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a b s t r a c t

This paper provides a method to construct simultaneous confidence bands for quantile
functions and quantile effects in nonlinear network and panel models with unobserved
two-way effects, strictly exogenous covariates, and possibly discrete outcome variables.
The method is based upon projection of simultaneous confidence bands for distribution
functions constructed from fixed effects distribution regression estimators. These fixed
effects estimators are debiased to deal with the incidental parameter problem. Under
asymptotic sequences where both dimensions of the data set grow at the same rate,
the confidence bands for the quantile functions and effects have correct joint coverage
in large samples. An empirical application to gravity models of trade illustrates the
applicability of the methods to network data.
©2020 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Standard regression analyzes average effects of covariates on outcome variables. In many applications it is equally
mportant to consider distributional effects. For example, a policy maker might be interested in the effect of an education
eform not only on the mean but also the entire distribution of test scores or wages. Availability of panel data is very useful
o identify ceteris paribus average and distributional effects because it allows the researcher to control for multiple sources
f unobserved heterogeneity that might cause endogeneity or omitted variable problems. The idea is to use variation of
he covariates over time for each individual or over individuals for each time period to account for unobserved individual
nd time effects. In this paper we develop inference methods for distributional effects in nonlinear models with two-way
nobserved effects. They apply not only to traditional panel data models where the unobserved effects correspond to
ndividual and time fixed effects, but also to models for other types of data where the unobserved effects reflect some
rouping structure such as unobserved sender and receiver effects in network data models. The unobserved effects will
e treated as fixed effects, i.e. parameters to be estimated, leaving their relation to observed covariates unrestricted.
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We develop inference methods for quantile functions and effects. The quantile function corresponds to the marginal
istribution of the outcome in a counterfactual scenario where the treatment covariate of interest is set exogenously
t a desired level and the rest of the covariates and unobserved effects are held fixed, extending the construction of
hernozhukov et al. (2013b) for the cross section case. The quantile effect is the difference of quantile functions at
wo different treatment levels. Our methods apply to continuous and discrete treatments by appropriate choice of the
reatment levels, and have causal interpretation under standard unconfoundedness assumptions for panel data. The
nference is based upon the generic method of Chernozhukov et al. (2020) that projects joint confidence bands for
istributions into joint confidence bands for quantile functions and effects. This method has the appealing feature that
pplies without modification to any type of outcome, let it be continuous, discrete or mixed.
The key input for the inference method is a joint confidence band for the counterfactual distributions at the

reatment levels of interest. We construct this band from fixed effects distribution regression (FE-DR) estimators of the
onditional distribution of the outcome given the observed covariates and unobserved effects. In doing so, we extend the
istribution regression approach to model conditional distributions with unobserved effects. This version of the DR model
s semiparametric because not only the DR coefficients can vary with the level of the outcome as in the cross section case,
ut also the distribution of the unobserved effects is left unspecified. We show that the FE-DR estimator can be obtained
s a sequence of binary response fixed effects estimators where the binary response is an indicator of the outcome passing
ome threshold. To deal with the incidental parameter problem associated with the estimation of the unobserved effects
Neyman and Scott, 1948), we extend the analytical bias corrections of Fernandez-Val andWeidner (2016) for single binary
esponse estimators to multiple (possibly a continuum) of binary response estimators. In particular, the main technical
ontribution is to establish functional central limit theorems for the fixed effects estimators of the DR coefficients and
ssociated counterfactual distributions, and show the validity of the bias corrections under asymptotic sequences where
he two dimensions of the data set pass to infinity at the same rate. As in the single binary response model, the bias
orrections remove the asymptotic bias of the fixed effects estimators without increasing their asymptotic variances.
We implement the inference method using multiplier bootstrap (Giné and Zinn, 1984). This version of bootstrap

onstructs draws of an estimator as weighted averages of its influence function, where the weights are independent from
he data. Compared to empirical bootstrap, multiplier bootstrap has the computational advantage that it does not involve
ny parameter reestimation. This advantage is particularly convenient in our setting because the parameter estimation
equires multiple nonlinear optimizations that can be highly dimensional due to the fixed effects. Multiplier bootstrap
s also convenient to account for data dependencies. In network data, for example, it might be important to account for
eciprocity or pairwise clustering. Reciprocity arises because observational units corresponding to the same pair of agents
ut reversing their roles as sender and receiver might be dependent even after conditioning on the unobserved effects.
y setting the weights of these observational units equal, we account for this dependence in the multiplier bootstrap.
n addition to the previous practical reasons, there are some theoretical reasons for choosing multiplier bootstrap.
hus, Chernozhukov et al. (2016) established bootstrap functional central limit theorems for multiplier bootstrap in high
imensional settings that cover the network and panel models that we consider.
The methods developed in this paper apply to models that include unobserved effects to capture grouping or clustering

tructures in the data such as models for panel and network data. These effects allow us to control for unobserved group
eterogeneity that might be related to the covariates causing endogeneity or omitted variable bias. They also serve to
arsimoniously account for dependencies in the data. We illustrate the wide applicability with an empirical example to
ravity models of trade. In this case the outcome is the volume of trade between two countries and each observational
nit corresponds to a country pair indexed by exporter country (sender) and importer country (receiver). We estimate the
istributional effects of gravity variables such as the geographical distance controlling for exporter and importer country
ffects that pick up unobserved heterogeneity possibly correlated with the gravity variables. We uncover significant
eterogeneity in the effects of distance and other gravity variables across the distribution, which is missed by traditional
ean methods. We also find that the Poisson model, which is commonly used in the trade literature to deal with zero

rade in many country pairs, does not provide a good approximation to the distribution of the volume of trade due to
eavy tails.

iterature review. Unlike mean effects, there are different ways to define distributional and quantile effects. For example,
e can distinguish conditional effects versus unconditional or marginalized effects, or quantile effects versus quantiles
f the effects. Here we give a brief review of the recent literature on distributional and quantile effects in panel data
odels emphasizing the following aspects: (1) type of effect considered; (2) type of unobserved effects in the model; and

3) asymptotic approximation. For the unobserved effects, we distinguish models with one-way effects versus two-way
ffects. For the asymptotic approximation we distinguish short panels with large N and fixed T versus long panels with
arge N and large T , where N and T denote the dimensions of the panel. We focus mainly on fixed effects approaches
where the unobserved effects are treated as parameters to be estimated, but also mention some correlated random effects
approaches that impose restrictions on the distribution of the unobserved effects. This paper deals with inference on
marginalized quantile effects in large panels with two-way effects, which has not been previously considered in the
literature. Indeed, to the best of our knowledge, it is the first paper to provide inference methods for quantile treatment
effects from panel and network models with two-way fixed effects.

Koenker (2004) introduced fixed effects quantile regression estimators of conditional quantile effects in large panel

models with one-way individual effects using shrinkage to control the variability in the estimation of the unobserved
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effects. Lamarche (2010) discussed the optimal choice of a tuning parameter in Koenker’s method. In the same framework,
Kato et al. (2012), Galvao et al. (2013), Kato and Galvao (2016) and Arellano and Weidner (2016) considered fixed effects
quantile regression estimators without shrinkage and developed bias corrections. All these papers require that T pass
to infinity faster than N , making it difficult to extend the theory to models with two-way individual and time effects.
Graham et al. (2009) found a special case where the fixed effects quantile regression estimator does not suffer of incidental
parameter problem. Machado and Santos Silva (2019) have recently proposed a method to estimate conditional quantile
effects in a location-scale model via moments.

In short panels, Rosen (2012) showed that a linear quantile restriction is not sufficient to point identify conditional
effects in a panel linear quantile regression model with unobserved individual effects. Chernozhukov et al. (2013a)
and Chernozhukov et al. (2015) discussed identification and estimation of marginalized quantile effects in nonsepa-
rable panel models with unobserved individual effects and location and scale time effects under a time homogeneity
assumption. They showed that the effects are point identified only for some subpopulations and characterized these
subpopulations. Graham et al. (2018) considered quantiles of effects in linear quantile regression models with two-
way effects. Finally, Abrevaya and Dahl (2008) and Arellano and Bonhomme (2016) developed estimators for conditional
quantile effects in linear quantile regression model with unobserved individual effects using correlated random effects
approaches. None of the previous quantile regression based methods apply to discrete outcomes.

Finally, we review previous applications of panel data methods to network data. These include Candelaria (2016), Char-
bonneau (2017), Cruz-Gonzalez et al. (2017), Dzemski (2019), Fernandez-Val and Weidner (2016), Wayne Yuan Gao
(2020), Graham (2016, 2017), Jochmans (2018), Toth (2017), and Yan et al. (2019), who developed methods for models
of network formation with unobserved sender and receiver effects for directed and undirected networks.1 None of these
apers consider estimation of quantile effects as the outcome variable is binary, whether or not a link is formed between
wo agents.

lan of the paper. Section 2 introduces the distribution regression model with unobserved effects for network and panel
ata, and describes the quantities of interest including model parameters, distributions, quantiles and quantile effects.
ection 3 discusses fixed effects estimation, bias corrections to deal with the incidental parameter problem, and uniform
nference methods. Section 4 provides asymptotic theory for the fixed effects estimators, bias corrections, and multiplier
ootstrap. Sections 5 and 6 report results of the empirical application to the gravity models of trade and a Monte Carlo
imulation calibrated to the application, respectively. The proofs of the main results are given in the Appendix, and
dditional technical results are provided in the Supplementary Appendix.

otation. For any two real numbers a and b, a ∨ b = max{a, b} and a ∧ b = min{a, b}. For a real number a, ⌊a⌋ denotes
he integer part of a. For a set A, |A| denotes the cardinality or number of elements of A.

. Model and parameters of interest

.1. Distribution regression model with unobserved effects

We observe the data set {(yij, xij) : (i, j) ∈ D}, where yij is a scalar outcome variable with region of interest Y , and xij is
vector of covariates with support X ⊆ Rdx .2 The variable yij can be discrete, continuous or mixed. The subscripts i and
index individuals and time periods in traditional panels, but they might index other dimensions in more general data
tructures. In our empirical application, for example, we use a panel where yij is the volume of trade between country i
nd country j, and xij includes gravity variables such as the distance between country i and country j. Both i and j index
ountries as exporters and importers respectively. The set D contains the indexes of the pairs (i, j) that are observed. It
s a subset of the set of all possible pairs D0 := {(i, j) : i = 1, . . . , I; j = 1, . . . , J}, where I and J are the dimensions of the
panel. We introduce D to allow for certain forms of missing data that are common in panel and network applications, see
Assumption 1(v) in Section 4. For example, in the trade application I = J and D = D0 \ {(i, i) : i = 1, . . . , I} because we
do not observe trade of a country with itself. We denote the total number of observed units by n, i.e. n = |D|.

Let vi and wj denote vectors of unspecified dimension that contain unobserved random variables or effects that
might be related to the covariates xij. In traditional panels, vi are individual effects that capture unobserved individual
heterogeneity and wj are time effects that account for aggregate shocks. More generally, these variables serve to capture
some forms of endogeneity and group dependencies in a parsimonious fashion. We specify the conditional distribution
of yij given (xij, vi, wj) using the distribution regression (DR) model with unobserved effects

Fyij (y | xij, vi, wj) = Λy(P(xij)′β(y)+ α(vi, y)+ γ (wj, y)), y ∈ Y, (i, j) ∈ D, (1)

where Λy is a known link function such as the normal or logistic distribution, which may vary with y, x ↦→ P(x)
is a dictionary of transformations of x such us polynomials, b-splines and tensor products, β(y) is an unknown
parameter vector, which can vary with y, and (v, y) ↦→ α(v, y) and (w, y) ↦→ γ (w, y) are unspecified measur-
able functions. This DR model is a semiparametric model for the conditional distribution because y ↦→ θ (y) :=

1 We refer to de Paula (2020) for an excellent up to date review on this topic.
2 If y has unbounded support, then the region Y is usually a subset of the support to avoid tail estimation.
ij
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(β(y), α(v1, y), . . . , α(vI , y), γ (w1, y), . . . , γ (wJ , y)) is a function-valued parameter and the dimension of θ (y) varies with
and J , although we do not make this dependence explicit. We shall treat the dimension of P(x) as fixed and set Λy equal
o the logistic distribution for all y in the asymptotic analysis.

When yij is continuous, the model (1) has the following representation as an implicit nonseparable model by the
robability integral transform

Λyij (P(xij)
′β(yij)+ α(vi, yij)+ γ (wj, yij)) = uij, uij | xij, vi, wj ∼ U(0, 1),

here the error uij represents the unobserved ranking of the observation yij in the conditional distribution. The parameters
f the model are related to derivatives of the conditional quantiles. Let Qyij (u | xij, vi, wj) be the u-quantile of yij conditional
n (xij, vi, wj) defined as the left-inverse of y ↦→ Fyij (y | xij, vi, wj) at u, namely

Qyij (u | xij, vi, wj) = inf{y ∈ Y : Fyij (y | xij, vi, wj) ≥ u} ∧ sup{y ∈ Y},

nd xij = (x1ij, . . . , x
dx
ij ).

3 Then, it can be shown that if y ↦→ Fyij (y | xij, vi, wj) is strictly increasing in the support of yij,
Λy(z)/∂z > 0 for all y in the support of yij and xij ↦→ Qyij (u | xij, vi, wj) is differentiable,4

∂xkij
P(xij)′β(y)

⏐⏐⏐
y=Qyij (u|xij,vi,wj)

∝ −∂xkij
Qyij (u | xij, vi, wj), k = 1, . . . , dx, ∂xkij

:= ∂/∂xkij.

If P(xij) = xij, then ∂xkijP(xij)
′β(y) = βk(y) such that

βℓ(y)
βk(y)

⏐⏐⏐⏐
y=Qyij (u|xij,vi,wj)

=

∂xℓij
Qyij (u | xij, vi, wj)

∂xkij
Qyij (u | xij, vi, wj)

, ℓ, k = 1, . . . , dx,

provided that ∂xkijQyij (u | xij, vi, wj) ̸= 0. The DR coefficients therefore are proportional to (minus) derivatives of the
conditional quantile function, and ratios of DR coefficients correspond to ratios of derivatives.

Remark 1 (Parametric Models). There are many parametric models that are special cases of the DR model. Thus, Cher-
nozhukov et al. (2013b) and Chernozhukov et al. (2020) showed that the standard linear model, Cox proportional hazard
model and Poisson regression model are encompassed by the DR model in the cross section case. These inclusions carry
over to the panel versions of these models with two-way unobserved effects. ■

2.2. Estimands

In addition to the model parameter β(y), we are interested in measuring the effect on the outcome of changing one of
the covariates holding the rest of the covariates and the unobserved effects fixed. Let x = (t, z ′)′, where t is the covariate
of interest or treatment and z are the rest of the covariates that usually play the role of controls. One effect of interest is
the quantile (left-inverse) function (QF)

Qk(τ ) = F←k (τ ) := inf{y ∈ Y : Fk(y) ≥ τ } ∧ sup{y ∈ Y}, τ ∈ (0, 1),

where

Fk(y) = n−1
∑

(i,j)∈D

Λy(P(tkij, z
′

ij)
′β(y)+ α(vi, y)+ γ (wj, y)),

tkij is a level of the treatment that may depend on tij, and k ∈ {0, 1}. We provide examples below. Note that in the
construction of the counterfactual distribution Fk, we marginalize (xij, vi, wj) using the empirical distribution. The resulting
effects are finite population effects. We shall focus on these effects because conditioning on the covariates and unobserved
effects is natural in the trade application.5 We construct the quantile effect function (QEF) by taking differences of the QF
at two treatment levels

∆(τ ) = Q1(τ )− Q0(τ ), τ ∈ (0, 1).

3 We use the convention inf{∅} = +∞.
4 Indeed, Λy(P(xij)′β(y)+ α(vi, y)+ γ (wj, y)) = u at y = Qyij (u | xij, vi, wj). Differencing this expression with respect to xkij yields

∂xkij
P(xij)′β(y)

⏐⏐⏐
y=Qyij (u|xij,vi,wj)

= −
∂Λy

(
P(xij)′β(y)+ α(vi, y)+ γ (wj, y)

)
/∂y

λy
(
P(xij)′β(y)+ α(vi, y)+ γ (wj, y)

) ⏐⏐⏐⏐⏐
y=Qyij (u|xij,vi,wj)

∂xkij
Qyij (u | xij, vi, wj),

where λy(z) = ∂Λy(z)/∂z. Note that the first term of the right hand side does not depend on k and is positive because y ↦→ Fyij (y | xij, vi, wj) =
y(P(xij)′β(y)+ α(vi, y)+ γ (wj, y)) is strictly increasing at y = Qyij (u | xij, vi, wj).
5 The distinction between finite and infinite population effects does not affect estimation, but affects inference (Abadie et al., 2020). The estimators
f infinite population effects need to account for the additional sampling variation coming from the estimation of the distribution of (x , v , w ).
ij i j
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We can also obtain the average effect using the relationship between averages and distributions. Thus, the average
ffect is

∆ = µ1 − µ0,

where µk is the counterfactual average obtained from Fk as

µk =

∫
[1(y ≥ 0)− Fk(y)] dy, k ∈ {0, 1}. (2)

The integral in (2) is over the real line, but the formula nevertheless is applicable to the case where the support of dFk is
discrete or mixed.

The choice of the levels t0ij and t1ij is usually based on the scale of the treatment:

• If the treatment is binary, ∆(τ ) is the τ -quantile treatment effect with t0ij = 0 and t1ij = 1.
• If the treatment is continuous, ∆(τ ) is the τ -quantile effect of a unitary or one standard deviation increase in the

treatment with t0ij = tij and t1ij = tij + d, where d is 1 or the standard deviation of tij.
• If the treatment is the logarithm of a continuous treatment, ∆(τ ) is the τ -quantile effect of doubling the treatment

(100% increase) with t0ij = tij and t1ij = tij + log 2.

For example, in the trade application we use the levels t0ij = 0 and t1ij = 1 for binary covariates such as the indicators for
common legal system and free trade area, and t0ij = tij and t1ij = tij + log 2 for the logarithm of distance.

All the previous estimands have causal interpretation under the standard unconfoundedness or conditional inde-
pendence assumption for panel data where the conditioning set includes not only the observed controls but also the
unobserved effects.

3. Fixed effects estimation and uniform inference

To simplify the notation in this section we write P(xij) = xij without loss of generality, and define αi(y) := α(vi, y) and
j(y) := γ (wj, y).

.1. Fixed effects distribution regression estimator

The parameters of the DR model can be estimated from multiple binary regressions with two-way effects. To see this,
ote that the conditional distribution in (1) can be expressed as

Λy(x′ijβ(y)+ αi(y)+ γj(y)) = E[1{yij ≤ y} | xij, vi, wj].

ccordingly, we can construct a collection of binary variables,

1{yij ≤ y}, (i, j) ∈ D, y ∈ Y,

and estimate the parameters for each y by conditional maximum likelihood with fixed effects. Thus, θ̂ (y) := (̂β(y),
α1(y), . . . , α̂I (y), γ̂1(y), . . . , γ̂J (y)), the fixed effects distribution regression estimator of θ (y) := (β(y), α1(y), . . . , αI (y),
1(y), . . . , γJ (y)), is obtained as

θ̂ (y) ∈ argmax
θ∈Rdx+I+J

∑
(i,j)∈D

(
1{yij ≤ y} logΛy(x′ijβ + αi + γj)+ 1{yij > y} log[1−Λy(x′ijβ + αi + γj)]

)
, (3)

or y ∈ Y . When the link function is the normal or logistic distribution, the previous program is concave and smooth
n parameters and therefore has good computational properties. See Fernandez-Val and Weidner (2016), Cruz-Gonzalez
t al. (2017) and Stammann (2017) for a discussion on computation of logit and probit regressions with two-way effects
nd available software.
The quantile functions and effects are estimated via plug-in rule, i.e.,

Q̂k(τ ) = F̂←k (τ ) ∧ sup{y ∈ Y}, τ ∈ (0, 1), k ∈ {0, 1},

here

F̂k(y) = n−1
∑

(i,j)∈D

Λy((tkij, z
′

ij)
′β̂(y)+ α̂i(y)+ γ̂j(y)), y ∈ Y,

nd

∆̂(τ ) = Q̂1(τ )− Q̂0(τ ) τ ∈ (0, 1).
5
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Remark 2 (Computation). When Y is not finite, we replace Y by a finite subset Ȳ . Theoretically, this approximation works
rovided that the Hausdorff distance between Ȳ and Y goes to zero at a rate faster than 1/

√
n. In practice, if Y is an

nterval [y, ȳ], Ȳ can be a fine mesh of
√
n log log n equidistant points covering Y , i.e., Ȳ = {y, y + d, y + 2d, . . . , ȳ} for

= (ȳ − y)/(
√
n log log n). Alternatively, if Y is the support of yij, Ȳ can be a grid of

√
n log log n sample quantiles with

quidistant indexes.

.2. Incidental parameter problem and bias corrections

Fixed effects estimators can be severely biased in nonlinear models because of the incidental parameter problem
Neyman and Scott, 1948). These models include the binary regressions that we estimate to obtain the DR coefficients
nd estimands. We deal with the incidental parameter problem using the analytical bias corrections of Fernandez-Val
nd Weidner (2016) for parameters and average partial effects (APE) in binary regressions with two-way effects. We note
ere that the distributions F0(y) and F1(y) can be seen as APE, i.e., they are averages of functions of the data, unobserved
ffects and parameters.
The bias corrections are based on expansions of the bias of the fixed effects estimators as I, J → ∞. For example,

Theorem 1 shows that

E[̂Fk(y)− Fk(y)] =
I
n
B(F )
k (y)+

J
n
D(F )
k (y)+ R(F )

k (y), (4)

where nR(F )
k (y) = o(I ∨ J).6 In Section 4 we establish that this expansion holds uniformly in y ∈ Y and k ∈ {0, 1}, i.e.,

sup
k∈{0,1},y∈Y

∥nR(F )
k (y)∥ = o(I ∨ J).

This result generalizes the analysis of Fernandez-Val and Weidner (2016) from a single binary regression to multiple
(possibly a continuum) of binary regressions. This generalization is required to implement our inference methods for
quantile functions and effects.

The expansion (4) is the basis for the bias corrections. Let B̂(F )
k (y) and D̂(F )

k (y) be estimators of B(F )
k (y) and D(F )

k (y), which
re uniformly consistent in y ∈ Y and k ∈ {0, 1}. Bias corrected fixed effects estimators of Fk and Qk are formed as

Q̃k(τ ) = F̃←k (τ ) ∧ sup{y ∈ Y},

F̃k(y) = F̂k(y)−
I
n
B̂k(y)−

J
n
D̂k(y), y ∈ Y.

We also use the corrected estimators F̃k as the basis for inference and to form a bias corrected estimator of the average
effect.

Remark 3 (Shape Restrictions). If the bias corrected estimator y ↦→ F̃k(y) is non-monotone on Y , we can rearrange it into
monotone function by simply sorting its values in nondecreasing order. Chernozhukov et al. (2009) showed that the

earrangement improves the finite sample properties of the estimator. Similarly, if the F̃k(y) takes values outside of [0, 1],
insorizing its range to this interval improves the finite sample properties of the estimator (Chen et al., 2018). ■

.3. Uniform inference

One inference goal is to construct confidence bands that cover the QF τ ↦→ Qk(τ ) and the QEF τ ↦→ ∆(τ ) simultaneously
ver a set of quantiles T ⊆ [ε, 1 − ε], for some 0 < ε < 1/2, and treatment levels k ∈ K ⊆ {0, 1}. The set T is chosen
uch that Qk(τ ) ∈ [inf{y ∈ Y}, sup{y ∈ Y}], for all τ ∈ T and k ∈ K.
We use the generic method of Chernozhukov et al. (2020) to construct confidence bands for quantile functions and

ffects from confidence bands for the corresponding distributions. Let D denote the space of weakly increasing functions,
apping Y to [0, 1]. Assume we have a confidence band Ik = [Lk,Uk] for Fk, with lower and upper endpoint functions
↦→ Lk(y) and y ↦→ Uk(y) such that Lk,Uk ∈ D and Lk(y) ≤ Uk(y) for all y ∈ Y .7 We say that Ik covers Fk if Fk ∈ Ik pointwise,
amely Lk(y) ≤ Fk(y) ≤ Uk(y) for all y ∈ Y . If Uk and Lk are some data-dependent bands, we say that Ik is a confidence
and for Fk of level p, if Ik covers Fk with probability at least p. Similarly, we say that the set of bands {Ik : k ∈ K} is a joint
onfidence band for the set of functions {Fk : k ∈ K} of level p, if Ik covers Fk with probability at least p simultaneously
ver k ∈ K. The index set K can be a singleton to cover individual confidence bands or K = {0, 1} to cover joint confidence
ands. In Section 4 we provide a multiplier bootstrap algorithm for computing joint confidence bands based on the joint
symptotic distribution of the bias corrected estimators {̃Fk : k ∈ K}.
The following result provides a method to construct joint confidence bands for {Qk = F←k : k ∈ K}, from joint

onfidence bands for {Fk : k ∈ K}.

6 Fernandez-Val and Weidner (2016) considered the case where n = IJ , i.e., there is no missing data, so that I/n = 1/J and J/n = 1/I .
7 If [L′k,U

′

k] is a confidence band for Fk that does not obey the constraint L′k,U
′

k ∈ D, we can transform [L′k,U
′

k] into a new band [Lk,Uk] such that

k,Uk ∈ D using the rearrangement method of Chernozhukov et al. (2009).

6
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Lemma 1 (Chernozhukov et al. (2016, Thm. 2(1))). Consider a set of distribution functions {Fk : k ∈ K} and endpoint functions
{Lk : k ∈ K} and {Uk : k ∈ K} with components in the class D. If {Fk : k ∈ K} is jointly covered by {Ik : k ∈ K} with probability
p, then {Qk = F←k : k ∈ K} is jointly covered by {I←k : k ∈ K} with probability p, where

I←k (τ ) := [U←k (τ ), L←k (τ )], τ ∈ T , k ∈ K.

This lemma establishes that we can construct confidence bands for quantile functions by inverting the endpoint
functions of confidence bands for distribution functions. The geometric intuition is that the inversion amounts to rotate
and flip the bands, and these operations preserve coverage.

We next construct simultaneous confidence bands for the quantile effect function τ ↦→ ∆(τ ) defined by

∆(τ ) = Q1(τ )− Q0(τ ) = F←1 (τ )− F←0 (τ ), τ ∈ T .

The basic idea is to take appropriate differences of the bands for the quantile functions Q1 and Q0 as the confidence band
for the quantile effect. Specifically, suppose we have the set of confidence bands {I←k = [U

←

k , L
←

k ] : k = 0, 1} for the set of
unctions {F←k : k = 0, 1} of level p. Chernozhukov et al. (2020) showed that a confidence band for the difference Q1−Q0
of size p can be constructed as [U←1 − L←0 , L

←

1 − U←0 ], i.e., I
←

1 ⊖ I←0 where ⊖ is the pointwise Minkowski difference.

Lemma 2 (Chernozhukov et al. (2016, Thm. 2(2))). Consider a set of distribution functions {Fk : k = 0, 1} and endpoint
functions {Lk : k = 0, 1} and {Uk : k = 0, 1}, with components in the class D. If the set of distribution functions {Fk : k = 0, 1}
is jointly covered by the set of bands {Ik : k = 0, 1} with probability p, then the quantile effect function ∆ = F←1 − F←0 is
covered by I←∆ with probability at least p, where I←∆ is defined by:

I←∆ (τ ) := [U←1 (τ ), L←1 (τ )] ⊖ [U←0 (τ ), L←0 (τ )] = [U←1 (τ )− L←0 (τ ), L←1 (τ )− U←0 (τ )], τ ∈ T .

4. Asymptotic theory

This section derives the asymptotic properties of the fixed effect estimators of y ↦→ β(y) and {Fk : k ∈ K}, as
both dimensions I and J grow to infinity. We focus on the case where the link function is the logistic distribution at
all levels, Λy = Λ, where Λ(ξ ) = (1 + exp(−ξ ))−1. We choose the logistic distribution for analytical convenience.
In this case the Hessian of the log-likelihood function does not depend on yit , leading to several simplifications in the
asymptotic expansions. In particular, there are various terms that drop out from the second order expansions that we use
to characterize the structure of the incidental parameter bias of the estimators β̂(y) and F̂ (y). For the case of single binary
regressions, Fernandez-Val and Weidner (2016) showed that the properties of fixed effects estimators are similar for the
logistic distribution and other smooth log-concave distributions such as the normal distribution. Accordingly, we expect
that our results can be extended to other link functions, but at the cost of more complicated proofs and derivations to
account for additional terms.

We make the following assumptions:

Assumption 1 (Sampling and Model Conditions).

(i) Sampling: The outcome variable yij is independently distributed over i and j conditional on all the observed and
unobserved covariates CB := {(xij, vi, wj) : (i, j) ∈ D}.

(ii) Model: For all y ∈ Y ,

Fyij (y | CB) = Fyij (y | xij, vi, wj) = Λ(x′ijβ(y)+ α(vi, y)+ γ (wj, y)),

where y ↦→ β(y), y ↦→ α(·, y) and y ↦→ γ (·, y) are measurable functions.
(iii) Compactness: the support X of xij is compact, and α(vi, y) and γ (wj, y) are bounded uniformly over i, j, I , J and y ∈ Y .
(iv) Compactness and smoothness: Either Y is a discrete finite set, or Y ⊂ R is a bounded interval. In the latter case,

we assume that the conditional density function fyij (y | xij, vi, wj) exists, is uniformly bounded above and away from
zero, and is uniformly continuous in y on the interior of Y , uniformly over the support of (xij, vi, wj).

(v) Missing data: There is only a fixed number of missing observations for every i and j, that is, maxi(J − |{(i′, j′) ∈ D :
i′ = i}|) ≤ c2 and maxj(I − |{(i′, j′) ∈ D : j′ = j}|) ≤ c2 for some constant c2 <∞ that is independent of the sample
size.

(vi) Non-collinearity: The regressors xij are non-collinear after projecting out the two-way fixed effects, that is, there
exists a constant c3 > 0, independent of the sample size, such that

min
{δ∈Rdx : ∥δ∥=1}

min
(a,b)∈RI+J

⎡⎣1
n

∑
(i,j)∈D

(x′ijδ − ai − bj)2

⎤⎦ ≥ c3.

(vii) Asymptotics: We consider asymptotic sequences where In, Jn →∞ with In/Jn → c for some positive and finite c , as
the total sample size n→∞. We drop the indexing by n from In and Jn, i.e. we shall write I and J .
7
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Remark 4 (Assumption 1). Part (i) holds if (yij, xij) is i.i.d. over i and j, vi is i.i.d. over i, and wj is i.i.d. over j; but it is more
eneral as it does not restrict the distribution of (xij, vi, wj) nor its dependence across i and j. We show how to relax this
ssumption allowing for a form of weak conditional dependence in Section 4.4. Part (ii) holds if the observed covariates
re strictly exogenous conditional on the unobserved effects and the conditional distribution is correctly specified for all
∈ Y . We expect that our theory carries over to predetermined or weakly exogenous covariates that are relevant in panel
ata models, following the analysis of Fernandez-Val and Weidner (2016). We focus on the strict exogeneity assumption
ecause it is applicable to both panel and network data, and leave the extension to weak exogeneity to future research.
art (iii) imposes that the covariates xij and unobserved effects α(vi, y) and γj(wj, y) are all uniformly bounded. For fixed
alues y it is possible to obtain asymptotic results of our estimators without the compact support assumption, see e.g.
an et al. (2019), but deriving empirical process results that hold uniformly over y is much more involved without this
ssumption. The compact support assumption guarantees that the conditional probabilities of the events {yij ≤ y} are
ounded away from zero and one, that is, the network of binarized outcomes 1{yij ≤ y} is assumed to be dense. In the
etwork econometrics literature, Charbonneau (2017), Graham (2017) and Jochmans (2018) provide methods that are
lso applicable to sparse networks. Part (iv) can be slightly weakened to Lipschitz continuity with uniformly bounded
ipschitz constant, instead of differentiability. It covers discrete, continuous, and mixed outcomes with mass points at
he boundary of the support such as censored variables. For the mixed outcomes, the data generating process for the
ass points can be arbitrarily different from the rest of the support because the density y ↦→ fyij (y | ·) only needs to be
ontinuous on the interior of Y . Part (v) of the assumption allows for a finite (and asymptotically bounded) number of
issing observations for each unit i, and each unit j. For example, in the trade network example only the observations
ith i = j are missing, implying that there is one missing observation for every i and for every j, i.e. c2 = 1. If the panel

s balanced, part (vi) can be stated as

1
IJ

I∑
i=1

J∑
j=1

x̃ij̃x′ij ≥ c3 Idx ,

here x̃ij = xij−xi·−x·j+x··, xi· = J−1
∑J

j=1 xij, x·j = I−1
∑I

i=1 xij, and x·· = (IJ)−1
∑I

i=1
∑J

j=1 xij. This is the typical condition
in linear panel models requiring that all the covariates display variation in both dimensions. The asymptotic sequences
considered in part (vii) exactly balance the order of the bias and standard deviation of the fixed effect estimator yielding
a non-degenerate asymptotic distribution. ■

4.1. Asymptotic distribution of the uncorrected estimator

We introduce first some further notation. Denote the qth derivatives of the cdf Λ by Λ(q), and define Λ(q)
ij (y) =

Λ(q)(x′ijβ(y) + αi(y) + γj(y)) and Λ(q)
ij,k(y) = Λ(q)(x′ij,kβ(y) + αi(y) + γj(y)) with xij,k := (tkij, z

′

ij)
′ and q = 1, 2, . . .. For

ℓ ∈ {1, . . . , dx} define the following projections of the ℓ’th covariate xℓij,

(
αℓx (y), γ

ℓ
x (y)

)
∈ arg min

(a,c)∈RI+J

⎡⎣ ∑
(i,j)∈D

Λ
(1)
ij (y)

(
xℓij − ai − cj

)2⎤⎦ , (5)

and let αx,i(y) and γx,j(y) be the dx-vectors with components αℓx,i(y) and γ
ℓ
x,j(y), where αℓx,i(y) is the ith component of αℓx (y)

and γ ℓx,j(y) is the jth component of γ ℓx (y). Also define x̃ij(y) = xij−αx,i(y)−γx,j(y) and x̃ij,k(y) = xij,k−αx,i(y)−γx,j(y). Notice
that x̃ij,k(y) is defined using projections of xij instead of xij,k. Also, while the locations of αx,i(y) and γx,j(y) are not identified,
xij(y) and x̃ij,k(y) are uniquely defined. Analogous to the projection of xℓij above, we define Ψij,k(y) = αΨi (y)+γ Ψj (y), where

(
αΨ (y), γ Ψ (y)

)
∈ arg min

(a,c)∈RI+J

⎡⎣ ∑
(i,j)∈D

Λ
(1)
ij (y)

(
Λ

(1)
ij,k(y)

Λ
(1)
ij (y)

− ai − cj

)2
⎤⎦ . (6)

or example, if xij,k = xij, then Ψij,k(y) = 1. Furthermore, we define8

W (y) =
1
n

∑
(i,j)∈D

Λ
(1)
ij (y) x̃ij(y) x̃ij(y)′, ∂βFk(y) =

1
n

∑
(i,j)∈D

Λ
(1)
ij,k(y) x̃ij,k(y) ′,

and

B(β)(y) = −
1
2
W−1(y)

[
1
I

I∑
i=1

∑
j∈Di

Λ
(2)
ij (y) x̃ij(y)∑

j∈Di
Λ

(1)
ij (y)

]
,

8 The FOC of problem (5) implies that
∑

(i,j)∈D Λ
(1)
ij,k(y) x̃ij(y)

′
= 0, and we can therefore equivalently write ∂βFk(y) = 1

n

∑
(i,j)∈D Λ

(1)
ij,k(y)[̃

x (y)− x̃ (y)
] ′
=

1 ∑ Λ
(1) (y)

[
x (y)− x (y)

] ′
.
ij,k ij n (i,j)∈D ij,k ij,k ij

8
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D(β)(y) = −
1
2
W−1(y)

⎡⎣1
J

J∑
j=1

∑
i∈Dj

Λ
(2)
ij (y) x̃ij(y)∑

i∈Dj
Λ

(1)
ij (y)

⎤⎦ ,
B(Λ)
k (y) =

1
2 I

I∑
i=1

∑
j∈Di

[
Λ

(2)
ij,k(y)−Λ

(2)
ij (y)Ψij,k(y)

]
∑

j∈Di
Λ

(1)
ij (y)

,

D(Λ)
k (y) =

1
2 J

J∑
j=1

∑
i∈Dj

[
Λ

(2)
ij,k(y)−Λ

(2)
ij (y)Ψij,k(y)

]
∑

i∈Dj
Λ

(1)
ij (y)

,

where Di := {(i′, j′) ∈ D : i′ = i} and Dj := {(i′, j′) ∈ D : j′ = j} are the subsets of observational units that contain
the index i and j, respectively. In the previous expressions, ∂βFk(y) is a 1 × dx vector for each k ∈ K that we stack in
he |K| × dx matrix ∂βF (y) = [∂βFk(y) : k ∈ K]. Similarly, Fk(y), B

(Λ)
k (y), D(Λ)

k (y) and Ψij,k(y) are scalars for each k ∈ K,
hat we stack in the |K| × 1 vectors F (y) = [Fk(y) : k ∈ K], B(Λ)(y) = [B(Λ)

k (y) : k ∈ K], D(Λ)(y) = [D(Λ)
k (y) : k ∈ K],

ij(y) = [Ψij,k(y) : k ∈ K].
Let ℓ∞(Y) be the space of real-valued bounded functions on Y equipped with the sup-norm ∥ ·∥Y , and ⇝ denote weak

onvergence (in distribution). We establish a functional central limit theorem for the fixed effects estimators of y ↦→ β(y)
nd y ↦→ F (y) in Y . All stochastic statements are conditional on {(xij, vi, wj) : (i, j) ∈ D}.

Theorem 1 (FCLT for Fixed Effects DR Estimators). Let Assumption 1 hold. For all y1, y2 ∈ Y with y1 ≥ y2 we assume the
existence of

V (y1, y2) = plim
n→∞

1
n

∑
(i,j)∈D

Λij(y1)
[
1−Λij(y2)

]
x̃ij(y1) x̃ij(y2)′,

Ω(y1, y2) = plim
n→∞

1
n

∑
(i,j)∈D

Λij(y1)
[
1−Λij(y2)

]
Ξij(y1)Ξij(y2)′,

here Ξij(y) = Ψij(y) + ∂βF (y)W−1(y) x̃ij(y). Let V (y2, y1) := V (y1, y2)′, Ω(y2, y1) := Ω(y1, y2)′, and W (y1) := V (y1, y1).
hen, in the metric space ℓ∞(Y)dx ,

√
n
[
β̂(y)− β(y)−

I
n
B(β)(y)−

J
n
D(β)(y)

]
⇝ Z (β)(y),

and, in the metric space ℓ∞(Y)|K|,

√
n

⎧⎪⎪⎨⎪⎪⎩F̂ (y)− F (y)−
I
n

[
B(Λ)(y)+ (∂βF (y))B(β)(y)

]  
B(F )(y)

−
J
n

[
D(Λ)(y)+ (∂βF (y))D(β)(y)

]  
D(F )(y)

⎫⎪⎪⎬⎪⎪⎭ ⇝ Z (F )(y),

as stochastic processes indexed by y ∈ Y , where y ↦→ Z (β)(y) and y ↦→ Z (F )(y) are tight zero-mean Gaussian processes with
covariance functions (y1, y2) ↦→ W

−1
(y1) V (y1, y2) W

−1
(y2) and (y1, y2) ↦→ Ω(y1, y2), respectively.

Assumption 1(vi) guarantees the invertibility of W (y) and W (y). Notice that W (y) is equal to the limit of W (y) because
(1)
ij (y) = Λij(y)

[
1−Λij(y)

]
by the properties of the logistic distribution. This information equality follows by the correct

pecification condition in Assumption 1(ii). By Assumption 1(v), we could have used
√
IJ instead of

√
n, 1/J instead of I/n,

nd 1/I instead of J/n. However, if the panel is not balanced, then we expect the expressions in the theorem to provide
more accurate finite-sample approximation, because the standard deviation of the estimates will generally be of order
/
√
n for unbalanced panels, and the leading order incidental parameter biases are generally proportional to the number

of incidental parameters (I and J here) divided by the total sample size n, see e.g. Fernandez-Val and Weidner (2018).

Remark 5 (Comparison with Binary Response Models). Fernandez-Val and Weidner (2016) derived central limit theorems
(CLTs) for the fixed effects estimators of coefficients and APEs in panel regressions with two-way effects. Pointwise, for
given y ∈ Y , Theorem 1 yields these CLTs. Moreover, it covers multiple binary regressions by establishing the limiting
distribution of β̂(y) and F̂ (y) treated as stochastic processes indexed by y ∈ Y . This generalization is key for our inference
results and does not follow from well-known empirical process results. We need to deal with a double asymptotic
approximation where both I and J grow to infinity, and to bound all the remainder terms in the second order expansions
used by Fernandez-Val and Weidner (2016) uniformly over y ∈ Y . We refer to the appendix and supplementary material
for more details. ■
9
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Remark 6 (Case xij,k = xij). When xij,k = xij, that is, when the counterfactual values are equal to the observed values, then
the asymptotic bias of F̂k vanishes, because B(Λ)

k (y) = D(Λ)
k (y) = 0, and ∂βFk(y) = 0 (see footnote 8). In fact, in that case F̂k

is equal to the empirical distribution function, namely

F̂k(y) =
1
n

∑
(i,j)∈D

Λ(x′ijβ̂(y)+ α̂i(y)+ γ̂j(y)) =
1
n

∑
(i,j)∈D

1{yij ≤ y},

by the first order conditions of the fixed effects logit DR estimator with respect to the fixed effect parameters. This property
provides another appealing feature to choose the logistic distribution. ■

4.2. Bias corrections

Theorem 1 shows that the fixed effects DR estimator has asymptotic bias of the same order as the asymptotic standard
deviation under the approximation that we consider. The finite-sample implications are that this estimator can have
substantial bias and that confidence regions constructed around it can have severe undercoverage. We deal with these
problems by removing the first order bias of the estimator.

We estimate the bias components using the plug-in rule. Define Λ̂(q)
ij (y) = Λ(q)(x′ijβ̂(y) + α̂i(y) + γ̂j(y)) and Λ̂

(q)
ij,k(y) =ˆ(q)(x′ij,kβ̂(y)+ α̂i(y)+ γ̂j(y)). Replacing Λ

(1)
ij (y) and Λ(1)

ij,k(y) by Λ̂
(1)
ij (y) and Λ̂(1)

ij,k(y) in the definitions of αℓx (y), γ
ℓ
x (y), α

Ψ (y),
nd γ Ψ (y) yields the corresponding estimators. We plug-in these estimators to obtain x̂ij(y) = xij − α̂x,i(y) − γ̂x,j(y),
ij,k(y) = xij,k − α̂x,i(y)− γ̂x,j(y), and Ψ̂ij,k(y) = α̂Ψi (y)+ γ̂ Ψj (y). Then we construct

Ŵ (y) =
1
n

∑
(i,j)∈D

Λ̂
(1)
ij (y) x̂ij(y) x̂′ij(y), ∂β F̂k(y) =

1
n

∑
(i,j)∈D

Λ̂
(1)
ij,k(y) x̂ij,k(y) ′,

and

B̂(β)(y) = −
1
2
Ŵ−1(y)

[
1
I

I∑
i=1

∑
j∈Di

Λ̂
(2)
ij (y) x̂ij(y)∑

j∈Di
Λ̂

(1)
ij (y)

]
,

D̂(β)(y) = −
1
2
Ŵ−1(y)

⎡⎣1
J

J∑
j=1

∑
i∈Dj

Λ̂
(2)
ij (y) x̂ij(y)∑

i∈Dj
Λ̂

(1)
ij (y)

⎤⎦ ,
B̂(Λ)
k (y) =

1
2 I

I∑
i=1

∑
j∈Di

[
Λ̂

(2)
ij,k(y)− Λ̂

(2)
ij (y)Ψ̂ij,k(y)

]
∑

j∈Di
Λ̂

(1)
ij (y)

,

D̂(Λ)
k (y) =

1
2 J

J∑
j=1

∑
i∈Dj

[
Λ̂

(2)
ij,k(y)− Λ̂

(2)
ij (y)Ψ̂ij,k(y)

]
∑

i∈Dj
Λ̂

(1)
ij (y)

.

We also define the |K| × dx matrix ∂β F̂ (y) = [(∂β F̂k(y)) : k ∈ K], and the |K| × 1 vectors B̂(F )(y) = [̂B(F )
k (y) : k ∈ K],

(F )(y) = [̂D(F )
k (y) : k ∈ K], Ψ̂ij(y) = [Ψ̂ij,k(y) : k ∈ K]. Finally, we also construct the estimator of the asymptotic variance

f F̂ (y)

Ω̂(y) =
1
n

∑
(i,j)∈D

Λ̂
(1)
ij (y) Ξ̂ (y) Ξ̂ (y)′.

here Ξ̂ (y) = Ψ̂ij(y)+ (∂β F̂ (y))Ŵ−1(y) x̂ij(y).
Lemma 7 in the Appendix shows that the estimators of the asymptotic bias are consistent, uniformly in y ∈ Y . Bias

corrected estimators of β(y) and F (y) can then be formed as

β̃(y) = β̂(y)−
I
n
B̂(β)(y)−

J
n
D̂(β)(y), (7)

and

F̃ (y) = F̂ (y)−
I
n

[̂
B(Λ)(y)+ (∂β F̂ (y))̂B(β)(y)

]  
B̂(F )(y)

−
J
n

[̂
D(Λ)(y)+ (∂β F̂ (y))̂D(β)(y)

]  
D̂(F )(y)

.

Alternatively, we could define the bias corrected version of F̂ (y) as

F̃∗k (y) =

⎡⎣1
n

∑
Λ
(
x′ij,k β̃(y)+ α̃i(y)+ γ̃j(y)

)⎤⎦− I
n
B̂(Λ)
k (y)−

J
n
D̂(Λ)
k (y),
(i,j)∈D

10
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where ξ̃ (y) := (̃α1(y), . . . , α̃I (y), γ̃1(y), . . . , γ̃J (y)) is a solution to

max
ξ∈RI+J

∑
(i,j)∈D

(1{yij ≤ y} logΛ(x′ijβ̃(y)+ αi + γj)+ 1{yij > y} log[1−Λ(x′ijβ̃(y)+ αi + γj)]).

t can be shown that supy∈Y
√
n
⏐⏐̃F∗k (y)− F̃k(y)

⏐⏐ = oP (1), that is, the difference between those alternative bias corrected
estimators is asymptotically negligible. There is no obvious reason to prefer one over the other, and we present result for
Fk in the following, which equivalently hold for F̃∗k .

9

Remark 7 (Alternative Approaches). The conditional approach of Charbonneau (2017) and Jochmans (2018) for the
logit model with two-way effects could be also adopted to estimate the coefficient β(y). However, this approach does
ot produce estimators of F (y) as it is based on differencing-out the unobserved effects. The bias correction method
roposed is analytical in that it requires explicit characterization and estimation of the bias. A natural alternative is a
orrection based on Jackknife or bootstrap following the analysis of Cruz-Gonzalez et al. (2017), Dhaene and Jochmans
2015), Fernandez-Val and Weidner (2016), Hahn and Newey (2004), and Kim and Sun (2016) for nonlinear panel
odels. We do not consider any of these corrections because they require repeated parameter estimation that can be
omputationally expensive in this case. ■

The following main result establishes the functional central limit theorem for the bias corrected estimators and uniform
onsistency of the estimators of the variance function.

heorem 2 (FCLT for Bias Corrected Fixed Effects DR Estimators). Let Assumption 1 hold. Then, in the metric space ℓ∞(Y)dx ,
√
n
[̃
β(y)− β(y)

]
⇝ Z (β)(y),

nd, in the metric space ℓ∞(Y)|K|,
√
n
[̃
F (y)− F (y)

]
⇝ Z (F )(y),

as stochastic processes indexed by y ∈ Y , where Z (β)(y) and Z (F )(y) are the same Gaussian processes that appear in Theorem 1.
oreover,

sup
y∈Y

Ŵ (y)−1 −W (y)−1
 = oP (1) and sup

y∈Y

Ω̂(y)−Ω(y)
 = oP (1).

4.3. Uniform confidence bands and bootstrap

We show how to construct pointwise and uniform confidence bands for y ↦→ β(y) and y ↦→ F (y) on Y using
Theorem 2. The uniform bands for F can be used as inputs in Lemmas 1 and 2 to construct uniform bands for the QFs
τ ↦→ Qk(τ ) = F←k (τ ), k ∈ K, and the QEF τ ↦→ ∆(τ ) on T .

Let B ⊆ {1, . . . , dx} be the set of indexes for the coefficients of interest. For given y ∈ Y , ℓ ∈ B, k ∈ K, and p ∈ (0, 1),
a pointwise p-confidence interval for βℓ(y), the ℓ’th component of β(y), is

[̃βℓ(y)±Φ−1(1− p/2)σ̂βℓ (y)], (8)

and a pointwise p-confidence intervals for Fk(y) is

[̃Fk(y)±Φ−1(1− p/2)σ̂Fk (y)],

where Φ denotes the cdf of the standard normal distribution, σ̂βℓ (y) is the standard error of β̃ℓ(y) given in (13), and σ̂Fk (y)
is the standard error of F̃k(y) given in (14). These intervals have coverage p in large samples by Theorem 2.

We construct joint uniform bands for the coefficients and distributions using Kolmogorov–Smirnov type critical
values, instead of quantiles from the normal distribution. A uniform p-confidence band joint for the vector of functions
βℓ(y) : ℓ ∈ B, y ∈ Y} is

Iβ = {[̃βℓ(y)± t (β)B,Y (p)σ̂βℓ (y)] : ℓ ∈ B, y ∈ Y}, (9)

where t (β)B,Y (p) is the p-quantile of the maximal t-statistic

t (β)B,Y = sup
y∈Y, ℓ∈B

⏐⏐Z (β)
ℓ (y)

⏐⏐
σ

(β)
ℓ (y)

, (10)

here σ (β)
ℓ (y) = [W (y)−1]1/2ℓ,ℓ , the square root of the (ℓ, ℓ) element of the matrix W (y)−1. Similarly, a uniform p-confidence

band joint for the set of distribution functions {Fk(y) : k ∈ K, y ∈ Y} is

IF = {[̃Fk(y)± t (F )K,Y (p)σ̂Fk (y)] : k ∈ K, y ∈ Y}, (11)

9 We use the estimator F̃∗ in the numerical examples for computational convenience as the bias correction involves estimating less terms.
k

11
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where t (F )K,Y (p) is the p-quantile of the maximal t-statistic

t (F )K,Y = sup
y∈Y, k∈K

⏐⏐Z (F )
k (y)

⏐⏐
σ

(F )
k (y)

, (12)

here σ (F )
k (y) = [Ω(y)]1/2k,k , the square root of the (k, k) element of the matrix Ω(y, y). The previous confidence bands also

ave coverage p in large samples by Theorem 2.
The maximal t-statistics used to construct the bands Iβ and IF are not pivotal, but their distributions can be approxi-

ated by simulation after replacing the variance functions of the limit processes by uniformly consistent estimators. In
ractice, however, we find it more convenient to use resampling methods. We consider a multiplier bootstrap scheme
hat resamples the efficient scores or influence functions of the fixed effects estimators β̂(y) and F̂ (y). This scheme is
omputationally convenient because it does not need to solve the high dimensional nonlinear fixed effects conditional
aximum likelihood program (3) or making any bias correction in each bootstrap replication. In these constructions we

ely on the uncorrected fixed effects estimators instead of the bias corrected estimators, because they have the same
nfluence functions and the uncorrected estimators are consistent under the asymptotic approximation that we consider.

To describe the standard errors and multiplier bootstrap we need to introduce some notation for the influence functions
f θ̂ (y) and F̂ (y). Let θ = (β, α1, . . . , αI , γ1, . . . , γJ ) be a generic value for the parameter θ (y), the influence function of
(y) is the (dx + I + J)-vector ψy

ij (θ (y)), where

ψ
y
ij (θ ) = H(θ )†[1{yij ≤ y} −Λ(x′ijβ + αi + γj)]wij, wij = (xij, ei,I , ej,J ), y ∈ Y,

i,I is a unit vector of dimension I with a one in the position i, ej,J is defined analogously, H(θ )† is the Moore–Penrose
seudo-inverse of H(θ ), and

H(θ ) =
1
n

∑
(i,j)∈D

Λ(1)(x′ijβ + αi + γj)wijw
′

ij, Λ(1)(z) = Λ(z)Λ(−z),

s minus the Hessian of the log-likelihood with respect to θ , which does not depend on y in the case of the logistic
istribution.10 The influence function of F̂k(y) is ϕ

y
ij,k(θ (y)), where

ϕ
y
ij,k(θ ) = Jk(θ )′ψ

y
ij (θ ),

nd

Jk(θ ) =
1
n

∑
(i,j)∈D

Λ(1)(x′ij,kβ + αi + γj)wij,k, wij,k = (xij,k, ei,I , ej,J ).

The standard error of β̃ℓ(y) is constructed as

σ̂βℓ (y) = n−1

⎡⎣ ∑
(i,j)∈D

ψ
y
ij (̂θ (y))ψ

y
ij (̂θ (y))

′

⎤⎦1/2

ℓ,ℓ

, (13)

the square root of the (ℓ, ℓ) element of the sandwich matrix n−2
∑

(i,j)∈D ψ
y
ij (̂θ (y))ψ

y
ij (̂θ (y))

′. Similarly, the standard error
of F̃k(y) is constructed as

σ̂Fk (y) = n−1

⎡⎣ ∑
(i,j)∈D

ϕ
y
ij,k (̂θ (y))

2

⎤⎦1/2

. (14)

The following algorithm describes a multiplier bootstrap scheme to obtain the critical values for a set of parameters
indexed by ℓ ∈ B ⊆ {1, . . . , dx} and a set of distributions indexed by k ∈ K ⊆ {0, 1}. This scheme is based on perturbing
he first order conditions of the fixed effects estimators with random multipliers independent from the data.

lgorithm 1 (Multiplier Bootstrap). (1) Let Ȳ be some grid that satisfies the conditions of Remark 2. (2) Draw the bootstrap
multipliers {ωm

ij : (i, j) ∈ D} independently from the data as ωm
ij = ω̃m

ij −
∑

(i,j)∈D ω̃
m
ij /n, ω̃m

ij ∼ i.i.d. N (0, 1). Here we
ave normalized the multipliers to have zero mean as a finite-sample adjustment. (3) For each y ∈ Ȳ , obtain the bootstrap
raws of θ̂ (y) as θ̂m(y) = θ̂ (y)+ n−1

∑
(i,j)∈D ω

m
ij ψ

y
ij (̂θ (y)), and of F̂k(y) as F̂m

k (y) = F̂k(y)+ n−1
∑

(i,j)∈D ω
m
ij ϕ

y
ij,k (̂θ (y)), k ∈ K.

4) Construct the bootstrap draw of the maximal t-statistic for the parameters, t (β),mB,Ȳ = maxy∈Ȳ,ℓ∈B |̂βm
ℓ (y)− β̂ℓ(y)|/σ̂βℓ (y),

here σ̂βℓ (y) is defined in (13), and ψy
ij,ℓ(θ ) is the component of ψy

ij (θ ) corresponding to βℓ. Similarly, construct the
ootstrap draw of the maximal t-statistic for the distributions, t (F ),mK,Ȳ = maxy∈Ȳ,k∈K |̂Fm

k (y)− F̂k(y)|/σ̂Fk (y), where σ̂Fk (y)

10 We use the Moore–Penrose pseudo-inverse because H(θ ) is singular if we do not impose a normalization on the location of α (y) and γ (y).
i j

12
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is defined in (14). (5) Repeat steps (1)–(3) M times and index the bootstrap draws by m ∈ {1, . . . ,M}. In the numerical
xamples we set M = 500. (6) Obtain the bootstrap estimators of the critical values as

t̂ (β)B,Y (p) = p− quantile of {t (β),mB,Ȳ : 1 ≤ m ≤ M},

t̂ (F )K,Y (p) = p− quantile of {t (F ),mK,Ȳ : 1 ≤ m ≤ M}.

The next result shows that the multiplier bootstrap provides consistent estimators of the critical values of the
inferential statistics. The proof follows from Theorem 2.2 of Chernozhukov et al. (2016).

Theorem 3 (Consistency of Multiplier Bootstrap Inference). Let Assumption 1 hold. Then, conditional on the data {(yij, xij) :
(i, j) ∈ D}, as n→∞ and M →∞

t̂ (β)B,Y (p)→P t (β)B,Y (p) and t̂ (F )K,Y (p)→P t (F )K,Y (p),

where t (β)B,Y (p) and t (F )K,Y (p) are defined in (10) and (12), respectively.

Theorem 3 together with Theorem 1 guarantees the asymptotic validity of the confidence bands Iβ and IF defined in
(9) and (11) with the critical values t (β)B,Y (p) and t (F )K,Y (p) replaced by the bootstrap estimators t̂ (β)B,Y (p) and t̂ (F )K,Y (p).

4.4. Pairwise clustering dependence or reciprocity

The conditional independence of Assumption 1(i) can be relaxed to allow for some forms of conditional weak depen-
dence. A form of dependence that is relevant for network data is pairwise clustering or reciprocity where the observational
units with symmetric indexes (i, j) and (j, i) might be dependent due to unobservable factors not accounted by unobserved
effects.11 In the trade application, for example, these factors may include distributional channels or multinational firms
operating in both countries. Formally, pairwise clustering means that (yij, yji) is independently distributed across (i, j) ∈ D
with i ≤ j, conditional on all the observed and unobserved covariates CB := {(xij, vi, wj) : (i, j) ∈ D}.

The presence of reciprocity does not change the bias of the fixed effects estimators, but affects the standard errors and
the implementation of the multiplier bootstrap. The standard error of β̃ℓ(y) becomes

σ̂βℓ (y) = n−1

⎡⎣ ∑
(i,j)∈D

{
ψ

y
ij (̂θ (y))+ ψ

y
ji (̂θ (y))

}
ψ

y
ij (̂θ (y))

′

⎤⎦1/2

ℓ,ℓ

. (15)

Similarly, the standard error of F̃k(y) needs to be adjusted to

σ̂Fk (y) = n−1

⎡⎣ ∑
(i,j)∈D

{
ϕ
y
ij,k (̂θ (y))+ ϕ

y
ji,k (̂θ (y))

}
ϕ
y
ij,k (̂θ (y))

⎤⎦1/2

. (16)

In the previous expressions we assume that if (i, j) ∈ D then (j, i) ∈ D to simplify the notation. The modified multiplier
bootstrap algorithm becomes:

Algorithm 2 (Multiplier Bootstrap with Pairwise Clustering). (1) Let Ȳ be some grid that satisfies the conditions of Remark 2.
(2) Draw the bootstrap multipliers {ωm

ij : (i, j) ∈ D} independently from the data as ωm
ij = ω̃m

ij −
∑

(i,j)∈D ω̃
m
ij /n,

ω̃m
ij ∼ i.i.d. N (0, 1) if i ≤ j, and ω̃m

ij = ω̃m
ji if i > j. (3) For each y ∈ Ȳ , obtain the bootstrap draws of θ̂ (y) as

θm(y) = θ̂ (y)+ n−1
∑

(i,j)∈D ω
m
ij ψ

y
ij (̂θ (y)), and of F̂k(y) as F̂m

k (y) = F̂k(y)+ n−1
∑

(i,j)∈D ω
m
ij ϕ

y
ij,k (̂θ (y)), k ∈ K. (4) Construct the

bootstrap draw of the maximal t-statistic for the parameters, t (β),mB,Ȳ = maxy∈Ȳ,ℓ∈B |̂βm
ℓ (y)− β̂ℓ(y)|/σ̂βℓ (y), where σ̂βℓ (y) is

efined in (15), and ψy
ij,ℓ(θ ) is the component of ψy

ij (θ ) corresponding to βℓ. Similarly, construct the bootstrap draw of
the maximal t-statistic for the distributions, t (F ),mK,Ȳ = maxy∈Ȳ,k∈K |̂Fm

k (y)− F̂k(y)|/σ̂Fk (y), where σ̂Fk (y) is defined in (16).
5) Repeat steps (1)–(3) M times and index the bootstrap draws by m ∈ {1, . . . ,M}. In the numerical examples we set
= 500. (6) Obtain the bootstrap estimators of the critical values as

t̂ (β)B,Y (p) = p− quantile of {t (β),mB,Ȳ : 1 ≤ m ≤ M},

t̂ (F )K,Y (p) = p− quantile of {t (F ),mK,Ȳ : 1 ≤ m ≤ M}.

The clustered multiplier bootstrap preserves the dependence in the symmetric pairs (i, j) and (j, i) by assigning the
ame multiplier to each of these pairs.

11 Cameron and Miller (2014) consider other patterns of dependence in linear models for dyadic data.
13
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4.5. Average effect

A bias corrected estimator of the average effect can be formed as

∆̃ = µ̃1 − µ̃0, (17)

here

µ̃k =

∫
[1(y ≥ 0)− C̃Fk(y)]dy, k ∈ {0, 1}.

ere the integral is over the real line, and C is an operator that extends F̃k(y) from Y to R as a step function, that is, it maps
ny f : Y → R to Cf : R→ R, where Cf (y) = 0 for y ≤ infY , Cf (y) = 1 for y ≥ supY , and Cf (y) = f (sup{y′ ∈ Y : y′ ≤ y})
therwise. The following central limit theorem for the bias corrected estimator of the average effect is a corollary of
heorem 1 together with the functional delta method.

orollary 1 (CLT for Bias Corrected Fixed Effects Estimators of Average Effect). Let Assumption 1 hold and
∫
Y dFk(y) = 1,

∈ {0, 1}. Then,
√
n
(
∆̃−∆

)
→d −

∫ [
CZ (F )

1 (y)− CZ (F )
0 (y)

]
dy =: Z (∆), (18)

here Z (F )(y) = [Z (F )
0 (y), Z (F )

1 (y)]′ is the same Gaussian process that appears in Theorem 1 with K = {0, 1}.

Remark 8 (Support of Y ). The condition that
∫
Y dFk(y) = 1 guarantees that Y is the support of the potential outcome cor-

responding to the distribution Fk, so that (2) yields the average potential outcome under Fk. Together with Assumption 1,
this condition is satisfied when Y is discrete with finite support Y , or continuous or mixed with bounded support Y and
conditional density bounded away from zero in the interior of Y . This support condition is not required for the estimation
of the quantile effects.

We can construct confidence intervals for the average effect using Corollary 1. Let

σ̂∆ = n−1

⎡⎣ ∑
(i,j)∈D

ϕ̂2
ij

⎤⎦1/2

, ϕ̂ij = −

∫ [
Cϕy

ij,1 (̂θ (y))− Cϕy
ij,0 (̂θ (y))

]
dy.

Then, σ̂∆ is an estimator of σ∆, the standard deviation of the limit process Z (∆) in (18), and

I∆ = [∆̃±Φ−1(1− p/2)σ̂∆],

is an asymptotic p-confidence interval for ∆. The normal critical value Φ−1(1 − p/2) can be replaced by a multiplier
bootstrap critical value t̂ (∆)(p) obtained from Algorithm 1 as

t̂ (∆)(p) = p− quantile of {t (∆),m
: 1 ≤ m ≤ M}

where t (∆),m
= |∆̂m

− ∆̂|/σ̂∆ and ∆̂m
= ∆̂+ n−1

∑
(i,j)∈D ω

m
ij ϕ̂ij.

The standard errors and critical values of the average effects can be adjusted to account for pairwise clustering
following the procedure described in Section 4.4. Thus, the pairwise clustering robust standard error is

σ̂∆ = n−1

⎡⎣ ∑
(i,j)∈D

{̂
ϕij + ϕ̂ji

}
ϕ̂ij

⎤⎦1/2

.

5. Quantile effects in gravity equations for international trade

We consider an empirical application to gravity equations for bilateral trade between countries. We use data from Help-
man et al. (2008), extracted from the Feenstra’s World Trade Flows, CIA’s World Factbook and Andrew Rose’s web site.
These data contain information on bilateral trade flows and other trade-related variables for 157 countries in 1986.12 The
data set contains network data where both i and j index countries as senders (exporters) and receivers (importers), and
therefore I = J = 157. The outcome yij is the volume of trade in thousands of constant 2000 US dollars from country
i to country j, and the covariates P(xij) = xij include determinants of bilateral trade flows such as the logarithm of the
distance in kilometers between country i’s capital and country j’s capital and indicators for common colonial ties, currency
union, regional free trade area (FTA), border, legal system, language, and religion. Following Anderson and van Wincoop

12 The original data set includes 158 countries. We exclude Congo because it did not export to any other country in 1986.
14
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Table 1
Descriptive statistics.
Source: Helpman, Melitz and Rubinstein (08).

Mean Std. Dev.

Trade 0.45 0.50
Trade volume 84,542 1,082,219
Log distance 4.18 0.78
Legal 0.37 0.48
Language 0.29 0.45
Religion 0.17 0.25
Border 0.02 0.13
Currency 0.01 0.09
FTA 0.01 0.08
Colony 0.01 0.10

Country pairs 24,492

Fig. 1. Estimates and 95% pointwise confidence intervals for the DR-coefficients of log distance and common legal system.

2003), we include unobserved importer and exporter country effects.13 These effects control for other country specific
haracteristics that may affect trade such as GDP, tariffs, population, institutions, infrastructures or natural resources. We
llow for these characteristics to affect differently the imports and exports of each country, and be arbitrarily related with
he observed covariates.

Table 1 reports descriptive statistics of the variables used in the analysis. There are 157× 156 = 24,492 observations
orresponding to different pairs of countries. The observations with i = j are missing because we do not observe trade
lows from a country to itself. The trade variable in the first row is an indicator for positive volume of trade. There are no
rade flows for 55% of the country pairs. The volume of trade variable exhibits much larger standard deviation than its
ean. Since this variable is bounded below at zero, this indicates the presence of a very heavy upper tail in the distribution.
his feature also makes quantile methods specially well-suited for this application on robustness grounds.14
The previous literature estimated nonlinear parametric models such as Poisson, Negative Binomial, Tobit and Heckman-

election models to deal with the large number of zeros in the volume of trade (e.g., Eaton and Kortum, 2001; Santos Silva
nd Tenreyro, 2006; and Helpman et al., 2008).15 These models impose strong conditions on the process that generates
he zeros and/or on the conditional heteroskedasticity of the volume of trade. The DR model deals with zeros and any
ther fixed censoring points in a very flexible and natural fashion as it specifies the conditional distribution separately
t the mass point. In particular, the model coefficients at zero can be arbitrarily different from the model coefficients at
ther values of the volume of trade. Moreover, the DR model can also accommodate conditional heteroskedasticity.
Fig. 1 shows estimates and 95% pointwise confidence intervals for the DR coefficients of log distance and common

egal system plotted against the quantile indexes of the volume of trade. We report uncorrected and bias corrected fixed

13 See Harrigan (1994) for an earlier empirical international trade application that includes unobserved country effects.
14 In results not reported, we find that estimates of average effects are very sensitive to the trimming of outliers at the top of the distribution.
15 See Head and Mayer (2014) for a recent survey on gravity equations in international trade.
15



V. Chernozhukov, I. Fernández-Val and M. Weidner Journal of Econometrics xxx (xxxx) xxx

e
s
t
b
d
i
e
t

T
d

c
f

Fig. 2. Estimates and 95% uniform confidence bands for distribution functions of the volume of trade.

ffects estimates obtained from (3) and (7), respectively. The confidence intervals are constructed using (8). The x-axis
tarts at .54, the maximum quantile index corresponding to zero volume of trade. The region of interest Y corresponds
o the interval between zero and the 0.95-quantile of the volume of trade. The difference between the uncorrected and
ias corrected estimates is the same order of magnitude as the width of the confidence intervals for the coefficient of log
istance. We find the largest estimated biases for both coefficients at highest quantiles of the volume of trade, where the
ndicators 1{yij ≤ y} take on many ones. The signs of the DR coefficients indicate that increasing distance has a negative
ffect and having a common legal system has a positive effect on the volume of trade throughout the distribution. Recall
hat the sign of the effect in terms of volume of trade, yij, is the opposite to the sign of the DR coefficient.

Figs. 2 and 3 show estimates and 95% uniform confidence bands for distribution and quantile functions of the volume
of trade at different values of the log of distance and the common legal system. The left panels plot the functions when
distance takes the observed levels (dist) and two times the observed values (2*dist), i.e. when we counterfactually double
all the distances between the countries. The right panels plot the functions when all the countries have the same legal
system (legal= 1) and different systems (legal= 0). The confidence bands for the distribution are obtained by Algorithm 1
with 500 bootstrap replications and standard normal multipliers, and a grid of values Ȳ that includes the sample quantiles
of the volume of trade with indexes {.54, .55, . . . , .95}. The bands are joint for the two functions displayed in each panel.
he confidence bands for the quantile functions are obtained by inverting and rotating the bands for the corresponding
istribution functions using Lemma 1.
Fig. 4 displays estimates and 95% uniform confidence bands for the quantile effects of the log of distance and the

ommon legal system on the volume of trade, constructed using Lemma 2. For comparison, we also include estimates
rom a Poisson model. Here, we replace the DR estimators of the distributions by

F̂k(y) =
1
n

∑
(ij)∈D

exp λij,k
⌊y⌋∑
ỹ=0

λ
ỹ
ij,k

ỹ!
, k ∈ K, (19)

where ⌊y⌋ is the integer part of y, λij,k = exp(x′ij,kβ̂ + α̂i + γ̂j), and θ̂ = (̂β, α̂1, . . . , α̂I , γ̂1, . . . , γ̂J ) is the Poisson fixed
effects conditional maximum likelihood estimator

θ̂ ∈ arg max
θ∈Rdx+I+J

∑
(ij)∈D

[yij(x′ijβ + αi + γj)− exp(x′ijβ + αi + γj)].

We find that distance and common legal system have heterogeneously increasing effects along the distribution. For
example, the negative effects of doubling the distance grows more than proportionally as we move up to the upper tail of
the distribution of volume of trade. Putting all the countries under the same legal system has little effect in the extensive
margin of trade, but has a strong positive effect at the upper tail of the distribution. The Poisson estimates lie outside the
DR confidence bands reflecting heavy tails in the conditional distribution of the volume of trade that is missed by the
Poisson model.16 Fig. 5 shows confidence bands of the quantile effects that account for pairwise clustering. The bands

16 This misspecification problem with the Poisson model is well-known in the international trade literature. The Poisson estimator is treated as a
quasi-likelihood estimator and standard errors robust to misspecification are reported (Santos Silva and Tenreyro, 2006).
16
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Fig. 3. Estimates and 95% uniform confidence bands for quantile functions of the volume of trade.

Fig. 4. Estimates and 95% uniform confidence bands for the quantile effects of log distance and common legal system on the volume of trade.

are constructed from confidence bands from the distributions using Algorithm 2 with 500 bootstrap draws and standard
normal multipliers. Accounting for unobservables that affect symmetrically to the country pairs has very little effect on
the width of the bands in this case.

6. MonteCarlo simulation

We conduct a Monte Carlo simulation calibrated to the empirical application of Section 5. The outcome is generated
y the censored logistic process

ysij = max{x′ijβ̂ + α̂i + γ̂j + σ̂Λ
−1(us

ij)/σL, 0}, (i, j) ∈ D,

where D = {(i, j) : 1 ≤ i, j ≤ 157, i ̸= j}, xij is the value of the covariates for the observational unit (i, j) in the trade
ata set, σL = π/

√
3, the standard deviation of the logistic distribution, and (̂β, α̂1, . . . , α̂I , γ̂1, . . . , γ̂J , σ̂ ) are Tobit fixed

ffect estimates of the parameters in the trade data set with lower censoring point at zero.17 We consider two designs:

17 We upper winsorize the volume of trade y at the 95.5% quantile to reduce the effect of outliers in the Tobit estimation of the parameters.
ij

17
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Fig. 5. Estimates and 95% uniform confidence bands for the quantile effects of log distance and common legal system on the volume of trade.

Fig. 6. Bias, standard deviation and root mean squared error for the estimators of the DR-coefficients of log-distance.

ndependent errors with us
ij ∼ i.i.d U(0, 1), and pairwise dependent errors with us

ij = Φ(0.75esij +
√
1− 0.752esji), where

s
ij ∼ i.i.d N (0, 1) and Φ is the standard normal CDF.18 In both cases the conditional distribution function of ysij is a special
ase of the DR model (1) with link function Λy = Λ, the logistic distribution, for all y,

β(y) = σL(e1y− β̂)/σ̂ , αi(y) = −σLα̂i/σ̂ , and γj(y) = −σLγ̂j/σ̂ ,

here e1 is a unit vector of dimension dx with a one in the first component. As in the empirical application, the region
f interest Y is the interval between zero and the 0.95-quantile of the volume of trade in the data set. All the results are
ased on 500 simulated panels {(ysij, xij) : (i, j) ∈ D}.
Figs. 6 and 7 report the biases, standard deviations and root mean square errors (rmses) of the fixed effects estimators

f the DR coefficients of log-distance and legal system as a function of the quantiles of yij in the design with independent
rrors.19 All the results are in percentage of the true value of the parameter. As predicted by the large sample theory, the
ixed effects estimator displays a bias of the same order of magnitude as the standard deviation. As in Fig. 1, the bias is
ore severe for the coefficient of log distance. The bias correction removes most of the bias and does not increase the
tandard deviation, yielding a reduction in rmse of about 5% for the coefficient of log distance at the highest quantile
ndexes.

Fig. 8 reports the biases, standard deviations and rmses of the estimators of the counterfactual distributions at two
evels of log-distance as a function of the quantiles of yij in the design with independent errors. The levels of distance in

18 The Spearman rank correlation between us
ij and us

ji in the design with pairwise-dependent errors is 0.73.
19 The design with pairwise dependent errors produces similar results, which are not reported for the sake of brevity.
18



V. Chernozhukov, I. Fernández-Val and M. Weidner Journal of Econometrics xxx (xxxx) xxx

t
a
c
a
d
i
l

d
5
w
b

Fig. 7. Bias, standard deviation and root mean squared error for the estimators of the DR-coefficients of same legal system.

Fig. 8. Bias, standard deviation and root mean squared error for the estimators of the counterfactual distributions of log-distance.

hese distributions are the same as in the empirical application, i.e. k = 0 and k = 1 correspond to the observed values
nd two times the observed values, respectively. All the results are in percentage of the true value of the functions. In this
ase we find that the uncorrected and bias corrected estimators display small biases relative to their standard deviations,
nd have similar standard deviations and rmses at both treatment levels. Indeed the standard deviations and rmses are
ifficult to distinguish in the figure as they are almost superposed. In results not reported, we find very similar patterns
n the design with pairwise dependent errors and for the estimators of the counterfactual distributions at the same two
evels of legal as in the empirical application.

Table 2 shows results on the finite sample properties of 95% confidence bands for the DR coefficients and counterfactual
istributions in the design with independent errors. The confidence bands are constructed by multiplier bootstrap with
00 draws, standard normal weights, and a grid of values Ȳ that includes the sample quantiles of the volume of trade
ith indexes {.54, .55, . . . , .95} in the trade data set. For the coefficients, it reports the average length of the confidence
ands integrated over threshold values, the average value of the estimated critical values, and the empirical coverages of
19
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Table 2
95% Confidence bands — design with independent errors.

Uncorrected Bias corrected
βldist βlegal Fldist Flegal βldist βlegal Fldist Flegal

Unclustered inference
Average length 0.24 0.35 0.01 0.02 0.24 0.35 0.01 0.02
Average critical value 2.90 2.89 3.10 3.13 2.90 2.89 3.10 3.13
Coverage uniform band (%) 83 91 94 93 95 94 94 94
Coverage pointwise band (%) 35 58 35 29 60 64 35 29
Average SE/SD 0.97 1.01 0.99 1.01 1.00 1.04 0.99 1.01

Pairwise clustered inference
Average length 0.23 0.35 0.01 0.02 0.23 0.35 0.01 0.02
Average critical value 2.89 2.89 3.09 3.12 2.89 2.89 3.09 3.12
Coverage uniform band (%) 82 92 93 93 94 93 93 93
Coverage pointwise band (%) 35 57 35 30 59 63 36 29
Average SE/SD 0.97 1.01 0.99 1.01 1.00 1.04 0.99 1.01

Notes: Nominal level of critical values is 95%. 500 simulations with 500 multiplier bootstrap draws.

Table 3
95% Confidence bands — design with pairwise dependent errors.

Uncorrected Bias corrected
βldist βlegal Fldist Flegal βldist βlegal Fldist Flegal

Unclustered inference
Average length 0.24 0.35 0.01 0.02 0.24 0.35 0.01 0.02
Average critical value 2.90 2.89 3.10 3.13 2.90 2.89 3.10 3.13
Coverage uniform band (%) 64 73 73 68 80 78 74 68
Coverage pointwise band (%) 21 27 11 8 32 36 12 8
Average SE/SD 0.77 0.76 0.77 0.77 0.79 0.78 0.77 0.77

Pairwise clustered inference
Average length 0.30 0.44 0.02 0.02 0.30 0.44 0.02 0.02
Average critical value 2.82 2.82 3.02 3.05 2.82 2.82 3.02 3.05
Coverage uniform band (%) 86 92 93 92 96 93 93 92
Coverage pointwise band (%) 47 59 44 37 67 66 43 37
Average SE/SD 1.00 0.99 1.00 0.99 1.03 1.01 1.00 0.99

Notes: Nominal level of critical values is 95%. 500 simulations with 500 multiplier bootstrap draws.

the confidence bands. For the distributions, it reports the same measures averaged also over the two treatment levels and
where the coverage of the bands is joint for the two counterfactual distributions.20 For comparison, it also reports the
overage of pointwise confidence bands using the normal distribution, i.e. with critical value equal to 1.96. The last row
omputes the ratio of the standard error averaged across simulations to the simulation standard deviation, integrated
ver threshold values for the coefficients and over thresholds and treatment levels for the distributions. We consider
tandard errors and confidence bands with and without accounting for pairwise clustering. All the results are computed
or confidence bands centered at the uncorrected fixed effects estimates and at the bias corrected estimates. For the
oefficients, we find that the bands centered at the uncorrected estimates undercover the true coefficients, whereas
he bands centered at the bias corrected estimates have coverages close to the nominal level. The joint coverage of the
ands for the distributions is close to the nominal level regardless of whether they are centered at the uncorrected or
ias corrected estimates. We attribute this similarity in coverage to the small biases in the uncorrected estimates of the
istributions found in Fig. 8. As expected, pointwise bands severely undercover the entire functions. The standard errors
ased on the asymptotic distribution provide a good approximation to the sampling variability of both the uncorrected
nd bias corrected estimators. Accounting for pairwise clustering in this design where it is not necessary has very little
ffect on the quality of the inference.
Table 3 reports the same results as Table 2 for the design with pairwise dependent errors. The bands that do not account

or pairwise clustering undercover the functions because the standard errors underestimate the standard deviations of the
stimators. Compared to the design with independent errors, the critical values are similar but the bands that account for
lustering are wider due to the increase in the standard errors. To sum up, inference methods robust to pairwise clustering
erform well in both designs, whereas inference methods that do not account for clustering undercover in the presence
f pairwise dependence. The bias corrections are effective in reducing bias and bringing the coverage probabilities of the
ands close to their nominal level for the coefficients, whereas they have little effect for the distributions.

20 The joint coverage of the bands for the quantile functions and quantile effect is determined by the joint coverage of the bands of the distribution
functions in our construction. We refer to Chernozhukov et al. (2020) for a numerical analysis on the marginal coverage of the bands for the quantile
effects.
20
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7. Conclusion

We have constructed confidence bands for quantile functions and quantile effects in nonlinear network and panel
odels with two-way unobserved effects. Our construction relies on the generic method of Chernozhukov et al. (2020)

o convert confidence bands for distributions into confidence bands for quantiles. The same method can be applied to
ore complicated models such as nonlinear models with interactive unobserved effects or factor structure, provided that
onfidence bands for distributions in these models are supplied. Such bands are not currently available, but could be
btained by extending the central limit theorem of Chen et al. (2020) to a functional central limit theorem. We leave
uch extension to future work.

ppendix A. Proofs of main text results

We present the proofs of Theorems 1 and 2, and relegate various technical details to the on-line supplementary
ppendix. Once Theorems 1 and 2 are shown, the proof of Theorem 3 for the multiplier bootstrap follows from Theorem
.2 in Chernozhukov et al. (2016). The uniform confidence bands IF for the cdfs in (11) obtained by the multiplier bootstrap
an then be inverted and differenced to obtain uniform confidence bands for the quantile function and quantile effects,
ee Chernozhukov et al. (2020) and also Lemmas 1 and 2 above. This appendix thus contains the proofs of all the main
esults that are new to the current paper. The proofs for all of the lemmas below are given in the supplementary appendix.
ll stochastic statements in the following are conditional on {(xij, vi, wj) : (i, j) ∈ D}.
As explained in Section 4, we consider the logistic cdf Λy(π ) = Λ(π ) = (1+ exp(−π ))−1 for all our theorems. In the

ollowing we indicate the dependence on y ∈ Y as a subscript, for example, we write θy instead of θ (y) from now on. We
se the column vector wij = (x′ij, e

′

i,I , e
′

j,J )
′, as in Section 4.3, and can then write the single index πy,ij := x′ijβy + αy,i + γy,j

simply as πy,ij = w
′

ijθy. The corresponding estimator is π̂y,ij = w
′

iĵθy. We also define minus the log-likelihood function as
ℓy,ij(π ) := −1{yij ≤ y} logΛ(π ) − 1{yij > y} log[1 − Λ(π )]. Let πy be a n-vector containing πy,ij, (i, j) ∈ D. For a given
∈ Y we can then rewrite the estimation problem in (3) as

π̂y = arg min
πy∈Rn

∑
(i,j)∈D

ℓy,ij(πy,ij), s.t. ∃ θ ∈ Rdx+I+J : πy,ij = w
′

ijθy. (A.1)

n the following we denote the true parameter values by θ0, and correspondingly we write π0
y,ij = w′ijθ

0
y , in order to

istinguish the true value from generic values like the argument πy,ij in the last display. For the k’th derivative of ℓy,ij(πy,ij)
ith respect to πy,ij we write ∂πkℓy,ij(πy,ij), and we drop the argument when the derivative is evaluated at π0

y,ij, that is,
πkℓy,ij = ∂πkℓy,ij(π0

y,ij). The normalized score for observations i, j then is read as

sy,ij :=
[
∂π2ℓy,ij

]−1/2
∂πℓy,ij =

(
Λ

(1)
y,ij

)−1/2
∂πℓy,ij,

here Λ(1)
y,ij = Λ

(1)(π0
y,ij) = ∂πΛ(π0

y,ij), as defined in Section 4.1. Note that Esy,ij = 0 and Es2y,ij = 1.
Let sy be the n-vector obtained by stacking the elements sy,ij across all observations (i, j) ∈ D. Similarly, let Λ(1)

y be the
n× n diagonal matrix with diagonal elements given by Λ(1)

y,ij, (i, j) ∈ D. Finally, let w be the n× (dx + I + J) matrix with
rows given by w′ij, (i, j) ∈ D. We define the n× n symmetric idempotent matrix

Qy :=
(
Λ(1)

y

)1/2
w
(
w′Λ(1)

y w
)†
w′
(
Λ(1)

y

)1/2
,

where † is the Moore–Penrose pseudoinverse. For the elements of this matrix we write Qy,ij,i′j′ . We have
(
Qysy

)
ij =∑

(i′,j′)∈D Qy,ij,i′j′sy,i′j′ . The constraint ∃ θ : πy,ij = w
′

ijθy in (A.1) can then equivalently be written as21

Qy
(
Λ(1)

y

)1/2
πy =

(
Λ(1)

y

)1/2
πy. (A.2)

The matrix Qy projects onto the column span of
(
Λ

(1)
y

)1/2
w. This projector acts in the space of weighted index vectors[(

Λ
(1)
y,ij

)1/2
πy,ij : (i, j) ∈ D

]
, and the weighting of each πy,ij by

(
Λ

(1)
y,ij

)1/2
is natural, because Λ(1)

y,ij is simply the expected

Hessian for observations (i, j).

21 In matrix notation the constraint can be written as πy = w θy , and we thus have Qy

(
Λ

(1)
y

)1/2
πy = Qy

(
Λ

(1)
y

)1/2
w θy =

(
Λ

(1)
y

)1/2
w θy =(

Λ
(1)
)1/2

π , where we also used that Q
(
Λ

(1)
)1/2

w =

(
Λ

(1)
)1/2

w, which follows from the definition of Q .
y y y y y y

21
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A.1. Technical lemmas

We require some results for the proofs of the main theorems below. The following lemma provides an asymptotic
xpansion of π̂y,ij − π

0
y,ij.

Lemma 3 (Score Expansion of Fixed Effect Estimates). Under Assumption 1, for y ∈ Y and (i, j) ∈ D, we have(
Λ

(1)
y,ij

)1/2 (
π̂y,ij − π

0
y,ij

)
= −

(
Qysy

)
ij −

1
2

∑
(i′,j′)∈D

Qy,ij,i′j′
Λ

(2)
y,i′j′(

Λ
(1)
y,i′j′

)3/2 [(Qysy
)
i′j′

]2
+ ry,ij,

and the remainder ry,ij satisfies supy∈Y max(i,j)∈D
⏐⏐ry,ij⏐⏐ = oP (n−1/2).

The expansion in the preceding lemma is a second-order stochastic expansion, because it does not only describe the
terms linear in the score sy, but also the terms quadratic in sy. We need to keep track of those quadratic terms, because they
ield the leading order incidental parameter biases that appear in Theorem 1. The remainder ry,ij contains higher-order
erms in sy (cubic, quartic, etc.), which turn out not to matter for the result in Theorem 1. Note also that Λ(2)

y,ij = ∂π3ℓy,ij.
hus, the term quadric in the score is proportional to the third derivative of the objective function.
We now want to decompose the projector Qy into the parts stemming from xij, ei,I and ej,J , respectively. We have

lready introduced the dx-vector x̃y,ij = x̃ij(y) in Section 4.1. Let x̃y be the n× dx matrix with rows given by x̃′y,ij, (i, j) ∈ D.
The dx × dx matrix Wy = W (y) = n−1̃x′yΛ

(1)
y x̃y was also introduced in Section 4.1. Invertibility of Wy is guaranteed by

Assumption 1(vi), and uniform boundedness of Λ(1)
y,ij and

(
Λ

(1)
y,ij

)−1
, as formalized by the following lemma.

Lemma 4 (Invertibility of Wy). Let Assumption 1 hold. Then supy∈Y ∥W−1y ∥ = OP (1).

Next, define w(2)
ij = ei,I and w

(3)
ij = ej,J , and let w(2) and w(3) be the corresponding n× I and n× J matrices with rows

given by w(2)′
ij and w(3)′

ij , respectively. Let

Q (1)
y := n−1

(
Λ(1)

y

)1/2
x̃y W−1y x̃′y

(
Λ(1)

y

)1/2
,

Q (FE)
y :=

(
Λ(1)

y

)1/2 [
w(2), w(3)] ([w(2), w(3)]′Λ(1)

y

[
w(2), w(3)])† [

w(2), w(3)]′ (Λ(1)
y

)1/2
.

xy,ij is defined as the part of xy,ij that is orthogonal to the fixed effects under a metric given by Λ
(1)
y,ij. We have

Q (FE)
y

(
Λ

(1)
y

)1/2
x̃y = 0, which implies that

Qy = Q (1)
y + Q (FE)

y (A.3)

and also Q (1)
y Q (FE)

y = Q (FE)
y Q (1)

y = 0. Also, because Q (1)
y

(
Λ

(1)
y

)1/2
x̃y =

(
Λ

(1)
y

)1/2
x̃y and also Q (FE)

y

(
Λ

(1)
y

)1/2
x̃y = 0, we obtain

Qy
(
Λ(1)

y

)1/2
x̃y =

(
Q (1)
y + Q (FE)

y

) (
Λ(1)

y

)1/2
x̃y =

(
Λ(1)

y

)1/2
x̃y. (A.4)

We have thus decomposed Qy into the component stemming from the regressors and a component stemming from the
fixed effects. For the elements of Q (1)

y ,

Q (1)
y,ij,i′j′ = n−1

(
Λ

(1)
y,ijΛ

(1)
y,i′j′

)1/2
x̃′y,ij W

−1
y x̃y,i′j′ . (A.5)

Next, define the projection matrices

Q (2)
y :=

(
Λ(1)

y

)1/2
w(2) (w(2) ′Λ(1)

y w
(2))−1w(2) ′ (Λ(1)

y

)1/2
,

Q (3)
y :=

(
Λ(1)

y

)1/2
w(3) (w(3) ′Λ(1)

y w
(3))−1w(3) ′ (Λ(1)

y

)1/2
.

Notice that w(2) ′Λ
(1)
y w

(2) and w(3) ′Λ
(1)
y w

(3) are simply diagonal I × I and J × J matrices with diagonal entries
∑

j∈Di
Λ

(1)
y,ij

and
∑

i∈Dj
Λ

(1)
y,ij, respectively, and therefore

Q (2)
y,ij,i′j′ = 1(i = i′)

(
Λ

(1)
y,ijΛ

(1)
y,ij′

)1/2
∑

j′′∈Di
Λ

(1)
y,ij′′

, Q (3)
y,ij,i′j′ = 1(j = j′)

(
Λ

(1)
y,ijΛ

(1)
y,i′j

)1/2
∑

i′′∈Dj
Λ

(1)
y,i′′j

. (A.6)

It is not exactly true that Q (FE)
y equals Q (2)

y + Q (3)
y , but Lemma 5 shows that this is approximately true in a well-defined

sense.
22
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Lemma 5 (Properties of Qy). Under Assumption 1,

(i) Qy = Q (1)
y + Q (FE)

y and Q (FE)
y = Q (2)

y + Q (3)
y + Q (rem)

y , where

sup
y∈Y

max
(i,j)∈D

max
(i′,j′)∈D

⏐⏐⏐Q (rem)
y,ij,i′j′

⏐⏐⏐ = OP (n−1).

(ii) supy∈Y max(i,j)∈D
∑

(i′,j′)∈D

⏐⏐Qy,ij,i′j′
⏐⏐ = OP (1), and

supy∈Y max(i,j)∈D
∑

(i′,j′)∈D

⏐⏐⏐Q (FE)
y,ij,i′j′

⏐⏐⏐ = OP (1).

(iii) supy∈Y max(i,j)∈D max(i′,j′)∈D
⏐⏐Qy,ij,i′j′

⏐⏐ = OP (n−1/2).

Remark 9 (Bias of π̂y,ij). According to part (i) of this lemma the remainder term Q (rem)
y = Q (FE)

y −Q (2)
y −Q (3)

y has elements
uniformly bounded of order n−1, and it can easily be seen from (A.5) that the same is true for Q (1)

y , because the elements
of x̃y are also uniformly bounded under our assumptions. By contrast, Q (2)

y and Q (3)
y have elements of order J−1 and I−1,

respectively, that is, of order n−1/2. Using this and the fact that sy,ij has variance one and is independent across observations
(i, j) we find

E
[(

Qysy
)
ij

]2
=

∑
(i′,j′)∈D

[Qy,ij,i′j′ ]
2
= Qy,ij,ij = Q (2)

y,ij,ij + Q (3)
y,ij,ij + OP (n−1)

=
Λ

(1)
y,ij∑

j′∈Di
Λ

(1)
y,ij′
+

Λ
(1)
y,ij∑

i′∈Dj
Λ

(1)
y,i′j

+ OP (n−1), (A.7)

here we use that Qy is idempotent in the second step, and (A.6) in the third step. Combining this with Lemma 3 one
inds that the leading order bias term in π̂y,ij − π

0
y,ij is given by

−
1
2

∑
(i′,j′)∈D

Qy,ij,i′j′
Λ

(2)
y,i′j′

Λ
(1)
y,i′j′

[
1∑

j′∈Di
Λ

(1)
y,ij′
+

1∑
i′∈Dj

Λ
(1)
y,i′j

]
,

which then translates into corresponding bias terms for all other estimators as well.

For the following lemma, let Z (β)
y = Z (β)(y), Z (F )

y = Z (F )(y), B(β)
y = B(β)(y), D(β)

y = D(β)(y), B(Λ)
y,k = B(Λ)

k (y) and D(Λ)
y,k = D(Λ)

k (y)
e as defined in and before Theorem 1 in the main text.

emma 6 (Properties of Score Averages). Under Assumption 1,

(i) supy∈Y max(i,j)∈D
⏐⏐⏐(Qysy

)
ij

⏐⏐⏐ = oP (n−1/6).

(ii) −W−1y n−1/2
∑

(i,j)∈D x̃y,ij ∂πℓy,ij ⇝ Z (β)
y , in ℓ∞(Y)dx .

(iii) − 1
√
n

∑
(i,j)∈D

[
Ψy,ij + (∂βFy)W−1y x̃y,ij

]
∂πℓy,ij ⇝ Z (F )

y , in ℓ∞(Y)|K|.

(iv) − 1
2W
−1
y

1
√
n

∑
(i,j)∈D x̃y,ij

(
Λ

(1)
y,ij

)−1
Λ

(2)
y,ij

[(
Qysy

)
ij

]2
−

(
I
√
nB

(β)
y +

J
√
nD

(β)
y

)
→P 0, uniformly in y ∈ Y .

(v) 1
2
√
n

∑
(i,j)∈D

(
Λ

(1)
y,ij

)−1 (
Λ

(2)
y,ij,k −Λ

(2)
y,ijΨy,ij,k

) [(
Qysy

)
ij

]2
−

(
I
√
nB

(Λ)
y,k +

J
√
nD

(Λ)
y,k

)
→P 0, uniformly in y ∈ Y .

Regarding part (i) of this lemma, notice that pointwise we have
(
Qysy

)
ij = OP (n−1/4), because (A.7) implies that

E
[(

Qysy
)
ij

]2
= OP (n−1/2). However, after taking the supremum over y, i, j the term is growing faster than n−1/4. The

ate oP (n−1/6) in part (i) of the lemma is crude, but sufficient for our purposes.

emma 7 (Uniform Consistency of Estimators of Bias and Variance Components). Let Assumption 1 hold. Then,

sup
y∈Y

Ŵ (y)−W (y)
 = oP (1), sup

y∈Y

∂β F̂ (y)− ∂βF (y) = oP (1),

sup
y∈Y

̂B(β)(y)− B(β)(y)
 = oP (1), sup

y∈Y

D̂(β)(y)− D(β)(y)
 = oP (1),

sup
y∈Y

̂B(Λ)(y)− B(Λ)(y)
 = oP (1), sup

y∈Y

D̂(Λ)(y)− D(Λ)(y)
 = oP (1),

sup
y∈Y

Ω̂(y)−Ω(y)
 = oP (1),

where ∥ · ∥ denotes the Frobenius matrix norm, i.e. ∥A∥ = trace(AA′)1/2 for a matrix A.

As already mentioned above, the proof of the technical lemmas that we have stated here is provided in the
Supplementary Appendix.
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A.2. Proof of main text theorems

Proof of Theorem 1. # Part 1: FCLT for β̂y = β̂(y).
The definition of x̃y implies that

∑
i∈Dj

Λ
(1)
y,ij̃xy,ij = 0 and

∑
j∈Di

Λ
(1)
y,ij̃xy,ij = 0, and n−1

∑
(i,j)∈D Λ

(1)
y,ij̃xy,ijx

′

ij =

n−1
∑

(i,j)∈D Λ
(1)
y,ij̃xy,ij̃x

′

ij = Wy. Using this and

π̂y,ij − π
0
y,ij := x′ij

(̂
βy − β

0
y

)
+
(̂
αy,i − α

0
y,i

)
+
(
γ̂y,j − γ

0
y,j

)
we obtain

n−1
∑

(i,j)∈D

x̃y,ijΛ
(1)
y,ij

(
π̂y,ij − π

0
y,ij

)
= n−1

∑
(i,j)∈D

x̃y,ijΛ
(1)
y,ij x

′

ij

(̂
βy − β

0
y

)
= Wy

(̂
βy − β

0
y

)
,

and therefore

β̂y − β
0
y = W−1y n−1

∑
(i,j)∈D

x̃y,ijΛ
(1)
y,ij

(
π̂y,ij − π

0
y,ij

)
.

By combining this with Lemma 3 we obtain
√
n
(̂
βy − β

0
y

)
= T (1,β)

y + T (2,β)
y + r (β)y , (A.8)

where

T (1,β)
y := −n−1/2 W−1y

∑
(i,j)∈D

(
Λ

(1)
y,ij

)1/2
x̃y,ij

(
Qysy

)
ij ,

T (2,β)
y := −

1
2
n−1/2 W−1y

∑
(i,j)∈D

(
Λ

(1)
y,ij

)1/2
x̃y,ij

∑
(i′,j′)∈D

Qy,ij,i′j′
Λ

(2)
y,i′j′(

Λ
(1)
y,i′j′

)3/2 [(Qysy
)
i′j′

]2
,

nd r (β)y := W−1y n−1/2
∑

(i,j)∈D x̃y,ij
(
Λ

(1)
y,ij

)1/2
ry,ij satisfies

sup
y∈Y

⏐⏐r (β)y

⏐⏐ ≤
⎛⎝sup

y∈Y
W−1y n−1/2

∑
(i,j)∈D

⏐⏐̃xy,ij⏐⏐ ⏐⏐⏐⏐(Λ(1)
y,ij

)1/2⏐⏐⏐⏐
⎞⎠

  
=OP (n1/2)

(
sup
y∈Y

max
(i,j)∈D

⏐⏐ry,ij⏐⏐)  
=oP (n−1/2)

= oP (1),

where we also use that Λ(1)
y,ij and x̃y,ij are uniformly bounded under our assumptions. For the term linear in the score we

find

T (1,β)
y = −n−1/2W−1y x̃′y

(
Λ(1)

y

)1/2
Qysy = −n−1/2W−1y x̃′y

(
Λ(1)

y

)1/2
sy

= −W−1y n−1/2
∑

(i,j)∈D

x̃y,ij ∂πℓy,ij ⇝ Z (β)
y ,

where in the second step we used (A.4), and the final step follows from part (ii) of Lemma 6.
Employing again (A.4) we find

T (2,β)
y := −

1
2

W−1y n−1/2
∑

(i′,j′)∈D

∑
(i,j)∈D

(
Λ

(1)
y,ij

)1/2
x̃y,ij Qy,ij,i′j′  

=

(
Λ

(1)
y,i′ j′

)1/2
x̃y,i′ j′

Λ
(2)
y,i′j′(

Λ
(1)
y,i′j′

)3/2 [(Qysy
)
i′j′

]2

= −
1
2
W−1y n−1/2

∑
(i,j)∈D

x̃y,ij
Λ

(2)
y,ij

Λ
(1)
y,ij

[(
Qysy

)
ij

]2
,

and according to part (iv) of Lemma 6 we thus have

T (2,β)
y −

(
I

n1/2 B(β)
y +

J
n1/2 D(β)

y

)
→P 0,

uniformly in y ∈ Y . Combining the above gives the result for
√
n
(̂
β − β0

)
in the theorem.
y y
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A

# Part 2: FCLT for F̂y,k = F̂k(y).
Let π0

y,ij,k := π
0
y,ij + (xij,k − xij)′β0

y and π̂y,ij,k := π̂y,ij + (xij,k − xij)′β̂y. Because xij,k − xij = x̃y,ij,k − x̃y,ij we have

π̂y,ij,k − π
0
y,ij,k = π̂y,ij − π

0
y,ij + (̃xy,ij,k − x̃y,ij)′ (̂βy − β

0
y ). (A.9)

Using (A.2) and Q (1)
y

(
Λ

(1)
y

)1/2
πy =

(
Λ

(1)
y

)1/2
x̃yβy for any πy = wθy,

π̂y − π
0
y =

(
Λ(1)

y

)−1/2 (
Q (1)
y + Q (FE)

y

)  
=Qy

(
Λ(1)

y

)1/2
(π̂y − π

0
y )

=
(
Λ(1)

y

)−1/2
Q (FE)
y

(
Λ(1)

y

)1/2
(π̂y − π

0
y )+ x̃y (̂βy − β

0
y ).

ombining the above gives

π̂y,ij,k − π
0
y,ij,k =

[(
Λ(1)

y

)−1/2
Q (FE)
y

(
Λ(1)

y

)1/2
(π̂y − π

0
y )
]
ij
+ x̃′y,ij,k (̂βy − β

0
y ).

sing Lemma 3 and the properties of Qy, Q
(1)
y and Q (FE)

y , we thus find(
Λ

(1)
y,ij

)1/2 (
π̂y,ij,k − π

0
y,ij,k

)
= −

(
Q (FE)
y sy

)
ij
−

1
2

∑
(i′,j′)∈D

Q (FE)
y,ij,i′j′

Λ
(2)
y,i′j′(

Λ
(1)
y,i′j′

)3/2 [(Qysy
)
i′j′

]2
+
(
Q (FE)ry

)
ij +

(
Λ

(1)
y,ij

)1/2
x̃′y,ij,k (̂βy − β

0
y ). (A.10)

Next, by expanding Λ(π̂y,ij,k) in π̂y,ij,k around π0
y,ij,k we find

F̂y,k − Fy,k = n−1
∑

(i,j)∈D

[
Λ(π̂y,ij,k)−Λ(π0

y,ij,k)
]

= n−1
∑

(i,j)∈D

[
Λ

(1)
y,ij,k

(
π̂y,ij,k − π

0
y,ij,k

)
+

1
2
Λ

(2)
y,ij,k

(
π̂y,ij,k − π

0
y,ij,k

)2
+

1
6
Λ(3)(π̃y,ij,k)

(
π̂y,ij,k − π

0
y,ij,k

)3]
,

where π̃y,ij,k is some value between π̂y,ij,k and π0
y,ij,k, and we use the notation Λ(ℓ)

y,ij,k = Λ
(ℓ)(π0

y,ij,k), which corresponds to
Λ

(ℓ)
ij,k(y) in the main text. By appropriately inserting (A.9) and (A.10) into this expansion, also using (A.8), and sorting by

terms linear in sy, quadratic in sy, and remainder, we find
√
n
(̂
Fy,k − Fy,k

)
= T (1,F )

y,k + T (2,F )
y,k + r (F )y,k, (A.11)

where the terms linear in sy read

T (1,F )
y,k = −

1
√
n

∑
(i,j)∈D

Λ
(1)
y,ij,k

⎡⎢⎣
(
Q (FE)
y sy

)
ij(

Λ
(1)
y,ij

)1/2 + x̃′y,ij,kW
−1
y

1
n

∑
(i′,j′)∈D

x̃y,i′j′ ∂πℓy,i′j′

⎤⎥⎦ ,
with ∂πℓy,i′j′ =

(
Λ

(1)
y,i′j′

)1/2
sy,i′j′ .

The projection Ψy,ij,k = Ψij,k(y), defined just before (6) in the main text, can be written in terms of the matrix Q (FE)
y as

Ψy,ij,k =

(
Λ

(1)
y,ij

)−1/2 ∑
(i′,j′)∈D

Q (FE)
y,ij,i′j′

Λ
(1)
y,i′j′,k(

Λ
(1)
y,i′j′

)1/2 , (A.12)

hich implies that
∑

(i,j)∈D Ψy,ij,k∂πℓy,ij =
∑

(i,j)∈D Λ
(1)
y,ij,k

(
Λ

(1)
y,ij

)−1/2 (
Q (FE)
y sy

)
ij
. Using ∂βFy,k = ∂βFk(y) = n−1∑

(i,j)∈D Λ
(1)
ij,k(y) x̃

′

y,ij,k we obtain

T (1,F )
y,k = −

1
√
n

∑
(i,j)∈D

(
Ψy,ij,k + ∂βFy,kW−1y x̃y,ij

)
∂πℓy,ij. (A.13)

ccording to part (iii) of Lemma 6 the vector T (1,F )
=

[
T (1,F )

: k ∈ K
]
therefore satisfies T (1,F )

⇝ Z (F ) asymptotically.
y y,k y y
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The terms quadratic in sy read

T (2,F )
y,k = −

1
2

1
√
n

∑
(i,j)∈D

Λ
(1)
y,ij,k

(
Λ

(1)
y,ij

)−1/2 ∑
(i′,j′)∈D

Q (FE)
y,ij,i′j′

Λ
(2)
y,i′j′(

Λ
(1)
y,i′j′

)3/2 [(Qysy
)
i′j′

]2

+
1
2

1
√
n

∑
(i,j)∈D

Λ
(2)
y,ij,k

Λ
(1)
y,ij

[(
Qysy

)
ij

]2
+ (∂βFy,k)T (2,β)

y ,

where for the term quadratic in π̂y,ij,k−π
0
y,ij,k in the expansion of F̂y,k− Fy,k we do not insert (A.10) but rather insert (A.9),

and we ignore the terms involving β̂y − β
0
y here — they give contributions quadratic in the score sy, but only of smaller

order, and we therefore rather include those in the remainder term r (F )y,k below. Using again (A.12) we find

T (2,F )
y,k =

1
2

1
√
n

∑
(i,j)∈D

Λ
(2)
y,ij,k −Λ

(2)
y,ijΨy,ij,k

Λ
(1)
y,ij

[(
Qysy

)
ij

]2
+ (∂βFy,k)T (2,β)

y .

sing part (v) of Lemma 6, and our previous result for T (2,β)
y , we thus obtain

T (2,F )
y,k −

I
n1/2

[
B(Λ)
y,k + (∂βFy,k)B(β)

y

]
−

J
n1/2

[
D(Λ)
y,k + (∂βFy,k)D(β)

y

]
→P 0, (A.14)

niformly in y ∈ Y and k ∈ K.
The remainder term of the expansion is read as

r (F )y,k = n−1/2
∑

(i,j)∈D

{
Λ

(1)
y,ij,k

(
Λ

(1)
y,ij

)−1/2 (
Q (FE)ry

)
ij + n−1/2Λ(1)

y,ij,kx̃
′

y,ij,kr
(β)
y

+
1
8
Λ

(2)
y,ij,k

(
Λ

(1)
y,ij

)−1 [∑
(i′,j′)∈D Qy,ij,i′j′

(
Λ

(1)
y,i′j′

)−3/2
Λ

(2)
y,i′j′

(
Qysy

)2
i′j′

]2
+

1
2
Λ

(2)
y,ij,k

(
Λ

(1)
y,ij

)−1
(ry,ij)2 +

1
2
Λ

(2)
y,ij,k

[
(xij,k − xij)′ (̂βy − β

0
y )
]2

+
1
6
Λ(3)(π̃y,ij,k)

[
π̂y,ij − π

0
y,ij + (xij,k − xij)′ (̂βy − β

0
y )
]3}

.

ur assumptions guarantee that Λ(ℓ)
y,ij and Λ

(ℓ)
y,ij,k, ℓ ∈ {1, 2, 3}, and

(
Λ

(1)
y,ij

)−1
are all uniformly bounded. Lemma 3

guarantees that ry,ij = oP (n−1/2), uniformly over y, i, j, and using Lemma 5(ii) this also implies that
(
Q (FE)ry

)
ij = oP (n−1/2),

uniformly over y, i, j. Above we have shown r (β)y = oP (1), uniformly over y. Lemma 5(ii) and Lemma 6(i) imply that

sup
y∈Y

max
(i,j)∈D

[∑
(i′,j′)∈D Qy,ij,i′j′

(
Λ

(1)
y,i′j′

)−3/2
Λ

(2)
y,i′j′

(
Qysy

)2
i′j′

]2
= oP (n−1+1/3) = oP (n−1/2).

Our asymptotic result for β̂y from part 1 of this proof guarantees that supy∈Y ∥β̂y − β
0
y ∥

2
= oP (n−1/2). Lemma 3 together

with Lemma 5(ii) and Lemma 6(i) guarantees that π̂y,ij − π
0
y,ij = oP (n−1/6), uniformly over y, i, j. We thus find, uniformly

over y ∈ Y and k ∈ K,

⏐⏐⏐r (F )y,k

⏐⏐⏐ ≤ 1
√
n

⎡⎢⎣ ∑
(i,j)∈D

⏐⏐⏐⏐⏐⏐⏐
Λ

(1)
y,ij,k(

Λ
(1)
y,ij

)1/2
⏐⏐⏐⏐⏐⏐⏐
⎤⎥⎦

  
=OP (n)

[
max
(i,j)∈D

⏐⏐⏐(Q (FE)ry
)
ij

⏐⏐⏐]  
=oP (n−1/2)

+

⎛⎝1
n

∑
(i,j)∈D

Λ(1)
y,ij,kx̃y,ij,k


⎞⎠

  
=OP (1)

r (β)y

  
=oP (1)

+
1

8
√
n

⎛⎝∑
(i,j)∈D

⏐⏐⏐⏐⏐Λ
(2)
y,ij,k

Λ
(1)
y,ij

⏐⏐⏐⏐⏐
⎞⎠

  
=OP (n)

{
max
(i,j)∈D

[∑
(i′,j′)∈D Qy,ij,i′j′

(
Λ

(1)
y,i′j′

)−3/2
Λ

(2)
y,i′j′

(
Qysy

)2
i′j′

]2}
  

=oP (n−1/2)

+
1

2
√
n

⎛⎝∑
(i,j)∈D

⏐⏐⏐⏐⏐Λ
(2)
y,ij,k

Λ
(1)
y,ij

⏐⏐⏐⏐⏐
⎞⎠

  
[
max
(i,j)∈D

(ry,ij)2
]

  
=oP (n−1)

+
1

2
√
n

∑
(i,j)∈D

⏐⏐⏐Λ(2)
y,ij,k

⏐⏐⏐ xij,k − xij
2

  
β̂y − β

0
y

2  
=oP (n−1/2)
=OP (n) =OP (n)
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C
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C

C
C

C

d
D
D

E
F
F
G

G
G
G
G
G
H
H
H

H
J
K
K

+
4

3
√
n

⎛⎝∑
(i,j)∈D

⏐⏐Λ(3)(π̃y,ij,k)
⏐⏐⎞⎠

  
=OP (n)

{
max
(i,j)∈D

⏐⏐π̂y,ij − π
0
y,ij

⏐⏐3  
=oP (n−1/2)

+ max
(i,j)∈D

xij,k − xij
3  

=OP (1)

β̂y − β
0
y

3  
=oP (n−1/2)

}
,

nd therefore

sup
y∈Y,k∈K

⏐⏐⏐r (F )y,k

⏐⏐⏐ = oP (1). (A.15)

ombining (A.11), (A.13), (A.14) and (A.15) gives the statement for F̂ (y)− F (y) in the theorem. ■

roof of Theorem 2. The theorem follows from Theorem 1 by applying Lemma 7, which provides the uniform consistency
f the estimators of the components of the asymptotic bias and variance functions. ■

ppendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2020.08.009.
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