 

analysis is essential. 

For reliable stable isotope records we suggest that: 

1/ Planktonic foraminifera must be picked from a discrete size fraction and where 

possible this should be made a standard for each species to allow direct comparison of 

isotopic records, 

2/ Thirty plank tic foraminifera should be measured if possible at each sample depth, if 

not the authors should make it clear how many were used and the possible errors 

associated. It is also recommended that the number of specimens analysed per sample 

should be kept constant down core to reduce possible noise. 

3/ Uvigerina peregrina benthic foraminifera tests of weights greater than 25 µg should 

be used. If reproducible ol 8Q is required on individual U. peregrina below 25 µg then 

we recommend a pump-out time between the standard 

measurements of at least 100 seconds. 
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FIGURE CAPTIONS 

Figure 1. 
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Preparation and analysis sequence for oxygen and carbon stable isotopes of calcium 

carbonate samples in the VG Prism mass spectrometer used at the Godwin Laboratory, 

Cambridge, U.K. 

Figure 2 

Variations in oxygen isotope content of planktic foraminifera at different test sizes. 

Vertical error bars are 2 s.d. error associated with measuring 50 foraminifera per 

sample (see Fig. 4A). The horizontal bars represent the range of size fractions from 

which the foraminifera were picked. Dotted lines and arrows show for each species the 

size fraction which is used as standard in Cambridge and in subsequent experiments in 

this s,tudy. 

Figure 3 

Variations in carbon isotope content of planktic foraminifera at different test sizes. 

Vertical error bars are the 2 s.d. error associated with measuring 50 foraminifera per 

sample (see Fig. 4B). The horizontal bars represent the range of size fractions from 

which the foraminifera were picked. Dotted lines and arrows show for each species the 

size fraction which is used as standard in Cambridge and in subsequent experiments in 

this study. 

Figure 4 

Various numbers of planktic foraminifera were analysed for i3l8Q and o13C, each with 

five repeats to obtain a standard deviation of the sampling distribution (CTN), to 

determine the error associated with analysing small numbers of planktic foraminifera 

tests. Note that the weight of the small samples was always above 25 µg therefore 

avoiding the memory effect of the mass spectrometer source (see text). 

Figure 5 
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Oxygen and carbon isotopic values of different weights of individual Uvigerina 

peregrina benthic foraminifera tests using the standard 15 seconds pump-out time 

between the sample gas and standard gas measurements. A) below 25 µg for 8180 

there is a strong negative deviation away from the 95% confidence limits, which were 

estimated from repeat measurements of samples weighing greater than 50 µg. B) 

below 30 µg for 813C there is initially a positive deviation and then a negative deviation 

away from the 95% confidence limits. 

Figure 6 

Oxygen and carbon isotopic values of different weights of the standard Carrcen Z using 

the standard 15 seconds pump-out time between the sample Carrcen Z gas and standard 

gas measurements. Note that below 25 µg there is a strong deviation away from the 

95% confidence limits, estimated from repeat measurements of samples weighing 

greater than 99 µg. 

Figure 7 

Oxygen and carbon isotopic values of different weights of the standard Carrcen Z using 

100 seconds pump-out time between the sample Carrcen Z gas and standard gas 

measurements. Note that the strong deviation below 25 µg away from the 95% 

confidence limits has been greatly reduced. 
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