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Abstract—We review recent studies of the nonlinear interfer-
ence in spatial division multiplexing systems. Different solution
methods of the multimode Schrödinger equation are compared,
highlighting the accuracy of a stochastic solution method includ-
ing distributed mode coupling.

Index Terms—Spatial Division Multiplexing, fibre Nonlinearity,
Linear Mode Coupling, Digital-Back Propagation.

I. INTRODUCTION

Spatial division multiplexing (SDM) over multi-mode/-core
fibres has emerged as a solution to overcome the capacity
limit of single-mode fibres (SMFs) [1]. However, the multitude
of spatial modes introduces new impairments, namely: group
delay (GD) spread [2] given the interplay between differential
mode delay (DMD) and linear mode coupling (LMC), inter-
mode nonlinear effects [3], and mode dependent loss [4]. Chief
among these is the LMC that plays a crucial role at controlling
the GD spread, MDL accumulation and the efficiency of
the overall nonlinear interactions. Here we study the most
common models for nonlinear transmission in SDM fibres over
a wide range of LMC and DMD scenarios.

II. METHODS

The models proposed for SDM fibres often use assumptions
valid only for extreme LMC regimes. A fibre link operates in
the strong coupling (SC) regime for transmission distances
L much larger than the coupling length Lc, in the weak
coupling (WC) regime for L � Lc, and in the intermediate
coupling regime otherwise (L v Lc). While Lc is quantified
as the length for which the accumulated LMC XT reaches
XT (Lc) = [e2 − 1]/[e2 + 1]. And, the XT after an arbitrary
length z is quantified as XT (z) =

∑
v 6=m[Pv(z)/Pm(z)],

where Pv(z) is the average power in mode v, and m is the
launch mode (and the one that most likely to couple to others).

Nonlinear transmission modelling in SDM fibres involves
solving the coupled nonlinear Schrödinger equation (CNLSE)
in [5]. Its numerical integration can be achieved considering
the three CNLSE operators, dispersion, LMC and nonlinearity,
acting independently for a sufficiently short integration step.
In such case, the LMC operator can be resolved in two ways:
(i) numerically, having to generate random coupling matrices
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every step with a given coupling strength; (ii) analytically via
new Manakov equations derived by averaging the nonlinear
operator over all possible LMC realisations. And, in the
numerical approach there are 2 main variants referred here
as lumped LMC and distributed LMC.

1) Lumped LMC Modelling: in a multi-section model,
LMC among non-degenerate modes is included by introducing
random unitary matrices every section, with a section length
just longer than Lc such that in average XT = 0 dB [2].
This approach is very convenient in the linear power regime
allowing matching the analytical predictions for GD statistics
[2] provided that Lc is � than the dispersion length and the
walk-off length. In the nonlinear power regime, there is an
additional requirement to the applicability of the lumped LMC
model, Lc must be � the nonlinear effective length (v 1/α,
where α is the attenuation coefficient)

2) Distributed LMC Modelling: a semi-analytical model
capable of describing the LMC for fibres operating in the
intermediate regime has been proposed in [6]. In this model
all LMC is assumed to arise from core-cladding imperfections
which are discretised by dividing the fibre in multiple sections,
each with a random displacement of the core center position.
The LMC strength is set using a fixed radial displacement
and a random azimuth displacement given by a uniform
distribution. In this way, introducing a random amount of LMC
that in average approximates the desired level.

3) Manakov Equations: averaging the CNLSE over all
possible occurrences of the LMC operator for the WC- and
SC-regimes. In the SC-regime, the averaging considers random
full coupling between all modes [3] and assumes that all modes
propagate with similar GD (this is, DMD should not be higher
than a few ps/km). In the WC-regime, the CNLSE is averaged
considering randomly coupled modes within each mode group
and neglecting inter-group coupling.

III. RESULTS AND DISCUSSION

This section reviews the comparison of the models discussed
above for full system simulation [7]. A symmetric implemen-
tation of the split-step Fourier method is used to solve the
CNLSE, the step size is adapted to keep the local error smaller
than 10−5. Transmission simulations consider: a few-mode
fibre with 12 polarisation modes; spans of 35 km to minimize
the total energy requirement [8]; an optical super-channel with



−90 −80 −70 −60 −50 −40 −30 −20 −10 0

5

10

15

20 L > 100LcL < Lc

100

XT [dB/m]

SN
R

[d
B

]

WC-Man.
SC-Man.

Distr.
Lumped

3 Ch
5 Ch

11 Ch
19 Ch

Fig. 1. SNR as a function of XT at 0 dBm/ch with DMD = 0 ps/km, for: 3
channels over 15 spans, 5 channels over 12 spans, 11 channels over 8 spans
and 19 channels over 7 spans. Data points averaged over 10 repetitions.

a varying number of WDM channels (per mode) modulated
with 14 Gbaud polarization-multiplexed 16QAM, 14.1 GHz
spaced. Additional details on the fibre and simulation setup
in [7]. The figure of merit in the following is the minimum
signal-to-noise-ratio (SNR) among the 12 polarization modes
in the center channel. The SNR is evaluated as in [9]:
E[|X|2]/E[|X−Y |2], X and Y represent the transmitted and
received symbols, respectively.

Fig. 1 shows SNR as a function of XT, in the nonlinear
regime 0 dBm/ch and absence of DMD, for: 3 channels over 15
spans, 5 channels over 12 spans, 11 channels over 8 spans and
19 channels over 7 spans. The results in Fig. 1 show an excel-
lent agreement between the Manakov models and the lumped
LMC and the distributed LMC models in the extreme LMC
regimes. However, in the intermediate LMC regime (-70 dB/m
to -30 dB/m), out of Manakov applicability, the lumped LMC
and the distributed LMC models are found to be in qualitative
agreement but not quantitative. More importantly, both models
capture a performance dip with XT before the SC-regime is
reached. This can be understood noting that as XT increases
into the intermediate LMC regime, additional phase rotations
(from LMC) allow inter-mode four-wave-mixing phase match-
ing to be achieved for more frequency combinations than
it would be possible in the absence of LMC - degrading
performance without significant averaging of the nonlinear
coefficients. In this case the additional nonlinear penalty grows
significantly with the number of WDM channels, as Fig. 1
shows. Eventually, by increasing XT towards the SC-regime,
fast random rotations of the hyper-polarization state of the
field along the fibre reduce the efficiency of the overall non-
linear process, averaging the nonlinear coefficients, improving
performance. In the following the distributed LMC model is
taken as the reference; the lumped LMC model assumptions
introduce an artificial step degradation for XT ≈ −55 dB/m.
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Fig. 2. SNR difference as a function of XT using the distributed LMC model
as reference (0 dBm/ch, 3 channels and 15 spans) for different models.

To further evaluate the applicability of the different meth-
ods, Fig. 2 shows the SNR difference in dB (∆SNR =
SNRx − SNRdist., x equals WC/SC-Manakov or lumped
LMC) as a function of XT for a wide range of DMD and
XT values. In general, it can be seen that accuracy degrades
with DMD. Fig. 2(a) shows that WC-Manakov generates
accurate results even for DMD > 100 ps/km. However,
Fig. 2(a) shows that SC-Manakov accuracy quickly degrades
with DMD. Finally, Fig. 2(b) shows that the lumped LMC
model is able to accurately model propagation in the SC-
regime even for DMD > 100 ps/km [10].
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