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Abstract— Surgical gesture recognition is important for sur-
gical data science and computer-aided intervention. Even with
robotic kinematic information, automatically segmenting surgi-
cal steps presents numerous challenges because surgical demon-
strations are characterized by high variability in style, duration
and order of actions. In order to extract discriminative features
from the kinematic signals and boost recognition accuracy, we
propose a multi-task recurrent neural network for simultaneous
recognition of surgical gestures and estimation of a novel
formulation of surgical task progress. To show the effectiveness
of the presented approach, we evaluate its application on
the JIGSAWS dataset, that is currently the only publicly
available dataset for surgical gesture recognition featuring robot
kinematic data. We demonstrate that recognition performance
improves in multi-task frameworks with progress estimation
without any additional manual labelling and training.

I. INTRODUCTION

Automated surgical gesture recognition aims at automat-
ically identifying meaningful action units within surgical
tasks that constitute a surgical intervention. The process
forms a fundamental step in the development of systems for
surgical data science [1], objective skill evaluation [2, 3]
and surgical automation [4, 5, 6]. The problem is how-
ever challenging because surgical gestures have high degree
of variability due to multiple parameters in the operating
surgeon’s style and the patients’ anatomy which alters the
duration, kinematics and order of actions among different
demonstrations [7].

Much research in the field, however, is based on the
premise that many surgical tasks have well-defined structure
and use specific action patterns to progress towards a surgical
goal. Gesture flow has then been described through task-
specific probabilistic grammars [8], which have been mod-
elled with powerful statistical tools such as graphical models
[9, 10] and neural networks [11, 12]. This work investigates
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if the recognition performance improves when the progress
of the surgical task is modelled explicitly and learnt jointly
with the action sequence, resulting in a more discriminative
feature extraction process.

The effectiveness of multi-task learning [13] and surgical
progress modelling has been demonstrated in previous work
focused on surgical workflow analysis [14, 15], where the
aim is to recognise surgical phases representing high-level
surgical states. We adopt this approach with high-granularity
gesture sequences and design a multi-task recurrent neural
network for simultaneous gesture recognition and progress
estimation. Differently from previous work, however, the task
progress is based on the underlying action sequence rather
than on time. We hypothesize that action-based progress
estimation could help to learn action sequentiality despite
duration variability and the presence of adjustment gestures
and spurious motions, and thus reduce out-of-order predic-
tions and over-segmentation errors. We also analyse different
progress estimation strategies and highlight correlations be-
tween gesture and progress predictions.

We validate our algorithm on the kinematic data of the
JIGSAWS dataset [16], featuring demonstrations of ele-
mentary surgical tasks collected from eight surgeons with
different skill level using the da Vinci Surgical System
(dVSS, Intuitive Surgical Inc.) [17]. Our experiments show
that gesture recognition performance improves in multi-task
frameworks with progress estimation at no additional cost,
as the progress labels can be generated automatically from
the data and available action labels.

A. Related Work

Gesture recognition from robot kinematics has been tack-
led through probabilistic graphical models such as Hid-
den Markov Models (HMMs) [9, 10, 18] and Conditional
Random Fields (CRFs) [19, 20, 21]. These however rely
on frame-to-frame and segment-to-segment transitions only,
ignoring long-range temporal dependencies in the surgical
demonstrations. Deep learning techniques have been recently
used to capture complex, long-distance patterns through
hierarchies of temporal convolutional filters [11, 22], LSTM
networks [12] or deep Reinforcement Learning (RL) [23].
Besides, unsupervised [24, 25] and weakly-supervised [26]
recognition have been shown through clustering, which re-
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Fig. 1. Our definition of progress is dictated by the underlying action sequence. We identified five gestures that represent essential progressive stages
in any complete suturing demonstration. The other classes represent adjustment gestures that serve to prepare or help to complete the execution of the
essential gestures.

duces the dependency on annotations but at the expense of
performance.

Surgical video rather than kinematics also embeds gesture
information which can be extracted with spatio-temporal
CNNs [27], 3D CNNs [28], multi-scale temporal convo-
lutions [29, 30] or hybrid encoder-decoder networks with
temporal-convolutional filters for local motion modelling and
bidirectional LSTM for long-range dependency memoriza-
tion [31].

Finally, a number of studies have approached surgical
workflow analysis through multi-task learning. Examples
include systems for joint task and gesture classification [32],
and models for joint phase recognition and tool detection [33]
or progress estimation [15]. Phase recognition networks have
also been pre-trained on auxiliary tasks such as prediction
of the Remaining Surgery Duration (RSD) [14] or estima-
tion of the frame temporal order [34], aiming to improve
understanding of the temporal progression of the surgical
workflow. Such approaches show that multi-task learning
and progress modelling are beneficial for surgical workflow
understanding and could support fine-grained analysis that
requires discriminative feature extraction.

II. METHODS

A. Dataset

We trained our network on the 39 suturing demonstrations
of the JIGSAWS dataset, using the kinematic data (end-
effector position, velocity, gripper angle) recorded at 30 Hz
from the two Patient Side Manipulators (PSMs) of the dVSS.
The trajectories were first smoothed with a low-pass filter
with cut-off frequency fc = 1.5 Hz against measurement
noise [35], and then normalized to zero mean and unit
variance to compensate for different units of measure. Fi-
nally, data were re-sampled from 30 Hz to 5 Hz for shorter
computation time.

In order to learn the task progress, new ground truth labels
were automatically generated from the available data and
action labels. As a preliminary step, however, we carefully
inspected the video recordings in order to identify possible
imprecisions in the available annotations, that would affect
the automatic generation of our progress labels. We iden-
tified and corrected 12 mistakes, affecting a total of 2356

data samples. Amendments to the original annotations are
reported in the Appendix.

As illustrated in Fig. 1, our definition of progress is
dictated by the underlying action sequence. Out of the 10
original action labels from JIGSAWS, we identified five
gestures that constitute essential progressive stages in any
complete suturing demonstration (Reaching for the needle,
Positioning the tip of the needle, Pushing the needle through
the tissue, Pulling the suture, Dropping the suture), gener-
ating a simplified probabilistic state machine that describes
the commonly-observed workflow of the suturing task. The
other classes represent adjustment gestures that serve to
prepare or help to complete the execution of the essential
gestures and that generally appear in variable order. We thus
grouped fundamental gestures (performed by any of the two
arms, even if JIGSAWS only features right-handed suturing
demonstrations) and their corresponding adjustment gestures
into 5 progress stages (from 0 to 4), as detailed below:

• Progress 0: G1 Reaching for needle with right + G5
Moving to center of workspace

• Progress 1: G2 Positioning the tip of the needle + G4
Transferring the needle from left to right before G2 +
G8 Orienting the needle before G2

• Progress 2: G3 Pushing the needle through the tissue +
G4/G8 before G3

• Progress 3: G6 Pulling the suture with left + G9 Using
right hand to tighten suture + G10 Loosening more
suture + G4/G8 before G6/G9/G10

• Progress 4: G11 Dropping suture and moving to end
points + G4/G8 before G11

As the task evolution in time is affected by numerous
factors, such as surgical skill and surgical context, we
believe that activity-based progress could be better than
time-based progress in reducing the kinematic feature
variation for equal progress values. Moreover, it could
help to learn action sequentiality despite the presence of
adjustment gestures which occur in variable frequency and
uncertain order.

B. Multi-task Recurrent Neural Network
Our multi-task architecture performs action recognition

jointly with progress estimation. As the progress is quantized



Fig. 2. Multi-task architecture for joint action recognition and progress regression. The kinematic features (K) are fed to a bidirectional LSTM cell, whose
hidden units are connected to the regression node by a fully connected layer. The same hidden units are projected by a second fully connected layer into
10 logits with softmax activation function for action classification.

Fig. 3. Target encodings for progress regression, classification and ordered
classification.

into 5 sequential steps, we estimate it using three different
strategies: regression, standard classification and classifica-
tion with ordered classes (or ordinal regression).

Notation: vectors are represented in bold lowercase letters
(e.g. y), scalars in lowercase letters (e.g. y), parameters and
losses in uppercase letters (e.g. C).

Regression: As shown in Fig. 2, the kinematic features
(K) are fed to a single-layer bidirectional LSTM with 1024
hidden units. Activations from the forward and backward
streams are concatenated into a 2048-dimensional vector and
then connected to the regression node by a Fully Connected
(FC) layer with linear activation function. The same 2048
features are also projected by a second fully connected layer
into 10 logits with softmax activation function for action
classification.

At each training iteration, we compute the regression
loss using the Mean Absolute Error (MAE) over individual
demonstrations:

MAE =
1

T

T∑
t=1

|ypt − ŷ
p
t |, (1)

and the classification loss using the Mean Cross Entropy
(MCE) over individual demonstrations, as in [12]:

MCE =
1

T

T∑
t=1

(
−

C∑
c=1

yatc log(ŷatc)

)
, (2)

where T is the demonstration length (number of samples), C
is the number of action classes, ypt and yat are the regression
and prediction nodes’ output at timestamp t, and ŷpt and ŷat
are the corresponding ground truths.

After model training, the regression output is rounded
to the nearest integer for progress prediction, and the logit
with largest activation is considered for action prediction.

Classification: To perform standard progress
classification, we substitute the regression layer with
a 5-logit fully connected layer with softmax activation
function and MCE loss, thus obtaining a multi-hierarchical
action recognition network (Fig. 2). After model training,
the logit with largest activation is considered for progress
prediction.

Ordered classification: Standard classification considers
independent categories and does not penalize major ordering
mistakes. In order to represent the succession of progress
classes, we thus encoded the target vectors with the ordinal
formulation of [36] as represented in Fig. 3, and substituted
the categorical MCE loss with the Mean Binary Cross
Entropy (MBCE) loss (i.e. Sigmoid activation function and
MCE loss). MBCE sets up an independent binary classifier
for each class and, in combination with the ordinal target
encoding, generates a larger loss the further the prediction
is from its ground truth. After model training, progress
predictions are obtained from the output yp of this classifier
by finding the first index k where ypk<0.5.

In all the three cases, the final multi-task loss (L) is a
weighted combination of the two single-task losses (L1 =
MCE, L2 = MAE or MCE or MBCE):

L = w1L1 + w2L2 (3)

However, multi-task networks are generally difficult to
train, as task imbalances may lead to the generation of
shared features that are not useful across all tasks. In order
to automatically balance our model training, we used the
GradNorm algorithm [37] for gradient normalization, that
has been shown to improve accuracy and reduce overfitting



Fig. 4. On the left: multi-task architecture for joint action recognition and progress classification. The LSTM hidden units are connected to 5 logits
with softmax activation and MCE loss for progress classification. On the right: multi-task architecture for joint action recognition and ordered progress
classification. The LSTM hidden units are connected to 5 logits with sigmoid activation and MBCE loss for ordered progress classification.

across multiple tasks when compared to single-task networks.
GradNorm dynamically updates the single-task loss weights
(w1, w2) during training by optimizing an additional loss
(Lgrad), which aims at regularizing the training rate of the
individual tasks:

Lgrad =

2∑
i=1

∣∣∣g(i)w − ḡw × (ri)
α
∣∣∣ (4)

g
(i)
w = || 5w wiLi|| is the L2-norm of the gradient of the

weighted single-task loss wiLi with respect to the network
weights w.
ḡw is the average gradient norm across all tasks.
ri = (Li/L

0
i )/L̄ is the relative inverse training rate of task

i, with L0
i the single-task loss at the first training iteration

and L̄ the average loss across all tasks.
α is a balancing hyperparameter to be tuned.

C. Evaluation Setup

As in [22], we evaluated our network recognition per-
formance using accuracy, i.e. the percentage of correctly
labelled frames, normalized segmental Edit score, which
determines the precision of the predicted temporal ordering
of actions, and segmental F1@10 score, which penalizes
over-segmentation errors but is not sensitive to minor tem-
poral shifts between predictions and ground truth. Progress
regression was evaluated with MAE, normalized with respect
to the full range of progress values (MAE

4−0 ∗ 100).
We followed the standard JIGSAWS Leave One User Out

(LOUO) cross-validation setup [16]: for every fold, all the
trials performed by a single user are kept out as the test set
and the other demonstrations are used to train our model.

III. EXPERIMENTS AND RESULTS

We used the open source TensorFlow implementation of
the Bidirectional LSTM presented in [12] as our baseline (A).
We also relied on the provided training parameters, since
they were carefully tuned on the same dataset. Given the
stochastic nature of the optimization process, all experiments
were performed three times and results were averaged. All
runs were trained on NVIDIA Tesla V100-DGXS GPU, with
training time of about 1 hour per run.

Our multi-task network for joint action recognition and
progress regression (APr) was learnt on the multi-task
loss L using Gradient Descent (GD) with Momentum 0.9,
batch size 5 and initial learning rate 0.1. The multi-task
architectures for standard progress classification (APc) and
ordered progress classification (APoc) were instead trained
with GD, batch size 5 and initial learning rate 1.0. We
always applied learning rate decay of 0.5 after 80 iterations
and stopped the training after 120 iterations. We used
gradient clipping to avoid exploding gradients and dropout
regularization with dropout rate of 0.5, as for the baseline
(A). The single-task loss weights (w1, w2) were updated
at a learning rate of 0.025 using GD on the regularization
loss (Lgrad), with α set to 1.5. Testing was performed
after 100, 110 and 120 training iterations and results were
averaged. We trained all networks on the pre-processed
kinematic data with revised annotations.

Comparison between A, APr, APc and APoc is pre-
sented in Table I. Multi-task performance is evaluated with
(α = 1.5) and without (w1=w2=1) GradNorm regularization.
Scores are reported as mean values across the 8 valida-
tion folds and corresponding standard deviations, which are
strongly representative of inter-surgeon style variability in
the LOUO setup. All three multi-task architectures outper-



TABLE I
GESTURE RECOGNITION (A) AND PROGRESS ESTIMATION (P) PERFORMANCE. SCORES ARE REPRESENTED AS MEAN(STD).

Scores A APr APc APoc Pr Pc Poc

w1=w2=1 α=1.5 w1=w2=1 α=1.5 w1=w2=1 α=1.5

A
Accuracy 85.3(5.8) 85.1(6.6) 85.2(6.3) 85.7(5.7) 85.8(5.6) 85.5(5.8) 86.0(5.4) - - -

Edit 83.1(7.4) 84.2(6.7) 85.9(6.4) 85.4(5.7) 85.7(5.7) 86.2(6.3) 86.1(6.2) - - -
F1@10 88.5(5.7) 89.0(5.5) 90.1(5.4) 90.1(4.9) 90.2(4.9) 90.5(5.0) 90.7(4.8) - - -

P

MAE - 5.3(1.5) 5.1(1.5) - - - - 6.2(1.1) - -
Accuracy - - - 89.0(2.7) 89.1(2.8) 87.9(3.5) 88.4(3.1) - 89.2(2.8) 87.0(4.0)

Edit - - - 89.3(6.7) 89.2(6.6) 83.7(4.8) 83.6(4.5) - 87.8(7.8) 87.3(5.7)
F1@10 - - - 93.2(4.4) 93.2(3.4) 90.0(3.1) 90.0(3.1) - 91.9(4.9) 91.9(3.6)

Fig. 5. Recognition accuracy [%] of individual gestures.

form the single-task baseline on the segmental scores (Edit
and F1@10), which seems to confirm the hypothesis that
action-based progress estimation could help to learn action
sequentiality and to reduce out-of-order predictions and over-
segmentation errors. Even if none of the proposed archi-
tectures clearly stands out from the others, APoc generates
slightly better results, which could be explained by stronger
penalization of major ordering mistakes than standard clas-
sification, and easier optimization goal than regression of
a discontinuous progress function. The architecture that
benefits the most from multi-task gradient normalization
is APr, as it is perhaps more challenging to balance two
different loss functions (MCE for classification and MSE
for regression) than two similar or identical ones. However,
balanced multi-task networks rely on a large number of
hyperparameters, including optimization parameters for the
regularization loss. We believe that results could be improved
and differences between the three proposed architectures
could be emphasized with more extensive parameter tuning,
as well as with larger datasets.

Fig. 5 shows recognition accuracies of individual gestures
from A and APoc. APoc consistently matches or outperforms
A, even if improvement is only marginal. Results in Table I,
however, showed that the advantage of the proposed method
relies in the regularization of the predicted sequences, which
mainly affects the segmental scores and only marginally the
framewise evaluation metrics. Some gestures, such as G9 and
G10, are extremely challenging to recognize in both cases,
as they are under-represented in the dataset.

TABLE II
COMPARISON WITH RELATED WORK ON ROBOT KINEMATICS.

Accuracy Edit

TCN[11] 79.6 85.8
TCN+RL[23] 82.1 87.9
BiLSTM[12] 83.3 81.1

APoc 85.3 84.5
APc 85.5 85.3

In addition to recognising surgical gestures, our multi-
task architectures segment the surgical demonstrations into 5
fundamental progressive steps of the suturing task, reaching
an average accuracy of 89.1% with standard classification
(Table I). For APr and APc, but not for APoc, all evaluation
scores improved with respect to their single-task counterparts
Pr and Pc1: not only higher-level progress understanding
can help gesture recognition, but gesture recognition can
reciprocally boost progress prediction.

Fig. 6 illustrates an example of recognition output where
predictions generated by the multi-task network show re-
duced over-segmentation with respect to the baseline, as
quantified by the segmental score improvement previously
reported. It is also interesting to visualize the relationship be-
tween gesture and progress predictions, as the segmentations
boundaries are frequently aligned (Fig. 7), and poor progress
estimation often corresponds to poor gesture recognition, and
vice versa (Fig. 8).

We also trained APc and APoc with the original anno-
tations of JIGSAWS, in order to compare our multi-task
models to the original single-task baseline [12] and to related
work on robot kinematics. Our investigation, however, was
carried out on a simple LSTM architecture, and we suggest
the proposed multi-task approach could be applied on top of
more complex architectures to boost performance. Results in
Table II highlight sensitivity of our models to action annota-
tion noise, which partially spoils the automatic generation of
progress labels. This results in performance degradation with
respect to the previous experiments, especially for APoc.
Nonetheless, the proposed networks significantly outperform

1Pr, Pc and Poc were trained once with the same hyperparameters as their
multi-task counterpart. Weight decay was however anticipated and training
was stopped after 80 iterations.



TABLE III
ONLINE GESTURE RECOGNITION PERFORMANCE.

Accuracy Edit

LSTM[12] 80.5 75.3
APc 82.2 76.2

Fig. 6. Example of recognition output where predictions generated by the
multi-task network (APoc) show reduced over-segmentation with respect to
the baseline (A), as quantified by improved segmental scores. The ground
truth segmentation (GT) is shown at the top.

[12] both in accuracy and Edit score, and reach competitive
performance with respect to related work on robot kinemat-
ics.

Finally, we substituted the Bidirectional LSTM cell in
APc with a Forward LSTM cell for online recognition.
We reached accuracy and Edit score of 82.2 and 76.2
respectively, improving upon the original single-task baseline
[12] (Table III).

Our results support the hypothesis that joint surgical
gesture recognition and progress estimation can induce more
robust feature learning than gesture recognition alone, and
boost performance in both online and offline applications.

IV. CONCLUSIONS

In this paper, we performed joint recognition of surgical
gestures and progress prediction from robot kinematic data.
Differently from prior work, the progress labels were defined
on the underlying action sequence rather than on time, in
order to reduce kinematic feature variation for equal progress
values. Moreover, adjustment gestures did not contribute to
the progress advancement. We assumed that action-based
progress prediction could help to recognize surgical gestures
in well-structured tasks such as suturing and knot tying,
which are generally performed several times during surgi-
cal interventions. We analysed different progress estimation
strategies, and demonstrated on the suturing demonstrations
of the JIGSAWS dataset that the proposed multi-task net-
works outperform the single-task baseline in terms of Edit
score and F1@10 score, indicating a reduction in out-of-
order predictions and over-segmentation errors. Since action-
based progress does not depend on time nor on adjustment
gestures, we conjecture this approach could also be effective
beyond JIGSAWS in unconstrained environments, such as
real surgical interventions or free surgical training sessions,
where demonstrations do not have standardized length, right
and left hands are often used interchangeably, and adjustment
gestures, pauses and undefined motions are more frequent.
In this scenario, contextualization of surgical motion into

Fig. 7. Comparison between action and progress predictions (APr progress
prediction in red, progress ground truth in blue). The predicted segmentation
boundaries are frequently aligned.

Fig. 8. Action and progress prediction accuracy [%] from APoc for each
cross-validation fold (B, C, D, E, F, G, H, I). Poor progress estimation often
corresponds to poor gesture recognition, and vice versa.

high-level progress stages could help to better recognize the
surgical actions. The limitation of this method, however, is in
the recognition of unstructured tasks such as blunt dissection,
where action-based progress can not be clearly defined. In
the presence of frequent and scattered mid-task failures and
restarting, the ordered classification method might also lose
its advantage to the standard classification method.

As suggested in [14], further investigation could be per-
formed on alternative multi-task integration modalities, such
as pre-training on the auxiliary task for feature extraction
or fine-tuning on the target task. This might potentially
match or even improve upon multi-task training, at the cost
of additional training time. Another study could model the
progress in time of the individual gestures, which could
improve understanding of gesture evolution and duration.
Moreover, the integration of visual features extracted from
surgical videos could boost both action recognition and
progress estimation, as video data encode complementary
information about the surgical tools and the state of the
environment.

Finally, evaluation of the proposed methodology was per-
formed on the JIGSAWS dataset, which is currently the only
publicly available dataset for surgical gesture recognition
featuring robot kinematics. However, JIGSAWS is small and
contains a limited range of surgical motions. New surgical
data will be collected in the future, and extensive evaluation
will be carried out on larger datasets of robotic surgical
demonstrations.



APPENDIX

Amendments to the original annotations of JIGSAWS:

Demonstration Start End Label
Suturing B004 2650 2860 G3
Suturing C002 1596 1685 G4
Suturing D003 1013 1250 G9
Suturing D003 1251 1339 G4
Suturing D004 0099 0166 G5
Suturing D004 0167 0275 G8
Suturing D004 0956 1020 G4
Suturing E003 1095 1267 G4
Suturing F001 2401 2498 G6
Suturing G001 1132 1353 G6
Suturing G001 7628 8181 G8
Suturing I003 0800 1250 G3
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