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ABSTRACT

Forest decline was first identified in Germany in the late 1970’s and is now
widespread throughout Europe. Recently, anthropogenic sources of nitrogen have

been implicated in forest decline.

This thesis describes an open-air spray experiment to investigate the effects of
inputs of excess nitrogen on soil acidification and the nutrition and metabolism of
Norway spruce (Picea abies L. Karst). N was applied as ammonium or nitrate in
simulated rain to either the soil or the foliage to assess a) the response to different
chemical forms of N, and b) the importance of foliar uptake and soil-mediated

processes.

Several experiments showed that Norway spruce was unable to utilise NO; or
NH,* by foliar absorption, and root uptake appeared to be the main assimilation
pathway for N. It is unlikely therefore, that wet-deposited N will accumulate in the
foliage to toxic concentrations, or disrupt acid-base balance in the shoot. Excess
N deposition may have deleterious effects on the nutrition of Norway spruce.
NH,* applied to the canopy and NO;" applied to the soil decreased the foliar
concentrations of potassium and phosphorus, respectively. This may be significant
for British upland forests where P status is often marginal. Inputs of (NH,),SO, to
the soil reduced foliar concentrations of magnesium, and could induce a deficiency
in Norway spruce on soils of low Mg status. There was no evidence for a role of
NO;-N in the "Type 1" decline of Central Europe. The effects on mineral
nutrition were supported by analyses of soil leachate which showed that soil
acidification, base cation leaching and the mobilisation of acidic cations were

greater in NH,* than NO," treatments.

The implications of the Excess Nitrogen Experiment for canopy interactions,

"nitrogen saturation” and "critical loads" are considered.
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1 A HISTORICAL PERSPECTIVE OF FOREST DECLINE

Symptoms of forest decline in the Federal Republic of Germany (FRG) were first
observed on silver fir (Abies a/ba Mill.) in southern Germany in the mid 1970’s.
Since this species accounts for only 2% of the total forest area in the FRG and has
a well documented record of diseases (Blank, Roberts and Skeffington, 1988), there
was little response from the scientific and political communities. However, in the
late 1970’s and early 1980’s, similar damage symptoms were reported for Norway
spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.), followed by
beech (Fagus sylvatica L.) and oak (Quercus spp.). In coniferous species, decline
was characterised by needle discolouration (Figure 1), needle loss and
deformation of crown structure (Bauer, 1985). Damage to Norway spruce, the major
economic species, awakened scientific and public concern in Germany. In
retrospect, the extent of the problem was probably exaggerated by the assessment
criteria used in the preliminary surveys of 1982 and 1983. A tree was defined as
damaged if foliar loss exceeded 10% compared with a ‘normal tree’ in the area.
The natural variation in crown condition between healthy trees was not taken into
account. This may exceed the 10% damage threshold. The Forestry Commission
argues that “crown density losses of up to 25% or more may occur quite naturally
without the tree having been damaged” (Innes and Boswell, 1987). in 1984, the
West German authorities initiated a standardised classification for assessing forest
damage using sampling plots based on a grid system. Damage classification was
still based on the percentage foliar loss, with discolouration of the foliage used as
a secondary criterion. It was not until after 1986 however, that the damage classes
were reviewed. What was initially defined as the ‘slight damage’ class (11-25%
foliar loss) became an ‘early warning’ category. The new system reduced the

forest area classified as damaged from 50% to 20%.

As forest health became a major environmental issue in Germany, other European
countries initiated national surveys - usually based on the German approach - to
assess forest health. It soon became apparent that ‘Neuartige Waldschaeden’ or
‘new-type forest decline’ was widespread across Europe and, although differing in
extent, was largely of similar form (Krause et al., 1986). By the early 1980’s, 20-25%
of European forests were classified as moderately or severely damaged from
unknown causes (Schulze, 1989). The Netherlands was amongst the worse
affected. A national survey in 1984 revealed that in some south-eastern provinces,
over 50% of all trees showed signs of decreased vitality (den Boer and van den
Tweel, 1985). Damage was greatest in older (40-100 years) coniferous stands.

Although the survey in the Netherlands was carried out to quantify the decline
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rather than evaluate possible causes, deteriorating forest health was linked to NH,

deposition which originated from intensive animal husbandry.

It is now acknowledged that the rapid decline phenomenon of the late 1970’s and
early 1980’s was not limited to the forests of Central Europe. A synchronous but
more limited decline was observed in the high altitude, red spruce-fir forests in the
north-eastern U.S. (Bruck, 1985). The dieback, characterised by needle loss and
crown thinning, increased with elevation and occurred in areas where the
deposition of poliutants was high. Unlike the new-type forest decline in central
Europe - where nutrient deficiency was the pre-disposing stress factor - dieback in
Canada and the north-eastern U.S. was attributed to winter damage (Friedland,

Hawley and Gregory, 1985).

The forest decline of the 1970’s and 80’s differed from local damage events in the
past attributable to specific causes (e.g. climatic conditions, insect/pathogen attack
etc.), in that it affected a range of species on different soil types. Although a
number of types of decline could be identified (FBW, 1986) on the basis of visible
symptoms and geographical occurrence, a nutrient deficiency was common to
most types. Analyses of soils and needles from declining forests in southern
Bavaria identified nutrient supply as the dominant stress factor (Zoettl and Huettl,
1986). The acid brown-earth soils in regions of decline were low in Ca and Mg, and
high in Al. The importance of nutrition was confirmed by fertiliser trials; damaged
trees were revitalised by applications of Mg and Ca. Field studies showed that
Mg deficiency was specifically responsible for the chlorosis of older needles of
declining Norway spruce in the Black and Bavarian forests. This damage, termed
‘Type 1’ decline, became the focus for the majority of research effort. There were
many hypotheses for the cause of nutrient deficiency, identified as the critical
common factor of decline. The majority of these invoked air pollution or ‘acid rain’
as a primary agent. Formulated initially for Type 1 decline in southern Germany,
these hypotheses were subsequently applied to forest damage in the north-eastern

USA and other parts of Europe.

As a general approach, the ‘multiple stress hypothesis’ proposed that air pollution
impaired plant metabolism, rendering the tree more susceptible to nutrient
deficiencies and other ’natural stress factors’ (Schutt and Cowling, 1985). Other
specific hypotheses, invoking particular mechanisms, have proved more useful in
substantiating the complex causes of forest decline. The first - and probably most
controversial of these - is that of soil acidification and Al toxicity. Wet and dry
deposition of sulphuric and nitric acids from anthropogenic sources are thought to

have accelerated the acidification of forest soils, reducing the availability of
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nutrient cations and mobilising Al (Ulrich, 1983b). It is proposed that Al can reach
toxic concentrations in the rhizosphere, damaging fine roots and impairing nutrient
uptake. A second hypothesis suggests that O,, another common pollutant, interacts
with acid mist to induce nutrient deficiency (Prinz, 1987). O, is thought to damage
cuticle structure, making needles more susceptible to nutrient leaching by acid
mist. The third and most recent hypothesis is that current levels of nitrogen
deposition - in excess of forest requirements in some regions - could be
responsible for the damage symptoms (see Skeffington and Wilson, 1988).
Inorganic N deposition could contribute to nutrient deficiency by:

a) accelerating growth

b) leaching base cations from the foliage and soil

c) inhibiting nutrient assimilation by N-nutrient antagonism at root-uptake sites
(Nihlgard, 1985, Schulze, 1989).

Evidence for these mechanisms is considered in Chapters 3 and 4.

2 NITROGEN AND FOREST DECLINE

Despite the paucity of field evidence for the specific role of N in the ‘new-type’
forest decline of Central Europe, the ‘excess N hypothesis’ has gained ground in

recent years. Four sources of observations have strengthened the case:

1) A clear correlation between NH} deposition and forest decline in the Netherlands
and Belgium '

2) The implication of N in forest decline in the north-eastern U.S.
3) Indications of ‘N saturation’ in some European forests

4) Evidence that N deposition has increased over much of Europe and North
America in recent decades.

2.1 Forest Dieback in the Netherlands and Belgium

Deposition of N in the Netherlands and Belgium - primarily as (NH,).,SO, - far
exceeds levels recorded elsewhere in Europe. Most of this N originates from
stock-breeding farms or volatilises from the slurry spread on adjacent fields.
Emissions have increased during the last decade with the intensification of animal

husbandry practice. Mean total N inputs as high as 115 kg N ha-' yr'' have been
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recorded for Douglas fir (Pseudotsuga menziesii Franco mirb.) forests in the vicinity
of a large emission area in the Netherlands (Draaijers et al., 1989). Of this, 83% of
the input was estimated to originate from NH; emissions and 17% from NO, . In
certain areas, estimates of deposition exceed 500 kg N ha' yr-' (Anonymous,
1986). Furthermore, the synergistic deposition of NH, and SO, may mean that N
deposition is underestimated by many modeis. Dry and wet deposition
measurements to the Douglas fir forest in the Veluwe and Gelderse regions of the
Netherlands showed that mean dry deposition velocities of NH, and SO, were much

larger than reported in the literature (Draaijers et al., 1989).

Forest dieback in tHe Netherlands is most severe in pine forests in the eastern and
south-eastern part of the country. The damage is characterised by needle
yellowing or reddening, and in some cases by fungal and insect diseases (Roelofs
and van Dijk, 1986). All decline types are associated with high inputs of NH;. The
1984 forest survey in the Netherlands showed that regional variations in forest
health matched regional variations in NH; more closely than they matched SO,,
NO, or O, (den Boer and van den Tweel, 1985). Studies along a gradient of NH,
emission from a point source (a hen-house) showed that the vitality of Scots pine
improved with distance from the source (Kaupenjohann, Dohler, and Bauer, 1989).
It is proposed that atmospheric inputs of NH{ induce nutrient deficiencies by
exchanging for base cations in the foliage and inhibiting nutrient absorption by
roots (e.g. Nihigard, 1985). There is evidence that inputs of (NH,),SO., which
oxidise to nitric and sulphuric acids, significantly acidify nutrient poor soils. A study
in a Scots pine forest on acidic sandy soil showed that N inputs of 64 kg N ha" yr-'
resulted in low pH values (2.8-3.5) and high concentrations of dissolved Al (van
Breemen et al., 1982). Significant nitrification ocurred even on acid soils. This
source of NO3y may leach base cations, reducing the nutrient supply to forests on
poor soils. Some Dutch decline types are thought to result directly from high foliar
concentrations of N, stored as the amino acid arginine, rather than nutrient
deficiencies (van Dijk and Roelofs, 1988). High tissue N concentration is also
thought to have increased the susceptibility of Dutch forests to frost, insect attack
and fungal diseases (Roelofs and van Dijk, 1986). Evidence for the role of NH{ in
Dutch forest decline and the mechanisms involved are reviewed in more detail in
Chapters 3 and 4.

Although there is little doubt that NH} inputs in the Netherlands are the primary
cause of forest dieback, research has focussed on very high deposition rates,
typical of areas close to agricultural sources of NH,. This evidence implicating N in
forest decline has been formulated into a generalised (and largely speculative)
‘excess nitrogen’ hypothesis (Nihigard, 1985). This has been promuigated as a
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explanation for the ‘new-type’ decline in southern Germany and other regions of
Central Europe (Schulze, 1989, Oren and Schulze, 1989). However, a number of
features of the Netherlands situation make it inapplicable to the rest of Europe, in
much the same way that the acute SO, damage to forests in Eastern Europe cannot
be extrapolated to Central Europe. The occurence of a less severe form of damage

in a-other area, cannot be attributed to reduced levels of the same pollutant.

Firstly, levels of N deposition in the Netherlands far exceed mean levels over
Central Europe, which have been cited as 10-20 kg N ha ' yr~' (Zoettl, 1990). Table
1 shows that wet deposition of N in most countries is less than 15 kg N ha-' yr-'.
Of course, these values mask regional variation, but the maximum inputs in areas
of decline in Central Europe are stiil much less than localised N inputs in some
regions of the Netherlands. The lower deposition rates are reflected in needle N
concentrations. Foliar samples taken from six Norway spruce forests in Germany
in 1986 showed that mean N concentrations in current year needles were only 1.32
% dry weight (Cape et. al, 1990), well within the Forestry Commission guidelines
for optimum nutrition (Binns, Mayhead and MacKenzie, 1980). In the Netherlands,
the concentration of N in damaged Scots pine was in the range 2.26-3.27 % dry
weight (van Dijk and Roelofs, 1988). In addition to relatively low absolute values,
there was no statistical difference in the N concentration of needles from trees
classified as ‘good’ and those classified as ‘poor’ in the German forests surveyed
(Cape et. al, 1990). The magnitude of N deposition in the Netherlands is so unique
that forest dieback in these regions can be likened to damage in the vicinity of a

point source.

The second important difference is in the ionic composition of N deposition. In the
Netherlands this is predominantly NH{-N while in Central Europe NO3-N is thought
to contribute approximately 50% to total N deposition (Glover, 1986). Different
conifer species are known to respond differently to NHi-N and NO;-N inputs.
Similarly, soil reactions governing acidification and nutrient availability will be
related to the ionic form of N (Reuss and Johnson, 1986). If NHi-N deposition alone
is considered, the Netherlands and the rest of Europe are even less comparable.
However, there is some evidence that much lower levels of NHt deposition than
experienced in the Netherlands may be responsible for similar forest damage in
other areas. Needle-yellowing in Norway spruce stands in the Ardenne region of
Belgium has been related to increases in N deposition. Needle N concentration in
these stands is 1.5-1.7% today compared with 1.2-1.3% 20 years ago (Weissen et
al., 1990). The damage symptoms occur when the N/Mg ratio in foliage exceeds
30-40. The total N input at this site (28 kg N ha ' yr-') is more comparable with
Central Europe, although in common with the Netherlands, it is 75% NH{-N.
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Table 1 Nitrogen inputs in bulk precipitation in Europe.

(From Blank and Roberts, 1987)

Area NH,-N NO,-N
kg ha? yr?! kg ha! yr?!
Hackfort, Netherlands 48.0 16.0
Tillingbourne, SE England 6.1 54
Holme, Norfolk 4.6 4.1
Rhyd-Lydan, W Wales 2.6 3.2
Snake Pass, Derbyshire 5.9 5.5
Delamere, Cheshire 9.6 3.0
Cairnsmore of Fleet, SW Scotland 4.8 3.1
Robinette, Belgium 124 11.0
Birkenes, Norway 7.4 7.8
Jddras, Sweden 1.3 1.3
Gardsjon, Sweden 6.3 4.6
Langen Bramke, N Germany 14.8 8.9
Solling, W Germany 12.6 8.1
Fasanengarten, S Germany 5.8 4.6
Freudenstadt, S Germany 5.7 6.3
Vysoca Pec, Czechoslovakia 7.5 5.5
Hubbard Brook, NE USA 2.3 4.3
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Not only the N inputs, but also SO3~ deposition. will differ in the two regions. In the
Netherlands, where N deposition is high and predominantly NHi-N, SO3 inputs are
high due to the synergistic deposition of NH, and SO, (Draaijers et al., 1989). Owing
to their basic and acidic characters respectively, farge amounts of NH; and SO, can
be deposited in equivalent quantities to a wet needle surface (Adema, 1986). Some
of the observations in declining forests in the Netherlands, and in particular those
concerning soil acidification and base cation depletion, may be attributable to SO3%-

deposition rather than NHt per se.

A fourth and important factor in the susceptibility of Dutch forests to N deposition
is soil type. The most severe dieback of coniferous forests in the Netherlands
occurs on sandy, nutrient poor, podzolic soils. Fertiliser trials show that the
potential for N to induce nutrient deficiencies in aggrading forests is dependent on
soil type. Urea addition of 100-300 kg N ha-' to Norway spruce stands on sandy
podzols induced K deficiency, while stands on richer soils did not exhibit
needle-yellowing (Weissen et al.,, 1990). The acidic brown-earth soils typical of
declining forests in Central Europe may be somewhat less sensitive, although they
are still nutrient poor. Application of (NH,),.SO, at 126 Kg N ha-' to a Norway spruce
stand in the Black Forest did not induce K or P deficiency. Needle-yellowing
resulting from Mg deficiency was observed, but recovery was rapid (Huettl, 1990).
However, it is difficult to draw conclusions from fertiliser trials since nutrient
demands will depend on stand age, density, yield class etc - factors which are

unlikely to be comparable from site to site.

2.2 Forest Decline in the North-Eastern U.S.

Reports of damage to forests by air pollution in West Germany in the early 1980’s
served as a catalyst for research on air quality and forest health in the USA. These
studies have been reviewed in detail in a report on the state of forest health and
productivity in the U.S., compiled as part of the National Acid Precipitation
Assessment Program (NAPAP). The report concludes that the majority of forests in
the USA and Canada are healthy but there are some regional examples of decline,
usually limited to one or two species (Barnard et al., 1989). Research effort has
focussed on increases in mortality in southern pines, sugar maple, red spruce and

fir. Only the latter two will be considered here.

Unlike forest decline in Europe which occurred suddenly and synchronously in
many areas, high altitude spruce-fir forests in the north-eastern United States have
been declining since the 1960’s (Bruck, 1985). A gradual increase in the mortality

of red spruce (Picea rubens Sarg.), balsam fir (Abies balsamea L. Mill) and Fraser
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fir (Abies fraseri Pursh Poir.) has been observed in the montane forests of the
Adirondacks, and the southern and northern Appafachians. There are relatively few
reports of red spruce decline in the low elevation forests of Maine, New Hampshire
and Vermont. Decline in the southern Appalachians can be attributed to outbreaks
of balsam woolly adelgid in mature Fraser fir (Barnard et al., 1989), which first
infested stands in 1958. Air pollution however, may be involved in the decline of
high elevation forests in the Adirondacks and northern Appalachians. Studies
show a marked decrease in the vitality of red spruce in the last 30 years at
elevations >900-1000 m, although balsam fir in the same forests has remained
largely unaffected. In contrast with damaged forests in Germany, which have
shown a steady improvement since 1985 (Blank and Roberts, 1989), the condition
of red spruce has continued to deteriorate in recent years. The percentage of
seedlings rated as ‘healthy’ decreased from 70% to 25% from 1985-1988. The main
symptom of declining spruce is crown thinning due to needle loss. Intermittent
chlorotic mottling has been noted, but the needle-yellowing which characterises

European decline is not widespread.

Air pollution was proposed as a major factor in red spruce decline, largely because
damage symptoms had only been observed at high elevations where exposure to O,
and pollutants in acidic cloudwater is relatively high. Winter injury, the second

major hypothesis explaining decline, was favoured for a number of reasons:

1) Red spruce is known to be particularly sensitive to winter injury (DeHayes,
Ingle and Waite, 1989). This would explain why fir at the same elevations was not

declining.

2) Winter injury was responsible for similar damage and mortality in the late 1950’s

and early 1960’s.

3) Resistance to winter stress is thought to be the an important factor controlling

the upper limit of red spruce, which is rarely found at elevations > 1300m.

Red spruce forests above 1000m in the northern Appalachians are exposed to
cloud water for approximately 20% of the time. Data from the Mountain Cloud
Chemistry Project showed that cloudwater at Whiteface Mountain had a mean pH
of 3.5 and much greater NO; and SOj- concentrations than rain water. It was
proposed that these pollutants could he causing decline by the same mechanisms
as had been suggested to explain European decline - namely base cation leaching
from the foliage, soil acidification and Al toxicity. Based on a detailed review of the

literature, Barnard et al. (1989) conclude that there is little evidence to substantiate
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these hypotheses. Instead, the authors see a role for acidic mist and O, in climate

interactions, increasing the susceptibility of red spruce to winter injury.

A decrease in the winter hardiness of current needles of red spruce on exposure
to O, at concentrations experienced in the Whiteface Mountain has been
demonstrated by two groups (Cumming et al. and Fincher et al. in Barnard et al.,
1989). Similarly, there is experimental evidence that exposure to acid mist
decreases the frost hardiness of red spruce. Cape et al. (1991) exposed two year
old red spruce seedlings to acid mists of pH 2.5 to 5.0 in open top chambers.
Freezing injury increased with decreasing pH of the acid mist, and was attributed
to H* and SO3- in the mist rather than NOj.

However, there is evidence - based on field observations - that the N component
of acid mist could be contributing to winter injury of red spruce at high elevation.
Precipitation and cloudwater analyses show that N inputs to declining forests are
considerable in some areas. At a high elevation site in New Hampshire, wet
deposition was 44.1 kg N ha ' yr ' {Lovett, Reiners and Olsen, 1982) compared with
35 kg N ha-' yr-' at some sites in southern Germany and a mean of 10-20 kg N ha-!
yr-* over large forest areas in Central Europe (Zoettl, 1990). Friedland et al. (1984)
put forward the hypothesis that that N deposition could be responsible for the
increase in winter damage of red spruce at high elevation. This was based on two

sets of observations:

1) Foliar N concentrations, mortality and decline symptoms all increase with
elevation and
2) N deposition is much greater at high elevation sites (approximately 5x) than at

low elevation sites in New England

The role of N in red spruce decline is further substantiated by needle analyses
from low and high elevation sites in the Green mountains and Adirondacks which
showed that N concentration, N/Mg and N/Ca ratios were greater at higher
elevations (Friedland, Hawley and Gregory, 1988). The role of excess N in
preventing winter hardening and decreasing frost hardiness is well-documented
{Levitt, 1980). N inputs may induce growth later into the autumn, delaying
differentiation of the cuticularised epidermis and the conversion of starch to sugar
(Bruck, 1985). A number of fertiliser experiments demonstrate that N inputs can

cause winter injury to conifers (e.g. Soikelli and Karenlampi, 1984).

The correlation between forest damage, N deposition and foliar N concentration,
coupled with evidence that N inputs can cause the typical winter injury, provides
a strong case for the role of N in red spruce decline. However, the NAPAP report
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on forest health in the U.S. and Canada (Barnard et al., 1989) dismissed N
deposition as a contributory factor. This was based on two experiments which
showed that HNO; mist did not affect the frost hardiness of red spruce seedlings,
and another - again using seedlings - which showed that N fertilisation increased
the frost hardiness of red spruce (DeHayes, ingle and Waite, 1989). This area

requires further research before it can be discounted so readily.

In contrast with forest decline in the Netherlands. N inputs to damaged forests in
the north-eastern USA are more typical of those in Central Europe, in both absolute
amount and ionic form. However, the characterisation of red spruce decline by
winter injury compared with nutrient deficiency in Europe and the differences in
elevation and climate between the sites, limits the extrapolation of causes from

one decline type to the other.

2.3 Nitrogen Saturation

The concept of 'nitrogen saturation” was first introduced by Agren (1983), and has
subsequently been defined in many different ways. An attempt at standardisation
was made by the Nordic Council Working Group in 1986 who defined N saturated
ecosystems as ‘ecosystems where the primary production is not further increased
by increased N supply’ (Nilsson, 1986). However, this definition fails to encompass
the link between N saturation and adverse effects on ecosystem function.
Additional N inputs could be stored in the biomass, utilised by microbes or lost
from the system by denitrification - without either an increase in primary
production or deleterious consequences. Conversely, an increase in N supply
could increase primary production and have adverse effects on tree growth. N
uptake and enhanced growth could induce a deficiency of some other nutrient or
increase the susceptibility of trees to cold stress or pathogens. Furthermore, an
ecosystem may not respond to N inputs because growth is limited by some factor
other than N e.g. climate, other nutrients. An improved definition was recently
promulgated by Agren and Bosatta (1988); an N saturated ecosystem is one in
which N losses approximate to or exceed N inputs. The merit of this definition is
its focus on NOj; leaching, one of the less equivocal indicators of deleterious
effects. Its shortcomings are that it fails to incorporate adverse effects of excess
N such as high tissue N concentrations, N-induced nutrient deficiencies etc., which

are not necessarily accompanied by NO; leaching.

While it may not be possible to arrive at a definition of N saturation which
combines all potential adverse effects of excess N inputs and is applicable to

different sites, it is important not to lose sight of the reason for its conception. In
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