UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Bioinspired Polymerization of Quercetin to Produce a Curcumin-Loaded Nanomedicine with Potent Cytotoxicity and Cancer-Targeting Potential in Vivo

Sunoqrot, S; Al-Debsi, T; Al-Shalabi, E; Ibrahim, LH; Faruqu, FN; Walters, A; Palgrave, R; (2019) Bioinspired Polymerization of Quercetin to Produce a Curcumin-Loaded Nanomedicine with Potent Cytotoxicity and Cancer-Targeting Potential in Vivo. ACS Biomaterials Science & Engineering , 5 (11) pp. 6036-6045. 10.1021/acsbiomaterials.9b01240. Green open access

[thumbnail of Palgrave_Bioinspired Polymerization of Quercetin to Produce a Curcumin-Loaded Nanomedicine with Potent Cytotoxicity and Cancer-Targeting Potential in Vivo_AAM.pdf]
Preview
Text
Palgrave_Bioinspired Polymerization of Quercetin to Produce a Curcumin-Loaded Nanomedicine with Potent Cytotoxicity and Cancer-Targeting Potential in Vivo_AAM.pdf - Accepted Version

Download (8MB) | Preview

Abstract

Nanomedicine has had a profound impact on the treatment of many diseases, especially cancer. However, synthesis of multifunctional nanoscale drug carriers often requires multistep coupling and purification reactions, which can pose major scale-up challenges. Here, we leveraged bioinspired oxidation-triggered polymerization of catechols to synthesize nanoparticles (NPs) from the plant polyphenol quercetin (QCT) loaded with a hydrophobic anticancer drug, curcumin, and functionalized with poly(ethylene glycol) (PEG) for steric stabilization in one reaction step. NPs were formed by base-catalyzed oxidative self-polymerization of QCT in the presence of curcumin and thiol-terminated PEG upon mixing in a universal solvent (dimethyl sulfoxide), followed by self-assembly with the gradual addition of water. Dynamic light scattering and X-ray photoelectron spectroscopy were used to confirm NP PEGylation. Drug loading was verified by UV–vis spectroscopy. Curcumin-loaded NPs were efficiently internalized by CT26 murine colon cancer cells as determined by flow cytometry and confocal microscopy. NPs also demonstrated sustained release and potent cytotoxicity in vitro. Moreover, in vivo imaging of CT26 tumor-bearing Balb/c mice following tail vein injection of DiR-labeled QCT NPs showed steady tumor accumulation of the NPs up to 24 h. This was further supported by significant tumor uptake of curcumin-loaded QCT NPs as measured by flow cytometry analysis of tumor homogenates. Our findings present a greener synthetic route for the fabrication of drug-loaded surface-functionalized NPs from poorly water-soluble plant polyphenols such as QCT as promising anticancer delivery systems.

Type: Article
Title: Bioinspired Polymerization of Quercetin to Produce a Curcumin-Loaded Nanomedicine with Potent Cytotoxicity and Cancer-Targeting Potential in Vivo
Open access status: An open access version is available from UCL Discovery
DOI: 10.1021/acsbiomaterials.9b01240
Publisher version: https://doi.org/10.1021/acsbiomaterials.9b01240
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher's terms and conditions.
Keywords: quercetin, curcumin, bioinspired nanoparticles, cancer targeting, green chemistry
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Chemistry
URI: https://discovery.ucl.ac.uk/id/eprint/10110574
Downloads since deposit
107Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item