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ABSTRACT

Research on cascading failures in power-transmission networks requires detailed data on the capacity of individual transmission lines. However,
these data are often unavailable to researchers. Consequently, line limits are often modeled by assuming that they are proportional to some
average load. However, there is scarce research to support this assumption as being realistic. In this paper, we analyze the proportional loading
(PL) approach and compare it to two linear models that use voltage and initial power �ow as variables and are trained on the line limits of a real
power network that we have access to. We compare these arti�cial line-limit methods using four tests: the ability to model true line limits, the
damage done during an attack, the order in which edges are lost, and accuracy ranking the relative performance of di�erent attack strategies.
We �nd that the linear models are the top-performing method or are close to the top in all the tests we perform. In comparison, the tolerance
value that produces the best PL limits changes depending on the test. The PL approach was a particularly poor �t when the line tolerance
was less than two, which is the most commonly used value range in cascading failure research. We also �nd indications that the accuracy of
modeling line limits does not indicate how well a model will represent grid collapse. The �ndings of this paper provide an understanding of
the weaknesses of the PL approach and o�er an alternative method of line-limit modeling.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5115493

The networked structure of power-transmission gridsmakes them
susceptible to cascading failures. A cascading failure occurs when
a single failure or a small number of failures propagate through
a system, wreaking havoc. While major blackouts caused by
cascading failures are rare, they a�ect a very large number of
people and have signi�cant �nancial consequences.1–3 This paper
considers the resilience of the power grid from the perspective
of network science. In this context, cascading failures are not
simulated using random failure but attacks that continue until the
complete collapse of the network. The potential for such threats
comes from either physical4 or cyber-physical5 attacks. The �rst
known cyber-physical attack was in Ukraine which caused power
loss to 200 000 people.6 Since then the perceived threat of cyber-
physical attacks has grown.5This paper explores a commonly used
method to simulate cascading failures in the power grid, known as
proportional loading, and �nds that inaccurate estimation of the
system tolerance produces modeling results that deviate substan-
tially from the behavior of the grid under attack when using the
real line limits.

I. INTRODUCTION

Power networks are an essential part of modern civilization.
Power outages caused by either random failure or targeted attack
can cascade through the power system and cause massive damage.
In the last two decades, there have been several examples of cascad-
ing failures causing a loss of power to tens, sometimes hundreds of
millions of people. In 2003, amajor blackout in the northeast portion
of the USA was estimated to have cost approximately $6 billion.1 In
2012, a cascading failure in the Indian power grid caused a loss of
power to 600× 106 people.2 More recently, in 2019,3 a failure in the
interconnector between Argentina and Uruguay caused a blackout
that a�ected nearly the entirety of both countries, which was close
to 50× 106 people. In addition to random failures, targeted cyber-
physical attacks have become a growing threat to the power grid.5,7

Cyber-physical attacks are so-called because they use cyber attacks
to cause physical e�ects. The most successful cyber-physical attacks
were against the Ukrainian power grid in 2015 and 2016 causing a
loss of power to 200 000 people.6,8 Given the potential magnitude
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of cascading failures and the threat posed by a deliberate attack, it
is not surprising that researchers are looking for ways to reduce the
impact and frequency of such failures. Onemethod of understanding
cascading failures is through network science, where cascading fail-
ures are stimulated using targeted attacks on network nodes or edges.
Substantial work in this regard has focused on developing “vulnera-
bility metrics” or “attack strategies” that identify the order in which
nodes should be attacked to cause maximum damage to the power
grid.

When researchers �rst began analyzing power grids using net-
work science, the techniques applied used purely topological infor-
mation about the power-grid structure.9 As research developed, the
power-grid’s electrical propertieswere incorporated into the analysis,
thereby creating the “extended topology.”10 Speci�cally, the extended
topology integrates the power �owing in the network with the topo-
logical features. In most cases, electricity is transmitted through the
power grid using alternating current (AC) at high voltage to reduce
power loss, although direct current (DC) can be used point-to-point
over long distances or underwater (e.g., the UK interconnectors to
France, Ireland, and The Netherlands). However, as it is challeng-
ing to solve the AC power-�ow equations, researchers often use
DC power �ow equations which can be solved using linear alge-
bra. A recent literature review revealed that 81% of studies that
involved power �owusedDCpower �ow.9Weuse theDCpower �ow

calculations, f = CA(ATCA)
−1
p, described by Pepyne11 andArianos

et al.12 In this equation, A is the adjacency matrix with the slack bus
removed to make the system invertible, C is a diagonal matrix of the
line susceptance, and p is the power injected at each node. The slack
bus absorbs or supplies additional power as demanded in order to
ensure that the system is balanced.

Numerous studies create synthetic networks11–14 or use the topo-
logical structure of a real power grid without the line limits.13,15–18 It
is necessary to know these limits to detect when a line has tripped
in a simulation. Beyond cascading failure research, equivalencing is
used to reduce large complex power networks to smaller sub grids in
order to study local phenomena. In such cases, estimating the line
limits of the equivalenced networks is important so as to be able
to perform accurate analyses.19–21 Although a few open-data solu-
tions are being developed,22,23 the lack of datasets with line limits
remains a problem. Littlemodeling or simulationwork has been done
using real line limits24 for this reason. If these limits are not avail-
able in the data, an estimate must be made. A few studies25,26 have
used statistical techniques to provide a distribution of possible line
limits. However, a more common technique for this is to use pro-
portional loading (PL). When using the PL approach, the line limits
are set at a �xed proportion of the amount of power �owing in each
line at initiation.11,15,17,27–30 The PL of networks is usually de�ned as
fmax
i = α

∣

∣f ci
∣

∣, where
∣

∣f ci
∣

∣ is the absolute power �ow for line i under
initial conditions, fmax

i is the line limit, and α is the tolerance factor.
The PL assumes that the line limits of the network are proportional
to the power �ow; however, there is little evidence supporting this.

As there is no direct comparison between PL and real line limits,
it is di�cult to know how accurately PL and the simulations based on
it re�ect real-grid behavior or whether a more realistic method can
be created. In this paper, we address this gap. We have access to a
dataset that includes the generation and load nodes with capacities
in megawatts, as well as the line limits in megawatts for a single base

load pro�le of the power grid. The dataset is a simpli�ed version of
the UK power grid and is based on the Electrical Ten Year Statement
(ETYS) produced by the national grid.

Using the base load pro�le, we compare the real line limits of the
network against the PL values of α between 1 and 50, the results pro-
duced by two linear models, and topological analysis. We simulate
random attacks on the power grid and analyze how well the arti�-
cial line limits model the damage caused by the attack as well as the
order in which the edges are lost due to cascading. We also measure
how well each line-limit method ranks the relative e�ectiveness of
di�erent grid-attack strategies. The �ndings of this paper provide an
understanding of the weaknesses of the PL approach and provide an
alternative method of line-limit modeling using linear models.

II. METHOD

1. We examine the network’s real line-limit distribution. We then
compare the accuracy of PL (proportional loading) and themod-
eled limits (using two di�erent linear models) against the real
line limits.

2. We simulate randomattacks on the grid using theDCpower �ow
model. We attack the grid until it collapses completely, repeating
the process 100 times. We compare the mean damage and stan-
dard deviation of the arti�cial line limits and the real line limits
at each stage of the attacks.

3. We compare the rank order in which edges are lost due to
cascades between the arti�cial and real line limits. Then, we
calculate the correlation coe�cient, which shows us which arti-
�cial line-limit method most accurately represents the behavior
of grid collapse.

4. In order to test whether the arti�cial line limits can compare
vulnerability metrics, we attack the grid using �ve di�erent
strategies. We measure the ability of the arti�cial line limits to
accurately represent the true ranking of each strategy using the
real line limits.

The dataset we use in this paper describes the physical and electri-
cal structures of a simpli�ed version of the UK national grid. The
dataset contains 512 nodes representing substations around the UK.
The nodes are connected with 698 transmission lines that are rated
132 kV, 275 kV, and 400 kV. The network has a mean degree of 2.73,
the average unweighted nodal distance is 11.7, and the clustering and
mean normalized centrality are at 0.1. The low clustering coe�cient,
close to zero, suggests that the network tends to not form connected
cliques, thereby making the network more vulnerable to disruption
when individual nodes are lost. The dataset includes all the informa-
tion required to perform the DC power �ow calculations. This infor-
mation includes line-node connections, line-reactance, base load
node load/demand, and node generation. Unusually for a power-grid
dataset, it also provides line limits, thereby making it possible to test
the PL approach.

This paper de�nes the simulation using �ve parameters: physics
model, element, attack type, removal method, and load pro�le. The
physics model used in this analysis is DC �ow or topological—that
is, the power model uses DC power �ow or is simply a topologi-
cal analysis. The elements attacked are the nodes. The attack type is
“�xed,” meaning that the order in which the nodes will be removed
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TABLE I. PEARL settings used in this paper.

Class Types

Physics Cascading DC, topological
Element Node
Attack type Fixed
Removal Sequential
Load pro�le Single

is generated before the attack begins. The order in which nodes are
removed is sequential. This means that only a single node is tar-
geted for removal each round. However, other nodes may be lost
due to a cascading failure. A summary of the parameters is shown in
Table I. These simulation parameters form the acronymPEARL. (The
PEARL framework is discussed in greater depth in supplementary
material S1.)

The last parameter of the PEARL settings is the load pro-
�le—although ideally we would use multiple demand load pro�les
for our analysis to explore the e�ects of time of day and seasonality,
such data are unavailable to us. However, we do have a single load
pro�le provided with the dataset, and we use this. This load pro�le is
based on the year-round base load. The base-load data are provided
by the UK power suppliers in their seven-year statements. In general,
it is advisable to use multiple load pro�les when performing cascad-
ing failure analysis on the power-grid, as cascade behavior can di�er
depending on line loading.31 In this paper, we only have access to a
single load pro�le; however, the goal of this paper is not to demon-
strate any weaknesses of the UK power grid itself but to highlight the
weaknesses of proportional loading. For such a goal, only a single line
limit is necessary.

In this analysis, there are no restrictions on the generators. This
implies that a generator of 100MW in a subgraph with a load node
of 1MW will reduce its power output to balance the demands of the
subgraph. This is a simpli�cation and, in reality, there would be con-
straints on the output of the power station; however, that is beyond
the scope of this paper.

A. Artificial line limits and real line limits

In order to understand how arti�cial line limits di�er from real
line limits, we use 13 α values for PL, the topological approach, and
the line limits generated from two linear models. We use α values
of 1.05, 1.1, 1.2, 1.3, 1.5, 2, 3, 5, 7, 10, 15, 20, and 50. The α values
were selected on the basis of values used in other papers, typically 1
to 5, and extended until 50. The topological analysis is identical to
an α level of in�nity. With low values of α, node removal tends to
cause larger cascading failures as the system has less spare carrying
capacity; larger values of α tend to cause smaller cascades.

Line limits are caused by three main factors: thermal-limits,
voltage drop, and steady state stability of frequency. In addition, cer-
tain line limits are imposed to prevent dynamic instability at a system
level. These factors are all related to the line length and its voltage.32

To keep the models similar to PL, we create a model that uses only
the initial power �ow on the line and a secondmodel that uses initial
power �ow and the voltage, as voltage data are available in several

open datasets.33–35 The voltage power �ow (volt PF) model has the
form yi = β01+ βf xif + βvxiv, where yi is the line limit of the ith
power line to the log base 10, xif is the initial power �ow of the ith
power line in megawatts, and xiv represents the voltage level of line
i. The coe�cients are βf and βv, while β0 is the model bias. The
power-�ow-only model (PF model) has the form yi = β01+ βf xif .
Themodels are trained using 10-fold cross-validation, using ordinary
least squares regression. Tenfold cross-validation is used as we only
have access to the real line limits of a single power network. We train
the model using 90% of the data and predict for the out of sample
10%; this will be repeated to predict for all parts of the network. The
coe�cients shown in this paper are the average across the ten folds.
(For code details on model generation, see the section “Modeling
Line Limits” of the GitHub code.36) These models will be compared
to the PL approach throughout the paper. Ideally, we could use the
models to predict the line limits of a separate network. However, we
only have access to the real line limits of a single network. Since this is
the case, we will use the line limits predicted in each of the validation
sets as the predicted line limits for the attack simulation. The arti�-
cial line limits are compared to the real line limits usingR2, rootmean
square error (RMSE), and mean average percent error (MAPE).

The model we use is deterministic and based on the frequentest
approach to statistics; this di�ers from the work of Kim andMotter25

and Elyas and Wang26 whose generative models use the Bayesian
framework. The Bayesian approach to modeling can provide a bet-
ter understanding of the range of possible results; however, it comes
at the cost of greatly increased computation. In this paper, we do
not seek to �nd an optimum line limit simulation model simply
to create a statistical model to compare against PL. We use a sim-
ple linear model because it provides line limits that are based on a
real system and are easily interpretable, with a low computational
overhead.

B. Comparing attack damage between the PL

approach and real line limits

We simulate the grid under attack by assigning a random-node
attack rank to each network node. We then remove the node with
Rank 1. Since node removal can cause overloading, we recalculate
the power �ow and remove any lines that exceed their maximum line
limit. We then rebalance the power and load in the network. Line
removal can cause the network to break into subcomponents; so, we
remove any nodes that are in a subcomponent that has no power. We
then recalculate power �ow. This process continues until no further
removals occur. We then �nd the node with the next lowest attack
rank and remove it, repeating the process until no nodes remain in
the network. The process is described in Algorithm 1 for graphG, the
set of n nodes/vertices V, and the set ofm edges E. A schematic of the
process is shown in Fig. 1.

During the attack simulation, two di�erent damage metrics are
used to analyze attack progression giant-component size, measured
as the largest connected component, and blackout size, measured as
total MW lost. These metrics are compared to the graph’s original
state using 1Px =

P1−Px
P1

, where P1 is the complete graph and Px is

the graph after attack x. This method of measuring damage returns a
percentage between 0 (no damage) and 100 (complete grid collapse).
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Algorithm 1 Attack the grid

1: procedure AttackTheGrid(G)
2: V← V(G)

3: E← E(G)

4: while V 6= ∅ do
5: remove mini(vi) F i is the order in which nodes will be

attacked
6: repeat
7: calculate power �ow in G
8: for e ∈ E do
9: remove e if fe > f max

e F Power �ow exceeds line
limit

10: end for
11: rebalance generation and supply
12: for v ∈ V do
13: remove v if subgraph has no power
14: end for
15: until fe < f max

e for all e
16: end while
17: end procedure

Note that using the largest connected component as a measure
might not be representative of the physical processes that occur on
the power grid. For example, say we have a network that has 100
nodes but only two generators, where the �rst generator produces
99% of the electricity and the other generates the remaining 1%. If
the big generator fails, the giant-component size is still 99%, thereby
indicating that the network is almost una�ected even though there
is only 1% of the necessary power. Despite this drawback, the met-
ric’s simplicity has made it a popular choice,27,37–39 and, thus, it will
be included here. Blackout size is a metric from the extended topol-
ogy. It measures the loss of system power inmegawatts. Thismetric is

popular and has several di�erent names with slightly di�erent imple-
mentations that produce similar results. It has been called “loss of
load,”40 “blackout size,”24 “load shed,”41 “power supply,”30 and “total
loss of power,”42 among other names. This metric does not su�er the
problem described above regarding the size of the giant component.

C. Comparing the order in which edges are lost due

to cascade

Accurately modeling the damage done in an attack provides
substantial insight into a grid’s vulnerability. Sometimes, however, it
is also useful to know the order in which nodes or edges were lost,
as this information is used in certain vulnerability metrics.28,31,43One
caveat here, though, is that if the order of the nodes being lost di�ers
depending on the line limits, the results of such analyses will not be
reliable. In order to explore the robustness of loss order in relation to
line limits, we correlate the order in which nodes are lost during an
attack for arti�cial line limits with real line limits.

Tables II and III provide a toy example of howwe compare node-
loss order. First, k node-removal orders are generated. Then, all k
simulations are run using each line-limit type. Table III shows Simu-
lation 1 for the real line limits and a line limit of α = 3. In the table,
the bold numbers indicate a node that has been targeted for removal,
while the other nodes are removed by the cascade. We �nd the simi-
larity of network collapse by correlating the round lost of nodes that
were lost to cascade. This implies we exclude nodes that were targeted
for removal. As a result, in the example, only nodes F, G, and H can
be compared.

For each of the k simulations, we use Spearman’s correlation

ρk =
cov(rgx,k ,rgy,k)

σrgx,k
σrgy,k

, where rgx,k and rgy,k are the rank of xk and yk,

respectively, for the n nodes in the network, σ is the variance of the
rank of the nodes, and cov() is the covariance of the rank of the
nodes. In this case, xk is the vector of the node-removal rounds of

FIG. 1. Schematic of the node-removal process.
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TABLE II. The node-removal orders are randomly generated k times.

Node ID Sim 1 Sim 2 ·· · Sim k

A 1 4 ·· · 3
B 2 2 ·· · 8
C 3 1 ·· · 7
D 4 6 ·· · 6
E 5 5 ·· · 1
F 6 7 ·· · 2
G 7 8 ·· · 5
H 8 3 ·· · 4

the arti�cial line limit for Simulation k and yk is the vector of the
node-removal round for the real line limits for Simulation k. In the
example, this means x1 = 2, 4, 4 and y1 = 1, 3, 2, thereby yielding a
correlation of 0.866.

For the real experiment, we generate 100 attack orders for the
512 nodes, producing 100 correlation scores per line limit method.
This reveals the extent of similarity between the collapse order of the
arti�cial line limits and that of the real line limits

D. Comparing vulnerability ranking accuracy

The choice of the attack strategy can have a substantial impact
on results. Di�erent strategies damage the network at di�erent rates
throughout the attack. When comparing attack strategies, it may be
that only the relative performance is important. In this analysis, we
compare the ability of di�erent line-limit methods to accurately rank
attack strategies. We compare �ve di�erent attack strategies across

TABLE III. The numbers indicate the round in which the node was lost in Simulation

1 for the real limits and α= 3. Nodes that are shown bold were targeted for removal

and so are not included when calculating removal similarity.

Node ID Real limits α= 3

A 1 1
B 2 1
C 1 2
D 3 3
E 4 1
F 2 1
G 4 3
H 4 2

eight α values, the modeled limits, and the topological limits. The α

values used in this analysis are 1.05, 1.1,1.5, 2, 5, 10, 20, and 50.
The attack strategies we use in this analysis are a mixture

of topological methods and extended topology. The strategies are
entropic degree10 using line limit, entropic degree using initial power
�ow, degree, centrality, and electrical centrality.40 The centrality and
degree attack strategies prioritize the most central nodes. Entropic
degree using power �ow and electrical centrality generally prioritize
attacking the power sinks and the southern part of the UK. Entropic
degree line-limit lies between the centrality and electrical centrality
methods.

Using each attack strategy to de�ne the node-removal order, we
simulate an attack until we achieve complete grid collapse. After each
attack round (node removed), we rank the strategies by total blackout
size. The strategy that caused themost damage to the network is given

FIG. 2. UK power-grid voltage level
shown in geographical space and graph
space. The 132-V sections of the network
are much less densely connected than the
275- and 400-V sections.
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TABLE IV. Mean model coefficients from 10-fold cross-validation. Power flow and

Voltage coefficients are in 1000 s. Model outputs are in a log base 10 scale.

Coe�cients PF and Voltage model PF model

1 Intercept 1.84 2.71
2 PF (MW) 0.21 0.76
3 Voltage (kV) 3.84

Rank 1 and the strategy that caused the least damage is given Rank 5.
We then compare the rankings obtained by each arti�cial limit with
those obtained by the real line limits. Using RMSE, we evaluate which
line-limit method has the lowest error relative to the real line limits.

III. RESULTS

The results are divided into two sections. The �rst section
describes the results of the linear model used to generate line
limits, and the second section compares the performance of di�erent
arti�cial line limits to the real line limits.

A. Modeling line limits

We �rst create a linear model that predicts line limits. The vari-
ables used are voltage and initial power �ow. These variables create
two models, the PF model (power �ow model) and volt PF model
(voltage power �owmodel). The network is represented in Fig. 2 and
uses a UK geographical location and a graph space representation
using force expansion. As we only have a single network, we use ten-
fold cross-validation to train on 90% of the data and then predict

TABLE V. Accuracy of modeling line limits.

Model R2 RMSE MAPE

1 Volt power �ow 0.65 1026.00 0.45
2 Power �ow 0.13 4446.96 1.07

using the remaining 10%. The model coe�cients are all quite sta-
ble, with a proportionally small standard deviation. The coe�cients
were all positive across all folds. The volt PFmodel shows that as volt-
age increases so does the line limit. This is intuitive, as high-voltage
cables are often used for bulk-power transmission (see Table IV).

B. Comparing the performance of different line limits

An inspection of the power-grid tolerance distribution under
initial conditions shows that the system is not proportionally loaded.
Figure 3 depicts the α distribution of the power grid under initial
loading. The power grid has a mean of α = 5.12 and a median of
α = 6.12. These tolerances are much higher than those used in the
literature, which are typically less than two.We also compared the line
capacity against line load and found a load capacity relationship sim-
ilar to that found in Kim and Motter.25 That pattern is C − L ∼ Lτ ,
where C is the capacity, L is the line load, and τ is the network expo-
nential. This pattern persists when the data are broken out by voltage;
further details can be found in supplementary material S2.

Correlating PL (proportional loading) limits with real limits
yields an R2 of 0.5. Using a range of α values, we �nd that the mini-
mumMAPE (mean average percentage error) and RMSE (root mean

FIG. 3. The distribution of the loading is
left-skewed with a mean α of 5.12.
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FIG. 4. Mean damage done in terms of
giant-component and blackout size across
100 simulations, across all 13 α levels,
and the linear models. There is a log rela-
tionship between α and damage done for
a given number of elements attacked.

square error) are 0.52 and 1380 with α values of 3.6 and 3.5, respec-
tively. The volt PF model greatly outperforms all PL models and the
PF model (see Table V). The PF model has very poor performance
across all threemetrics, which shows that it is not an e�ectivemethod
to accurately represent line limits.

We explore the damage done during the random attack across
di�erent values of α. It is evident that α has a logarithmic relationship
with the damage for a given number of attacks. Figure 4 illustrates
that, for both damage metrics, the α levels only converge at grid
collapse and do not cross each other before that.

FIG. 5. The PF model has the lowest
RMSE with the real limits. However, the
volt PF model and α = 5 follow closely.
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FIG. 6. The standard deviation of the
attack damage across the 100 simula-
tions.

Figure 5 shows that, despite its poor ability to accurately
measure line limits, the PF model is the most accurate method of
measuring blackout size, with an RSME of 0.077. The volt PF model
performs slightly worse than the α = 5 (the system mean) in terms

of blackout size. These models have RMSE scores of 0.085 and 0.082,
respectively.

For the giant component, the volt PF model is the best
performer, with an RMSE error of 0.088. The volt PF model is

FIG. 7. The volt PF model has the
highest correlation. Correlation of edge
removal increases as α tends to infin-
ity, which is identical to the topological
analysis.
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FIG. 8. The damage done to the power grid by each attack strategy by the percentage of the grid attacked. As can be seen, the strategy rank can change as a higher
percentage of nodes is removed.

followed by α = 7 and α = 10, which have RMSE scores of 0.103 and
0.104, respectively. The PF model comes fourth with an RMSE score
of 0.117.

The error relationship between blackout size and optimum α

is intuitive, as it matches the average α of the real line limits. The
reason for the giant-component optimum α is less apparent and may
be linked to the topological structure. The linearmodels performwell
in both cases.

Next, we compare the standard deviation of damage across all
100 simulations. The volt PF and the PF only models have very sim-
ilar results with RMSE scores of 0.022 and 0.023, respectively. The
accuracy of the linear models comes from the ability to represent the
hump of the real limits shown in Fig. 6, something no value of α can
replicate.

When examining the RMSE of the standard deviation of the
damage of the giant component, we see that the volt PF model, the
PF only model, and α = 7 have similar scores, 0.018, 0.019 and 0.14,
respectively.

We compare the correlation of the order of node loss between
each arti�cial line limit and the real line limits. The correlation across

all 100 simulations is shown in Fig. 7. The �gure shows that, as α

increases, the node-loss order similarity increases following a loga-
rithmic growth curve with the topological analysis most similar to
the real line limits. The topological analysis has a mean correlation of
0.853, more than three times as high as α = 1.05, which has a mean
of 0.277. The α = 50model narrowly outperforms the volt PFmodel,
which have correlation scores of 0.847 and 0.842, respectively. The PF
model has a signi�cantly lower correlation score of 0.730.

Figure 8 shows plots of the damage caused by the �ve attack
strategies in four of the ten line-limit scenarios. As can be seen,
the rankings of the attack strategies change as the number of nodes
removed increases. We analyze how well each line-limit method
re�ects the relative performance of the attack strategies. We �nd that
the volt PFmodel (RMSE 0.638) comes out at the top, outperforming
the α = 5 (0.776), while the PF model (1.02) comes �fth, narrowly
beaten by α = 2 (0.971) and α = 10 (0.987) (see Fig. 9). The values
ofα of 1.5 or less have a considerably greater error in ranking di�erent
attack strategies.

The fact that the low α values are much worse at ranking the
performance of attack strategies is important, as the majority of PL
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FIG. 9. The α values equal to or lower
than two are particularly poor at ranking
attack strategies.

papers use α values of less than �ve. One reason for this may be that
the cascade size is bigger with lower α values.

An interesting �nding is that in this speci�c case the change in
α as the attack develops is minimized when the α is equal to the base
case α of the system using the real line limits. Figure 10 shows a large
drop in α during an attack, when the initial α of the system is much
higher than the true system mean α of 5.1. In contrast, the load level
( 1

α
) shows a large drop, during an attack, when the initial α of the

system ismuch lower than the true system α. When the initial α is set
close to the true system α, the sum of the change in α and load level,
1Total = 1α +1 1

α
, from initialization is minimized (see Fig. 11).

This indicates that there may be a relationship between the position
of an edge in the network topology and its line-limit, an idea related to
Elyas and Wang.26 Although no conclusions can be drawn from this
single result, it is included as it may be of value to other researchers.

IV. DISCUSSION

This study found that using linear models to estimate power-
grid line limits gives consistently high performance. The volt PF
model (voltage and power �ow model) performs very well across all
tests, while the PF model (power �ow only model) performs better
than most α values but is not outstanding. We �nd that the opti-
mum tolerance α is not consistent and changes depending on what
is being measured. Although α = 5, the value closest to the system
mean of α = 5.12 performed well; sometimes other α values, such
as 7 or topological, provided the best performance in speci�c anal-
yses. Results based on lower values of α may imply that the risk of
cascading blackouts in some networks is greater than it actually is
and provide a false indication of the robustness of power networks to
cascading failure.

An interesting �nding was that the ability of the linear model to
measure line limits does not re�ect the ability of the linear model to
accurately represent power-grid collapse behavior. Although the volt
PF model is much more accurate at estimating line limits, the PF is
more accurate at modeling blackout size during grid collapse. This
may be because the PF model makes large errors on edges that do
not overload and smaller errors on edges that do. If a line is unlikely
to overload, the limit is irrelevant. A complicating factor is that the
PF model has relatively poor correlation with the order in which the
nodes are lost. This result is probably related to the overloaded lines,
of which the PFmodel hasmore on average than the volt PFmodel or
the real line limits. Further research is needed to explore the relation-
ship between modeling line limits and modeling collapse damage,
particularly with regard to the importance of accurately identifying
lines that may overload. Further details on model performance may
be found in supplementary material S2.

A limitation of this paper is that it uses a static analysis of
cascading failures. Work that uses transient analysis of cascading
failures15,17,18 can show networks to be more vulnerable than static
analysis, as failures can occur due to synchronization issues. How-
ever, evidence suggests18 that if this analysis was run using transient
modeling, low values ofαwould bemore a�ected. As such, we believe
that the static nature of this analysis does not have a substantial
outcome on the results.

In this paper, we explored how line limits a�ect the collapse
behavior of the power grid using a single load pro�le which was
the base case load pro�le. Ideally cascading failure research uses a
range of load pro�les, such as di�erent time of day or season. Using
di�erent load pro�les enables researchers to draw more generally
applicable conclusions. However, this paper does not seek to �nd a
solution to any possible weaknesses in the UK power grid topology
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FIG. 10. When the PL value is much
higher than the true systemmean α, there
will be a large drop in the observedα value
as the attack develops. If the PL value is
much lower than α, then there will be a
drop in the 1

α
value as the attack devel-

ops. This indicates that there may be a link
between the topology of the network and
the edge line limit.

but instead to highlight the weaknesses of using proportional loading
in power grid analysis. Consequently, the availability of only a single
load pro�le is of less importance than it otherwise might have been,
as we can demonstrate the weaknesses of α with only a single load
pro�le.

Overall, we �nd that the line limits follow a simple linear model
using voltage and initial power �ow. Although the linear model has
only been trained using a single load pro�le and only a single power
network, it provides value as it is at a much more realistic system tol-
erance than arbitrarily selecting α because it uses the base load case

FIG. 11. By summing the absolute max-
imum difference in values for α and load
level, we find that the minimum value is
α = 5, which is also the closest simulated
value to the true mean α of 5.12.
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for the UK grid.Moreover, the volt PFmodel uses the fact that higher
voltage lines generally have more capacity to obtain information that
is independent of the initial power �ow state.

V. CONCLUSION

The title of this paper suggests that it is unwise to use arti�-
cial line limits when studying the collapse behavior of power grids
under attack. In fact, given the importance of arti�cial line limits
in this �eld, we merely propose that researchers must carefully con-
sider how they set these arti�cial line limits. This is because, as we
have shown, arti�cial line limits far from reality can produce results
which themselves are far from reality and do not represent real-grid
behavior. This study demonstrates the importance of using values
based on real engineered systems rather than arbitrary representa-
tions when researching cascading failures on the power grid. In cases
where researchers have no knowledge of the mean loading of the
network and α will be selected arbitrarily, we recommend using the
voltage power �ow model developed in this study. Use of this linear
model in conjunction with the network’s base load pro�le will reduce
the overall size of cascades (compared to a small value of α); however,
the evidence presented in this paper suggests that the results of anal-
yses using the model will be much more closely related to the real
behavior of the grid.

SUPPLEMENTARY MATERIAL

This paper includes two additional sections in the form of
supplementary materials S1 and S2. S1 provides more information
on the PEARL analysis framework and acts as partial documentation
for the associated R package. S2 provides a more in depth look at the
performance of themodels for researchers who are considering using
them.
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