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SUMMARY 51 

Accurate profiling of T-cell receptor (TCR) repertoires is key to monitoring adaptive immunity. 52 

We systematically compared TCR sequences obtained with 9 methods applied to aliquots of 53 

the same T-cell sample. We observed marked differences in accuracy and intra- and inter-54 

method reproducibility for alpha (TRA) and beta (TRB) TCR chains. Most methods showed lower 55 

ability to capture TRA than TRB diversity. Low RNA input generated non-representative 56 

repertoires. Results from 5’RACE-PCR methods were consistent among themselves, while 57 

differing from the RNA-based multiplex-PCR results. gDNA-based multiplex-PCR methods also 58 

differed from each other. Using an in silico meta-repertoire generated from 108 replicates, we 59 

found that one gDNA-based method and two non-UMI RNA-based methods were more 60 

sensitive than UMI methods in detecting rare clonotypes, despite the better clonotype 61 

quantification accuracy of the latter. This study delineates the advantages and limitations of 62 

different TCR sequencing methods, which should help the study, diagnosis and treatment of 63 

human diseases.  64 
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INTRODUCTION  65 

T-cell receptors (TCR), which drive T-cell activation by antigenic peptide recognition, are 66 

heterodimers formed by an a and a b chain1 produced by somatic V(D)J rearrangements during 67 

thymopoiesis2 of 47V and 61J functional TRA genes and 48V, 2D, 12J functional TRB genes3. The 68 

stochastic V(D)J recombination generates a combinatorial diversity that is further increased by 69 

random nucleotide excision and addition at the V(D)J junctions. The independent 70 

recombination and subsequent pairing of TRA and TRB chains add an additional level of 71 

combinatorial diversity. Recently, computational chain pairing experiments suggested that the 72 

potential diversity of the paired repertoire is ∼2x1019 TCRs4, while the number of different TRB 73 

clonotypes in an individual has been estimated to range from 106 to 108 5–7. The TCR repertoire 74 

is dynamic, as lymphocytes are continuously generated, die and expand in response to 75 

stimulation, and reflects both an individual’s immune potential and history.  76 

Analysis of the TCR repertoire by deep sequencing (TCRseq) is increasingly used to measure 77 

lymphocyte dynamics in health, in pathological contexts such as autoimmune disease, 78 

infections and cancer8–14, and following interventions such as vaccination11,15–18and 79 

immunotherapy19–22, with the goal of identifying TCR biomarkers of disease or of clinical 80 

response to treatment and to stratify patients for precision medicine23. These diverse 81 

applications have different requirements in terms of sensitivity, specificity and depth. 82 

Accurately capturing the TCR repertoire therefore presents great challenges. A large number 83 

of TCRseq methods have been developed. They are all complex multistep protocols, and each 84 

step may have a profound impact on the TCRseq data and hence on their interpretation24. 85 

Methods can be broadly classified as DNA- or RNA-based, and the latter can be categorized as 86 

using multiplex PCR (mPCR) with panels of V and J primers5,25,26 or using rapid amplification of 87 

cDNA-ends by PCR (RACE-PCR)14,27–29 optionally incorporating unique molecular identifiers 88 
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(UMI) to limit PCR amplification bias and sequencing errors14,29–31. Each method has potential 89 

advantages and limitations27,32–35. Specifically, DNA-based methods are believed to be more 90 

quantitative and can be used in situations where RNA quality may not be guaranteed. In 91 

contrast, RNA-based methods are believed to be more sensitive because of the presence of 92 

multiple mRNA copies per cell, and also are more amenable to UMI incorporation36. However, 93 

the relative robustness and accuracy of the different approaches have not been systematically 94 

compared. Here, we compared 9 different TCRseq library preparation protocols by analyzing 95 

the TCR repertoire of aliquots of the same T-cell sample. 96 

 97 

RESULTS 98 

Experimental design to evaluate the robustness of human T-cell receptor repertoire analysis 99 

We set out to compare 9 different academic or commercial protocols for library preparation 100 

and sequencing (Supplementary material and methods; Supplementary Table 1) based either 101 

on RACE-PCR (RACE-1 to RACE-6) or on multiplex-PCR (mPCR-1 to 3). We sequenced nucleic 102 

acids from CD4+CD25-CD127+ effector T-cells (Supplementary Fig.1a) sorted from two healthy 103 

donors (experiments A&B). In experiment A, we evaluated the accuracy and sensitivity of the 104 

different methods by spiking donor A T-cell RNA (RACE-1 to RACE-6 and mPCR-3) or DNA 105 

(mPCR-1 and mPCR-2) aliquots with different amounts of RNA or DNA from Jurkat cells 106 

(Supplementary Fig.1b). In experiment B, we analyzed the impact of decreasing amounts of the 107 

input material quantity by processing donor B RNA aliquots of 100 ng and 10 ng (Supplementary 108 

Fig.1c). In both experiments, the CD4+CD25-CD127+ T-cells were sorted, and the RNA and DNA 109 

were extracted and aliquoted in a single laboratory. Triplicates of aliquots were distributed to 110 

service providers and academic laboratories. Raw and/or pre-filtered sequences data were all 111 

processed using MiXCR37.  112 
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We obtained from 5.105 to 2.106 reads per aliquot depending on the method (Supplementary 113 

Fig.2a-b). Numbers of unique V, J and VJ sequences as well as UMI distribution for RACE-1 and 114 

RACE-2 (Supplementary Fig.2a-c) were comparable between all the methods. Numbers of TCR 115 

sequences and clonotypes were correlated in a method-dependent manner, but not globally, 116 

suggesting that the sequencing depth required for a given number of clonotypes is method-117 

dependent (Supplementary Fig.2d).  118 

 119 

Replicability and reproducibility differ among methods 120 

For each method, we first analyzed the proportion of reads that were identified as TCRs (Fig.1a 121 

and Supplementary Fig.2). For 7/9 methods, we observed 20 to 60% of non-aligned reads, 122 

which were mainly explained by no V and/or J sequence identification. TCR sequences had a 123 

high-quality score (phred > 30, Fig.1b) and contained less than 1% PCR errors (Fig.1c), except 124 

for RACE-2, RACE-6, mPCR-2 and mPCR-3. Note that these parameters could not be assessed 125 

Fig. 1: Performance statistics and VDJ rearrangement model of each method for experiments A and B.
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for one of the commercialized mPCR-1 for which undisclosed proprietary pre-processing of the 126 

data is performed.  127 

Using a VDJ rearrangement model (Methods), we computed 17 rearrangement parameters for 128 

TRA and TRB sequences from experiments A&B (Supplementary Fig.3) and calculated Jensen-129 

Shannon Divergence (JSD) distances between samples per parameter. Multi-Dimensional 130 

Scaling (MDS, Fig.1d) showed that, within each experiment, samples obtained with the same 131 

method clustered together, suggesting that each method imposed its methodological imprint 132 

on the repertoire profile.  133 

We further compared the different library methods’ replicability (i.e. the similarity among data 134 

obtained with the same method) and reproducibility (i.e. the similarity among data obtained 135 

with different methods) using JSD as a measure of the distance between datasets38. Figure 1e 136 

showed that for TRB, both the replicability and reproducibility of RACE-6 and mPCR-2 are lower 137 

than for all the other methods tested. However, when considering TRA, replicability is higher 138 

for RACE-3 and RACE-5 and reproducibility is higher for RACE-3, RACE-5 and RACE-2 (with and 139 

without UMI). Since RACE-6 showed extremely low replicability for TRB samples and was not 140 

reproduced by any other methods, we excluded it from further analysis. Altogether, our results 141 

showed that many fundamental parameters of the TCR repertoire, as well as inter-sample 142 

replicability and reproducibility, vary between the different methods tested. 143 

 144 

The observed TRBV gene usage varies between RACE- and multiplex-PCR RNA-based methods.  145 
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We compared the TRBV usage obtained from the sequencing data with the percentage of TRBV 146 

protein expression quantified by flow cytometry (FC) (Fig.2a and Supplementary Figs.4a-b). 147 

mPCR-1 data were highly correlated with FC data (Fig.2b, R2>0.9, P < 5.10-12), which likely 148 

reflects the undisclosed proprietary filtering by the provider. All other methods also showed a 149 

significant R2 Pearson correlation score ranging from 0.4 to 0.8, P < 0.05) with TRBV protein 150 

expression (Fig.2a-b), except for mPCR-3 (R2<0.2, P > 0.05). The Pearson correlation of TRBV 151 

gene usage within replicates prepared with the same method (Fig.2c) was high (R2>0.9). 152 

However, clustering showed that mPCR-3 formed a distinct cluster with a low correlation score 153 

(R2<0.5) with other methods. The RACE methods data were highly correlated between each 154 

other (R2>0.8), except RACE-1 and RACE-1_U, which had a lower correlation (0.6<R2<0.7). 155 

mPCR-1 and mPCR-2 formed an independent “DNA cluster” with an R2>0.6 when compared to 156 

RACE replicates and a low correlation with mPCR-3 (R2<0.4). This low correlation with mPCR-3 157 

could in part be explained by a skewed TRBV9, TRBV29-1 and TRBV20-1 usage (Supplementary 158 

Fig.4c). Spearman correlation scores were higher between FC data and mPCR-3 as well as RACE-159 

1, and globally between the methods (Supplementary Fig.4d-e). In summary, RACE-PCR 160 

Fig. 2: TRBV usage comparison between flow cytometry and TCRseq.
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methods and gDNA-based mPCR methods showed comparable TRBV usage results, in contrast 161 

with the mPCR-3 RNA based method. 162 

 163 

Robustness of TRA and TRB detection is method-dependent 164 

We compared the similarity and composition of the 1% most predominant clonotypes 165 

(1%_MPC) detected by each method. The Morisita-Horn similarity index (MH) was calculated 166 

for each replicate across all the methods for both TRA (Fig.3a-left) and TRB sequences (Fig.3a-167 

right). TRA repertoires from RACE-3 and RACE-5 clustered together, inter- and intra-replicates 168 

having a high degree of similarity (MH≈0.8). RACE-1, RACE-2 and RACE-4 have a lower inter- 169 

and intra-method similarity (0.2<MH<0.5), but a higher similarity with RACE-3 and RACE-5. 170 

Comparable clustering was obtained with the Jaccard similarity index (JSI), a measure 171 

independent of clonotype frequency (Supplementary Fig.5a). For the TRB repertoires, MH 172 

scores were low when comparing RACE and mPCR protocols (MH≈0.36), but high within the 173 

RACE cluster (0.6>MH>0.9). There was poor similarity between the results of the three mPCR 174 

methods, regardless of the template. Differences between RACE and mPCR methods 175 

disappeared when calculating the JSI, suggesting a bias in clonotype frequency, as expected 176 

when comparing RNA- with DNA-based methods, but less when comparing RNA-based 177 

methods. Similar results were obtained by iteratively increasing the percentage of clonotypes 178 

(Supplementary Fig.5b). Rényi diversity profiles (Supplementary Fig.5c) showed comparable 179 

results for TRB with all the methods, but the diversity of TRA varied depending on the method. 180 

However, the potential diversity estimated using Chao extrapolation was variable between 181 

methods (Supplementary Fig.5d).  182 

To test a possible bias in capturing the TRA diversity for some methods, we pooled and 183 

compared the three spiking replicates per method from experiment A, as suggested by Greiff 184 
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et al.24. The MH similarity significantly increased for all the RACE-based methods for TRA 185 

(Fig.3b-top) (except RACE-3) and for TRB (Fig.3b-bottom), with the TRA MH similarity remaining 186 

lower than that of TRB. Similar observations were made for mPCR replicates. This suggests that 187 

for a given depth of sequencing, the TRB diversity is better captured than that of TRA. 188 

 189 

Detection sensitivity of rare TCRs depends on the method  190 

To determine the accuracy of the different library amplifications for different clonotype 191 

frequencies, we compared the observed frequencies of the TCR from the Jurkat spike-in to their 192 

theoretical frequencies of 1/10, 1/100 and 1/1000. (Supplementary Fig.1b). TRA observed 193 

frequencies were on average 3 times lower than expected (Fig.4a-top; Supplementary Table 2 194 

Fig. 3: The reproducibility of detection of major TCR clonotypes by different methods.
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and Supplementary Fig.6a). In contrast, TRB frequencies were on average 3 times higher than 195 

the theoretical percentage, except for mPCR-1 (Fig.4a-bottom; Supplementary Table 2 and 196 

Supplementary Fig.6a). For most of the methods, except RACE-1_U, RACE-4 and mPCR-3, the 197 

ratio between the different dilutions was maintained, as shown by the mean slope values close 198 

to 1 (Fig.4b).  199 

We then compared the inter-sample variation in clonal frequency for those TCR sequences 200 

shared between all replicates of an individual method (excluding the Jurkat clone). Figure 4c 201 

represents the standard deviation of the frequency of each shared clonotype (dots) per method 202 

(see details in Supplementary Fig.6b-d). For TRA, RACE-3 and RACE-5 had the highest number 203 

of clonotypes shared between the 9 replicates and the lowest standard deviation. For TRB, all 204 

the methods captured a high number of shared clonotypes, and mPCR-1 and RACE-3 had the 205 

lowest standard deviation. Finally, pooling all the clonotypes from all the replicates, we 206 

identified 9 TRA and 31 TRB clonotypes shared by all the replicates of all methods, 207 

corresponding to the most predominant clonotypes (Supplementary Fig.7). RACE-3, RACE-5 208 

(both RNA-based) and mPCR-1 (DNA_based) showed the lowest inter-sample variability in TCR 209 

frequency. 210 

Fig. 4: Sensitivity of TCR sequence detection by different methods. 
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 211 

The quantity of starting material impacts TCR diversity capture 212 

One major limitation when analyzing TCR repertoire is the number of T-cells that can be 213 

analyzed. Focusing on 4 RNA-based methods, we analyzed the influence of input RNA quantity 214 

on TRA and TRB repertoires (Supplementary Fig.1c). We compared two sets of samples, one 215 

containing 10 ng or 100 ng (corresponding to 104 and 105 cells, respectively). For all the 216 

methods, the richness was higher with large (100 ng) than small (10 ng) samples 217 

(Supplementary Fig.8a). Rényi diversity profiles (Supplementary Fig.8b) showed that when 218 

alpha < 2 (i.e. when the diversity metric is influenced by rare clones), the diversity of small 219 

samples is less than that of larger ones. In contrast, at alpha = 2 (Simpson index) or above, 220 

diversity profiles of both samples overlap. Thus, a low RNA input influences the number of rare 221 

TCR sequences detected, but not the distribution of the more abundant TCRs.  222 

Finally, we evaluated the inter-sample similarity as a function of RNA input quantity by 223 

calculating the MH index with either the TRVJ combination usage (VJ_usage), all clonotype 224 

frequencies (Overall), or with the frequencies of the 1% most predominant clonotype 225 

(1%_MPC) (Supplementary Fig.8c-middle). For TRA, the similarity between 10 ng replicates was 226 

lower at the level of VJ usage and of all clonotypes compared with that between 100 ng 227 

replicates (Supplementary Fig.8c-top&bottom). For TRB, the results were comparable 228 

regardless of the quantity (MH>0.5). When focusing on the 1% MPC, the similarity was 229 

comparable regardless of the quantity for both TRA and TRB. These results indicated that RNA 230 

quantity impacts rare clonotype detection. 231 

 232 
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Reliability and sensitivity of each method highlighted using an in silico meta-repertoire  233 

One unavoidable issue when aiming at capturing the diversity of a repertoire is sampling, i.e. 234 

only a fraction of the cells are analyzed and then a fraction of their nucleic acids24. To better 235 

assess the ability of each method robustly to capture rare and frequent clonotypes, we took 236 

advantage of the fact that altogether we generated 45 TRA and 63 TRB replicates of the same 237 

cell sample. We aggregated these results to generate an in silico meta-repertoire. To ensure 238 

the accuracy of the TCR sequences composing this meta-repertoire, we removed singletons 239 

and kept clonotypes found by at least 3 methods.  240 

We first analyzed how many of the clonotypes present in this meta-repertoire were detected 241 

by each method. For TRA (Fig.5a-left), RACE-3 and RACE-5 datasets included up to 50% of the 242 

meta-repertoire clonotypes (MRC) compared to 10 to 20% for the other RACE method datasets. 243 

Similar results were found for TRB (Fig.5a-right). We then computed for each method the 244 

fraction of MRC found in 0, 1, 2, 3 etc. up to 9 replicates. The dot-heatmaps (Fig.5b) showed 245 

that for TRA, RACE-3 and RACE-5 clearly outperformed the other methods, capturing up to 40% 246 

of the MRC in all 9 replicates (Fig.5b-left; Replicate number=9) and missing (i.e. never captured 247 

in any of the 9 replicates) less than 1% of the MRC (Fig.5b-left; Replicate number=0). The other 248 

RACE protocols detected only 1% of MRC in all 9 replicates and missed 15 to 20% of the MRC 249 
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(Fig.5b-left). In contrast, there was much less difference between the methods for TRB (Fig.5b-250 

right).  251 

Finally, we analyzed the frequency of MRC TCRs that were detected or not by each method 252 

(Fig.5c and Supplementary Fig.9). For TRA (Fig.5c-left), the frequency of MRC found in 9 253 

replicates (red boxplots) ranged from 1% to 0.001% for RACE-3 and RACE-5 and from 1% to 254 

0.05% for the other methods. In contrast, clonotypes not detected in any replicates (black 255 

boxplots) were present at 10- to 100-fold lower abundance. A similar overall pattern was seen 256 

for TRB, although the frequencies were shifted to a lower range. This analysis suggested that 257 

RACE-3 and RACE-5 had increased sensitivity, and hence were able to detect a larger proportion 258 

of clonotypes at lower abundances. These differences were more evident for TRA than for TRB 259 

(Fig.5c-right). The other methods compared behaved very similarly to each other. Importantly, 260 

those results were independent of sample size (Supplementary Fig.10). 261 

Fig. 5: Sharing with robust and representative meta-repertoire.
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 262 

DISCUSSION 263 

Interpreting the TCR repertoire is an increasingly important tool in understanding the 264 

underlying causes of immune-mediated diseases and in assisting the development of new 265 

immunotherapeutic strategies. However, despite hundreds of TCRseq studies in the last decade 266 

using a variety of different methodologies, there has been no systematic study comparing 267 

them. 268 

In this work, we compared methods developed by academics, at a time when there was little 269 

or no reliable commercial service provision, with some currently available commercial 270 

methods. Both RNA- and gDNA-based methods were included. To avoid mis-implementation of 271 

protocols, each method (including appropriate pre-processing of sequence data) was 272 

performed by the laboratory or commercial provider (except for kit providers) that developed 273 

them.  274 

Unexpectedly, some consistent differences were observed in TRBV usage when compared to 275 

FC measurement of TRBV-encoded proteins, especially for RNA-based profiling. This might 276 

reflect bias in amplification of RNA transcripts according to their expression levels, more 277 

efficient transcription of some V genes, or differences in nonsense-mediated decay39. Further 278 

studies, using single-cell RNAseq may shed light on this phenomenon.  279 

Working with human samples often imposes limits on the number of available T-cells. Notably, 280 

lymphopenia is a common feature in people undergoing treatment (transplantation, 281 

immunosuppressive therapy) or with autoimmune disease40 and infections. Additionally, T-cell 282 

subsets of interest, as well as available counts of tumor-infiltrating T-cells, may be limited. 283 

Therefore, it is important to identify which methods provide reliable TCRseq profiles for small 284 

numbers of T-cells. In this context, we observed that, regardless of the method, starting from 285 
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a highly polyclonal population, the initial amount of material is critical to obtaining 286 

representative results, notably in terms of diversity and rare clone detection. 287 

Although our study focused on polyclonal CD4 T-cells from healthy repertoires, we analyzed a 288 

wide range of global and sequence-specific repertoire parameters, including V(D)J gene usage, 289 

junctional diversity, repertoire diversity and sequence sharing. These parameters are all 290 

relevant to any other alpha/beta T-cell populations, as indeed are all parameters routinely used 291 

to analyze repertoires of samples from pathological and clinical human samples41. 292 

Because our study incorporated multiple replicates tested with each method, we were able to 293 

explore method replicability, i.e. the ability of each method to reproduce the same repertoire 294 

from different sub-samples from the same individual. Our results showed that, except mPCR-295 

3, all the methods provided consistent results among replicates. We also evaluated the 296 

reproducibility, i.e. the extent to which different methods record the same results when applied 297 

to the same sample. We observed a low degree of TRB clonotype overlap between repertoires 298 

amplified from gDNA and RNA (cDNA), perhaps reflecting differences in gDNA and RNA copy 299 

numbers. The four RACE methods produced relatively similar repertoires as revealed by the 300 

Morisita-Horn index. The mPCR on gDNA showed low reproducibility between methods, 301 

suggesting that the choice of multiplexing primers might bias the amplification of some 302 

clonotypes, as suggested previously34. However, most RACE methods (not tested for mPCR) 303 

had a lower efficiency in capturing TRA rather than TRB diversity, which may reflect the 2- to 3-304 

fold lower number of TRA transcripts than TRB transcripts31. 305 

Finally, sensitivity is important for the study of circulating blood T-cells, especially when the 306 

goal is to track a few expanded clones associated with infection or autoimmunity, or in 307 

response to treatment. However, assessing sensitivity based on sample overlap is a complex 308 

performance metric, since it is impacted by experimental variability, but also by sampling. In 309 
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order to tackle this problem directly, we generated an in silico meta-repertoire which provided 310 

a more robust platform with which to directly compare the sensitivity performance of the 311 

different methods. Interestingly, using this standard, we found that two non-UMI methods 312 

(RACE-3 and RACE-5) had greater sensitivity than UMI-based methods (RACE-1 and RACE-2) 313 

and were able to detect clonotypes at a 10-fold lower frequency. In part, this results from the 314 

reads-per-UMI cutoff, which may lead to a decrease in observed TCR diversity if sequencing 315 

coverage is not sufficient. Non-UMI RACE methods may thus offer some advances when it is 316 

important to capture maximum repertoire diversity.For example, introducing a hard cutoff 317 

which discards all UMIs with less than 5 reads leads to a decrease in observed TCR diversity. 318 

UMI-based methods may be more accurate for assessing clonotype frequency, in line with their 319 

use to quantify and correct for PCR errors and bias42,43. Furthermore, a threshold of 2-4 reads 320 

per UMI efficiently protects against artefacts and cross-sample contamination42, which 321 

becomes critical with tighter cluster density on modern Illumina machines.44, which becomes 322 

critical with tighter cluster density on modern Illumina machines. UMI-based methods may 323 

require several replicates or higher sequencing coverage to consistently and unambiguously 324 

identify rare TCR sequence clonotypes. Noteworthy, both RACE-1 and RACE-2 methods 325 

performed better after UMI correction (see Table 1).  326 

Such in silico standards may be of value in further comparative TCRseq method evaluation, 327 

although ideally synthetic repertoires recapitulating at least the extent of the TRAVJ and TRBVJ 328 

combinations and distributions may provide an even more robust alternative. Two such 329 

approaches have been proposed for specific clone detection in Minimal Residual Diseases43,44 330 

as well as for the BCR, but not TCR, repertoire45, still at a very low diversity level. The 331 

construction of such gold standard repertoires is currently very costly and remains a major 332 
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challenge that the Adaptive Immune Receptor Repertoire Community (AIRR-C)46, engaged in 333 

AIRR-seq standardization47–49, may tackle in the future. 334 

Such in silico standards may be of value in further comparative TCRseq method evaluation, 335 

although ideally synthetic repertoires recapitulating at least the extent of the TRAVJ and TRBVJ 336 

combinations and distributions may provide an even more robust alternative. [1]Two such 337 

approaches have been proposed for specific clone detection in Minimal Residual Diseases45,46 338 

as well as for the BCR, but not TCR, repertoire47, still at a very low diversity level. The 339 

construction of such gold standard repertoires is currently very costly and remains a major 340 

challenge that the Adaptive Immune Receptor Repertoire Community (AIRR-C)48, engaged in 341 

AIRR-seq standardization49–51, may tackle in the future. Finally, in this study some data were 342 

pre-processed using proprietary (mPCR-1, mPCR-3) or published30,52 (RACE-1_U and RACE-2_U) 343 

tools and then aligned and error-corrected using MiXCR (v2.1.10)37. To further optimize TCR 344 

data accuracy, it would also be interesting to benchmark available software analysis tools, 345 

especially regarding UMI analysis and sequence alignment. Our datasets generated using 346 

different methods should be a valuable complement to using datasets generated purely in 347 

vitro53,54. 348 

In conclusion, the take-home messages from this work are the following. Firstly, there are 349 

satisfactory TCRseq methods based on either DNA or RNA input, and in both cases the amount 350 

of material impacts both diversity and the detection of rare clones. Secondly, various methods 351 

are optimal for detecting maximal diversity, while others most accurately quantify the 352 

abundance of specific clonotypes. For the latter, UMI-based methods are potentially more 353 

accurate, although they could miss relevant but rare clones. In contrast, non-UMI RACE 354 

methods are more sensitive in capturing rare clones, especially for TRA. Thirdly, the availability 355 

of raw data is crucial in allowing reliable and reproducible in-depth analyses of TCR repertoires; 356 
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the mPCR-1 service provider does not provide access to raw sequence data, while mPCR-1 and 357 

mPCR-3 do not disclose the proprietary pre-processing filters. In contrast, the RACE-2 provider 358 

provides raw data and all preprocessing algorithms. We summarized our results as well as 359 

practical aspects in Table 1. Regarding the results, we calculated for each method a rank value 360 

for Replicability, reliability and sensitivity based on various measures (Table 1 and 361 

Supplementary file). We also summarized cost per sample, presence of controls or standards, 362 

format of the method and raw data availability. The Table 1 highlight the advantages and 363 

disadvantages of the different methods which could serve as guidance for end-users. Improved 364 

and more sophisticated data analyses are essential to extract the full power of TCR repertoire 365 

data. We anticipate that now that TCR sequencing has come of age, the next key developments 366 

in the field will come from novel methods of data analysis, as has been the case in the related 367 

field of global transcriptomics.  368 

Table 1: Comparative performance of the nine TCRseq molecular methods. 369 

  370 

TR chain Method Replicability Reliability Sensitivity Cost per 
sample

Controls & 
standards Format type fastq data 

availability
RACE-1 7 4 4 ~230 - lab protocol YES
RACE-1_U 4 5 4 ~230 UMI lab protocol YES
RACE-2 5 4 5 230-280 - service or kit YES
RACE-2_U 4 5 5 230-280 UMI service or kit YES
RACE-3 3 2 3 ~150 - kit YES
RACE-4 5 6 4 ~150 - lab protocol YES
RACE-5 2 3 3 ~300 - lab protocol YES
mPCR-1 3 3 3 ~350-550* synthetic TCRs service or kit NO
mPCR-2 6 7 7 ~230 - lab protocol YES
mPCR-3 5 5 3 ~350-550* - service or kit YES
RACE-1 6 5 4 ~230 - lab protocol YES
RACE-1_U 4 6 5 ~230 UMI lab protocol YES
RACE-2 6 6 6 230-280 - service or kit YES
RACE-2_U 6 6 7 230-280 UMI service or kit YES
RACE-3 2 2 3 ~150 - kit YES
RACE-4 3 5 4 ~150 - lab protocol YES

TRB

TRA
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MATERIAL AND METHODS  371 

Blood effector T cell isolation  372 

Peripheral blood mononuclear cells (PBMC) from two healthy blood donors (Etablissement 373 

Français du sang; French Blood Center) were obtained with written informed consent for 374 

biomedical research. The experiments carried out were in conformity with the Helsinki 375 

Declaration on Biomedical Research. Donors A (experiment A) and B (experiment B) were both 376 

men, 36 and 54 years old, respectively. CD3+CD4+CD127+CD25- cells (CD4+ T effector cells) were 377 

sorted at the Sorbonne Université laboratory as follows: CD4+ cells were isolated by 378 

Lymphoprep (Stemcell®) density gradient and positive selection using the Dynabeads™ CD4 379 

Positive Isolation Kit (Invitrogen®). Enriched CD4+ T-cells were then labeled with anti-CD3+, 380 

CD4+, CD127+ and CD25+ antibodies and effector T-cells were sorted on a FACS ARIA II with a 381 

purity > 95% (Supplementary Fig.1a). 382 

 383 

Jurkat cell culture 384 

The Jurkat cell line with a known TCR (TRAV8-4-CAVSDLEPNSSASKIIF-TRAJ3; TRBV12-3-385 

CASSFSTCSANYGYTF-TRBJ1-2) (clone E6-1), from ATCC, was grown in 5% CO2, in RPMI 1640 386 

medium, supplemented with 10% (v/v) fetal bovine serum (FBS), 2 mM L-glutamine, 50 U/mL 387 

penicillin, and 50 µg/mL streptomycin at the Sorbonne Université laboratory. 388 

 389 

RNA and DNA extraction  390 

In experiment A, DNA and RNA were both extracted using TRIzol Reagent (Invitrogen®) from 5 391 

million Jurkat cells and 20 million CD4+ T effector cells and, in experiment B, only RNA was 392 

extracted using the RNAqueous-Kit (Invitrogen®) from 7.2 million CD4+ T effector cells following 393 

the manufacturer's recommendations. DNA concentration and RNA concentration were 394 
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measured on a NanoDrop1000 (Thermo ScientificTM) and RNA integrity was determined on a 395 

Bioanalyzer (Agilent®) with measurements higher than 8. RNA and DNA extraction and 396 

validation were performed at the Sorbonne Université laboratory. 397 

 398 

Aliquot preparation for method comparison 399 

In experiment A, 100 ng of RNA or DNA from the CD4+ effector T-cells sorted from donor A was 400 

split into 3 aliquots that were spiked with different amounts of RNA or DNA from the Jurkat cell 401 

line, at ratios of 1/10, 1/100 and 1/1000. Each spiked aliquot was further split into 3 and all 402 

replicates were processed by all methods tested (7 for RNA and 2 for DNA; Supplementary 403 

Fig.1b). With experiment B, we analyzed the impact of the input material quantity. RNA from 404 

sorted CD4+ effector T-cells of donor B was extracted, split into 15 aliquots of 100 ng each and 405 

15 aliquots of 10 ng each and processed in triplicate using 5 of the RNA-based methods 406 

(Supplementary Fig.1c). Aliquots were prepared at the Sorbonne Université laboratory and sent 407 

to the partners. 408 

 409 

Flow Cytometry  410 

Vβ identification was performed on enriched CD4+ effector T-cells from experiment A (see 411 

Blood effector T cell isolation for enrichment procedure) stained with the IOTest Beta Mark TR 412 

Repertoire Kit (Beckman Coulter®) according to the manufacturer's protocol as well as with 413 

CD4-APC, CD127-BV421, CD25-PECy7. Data acquisition was performed on a Cytoflex® 414 

(Beckman Coulter®) using CytExpert® software. FlowJo® was used for data analysis. Vb 415 

frequencies were calculated on CD4+CD25-CD127+ gated cells (Supplementary Fig.4a-b). 416 

Staining was performed at the Sorbonne Université laboratory. 417 

 418 
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TCR library preparation and sequencing 419 

The nine protocols for TCR library preparation compared in this study were selected according 420 

to at least one the following criteria: published use by groups other than the one who 421 

developed it (mPCR-1, mPCR-3, RACE-1, RACE-2, RACE-4 and RACE-5), (ii) their association with 422 

well-known analysis tools (RACE-1, RACE-2, mPCR-2) and (iii) commercially available (RACE-2, 423 

RACE-3, mPCR-1, mPCR-3). Sequencing protocols were harmonized taking into account 424 

published recommendations or recommendations provided by the manufacturer of 425 

commercial kits or by the owner or users of the protocol. All protocols are detailed in 426 

Supplementary material and methods.NineThe nine protocols for TCR library preparation 427 

compared in this study were selected based on AIRR-seq impact or involving (citationsaccording 428 

to at least one the following criteria: published using by other groups than the one who 429 

developed it (mPCR-1, mPCR-3, RACE-1, RACE-2, RACE-4 and associatedRACE-5), (ii) their 430 

association with recognizedwell-known analysis tools (RACE-1, RACE-2, mPCR-2) and 431 

sequencing(iii) commercially available (RACE-2, RACE-3, mPCR-1, mPCR-3). Sequencing 432 

protocols were used followingharmonized taking into account published recommendations or 433 

recommendations provided by the manufacturer of commercial kits or by the owner or 434 

userusers of the protocol. All protocols are detailed in Supplementary material and methods. 435 

 436 

TCR deep sequencing data processing 437 

FASTQ raw data file were obtained from each method, except for Multiplex-1 & 2, for which 438 

we obtained, respectively, FASTA file and FASTQ files following proprietary pre-processing. For 439 

RACE-1 and RACE-2, UMI pre-processing was performed following protocols published 440 

elsewhere29,30. FASTQ and FASTA files were then processed for TRB and TRA sequence 441 
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annotation using the MiXCR software (v2.1.10) with RNA-Seq parameters (-p rna-seq –s hsa)50. 442 

MiXCR extracts TRA and TRB repertoire providing correction of PCR and sequencing errors. 443 

 444 

Data analysis 445 

Statistical comparisons and multivariate analyses were performed using R software version 446 

3.5.0 (www.r-project.org).FASTQ raw data files were obtained from each method, except for 447 

Multiplex-1 & 2, for which we obtained, respectively, FASTA file and FASTQ files following 448 

proprietary pre-processing. For RACE-1 and RACE-2, UMI pre-processing was performed 449 

following protocols published elsewhere30,31,52. FASTQ and FASTA files were then processed for 450 

TRB and TRA sequence annotation using the MiXCR software37 (v2.1.10) with RNA-Seq default 451 

parameters (-p rna-seq –s hsa) as available online. MiXCR extracts TRA and TRB repertoire 452 

providing correction of PCR and sequencing errors. 453 

 454 

Data analysis 455 

Statistical comparisons and multivariate analyses were performed using R software version 456 

3.5.0 (www.r-project.org). We used the ggplot2 package to generate figures55, except 457 

heatmaps. More complex analyses are detailed in the next section. 458 

 459 

Comparing VDJ rearrangement statistics 460 

An empirical VDJ rearrangement model for each method was built as follows. We analyzed 461 

clonotype tables to obtain comprehensive statistics of VDJ rearrangements including the 462 

frequencies of V/D/J segment usage, number of added N Bases (namely “insert profile”, i.e. the 463 

probability distribution of having A/T/G/C inserted in the N-region of CDR3 given that we 464 
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observe a certain base inserted before it) and V/J segment trimming bases, with the IGoR 465 

package56. This model is built in a 'greedy' way in the sense that it uses best alignments provided 466 

by MiXCR rather than running expectation maximization procedures as described in Murugan 467 

et al.57. We utilized the Jensen-Shannon divergence (JSD) between distributions of VDJ usage 468 

to define the following two statistics that we use for comparative analysis of different TCRseq 469 

methods: 1) replicability measured as the distance between different samples produced by the 470 

same protocol and 2) reproducibility measured as the distance between samples produced by 471 

two different protocols. MDS used for sample mapping was performed on rank-transformed 472 

distances to avoid the distorting effect of outliers. All the analyses involve VDJ usage inferred 473 

from weighted data (TCR clonotype is weighted by its frequency in the sample) to account for 474 

TCRseq method amplification biases. 475 

 476 

Similarity analysis 477 

Pearson and Spearman correlations, the Morisita-Horn index58 (MH) and the Jaccard similarity 478 

index59 (JSI) were used to assess the similarity between samples. The MH index takes into 479 

account the relative abundance of species in the sample, while the JSI is a measure of the 480 

intersection between two populations relative to the size of their union, and is independent of 481 

relative abundances. Both indices vary between 0 (no overlap) and 1 (perfect overlap). JSI and 482 

MH were calculated using the DIVO package60 on R. In order to discriminate indices represented 483 

by a heatmap with the pheatmap package61, we used a different set of colors. The Pearson and 484 

Spearman correlations are presented as yellow/white/orange (Fig.2c and Supplementary 485 

Fig.4e), MH is presented as blue/white/red (Fig.3a) and JSI is presented as purple/yellow/green 486 

(Supplementary Fig.5a). 487 

 488 
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Diversity profiling 489 

The diversity was analyzed using two indices. Rényi entropy62 is a generalization of Shannon 490 

entropy, which increases when both species richness and evenness are high. Rényi entropy is 491 

a function of a parameter α spanning from (i) the species richness (α = 0), which corresponds to 492 

the number of clonotypes regardless of their abundance, to (ii) the clonal dominance (α→ + ∞), 493 

corresponding to the frequency of the most predominant clonotype. For α = 1, the Shannon 494 

diversity index is computed. The exponential of the Rényi entropy corresponds to the actual 495 

number of clonotypes in the datasets63 and is used to build a diversity profile64. It was 496 

computed using the entropy package65 on R. ChaoE66 index was calculated with the iNEXT 497 

package67 as a measure of extrapolation of the possible number of clonotypes based on the 498 

observed clonotypes. Rarefaction curves were interpolated from 0 to the current sample size 499 

and then extrapolated to the size of the largest of samples, allowing comparison of diversity 500 

estimates. Interpolation and extrapolation were based on ChaoE multinomial models68. 501 

 502 

Meta-repertoire construction 503 

We generated an in silico meta-repertoire from the sequences obtained from the 108 504 

replicates (45 for TRA and 63 for TRB). This meta-repertoire, for each chain, was designed to 505 

minimize biases by (i) pooling all clonotypes from the 9 datasets and removed singletons to 506 

avoid introducing noise due to PCR errors, (ii) Selecting non-reprocessed datasets, meaning 507 

before UMI, (iii) keeping only clonotypes found by at least 3 different methods to avoid bias 508 

toward one particular method. The threshold was defined to reach a dataset size as close as 509 

possible to the original datasets to avoid additional sampling, (iv) normalizing the size of each 510 

dataset to the lowest dataset to ensure the same weighting for each method. Completion of 511 
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the representative meta-repertoire was achieved by pooling all the datasets. This generated a 512 

pooled dataset of 14 458 TRA and 18 735 TRB clonotypes. 513 

 514 

Data Availability 515 

All the fastq data obtained in this study, including the Jurkat Clone E6-1 (ATCC®TIB-152™) cell 516 

line TCR alpha and beta sequences, were deposited in the NCBI Sequence Read Archive 517 

repository following MiAIRR standard recommendations47 under the BioProject ID 518 

PRJNA548335. Source data for TCRVb flow cytometry data are provided as Supplementary 519 

Fig.4a-b. All other data are available from the corresponding author upon request. 520 

 521 

Code Availability 522 

All software packages and programs are publicly available and open source. Scripts used to 523 

analyze the data with MiXCR are available from https://mixcr.milaboratory.com ; Decombinator 524 

from https://github.com/innate2adaptive/Decombinator; MiGEC from 525 

https://github.com/mikessh/migec; detailed VDJ rearrangement statistics scripts are available 526 

from https://github.com/antigenomics/repseq-protocol-comparison. There is no restriction on 527 

the use of the code or data.  528 
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 685 

FIGURE LEGENDS 686 

Fig. 1: Performance statistics and VDJ rearrangement model of each method for experiments 687 

A and B. 688 

a, The proportion of sequence reads aligned for TRA or TRB genes for each TCRseq replicate 689 

per experiment (Experiment A, top, Experiment B, bottom). The bars represent the percentage 690 

of TRA and TRB alignment, and the reason for alignment failure is color coded. b, Distribution 691 

of the reads quality control (QC) for each method over all datasets, computed with fastQC 692 

software (www.bioinformatics.babraham.ac.uk/projects/fastqc). c, Percentage of reads 693 
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collapsed after PCR error correction for all samples in the study. For each method, the MiXCR 694 

clustering strategy was applied to correct for PCR errors and collapse reads. Each box-plot 695 

represents the percentage of clustered reads. d, Multi-dimensional scaling (MDS) of V(D)J 696 

recombination parameters. MDS was performed based on the Jensen-Shannon Divergence 697 

(JSD) calculated between replicates on weighted VDJ segment usage (Segment usage), non-698 

template nucleotide insert size distributions (Insert size), V/D/J segment trimming distributions 699 

(Deletion size), and nucleotide frequencies in N-inserts (Insert profile). JSD values were 700 

transformed to rank for better visualization. Solid and dotted polygons outline samples from 701 

experiments A and B, respectively. Colors represents the different methods as in B (only 702 

methods used in both experiments are presented). e, Replicability and reproducibility of the 703 

TRA and TRB repertoires for each method. The average JSD calculated in D (rows) for TRA (left) 704 

and TRB (right) measured between replicates produced by the same method (Replicability, top) 705 

or replicates of a given method and all other protocols (Reproducibility, bottom) was used as 706 

distance metric to compare different protocols (columns). Columns are sorted according to the 707 

mean scaled distance (averaged over all rows) from the lowest (best 708 

replicability/reproducibility) to the highest (worst replicability/reproducibility). Distance values 709 

are shown using a color scale. Jurkat TCR sequences were removed from datasets for this 710 

analysis. 711 

 712 

Fig. 2: TRBV usage comparison between flow cytometry and TCRseq. 713 

a, Flow cytometry and TCRseq TRBV frequencies. Bar plots represent the TRBV frequencies 714 

calculated from flow cytometry stained CD4+ T effector cells for the 24 TRBV for which 715 

antibodies are available and from the TCRseq data, considering only clonotypes annotated for 716 

the same 24 TRBV (original TRBV frequencies were used accordingly). Histograms of the 24 717 
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TRBV frequencies are organized by decreasing order using frequencies obtained by flow 718 

cytometry as a reference reference (TRBV20-1, TRBV19, TRBV12-3/4, TRBV28, TRBV2, TRBV3-719 

1, TRBV30, TRBV6-5/9, TRBV9, TRBV5-1, TRBV4-1/2, TRBV27, TRBV29-1, TRBV6-6, TRBV11-2, 720 

TRBV10-3, TRBV25-1, TRBV6-2, TRBV18, TRBV5-5, TRBV14, TRBV5-6, TRBV13, TRBV4-3). b, 721 

TRBV usage correlation between flow cytometry and TCRseq. Pearson’s correlation of the TRBV 722 

frequencies between the 5 flow cytometry datasets and the 9 TCRseq replicates was calculated 723 

for each method. The plot is represented by the correlation score (y-axis) and the P-value (x-724 

axis) of the correlation, allowing the classification of the methods. c, Heatmap of the Pearson 725 

correlations between each replicate for the distribution of TRBV gene usage (n=62). The 726 

Euclidean distance was used for hierarchical clustering as a color-coded matrix ranging from 0 727 

(yellow, maximum dissimilarity) to 1 (orange, maximum similarity). Jurkat TCR sequences were 728 

removed from datasets for this analysis. 729 

 730 

Fig. 3: The reproducibility of detection of major TCR clonotypes by different methods.  731 

a, Heatmaps of the Morisita-Horn similarity index (MH). MH scores were calculated between 732 

each replicate across all methods for the top 1% of most predominant clonotypes (MPC) for 733 

TRA (left) and TRB (right). The Euclidean distance was used for hierarchical clustering as a color-734 

coded matrix ranging from 0 (blue, maximum dissimilarity) to 1 (red, maximum similarity). b, 735 

Comparison between individual replicates (Single) and pooled replicates (Pool) by the MH 736 

similarity index. Datasets from replicates of the same dilution were pooled for each method to 737 

get 1 pooled sample per dilution. Singletons (count=1) were removed; MH similarity scores 738 

were calculated for the top 1% of most predominant clonotypes for TRA (left) and TRB (right). 739 

Jurkat TCR sequences were removed from datasets for this analysis.  740 

 741 
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Fig. 4: Sensitivity of TCR sequence detection by different methods.  742 

a, Jurkat clone percentage. Jurkat TRA (top) and TRB (bottom) clonotype percentages were 743 

calculated for each experiment per dilution (1/10, 1/100 and 1/1000 spike-in) and are 744 

represented by the blue dots. The blue line represents linear regression and the black dashed 745 

line represents the theoretically expected percentage. b, Slope of the Jurkat tracking linear 746 

regression. Slope was computed between dilution with standard deviation by method for TRA 747 

(top) and TRB (bottom). c, Standard deviation of the clonotypes shared among the 9 replicates 748 

(except Jurkat clone) per method, for TRA (left) and TRB (right).  749 

 750 

Fig. 5: Sharing with robust and representative meta-repertoire. 751 

a, Replicate sharing fraction in meta-repertoire repertoire (focus on meta-repertoire 752 

clonotypes) for TRA (left) and TRB (right). The values represented correspond to the percentage 753 

of clonotypes from each replicate per method found in the meta-repertoire, median and the 754 

1st and 3rd quartiles are shown. b, Replicability of replicate methods with meta-repertoire for 755 

TRA (left) and TRB (right). By chain, heatmaps on the left represent the fraction, which 756 

corresponds to the percentage of meta-repertoire clonotypes found in 1 to 9 replicates per 757 

method (0: unseen in any of the replicates). c, Distribution of meta-repertoire clonotypes in the 758 

replicates by methods for TRA (left) and TRB (right). Each dot represents a meta-repertoire 759 

clonotype and the boxplot represents the average frequencies. Black boxplots with 760 

corresponding gray dots represent the unseen clonotypes (0) and red boxplots with 761 

corresponding gray dots represent the clonotypes found by the 9 replicates (9). Each method 762 

is represented independently. Jurkat TCR sequences were removed from datasets for this 763 

analysis. 764 

 765 
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Table 2 : Comparative performance of the nine TCRseq molecular methods. For each method, 766 

an average rank score for TRA (top) and TRB (bottom) sequencing has been calculated for 767 

Replicability, Reliability, and Sensitivity (three first column) and practical information have 768 

been summarized (4 last columns). Ranks have been calculated as the average of the ranks for 769 

results from Fig. 1e, 2c, 3b, 4c for “Replicability”; Fig. 1e, 2b, 4b, 5a, 5b for “Reliability”; Fig. 770 

4c, 5b & Supplementary Fig. 2a, 5c for “Sensitivity”. Rank values are comprised between 2 771 

(best) and 7 (worst) and represented as bars with their values. Details are provided as 772 

Supplementary information. Cost per sample” is expressed in USD as per current prices for a 773 

depth of 1 million TCR sequences per sample on a 25 million reads sequencing format. The 774 

costs cover reagents for library preparation to sequencing. *mPCR1 and mPCR3 price ranges 775 

correspond to the cost for either purchasing kits (lowest price) or service up to sequencing 776 

and basic data analyses from the provider. 777 


