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Abstract

After the global financial crisis of 2007-09, network approaches have become more

prominent for analysing systemic risk in financial networks. Accordingly, various

systemic stress testing models have been introduced in the literature. However, rel-

atively little work has been devoted to study the accuracy of these models to predict

systemic risk. This is especially important, given that stress tests are subjected to

a range of modelling choices. In this thesis, I address this gap by studying the im-

pact of modelling choices on the outcome of stress tests. I mainly focus on indirect

contagion channel due to common assets holdings (overlapping portfolios) between

financial institutions. In particular, this thesis is concerned with three aspects of

stress tests related to indirect contagion: (i) the network of interactions, (ii) the

dynamics of contagion, and (iii) the perimeter, or the types of institutions that are

included in the stress test.

With regard to the first aspect, the network of financial linkages between fi-

nancial institutions is often lacking, and one has to resort to network reconstruction

methods to infer the network from partial information. In this thesis, I conduct a

horse race between different network reconstruction methods in terms of their abil-

ity to reproduce the topological features and the levels of systemic risk of the actual

bank-firm credit networks in Japan. I find that there is no single ”best” network

reconstruction method - it depends on the assumed criterion of interest, but the re-

construction method which preserves the actual degree distribution overall consis-

tently performs best. Furthermore, I find that the observed credit network displays

relatively high levels of systemic risk compared with most reconstruction methods.

Concerning the second aspect, the propagation of shocks between financial
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institutions is usually modelled by means of effective dynamics, which are only ap-

proximations of the true dynamics. In this thesis, I introduce a generalised stress

testing model that captures a wide range of behavioural assumptions with regard to

banks’ liquidation dynamics under stress. The literature has proposed two alterna-

tive classes of liquidation dynamics in this regard, all of which are covered by my

model: threshold dynamics (banks liquidate their investment portfolios only after

they have defaulted), and leverage targeting dynamics (banks constantly rebalance

their portfolios to maintain a target leverage ratio). I test the capability of the gener-

alised model to predict actual bank defaults (and non-defaults) in the United States

for the years 2008-10. I find that the model performs better than alternative bench-

marks that do not account for the network of common asset holdings, irrespective

of the assumed liquidation dynamics. I also show how the best performing liquida-

tion dynamics depend on the combination of the initial shock level and the market

impact parameter, on the cross-sectional variation in the market impact parameter,

and on the number of asset liquidation rounds.

Finally, with respect to the third aspect, it is mandatory to define the types of

financial institutions that the stress test covers. In this thesis, I study the impact

of common asset holdings across different financial sectors on financial stability.

In particular, I model systemic risk arising from indirect contagion between UK

banks, UK open-ended investment funds and UK insurance companies. I show that

performing a stress simulation that accounts for common asset holdings across mul-

tiple sectors results in systemic losses that are 47% larger than those obtained by

summing the losses of sector-specific stress simulations. In other words, ignoring

common asset holdings between different financial sectors may result in an under-

estimation of systemic risk.
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Chapter 1

Introduction

“The duty of the man who investigates the writings of scientists, if learn-

ing the truth is his goal, is to make himself an enemy of all that he reads,

and ... attack it from every side. He should also suspect himself as he

performs his critical examination of it, so that he may avoid falling into

either prejudice or leniency.”

– Ibn al-Haytham in Doubts Concerning Ptolemy

1.1 Motivation and Research Objective
The 2007-09 financial crisis has brought the interconnectedness of the financial

system to light, and the interconnectedness of the financial system has been identi-

fied as an important source of systemic risk (May et al. (2008); Haldane and May

(2011)). Accordingly, the regulatory framework has taken a more macroprudential

perspective to maintain the stability of the system as a whole. For example, Basel

III introduced capital surcharges for systemically important financial institutions.

In this regard, the literature on network models of financial systemic risk has pro-

liferated (see Hüser (2015); Glasserman and Young (2016); Caccioli et al. (2018)

for the recent surveys), with a particular focus on the development of contagion

network models (Neveu (2016); Aymanns et al. (2018)). More importantly, differ-

ent systemic stress tests that account for interaction between financial institutions

have been introduced in the literature (Furfine (2003); Eisenberg and Noe (2001);

Gai and Kapadia (2010); Battiston et al. (2012); Huang et al. (2013); Caccioli et al.
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(2014); Greenwood et al. (2015); Cont and Schaanning (2017)).

With the exception of Huang et al. (2013), relatively little work has been de-

voted to empirically testing the capability of any given stress testing model to pre-

dict financial systemic risk. Of course, generally speaking, stress tests are not a

prediction tool. However, given that stress tests may be used as early-warning indi-

cators, it is important to calibrate models in a way that they can capture the actual

dynamics. This is especially important given that a multitude of models has been in-

troduced in the literature. Moreover, considering the importance of stress testing in

monitoring systemic risk, these questions are not of merely academic interest but of

utmost practical importance. In fact, policymakers and regulators are well aware of

the fact that the outcome of stress tests crucially hinge upon the underlying model,

as pointed out for example by Niepmann and Stebunovs (2018) and Siemsen and

Vilsmeier (2018).

This thesis is concerned with studying the predictive performance of systemic

stress tests. The study in particular focuses on indirect contagion channel that is due

to common assets holdings (overlapping portfolios) between financial institutions.

This is different from direct contagion channel in interbank borrowing/lending net-

works that has received relatively more attention in the literature (Glasserman and

Young (2015)). The indirect contagion dynamics is based on the idea of fire sales in

asset markets: when a leveraged bank faces a loss, it may need to liquidate (part of)

its assets. The corresponding market impact decreases the prices of the liquidated

assets further, which creates a vicious circle where banks may need to sell even

more assets in a falling market.

When a stress test methodology is developed, several modelling choices have

to be made. For instance, what are the financial institutions that are going to be

modelled? What is the network of interactions between these institutions? How

do shocks propagate between interconnected institutions? These modelling choices

affect the outcome of the stress test. Moreover, each assumption, in fact, represents

an approximation to reality. For example, the network of financial linkages between

financial institutions is often lacking, and one has to resort to network reconstruction
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methods to infer the network from partial information. Similarly, the propagation

of shocks between financial institutions is usually modelled by means of effective

dynamics, which are only approximations of the true dynamics.

In this thesis, I will study the impact of modelling choices on the outcome of

stress tests. I will focus on three particular aspects of stress tests related to indirect

contagion: (i) the network of interaction, (ii) the dynamics of contagion, and (iii)

the perimeter, or the types of institutions that are included in the stress test. In the

different chapters, I will discuss how the choice that one makes, concerning each of

these aspects, contributes to the accuracy.

With regard to the first aspect, stress tests require detailed data on interactions

between individual financial institutions. However, it is difficult to collect such data

in full and to make them readily available to researchers (e.g., due to data confi-

dentiality), such that we generally do not have complete information about finan-

cial networks. For example, Haldane (2015) suggests that even among the world’s

largest banks, the collection of interbank exposure data is partial, and even regula-

tors often do not have complete information (Glasserman and Young (2016)). Sev-

eral data collection initiatives have been proposed, but granular interaction-specific

data generally remain unavailable (Anand et al. (2018)). In this regard, different

network reconstruction methods have been introduced in the literature (see, for ex-

ample, Squartini et al. (2018)). It is therefore important to study the capability of

these reconstruction methods to reproduce actual financial networks.

Concerning the second aspect, the literature has proposed different behavioural

assumptions with regard to bank’s liquidation dynamics under distress. For exam-

ple, Huang et al. (2013) and Caccioli et al. (2014) assume that banks are passive

during stress periods, and they will liquidate their assets only after they default.

In contrast, Greenwood et al. (2015) assume that banks actively target their lever-

age ratio. It is not surprising that these dynamics may yield very different results.

Therefore, properly defining and validating the dynamics of contagion is an impor-

tant aspect of stress tests.

Finally, in terms of the third aspect, it is mandatory to define the perimeter,
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in particular concerning the types of institutions that the stress test covers. Most

of the literature focuses on quantifying systemic risk in a single financial sector,

where most works have been devoted to the case of banks (see, for example, Cac-

cioli et al. (2018) and Glasserman and Young (2016)). Recently, regulators have

become concerned about the impact of non-banks (or more accurately non-bank

financial intermediaries) on financial stability. As discussed in Fricke and Fricke

(2020), this is due to the fact that the non-bank industry has grown enormously

over the last decade, both in terms of size and importance. For example, the con-

tribution of non-banks in the UK to the total assets of the UK financial system has

increased by 13 percentage points since 2008, as it now accounts for almost 50%

of the system (Baranova et al., 2019). Moreover, it has been empirically shown in

Barucca et al. (2020) that banks and non-banks may have some portfolio overlap. In

this respect, considering common asset holdings across financial sectors becomes a

relevant aspect of future stress tests.

1.2 Thesis Structure
Figure 1.1 summarises the overall structure of this thesis. Firstly, I provide a litera-

Figure 1.1: Thesis structure.
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ture review in chapter 2. In chapter 3, entitled ”A Systemic Fire Sale Stress Test”, I

present an overview of the thesis methodology. I note that the details of the method-

ology for each stress test aspect are provided in each subsequent chapter. In chapter

4, entitled ”On Network Reconstruction”, I conduct a horse race between differ-

ent reconstruction methods, in terms of their abilities to reproduce actual bank-firm

credit networks and observed systemic risk levels from partial information. Further-

more, in chapter 5, entitled ”On Dynamics of Contagion”, I propose a generalised

contagion model that captures a wide range of behavioural assumptions with re-

gard to bank’s liquidation under distress. I then study the capability of the model

to predict actual defaults (and non-defaults) of banks. In chapter 6, entitled ”On

System-Wide Stress Tests”, I explore the importance of considering different finan-

cial sectors to stress tests. Finally, I conclude the results in chapter 7.

1.3 Thesis Contribution
Overall, I contribute to the literature on network models of systemic risk via the

indirect contagion channel. As I discussed above, the focus of the literature has been

on developing different stress testing models that may yield very different results.

I take the literature forward by taking these models to the data and validating their

output. In the following, I discuss the detailed contributions of the thesis on the

three different aspects of stress tests.

1.3.1 On Network Reconstruction

Finding accurate reconstruction methods for financial networks from partial infor-

mation is an important topic. However, most of the existing work of focuses on the

case of interbank credit networks (Squartini et al. (2017); Gandy and Veraart (2017);

Anand et al. (2018)). In this thesis, I use data on bank-firm credit relationships at

different aggregation levels in Japan and conduct a horse race between different net-

work reconstruction methods in terms of their ability to reproduce the actual credit

networks. Interestingly, I find that there is no single ”best” reconstruction method

- it depends on the assumed criterion of interest. I then compare the different re-

construction methods in terms of their implied levels of systemic risk based on a
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standard model of indirect contagion. To the best of my knowledge, this is the first

work to conduct a horse race of bipartite network reconstruction methods in terms

of their implied levels of systemic risk.1 I find that the observed credit network

displays relatively high levels of systemic risk compared with most reconstruction

methods. In other words, many reconstruction methods tend to underestimate sys-

temic risk. Lastly, I explore whether different policies can improve the robustness

of the system.

Overall, this work contributes to different strands of literature: first, I add to

the growing literature on reconstructing financial networks from partial information

(Squartini et al. (2017); Gandy and Veraart (2017); Anand et al. (2018); Squartini

et al. (2018)). For the case of bipartite networks, I am only aware of the works

of Di Gangi et al. (2018) and Squartini et al. (2017). Given that most reconstruc-

tion methods have been designed for the case of unipartite credit networks, I adjust

some of these methods to the case of bipartite networks. Second, I contribute to the

literature on systemic risk assessment by performing stress tests both for the actual

and reconstructed credit networks in Japan. Lastly, I contribute to the literature that

explores the effects of aggregation on stress test results. For example, Hale et al.

(2015) study the optimal aggregation level for stress testing models on macroeco-

nomic variables, and they find that the aggregation level matters. I obtain a similar

conclusion based on a completely different stress testing approach.

1.3.2 On Dynamics of Contagion

Two extreme types of banks’ liquidation dynamics have been proposed in the lit-

erature: (i) threshold dynamics of Huang et al. (2013) and Caccioli et al. (2014),

where banks liquidate their investment portfolios only after they have defaulted,

and (ii) leverage targeting dynamics of Greenwood et al. (2015), where banks con-

stantly rebalance their portfolios to maintain a target leverage ratio. I introduce a

one-parameter family of non-linear liquidation functions that interpolates between

these two extremes, and test the capability of these models to predict actual bank

1Some related papers for the case of unipartite interbank networks are Mistrulli (2011), Anand
et al. (2015), and Gandy and Veraart (2017).
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defaults (and survivals) in the United States for the years 2008–10.

My main findings are as follows: I show that the model performance de-

pends on the type of shock being imposed (idiosyncratic versus systematic), and

identify the two most relevant asset classes, for which the model has predictive

power when these asset classes are exposed to an initial shock. In these cases, the

model performs better than alternative benchmarks that do not account for the net-

work of common asset holdings, irrespective of the assumed liquidation dynamics.

I also discuss the fundamental differences between network models and statisti-

cal/econometric models in general, and argue that the former are more appealing

to the application of systemic stress tests. Finally, I show how the best perform-

ing liquidation dynamics depend on the combination of the initial shock level and

the market impact parameter, on the cross-sectional variation in the market impact

parameter, and on the number of asset liquidation rounds.

In addition to the above-cited literature, my work mainly contributes to the fol-

lowing streams of the literature: first, my generalization of existing stress testing

models captures a wide range of banks’ asset liquidation behaviour in response to

some initial shock. In this sense, my work is analogous to Bardoscia et al. (2016)

who analyse counterparty risk within interbank networks. Second, my work adds

to the literature on backtesting risk models. While backtesting microprudential risk

models is now common practice among market practitioners (e.g., Philippon et al.

(2017); Danı́elsson (2011); Cavestany and Rodrı́guez (2015)), relatively little atten-

tion has been devoted to the case of macroprudential stress tests. My methodology

allows us to compare the performance of different models and thus to identify the

most accurate stress testing model, given exogenous parameters. This is similar

to the approach of Huang et al. (2013), who test the predictive performance of the

threshold model. In my work, I use the same methodology but allow for different

liquidation dynamics and different combinations of the initial shock/market liquid-

ity parameters. Lastly, my work is also related to the literature on reverse stress

testing (e.g., Grigat and Caccioli (2017)). Fundamentally, reverse stress testing

is concerned with identifying scenarios that will lead to a certain stress testing out-
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come. In my analysis, the outcomes that I wish to match are individual defaults/non-

defaults.

1.3.3 On System-Wide Stress Tests

In this thesis, I study the impact of common asset holdings across different finan-

cial sectors on financial stability. In particular, I model systemic risk arising from

fire sale contagion between UK banks, UK open-ended investment funds and UK

(both unit-linked and non unit-linked) insurance companies. I assume that fire sales

are triggered by different responses to a financial shock: banks and non unit-linked

insurers are subject to regulatory constraints, while funds and unit-linked insurers

are obliged to meet investor redemptions. To this end, I build a network of common

asset holdings from granular datasets of portfolio holdings across different sectors.

I then conduct a systemic stress test under different initial shock scenarios and in-

stitutions’ selling strategies. I find that performing a stress simulation that accounts

for common asset holdings across multiple sectors results in fire sales losses that

are 47% larger than those obtained by summing the losses of sector-specific stress

simulations. This indicates that ignoring asset common asset holdings between dif-

ferent financial sectors may result in an underestimation of systemic risk.

My main contribution to the literature is the quantification of systemic risk on

granular data of portfolio holdings of banks and non-banks. Most of the literature

to date focuses on quantifying systemic risk in a single financial sector. For exam-

ple, Duarte and Eisenbach (2015) and Cont and Schaanning (2017) look at systemic

risk in the banking sector, while Baranova et al. (2017) and Fricke and Fricke (2020)

model indirect contagion between investment funds. Moreover, this work is also re-

lated to the literature on portfolio similarity between different financial sectors. In

this respect, my work is the closest to Barucca et al. (2020), who study the portfolio

similarity between UK banks, UK insurance companies and European funds. How-

ever, while they consider holdings at the security issuer level (where each asset is

identified by a LEI - Legal Entity Identifier), I instead study those at the ISIN level

(where each asset is identified by using the International Securities Identification

Number). Therefore, I consider more granular data of portfolio holdings.
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1.4 Publications and Talks
The work I carried out in this thesis has also been described in several manuscripts

and presented at several conferences:

1. Chapter 4 has been published as: ”Ramadiah, A., Caccioli, F., Fricke, D.

(2020). Reconstructing and Stress Testing Credit Networks. Journal of Eco-

nomic Dynamics and Control, 111. DOI 10.1016/j.jedc.2019.103817”.

• It has been presented in the 2019 Royal Economic Society Symposium

of Junior Researcher, 2018 RiskLab/BoF/ESRB Conference on Sys-

temic Risk Analytics and 3rd workshop on Statistical Physics for Fi-

nancial & Economic Networks at NetSci 2018.

2. Chapter 5 has been featured in the Deutsche Bundesbank Discussion Pa-

per Series as: ”Ramadiah, A., Fricke, D., Caccioli, F. (2020). Backtesting

Macroprudential Stress Tests. Deutsche Bundesbank Discussion Paper No

45/2020”.

• It has been presented in the Deutsche Bundesbank Research Seminar in

August 2019, Workshop on Economic Science with Heterogeneous In-

teracting Agents 2019, Conference on Complex Systems 2018, Econo-

physics Colloquium 2018, and 2nd Financial Economics and Network

Science Workshop.

3. Chapter 6 has been featured in the the Bank of England Staff Working Pa-

per Series as: ”Caccioli, F., Ferrara, G., Ramadiah, A. (2020). Modelling

Fire Sale Contagion across Banks and Non-Banks. Bank of England Staff

Working Paper No. 878”.

• It has been presented in the Bank of England Research Seminar in Oc-

tober 2019 and Complexity Meet Finance at NetSci 2020.



Chapter 2

Literature Review

2.1 Systemic Risk

It has been considered in the economic literature for a long time that financial sys-

tems are fragile, in a way that modest shocks may result in serious turmoil (Allen

and Gale (1999)). In fact, many advanced models of a single bank run have been

explored and developed in the banking literature (Bryant (1980); Diamond and Dy-

bvig (1983); Chari (1988)). However, as pointed out in Battiston et al. (2016), it

was not until the global financial crisis of 2007-09 that the phenomenon of finan-

cial contagion gained interest in the literature. This phenomenon is different from a

single bank run, as the former generally involves multiple banks, and is stemming

from the fact that distress in one institution may propagate to other institutions in the

financial system. Moreover, it is considered to be one of the important components

of systemic risk (Martı́nez-Jaramillo et al. (2010)).

Systemic risk has been formally defined in different ways in the literature.

For example, Kaufman and Scott (2003) describe it as ”the risk or probability of

breakdowns in an entire system, as opposed to breakdowns in individual parts or

components, and is evidenced by comovements (correlation) among most or all the

parts”. On the other hand, systemic risk is defined in the annual report of the Euro-

pean Central Bank (2004) as ”the risk that the inability of one institution to meet its

obligations when due will cause other institutions to be unable to meet their obli-

gations when due. Such a failure may cause significant liquidity or credit problems
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and, as a result, could threaten the stability of or confidence in markets.” Finally,

Fouque and Langsam (2013) argue that ”Systemic risk is the risk of a disruption of

the markets ability to facilitate the flows of capital that results in the reduction in

the growth of the global GDP”.

Although the literature has not reached a consensus on the definition of sys-

temic risk, it is illustrated above that a key element of systemic risk is the propaga-

tion of shocks in the financial system. This is based on the idea that shock is endoge-

nously amplified through a complex network of exposures among banks, as pointed

out in De Bandt et al. (2012). The existence of this complex interconnectedness

has been empirically studied in the literature. For example, many have provided

evidence that financial institutions are interconnected through credit relationships

(Marotta et al. (2015); Fricke and Roukny (2020)), derivative contracts (Heise and

Kühn (2012)), ownership relationships (Elliott et al. (2014); Vitali et al. (2011)) and

common asset holdings (Duarte and Eisenbach (2015); Greenwood et al. (2015);

Fricke (2019)).

As many contagion models have been relatively well developed outside eco-

nomic literature (e.g., health and epidemic diseases literature), systemic risk has

evolved to be an interdisciplinary study (De Bandt et al. (2012); Fouque and

Langsam (2013)).1 More importantly, since the interconnectedness can be con-

veniently modelled as a network (Hüser (2015)), the literature on network models

of systemic risk has grown tremendously for the last decade (Aymanns et al. (2018);

Caccioli et al. (2018);Glasserman and Young (2016)).

2.2 Systemic Stress Tests
According to International Monetary Fund (2012), stress testing is ”a technique that

measures the vulnerability of a portfolio, an institution, or an entire financial system

under different hypothetical events or scenarios”. Moreover, Baudino et al. (2018)

define stress tests for banking sector as ”simulation exercises conducted to assess

1There are also many studies of systemic risk in the economic literature whose approaches are
typically based on macroeconomic modelling, game theory and finance. I refer the interested reader
to Bisias et al. (2012) for a comprehensive survey on different measures of systemic risk.
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the resilience to a hypothetical scenario of either a single bank or the system as

a whole”. Broadly speaking, stress tests can be grouped into two categories: mi-

croprudential and macroprudential. The former focus on the risk of an individual

institution’s failure, and can be completed by banks themselves or supervisors (An-

derson et al. (2018)). An example of the microprudential stress tests is the exercise

coordinated by the European Banking Authority.2 Meanwhile, the latter are usually

run by central banks and/or supervisory agencies to assess systemic risk (Anderson

et al. (2018)), and are therefore also known as systemic stress tests. An example

of these tests is the Euro area macroprudential top-down exercise conducted by the

European Central Bank.3 This thesis focuses on this second type of stress test.

With regard to the development of contagion network models (Aymanns et al.

(2018); Neveu (2016)), various systemic stress tests based on different assumptions

have been introduced in the literature (see Anderson (2016); Anderson et al. (2018);

Dent et al. (2016) for a discussion on the development of stress tests). Once a sys-

temic stress test has been developed, it is usually calibrated on empirical data sets

to perform counterfactual simulations regarding the stability of the underlying fi-

nancial networks. As pointed out in Upper (2011), stress tests have been used to

assess the systemic risk level of various national interbank systems. For example,

Puhr and Schmitz (2014) carry out a stress test exercise on the Austrian interbank

exposure, while ? apply the exercise on the Brazilian interbank network. More-

over, stress tests have been applied to measure fire sale spillovers due to portfolio

overlap between financial institutions. For example, Duarte and Eisenbach (2015);

Di Gangi et al. (2018); Huang et al. (2013) look at the contagion in the network of

common asset holdings between U.S. banks, while Greenwood et al. (2015); Cap-

piello et al. (2015); Cont and Schaanning (2017) focus on the fire sale spillovers

among European banks. The similar model has been also to the network of overlap-

ping portfolios between U.S. funds (Fricke and Fricke (2020)) and European funds

(Baranova et al. (2017)).

Alternatively, theoretical analyses are performed on stylized synthetic data sets

2https://eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing
3See Dees et al. (2017) for more details.
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to study the effect of particular financial network topologies. For example, Gai and

Kapadia (2010) study the contagion mechanism in interbank networks, and show

that financial networks with arbitrary structure (Erdös-Rényi networks) are robust,

but also fragile, at the same time. Moreover, Mastromatteo et al. (2012) observe

that sparse Erdös-Rényi networks are more fragile compared to fully connected

networks, while Roukny et al. (2013) argue that no single topology is always more

robust than others. Furthermore, Caccioli et al. (2012) consider the model in Gai

and Kapadia (2010), and study the effect of heterogeneous degree distributions,

heterogeneous balance sheet size and degree correlations between banks. Banwo

et al. (2016) then extend the work in Caccioli et al. (2012) to the case of common

asset holdings networks.

However, with the exception of Huang et al. (2013), relatively little work has

been devoted to empirically testing the capability of any given stress test model to

predict actual bank defaults (and non-defaults). This is particularly important given

that a multitude of models have been introduced in the literature, and many have

been concerned with the fact that the outcomes of stress tests crucially hinge upon

the underlying model. For example, Siemsen and Vilsmeier (2018) observe a huge

dispersion in the outcomes of stress tests, after applying a number of plausible de-

signs on the German banking sector dataset. Moreover, Niepmann and Stebunovs

(2018) find that the flexibility observed in the 2014 and 2016 EBA stress tests was

exploited by banks to manipulate the outcomes of stress tests. This thesis, therefore,

focuses on studying the predictive performance of systemic stress tests, particularly

on the indirect contagion channel that is due to common assets holdings (overlap-

ping portfolios) between financial institutions.

2.3 Indirect Contagion in Financial Networks

The existing literature considers mainly two contagion channels of systemic risk

in financial networks. The first one is the direct contagion channel in unipartite

interbank borrowing/lending networks (Eisenberg and Noe (2001); Gai and Kapadia

(2010); Furfine (2003); Battiston et al. (2012)), which has been the focus of the
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literature over the last decade (see Hüser (2015), Glasserman and Young (2016) and

Caccioli et al. (2018) for the recent surveys). The contagion in this channel occurs

from banks’ contractual obligations and is driven by a failure of a debtor to fully

repay its creditors for the full amount of borrowed funds. In particular, the losses

incurred in the creditors’ balance sheet may, in turn, cause the creditors to default,

which then makes the creditors unable to repay the creditors’ creditors, and so on.

The second one is the indirect contagion channel due to common asset holdings

(overlapping portfolios) between financial institutions. This contagion mechanism

is based on the idea of fire sales in asset markets (see Shleifer and Vishny (2011) for

a broad survey of the literature on fire sales), that is when leveraged investors suffer

a decline in their investment portfolios, they often have to liquidate (parts of) their

investments (Adrian and Shin (2010)). Such liquidations can have systemic effects,

when asset sales are synchronized among many investors, potentially leading to fire

sale contagion dynamics. Thus, investors who were unaffected by the original shock

may have to sell assets due to the selling pressure of other investors. Empirical

evidence suggests that fire sales occur in many different markets (see, e.g., Pulvino

(1998) for real assets, Coval and Stafford (2007) for equities, and Ellul et al. (2011)

for corporate bonds), which can result in contagious dynamics between asset classes

(see, e.g., Manconi et al. (2012)).4

Although indirect contagion channel has received relatively less attention in

the literature, it has been actually identified as an important source of systemic

risk (Shleifer and Vishny (2011); Caccioli et al. (2014); Greenwood et al. (2015);

Cont and Wagalath (2016); Gualdi et al. (2016); Lillo and Pirino (2015)).5 Hence,

understanding the predictive performance of systemic stress tests for this contagion

channel is therefore important. As discussed above, this thesis focuses on three

different aspects of stress tests related to indirect contagion. In the following, I

4Fire sales are also dangerous because they provide an incentive for banks to hoard liquidity, a
behaviour that can potentially lead to a complete freeze of the financial system (Diamond and Rajan
(2011); Gale and Yorulmazer (2013)).

5There are also several studies that combine both direct and indirect contagion channel. For
example, Cifuentes et al. (2005) simulate a model that accounts for the interaction between the direct
and indirect contagion channel, while Caccioli et al. (2015) and Poledna et al. (2018) empirically
study the similar interaction for the case of Austrian and Mexican banks.
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discuss the literature on each of these aspects.

2.4 Reconstructing Financial Networks

Stress tests require detailed data on interactions between individual financial in-

stitutions. However, we generally do not have such complete information about

financial networks; thus a network reconstruction process is usually needed (see for

example, Upper (2011)). The literature on network reconstruction is concerned with

finding appropriate null models (i.e., network randomizations) that replicate certain

features of the actual network, where most works have been devoted on the case

of unipartite interbank networks (Anand et al. (2015); Squartini and Garlaschelli

(2011); Squartini et al. (2017)). In this respect, several studies on the empirical

test of unipartite network reconstruction methods have been conducted (Mistrulli

(2011); BIS (2015); Anand et al. (2015, 2018); Mazzarisi and Lillo (2017); Gandy

and Veraart (2017)).

In this thesis, I empirically test different network reconstruction methods for

the case of the indirect contagion channel. As in Anand et al. (2018), I focus on the

independent reconstruction of the static credit networks for each year. As such, I

do not take into account the existence of previous bank-firm credit relationships and

do not explicitly model time variation in the observed network topologies due to

certain economic mechanisms. For example, additional models that explicitly take

memory and/or preferential lending into account (De Masi and Gallegati (2012);

Iori et al. (2015); Hatzopoulos et al. (2015)) could potentially improve network

reconstruction. Here I focus exclusively on methods that preserve certain features

of the observed network. This choice is justified by the fact that, among others,

Hatzopoulos et al. (2015) find that preferential lending in interbank networks is

largely driven by the degree distribution.

Existing reconstruction methods can be classified in terms of the inputs needed

to reconstruct the network, the desired network features to preserve, and the out-

puts. To reconstruct a given interbank network, for example, all methods use the

information of banks’ aggregate borrowing and lending positions, respectively. In
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this way, the total size of the system and the size of each individual market par-

ticipant are expected to match the actual values. In addition, some methods also

use the system’s overall connectivity (Squartini et al. (2017)), while others use each

bank’s individual connectivity (Squartini and Garlaschelli (2011)). In terms of the

desired network features, some methods focus on minimizing the total number of

connections (Anand et al. (2015)), while others focus on minimizing the exposure

with respect to each counterparty (Upper (2011)). Lastly, in terms of their outputs,

some methods produce a single network for a given set of partial information, while

others generate an ensemble of networks.

In chapter 4, I will look at four different network reconstruction methods that

have been found to be of importance for unipartite financial networks (see, for ex-

ample, Anand et al. (2015); Anand et al. (2018); BIS (2015); Gandy and Veraart

(2017); Mazzarisi and Lillo (2017); Mistrulli (2011)). In the following, I discuss

the development of the four reconstruction methods.

2.4.1 Details

Maximum Entropy (MaxEntropy). In the literature on financial networks, Max-

Entropy is often considered as the standard approach to derive individual interbank

liabilities in the absence of further information. It has been widely used to recon-

struct interbank networks of different countries (see Upper (2011); Anand et al.

(2015)). The main characteristic of MaxEntropy is that it generates fully connected

networks, i.e., it assumes maximum diversification. Di Gangi et al. (2018) show

that, in the case of bipartite networks, MaxEntropy implies that all market partici-

pants hold the exact same (market) portfolio.

Minimum Density (MinDensity). Second, I look at the Minimum Density ap-

proach (MinDensity) of Anand et al. (2015). This method was developed to ac-

knowledge the fact that real financial networks tend to be sparse, in which case

using MaxEntropy is rather problematic (Mistrulli (2011)). In a sense, MinDen-

sity can be seen as the opposite extreme of MaxEntropy, given that it starts from

the premise that establishing/maintaining links is costly, which is in line with the

fact that most banking networks are sparse. As a result, banks do not spread their
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borrowing and lending across the entire system, and MinDensity identifies the net-

work that satisfies the total aggregate positions with the minimum number of links.

This assumption is in line with the fact that relationship banking is of the utmost

importance in most banking systems.

Configuration Models (CM). CMs are probably the most popular types of random

graph models because they allow randomizing a given network while preserving

its degree distribution. As such, CM can be quite restrictive. CMs have been pre-

viously explored in different fields, from sociology to biology (see Fosdick et al.

(2018) for an overview), and several of them have been applied in financial network

settings (Squartini and Garlaschelli (2011); Musmeci et al. (2013); Mastrandrea

et al. (2014); Cimini et al. (2015b); Squartini et al. (2017)). I am aware only of

one other application that applies the CM to bipartite financial networks (Squartini

et al. (2017)). Two configuration models (CM1 and CM2) that I will consider in

chapter 4 are based on Squartini and Garlaschelli (2011) and Squartini et al. (2017).

2.5 Modelling Dynamics of Contagion

Once the complete information of financial networks has been obtained, the next

step is to determine the dynamics of contagion in the networks. With regard to

banks’ liquidation dynamics under distress, several network models of indirect con-

tagion have been introduced in the literature. Here I provide a summary of the

models’ comparison based on the type of market impact function and whether it as-

sumes some form of leverage targeting. As shown in Table 2.1, I first note that the

model of Huang et al. (2013) uses a linear market impact and assumes that banks

do not target their leverage. As in Huang et al. (2013), the model of Caccioli et al.

(2014) also disregards leverage targeting, although the leverage targeting is incor-

porated in the extended version of the model. However, contrary to Huang et al.

(2013), the model of Caccioli et al. (2014) uses a non-linear market impact. Similar

to the extended version of Caccioli et al. (2014), the model of Greenwood et al.

(2015) incorporates leverage targeting but assumes a linear market impact func-

tion. Another proposed model in the literature is the model of Cont and Schaanning
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(2017), who do not include pure leverage targeting, but assume that banks have

some regulatory constraint regarding their maximum leverage and banks will only

liquidate when they exceed that maximum threshold. Another distinction between

Cont and Schaanning (2017) and Greenwood et al. (2015) is that even though the

model of Cont and Schaanning (2017) also assumes a linear market impact for small

volumes, they use a non-linear impact function with heterogeneous price impacts

for each asset class.

Market impact
linear non-linear

Leverage
targeting

not included Huang et al. (2013) Caccioli et al. (2014)

included with
threshold

Cont and Schaanning
(2017)

included Greenwood et al. (2015) Caccioli et al. (2014)
(extended)

Table 2.1: Comparison between different existing network models of contagion due to
overlapping portfolio, based on the type of market impact function used and
whether leverage targeting is included or not.

The above models have been considered in several studies of systemic risk.

For example, Levy-Carciente et al. (2015) apply the model Huang et al. (2013)

to the Venezuelan banking system, while Duarte and Eisenbach (2015) apply the

model of Greenwood et al. (2015) to measure the systemic risk of U.S. banking

system. Meanwhile, Coen et al. (2019) extend the banks’ deleveraging model by

taking additional regulatory constraints such as capital and liquidity coverage ratio

constraint into account. In chapter 5, I will use and extend the model of Huang et al.

(2013), Caccioli et al. (2014) and Greenwood et al. (2015).

2.6 Systemic Risk across Different Financial Sectors
In addition to network reconstruction and contagion dynamics, another important

aspect of stress tests is to define the scope of the network. With regard to the indirect

contagion channel, empirical studies suggest that fire sales can arise under different

causes. For example, banks may be forced to deleverage in response to losses in

their portfolios (Khandani and Lo (2011); Cont and Wagalath (2016)), while funds

may be forced to sell their assets during stress periods to meet investor redemptions
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(Coval and Stafford (2007)). Additionally, Ellul et al. (2011) suggest that companies

may need to liquidate their assets to comply with regulatory constraints. Other em-

pirical evidence also suggests that fire sale can occur in real assets (Pulvino (1998)).

However, the literature on the indirect contagion channel in financial networks has

only focused on quantifying systemic risk for one sector in isolation. In particular,

as I discussed above, most works have been undertaken in the case of banks.

Lately, regulators have been concerned about the possibility of non-bank fi-

nancial intermediaries to become another source of financial instability (European

Central Bank (2014); International Monetary Fund (2015)). This is related to the

fact that the asset management sector has drastically grown for the past decade, both

in terms of its size and its importance. For example, the contribution of non-banks

in the UK to the total assets of the UK financial system has increased by 13 percent-

age points since 2008, as it now accounts for almost 50% of the system (Baranova

et al., 2019). In this respect, quantifying systemic risk in the non-banking sector

has therefore recently gained interest in the literature. For example, Cetorelli et al.

(2016), Fricke and Fricke (2020) and Baranova et al. (2017) model the indirect

contagion in the network of common asset holdings between funds. Furthermore,

Douglas et al. (2017) and Douglas and Roberts-Sklar (2018) study the impact of

Solvency II regulation on the way that UK life insurers and pension funds adjust

their portfolio in periods of distress.

While most of the above studies focused on a single financial sector in isola-

tion, some works have looked at financial networks between different sectors. For

example, Barucca et al. (2020) perform an empirical study on the financial net-

work of common asset holdings between European investment funds, UK banks

and UK insurance companies, and investigate the portfolio overlaps between those

institutions. In chapter 6, I will study the systemic risk via indirect contagion in the

financial network of common asset holdings between UK banks, UK investment

funds and UK insurance companies.6

6There is also another stream of literature on modelling systemic risk with multiple interacting
contagion, amplification channels and various financial sectors (see, for example, Aikman et al.
(2019) and Farmer et al. (2020)). Most of the financial institutions in their models, however, are
representative agents. In the following, I instead focus on empirical data on common asset holdings.



Chapter 3

A Systemic Fire Sale Stress Test

In the following, I describe the general methodology that I use to undertake the

research. Note that the details of each aspect that I study in this thesis (network re-

construction, dynamics of contagion and system-wide stress tests) will be explained

in the subsequent chapters.

3.1 The Network of Common Asset Holdings
Let me start by defining the network of common asset holdings. The baseline net-

work consists of two distinct sets of nodes, where the first set contains a total num-

ber of N nodes (financial institutions), and the second set contains a total of M nodes

(financial assets). I illustrate the stylized network of common asset holdings in Fig-

ure 3.1. A link between an institution and an asset implies that the institution holds

the asset in its portfolio. In general, the institution can be a bank, fund, or insur-

ance company. In this chapter, I will mainly look at the case of banking networks.1

Moreover, the asset can be a risky financial instrument (e.g., bond or equity), where

a link will imply an investment relationship). Additionally, it can be a firm, where

a link will correspond to a credit relationship. I should note that the network is

bipartite, which means the absence of inter-institution and inter-asset links.

This financial network can be represented as a rectangular matrix of size (N×

M), which I denote by W. An element wi j of this matrix represents the total value

of asset j owned by bank i.2 The value of wi j can thus be seen as a measure of link

1I will discuss the case for non-bank financial intermediaries in chapter 6.
2I drop time subscripts in the following, but it should be clear that matrix W changes over time.
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Figure 3.1: The left panel shows the stylised network of common asset holdings. A link
between a bank and an asset will imply that the bank holds the asset in its
portfolio. The right panel illustrates the corresponding rectangular matrix that
represents this network.

intensity. The total investment in the network can be calculated as

v = ∑
i

∑
j

wi j.

For what follows, it is also useful to define the strength of banks as their total assets:

sB
i = ∑

j
wi j,

and the strength of assets as their total value of shares:

sF
j = ∑

i
wi j.

I also define the binary adjacency matrix, W̄ , where each element w̄i j = 1 if

wi j > 0 and zero otherwise. From the binary network matrix, I can calculate the

total number of links existing in the network:

m = ∑
i

∑
j

w̄i j.
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This value can be also represented as a proportion of the number of possible con-

nections that could exist in the network:

Density(W) =
m

N×M
.

In addition, I define the degrees of banks and assets as their corresponding number

of connections:

kB
i = ∑

j
w̄i j

and

kF
j = ∑

i
w̄i j

for bank i and asset j, respectively.

3.1.1 Network Measures

In the following, I describe several quantities to characterize the topology of the

network (e.g., assortativity, clustering coefficient and nestedness). Furthermore, I

discuss several measures of portfolio similarity.

3.1.1.1 Network Characteristics

Assortativity is the tendency of banks to connect to assets with similar degree, and

vice versa. I define assortativity, r, as the Pearson correlation coefficient of the

degrees of connected banks and assets. Note that r lies in the range [−1,1] in

which positive value indicates an assortative network, while negative value denotes

a disassortative network. A network is said to be assortative when high degree banks

(low degree banks) are connected to other high degree assets (low degree assets) on

average. Meanwhile, a network is said to be disassortative when high degree banks

(low degree banks) are connected to other low(er) degree assets (high(er) degree

assets) on average.

The clustering coefficient measures the degree to which nodes in a network

tend to form clusters. In a unipartite network, it is usually defined as the number of

observed triangles (three closed connected nodes) relative to the maximum possible

number of triangles. Since my network is bipartite, links can only exist between
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different sets of nodes (banks and assets), thus triangles can not be formed. There-

fore, following Zhang et al. (2008), I consider squares instead of triangles as the

basic cycle here, such that the local clustering coefficient is defined as the ratio be-

tween the number of observed squares relative to the maximum possible number of

squares,

Cmn(i) =
qimn

(km−1−qimn)+(kn−1−qimn)+qimn

where m and n are a pair of neighbours of node i (see Figure 3.2 for an illustration),

and qimn is the number of squares which include these three nodes.

Figure 3.2: Illustration of calculating the observed and the possible squares in a bipartite
network (Zhang et al. (2008)). In this figure, m and n are a pair of neighbors of
node i. Here I observe 1 square cycle (qimn = 1) that consists of node imbn, and
4 possible squares (iman, imbn, incm, indm).

Let Crow(i) and Ccol(i) be the average Cmn(i) of node i across all possible com-

bination of its pairs of neighbors m and n, I then calculate the global clustering

coefficient as

C =
1

N +M

(
N

∑
i=1

Crow(i)+
M

∑
i=1

Ccol(i)

)
,

which ranges between [0,1]; higher values indicate a more clustered network, and

a value of 1 corresponds to a perfectly clustered network. Put simply, in my case,

higher clustering will indicate that banks tend to cluster their investments on the

same assets, or equivalently, assets tend to be held by the same banks.

Lastly, nestedness quantifies the degree to which low-degree banks (assets)

tend to be connected with a subset of assets (banks) that are connected to high-

degree nodes. I follow Almeida-Neto et al. (2008) and use NODF (Nestedness



3.1. The Network of Common Asset Holdings 45

metric based on Overlap and Decreasing Fill) as my measure of nestedness

NODF =
∑i j Grow

i j +∑i j Gcol
i j

N(N−1)/2+M(M−1)/2
,

where

Grow
i j =

0 if ki ≤ k j

∑
M
d=1 I{w̄id = 1 AND w̄ jd = 1}/min(ki,k j) otherwise.

is the paired overlap of rows i and j, which is simply the fraction of 1’s (which

denotes to the existence of a link) present in both rows i and j. A similar term Gcol
i j

is used to compute the percentage of paired overlap of columns i and j. NODF lies

in the range [0,1]; higher values correspond to higher nestedness, and a value of

1 indicates a perfectly nested network. I provide the illustration of networks with

high and low nestedness in Figure 3.3.

(a) High nestedness. (b) Low nestedness.

Figure 3.3: Illustration of networks with high and low nestedness degree.

3.1.2 Portfolio similarity

To quantify the portfolio similarity between banks i and k in the network, I use two

different types of measure. The first one is based on the binary matrix W̄ :

BinSimilarityi,k = ∑
j

w̄i jw̄k j, (3.1)
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which shows the number of commonly held assets between banks i and k. The other

measure is the cosine similarity between the portfolio weights:

WeightedSimilarityik =
∑ j wi jwk j√

∑ j w2
i j×

√
∑ j w2

k j

. (3.2)

Note that BinSimilarity ranges between [0,∞], while WeightedSimilarity ranges be-

tween [0,1]. For both measures, higher values correspond to more similar portfolios.

In addition to these measures, I am also interested to look at the portfolio sim-

ilarity between a bank and all other banks in the network. Following Fricke (2019),

I define the average portfolio overlap as:

MeanBinSimilarityi =
1

N−1 ∑
k

BinSimilarityik (3.3)

for the binary similarity case, and

MeanWeightedSimilarityi =
1

N−1 ∑
k

WeightedSimilarityik. (3.4)

for the weighted one.

3.2 The Balance Sheet of a Bank

I previously discussed in section 3.1 the fact that each bank i in the network holds a

portfolio of assets {wi1, ...,wiM} ≥ 0. In the following, I will consider these quanti-

ties to depend on time t, so that the total assets of bank i at time t is:

At
i =

M

∑
j=1

wt
i j.

Each bank i is financed with a mix of equity Et
i and liabilities Lt

i (see Figure 3.4)

with a balance-sheet identity:

At
i ≡ Et

i +Lt
i,
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and bank i does not default at time t if:

At
i ≥ Lt

i.

The leverage of bank i is defined as the ratio of its total assets to its equity,

Figure 3.4: The stylized balance sheet of bank i. The left panel is the asset side, while the
right is the liability side of the balance sheet.

λ
t
i =

At
i

Et
i
. (3.5)

Bank’s i initial leverage, λ 0
i , will be of particular interest for the leverage targeting

model.
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3.3 The Dynamics of Contagion

The steps of the contagion algorithm can be summarized as follows:

1. An initial shock is imposed on the value of some asset(s).

2. Banks update the value of their portfolios, and compute the total assets that

they need to sell.

3. Banks liquidate their assets by maintaining their portfolio weight (pro-rata

liquidation), or by selling their most liquid assets first (waterfall liquidation).

4. Asset liquidations generate price impact, so the value of an asset is recom-

puted depending on the volume of the asset that has been liquidated.

5. Back to step 2 (optional).

Let us discuss the above steps in detail.

3.3.1 Step 1: Initial Shock

Suppose I initially impose a shock on asset j by reducing its value to a fraction

p ∈ [0,1] of its original value, where larger (smaller) values of p correspond to

smaller (larger) shocks. Assuming that a given bank i holds asset j in its portfolio,

the initial shock leads to a reduction of its total assets:

A1
i = A0

i −w0
i j(1− p0

j).

The absolute return on assets of bank i at time 1 is therefore:

φ
1
i =
|A1

i −A0
i |

A0
i

, (3.6)

and bank i’s updated equity becomes:

E1
i = E0

i −φ
1
i A0

i ,



3.3. The Dynamics of Contagion 49

while its liabilities remain unchanged, L1
i = L0

i . Note that bank i’s updated leverage

ratio reads as:

λ
1
i =

(1−φ 1
i )A

0
i

(1−φ 1
i )E

0
i −φ 1

i L0
i
≥ λ

0
i . (3.7)

Hence, in response to a drop in asset values, leverage will mechanically increase

when liabilities remain fixed (Adrian and Shin (2010)). Finally, bank i has not

defaulted if

φ
1
i ≤

1
λ 0

i
. (3.8)

3.3.2 Step 2: Response to the Shock (Asset Liquidation)

The change in bank i’s total assets may trigger it to liquidate some of its assets: if

the devaluation is sufficiently large to make bank i default, that is when Equation 3.8

is no longer satisfied, bank i liquidates all of its remaining assets. On the other hand,

if it has not yet defaulted, bank i may sell part of its assets.

Let us start by looking at the leverage targeting model of Greenwood et al.

(2015). In their model, bank i has a fixed leverage target: λ 0
i . As shown in Eq. 3.7,

the initial shock will increase the bank’s leverage, and the bank will have to liquidate

a fraction of its assets to maintain its original leverage target λ 0
i . In this case, the

total volume of the liquidated asset (in monetary units) is therefore specified as:

Π
1
i = A1

i

(
1−

λ 0
i E1

i

A1
i

)
. (3.9)

To accommodate for the case where bank i defaults and needs to sell all of its re-

maining assets, I modify the function Π1
i in Equation 3.9 as follows:

Π
1
i = A1

i min
(

1−
λ 0

i E1
i

A1
i

,1
)
.

In contrast to the leverage targeting model, the threshold model (Huang et al.

(2013); Caccioli et al. (2014)) assumes that bank i will only liquidate assets when it
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defaults.3 Let us introduce G1
i , such that

Π
1
i = G1

i (φ)A
1
i min

(
1−

λ 0
i E1

i

A1
i

,1
)
, (3.10)

where in the leverage targeting model I have:

G1
i (φ) = 1, (3.11)

while in the threshold model:

G1
i (φ) =


0, if φ 1

i ≤ 1
λ 0

i
,

1, otherwise.
(3.12)

I consider the threshold model in chapter 4, while I use the leverage targeting model

in chapter 6. Moreover, I propose G1
i (φ) in a way that one can interpolate between

the leverage targeting and threshold dynamics inchapter 5.

3.3.3 Step 3: Liquidation Strategy

Once the total amount to be liquidated has been computed, different liquidation

strategies could be used. In what follows, there are two scenarios that I con-

sider. The first one is the pro-rata liquidation, where banks maintain their portfolio

weights constant over time. The second scenario is the waterfall liquidation, where

banks liquidate assets in order of their liquidity starting from the most liquid ones.

I illustrate the comparison between these two approaches in Figure 3.5.4

3.3.3.1 Vertical assets liquidation

Some studies have suggested that the pro-rata liquidation is more favourable for

financial institutions during distress (Jiang et al. (2017); Schaanning (2016)). This

is based on the idea that institutions want to preserve the liquidity of their portfolios.

Suppose that πi j is the amount of asset j that bank i choose to liquidate. In the case

3Note that the extended version of the model in Caccioli et al. (2014) incorporates the leverage
targeting dynamics.

4In a setting with homogeneous price impacts, however, the two approaches are equivalent.
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Figure 3.5: Illustration of pro-rata and waterfall liquidations.

of the pro-rata liquidation, I will have:

π
1
i j =

w1
i j

A1
i

Π
1
i .

3.3.3.2 Horizontal assets liquidation

In the case of the waterfall liquidation, I assume that bank i liquidates its assets

sequentially according to the following order:

sort{δ1 ≥ ·· · ≥ δM} ,

where δ j is the market depth of asset j, that is the measure of j’s liquidity to sustain

relatively large transactions without impacting its price. This approach is supported

by Chernenko and Sunderam (2016), who provide empirical evidence that funds

use cash holdings, rather than transacting in equities and bonds, to meet investor

redemptions.
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3.3.4 Step 4: Fire Sales Generate Price Impact

In line with empirical evidence, this additional selling pressure generates market

impact, which leads to a further devaluation of the assets.5 Let β 1
j be the amount of

asset j that has been liquidated,

β
1
j =

N

∑
i=1

π
1
i j.

The relative price change of asset j,
∆S1

j

S1
j

, is equal to:

∆S1
j

S1
j
=−Ψ j(β

1
j ),

where Ψ j is the market impact function of asset j. The functional form of Ψ j varies

across different stress testing models (see Table 2.1 in Section 2 for the classification

of existing models), and I refer the interested reader to Cont and Schaanning (2017)

for a comprehensive discussion of this topic. In this thesis, I consider two different

types of market impact function: the linear and non-linear one.

3.3.4.1 Linear market impact

I consider the market impact function that has been previously used in Huang et al.

(2013). In particular, an asset’s price depends linearly on the fraction of shares that

have been liquidated up to that time relative to the total volume held in the system:

Ψ j(β
1
j ) = α

β 1
j

∑i w0
i j
, (3.13)

where α is the parameter that reflects the market reaction to asset liquidations. More

illiquid assets should have higher values of α: a value of α = 0 corresponds to an

infinitely liquid asset whose price does not change in response to asset liquidations.

This will be the case for cash holdings, for example. On the other hand, a value of

α > 0 corresponds to a less liquid asset whose price reacts to assets liquidations.

5I should note that banks can also “liquidate” cash (banks use cash to repay existing debt), but
without any market impact.
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I note that choosing a linear impact function can be seen as more conservative,

in the sense that I tend to overestimate the resulting price impact of a given asset

liquidation.

3.3.4.2 Non-linear market impact

As in Cont and Schaanning (2017), I use the following market impact function:

Ψ j(β
1
j ) = 0.5×

(
1− exp(−

β 1
j

0.5×δ j
)

)
,

where δ j is the market depth of asset j. In Figure 3.6, I illustrate the comparison

between the linear and non-linear market impact function. I see from the figure

that the non-linear function is concave and it is similar to the linear specification

for small volumes of liquidation. Additionally, unlike in the linear case, the price

impact in the non-linear function is capped at 50% of the initial asset price.
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linear  = 1.0

linear  = 0.7
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Figure 3.6: Illustration of the comparison between the linear (for α = 1 and α = 0.7) and
non-linear market impact function, with ∑i w0

i j = 100 and δ j = 100.

3.3.5 Step 4: Back to Step 2 (Optional)

I have described the first complete iteration round of the contagion dynamics, which

results in asset liquidations generating price impact. Following the update in asset

prices, banks will experience another decline in their total assets, which will again

trigger them to liquidate (part of) their assets. Therefore, one can consider further

rounds of liquidation in the model by going back to step 2.
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3.4 Overview of the Specific Methodologies
I previously discussed the thesis methodology in general. In the following, I briefly

describe the specific methodologies that I use in subsequent chapters to study the

different aspects of stress testing. Table 3.1 summarises these methodologies. As

shown in the table, I consider different types of financial networks, and assume dif-

ferent bank’s response, liquidation strategy and market impact function throughout

the thesis. For example, I consider bank-firm credit relationships in Chapter 4, and

banks’ portfolio holdings in Chapter 5. Moreover, I assume that banks would only

liquidate their assets after default in Chapter 4, and banks may choose whether to

target their leverage ratios in Chapter 5. The details of these methodologies will be

discussed in each corresponding chapter.

Financial
networks

Response to
the shock

Liquidation
strategy

Market impact
function

Chapter 4:
On Network
Reconstruc-
tion

Bank-firm
credit
relationships in
Japan

Banks do not
target their
leverage ratio

Pro-rata
liquidation

Linear and
homogeneous

Chapter 5:
On
Dynamics of
Contagion

Portfolio
holdings of US
commercial
banks

Banks may
target their
leverage ratio

Pro-rata
liquidation

Linear and
homogeneous

Chapter 6:
On System-
Wide Stress
Tests

Portfolio
holdings of UK
banks and
non-banks

Banks target
their leverage
ratio

Pro-rata and
waterfall

liquidation

Non-linear and
heterogeneous

Table 3.1: Overview of the specific methodologies that I consider in subsequent chapters
to study the different aspect of stress tests.



Chapter 4

On Network Reconstruction

4.1 Introduction

In this chapter, I focus on reconstructing and stress testing bipartite credit networks

using detailed micro-data on bank-firm credit interactions in Japan for the period

1980 - 2010. I explore the performance of several network reconstruction meth-

ods at different aggregation levels along two different dimensions. First, I look

at their capability to reproduce the topological features of the observed credit net-

works. In particular, different reconstruction methods require different amounts of

information as inputs, and I aim to understand how adding such information affects

a method’s performance, since one would expect that methods that take more in-

formation into account should be able to reproduce the network more accurately.

Interestingly, I find that this is not always the case. Overall, there is no single ”best”

reconstruction method - it depends on the assumed criterion of interest.

I then test each method’s ability to reproduce observed levels of systemic risk.

For this purpose, I use the stress test model of Huang et al. (2013) and apply it

to the actual and the reconstructed credit networks. My main findings are as fol-

lows: first, I identify a significantly negative time trend for the observed systemic

risk levels of the Japanese banking system, suggesting that the system has become

less vulnerable to systemic asset liquidations over time. Second, in many instances,

the actual credit networks display the highest levels of systemic risk compared to

the reconstructed networks, at least for the most disaggregated bank-firm interac-
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tions. In other words, many reconstruction methods tend to underestimate systemic

risk. This is remarkable given that the reconstruction methods under study here can

generate completely different network architectures; for example, the MaxEntropy

(MinDensity) approach yields a maximally (minimally) connected credit network.

Moreover, I find that the network aggregation level can affect the performance of

different reconstruction methods.

Lastly, given that the observed credit networks tend to display relatively high

levels of systemic risk compared to most reconstruction methods, I explore differ-

ent policies (such as merging or breaking-up banks, or leverage caps) in order to

improve the robustness of the system. My main finding is that no single policy

can reduce the systemic risk level of the actual network to that of the most stable

reconstruction method. Nevertheless, I find that leverage caps and bank mergers

could improve the robustness of the network. This finding is driven by the fact that

the largest banks in my sample tend to be less leveraged. Therefore, merging those

banks results in a very large but moderately leveraged bank, which is less likely to

spread shocks through the system.

The remainder of this chapter is structured as follows: Section 4.2 defines the

methodology that I use, including the credit network at different aggregation levels

and the dataset. In section 4.3, I explore the performance of network reconstruction

methods in terms of their ability to match the observed credit network topology.

Additionally, I look at the capability of each method to reproduce the observed

levels of systemic risk. In section 4.4, I analyse different policy measures in order

to improve the robustness of the system. Section 4.5 summarises the main findings

and concludes.

4.2 Methodology

In the following, I discuss the specific methodology and dataset that I use in this

chapter.



4.2. Methodology 57

4.2.1 Network at Different Aggregation Levels

The most granular data (disaggregated level) that I consider in this chapter is the

credit interaction network between banks and firms. This network corresponds to

W of dimension (N×M) as I previously defined in chapter 3. Following Fricke and

Roukny (2020), I also look at an aggregated version of the credit (bank-industry)

network, which I denote by WI. In this case, the second set of nodes is defined based

on firms’ industry affiliations, with a total number of MI industries. I can represent

firms’ industry affiliations using a new matrix A of dimension (M×MI), where

A jk = 1 if firm j is affiliated with industry k.1 Given this, WI can be obtained by

multiplying W with A. In line with the definitions for the original bank-firm credit

network, I can define the same network indicators (strength and degree sequences,

respectively) for the aggregated network.

Note that an important reason for also exploring the aggregated networks is that

(at least some rough) information on banks’ investments in different industries/asset

classes should be more easily available than detailed microdata on asset-specific in-

vestments. From this perspective, the analyses based on the aggregated networks

are likely to be most relevant for researchers that have only relatively coarse infor-

mation on banks’ asset portfolios.

Finally, I consider an intermediate level in which I apply the network recon-

struction methods at the disaggregated level (bank-firm) and then aggregate the net-

work according to firms’ observed industry affiliations (thus giving us a different

bank-industry credit network). This particular aggregation level is of interest in

the case when there is sufficient data to perform network reconstruction at a more

granular level (e.g., firm level), but the network needs to be analyzed at a more ag-

gregated level (e.g., sector level), for instance because of confidentiality issues that

prevent reporting results associated with individual institutions. I denote the inter-

mediate aggregation level as W→WI and calculate the same network indicators

also as for the other levels. I summarize the three different aggregation levels in

1In my dataset, each firm is only affiliated with its major industry. In principle, one could allow
for multiple industry affiliations, in which case a jk would represent the fraction of firm j’s sales in
industry j.
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Table 4.1.

Aggregation level
Network

reconstruction
Systemic risk

analysis
Disaggregated disaggregated disaggregated
Aggregated aggregated aggregated
Intermediate disaggregated aggregated

Table 4.1: Summary of the three different aggregation levels. At the intermediate level, I
perform the network reconstruction at the disaggregated data, and conduct the
systemic risk analysis at the aggregated version of that reconstructed network.

4.2.2 Data

I use historical data on bank-firm credit interactions in Japan from the Nikkei

NEEDS database for the period 1980 - 2013.2 The database provides extensive

accounting and loan information for all listed companies in Japan, and since 1996 it

also covers firms traded in the JASDAQ (OTC) market. The dataset contains infor-

mation on firms outstanding loan volumes from each lender at the end of the firms

fiscal year, based on survey data (compiled by Nikkei Media Marketing, Inc.). I

use the sum of short- and long-term borrowing in everything that follows. Table 4.2

shows some summary statistics in terms of the size and connectivity of the credit

network at different aggregation levels over time.3 Given that my analyses are com-

putationally intensive, I restrict myself to the years of data as shown in the first

column of Table 4.2.4

In Table 4.2, I present several basic network characteristics of my dataset.

Specifically, I show the assortativity, the clustering coefficient, and the nestedness.

I find that the networks are generally disassortative, both at the disaggregated level

and the aggregated level. This means that low-degree banks and low-degree firms

rarely interact with each other. Table 4.2 shows that the networks are clustered at

the aggregated level but not at the disaggregated one. Table 4.2 shows that all net-

works are nested at both aggregation levels, suggesting a strong overlap of Japanese

2See https://www.nikkeieu.com/needs/needs_data.html for details.
3A detailed explanation of the dataset, summary statistics, and a brief history of the Japanese

financial system can be found in Fricke and Roukny (2020).
4Given that bank-firm interactions are highly persistent, the structure of the credit network is

quite stable over time.

https://www.nikkeieu.com/needs/needs_data.html
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Panel A - Disaggregated

Year Size
v

(×1013) Density k̄B k̄F r
C

(×10−2) NODF

1980 151 × 1386 3.395 0.093 128.377 13.986 -0.299 0.272 0.441
1985 148 × 1443 4.350 0.088 127.770 13.105 -0.290 0.251 0.437
1990 148 × 1443 6.249 0.081 125.762 12.236 -0.306 0.218 0.427
1995 145 × 1734 7.031 0.081 140.938 11.785 -0.302 0.212 0.444
1996 147 × 2523 7.525 0.070 175.782 10.242 -0.292 0.141 0.406
2000 135 × 2607 5.987 0.061 160.304 8.301 -0.273 0.091 0.387
2005 123 × 2569 2.469 0.042 109.423 5.184 -0.272 0.029 0.322
2010 116 × 2296 2.814 0.042 96.474 4.874 -0.215 0.028 0.359

Panel B - Aggregated

Year Size
v

(×1013) Density k̄B k̄I r C NODF

1980 151 × 33 3.395 0.516 17.033 77.939 -0.336 0.192 0.824
1985 148 × 33 4.350 0.500 16.507 74.030 -0.344 0.181 0.823
1990 151 × 33 6.250 0.498 16.424 75.152 -0.351 0.181 0.810
1995 145 × 33 7.031 0.518 17.090 75.091 -0.341 0.195 0.834
1996 147 × 34 7.526 0.536 18.238 78.853 -0.344 0.206 0.852
2000 135 × 34 5.987 0.508 17.260 68.529 -0.349 0.177 0.839
2005 123 × 34 2.470 0.488 16.585 60.000 -0.340 0.151 0.822
2010 116 × 34 2.814 0.461 15.664 53.441 -0.330 0.134 0.819

Table 4.2: Properties of the credit networks at different aggregation levels over time. Panel
A shows the properties of W. Panel B shows the properties of WI. k̄B and k̄F(I)

correspond to the average degree of banks and firms (industries) respectively.
As defined in the main text, r denotes the assortativity, C denotes the clustering
coefficient, and NODF denotes the nestedness.

banks’ loan portfolios (see Fricke and Roukny (2020)).5

4.2.3 Network Reconstruction Methods

I consider four network reconstruction methods that have been found to be of im-

portance for unipartite financial networks, as I previously discussed in section 2.4.

In particular, firstly, I look at the well-known method of Maximum Entropy (Max-

Entropy). Second, I look at the Minimum Density approach (MinDensity). Lastly,

I use two different versions of the popular configuration model (CM). While the

description of each method has been presented in section 2.4, Table 4.3 provides

more technical details of my implementation of the four methods. Moreover, Table

4.4 summarizes the differences in terms of the required inputs and the outputs.

5Note that these values cannot be used to assess the significance of nestedness. For this, one
would have to compare them with what would be expected at random, i.e., using different null
models. This is not the aim of this chapter, but the results in Table 4.5 suggest that the actual credit
networks indeed tend to show higher NODF values than their random counterparts.
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Null model Required information Definition and remarks

Configuration
Model 1
(CM1)

kB, kF(kI), sB,
and sF(sI) se-
quences

Generates ensemble of networks.

Link allocation: based on the approach of Squartini and
Garlaschelli (2011), but adjusted for bipartite network. The
probability of link existence between every two nodes in the
network,

pi j =
θiγ j

1+θiγ j
,

is calculated by solving:
∑ j

θiγ j
1+θiγ j

= ki ∀i, ∑i
θiγ j

1+θiγ j
= k j ∀ j.

for θ and γ .

Weight is allocated using RAS.

Configuration
Model 2
(CM2)

sB and sF(sI)
sequences and
m

Generates ensemble of networks.

Using fitness model. Link allocation: based on the approach
of Squartini et al. (2017). The probability of link existence
between every two nodes in the network,

pi j =
zsis j

1+zsis j
,

is calculated by solving
∑i ∑ j

zsis j
1+zsis j

= m
for z.

Weight is allocated using RAS.

Maximum
Entropy

(MaxEntropy)

sB and sF(sI)
sequences

Generates one single network. Produces completely connected
network. Economic interpretation: each node is as diversified as
possible. The approach is formulated as:

minx ∑
N
i=1 ∑

M
j=1 Xi j log

(
Xi j
X̃i j

)
, s.t.

∑
M
j=1 Xi j = si ∀i = 1,2, ...,N

∑
N
i=1 Xi j = s j ∀ j = 1,2, ...,M

Minimum
Density

(MinDensity)

sB and sF(sI)
sequences

Generates ensemble of networks due to multiple possible
solutions. Economic interpretation: each node is as specialized
as possible. Based on the approach of Anand et al. (2015), but
adjusted for the case of bipartite networks. The approach is
formulated as:

minx c∑
N
i=1 ∑

M
j=1 1{Xi j>0}, s.t.

∑
M
j=1 Xi j = si ∀i = 1,2, ...,N

∑
N
i=1 Xi j = s j ∀ j = 1,2, ...,M

where the integer function 1 equals one if bank i lends to firm j,
and zero otherwise.

Table 4.3: Summary of different network reconstruction methods used in this chapter.
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Method Input Output
Aggregate
positions Total links Degree

sequence Single Ensemble

CM1 v v v v
CM2 v v v

MaxEntropy v v
MinDensity v v

Table 4.4: Summary classification of the network reconstruction methods based on the
input and the output.

I should stress that, in contrast to MaxEntropy and MinDensity, both CMs

produce binary instead of weighted networks.6 After obtaining a randomized adja-

cency matrix, I need to distribute the observed credit volumes across links. There

are different approaches for this (see Table A.1 in the Appendices for an overview),

but in the following I use the standard RAS algorithm of Blien and Graef (1998).7

It should be also clear that CM1 requires the most detailed information as inputs

(followed by CM2), while MaxEntropy and MinDensity require only the strength

sequences. In particular, CM1 requires the degree sequences of all nodes as ad-

ditional inputs, thus preserving the exact degree distributions. CM2 preserves the

degree distribution as well, but it only requires the total number of links as an ad-

ditional input. Hence, CM2 needs less detailed information compared to CM1.

Furthermore, CM1, CM2 and MinDensity can produce an ensemble of networks,8

while MaxEntropy generates one single output for any particular input.

4.2.3.1 Illustration

In order to provide some intuition for the typical outputs of each method, Fig-

ure 4.1 shows the weighted version of the actual aggregated credit network (log-

transformed) for the year 2010 and one realization of each corresponding null

6The original model of Squartini et al. (2017), where CM2 is based on, generates weighted
networks. However, here I only consider part of their method to produce binary networks. This part
of their method is based on the work of Saracco et al. (2015) where the formalism for the fitness
bipartite is first introduced for the world trade web.

7The RAS algorithm generally performed best in my analysis (in terms of the corresponding L1-
error), but I also experimented with the other weight allocation methods mentioned in Table A.1 in
the Appendices. The results are qualitatively similar to what is shown here. Details available upon
request from the authors.

8Since the MinDensity-algorithm may yield multiple solutions, I treat this algorithm as an en-
semble method.



4.2. Methodology 62

(a) Actual (b) CM1 (c) CM2

(d) MaxEntropy (e) MinDensity

Figure 4.1: Weighted credit network bank-industry in 2010 and one realization for each of
the four reconstruction methods. Data are log transformed. Warmer colours
indicate stronger links, and white dots correspond to the absence of a link.

model. Warmer colours denote stronger relationships, and white dots correspond

to the absence of a link. It becomes clear that different reconstruction methods can

generate very different network architectures - for example, MaxEntropy produces

a fully connected credit network while MinDensity yields a highly compartmental-

ized and sparse network. In this specific case, MinDensity needs less than 5% of

the total links in the actual network to distribute the weight (the actual density is

around 46%).9 The two CMs, on the other hand, tend to produce networks that are

visually much closer to the actual one. As such, it is natural to expect that these will

perform well.

4.2.4 Defining Relevant Dimension of Comparison

In this section, I define the different dimensions along which I will compare the

actual credit networks and the reconstruction methods.

9In my specific case, the bank-firm networks are sparse as well (see Table 4.5). On the other hand,
the aggregated bank-industry networks are dense, such that MinDensity is likely to have difficulties
in replicating the aggregated networks.
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4.2.4.1 Network Characteristics

To understand how similar the statistics of the reconstructed networks are to the

actual networks, I compare their density, average degree, assortativity, clustering

and nestedness (as defined in chapter 3) at the different aggregation levels.

4.2.4.2 Allocation of Links and Weights

In addition to comparing specific network properties, I also look at the performance

of each method in terms both of placing links and distributing weights correctly,

respectively. In the following, I formally define the network similarity measures

for the bank-firm credit network. In line with these definitions, I can define similar

measures for the bank-industry credit network.

Link Allocation. In order to understand the ability of a method to reproduce correct

links in the network, I calculate the values of Accuracy, Sensitivity, and Specificity.

I define the Accuracy of a given reconstructed network as

Accuracy=
1

N×M

N

∑
i=1

M

∑
j=1

(I{w̄i j = 0 and w̄′i j = 0}+I{w̄= 1 and w̄′i j = 1}), (4.1)

where w̄′i j equals 1 if there is a link between nodes i and j in the reconstructed

network of a given method. The indicator function, I(ω), takes the value 1 if the

event ω happens, and 0 otherwise. Put simply, Accuracy tells us the total number of

links and non-links that are allocated correctly, relative to the size of the network.

Sensitivity

Sensitivity =
1
m

N

∑
i=1

M

∑
j=1

(I{w̄i j = 1 and w̄′i j = 1}), (4.2)

measures the number of actual links correctly allocated.

Lastly, Specificity

Specificity =
1

M×N−m

M

∑
i=1

N

∑
j=1

(I{w̄i j = 0 and w̄′i j = 0}, (4.3)

measures the number of non-existing links correctly allocated. These three mea-
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sures take values in the range [0,1], with higher values corresponding to greater

similarity.

Weight Allocation. I am also interested in quantifying the ability of each null model

to reproduce the observed link weights in the credit network. For this purpose, I use

three different measures: L1-error, root-mean-square deviation (RMSE) and cosine

similarity (Cos-Sim). L1-error is defined as

L1 =
N

∑
i=1
|sB′

i − sB
i |+

M

∑
j=1
|sF ′

j − sF
j | (4.4)

which allows us to understand how well the reconstructed network is able to

satisfy the aggregate positions, which is the total borrowing (lending) of banks

(firms/industries), in the actual network. As mentioned previously in Table 4.3 and

Table 4.4, all null models are expected to reproduce the actual aggregate positions.

Therefore, L1-error measures the degree to which those constraints have been sat-

isfied by a given null model. In everything that follows, I scale the L1-error by the

average lending volume of banks in the actual network.

Additionally, I calculate RMSE which is defined as

RMSE =

√
∑

N
i=1 ∑

M
j=1(w

′
i, j−wi, j)2

N×M
, (4.5)

where w′i, j is the allocated credit volume of bank i to firm j in a given reconstructed

network. In everything that follows, I scale RMSE by the average exposure of a link

in the actual network which makes values comparable over time. Finally, I define

Cosine Similarity as

Cos−Sim =
∑

N
i=1 ∑

M
j=1 w′i, jwi, j√

∑
N
i=1 ∑

M
j=1 w′2i, j

√
∑

N
i=1 ∑

M
j=1 w2

i, j

. (4.6)

to quantify deviations in the weight allocation across all links in the network.

I note that L1-error and RMSE have values in the range [0,∞] with lower values

corresponding to greater similarity. Meanwhile, Cos-Sim has values in the range
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[0,1] and higher values correspond to greater similarity.

4.2.5 Measuring Systemic Risk

In order to measure the systemic risk, I consider the threshold model of Huang et al.

(2013). As described in section 3.3, the model assumes that banks does not target

their leverage ratios and would only liquidate their assets after default.10

Moreover, I consider a linear market impact function as in Equation 3.13. Note

that α is a homogeneous (identical across assets) market impact parameter: a value

α = 0 corresponds to an extremely liquid asset, that is when any sales would not

alter the market value of the asset, while α = 1 corresponds to an extremely illiquid

asset, where sales could potentially push the market price down to 0.11 I will show

results for different values of p and α . In the following, I mainly focus on a specific

range of parameters. In particular, I consider loans to be relatively illiquid and

therefore focus on the upper range of the market impact parameter (α ∈ [0.6,1]).12

Moreover, in line with previous studies on price-mediated contagion, I consider

relatively small values of the initial shock (p ∈ [0.6,1]).13

I perform the above exercise for each industry j. At the aggregated level, for

each iteration I shock one node (industry), while for the disaggregated level I shock

all the nodes (firms) that belong to the same industry. To quantify the impact of a

shock on industry j, I first define the default rate

default j =
Nde f ault

j

N
(4.7)

as the ratio between the number of failed banks to the total number of active banks

10For the purpose of finding out how the systemic risk analysis might vary if leverage targeting
model (as in Greenwood et al. (2015)) and leverage targeting with threshold model (as in Cont and
Schaanning (2017)) are used, I also performed the same exercise with these other models. I find that
the rank ordering of the different methods are generally consistent with those presented in the main
text. See Appendices for more details.

11Among other things, the liquidity of a loan might be dependent on its remaining maturity. I
leave a detailed calibration of the market impact parameter for future work.

12For α = 0.7, the asset price drops by 7% when 10% of the asset is liquidated; for α = 1, the
price drops by 10% when 10% of the asset is liquidated.

13Greenwood et al. (2015) consider a 50% write-off on GIIPS debts, while Cont and Schaanning
(2017) gradually increase the shock from 0% to 20%.
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in the network. I then define the probability of default

Pd =
∑

MI

j=1 default j

MI (4.8)

as the average of default j across all industries. This is my systemic risk measure,

and in the following I use the terms systemic risk and Pd interchangeably. Finally,

for a given reconstructed network W ′, I also define relative difference between the

actual PW
d and the null model PW ′

d as

Dr =
PW

d −PW ′
d

PW
d

. (4.9)

A positive (negative) value of Dr indicates that a given null model underestimates

(overestimates) the actual Pd .

4.3 Horse Racing Results

4.3.1 First Dimension: Topological Features

In this section, I show results of a horse race between the different reconstruction

methods. For each year under study and each null model, I generate 100 network

realizations for each aggregation level. I then calculate the average of each of the

characteristics mentioned previously in 3.1.1.1. For the sake of brevity and also

illustrative purposes, in the following I only show results for the year 2010, but the

results are qualitatively similar for other years and do not affect my main conclu-

sions.

The main results for the three aggregation levels can be found in Tables 4.5

(network statistics) and 4.6 (link/weight similarity). In all cases, the best method

for each statistic is highlighted using the ? symbol. Let us briefly describe the results

for the different aggregation levels.

4.3.1.1 Disaggregated Level

At the disaggregated level (bank-firm), the top panel of Table 4.5 shows that the

two CMs tend to reproduce the features of the actual network reasonably well: the
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Network characteristics

Disaggregated Density k̄B k̄F r
C

(×10−2) NODF

W(116×2296) 0.042 96.474 4.874 -0.215 0.028 0.359
CM1 0.042 96.601 4.881 ?-0.205 ?0.028 ?0.366
CM2 ?0.042 ?96.510 ?4.876 -0.321 0.062 0.254
MaxEntropy 1.000 2296 116 NaN 1.000 0.000
MinDensity 0.009 20.789 1.050 -0.125 0.000 0.009

Network characteristics
Aggregated Density k̄B k̄I r C NODF

WI(116×34) 0.461 15.664 53.441 -0.330 0.134 0.819
CM1 ?0.460 ?15.649 ?53.392 ?-0.370 ?0.136 ?0.821
CM2 0.461 15.683 53.507 -0.248 0.131 0.704
MaxEntropy 1.000 34.000 116.000 NaN 1.000 0.000
MinDensity 0.038 1.285 4.385 -0.224 0.000 0.044

Network characteristics
Intermediate Density k̄B ¯kF→I r C NODF

W→WI 0.461 15.664 53.441 -0.330 0.134 0.819
CM1 ?0.482 ?16.395 ?55.936 ?-0.308 ?0.152 ?0.798
CM2 0.493 16.771 57.218 -0.289 0.175 0.769
MaxEntropy 1.000 34.000 116 NaN 1.000 0.000
MinDensity 0.178 6.055 20.658 -0.329 0.019 0.442

Table 4.5: Comparison of the statistics between the actual credit network for year 2010
and the reconstructed networks for different aggregation levels. k̄B and k̄F (k̄I)
correspond to the average degree, r denotes the assortativity, C indicates the
clustering coefficient and NODF denotes the nestedness of the network. I high-
light the best reconstruction method for a given statistic (the value closest to the
actual network) using the ? symbol.

density, average degree, assortativity, clustering, and nestedness are always quite

similar to the actual values. On the other hand, MaxEntropy and MinDensity per-

form rather poorly: for example, in terms of density MaxEntropy (MinDensity)

produce much higher (lower) values.

The results for link allocation and weight distribution (top panel of Table 4.6),

are broadly in line with those for the network characteristics: again the two CMs

perform relatively well across the different measures. In this case, however, the

results are not always consistent. For example, MinDensity achieves the highest

Accuracy and the lowest L1-error, but shows the worst Sensitivity, RMSE, and Cos-

Sim. On the other hand, MaxEntropy yields the worst Accuracy but the best RMSE

and Cos-Sim. Not surprisingly, MaxEntropy achieves the maximum Sensitivity
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Link similarity Weight similarity

Disaggregated Accu-
racy

Sensitiv-
ity

Speci-
ficity L1-error RMSE Cos-Sim

CM1 0.941 0.304 0.969 4.511 18.674 0.442
CM2 0.936 0.241 0.967 2.706 13.850 0.633
MaxEntropy 0.042 ?1.000 0.000 0.000 ?13.038 ?0.681
MinDensity ?0.955 0.071 ?0.994 ?0.000 27.896 0.278

Link similarity Weight similarity

Aggregated Accu-
racy

Sensitiv-
ity

Speci-
ficity L1-error RMSE Cos-Sim

CM1 ?0.781 0.762 0.798 0.015 ?2.527 ?0.915
CM2 0.711 0.687 0.732 0.018 2.555 0.914
MaxEntropy 0.461 ?1.000 0.000 ?0.000 2.572 0.914
MinDensity 0.558 0.061 ?0.982 0.000 8.607 0.532

Link similarity Weight similarity

Intermediate Accu-
racy

Sensitiv-
ity

Speci-
ficity L1-error RMSE Cos-Sim

CM1 ?0.767 0.771 0.764 4.511 2.675 0.905
CM2 0.738 0.750 0.726 2.706 ?2.530 ?0.915
MaxEntropy 0.461 ?1.000 0.000 0.000 2.572 0.914
MinDensity 0.668 0.333 ?0.954 ?0.000 3.676 0.836

Table 4.6: Link and weight similarity of the reconstruction methods with the actual credit
network in 2010 for different aggregation levels. Accuracy, sensitivity, speci-
ficity and cosine similarity lie in the range [0,1] and higher values correspond to
higher similarity. L1-error and RMSE lie in the range [0,∞] with smaller values
corresponding to greater similarity. I highlight the best reconstruction method
for a given statistic (the value closest to the actual network) using the ? symbol.

simply because it predicts a fully connected network.

I should also mention that both CM1 and CM2 generate relatively large L1-

errors, indicating that they do not manage to perfectly allocate the aggregate posi-

tions. This is because CM1 and CM2 preserve the degree sequences only in ex-

pectation, such that specific realizations can lead to some low-degree nodes being

inactive (or unconnected).14

4.3.1.2 Aggregated Level

Similar to the previous results, the center panel of Table 4.5 shows that the two

CMs tend to reproduce the observed network characteristics reasonably well at the

aggregated (bank-industry) level. In this particular case, CM1 consistently performs

14I also experimented with a minimum threshold in terms of active nodes’ degrees, but observe a
similar issue.
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best. For link/weight similarity, the results are also comparable (center panel of

Table 4.6), except for Sensitivity and Specificity which are again dominated by

MaxEntropy and MinDensity, respectively.

4.3.1.3 Intermediate Level

Lastly, the two bottom panels of Tables 4.5 and 4.6 show the results for the interme-

diate aggregation level, where I construct synthetic networks for the disaggregated

(bank-firm) level and then aggregate these to the industry level using firms’ ob-

served industry affiliations. Overall, the statistics shown here are very similar to

those at the aggregated level (with the exception of the L1-error, which is close to

the value at the disaggregated level), with CM1 performing best for the network

statistics and the Accuracy.

4.3.1.4 Summary and discussion: topological features

Previous studies on the reconstruction of interbank networks (e.g., Anand et al.

(2018)) suggest that the best reconstruction method depends on the type of network

characteristics of interest. My findings support this conclusion and extend it to the

case of bipartite networks of banks and firms. I see, for example, that if I focus

the horse race on the number of non-existent links in the adjacency matrix that are

correctly estimated (Specificity), MinDensity which produces sparse networks is

clearly the winner. However, when I look at the number of links correctly estimated

(Sensitivity), MaxEntropy, which generates a fully connected network, outperforms

all other methods.

Given that my comparison is based on multiple network statistics, Figure 4.2

summarizes the results by combining statistics for the individual features. For this

purpose, I normalize each measure in Table 4.5 (network characteristics) and Table

4.6 (link similarity and weight distribution) such that each of them ranges between

0 and 1, where the value of 1 (0) indicates that the reconstructed network and the

actual network are identical (completely different) in terms of these features. I

compute the metrics for each synthetic network, and take the average of these quan-

tities. Figure 3 shows a standard box-plot of the metrics of each reconstruction
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Figure 4.2: Standard box-plots of the (normalized) similarity measures between the actual
network and different network reconstruction methods (averaged over many
realizations). For each reconstruction method, I consider each of the measures
in the three categories of similarity under study: network characteristics, link
similarity, and weight distribution. I normalize each of these measures such that
a value of 1 (0) indicates that the reconstructed network and the actual network
are identical (completely different) in terms of these features. I compute the
metrics for each synthetic network, and take the average of these quantities.

method that are averaged over the realizations of the synthetic networks.15 Overall,

I find that the two CMs consistently perform the best, followed by MinDensity and

MaxEntropy. I also note that, in general, CM1 and CM2 succeed in reproducing

the topological structure related to the heterogeneity of links in the actual network

(e.g., assortativity). This is important since heterogeneity plays an important role

for systemic risk in financial networks (Iori et al. (2006), Banwo et al. (2016)).

Since CM1 and CM2 require more information relative to the other methods

15Note that I ignore the average degree (since it is redundant with density) and assortativity (since
it is not defined for MaxEntropy) from the calculation.
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(degree sequence and total degree, respectively), it seems clear that adding such in-

formation improves the performance of the reconstruction methods (see also Mas-

trandrea et al. (2014) and Cimini et al. (2015a)). This finding is in line with Gandy

and Veraart (2016), who suggest that using the information on aggregate positions

only is not sufficient to reconstruct certain topological properties of the network.

Overall, it seems reassuring that, despite the fact that CM1 requires more informa-

tion than CM2, both methods generate very similar networks (in some cases CM2

even outperforms CM1). This indicates that the degree distribution of the network

might indeed, to a certain extent, be inferred without the full knowledge of the de-

gree sequence. An obvious follow-up question is to what extent CM2 would still

perform well if I treated the overall density as a free parameter. I leave this question

for future research.

4.3.2 Second Dimension: Systemic Risk Analysis

One of the main reasons why regulators and policymakers are interested in recon-

structing financial networks from partial information is because of their potential

contribution to financial instability. Therefore, exploring how well different meth-

ods are able to reconstruct the observed networks is only the first step. The next

step is to compare how well the different network reconstruction methods are able

to replicate the levels of systemic risk of the actual credit networks. Clearly, this

analysis is not independent from the results of the previous section, in the sense

that one would expect a method that closely reproduces the actual networks to also

yield similar systemic risk levels. To the best of my knowledge, however, such an

exercise has not been performed for the case of bipartite financial networks.

4.3.2.1 Time dynamics of systemic risk

Before going into the details regarding the different reconstruction methods, I first

quantify the level of systemic risk, Pd , over time. Figure 4.3 plots the Pd over

time, both for the disaggregated (left panel) and the aggregated level (right panel),

respectively. As a benchmark, I use a market impact parameter α = 0.7 and different

values of the initial shock p. The plots in Figure 4.3 suggest that Pd is smaller in
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2010 compared with the values earlier in the sample. In other words, in many

instances the level of systemic risk appears to have been reduced over time.
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Figure 4.3: Pd over time for the disaggregated (left panel) and the aggregated level (right
panel). I use α = 0.7 and various values of p.

I also test for a significant trend in Pd for different values of α and p.16 I

then plot the corresponding p-value of the estimated trend as a heatmap in Figure

4.4, where darker colours correspond to smaller p-values (i.e., significance) of the

estimated trends. The Figure shows that I obtain a significant trend for most values

of p (except for very large values) whenever α is relatively small.17

4.3.2.2 Results on horse racing different methods

I now turn to a detailed analysis of the different null models and their implied levels

of systemic risk. As before, I focus my presentation on the results for one particular

year of data, namely 2010, but the results shown here are again broadly consistent

over time. I will show three sets of results: first, Figures 4.5-4.9 show heatmaps of

Dr for all possible combinations of p and α . Recall that Dr is the relative difference

between the systemic risk levels of the actual and the reconstructed network, where

a positive (negative) value of Dr indicates that the latter underestimates (overesti-

mates) the former (see Equation 4.9). Second, Figure 4.6 allows us to take a closer

16Technically, for a given combination of α and p, I regress the resulting Pd on a constant and a
time variable (year).

17For relatively large values of α the absence of a time trend in Pd is easily explained by the fact
that in these cases all banks will tend to default in every single year. Hence, Pd will be roughly
constant over time.
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Figure 4.4: Trend analysis. p-value of regression analysis of Pd against a constant and
a time variable (year), for different combinations of p and α . Darker colour
denotes a smaller p-value.

look at the systemic risk levels, Pd , for a specific choices of α as a function of p

in the range p ∈ [0.6,1]. Third, to illustrate that my findings are robust over time,

Figure 4.7 shows the Pd’s over time for specific choices of α and p.

As for the network reconstruction part in section 4.2.3, I briefly discuss the re-

sults separately for the three different aggregation levels. Table 4.7 then summarizes

these results.

4.3.2.3 Disaggregated level

Figure 4.5 shows that the actual network tends to be the riskiest, because all null

models underestimate the actual Pd for most values of p and α . I observe that this

underestimation is consistent for the range of parameters that I consider here (small

initial shock and high market impact), which is shown by an area inside the black

dashed line in Figure 4.5. Moreover, all null models overestimate the actual Pd only

in a small region of the parameter space, for example when p = 0.9 (small initial

shock) and α = 0.1 (small market impact). Figure 4.5 also shows that the magnitude

of the underestimation gets larger as α increases.

Panel (a) in Figure 4.6 shows the performance of the null models for a specific

value of α = 0.7 as a function of specific values of p ∈ [0.6,1]. All null models

underestimate the actual Pd , with CM1 being the closest match, followed by CM2,

MinDensity and MaxEntropy. I note that, for relatively smaller values of the initial
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Figure 4.5: Relative difference of the probability of default between actual network and
the null models (Dr) at the disaggregated level for α ∈ [0,1] (small to large
market impact) and p ∈ [0,1] (large to small initial shock). Data for year 2010.
Warm colour corresponds to an underestimation of the actual network, while
cold colour indicates an overestimation. My main analysis focuses on small
values of the initial shock and large values of market impact, which is shown
by the area inside the black dashed line square.

shock (inset in Figure 4.6, Panel (a)), MinDensity instead produces higher values

of Pd than CM2. This result is driven by the fact that MinDensity produces very

sparse networks and allocates very few assets to each bank (high concentration lev-

els). Banks are therefore vulnerable to idiosyncratic shocks in this case, and some

banks can default due to the initial shock. However, given that the portfolio overlap

between banks is very low in the MinDensity model, shocks cannot spread easily

through the system and the number of banks defaulting through fire sale cascades is

rather small. The opposite is true for CM2: when the initial shock is large enough

to cause banks to default, the shock can propagate to other banks. Therefore, for

larger initial shocks, CM2 produces higher values of Pd than MinDensity. Lastly,

Panel (a) of Figure 4.7 shows the Pd over time for specific parameters (α = 0.7 and

p = 0.6). As for the 2010 data, the actual network tends to be the most risky one.
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Figure 4.6: Pd for initial shock p ∈ [0.6,1] and α = 0.7. Data for year 2010. Dotted line
indicates the value within one standard deviation. Inset: Pd for p ∈ [0.8,1] and
α = 0.7 for network at disaggregated level.

4.3.2.4 Aggregated level

The results for the aggregated networks are shown in Figure 4.8 and in Panel (b)

of Figures 4.6 and 4.7, respectively. With the exception of MinDensity, the actual

network tends to be the riskiest (at least for the 2010 data) and all other reconstruc-

tion methods tend to underestimate the actual Pd for most values of p and α . As

for MinDensity, it overestimates (underestimates) the actual Pd for relatively small

(large) initial shocks. However, it should be noted that for the aggregated networks,

MinDensity produces the riskiest networks in terms of Pd in most years (see also

Figure 4.7, Panel (B)). The intuition for this finding is similar to my explanations

for the disaggregated networks, with the important difference that MinDensity tends

to produce denser networks at the aggregate level. Therefore, the initial shock can
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Figure 4.7: Pd over time for illiquid market impact α = 0.7 and initial shock p = 0.6 for data
of different years. Dotted line indicates the value within one standard deviation.

lead to bank defaults which then spread the shock trough the system.

The results also suggest that the other reconstruction models (CM and Max-

Entropy) tend to produce values of Pd closer to each other. This suggests that data

aggregation may reduce differences among Pd’s of different null models. This is

mainly because aggregating data will result in a smaller number of nodes (assets)

in the network, so reconstruction models have fewer links to allocate. This reduces

differences between the reconstructed networks.

4.3.2.5 Intermediate level

For the intermediate aggregation level, the black dashed line in Figure 4.9, and Panel

(c) of Figure 4.6 show that MinDensity heavily overestimates the actual Pd . Hence,

MinDensity yields the riskiest networks at this aggregation level. The Panel (c) of

Figure 4.7 also shows that these results are consistent over time. The reasoning for
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Figure 4.8: Relative difference of the probability of default between actual network and the
null models (Dr) at the aggregated level for α ∈ [0,1] (small to large market
impact) and p ∈ [0,1] (large to small initial shock). Data for year 2010. Warm
colour corresponds to an underestimation of the actual network, while cold
colour indicates an overestimation. My main analysis focuses on small values
of the initial shock and large values of market impact, which is shown by the
area inside the black dashed line square.

this finding is again similar to what I saw at the other aggregation levels. The main

difference here is that the aggregation takes place after the MinDensity bank-firm

networks have been generated, which increases connectivity between banks and

thus allows shock to propagate more easily.

4.3.2.6 Summary and discussion: systemic risk analysis

As for the network reconstruction part, Table 4.7 summarizes the results from the

systemic risk analysis. I rank the different methods, along with the actual networks,

based on the average Pd (standard deviations in parentheses) for the restricted pa-

rameter ranges (p ∈ [0.6,1] and α ∈ [0.6,1]).18

18I also compute the rank for all possible combinations of parameters, including those within and
outside restricted range, in Table A.1. I find that the main results are qualitatively similar to those
in the main text. I also formally test whether the difference between each network Pd is significant.
Specifically, I run a two-sided Wilcoxon signed rank test on each pair of the actual network and the
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Figure 4.9: Relative difference of the probability of default between actual network and
the null models (Dr) at the intermediate level for α ∈ [0,1] (small to large
market impact) and p ∈ [0,1] (large to small initial shock). Data for year 2010.
Warm colour corresponds to an underestimation of the actual network, while
cold colour indicates an overestimation. My main analysis focuses on small
values of the initial shock and large values of market impact, which is shown
by the area inside the black dashed line square.

Rank Disaggregated Aggregated Intermediate
Null model Pd Null model Pd Null model Pd

1 Actual 0.236 Actual 0.195 MinDensity 0.275
(0.164) (0.148) (0.159)

2 CM1 0.163 MinDensity 0.193 Actual 0.195
(0.128) (0.085) (0.148)

3 CM2 0.079 CM1 0.061 CM1 0.133
(0.067) (0.060) (0.109)

4 MinDensity 0.069 CM2 0.057 CM2 0.076
(0.041) (0.051) (0.067)

5 MaxEntropy 0.035 MaxEntropy 0.035 MaxEntropy 0.034
(0.026) (0.027) (0.027)

Table 4.7: Rank of the actual networks and the corresponding null models at different ag-
gregation levels for the 2010 data. Rank 1 corresponds to the most risky net-
work. Pd denotes the average. I also show the standard deviation of Pd in brack-
ets, which is calculated using the Pd across the restricted parameter range (p ∈
{0.60, 0.61, 0.62, ... ,1} and α ∈ {0.60, 0.61, 0.62, ... ,1}).
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First, I find that the actual network tends to display the highest levels of sys-

temic risk in many instances, at least for the disaggregated networks. This is re-

markable, given that some of the reconstruction methods generate very different

network architectures; for example, MaxEntropy (MinDensity) yields a maximally

(minimally) connected credit network. This finding also suggests that even the null

models that preserve the degree distribution, like CM1 and CM2, fail to accurately

reproduce the actual Pd .19 However, my result contrasts Anand et al. (2015) which

indicates that MinDensity yields an upper bound of the actual risk. Here I find that

MinDensity in many instances underestimates the actual Pd , in particular for the

disaggregated networks, but overestimates systemic risk at the intermediate aggre-

gation level.

Second, with regard to the performance of each null model, I find that CM1,

followed by CM2 and MaxEntropy, has the closest behaviour to the actual net-

work overall, while MinDensity shows an inconsistent performance across different

aggregation levels. Given that the different null models require different inputs,

I propose CM2 as the most appealing model as it requires less information than

CM1.20

Lastly, the choice of aggregation level of financial networks matters for stress

testing. Certain models can change their behaviour at different aggregation lev-

els, most notably MinDensity. On the other hand, configuration models generally

behave rather well at all aggregation levels. However, the ranking of each null

model in term of reconstructing the topological features of the actual network is

not necessarily consistent with that of reproducing actual systemic risk level (see

the comparison between Figure 4.2 and Table 4.7). Future research should explore

which network characteristic is most important for reproducing the actual systemic

risk levels.

null model (see Tables A.1 and Table A.2 in the Appendices for the test results).
19This finding is related to previous studies on interbank networks (Mistrulli (2011) and Anand

et al. (2015)) which suggest that MaxEntropy underestimates the actual risk.
20Wilcoxon tests (see Appendix) indicate that the Pd results from CM1 and CM2 are not signifi-

cantly different from each other (as opposed to the results from the other reconstruction methods).
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4.4 Policy Exercise
My findings suggest that, with respect to the null models I considered, the actual

network displays the highest level of Pd in many instances (at least for the 2010

data). This implies that it is possible to make the network more stable by changing

its structure. With this in mind, I now explore different policies in order to increase

the robustness of the actual credit network.

4.4.1 Policies

To this end, I use a similar approach as Greenwood et al. (2015) and explore three

different sets of policies (see Table 4.8 for an overview):

1. merging banks with certain characteristics;

2. breaking up banks with certain characteristics;

3. imposing a leverage cap.

First, I explore the effect of merging banks. In this context, I consider four

different scenarios in which I merge a group of large or small banks that are chosen

on the basis of their size or leverage. I sort the banks according to their total assets

(or their leverage ratios), and merge the top and bottom 15% of them into a single

bank.

Second, I study the effect of breaking up banks. Specifically, I split a large

bank into two smaller banks. Moreover I assume that one of the smaller banks con-

nects only to the group of relatively connected firms, while the other bank connects

only to a group of relatively unconnected firms. (Here I use the number of bank

relationships per firm as a proxy of firms’ connectedness). Additionally, I assume

that the leverage ratio of both banks is identical to the leverage of the original bank.

Third, I explore the effect of a leverage cap, i.e. I limit the maximum ratio

between debt to equity of a bank. In this case, I assume that banks that breach the

limit need to raise new equity to satisfy the cap (without changing the size of the

credit portfolio).
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Policy choice Observable outcome

1 - Bank merger Number of
banks merged

Total assets of a new
merged bank

A) Top 15% (total assets) 17 U23.58 Tr
B) Top 15% (leverage) 17 U2.99 Tr
C) Bottom 15% (total assets) 17 U0.03 Tr
D) Bottom 15% (leverage) 17 U3.18 Tr

2 - Bank break-up Number of
banks split

Total assets of
impacted banks

A) Split each of the top 15% banks (total
assets) into one that connects to top 15%
industries (connectedness), while the other
connects to the bottom 85% industries
(connectedness)

17 U23.58 Tr

B) Split each of the top 15% banks
(leverage) into one that connects to top
15% industries (connectedness) and the
other connected to the bottom 85%
industries (connectedness)

17 U2.99 Tr

3 - Leverage cap Equity issue Number of banks
capped

A) max debt/equity = 15 U354.6 Bn 107
B) max debt/equity = 20 U79.6 Bn 64
C) max debt/equity = 25 U34.4 Bn 31
D) max debt/equity = 30 U18.5 Bn 11

Table 4.8: Different policy exercises applied to the actual network in 2010. Tr and Bn stand
for trillion and billion (in U).

4.4.2 Results

I apply each policy separately to the actual network and then conduct the systemic

risk analysis on these modified networks. For this exercise, I explore the aggregated

network in 2010, with α = 0.7. I compare Pd of the modified networks to that of

the actual network, and to MaxEntropy (the least risky network in this case).

Figure 4.10 shows the results for the three sets of policies. First, I find that

merging the largest banks based on their total assets (1A) decreases Pd .21 My spe-

cific merging procedure yields a large but moderately leveraged bank. I illustrate

this in Figure 4.11, where the merged bank (red coloured bar) ends up holding 84%

assets in the system and with a leverage ratio of 18. Moreover, by holding a majority

of the assets in the system, it becomes less vulnerable to other banks’ asset liquida-

21This is different to the results of Greenwood et al. (2015) where the merger may lead to an even
more leveraged bank.
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Figure 4.10: Effect of different policy exercises on Pd , relative to the actual network. Max-
Entropy serves as the lower bound as it is the least risky network in this case.
Here I use the data for 2010 with a market impact parameter of α = 0.7.
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Figure 4.11: Leverage of the top 15% banks (total assets) for the 2010 data. There are 17
(out of 116) banks that belong to this category. The red bar refers to the lever-
age of a merged bank (resulted from merging the largest 15% banks), while
the dashed black line refers to the total assets of the corresponding banks.
Overall, the merger results in a very large but moderately leveraged bank.
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tions.22 Figure 4.10 shows that other merging procedures (1B, 1C and 1D) do not

lower Pd as effectively. These results are mainly driven by the relatively insignifi-

cant total assets of the merged banks obtained from procedures 1B, 1C and 1D as

shown in Table 4.8.23 Moreover, I note that 1B is better than 1D to reduce the actual

Pd . The intuition is similar to that of procedure with 1A: merging highly leveraged

banks yields a moderately leveraged bank that is more stable during distress.

Figure 4.10 shows that breaking-up banks (2A and 2B) can increase systemic

risk. Intuitively, one would expect that this policy should reduce the possibility of

shock propagation since I break-up a given bank into two smaller banks that connect

to different sets of firms/industries. However, this policy also leads to relatively

concentrated banks that are more vulnerable to idiosyncratic shocks. As I only split

the top 15% banks and keep the other 75% as they are, banks are still sufficiently

interconnected to propagate the shock in the network.

Lastly, Figure 4.10 shows that a leverage cap can lead to substantially more

stable networks, with tighter constraints yielding lower values of Pd . However, the

results show that for modest leverage caps (such as scenario 3D) Pd remains largely

unaffected. Hence, a substantial part of the observed vulnerability of the system is

driven by banks’ size and their portfolio overlap.

Overall, I find that neither of the three different policy exercises is able to bring

down Pd to the values of the least risky network for this particular network (Max-

Entropy). I find that merging banks and introducing a leverage cap may improve

the robustness of the system, while splitting banks does not. These results can be

dependent on the specific choice of the initial shock scenario.

4.5 Conclusions
There is widespread interest in finding accurate reconstruction methods for financial

networks from partial information. In this chapter, I focus on reconstructing and

22Contrary to Greenwood et al. (2015), I assume that banks only sell assets when they default. Un-
der alternative assumptions (such as leverage targeting), the results may differ from what is reported
here.

23The leverage of banks in my datasets does not correlate to their size where highly and lowly
leveraged banks might consist of both large and small banks.
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stress testing bipartite credit networks using detailed micro-data on bank-firm credit

interactions in Japan for the period 1980 - 2010.

I find that there is no single ”best” network reconstruction method - it depends

on the assumed criterion of interest. This is also true when I look at each method’s

ability to reproduce observed levels of systemic risk. In fact, in many instances

the actual credit networks display the highest levels of systemic risk, at least for

the most disaggregated data. Hence, many reconstruction methods tend to under-

estimate systemic risk. Lastly, I find that the network aggregation level affects the

individual performance of the different reconstruction methods.

My findings suggest several interesting paths for future research. First and

foremost, it is important to perform similar analyses on other datasets. Secondly, an-

other important follow-up question is whether there are other reconstruction meth-

ods that are able to replicate the actual systemic risk levels more closely. In this

chapter, I only include a small number of popular reconstruction methods, but other

methods may work better. Lastly, different stress tests can lead to different results.

I therefore aim to generalize the modelling framework proposed here and test the

robustness of the results in future research.



Chapter 5

On Dynamics of Contagion

5.1 Introduction

In this chapter, I consider stress testing models of indirect contagion in a banking

network of common asset holdings. For these models, the literature proposed two

alternative classes of liquidation dynamics, namely (i) the model of Huang et al.

(2013) and Caccioli et al. (2014), and (ii) the model of Greenwood et al. (2015).

In the former, banks are assumed to sell their assets only after they have defaulted

(threshold dynamics). In the latter, banks are assumed to sell their assets whenever

their leverage ratio is off-target (leverage targeting dynamics). In order to allow

for the fact that the actual liquidation behaviour of banks might lie somewhere in-

between these extremes, I propose a fire sale model that interpolates between them.

The model contains a one-parameter (γ) family of non-linear functions, which deter-

mines the volume of assets that a bank liquidates in response to a loss. Intuitively,

modest (large) values of γ can be interpreted as the tendency of banks to follow

leverage targeting (threshold) dynamics.

I then use the model to predict actual bank defaults for a range of liquidation

dynamics, i.e., different values of γ . My goal is to identify the value(s) of γ that per-

form(s) best in terms of predictive accuracy with regard to actual bank defaults and

non-defaults. Following Huang et al. (2013), I use U.S. commercial bank balance

sheet data for the last quarter of 2007, and I apply a shock that is meant to mimic the

onset of the subprime crisis. I then assess whether the different models manage to
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accurately predict the actual defaults that occurred during the years 2008-10 based

on the list of bank failures published by the Federal Deposit Insurance Corporation

(FDIC).

My main findings are as follows: the performance of the stress testing model

strongly depends on the type of initial shock being imposed. On the one hand, sys-

tematic shocks tend to yield relatively poor results in terms of predictive power. On

the other hand, idiosyncratic shocks can yield much better results, but strongly de-

pend on which asset class is being shocked initially. My approach allows identifying

those asset classes that appear most relevant. Based on this identification, I find that

the stress testing model displays better performance than a random benchmark, ir-

respective of the assumed liquidation dynamics. The model is also superior, in most

instances, to a standard logistic regression model with leverage and total assets as

the sole explanatory variables, which does not account for the network of common

asset holdings. Furthermore, I find that the optimal liquidation dynamics depend on

the other model parameters, namely the size of the initial shock and the level of mar-

ket liquidity. I also discuss the fundamental differences between network models

and statistical/econometric models in general, and argue that the former are more

appealing to the application of systemic stress tests. Lastly, I show that allowing for

asset class-specific market impact parameters can improve the model performance,

while accounting for multiple rounds of asset liquidation can affect the performance

of the model. In particular, I show that considering only the first round of asset liqui-

dations appears most accurate for a model with small γ (banks target their leverage),

while accounting for multiple rounds of asset liquidations provides better results for

larger γ (banks only liquidate in case of default).

The remainder of this chapter is structured as follows: in section 5.2, I intro-

duce a generalised stress testing model that captures a wide range of behavioural

assumptions with regard to bank’s liquidation dynamics under stress. In this sec-

tion, I also provides details on the datasets and experimental setup being used in

the research. Section section 5.3 contains the model application and section 5.4

concludes.
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5.2 Methodology

5.2.1 Model

In chapter 4, I mainly assumed that banks follow the threshold dynamics, that is

banks would only liquidate their assets after default. As I previously discussed in

chapter 3, an alternative to this approach would be the leverage targeting dynam-

ics, where banks actively maintain their leverage ratios. In this respect, one might

hypothesize that the behaviour of banks might actually lie in-between these two

extreme dynamics. To interpolate between the leverage targeting and threshold dy-

namics, I propose the function G1
i (φ) in Equation 3.10 - 3.12 to be defined as:

G1
i (φ) = min

e
γ

(
φ 1

i −
1

λ0
i

)
,1

 , (5.1)

where γ ∈ (0,∞) is a free parameter that is related to a bank’s propensity to follow

threshold liquidation dynamics. For example, by setting γ = 0, I recover the lever-

age targeting model, in which the amount of assets that a bank liquidates is linear

in its losses. For γ > 0, the response of the bank is non-linear, and it has a convex

shape. This means that the bank will increase its rate of liquidation as losses in-

crease. Eventually, in the limit γ→∞, I recover the threshold model. This is shown

in Figure 5.1, where I present a comparison between different values of γ in term of

liquidation volume as a function of absolute return.

5.2.2 Data

Following Huang et al. (2013), my data come from two sources: first, I take

U.S. commercial banks’ balance sheet data from Wharton Research Data Services1

for 2007-Q4. The data set contains the balance sheet of N =7,783 active U.S. com-

mercial banks, with holdings broken up into M = 14 broad asset classes (see Table

5.1 for a list of asset classes). This gives us the empirical equivalent of matrix W ,

which is the bipartite financial network with dimension 7,783 banks × 14 assets. I

also have information on the total assets, total liabilities, and equity of each bank.

1https://wrds-web.wharton.upenn.edu/wrds/
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Figure 5.1: The volume of assets liquidated (relative to total assets) as a function of the
loss in value of assets for a portfolio with an initial leverage of 10, for different
values of γ in the model.

Note that most of the asset classes considered here are loans, and therefore are

clearly illiquid. However, I should stress that many of these can indeed be traded

on secondary markets (see, e.g., Drucker and Puri (2009)).2

The second data set is a list of bank failures from the Federal Deposit Insurance

Corporation (FBL-FDIC)3 for the period 1/1/2008 - 7/1/2011. During this period a

total number of 370 banks failed; for 306 of these I have the corresponding balance

sheet data from the first database. Hence, roughly 4% of the banks in my sample

defaulted during the financial crisis period.

In the following, I apply my stress testing model to the bipartite network from

the first data set. I then compare the list of banks that the model predicts to default

and the actual list of bank failures. I aim to identify the best performing model that

correctly classifies both the 4% of banks that defaulted and the 96% of banks that

did not default. In other words, I wish to find the value(s) of γ that replicate(s) as

closely as possible the behaviour of U.S. banks during the crisis. Fundamentally,

my work is therefore related to the growing literature on reverse stress testing (e.g.,

Grigat and Caccioli (2017)), which aims to identify scenarios that would lead to

a certain stress testing outcome. Here the outcome is the default/non-default of

2For example, Keys et al. (2010) pointed out that the market of securitized mortgage loans
reached $3.6 trillion prior to the crisis.

3https://www.fdic.gov/bank/individual/failed/banklist.html
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Index Asset class
Total

amount
(billion USD)

Relative
amount (%
tot. assets)

1 Loans for construction and land development 774.67 6.10
2 Loans secured by farmland 247.54 1.95
3 Loans secured by 1-4 family residential properties 3058.64 24.09

4
Loans secured by multi-family (> 5) residential
properties 185.11 1.46

5
Loans secured by non-farm non-residential prop-
erties 1234.33 9.72

6 Agricultural loans 224.31 1.77
7 Commercial and industrial loans 1605.34 12.64
8 Loans to individuals 1351.53 10.64
9 All other loans (exclude consumer loans) 282.80 2.23

10
Obligations (other than securities and leases) of
states and political subdivision in the U.S. 98.68 0.78

11 Held-to-maturity securities 772.17 6.08
12 Available-for-sale securities, total 2221.73 17.50

13
Premises and fixed assets including capitalized
lease 145.26 1.14

14 Cash 496.93 3.91
Total assets 12,699.04 100

Table 5.1: Different asset classes used in this chapter. There are 14 asset classes in total:
except for cash, the other 13 asset classes are less than perfectly liquid (asset
liquidations generate market impact). The third column is the total amount of
each asset class in billion USD, and the fourth column is the corresponding
percentage share of total assets.

individual banks.

5.2.3 Experimental Setup

Let us spell out some assumptions and introduce some definitions that I use in this

study. I start the cascading process by reducing the value of an asset j ∈ {1, ...,M−

1}4 to a fraction p of its original value (p ∈ {0,0.01,0.02, ...,0.99,1}. In this sense,

a large (small) value of p corresponds to small (large) initial shock. With regard

to the market impact, I consider the linear function where I iterate over different

values of α (α ∈ {0,0.01,0.02, ...,0.99,1}) and, initially, I assume that this value is

homogeneous across assets5 (except for cash, for which I always consider α = 0).

I will relax the homogeneity assumption below.

4There are M assets in the network, including cash. I would only shock the value of the non-cash
asset.

5Many studies make a simplifying homogeneity assumption with regard to the market impact
function (e.g. Greenwood et al. (2015)). Put simply, this means that all assets are assumed to be
equally liquid.
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In the following, I will show results for all possible combinations of p and

α , but I mainly focus on the results for a restricted range of parameters. Since

the majority of asset classes considered here are relatively illiquid, I follow the

approach that I previously used in chapter 4 and focus on the upper range of the

market impact parameter (α ∈ [0.6,1]).6 Moreover, in line with previous studies

on indirect contagion (Cont and Schaanning (2017), Greenwood et al. (2015)), I

consider relatively small initial shocks (p ∈ [0.6,1]). This makes intuitive sense,

given that network models of systemic risk are based on the idea that relatively

small shocks can amplify through the network and thus potentially have large effects

overall.

Concerning the number of liquidation rounds, I mainly focus on the first it-

eration round, which is in line with the approach of Greenwood et al. (2015) and

Fricke and Fricke (2020). More specifically, the first three steps of the contagion

algorithm described at the beginning of section 3.3 are only performed once, and

the optional fourth step is left out. This approach differs from the analysis of Huang

et al. (2013), where the contagion algorithm is iterated until convergence. I later

compare the model accuracy when allowing for multiple rounds of asset liquida-

tions.

Concerning the propensity of banks to follow threshold dynamics (parameter

γ), I consider values of γ ∈ {0,1, ...,49}∪{∞}. Recall that a value of γ→∞ means

that banks exactly follow threshold dynamics, i.e. they only liquidate assets in case

of default. On the other hand, lower values of γ indicate a tendency to follow lever-

age targeting dynamics. For each value of γ from my set of values, I perform a

stress test and measure the prediction accuracy of the corresponding model. To

this end, I evaluate each model’s ability to identify bank failures and non-failures

during financial distress correctly. Here I use the standard receiver operating char-

acteristic (ROC) curve (Egan (1975); Swets et al. (2000)) which shows the fraction

of correctly identified bank failures (true positive rate/TPR) versus the incorrectly

classified failures (false positive rate/FPR). A random classifier would yield a di-

6For α = 0.6, the asset price drops by 6% when 10% of the asset is liquidated; for α = 1, the
price drops by 10% when 10% of the asset is liquidated.
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agonal line (from bottom left to top right) in the ROC space; see Figure 5.2. In

contrast, a perfect model produces points closer to the top left corner in the ROC

space.
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Figure 5.2: Illustration of Youden’s J statistic. The red point in the ROC space corresponds
to FPR = 0.3 and TPR = 0.7. The value of J of this point is displayed by
the dotted line (J = 0.7− 0.3 = 0.4). Larger values indicate a better model
performance.

In the following, each value of γ will produce one ROC curve. Each point

corresponding to this curve corresponds to one combination of p and α , i.e., the

size of the initial shock and asset illiquidity. In order to test the model accuracy for

each combination of p and α I use Youden’s J statistic (Youden (1950)), which is

defined as :

Jγ,p,α = TPRγ,p,α −FPRγ,p,α . (5.2)

The value of J ranges from 0 to 1. J = 0 indicates the performance of a random clas-

sifier, while J = 1 denotes the performance of a perfect model. Figure 5.2 illustrates

the computation of J.

Unless otherwise stated, in my analysis below I always exclude bankruptcies

due to the initial shock and focus on failures due to the contagion process only.

This is to separate the effect of shock propagation/amplification via the fire sale

mechanism from the influence of the initial shock. (In the Appendix, I take a closer

look at defaults due to the initial shock.) Moreover, to compare the accuracy of
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the network models with some benchmarks, I also plot two other ROC curves in

each figure: i) a random classifier, and ii) a standard logistic regression model with

bank leverage and total assets (in logs) as explanatory variables.7 I believe that this

benchmark is a reasonable starting point since it does not include any information

on the network of common asset holdings. (In Section 5.3.1.4 I will introduce a

more sophisticated benchmark model that does include network information.)

I also note that, in the following analysis, the ROC curve of the logistic re-

gression benchmark and that of the network model come from slightly different

samples: in the former, I consider failures of all banks in the data set, while in the

latter I only consider failures due to the contagion process and exclude those due to

the initial shock. My aim here is therefore to look at the comparison between the ac-

curacy of contagion dynamics and a benchmark that uses bank features as predictive

variables. I should highlight that if I also considered failures due to the initial shock

for the network model, I would obtain more superior ROC curves compared to those

that I show here (see Appendix B.3). Therefore, if anything, in comparison with the

logistic regressions, the accuracy of the network model is biased downwards.

5.3 Results

5.3.1 Model Performance

Apart from the model-specfic parameters (in my case: p, α , and γ), the researcher

needs to decide what kind of shock should be imposed (e.g., idiosyncratic or sys-

tematic). In the case of idiosyncratic shocks, one also has to decide which asset

class(es) should be shocked. In the following, I will show how to pick the relevant

asset classes in terms of how the stress testing model performs in the classification

exercise. I will then focus on the results for the most relevant asset classes only

(exemplary results for less relevant asset classes can be found in the Appendix).

As it turns out, the two relevant asset classes that I identify (asset class 1: loans

for construction and land development; asset class 5: loans secured by non-farm

non-residential properties) made up less than 15% of banks’ total assets before the

7See Appendix B.1 for details on the regression model.
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crisis. Interestingly, these two asset classes are exactly those that were problematic

during the global financial crisis (Cole and White (2012); Huang et al. (2013)).

5.3.1.1 Identifying relevant asset classes

The stress scenario to be studied is to be defined by the researcher. One naı̈ve ap-

proach would be to run the model multiple times, with different asset classes being

hit by the initial shock and then averaging the results over the different shock sce-

narios. However, as shown in Figure 5.3, this yields very poor classification results.

Specifically, I run the stress testing model separately for each asset class (except for

cash) and compute the average of the TPR/FPR across all shock scenarios for each

parameter combination. The ROC curves in Figure 5.3 are quite close to those of a

random classifier (and substantially below those of a logistic regression), suggesting

that this approach has very little predictive power.

Shocked asset
class ( j)

Complete parameter range Restricted parameter range
Mean Std Min Max Prob Mean Std Min Max Prob

1 0.276 0.212 -0.000 0.593 0.215 0.241 0.224 -0.000 0.592 0.379
2 -0.034 0.040 -0.149 0.199 0.662 -0.007 0.010 -0.066 0.003 0.997
3 0.011 0.033 -0.139 0.140 0.908 0.017 0.019 -0.064 0.119 0.975
4 0.023 0.032 -0.000 0.347 0.960 0.004 0.004 -0.000 0.042 1.000
5 0.120 0.121 -0.000 0.420 0.433 0.137 0.142 -0.000 0.420 0.420
6 -0.042 0.049 -0.132 0.199 0.545 -0.006 0.007 -0.037 0.010 1.000
7 0.043 0.039 -0.000 0.215 0.687 0.049 0.051 -0.000 0.213 0.575
8 -0.020 0.049 -0.197 0.093 0.774 -0.025 0.045 -0.178 0.047 0.781
9 -0.000 0.011 -0.124 0.033 0.982 0.000 0.002 -0.013 0.030 1.000

10 -0.000 0.002 -0.004 0.033 1.000 -0.000 0.000 -0.000 0.003 1.000
11 0.013 0.045 -0.095 0.207 0.689 0.006 0.035 -0.052 0.198 0.899
12 -0.006 0.053 -0.120 0.112 0.852 0.004 0.035 -0.147 0.110 0.895
13 0.000 0.012 -0.002 0.264 0.993 -0.000 0.000 -0.000 0.003 1.000

Table 5.2: Unconditional average of Youden’s J statistic (across all combinations of γ , p,
and α) when imposing an initial shock on each asset class separately.

In order to disentangle this somewhat disappointing finding, I show separate

results for the individual asset classes in Table 5.2. In particular, I compute the

average value of Youden’s J statistic (Equation 5.2) along all (p, α , γ) combinations

for each asset class. Note that a random classifier corresponds to J = 0, while a

perfect classifier would correspond to J = 1. In order to assess the significance of

the reported J statistic, I also perform a simple simulation-based significance test:

first, I simulate the ROC curve for a random classifier with the same number of

observations as the data. (With a sufficiently large number of observations, the
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Figure 5.3: ROC curves of the model with γ = 0,5,20 and γ→∞, resp., for the average
results of initial shock across all asset classes (except cash). Each dot rep-
resents a true positive/false positive rate pair for a specific combination of the
initial shock (p) and the market impact parameter (α). I highlight the results for
the restricted range of parameters (low initial shock and high market impact) in
red; blue corresponds to parameter combinations outside this range. The black
dashed line is the ROC curve of a corresponding logistic regression model with
bank leverage and total assets (log-transformed) as explanatory variables, and
the red diagonal line is the ROC curve of a random classifier. A model closer
to the top left corner of the TPR/FPR space is considered more accurate. Here
I consider only the first round of asset liquidations, and exclude bank failures
due to the initial shock in the model assessment.
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expected value of the ROC curve converges to the 45 degree line shown in the

Figures.) This gives us the distribution of J for a random classifier. For each asset

class j, I can then count how many of the observations fall within the 5% confidence

interval of the random classifier. This number is reported as Prob in Table 5.2.

Based on this simple significance test, I find that the unconditional J statistic (both

for the complete parameter range, and for the restricted parameter range) is not

significantly different from zero for any of the asset classes; in fact, for most asset

classes, I find that close to 100% of the J statistic fall within the confidence interval

of a random classifier. Put differently, imposing an idiosyncratic shock on most of

the asset classes yields results that are indistinguishable from those of a random

classifier.8 Table 5.2 also shows that for asset classes 1 and 5 the unconditional

results are slightly better: approximately 60% of the J statistic fall outside the 5%

confidence bands of the random classifier. While these findings would still not

count as statistically significant at reasonable confidence levels, I treat these two

asset classes as the most relevant ones in what follows.

Note that my findings on asset classes 1 and 5 are in line with Cole and White

(2012), who found that banks with high levels of commercial real estate loans were

particularly affected during the recent global financial crisis. Indeed, I find that the

classifications are significantly better compared to those of a random classifier for

initial shocks on these two asset classes. I will therefore focus on results from these

two asset classes in most of what follows (examples of results from less relevant

asset classes can be found in the Appendix).

5.3.1.2 Results for the two most relevant asset classes

The different panels in Figure 5.4 show the ROC curves based on γ = 0,5,20 and

γ → ∞, when imposing an initial shock on asset class 1. Figure 5.5 shows the cor-

responding results when imposing initial shock on asset 5 instead. Each dot in the

ROC curve corresponds to the result of the stress test for a particular combination of

p and α . Red dots correspond to the results for the restricted range of parameters,

8I also perform standard two-sample Kolmogorov-Smirnov tests to compare the different distri-
butions of the J statistic with the one of the random classifier. Here I reject the null hypothesis for
all asset classes.
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Figure 5.4: ROC curves of the model with γ = 0,5,20 and γ → ∞, resp., with initial
shock on loans for construction and land development (asset class 1). Each
dot represents a true positive/false positive rate pair for a specific combination
of the initial shock (p) and the market impact parameter (α). I highlight the
results for the restricted range of parameters (low initial shock and high mar-
ket impact) in red; blue corresponds to parameter combinations outside this
range. The black dashed line is the ROC curve of a corresponding logistic
regression model with bank leverage and total assets (log-transformed) as ex-
planatory variables, and the red diagonal line is the ROC curve of a random
classifier. A model closer to the top left corner of the TPR/FPR space is con-
sidered more accurate. Here I consider only the first round of asset liquidations,
and exclude bank failures due to the initial shock in the model assessment.
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Figure 5.5: ROC curves of the model with γ = 0,5,20 and γ → ∞, resp., with initial
shock on loans secured by non-farm non-residential properties (asset class
5). Each dot represents a true positive/false positive rate pair for a specific
combination of the initial shock (p) and the market impact parameter (α). I
highlight the results for the restricted range of parameters (low initial shock
and high market impact) in red; blue corresponds to parameter combinations
outside this range. The black dashed line is the ROC curve of a corresponding
logistic regression model with bank leverage and total assets (log-transformed)
as explanatory variables, and the red diagonal line is the ROC curve of a random
classifier. A model closer to the top left corner of the TPR/FPR space is consid-
ered more accurate. Here I consider only the first round of asset liquidations,
and exclude bank failures due to the initial shock in the model assessment.



5.3. Results 98

blue dots indicate results outside this range. Overall, I find that the model performs

better than a random classifier for all values of γ for these two asset classes. This

can be seen from Figure 5.4 and Figure 5.5, where the ROC curves lie above di-

agonal lines. In most instances, I also find that the model is superior compared

to the logistic regression model, which indicates that the network of common as-

set holdings indeed contains useful information to predict defaults. However, for

different values of γ , the same combinations of p and α can end up in different

locations of the ROC space. For example, for larger γ (bottom panels in Figure 5.4

and Figure 5.5), the red dots cover only a limited range within the TPR/FPR space.

This is due to the fact that values closer to the top right corner of the TPR/FPR

space correspond to a larger number of banks that are being predicted to default.

Meanwhile, red dots correspond to the results for the restricted range of parameters

(low initial shock and high market impact). For higher values of γ , banks are less

aggressive in terms of their leverage targeting, and therefore liquidate fewer assets

during distress. Hence, when γ is large and the initial shock is small, bank defaults

are rare and shocks propagate slowly through the system. For smaller values of γ ,

this changes dramatically: when banks’ propensity to target their leverage ratios is

strong, shocks can propagate more easily through the network (see section 5.3.2).

As I see from the top panels in Figure 5.4 and Figure 5.5, the red dots now also

cover a broader range within the TPR/FPR space. These findings suggest that there

may be different regimes in the (p,α) plane, for which different values of γ are

best.

5.3.1.3 Model performance in the (p,α) plane

In the following, I now discuss the model performance in the (p,α) plane and check

for each combination of (p,α) which value of γ yields the most accurate model.

Specifically, I find the value of γ for which Jγ,p,α is maximized:

γ
opt(p,α) = argmax

γ

Jγ,p,α . (5.3)
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As noted previously, here I focus only on the results for the two most relevant asset

classes (1 and 5). In the following, I differentiate between results for the complete

(p,α) range, and results for the restricted range with relatively small initial shocks

and relatively large price impact parameters.

Complete Parameter Range. The values of γopt(p,α) are shown as a heatmap in

Figure 5.6(a) and Figure 5.7(a), for shocks on asset class 1 and 5, respectively. The

Figures suggest the existence of three different regions characterized by different

values of γopt: two of these regions (denoted as regions 1 and 3) indicate that the

threshold model appears to be best (γopt(p,α)→∞).9 There is also an intermediate

region (denoted as region 2) where the best performing value of γ is smaller, such

that the leverage targeting model yields more accurate results (γopt(p,α)→ 0). Note

that there are also some cases in region 2 where something in-between the threshold

model and the leverage targeting approach is best. Overall, it should be clear that

the best performing γ varies across different (p,α) combinations.

In order to take a closer look at the accuracy of the best performing model in

each regime, Figure 5.6(b) and Figure 5.7(b) show the value of Jγopt,p,α in the (p,α)

plane. As I previously discussed, a random classifier would correspond to J = 0,

while a perfect model corresponds to J = 1. The results suggest that region 1 is

characterized by small values of J, which is incidentally not driven by the model’s

failure to accurately identify bank defaults (high FPR, but low TPR), but simply

because the model does not identify any default (low FPR and low TPR). Since this

region is characterized by modest values of (p,α), the exogenous shock would not

be adequately amplified to trigger further contagion in the system. On the other

hand, regions 2 and 3 display relatively high values of J (J > 0.4).

Finally, to get a feeling for the variation in model accuracy for different values

of γ , Figure 5.6(c) and Figure 5.7(c) show the differences in performance between

the best and the worst model in the (p,α) plane:

δ (p,α) = max
γ

Jγ,p,α −min
γ

Jγ,p,α , (5.4)

9I also see a few cases in region 1 where the accuracy of all values of γ is equivalent (shown in
white).
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Figure 5.6: Results from imposing an initial shock on asset class 1 (loans for construc-
tion and land development).(a) The variation of γopt (based on Youden’s J
statistic) in different (p,α) regimes. Warmer (colder) colours refer to larger
(smaller) values of γ , and white is used whenever the accuracy of all γ are
equivalently similar. I look at the range of γ ∈ {0, ...,49}∪ {∞}, and γ = 50
in this plot corresponds to γ → ∞. (b) values of J of the corresponding most
accurate γ in different regimes of p and α . (c) The variation of model accuracy
between the values of J of the most accurate and the least accurate γ in different
regimes.

Note that δ ranges between 0 (where both models have a similar value of J) and 1

(if one model is a perfect model while the other is a random classifier).

As shown in the figures, I again obtain high values of δ for most (p,α) com-

binations in regions 2 and 3. Hence, properly tuning γ can substantially improve

model accuracy. This also implies that there is no contagion algorithm that is al-

ways the best, but rather the best performing value of γ depends on the specific

values of p and α . Note that the results are consistent for both of the most relevant

asset classes.

A high-level overview of my main findings can be found in Table 5.3. In
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Figure 5.7: Results from imposing an initial shock on asset class 5 (loans secured by
non-farm non-residential properties). (a) The variation of γopt (based on
Youden’s J statistic) in different (p,α) regimes. Warmer (colder) colours refer
to larger (smaller) values of γ , and white is used whenever the accuracy of all
γ are equivalently similar. I look at the range of γ ∈ {0, ...,49}∪ {∞}, and γ

= 50 in this plot corresponds to γ → ∞. (b) values of J of the corresponding
most accurate γ in different regimes of p and α . (c) The variation of model
accuracy between the values of J of the most accurate and the least accurate γ

in different regimes.

practice, once the size of exogenous shock and the strength of market impact have

been calibrated, one can select the corresponding best performing value of γ that I

provided in Figure 5.6 and Figure 5.7.

Restricted Parameter Range. I now take a closer look at the model performance

in the regime of small initial shocks (p ∈ [0.6,1]) and high market impact parame-

ters (α ∈ [0.6,1]). The results for the restricted range of parameters are highlighted

in Figure 5.6 and Figure 5.7 as the area inside the black dashed line square (bot-

tom right corner). Interestingly, Figure 5.6(a) and Figure 5.7(a) show that the best

performing liquidation parameter γ in this range lies in-between leverage target-
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Market impact (α)
weak

0 . p . 0.3
moderate

0.3 . p . 0.7
strong

0.7 . p . 1

Initial
shock (p)

large
0 . p . 0.3

All dynamics
mostly the same

Threshold
dyamic

Threshold
dynamic

moderate
0.3 . p . 0.7

All dynamics
mostly the same

Intermediate
region

Threshold
dynamic

small
0.7 . p . 1

All dynamics
exactly the

same

Leverage
targeting

Leverage
targeting

Table 5.3: The best performing liquidation dynamics for different combinations of the ex-
ogenous shock and the market impact parameter.

ing and the threshold dynamics. Furthermore, I also observe from Table 5.3 that

the best performing model in this range switches from the leverage targeting (high

price impact, small shocks) to the threshold dynamics (high price impact, moderate

shocks).

These results can be explained as follows: with smaller values of γ , banks

target their leverage ratios more aggressively. Hence, they will liquidate more assets

during distress. When the initial shock is small (e.g. p = 0.9), banks only observe a

small decline in their total assets and shocks are therefore unlikely to spread. That is,

unless banks decide to liquidate a considerable amount of their assets. Accordingly,

the shock propagation and the (accurate) default prediction can only be observed

for the model with γ = 0 (leverage targeting).

As the initial shock becomes larger (e.g. p = 0.7), the best performing γ shifts

to the region that lies in between leverage targeting (γ = 0) and threshold dynamics

(γ → ∞). The reason for this is the following: shocks can now spread even if banks

only decide to liquidate a moderate amount of their assets, since losses from the

initial shock are larger. Accordingly, a more accurate model uses an intermediate

value of 0 < γ < ∞. In particular, the leverage targeting model that was best per-

forming for small shocks now overestimates the number of defaults, such that the

increase in its false positive rate (the number of banks that it incorrectly predicts

to default) is faster than the increase in its true positive rate (the number of banks

that it correctly predicts to default). Therefore, models with intermediate γ (e.g.
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γ ∈ [20,30]) become more accurate.

5.3.1.4 Comparison with a more sophisticated benchmark

The results suggest that network models have some predictive power, as they pre-

dict defaults better than both a random classifier and the simple logistic regres-

sion benchmark. In this section, I compare the performance of the model with

that of a more sophisticated logistic regression, where I also include banks’ rela-

tive amount of holdings of each asset class (defined as the portfolio share). To deal

with collinearity, I exclude asset classes 10 and 13 in the regression, which account

only for less than 2% of the aggregated balance sheet. In other words, I incorporate

information on the network of common asset holdings. Interestingly, as shown in

Table B.2 in the Appendix, the parameter on log(Leverage) now turns out insignif-

icant. Only the parameters on log(TotalAssets), and on asset classes 1 and 8 are

significant. Despite this, the pseudo-R2 now increases substantially from 0.01 to

0.17.

In Figures 5.8 and 5.9, I plot the performance of this benchmark against that

of the network model when I shock assets 1 and 5 respectively. The results in-

deed suggest that the enhanced logistic regression appears to perform better than

the network model. This, however, should not be taken as a defeat for the network

model since the enhanced logistic regression model is subject to strong overfitting

to the subprime crisis: the model has been trained to discriminate between banks

that defaulted and those that did not after the 2008 shock, which mostly affected

asset classes 1 and 5 (Cole and White, 2012). For this type of shock, the model per-

forms quite well, but it would not be able to provide any predictions under slightly

different scenarios (e.g., different exogenous shocks), which is however important

from a macroprudential policy perspective.

More generally, in contrast to statistical/econometric models, network models

have not been developed or optimized for prediction purposes. Rather, network

models have primarily been used for developing intuition about the dynamics of

contagion, its parameter sensitivity, and to perform scenario analysis. This is par-

ticularly true for the growing literature on reverse stress testing. The higher flexi-
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bility of the network model can be seen in Figure 5.10, where the exogenous shock

affects asset 8. The fact that the network model does not perform better than the

random benchmark is due to the fact that the model predicts the default of different

banks with respect to the case when assets 1 and 5 are shocked, while the logistic

regression always predicts exactly the same banks to default in both cases.
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Figure 5.8: ROC curves of the model with γ = 0,5,20 and γ → ∞, resp., with initial
shock on loans for construction and land development (asset class 1). Each
dot represents a true positive/false positive rate pair for a specific combination
of the initial shock (p) and the market impact parameter (α). I highlight the
results for the restricted range of parameters (low initial shock and high market
impact) in red; blue corresponds to parameter combinations outside this range.
The black dashed lines is the ROC curve of an enhanced logistic regression
model with bank leverage and total assets (log-transformed) and investments in
all asset classes but 10 and 13 (defined as the portfolio share) as explanatory
variables. The red diagonal line is the ROC curve of a random classifier. A
model closer to the top left corner of the TPR/FPR space is considered more
accurate. Here I consider only the first round of asset liquidations, and exclude
bank failures due to the initial shock in the model assessment.
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Figure 5.9: ROC curves of the model with γ = 0,5,20 and γ → ∞, resp., with initial
shock on loans for construction and land development (asset class 5). Each
dot represents a true positive/false positive rate pair for a specific combination
of the initial shock (p) and the market impact parameter (α). I highlight the
results for the restricted range of parameters (low initial shock and high market
impact) in red; blue corresponds to parameter combinations outside this range.
The black dashed lines is the ROC curve of an enhanced logistic regression
model with bank leverage and total assets (log-transformed) and investments in
all asset classes but 10 and 13 (defined as the portfolio share) as explanatory
variables. The red diagonal line is the ROC curve of a random classifier. A
model closer to the top left corner of the TPR/FPR space is considered more
accurate. Here I consider only the first round of asset liquidations, and exclude
bank failures due to the initial shock in the model assessment.
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Figure 5.10: ROC curves of the model with γ = 0,5,20 and γ → ∞, resp., with initial
shock on loans for construction and land development (asset class 8). Each
dot represents a true positive/false positive rate pair for a specific combination
of the initial shock (p) and the market impact parameter (α). I highlight the
results for the restricted range of parameters (low initial shock and high market
impact) in red; blue corresponds to parameter combinations outside this range.
The black dashed lines is the ROC curve of an enhanced logistic regression
model with bank leverage and total assets (log-transformed) and investments
in all asset classes but 10 and 13 (defined as the portfolio share) as explanatory
variables. The red diagonal line is the ROC curve of a random classifier. A
model closer to the top left corner of the TPR/FPR space is considered more
accurate. Here I consider only the first round of asset liquidations, and exclude
bank failures due to the initial shock in the model assessment.
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5.3.2 Extensions

In the following, I assess to what extent the model performance can be improved

by means of two separate model extensions: (1) heterogeneity in the market impact

parameter (α j) across different asset classes; (2) multiple rounds of asset liquida-

tions.

5.3.2.1 Heterogeneity of market impact

So far, I considered the case of a homogeneous market impact parameter α j =

α for all assets (except for cash). In the following, I relax this assumption and

explore to what extent this improves the model performance. My main goal here

is to show, by proof-of-concept, that there are simple example cases that lead to a

superior performance. For this purpose, I assume that the two relevant asset classes

(1 and 5), are ten times less liquid compared to the other asset classes. Figure 5.11

and Figure 5.12 compare the model performances for homogeneous (top panels)

versus heterogeneous market impact parameters (bottom panels) for the cases γ = 0

(Figure 5.11) and γ = 20 (Figure 5.12). Each column in the figures corresponds to

an initial shock on a specific asset class. For all asset classes, I see that ROC curves

for heterogeneous market impact are superior to those for homogeneous market

impact.
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Figure 5.11: Comparison between ROC curves of model with homogeneous market impact
parameters (top panels) versus model with heterogeneous market impact (bot-
tom panels). Each column corresponds to an initial shock on a specific asset
class (see Table 5.1 for the classification). Here I consider γ = 0.
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Figure 5.12: Comparison between ROC curves of model with homogeneous market im-
pact parameter (top panels) versus model with heterogeneous market impact
parameter (bottom panels). Each column corresponds to an initial shock on
a specific asset class (see Table 5.1 for the classification). Here I consider
γ = 20.

Overall, the performance of the model improves for my specific choice of het-

erogeneity in α . In both figures, the ROC curves in the bottom panels lie above

the corresponding ones in the top panels, even if I assume the initial shock affects

more liquid asset classes. See, for example, the results for an initial shock on asset

class 8 (loans to individuals, center column) and on asset class 11 (held-to-maturity

securities, right column).

5.3.2.2 The impact of multiple rounds of asset liquidations

So far I only included one round of asset liquidations in my stress testing model.

Here I explore to what extent accounting for multiple rounds affects the predictive

performance of the model. In particular, I contribute to the debate as to whether one

should consider multiple rounds of asset liquidations. For example, Greenwood

et al. (2015) and Duarte and Eisenbach (2015) find that most of the contagion pro-

cess is captured by the first liquidation round. On the other hand, Cont and Schaan-

ning (2017) argue that this approach may lead to an underestimation of systemic

risk.

I look at the effect of multiple rounds of liquidations along two different dimen-

sions: first, I check whether it increases the TPR (the number of bank failures that
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Figure 5.13: (a) The number of bank failures that is correctly identified by the model (nor-
malized to the actual number of bank failures), as a function of γ and iteration
round (t). (b) The corresponding value of J as a function of γ and iteration
round (t). The results correspond to a combination of p and α in the restricted
parameter range (p = 0.7 and α = 0.7).

the model correctly predicts) of the different models. To this end, I plot the TPR,

for several values of γ , as a function of the iteration round (t) in Figure 5.13(a).10

In line with the results of Cont and Schaanning (2017), I find that the model under-

estimates the number of banks that fail when only one round of asset liquidations is

included. As expected, the number of bank failures increases with t for all values

of γ and all models approach T PR = 1 at some t. For example, the model with

γ = 0 correctly predicts the defaulted banks (TPR = 1) at t = 2. Note that, as γ

becomes larger, the model needs to include additional rounds of asset liquidations

to correctly classify all failed banks. For example, the model with γ → ∞ reaches

TPR = 1 at t = 8.

Second, I investigate to what extent the increased TPR from Figure 5.13(a)

corresponds to higher values of J. In this respect, higher (lower) values of J would

suggest higher (lower) accuracy, i.e. the TPR increases faster (slower) with t com-

pared to the FPR. To this end, I plot J as a function of the iteration round (t) in

Figure 5.13(b). Here I again observe that the dynamics of J depend on the assumed

10In the plot, I only show the results for p=α = 0.7 that correspond to an example from within the
restricted range of parameters that I considered (p,α ∈ [0.6,1]). I note that the results are robust for
different parameters within (but also outside of) this range. For the sake of illustration, in Appendix
A.6, I show the same plot for p = α = 0.5.
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liquidation dynamics: for small values of γ (e.g. γ = 0,4,10,20), I see that the value

of J decreases over t. In other words, when banks are aggressive leverage targeters,

the model becomes most accurate at t = 1; in this case, including additional rounds

of asset liquidations reduces the accuracy of the model. This is in line with the

findings of Greenwood et al. (2015) and Duarte and Eisenbach (2015).

For larger values of γ , however, Figure 5.13(b) shows that the peak of J shifts

further to the right. In other words, when banks are less aggressive to leverage tar-

geters, considering multiple rounds of asset liquidations is more favourable. In this

case, bank defaults propagate more slowly through the system, such that additional

rounds of asset liquidations are necessary. I should note, however, that J decreases

for relatively large t, such that including too many rounds of asset liquidations will

always reduce the performance of the stress testing model.

5.4 Conclusion

I studied a network model of price-mediated contagion via fire sales that interpo-

lates between two models that were previously considered in the literature. My

model contains a free parameter, γ , which determines how aggressively banks tar-

get their leverage ratios (and thus sell assets during distress). I tested the predictive

accuracy of the model on empirical data for U.S. bank failures during the recent

global financial crisis.

My analysis has important implications for the application of macroprudential

stress tests. To analyse the stability of financial networks due to price-mediated

contagion, one needs to make assumptions regarding the behavioural response of

banks (in term of liquidation behaviour) during the stress scenario. In this chapter,

I showed that it is important to consider a range of assumptions in relation to the

behaviour of banks. I provided a framework to do this in a structured manner by

means of a free model parameter (γ) and illustrated how the best performing value

of γ depends on the choice of the other model parameters, in particular the size

of the initial shock and the market impact parameter. Moreover, I showed that the

overall model predictive performance strongly depends on: 1) the type of shock
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being imposed (systematic versus idiosyncratic), 2) the asset class-specific market

impact parameters, and 3) the number of liquidation rounds considered in the stress

testing model.

My findings suggest several interesting paths for future research. First and

foremost, I think it is of utmost importance to perform similar analyses on other

datasets. This chapter specifically focuses on the behaviour of U.S. banks during

the global financial crisis. Future research should therefore explore to what extent

the findings vary for different countries and/or different time periods. Another im-

portant follow-up question is whether individual banks follow different behavioural

strategies, i.e., considering different values of γ for each bank. This might further

increase the predictive accuracy of the proposed stress testing model.



Chapter 6

On System-Wide Stress Tests

6.1 Introduction
“The Whole is Greater than the Sum of its Parts.”’

– Aristotle

Most of the literature to date has only looked at systemic risk within one finan-

cial sector in isolation. In this chapter, I look at common asset holdings between

UK banks, UK open-ended investment funds, and UK (both unit-linked and non

unit-linked) insurance companies. My dataset consists of portfolio holdings of mar-

ketable assets such as equities and debt securities (corporate and government bonds)

at the instrument level for the period Q1 2017. The equities and debt securities cov-

erage accounts for 50.5% activity of the UK open-ended funds, 80% activity of the

UK banks’ regulated by the Prudential Regulation Authority, and 84.6% activity of

the UK insurance companies. My aim is to study the extent to which common asset

holdings across these sectors contribute to systemic risk.

To this end, I first build a bipartite network of common asset holdings where

institutions are connected to the assets they hold. I then show that there are portfolio

similarities across the different sectors. Furthermore, I consider a stress test model,

where I assume that different sectors are subject to different constraints. In particu-

lar, banks and non unit-linked insurers are forced to liquidate (some of) their assets

to comply with regulatory constraints. Meanwhile, funds and unit-linked insurers

are obliged to sell their assets to meet investor redemptions. Following Greenwood
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et al. (2015) and Fricke and Fricke (2020), I look at three different measures of

systemic losses: (i) fire sale losses of the system, (ii) indirect vulnerability and (iii)

systemicness of each institution and/or sector.

My main findings are as follows: first, I find the importance of considering

multiple financial sectors in the analysis of systemic risk. In particular, I show that

ignoring common asset holdings between different sectors may result in an underes-

timation of systemic losses by 47% on average. Second, I conduct a systemic stress

test on UK banks and non-banks under different types of initial shocks. In most

instances, I find that fire sale losses resulting from assets liquidations are higher

than direct losses from initial shocks. Moreover, I look at the case when institutions

maintain their portfolio weights (pro-rata liquidation) vs. the case when institutions

prefer to sell their most liquids assets first (waterfall liquidation). I show that the

pro-rata liquidation approach always yields a higher level of systemic risk. How-

ever, I note that the waterfall liquidation may produce a higher spillover effect (in-

direct vulnerability) for an institution or a sector that chooses not to liquidate any of

its assets during distress. Finally, I look at the importance of each institution in the

network, based on their systemicness and vulnerability. Third, I show that portfolio

similarity measures are useful to explain more variability in the stress simulation

results. In particular, I find that larger and more diversified institutions will become

less (indirectly) vulnerable.

The remainder of the section is organised as follows: in section 6.2, I describe

the contagion model, statistical characterization of dataset and experimental setup.

In section 6.3, I present and discuss the results. Finally, I discuss my conclusions in

section 6.4.

6.2 Methodology

6.2.1 Model

In the previous chapters, I have mainly looked at the systemic risk in banking net-

works. In the following, I study the contagion due to common asset holdings be-

tween banks and non-banks financial intermediaries. The regulatory constraint for
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banks was previously discussed in chapter 3. In the following, I describe the re-

sponses of funds and (both unit-linked and non unit-linked) insurance companies to

a financial shock.

6.2.1.1 Funds

The balance sheet of a fund is illustrated in Figure 6.1. Unlike banks, funds do

not need to comply with any regulatory constraints. However, as it was empirically

shown in Czech and Roberts-Sklar (2019), funds are pro-cyclical and liquidate their

assets to meet investor redemption at periods of stress.

Figure 6.1: Fund’s balance sheet. The left panel is the asset side, while the right is the
liability side of the balance sheet.

Following Baranova et al. (2017) and Fricke and Fricke (2020), the amount of

assets that fund f liquidates is:

Π
1
f = σ f φ

1
f A1

f , (6.1)

where φ 1
f is the loss that fund f receives (see Equation 3.6), and σ f is the fund-flow

performance sensitivity parameter, which is the share of assets that investors will

redeem following losses of 1%.

6.2.1.2 Unit-linked insurers

The balance sheet of a unit-linked insurer is illustrated in Figure 6.2. The busi-

ness models of unit-linked insurers and funds are similar, as they both pool policy-

holders/investor funds and invest them in financial assets. However, unlike funds,

unit-linked insurers tend to have longer-term horizons. This means that their policy-

holders may be better able to accept shorter-term portfolio losses, hence unlikely to
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redeem their funds during distress. Nevertheless, they are given an option to switch

their investments between different asset classes. In fact, in its recent survey, Bank

of England (2016) observe that some unit-linked policyholders decide to de-risk

their investment in response to falling prices of risky assets.

Figure 6.2: Unit-linked’s balance sheet. The left panel is the asset side, while the right is
the liability side of the balance sheet.

Following Baranova et al. (2019), the amount of total assets that unit-linked

insurer uli needs to liquidate is given by:

Π
1
uli = σuliφ

1
uli(A

1
uli,eq +A1

uli,cb), (6.2)

where σuli is the policyholder switching sensitivity parameter, which is the share of

assets that policyholders will switch following losses of 1%. Note that unit-linked

insurers will only liquidate risky assets, and Auli,eq and Auli,cb are the total portfolio

holdings of equities and corporate bonds.

6.2.1.3 Non unit-linked insurers

Finally, I look at the case of non unit-linked insurers, and illustrate their balance

sheet in Figure 6.3. As shown in the figure, non unit-linked insurers are similar to

banks, in a way that they both hold capital and have to comply with some regulatory

constraints.

Following Aikman et al. (2019), I assume that non unit-linked insurers target

their solvency ratio, which is defined as:

SR0
nli =

E0
nli

SCR0
nli
, (6.3)
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Figure 6.3: Non unit-linked insurer’s balance sheet. The left panel is the asset side, while
the right is the liability side of the balance sheet.

where SCR0
nli is the regulatory solvency capital requirement:

SCR0
nli = knnli +(A0

nli,eq +A0
nli,cb +Onli)kmnli. (6.4)

Note that Anli,eq and Anli,cb in Equation 6.4 are the total portfolio holdings of eq-

uities and corporate bonds. This would imply that non unit-linked insurers will

only liquidate risky assets. Meanwhile, knnli and kmnli are the capital charges for

non-market and market risks.

Following the Solvency II regulation,1 non unit-linked insurers are reasonably

well hedged in general. For example, when non unit-linked insurers sell corporate

bonds, they will also lose some of the hedging benefits (or matching adjustment) in

their balance sheet. This means that they would see a decrease in their liabilities,

and consequently an increase in their equity and solvency ratio.

I therefore assume that non unit-linked insurers attempt to maximise the value

of their equity. To this end, the total assets that they would sell are computed using

a measure of post-shock elasticity that is collected by the Prudential Regulatory

Authority. Suppose that E′1nli is the new equity, and SR′1nli is the new solvency ratio

that are computed using the elasticity measure. As I assume that non unit-linked

insurers target their solvency ratio: SR0
nli, the amount of SCRnli that the insurer

1 https://www.bankofengland.co.uk/prudential-regulation/key-initiatives/solvency-ii
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needs to reduce can be computed as:

∆SCR1
nli = E′1nli

(
SR0

nli−SR′1nli

SR0
nli×SR′1nli

)
. (6.5)

The total risky assets that the insurer sells it therefore:

Π
1
nli =

∆SCRnli1

kmnli
. (6.6)

6.2.2 Data

In this chapter, I use granular equity and debt security holdings of the seven UK

banks2 that took part in the 2017 annual cyclical scenario, UK open-ended invest-

ment funds and UK (both unit-linked and non unit-linked) insurance companies for

Q1 2017 reporting period. Each asset in my dataset is identified by an ISIN. Let us

start by describing the sources of these datasets. Below I provide details of the three

datasets used.3

• Banks: I use proprietary data submitted to the Prudential Regulatory Author-

ity by the seven UK banks that took part in the 2017 annual cyclical stress

test. Banks should report the exposure amount in the currency of the security

at ISIN level.

• Open-ended investment funds: I extract from Morningstar voluntarily re-

ported data on open-ended investment funds that are domiciled in UK. In

particular, I use granular data on portfolio holdings that include holding type

and unique identifiers such as ISINs. I also use data on total net assets and on

the funds investment profiles.

2The 2017 stress test covered seven major UK banks and building societies (hereafter ’banks’):
Barclays, HSBC, Lloyds Banking Group, Nationwide, The Royal Bank of Scotland Group, San-
tander UK and Standard Chartered.

3Barucca et al. (2020) use a similar type of dataset to perform an extensive study on the network
of common asset holdings across financial sectors. Note that they consider an aggregated version of
my data, where financial assets are grouped according to their issuers. Furthermore, they look at the
network between European investment funds, UK banks and UK insurance companies for Q1 2016
reporting period, while I focus on the network between UK domiciled financial institutions for Q1
2017 reporting period.
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• Insurance Companies: I sample granular line-by-line asset data from Pruden-

tial Regulatory Authority regulated UK insurance companies subject to the

Solvency II directive. My data includes unique identifiers, such as ISINs and

LEIs of counterparties, as well as categorisation of assets into Complemen-

tary Identification Code types. For the purpose of this analysis I consider both

unit-linked and non unit-linked portfolios.4

I note that the data described above is non-public. Therefore, I only present results

in anonymised or aggregated format.

6.2.2.1 Network of common asset holdings

I combine the datasets for different financial sectors and construct a network of

common asset holdings. In the following, I describe the properties of the corre-

sponding network. Table 6.1 summarises the properties of each financial sector. As

shown in the table, the total holdings in the whole network is £2.04 trillion. Funds

account for approximately 40% of the total holdings, which is twice as much as the

contribution of banks or insurers. This is due to a large number of funds (n = 1865)

that exist in the network. In fact, as shown in the table, the average size of each

fund is relatively small. For instance, funds’ average strength is only £0.43 billion,

much smaller than the average strength of banks (£60.04 billion). The same is true

also for the their average connection, as shown by the average degrees reported in

Table 6.1. Overall, I find that the network is very sparse, with a density of only

0.30%.

Data for Q1 2017 Banks Funds ULI NLI All firms
Number of entity 7 1865 31 20 1923
Total holdings 420.27 805.15 461.14 356.58 2043.10
Average strength 60.04 0.43 14.88 17.83 1.06
Average degree 1427 88 1499 1321 127
Density (%) 3.35 0.20 3.52 3.10 0.30

Table 6.1: Summary properties of each financial sector in the network of common asset
holdings. ULI corresponds to unit-linked, while NLI to non unit-linked insur-
ance companies. Average strength and total holdings are presented in £bn.

4It is possible for an insurance company to be linked and non unit-linked at the same time and
thus be represented by two separate nodes in my analysis.
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I present the summary properties of each asset class in Table 6.2. As shown

in the table, there are 42611 instruments in total, where each of them belongs to a

particular asset class: equities, corporate bonds or government bonds. In term of the

size, equities are the largest asset class in the network, accounting for up to 50% of

all assets in the network. Additionally, I observe that the average strength (average

degree) of government bonds is the largest (smallest) compared to other sectors.

This implies that the individual investment in government bonds is relatively higher

compared to that in equities and corporate bonds. In addition to these aggregate

summary properties, I also plot the degree distribution of each institution and each

asset in Figure 6.4. From the figure, I observe the variability of degree distributions

among institutions and assets.

Data for Q1 2017 Equities Corp bonds Gov bonds All assets
Number of entity 19847 17103 5661 42611
Total shares 1060.80 413.70 568.61 2043.10
Average strength 53.45 24.19 100.44 47.95
Average degree 8.05 3.80 3.52 5.74
Density (%) 0.42 0.20 0.52 0.00

Table 6.2: Summary properties of each assets class in the network of common asset hold-
ings. Average strength and total holdings are presented in £bn.
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Figure 6.4: Degree distribution of each financial institution (left) and each financial asset
(right).

6.2.2.2 Holdings across sectors and asset classes

I present the portfolio holdings of each financial sector across different asset classes

in Table 6.3. Overall, I find that the relative balance sheet composition varies across
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sectors. As shown in the table, most of the portfolio holdings of banks and non unit-

linked insurers consist of bonds, while funds and unit-linked insurers hold mostly

equities. This composition results in the variation of relative losses that each sector

may receive following an initial shock to a particular asset class.

All assets Equities Corp bonds Gov bonds
Banks 420.27 33.56 85.37 301.34
Funds 805.15 649.48 93.38 62.29
ULI 461.14 318.98 48.26 93.90
NLI 356.58 58.81 186.68 111.09
All sectors 2043.10 1060.80 413.70 568.61

Table 6.3: Aggregate total holdings (in £bn) for each financial sector across different asset
classes.

6.2.2.3 Portfolio similarity

I first discuss the average portfolio similarity across different pairs of institutions in

specific sectors. I present the values in Table 6.4 and Table 6.5, for the binary and

weighted measure respectively. First and foremost, I find that there are portfolio

similarities across the different sectors. Moreover, with the exception of the binary

similarity across funds, I find that the portfolio similarities across the same sector

are higher compared to those across the different sectors. Additionally, I observe

that the binary and weighted measure may produce different results. For example,

Table 6.4 shows that the result across non unit-linked insurers is higher compared

to that across banks, suggesting that non unit-linked insurers have a larger number

of assets in common. However, Table 6.5 shows that the opposite is true, indicating

that banks have more portfolio weight in common.

Banks Funds ULI NLI
Banks 114.33 4.79 44.70 56.37
Funds 3.50 18.27 14.99
ULI 180.81 160.69
NLI 189.46

Table 6.4: Average binary portfolio similarity across different sub-networks corresponding
to different pairs of sectors in the common asset holdings network.
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Banks Funds ULI NLI
Banks 0.19 0.02 0.08 0.11
Funds 0.29 0.07 0.03
ULI 0.21 0.11
NLI 0.18

Table 6.5: Average weighted portfolio similarity across different sub-networks correspond-
ing to different pairs of sectors in the common asset holdings network.

Second, I look at the overall average portfolio similarity across all institutions

in the network. In Table 6.6, I present the results for the binary and weighted mea-

sure. In average, I find that each institution has 4.42 number of assets in common

and 28% similarity in their portfolio weights.

Mean Std Max Min
MeanBinSimilarity 4.42 6.41 74.78 0.00
MeanCosSimilarity 0.28 0.20 0.52 0.00

Table 6.6: Average binary and weighted portfolio similarity over all institutions in the com-
mon asset holdings network.

6.2.3 Experimental setup

6.2.3.1 Sector-specific constraint

In the following, I present the aggregate statistics of banks’ leverage ratio and non

unit-linked insurers’ solvency ratio. Furthermore, I describe the calibration of fund-

flow performance sensitivity and unit-linked policyholders’ switching parameters.

Banks In Table 6.7, I present the aggregate statistics of banks’ leverage ratio. As

shown in the table, the average leverage ratio of banks in my datasets is 19.50,

which is below the 33.33 UK minimum leverage requirement.5

Funds I consider the fund-flow sensitivity parameters across the different categories

of funds that has been calibrated previously in Baranova et al. (2017). Specifically,

they have run a panel regression on Morningstar European fund-level monthly data

on TNA and Estimated Net Flows from January to September 2016. I present these

parameters in Table 6.8,

5In this thesis, the leverage ratio is defined as the ratio between the total assets and the capital,
that is Ai

Ei
(see Equation 3.5).
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Total all assets (£bn) Leverage ratio (%)
Average 803.57 19.50
Std 530.97 150.90
25th percentile 303.00 23.26
Median 677.00 19.23
75th percentile 1207.00 17.54

Table 6.7: Aggregate statistics of banks’ leverage ratio and total assets. Note that total
assets here is different from the total portfolio holdings, as it also consists cash
reserves, derivatives and interbank assets.

Category of funds Fund-flow sensitivity parameter
Allocation 0.20
Commodities 0.10
Convertibles 0.43
Equity 0.09
Fixed income 0.52

Table 6.8: Fund-flow sensitivity parameter across different categories of funds, as was pre-
viously calibrated in Baranova et al. (2017).

Unit-linked insurers In terms of the sector-specific constraint of unit-linked insur-

ers, I consider an investor switching parameter that has been previously used in

Baranova et al. (2019), which is based on the survey of Bank of England (2016). In

particular, I use σuli = 0.3.

Non unit-linked insurers In Table 6.9, I present the aggregate statistics of equity

capital and solvency capital requirement (SCR) of non unit-linked insurers in my

dataset. Moreover, I calibrate the average capital charge on risky assets as in Aik-

man et al. (2019), who assume that the capital charge for risky assets is 50% of total

capital requirement, i.e. kmnli = 0.5.

Equity capital (£bn) SCR (£bn)
Average 5.72 3.43
Std 5.92 3.07
25th percentile 1.98 1.35
Median 3.60 2.66
75th percentile 7.90 3.97

Table 6.9: Aggregate statistics of non unit-linked insurers’ equity capital and solvency cap-
ital requirement (SCR).
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6.2.3.2 Initial shocks

I consider two types of initial shock: 1) idiosyncratic shock on each or all asset

classes, and 2) regulatory stress test scenario. The latter includes the Comprehen-

sive Capital Analysis and Review (CCAR) stress test scenario of the Federal Re-

serve Board 2017, and the Bank of England ACS scenario in 2017. Both regulatory

scenarios provide the percentage change of each asset class across different juris-

dictions. The CCAR scenario covers a broader range of jurisdictions, as it includes

80.6% of assets in my dataset. Meanwhile, the Bank of England scenario includes

74.8% of assets in my dataset, and it focuses on more liquid markets.

Note that the shock of an equity asset in both regulatory scenarios is given

in terms of its original price, and therefore can be directly used in my framework.

However, the shock of a corporate and government bond is provided in terms of its

original yield, and therefore needs to be converted. Suppose dy is a change in the

bond yield, the percentage change in its price (d p/p) can be computed as:

d p
p

=−D ∗ dy , (6.7)

where D is the modified duration of the bond, that is the measure of its price sensi-

tivity to changes in its yield to maturity.

6.2.3.3 Market depths

Table 6.10 summarised the market depth values that were previously calibrated at

asset class level for Q1 2016 reporting period in Barucca et al. (2020). I scale these

values to obtain the market depths at individual instrument level.

Asset class Market depth (£bn)
Equities 338.75
Corporate bonds 55.46
Government bonds 338.75

Table 6.10: Market depth at asset class level for Q1 2016 reporting period that was previ-
ously in Barucca et al. (2020).

Suppose δJ is the market depth of asset class J and SA
J is the total shares of

asset class J held in the network. Let j be an instrument that belongs to class J with
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the total shares equal to SA
j . The market depth of instrument j can be calculated as:

δ j =
SA

j

SA
J

δJ. (6.8)

By doing such rescaling, I am assuming that an asset with a larger (smaller)

value of total shares will have a larger (smaller) value of market depth, therefore the

asset is more liquid (illiquid). For example, I see from Table 6.10 that the market

depth of equities is £338.75bn, i.e. δEQ = £338.75bn. Let suppose there are only

two equity assets in my network, eq1 and eq2. If the total shares of eq1 and eq2 are

respectively £10bn and £25bn, i.e. SA
eq1

= £10bn and SA
eq2

= £25bn, I will then have

SA
EQ = £10bn + £20bn = £35bn. Therefore, the market depth of eq1 and eq2 that I

will obtain are respectively δeq1 = £10
35 ×338bn = £96.57bn and δeq2 = £25

35 ×338bn

= £241.43bn.

I present the results of such rescaling in Figure 6.5, where I plot the distribu-

tion of the scaled market depth of each asset. The plot shows that some govern-

ment bonds seem to be more liquid than equities. This is related to the fact that

35.8% of government bonds in my dataset are based in the U.S., and therefore are

extremely liquid. The plot also shows that a few corporate bonds are much more liq-

uid than some equities, which is reasonable if the former are based in the advanced

economies while the latter are in the emerging markets.

6.2.4 Measuring fire sale spillovers

Following Greenwood et al. (2015) and Fricke and Fricke (2020), I monitor three

different measures to quantify the effect of fire sales. Firstly, I look at the aggregate

fire sale losses that I define as:

Rfiresales = ∑
i

∑
j

(
w1

i j−π
1
i j
)
×Ψ j(β

1
j ). (6.9)

It is important to note that this formula only accounts for spillovers losses and ig-

nores direct losses:

Rdirect = ∑
i

∑
j

w0
i j p

0
j (6.10)
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Figure 6.5: Distribution of the scaled market depth for each asset. Top left: CCDF of
the market depth distribution. Top right: histogram of equities, bottom right:
government bonds, bottom left: corporate bonds.

that are incurred from initial shocks.

Secondly, I look at the indirect vulnerability of institution i, which is the

spillover effect that i would receive because other institutions liquidate their assets

assuming that i does not liquidate any of its assets. Formally, I define the indirect

vulnerability as follows:

Rvulnerability
i = ∑

j

(
w1

i j−π
1
i j
)
×Ψ j(β

1
j ) where π

1
i j = 0 and π

1
k j,k 6=i ≥ 0.

(6.11)

Finally, I can calculate the marginal contribution of i to the aggregate fire sale

losses. Specifically, I assume that i is the only institution that would liquidate its
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asset. To this end, I define the systemicness of i as:

Rsystemicness
i = ∑

k
∑

j

(
w1

k j−π
1
k j

)
×Ψ j(β

1
j ) where π

1
i j ≥ 0 and π

1
k j,k 6=i = 0

(6.12)

In line with these definitions, I can also define aggregate indirect vulnerability and

systemicness measures for each sector.

6.3 Results
In the following, I present and discuss the results obtained from modelling fire sale

contagion across different sectors. In particular, I look at three different measures

of fire sales: (i) aggregate fire sale losses, (ii) institution’s (sector’s) indirect vul-

nerability, and (iii) institution’s (sector’s) systemicness. As explained in subsubsec-

tion 6.2.3.2, I consider two types of initial shock: (i) idiosyncratic shock on asset

class(es), and (ii) regulatory shock scenarios.

6.3.1 The whole is different from the sum of its parts

Let me start by discussing the differences between modelling contagion across sec-

tors vs. within each sector separately. To obtain the aggregate fire sales losses of the

former exercise, I simply run the model on the complete network of common asset

holdings that consists of banks, funds and (both unit-linked and non unit-linked)

insurance companies. Meanwhile, the results of the latter can be measured by run-

ning the model on each sub-network separately, where each sub-network consists

only of financial institutions within the same sector. Note that the total liquidated

assets in both exercises are exactly the same. The important question is, however,

whether the total losses are also identical. In other words, I want to look at whether

the whole is the sum of its parts.

Figure 6.6 shows the results of the two exercises. The stacked bar charts in the

figure corresponds to the cumulative results for each sub-network, while the line

plot is the results for the complete network. Furthermore, the grey shadow area

is the differences between the two exercises, which implies that it represents the

amount of losses that is due to the common asset holdings across different sectors.
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(a) Shock on all assets. (b) Shock on equities.

(c) Shock on corporate bonds. (d) Shock on government bonds.

Figure 6.6: The whole is different from the sum of its parts. Stacked bar charts corresponds
to the cumulative aggregate fire sale losses from modelling the contagion for
each sub-networks separately, where each sub-network consists only of institu-
tions within the same sector. A blue line corresponds to results for the complete
network, where the network consists of institutions across multiple sectors. The
differences between the two results is shown as a grey shadow area.

The figures illustrate that there are large differences between the two results.

More importantly, it suggests that ignoring common asset holdings between differ-

ent financial sectors can result in an underestimation of systemic risk. In Table 6.11,

I compute the averages of the underestimation over different sizes of idiosyncratic

shocks (p j ∈ {0,0.01,0.02, ...,0.3}). The table shows that the average systemic risk

underestimation is around 47%, and it can reach up to 70%.

6.3.2 A systemic stress simulation of the UK financial system

In the previous section, I conducted stress simulations on the UK financial system

by applying idiosyncratic shocks on asset class(es) and considering the pro-rata liq-

uidation approach. I then showed the importance of considering multiple financial
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Shock on Mean Std Max Min
All assets 50 8 64 22
Equities 39 5 44 26
Corp. bonds 41 12 60 24
Gov. bonds 60 10 70 40
Total 47 3 70 24

Table 6.11: The amount of systemic risk underestimation (in %) for ignoring the common
asset holdings across different financial sectors. Results are computed over
different sizes of idiosyncratic shock (p j ∈ {0,0.01,0.02, ...,0.3}) for shock on
different asset class(es).

sectors in the analysis. In the following, I extend the analysis by taking regulatory

stress scenarios and waterfall liquidation into account. In addition to aggregate fire

sale losses, I also look at indirect vulnerability and systemicness of each institution

(sector). Furthermore, I provide a map to the most systemic and the most vulnerable

institutions in the system.

6.3.2.1 Aggregate fire sale losses

The regulatory stress scenario. I first look at aggregate fire sale losses for the case

of regulatory stress scenarios. In particular, I present the results for the Bank of

England (BoE) scenario in Table 6.12, while those for the Federal Reserve Board

(FRB) CCAR scenario in Table 6.13. Both tables show that the aggregate fire sale

losses are larger than the direct losses. For example, in the case of the BoE scenario,

I observe the fire sale losses of 5.35% in correspondence to the direct losses of

3.63%. Note that the former is losses due to the contagion only, and exclude those

resulting from the initial shock.

Pro-rata liquidation Waterfall liquidation
Direct losses 3.62% (74.01 bn)
Total sales 2.60% (53.03 bn)
Fire sale losses 5.35% (109.31 bn) 3.69% (75.41 bn)

Table 6.12: Aggregate direct (due to initial shock) and fire sale (due to contagion only)
losses for the Bank of England stress scenario.

Second, I find from Table 6.12 and Table 6.13 that the aggregate fire sale losses

for the pro-rata liquidation are always larger than those obtained for the waterfall

case. For example, the losses for the FRB CCAR scenario is 8.66% for the former,
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Pro-rata liquidation Waterfall liquidation
Direct losses 3.72% (76.10 bn)
Total sales 9.39% (191.88 bn)
Fire sale losses 8.66% (176.86bn) 6.60% (122.93 bn)

Table 6.13: Aggregate direct (due to initial shock) and fire sale (due to contagion only)
losses for the Federal Reserve Board CCAR stress scenario.

while only 6.60% for the latter. This result is due to the fact that institutions also

sell their illiquid assets during the pro-rata liquidation, which then results in a more

severe price impact.

Finally, I observe that direct losses for both scenarios are relatively similar,

while their fire sale losses are not. For example, the direct losses for the BoE and

FRB CCAR scenario are 3.62% and 3.72% respectively, with a difference of only

0.1% (£2 bn) direct losses between the two. Meanwhile, the corresponding fire sale

losses for the pro-rata case are 5.35% and 8.66% respectively, with a difference of

3.31% (£67.55 bn) fire sale losses between the two. This result corresponds to the

type of assets being shocked in the two scenarios. For example, the fire sales losses

are higher for the FRB CCAR case because the scenario covers a larger number of

illiquid assets.6

The idiosyncratic stress scenario. The previous finding suggests that fire sale

losses do not only depend on the size of initial shock, but also on the type of de-

pressed assets. In the following, I discuss the results for the case of idiosyncratic

shocks on a particular asset class.

Let’s start by looking at the total amount of liquidated assets in Figure 6.7.

The figure shows that the amount varies across different financial sectors and types

of shock. For example, banks become the sector that always liquidate the largest

amount of assets. This result is due to the sector-specific constraint that was pre-

viously described in subsection 6.2.1. Banks, for instance, have the strongest con-

straint since they will need to target their leverage ratio. Moreover, Figure 6.7 shows

that banks liquidate a larger amount of assets when the shock is imposed on bonds

compared to when the shock is imposed on equities. This is due to the relative

6See the coverage of each scenario in subsubsection 6.2.3.2.
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balance sheet composition of each sector across different asset classes, as was pre-

viously presented in in Table 6.3. The balance sheet of banks, for instance, consists

mostly of government bonds.
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(b) Shock on equities.
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(c) Shock on corporate bonds.
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(d) Shock on government bonds.

Figure 6.7: Total volume of liquidated assets across different sectors for different types of
idiosyncratic shocks.

Furthermore, Figure 6.8 shows the corresponding aggregate fire sale losses, for

the pro-rata and waterfall liquidation. Interestingly, the figure shows the existence

of inverted u-shaped curves, when the shock is imposed on government bonds and

all assets. The reason for this behaviour is that the amount that institutions liquidate

increases with the size of the shock as long as they have enough assets to liquidate.

When this happens, some institutions do not longer experience fire sale losses sim-

ply because they are left with no available assets to sell. So, as the shock increases,

institutions move from a small shock regime where their losses are mostly due to

fire sale devaluation to a large shock regime where their losses are dominated by the

shock. This is the reason for of the non-monotonicity observed in Figure 6.8a and
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6.8d.
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(a) Shock on all assets.
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(b) Shock on equities.
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(c) Shock on corporate bonds.
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(d) Shock on government bonds.

Figure 6.8: Aggregate fire sale losses for different types of idiosyncratic shocks. Red line
corresponds to the losses for the pro-rata liquidation, while yellow line refers
to those for the waterfall liquidation. Blue dashed-line is the corresponding
aggregate direct losses.

Finally, Figure 6.8 also shows the comparison of fire sale losses between the

pro-rata and waterfall liquidation. For all types of idiosyncratic shocks, I observe

that the losses for the pro-rata liquidation are always more severe than those for

the waterfall liquidation. This finding is consistent with the results for the BoE and

FRB CCAR stress scenario reported in Table 6.12 and Table 6.13.

6.3.2.2 Indirect vulnerabilities

My previous results indicate that the pro-rata liquidation leads to the highest ag-

gregate losses. In the following, I would like to see whether this is the case for all

institutions and sectors. In particular, I compare the indirect vulnerability resulting

from the two liquidation approaches. The idea is to measure the spillover effect

that an institution (sector) receives because other institutions liquidate their assets,
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assuming that the institution (sector) to be passive.

In Figure 6.9, I present the indirect vulnerability of each institution when the

other institutions follow the pro-rata vs. the waterfall liquidation approach. Each

dot in the figure corresponds to the calculation of the vulnerability of an institution.

If the pro-rata liquidation is worse than the waterfall liquidation for all firms, all

dots should lie below the black dashed diagonal line. Figure 6.9 shows that this is

not the case. In fact, I observe that several institutions lie above the diagonal line,

suggesting that they are more vulnerable when other institutions use the waterfall

approach.
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Figure 6.9: Indirect vulnerability that institutions receive when other institutions consider
the pro-rata vs. waterfall liquidation approach, for the case of 5% initial shock
on all assets (relative to the total assets of the corresponding institution). Each
colour in the plot corresponds to the result for different financial sectors. A
dot lies above (below) the black diagonal dashed line will imply that the cor-
responding institution is more vulnerable when other institutions choose the
waterfall (pro-rata) approach.

Furthermore, I look at the case of indirect vulnerability for each sector. In par-

ticular, I present the results for different types of idiosyncratic shocks in Figure 6.10

for banks, and in Figure 6.11 for funds. Both figures again show that banks and

funds, in general, are more vulnerable if other sectors use the waterfall liquidation

approach.7

Overall, I find that the waterfall approach may result in more vulnerable institu-

tions (sectors). The intuition behind this result is the following: the prices of liquid

assets will fall harder if all other firms prefer to liquidate their most liquid assets.
7I observe a similar finding for the case of both unit-linked and non unit-linked insurance com-

panies. See Figure C.1 and Figure C.2 in Appendix.
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Figure 6.10: Indirect vulnerability of banks for different types of idiosyncratic shocks,
when other sectors follow pro-rata vs. waterfall liquidation.

Figure 6.11: Indirect vulnerability of funds for different types of idiosyncratic shocks,
when other sectors follow pro-rata vs. waterfall liquidation.

Additionally, some institutions (sectors) may have more liquid assets in common.

Therefore, they may be more impacted when other institutions (sectors) prefer to

follow the waterfall liquidation approach.

6.3.2.3 Systemicness

In addition to the indirect vulnerability, I would like to study the marginal contri-

bution of each sector to the aggregate fire sale losses. To this end, I assume that

there is only one sector that would actively liquidate their assets. I then compute the

aggregate fire sale losses of the whole network generated solely from this sector’s

liquidation. In Figure 6.12, I present the systemicness of each sector for the pro-rata
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liquidation across different types of idiosyncratic shock.8
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(a) Shock on all assets.
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(b) Shock on equities.
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(c) Shock on corporate bonds.

0 5 10 15 20 25 30
Shock size (%)

0

100

200

300

S
ys

te
m

ic
ne

ss
 (

B
n 

G
B

P
)

Banks
Funds
UL Insurers
NUL Insurers

(d) Shock on government bonds.

Figure 6.12: Systemicness of different sectors across different types of idiosyncratic
shocks. Results are for the case of the pro-rata liquidation.

In general, I see that banks become the most systemic sector. This is not sur-

prising, especially due to the fact that banks have the strongest constraint as was

previously discussed in subsection 6.3.2. However, I also observe that other sec-

tors may overstep the systemicness of banks in some cases. For example, the sys-

temicness of funds and banks intersect each other at around 20% shock on equities.

Additionally, I see that the systemicness of non unit-linked insurers gets beyond

banks at around 18% shock on government bonds. I find that these results are re-

lated to the inverted u-shaped plots in Figure 6.8 that was previously discussed in

subsection 6.3.2. In particular, as the shock gets larger, banks would only be able

to liquidate less assets that remains in their balance sheet. This then results in a

smaller generated price impact.

8The findings for the waterfall liquidation case is similar. See Appendix.
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6.3.2.4 The most important institutions

From a regulatory perspective, it is useful to define the most important institutions

(in term of systemicness and vulnerability) in the network. In Figure 6.13, I present

a scatter plot of the importance of each institution (normalized by the total asset

holdings of all institutions: £2.04 tr). I note that the most important institutions will

lie in the top right corner of the plot, as these will have high vulnerability and high

systemicness.
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Figure 6.13: The systemicness vs. indirect vulnerability of each institution for the case
of 5% initial shock on all assets. The systemicness is normalized by the to-
tal holdings of the whole network: £2.04 tr, while the indirect vulnerability
is normalized by the total holdings of the corresponding institution. Plot is
shown in logarithmic scale and different colours corresponds to different sec-
tors.

As shown in Figure 6.13, institutions that belong to the same sector tend to

form a cluster. In particular, I observe that the most systemically important insti-

tutions are mostly banks, followed by non unit-linked insurers. Meanwhile, funds

and unit-linked insurers are relatively less important. I note that here I focus on

the importance of the sector at the level of individual institutions. In fact, as was

previously shown in Figure 6.12, funds may become more systemic in aggregate

compared to non unit-linked insurers and even banks, because they are many.

6.3.3 Inferring the results from the network measures

I have previously discussed the results of stress simulation analysis on the UK finan-

cial system. In the following, I study the causal factors of individual institutions’

contribution to the indirect vulnerability. The main scope of this analysis is to de-
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termine whether the common asset holding characteristics are a useful indicator to

explain the vulnerability of an institutions within my sample. In particular, I look at

the following regressions

yi = a+b×Xi + εi, (6.13)

where yi is the indirect vulnerability of institution i computed using my model (see

Equation 6.11), X is the set of explanatory variables, and b is the corresponding pa-

rameter vector. I consider the simple network measures (such as log(total holdings)

and total links) and the portfolio similarity of each institution as the explanatory

variables. I also add a dummy variable that takes on the value of 1 when the insti-

tution is a fund (and 0 otherwise). The reason of this special treatment for funds is

illustrated in Figure 6.14. The figure shows the scatter plot of the total links against

the (log) total holdings of each institution. In the case of banks and (unit-linked and

non unit-linked) insurance companies, I observe a positive relationship between the

two variables, suggesting that larger institutions tend to be more diversified. Mean-

while, in the case of funds, I find that most observations cluster around a vertical

line, indicating that funds tend to be more concentrated, irrespective of their size.

This is probably due to the fact that funds may often have restrictions in relation

to the investment mandate. For this reason, I decided to include a dummy variable

f und in each regression.

Figure 6.14: Scatter plot of the total links against the (log) total holdings of each institution.

I show the regression results for the BoE and FRB CCAR stress scenario in
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Table 6.14 and Table 6.15. In Panel A, I only take the simple network measures into

account. Meanwhile, in Panel B, I also consider the portfolio similarity measure.

Firstly, I show from both tables that the R2 values in Panel B are higher than those in

Panel A, suggesting that the portfolio similarity measure is useful to explain more

variability in the indirect vulnerability. Secondly, I find that log(total holdings) and

MeanWeightedSimilarity have negative coefficients overall, suggesting that larger

and more diversified institutions will become less (indirectly) vulnerable. This find-

ing is consistent with the result in Greenwood et al. (2015) and Fricke and Fricke

(2020). Note that the size of log(total holdings) is significant only for the water-

fall liquidation in the FRB CCAR scenario, suggesting that some institutions with

small portfolios may be more vulnerable when they have concentrated their invest-

ments mainly on the liquid assets (the first assets to be liquidated in the waterfall

liquidation). Furthermore, the variable total links have also negative coefficients,

suggesting that institutions with more assets in their portfolio are less vulnerable.

Finally, my dummy variable f und confirms an additional and more significant vul-

nerability for the funds due to their lack of diversification.

Explanatory Panel A Panel B
variables Pro-rata Waterfall Pro-rata Waterfall

Simple network
measures
log(total holdings) 7.47e−05 −0.000497 0.000159 −0.000423

(0.000159) (0.000307) (0.000156) (0.000306)
total links −1.45e−06∗ −5.78e−06∗∗∗ −1.46e−06∗ −5.79e−06∗∗∗

(8.54e−07) (1.64e−06) (8.34e−07) (1.64e−06)
fund −0.0144∗∗∗ −0.0276∗∗∗ −0.0105∗∗∗ −0.0242∗∗∗

(0.00221) (0.00425) (0.00220) (0.00431)
Portfolio similarity
MeanWeightedSimilarity −0.0157∗∗∗ −0.0138∗∗∗

(0.00163) (0.00319)
constant 0.0407∗∗∗ 0.0757∗∗∗ 0.0397∗∗∗ 0.0748∗∗∗

(0.00390) (0.00750) (0.00381) (0.00747)
R-squared 0.025 0.022 0.070 0.032
Observations 1,923 1,923 1,923 1,923

Table 6.14: The determinants of institution-specific indirect vulnerability (normalized by
the total holdings of each institution). Results are shown for the Bank of Eng-
land stress scenario, and for both pro-rata and waterfall liquidation approach.
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Explanatory Panel A Panel B
variables Pro-rata Waterfall Pro-rata Waterfall

Simple network
measures
log(total holdings) −0.000750 −0.00259∗∗∗ −0.000493 −0.00240∗∗∗

(0.000599) (0.000626) (0.000591) (0.000622)
total links −5.56e−06∗ −1.06e−05∗∗∗ −5.58e−06∗ −1.06e−05∗∗∗

(3.21e−06) (3.35e−06) (3.16e−06) (3.33e−06)
fund −0.0566∗∗∗ −0.0666∗∗∗ −0.0446∗∗∗ −0.0575∗∗∗

(0.00829) (0.00867) (0.00831) (0.00876)
Portfolio similarity
MeanWeightedSimilarity −0.0482∗∗∗ −0.0362∗∗∗

(0.00616) (0.00649)
constant 0.125∗∗∗ 0.183∗∗∗ 0.122∗∗∗ 0.181∗∗∗

(0.0146) (0.0153) (0.0144) (0.0152)
R-squared 0.025 0.035 0.055 0.050
Observations 1,923 1,923 1,923 1,923

Table 6.15: The determinants of institution-specific indirect vulnerability (normalized by
the total holdings of each institution). Results are shown for the Federal Re-
serve Board CCAR stress scenario, and for both pro-rata and waterfall liquida-
tion approach.

6.4 Conclusion
In this chapter, I model the indirect contagion across UK banks and non-banks via

fire sales of common asset holdings. My datasets consist of equity and bond portfo-

lios of banks, funds and (both unit-linked and non unit-linked) insurance companies

at instrument level. To this end, I assume that each financial sector may be forced

to liquidate (parts of) their assets in response to losses incurred in their balance

sheets. In particular, banks and non unit-linked insurers are subject to some regu-

latory constraints, while funds and unit-linked insurers are obliged to meet investor

redemptions. Overall, the findings of this chapter contribute to a better understand-

ing of the extent to which common asset holdings across different financial sectors

become the source of financial instability.

Firstly, I find the importance of considering multiple financial sectors in the

analysis. In particular, I show that ignoring the commonly held assets between

banking and non-banking sector may lead to an underestimation of systemic risk by

47% in average.

Secondly, I look at the stress simulation results of the UK financial system in

terms of aggregate fire sale losses, indirect vulnerability and systemicness. I con-
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duct the simulation under different scenarios of initial shock and liquidation strate-

gies. I find that the results are highly determined by the constraint and the portfolio

composition of each sector. For example, banks become the most systemic in gen-

eral, mainly because they liquidate a larger amount of assets relatively compared to

other sectors. Moreover, I show that the yielded aggregate losses are always higher

if the institutions choose to maintain their portfolio weight when liquidating their

assets (pro-rata liquidation). However, I also show that the institution (sector) may

become more vulnerable if other institutions (sectors) prefer to sell their most liquid

assets first (waterfall liquidation). Finally, I present the map of the most systemic

and the most vulnerable institutions in the UK.

Thirdly, I explore the effectiveness of network measures to explain the results

of different stress simulations. Overall, I find that the portfolio similarity measure is

useful to explain more variability in the indirect vulnerability. Moreover, I find that

larger and more diversified institutions will become less (indirectly) vulnerable.

My findings suggest several interesting avenues for future research. First, it is

important to perform similar analysis on other datasets for different countries and/or

different time periods. Additionally, it is useful to incorporate more sectors into the

analysis. For example, incorporating European funds that may hold similar assets

to UK funds. Another important future extension is to improve the market depth

calibration, such as by taking the correlations of asset prices into account.



Chapter 7

General Conclusions

In this thesis, I discussed the impact of different modelling choices on the accuracy

of stress tests. I focused my study on indirect contagion channel due to common

asset holdings (overlapping portfolios) between financial institutions. In particular,

I studied how reliable the outcome of a stress test is, if three aspects of the test are

not exactly understood. First, the network of financial linkages between financial

institutions is often lacking, and one has to resort to network reconstruction methods

to infer the network from partial information. Second, the propagation of shocks

between financial institutions is usually modelled by means of effective dynamics,

which are only approximations of the true dynamics. Third, it is mandatory to define

the perimeter of the stress test, or the types of institutions that are included in the

framework.

With regard to the first aspect, I conducted a horse race of network reconstruc-

tion methods in terms of their ability to reproduce the actual credit networks and

the observed levels of systemic risk. I found that the ”best” network reconstruction

method depends on the assumed criterion of interest, but the methods which pre-

serve the actual degree distribution overall consistently perform best. I also found

that the actual credit networks display the highest levels of systemic risk in many

instances. Future works should study whether there are other reconstruction meth-

ods that are able to replicate the actual systemic risk levels more closely. In this

thesis, I only included a small number of popular reconstruction methods, but other

methods may work better.
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Concerning the second aspect, I introduced a generalised stress testing model

that captures a wide range of behavioural assumptions with regard to banks’ liqui-

dation dynamics under stress. The literature has proposed alternative behavioural

assumptions in this regard, all of which are covered by my model. I then tested the

capability of my model to predict actual bank defaults (and non-defaults). Over-

all, my analysis showed that the generalised model has predictive power superior

to alternative benchmarks that do not account for the network of common asset

holdings. I then showed how the liquidation dynamics yielding the best performing

model depends on the size of the initial shock and on secondary market liquidity.

I also identified, for different liquidation dynamics, the optimal number of liquida-

tion rounds. An important follow-up question is whether individual banks follow

different liquidation strategies. This might further increase the predictive accuracy

of the proposed stress testing model.

Finally, with respect to the third aspect, I showed that banks and non-bank fi-

nancial intermediaries have common asset holdings in their portfolios. I then looked

at systemic risk arising from indirect contagion between them. I found that perform-

ing stress tests that accounts for common asset holdings between the different sec-

tors results in fire sales losses that are 47% larger than those obtained by summing

the results of sector-specific stress tests. In this thesis, I focused on different finan-

cial sectors that are located in the UK. Future research should explore the impact of

incorporating also financial sectors across countries.

In summary, I showed that even if the financial network is not known, recon-

struction methods do a reasonable job although they may underestimate systemic

risk. Moreover, I showed that I can identify regions in the parameter space where

different contagion dynamics perform better. At the same time, my analysis also

showed that the model has predictive power irrespective of the assumed liquidation

dynamics. Finally, I showed that neglecting cross-sector links can lead to a large

underestimation of systemic risk.



Appendix A

On Network Reconstruction

A.1 Weight Allocation Methods
I use RAS (Blien and Graef (1998)) method to distribute the observed credit vol-

umes across links for the generated adjacency matrix of CM1 and CM2. Previ-

ously, I experimented with different weight allocation approaches defined below

and finally find that RAS generally performed best in my analysis (in term of corre-

sponding L1-error).

A.2 Robustness Checks: Systemic Risk Analysis on

Other Models
For the purpose of finding out how the systemic risk analysis might vary if lever-

age targeting model (as in Greenwood et al. (2015)) and leverage targeting with

threshold model (as in Cont and Schaanning (2017)) are used, I also performed the

same exercise with these other models. I find that the rank ordering of the different

methods are generally consistent with those presented in the main text.
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Weight allocation method Definition

RAS (Blien and Graef
(1998)) Column constraint

ŵi j(t +1) =
ŵi j(t)
ŝ(t)B

i ,
× sB

i ,

Row constraint

ŵi j(t +1) =
ŵi j(t)
ŝ(t)F

i ,
× sF

i ,

where t is the respective iteration step.
Linear Programming (Mohr

and Polenske (1987))
Maximize

N

∑
i=1

M

∑
j=1

ci jŵi j

sub ject to
N

∑
i=1

ŵi j = sF
j ( j = 1, . . . ,n)

M

∑
j=1

ŵi j = sB
i [i = 1, . . . ,(m−1)]

ŵi j > (ci j)(ε)

where w̄i j > 0→ ci j = 1, w̄i j = 0→ ci j = 0
Maximum Flow ( Cormen

et al. (2009)) See Gandy and Veraart (2016) for the discussion on how to transform this into
a maximum flow problem.

Table A.1: Summary of different weight allocation methods for the bank-firm network.
Note that I can define the same methods for the bank-industry network.
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Figure A.1: (
small to large market impact) and p ∈ [0,1] (large to small initial shock). Leverage
targeting model Greenwood et al. (2015) is used.]Relative difference of the proba-
bility of default between actual network and the null models (Dr) at the aggregated
level for α ∈ [0,1] (small to large market impact) and p∈ [0,1] (large to small initial
shock). Leverage targeting model Greenwood et al. (2015) is used. Data for year
2010. Warm color corresponds to an underestimation of the actual network, while
cold color indicates an overestimation.
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Figure A.2: (
small to large market impact) and p ∈ [0,1] (large to small initial shock). Threshold
model (Cont and Schaanning (2017)) is used.]Relative difference of the probability
of default between actual network and the null models (Dr) at the aggregated level
for α ∈ [0,1] (small to large market impact) and p ∈ [0,1] (large to small initial
shock). Threshold model (Cont and Schaanning (2017)) is used. Data for year
2010. Warm color corresponds to an underestimation of the actual network, while
cold color indicates an overestimation.
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A.3 Additional Results: All Values of Parameters
In Table 4.7, I previously computed the average of Pd across a range of restricted

values of parameters that I defined as p∈ [0.6,1] and α ∈ [0.6,1]. In the following, I

again compute the average of Pd but for all possible values of parameters (including

those that I define as restricted and not restricted).

Rank Disaggregated Aggregated Intermediate
Null model Pd Null model Pd Null model Pd

1 Actual 0.393 Actual 0.360 Actual 0.360
(0.254) (0.230) (0.230)

2 CM1 0.301 CM1 0.218 MinDensity 0.358
(0.202) (0.156) (0.217)

3 CM2 0.243 CM2 0.217 CM1 0.275
(0.176) ( 0.157) (0.182)

4 MaxEntropy 0.190 MinDensity 0.202 CM2 0.241
(0.149) (0.122) (0.174)

5 MinDensity 0.140 MaxEntropy 0.190 MaxEntropy 0.190
(0.096) (0.149) (0.149)

Table A.1: Rank of the actual networks and the corresponding null models at different ag-
gregation levels as in Table 4.7 for the 2010 data. However, as opposed to Table
4.7, where I consider only the restricted values of parameters, here I calculate
the average of Pd across all possible parameter combinations: p ∈ {0, 0.01,
0.02, ... ,1} and α ∈ {0, 0.01, 0.02, ... ,1}. Rank 1 corresponds to the most
risky network. Pd denotes the average, and the value inside the bracket is its
corresponding standard deviation.
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A.4 Additional Results: Wilcoxon Signed Rank Test

on the Networks
I formally test whether the difference between each network Pd is significant by run-

ning a two-sided Wilcoxon signed rank test on each pair of the actual network and

the null model. In the tables below, I show the corresponding p-values of each test

for different range of p and α . In Table A.1, I consider a range of parameters within

the restricted values that I defined in the main text (p∈ [0.6,0.8] and α ∈ [0.6,0.8]).

Meanwhile, in Table A.2, I consider a range of parameters outside the restricted

values that I previously defined. In particular, I consider all possible values of the

initial shock (p∈ [0,1]) and relatively liquid assets (α ∈ [0,0.5]). Overall, I find that

the difference between each network Pd is significant, except for CM1 and CM2 in

some instances.

Disaggregated CM1 CM2 MaxEn-
tropy

MinDen-
sity

Actual 0.000 0.000 0.000 0.000
CM1 0.000 0.000 0.000
CM2 0.000 0.000
MaxEntropy 0.000

Aggregated CM1 CM2 MaxEn-
tropy

MinDen-
sity

Actual 0.000 0.000 0.000 0.000
CM1 �0.389 0.000 0.000
CM2 0.000 0.000
MaxEntropy 0.000

Intermediate CM1 CM2 MaxEn-
tropy

MinDen-
sity

Actual 0.000 0.000 0.000 0.000
CM1 0.000 0.000 0.000
CM2 0.000 0.000
MaxEntropy 0.000

Table A.1: P-value of a two-sided Wilcoxon signed rank test on each pair of the network. A
sufficiently small p-value indicates that the test rejects the null hypothesis that
the difference between the pairs follow a symmetric distribution around zero,
thus the two networks have significantly different Pds. Meanwhile, a large p-
value indicates that the test fails to reject the null hypothesis, thus the difference
between the two networks Pds is not significant. Here I test the Pd value of each
network for p ∈ [0.6, 0.8] and α ∈ [0.6, 0.8]. I highlight the p-value above 0.05
using the � symbol.
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Disaggregated CM1 CM2 MaxEn-
tropy

MinDen-
sity

Actual 0.000 0.000 0.000 0.000
CM1 0.000 0.000 0.000
CM2 0.000 0.000
MaxEntropy 0.000

Aggregated CM1 CM2 MaxEn-
tropy

MinDen-
sity

Actual 0.000 0.000 0.000 0.000
CM1 �0.158 0.000 0.000
CM2 0.000 0.000
MaxEntropy 0.000

Intermediate CM1 CM2 MaxEn-
tropy

MinDen-
sity

Actual 0.000 0.000 0.000 0.000
CM1 0.000 0.000 0.000
CM2 0.000 0.000
MaxEntropy 0.000

Table A.2: P-value of a two-sided Wilcoxon signed rank test on each pair of the network
as in Table A.1. However, here I consider p ∈ [0, 1] and α ∈ [0, 0.5].



Appendix B

On Dynamics of Contagion

B.1 Logistic Regression

In chapter 5, I plot the ROC curve of a standard logistic regression model. The idea

of this model is that I am interested in the conditional probability of observing bank

i’s default, which I denote as Prob(yi = 1|X = xi), where xi is a vector of leverage

and total assets of bank i (log transformed) in my case. Logistic regression specifies

this probability as:

Prob(yi = 1|X = xi) =
1

1+ exp(−xiβ )
, (B.1)

where β is a vector of parameter estimates for the explanatory variables (estimated

via maximum likelihood).

I present a summary of the results of a logistic regression model in Table B.1.

As it can be seen from the table, the explanatory variables (leverage and total assets)

are significantly positively associated with the probability of default.

B.2 Enhanced logistic regression

Table B.2 shows the results of the enhanced logistic regression model with addi-

tional explanatory variables.
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Coefficient Standard
error t-stat

Intercept -8.74 0.60 -14.59 ***
log(Leverage) 1.15 0.20 5.77 ***
log(TotalAssets) 0.24 0.04 6.70 ***
Pseudo-R2 0.01
Obs. 7,783

Table B.1: Results from a logistic regression model to explain bank failures where the de-
pendent variable takes on a value of one if a bank failed, and a value of zero
otherwise. The explanatory variables are leverage and total assets (log trans-
formed). *** indicates statistical significance at the 1% level.

Coefficient Standard
error t-stat

Intercept -7.28 2.94 −2.47∗

Asset-1 7.83 3.02 2.59∗∗

Asset-2 -2.04 3.74 −0.55
Asset-3 -2.33 3.07 −0.76
Asset-4 5.35 3.14 1.70
Asset-5 0.71 3.02 0.24
Asset-6 -0.11 3.33 −0.03
Asset-7 -0.23 3.06 −0.08
Asset-8 -10.21 4.48 −2.28∗

Asset-9 1.56 5.05 0.31
Asset-11 -2.45 3.28 −0.75
Asset-12 -1.75 3.04 −0.58
Asset-14 -6.68 4.34 −1.54
log(Leverage) 0.02 0.06 0.41
log(TotalAssets) 1.64 0.24 6.76∗∗∗

Pseudo-R2 0.17
Obs. 7,783

Table B.2: Results from the enhanced logistic regression model. The dependent variable
takes a value of one if a bank failed, and zero otherwise. The explanatory vari-
ables are leverage, total assets (both log-transformed) and the portfolio share of
each asset class (excluding asset classes 10 and 13). *, ** and *** indicates
statistical significance at the 5%, 1% and 0.1% level.
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B.3 Initial shock versus contagion dynamics

In chapter 5, I focus on bank failures identified from the contagion dynamics alone,

and ignored failures due to the initial shock. In Figure B.1, I show the comparison

between defaults due to three different categories: (i) initial shock only, (ii) both

initial shock and contagion, and (iii) contagion only. First, I find that the results of

the second category are superior compared to those I presented in the main text. In

other words, the results shown in the main text likely underestimate the performance

of the network approach.

Second, including the contagion mechanism improves the model output by

identifying defaults that are not due to the initial shock. Recall that values closer to

the top right corner of the TPR/FPR space correspond to a larger number of banks

predicted to default. For the case of the initial shock only, the dots cover only a

limited range within the TPR/FPR space. Meanwhile, for the case of both initial

shock and contagion, the dots cover a much broader range.

Moreover, Figure B.2 shows the total losses of all banks due to initial shock

versus due to contagion only, for γ = 0 (leverage targeting model). The results

indicate that the latter is relatively larger, indicating the importance of contagion

dynamics in explaining the results.

B.4 Shocking Less Relevant Asset Classes

I found that two asset classes (1 and 5) were most relevant in terms of my model

application. For the sake of completeness, here I show results when imposing an

initial shock on asset 8 (loans to individuals). Figure B.3 shows that all dots in the

ROC space now lie close to the diagonal or even below it. In other words, when

imposing an initial shock on less relevant assets, the model performs very similar to

or worse than a random classifier.
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(c) Initial shock only vs.
both initial shock and contagion.
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(d) Contagion only.
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(e) Contagion only.
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(f) Contagion only.

Figure B.1: ROC curves of the defaulted banks predicted by the model with γ = 0 (left
panels), γ = 20 (middle panels) and γ → ∞ (right panels), with an initial
shock on asset class 1 (loans for construction and land development). Each
dot represents a true positive/false positive rate pair for a specific combination
of the initial shock (p) and the market impact parameter (α). I highlight the
results for the restricted range of parameters (low initial shock and high market
impact) in red; blue corresponds to parameter combinations outside this range.
(a)(b)(c) ROC curves of bank failures identified due to the initial shock only
vs. initial shock and contagion (darker color vs lighter color), (d)(e)(f) from
contagion only. The black dashed line is the ROC curve of a corresponding
logistic regression model with bank leverage and total assets (log-transformed)
as explanatory variables, and the red diagonal line is the ROC curve of a ran-
dom classifier. A model closer to the top left corner of the TPR/FPR space is
considered more accurate.
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Figure B.2: Total losses (in billion USD) due to the initial shock and due to the contagion
dynamics only (first round of liquidation), for γ = 0. Results for initial shock
on asset class 1 (loans for construction and land development). The total pre-
shock assets in the network are 12.7 bn USD. Parameter p is the post-shock
value of the asset (as a fraction of the pre-shock value), where a lower p cor-
responds to a larger initial shock. α is the market impact parameter, where a
higher α corresponds to a more illiquid asset.

B.5 Multiple liquidation rounds outside the re-

stricted parameter range

In the main text, I present the results for p = α = 0.7 that are within the restricted

range of parameters. In the following, I show the corresponding results for p =

α = 0.5 that are outside the restricted range of parameters. I find that the results are

consistent to those in the main text.

B.6 Model Accuracy with a Non-Linear Market Im-

pact Function

In the main text, I consider a linear market impact function (Ψ j). Here I look at the

results of non-linear Ψ j. To this end, I use a similar functional form as in Caccioli

et al. (2014), that is:

Ψ j(xt
j) = e−αxt

j ,
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Figure B.3: ROC curves of the model with γ = 0,5,20 and γ→ ∞, resp., with an initial
shock on loans to individuals (asset class 8). Each dot represents a true pos-
itive/false positive rate pair for a specific combination of the initial shock (p)
and the market impact parameter (α). I highlight the results for the restricted
range of parameters (low initial shock and high market impact) in red; blue
corresponds to parameter combinations outside this range. The black dashed
line is the ROC curve of a corresponding logistic regression model with bank
leverage and total assets (log-transformed) as explanatory variables, and the
red diagonal line is the ROC curve of a random classifier. A model closer to
the top left corner of the TPR/FPR space is considered more accurate. Here
I consider only the first round of asset liquidations, and exclude bank failures
due to the initial shock in the model assessment.
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Figure B.4: (a) The number of bank failures that is correctly identified by the model (nor-
malized to the actual number of bank failures), as a function of γ and iteration
round (t). (b) The corresponding value of J as a function of γ and iteration
round (t). The results correspond to a combination of p and α in the non-
restricted parameter range (p = 0.5 and α = 0.5).

for a range of α as in the main text, α ∈ {0,0.01,0.02, ...,0.99,1}. I plot the corre-

sponding ROC curves of this choice of Ψ j in Figure B.5 (for initial shock on asset:

loans for construction and land development) and in Figure B.6 (for initial shock on

asset: loans secured by non-farm non-residential properties). I find that the results

of linear and non-linear market impact are qualitatively similar (see Figure 5.4 and

Figure 5.5 to compare with linear market impact).
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Figure B.5: ROC curves of the model with γ = 0,5,20 and γ → ∞, resp., with an ini-
tial shock on loans for construction and land development (asset class 1).
The plot is similar to Figure 5.4, but here I consider a non-linear mar-
ket impact function.Each dot represents a true positive/false positive rate pair
for a specific combination of the initial shock (p) and the market impact pa-
rameter (α). I highlight the results for the restricted range of parameters (low
initial shock and high market impact) in red; blue corresponds to parameter
combinations outside this range. The black dashed line is the ROC curve of
a corresponding logistic regression model with bank leverage and total assets
(log-transformed) as explanatory variables, and the red diagonal line is the
ROC curve of a random classifier. A model closer to the top left corner of
the TPR/FPR space is considered more accurate. Here I consider only the first
round of asset liquidations, and exclude bank failures due to the initial shock
in the model assessment.
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Figure B.6: ROC curves of the model with γ = 0,5,20 and γ → ∞, resp., with an ini-
tial shock on loans secured by non-farm non-residential properties (asset
class 5). The plot is similar to Figure 5.5, but here I consider a non-linear
market impact function.Each dot represents a true positive/false positive rate
pair for a specific combination of the initial shock (p) and the market impact
parameter (α). I highlight the results for the restricted range of parameters
(low initial shock and high market impact) in red; blue corresponds to param-
eter combinations outside this range. The black dashed line is the ROC curve
of a corresponding logistic regression model with bank leverage and total as-
sets (log-transformed) as explanatory variables, and the red diagonal line is the
ROC curve of a random classifier. A model closer to the top left corner of
the TPR/FPR space is considered more accurate. Here I consider only the first
round of asset liquidations, and exclude bank failures due to the initial shock
in the model assessment.



Appendix C

On System-Wide Stress Tests

C.1 Indirect vulnerability of unit-linked and non

unit-linked insurers

In the main text, I have discussed the indirect vulnerability resulted from the pro-

rata vs. waterfall liquidation approach, for the case of banks and funds. For what

follows, I present the similar results, for the case of unit-linked and non unit-linked

insurance companies.

Figure C.1: Indirect vulnerability of unit-linked insurers for different types of idiosyncratic
shocks, when other sectors follow pro-rata vs. waterfall liquidation.
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Figure C.2: Indirect vulnerability of non unit-linked insurers for different types of idiosyn-
cratic shocks, when other sectors follow pro-rata vs. waterfall liquidation.

C.2 Systemicness
In the main text, I have discussed the systemicness of different sector across differ-

ent types of idiosyncratic shocks, for the case of the pro-rata liquidation approach.

For what follows, I discuss the similar results, for the case of the waterfall liquida-

tion.



C.2. Systemicness 160

0 5 10 15 20 25 30
Shock size (%)

0

100

200

300

S
ys

te
m

ic
ne

ss
 (

B
n 

G
B

P
)

Banks
Funds
UL Insurers
NUL Insurers

(a) Shock on all assets.
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(b) Shock on equities.
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(c) Shock on corporate bonds.

0 5 10 15 20 25 30
Shock size (%)

0

100

200

300

S
ys

te
m

ic
ne

ss
 (

B
n 

G
B

P
)

Banks
Funds
UL Insurers
NUL Insurers

(d) Shock on government bonds.

Figure C.3: Systemicness of different sectors across different types of idiosyncratic shocks.
Results are for the case of waterfall liquidation.
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