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Abstract  

Introduction: Retinal imaging is a key investigation in ophthalmology. New devices continue to be 
created to keep up with the demand for better imaging modalities in this field. This review looks to 
highlight current trends and the future of retinal imaging. 

Areas covered: This review looks at the advances in topographical imaging, photoacoustic 
microscopy, optical coherence tomography and molecular imaging. There is future scoping 

Expert opinion: Retinal imaging continues to develop at a rapid pace to improve diagnosis and 
management of patients. We will see the development of big data to gain powerful insights and new 
technologies such as teleophthalmology mature in the future. 

 

Keywords: Automation, Molecular imaging, Ophthalmology, Optical coherence tomography, Retinal 
diseases, Retinal imaging, Teleophthalmology, Topographical imaging, Artificial intelligence 

 

 

Article highlights: 

• Topographical imaging such as colour fundus photography have advanced to meet the demands of 
diagnosis in ophthalmology, including the implementation of low-cost devices and 
teleophthalmology 

• Optical coherence tomography (OCT) improvements have occurred in OCT angiography, swept 
source OCT, wide field imaging, intraoperative OCT and automation 

• Molecular imaging may represent a new avenue in diagnosis of retinal pathology 

• New imaging technologies will help to meet the demand to ophthalmological services worldwide
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1.Introduction 
 
Ophthalmology has become one of the most imaging intensive medical specialities. This is 
due to an unobstructed view of the retina through the pupil, allowing imaging to be 
performed with relative ease, without media obstructions. Advances with retinal imaging 
have been coupled with advances in our understanding of retinal pathology. (1) 
From using basic cameras and borrowing technology used in astronomy, to developing 
specialised devices for the field, progress in retinal imaging has been fast paced. (2) In fact, 
technologies such as optical coherence tomography (OCT), which was initially created for 
use in ophthalmology, has been applied to other medical specialities such as dermatology 
and gastroenterology as well as non-medical fields such as metrology. (3,4)  
Due to the sheer number of patients seen and the amount of retinal imaging undertaken, 
we have amassed amount of patient data. (5) We are seeing the use of big data and artificial 
intelligence in ophthalmology to aid diagnosis, management and potential treatment of 
retinal pathologies. (6,7) Due to the ubiquity of smartphones, personalised healthcare 
services are also being developed for the public to use, analogous to the rise of personal 
banking applications. Like all other technologies, retinal imaging devices are continually 
being miniaturised and have the potential of being available on all our smart devices and 
wearables. (8,9,10) 
The future points to remote imaging for retinal pathologies, with individual access to 
personalised data and greater portability of imaging technologies available. 
This review looks to highlight the recent advances in imaging technologies for retinal 
diseases and what the future may hold. 
 
 
2.Literature review 
 
The initial literature review was undertaken by Dr Soomro, Dr Shah and Dr Niestrata-Ortiz. It 
was performed using the PubMed Central search engine using the PMC Advanced Search 
Builder. The topics of topographical imaging, photoacoustic microscopy, optical coherence 
tomography, molecular imaging and automation, reducing cost and increasing availability 
were reviewed. These topics were decided upon after discussion amongst the group of the 
most relevant areas of recent retinal imaging advances. After the initial draft, Dr Yap, Mr 
Normando and Professor Cordeiro contributed by adding to relevant sections and revising 
the manuscript. 
 
 
3.Topographical imaging 
 
3.1.Colour fundus photography 
 
The initial impetus for retinal imaging began with the development of electronic flashes and 
35mm cameras, which allowed fundus photography (FP) to be performed at the beginning 
of the 19th century. (2) Any retinal pathology can be initially assessed with the use of colour 
fundus photography. It also provides a permanent record of this finding and can be used to 
monitor the progress of an individual’s retinal disorder. 
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Limitations of FP are that it provides limited functional information about the retina, with an 
inability to assess the deeper layers of the retina. Optical aberrations as well as media 
opacities, such as cataract, can affect image quality. 
FP has continued to be refined as a technology, from moving from analogue to digital which 
has supported the use of stereoscopic techniques (see figure 1.), as well as the ability to 
take images through non dilated pupils. (2)  
Due to the widespread availability of smartphone technology, with small optics and related 
camera sensors, a lot of miniaturised devices have become available which allow users to 
take images of the retina and optic nerve. Initially, using simple tools such as a condensing 
lens, mydriatics and a smartphone camera with a co-axial light source, retinal images could 
be taken. (9) More sophisticated methods have now been applied. Devices such as PEEK 
retina vision (PEEK vision Ltd, Barbican, London) and the D-EYE digital ophthalmoscope (D-
EYE Srl, Padova, Italy) provide an attachment which allows a smartphone to take suitable 
fundal photos, through non dilated and dilated pupils. (2,8,9) Now, even specific 
smartphones, without any attachments, can take fundus photos, due to the proximity of the 
rear camera with the light emitting diode (2mm) allowing for an almost co-axial light source. 
(10)These devices have a huge potential for use in monitoring patients in the community 
using tele-medicine or in rural settings for ophthalmology, which PEEK vision have created 
infrastructure for in developing countries. (8) 
 
3.2 Fundus angiography 
 
Fundus angiography soon followed colour fundus photography in the 1960s and 1970s. (1) 
Novotny and Alvis were the first to produce angiograms of the chorioretinal vasculature 
using fluorescein (FFA). (11) Standard fundus cameras were coupled with monochromatic 
light filters and a contrast agent (sodium fluorescein) which was injected intravenously, 
allowing imaging of the retinal vasculature. This provided the ability to image different 
retinal pathologies such as ischaemia, where there is a lack of retinal flow, as well as vessel 
leakage and neovascularisation. Similar experiments were performed with indocyanine 
green, which is a heavier, protein bound molecule unlike sodium fluorescein, causing it to 
remain in the choroidal vasculature for enough time to examine the choroidal circulation. 
(1) This was termed IGCA. 
Conventional FFA and ICGA have been essential investigations in determining the integrity 
of retinal and choroidal circulation respectively since they were refined for clinical use. They 
are important in the investigation of many common retinal pathologies such as neovascular 
age related macular degeneration, diabetic macular oedema, retinal vein occlusion, central 
serous retinopathy, as well as rare retinal dystrophies and conditions that affect other 
structures such as the choroid (see figure 2B.). 
Limiting factors for these technologies are that conventional fundal angiography is an 
invasive procedure which can have mild (allergic reaction) to severe adverse reactions to the 
dye (anaphylaxis). It also provides incomplete information about the structure and function 
of the retina, with limited depth resolution. Similarly, to colour fundus photography, there 
are issues with optical aberrations and media opacities affecting the image quality of this 
imaging modality. 
This problem has been overcome with the use of confocal scanning laser technology in 
current fundus photography and angiography devices such as the Heidelberg Spectralis 
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(Heidelberg Engineering, Heidelberg, Germany) and Optos California systems (Optos PLC, 
Dunfermline, Scotland) (see figure 3.). (1) 
 
3.3. Confocal Scanning Laser Ophthalmoscopy 
 
Scanning laser ophthalmoscopy (SLO) was introduced in the 1980s. (12) SLO involves the use 
of  point illumination with laser light, at a specific wavelength,  which scans across the whole 
retina in a series of horizontal parallel lines. (12) This provides for an image of higher 
resolution and contrast, compared to traditional fundal photography, where a ring of light is 
used to illuminate the retina causing significant backscatter (see figure 4.). SLOs now also 
have a confocal aperture (cSLO) which allows light, only at a specific plane of interest, to be 
used to reconstruct a fundal image (13). By reconstructing fundal images across multiple 
planes, a three-dimensional images can be created. (12) 
cSLO has allowed imaging through undilated pupils and opaque media such as cataracts 
using infrared light, unlike traditional fundus photography (see figure 3.A the retina is still 
visible through a right eye vitreous haemorrhage). 
cSLO has been used in glaucoma diagnosis and monitoring for the past 15 to 20 years. 
Imaging and structural evaluation of the optic nerve head (rim area, rim volume, cup to disc 
ratio) can be performed using cSLO technology, with extrapolation of the peripapillary 
retinal nerve fibre layer for example with the Heidelberg Retina Tomograph (Heidelberg 
Engineering, Heidelberg, Germany). A recent systematic review and meta-analysis found it 
to have acceptable performance in diagnosing glaucomatous eyes (14). cSLO parameters 
have shown to correlate well with visual field defects relating to glaucoma; in particular Ahn 
et al. in 2000 have highlighted cSLOs high sensitivity for detecting glaucomatous visual field 
defects (89.7% in patients with a mildly impaired visual field and 100% in those with a 
moderately or severely impaired visual field ). (15) 
Recent advances include the assessment and screening of diabetic retinopathy using cSLO 
based imaging. (13) 
 
3.4. Ultra-widefield imaging  
 
Conventional fundus photography, and SLO, can image 45 to 50 degrees of retina in a single 
frame equating to 15% of the retinal surface. (13) The shortcoming of fundus photography 
in capturing the peripheral retina, has been overcome with the recent advent of non-
contact ultrawide field imaging (UWF), which can image 82% of the retina with a 200-degree 
field of view. (16)  
The most recent UWF imaging system e.g. Optos California fundus camera (Optos PLC, 
Dunfermline, Scotland) is a CSLO-based system which can provide ora to ora serrata 
imaging. It can also provide clearer images through lens opacities due to longer wavelengths 
of light used in image acquisition (532-nm for excitation and a 570-nm to 780-nm emission 
filter). (17)  With an ellipsoidal mirror and CSLO, the system can take images through a non-
dilated pupil, in a non-contact fashion. With its increased depth of focus the system allows 
for simultaneous acquisition of the posterior pole and anterior retina in one picture. The 
system generates pseudo colour images.  
UWF imaging provides panoramic images of the retina across a range of imaging modalities 
including pseudo colour photography (18), fluorescent angiography (FFA) (19), indocyanine 
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green angiography (ICGA) (20), fundus autofluorescence (FAF) (21), optical coherence 
tomography (OCT) and OCT angiography (OCTA) (22).  
The images can suffer from distortion in the antero-posterior (23) and horizontal axes, with 
stretching of the retina peripherally. The peripheral retina can also appear relatively 
magnified compared with the posterior pole. (18)This has been improved with new 
stereographic projection software algorithms (24). There can also be issues with image 
contrast with images taken through a miotic pupil (18) and eyelash artefacts, the latter of 
which can be minimised with the use of a speculum (25).    
The benefit of UWF imaging over conventional colour fundus photography has been 
highlighted by Talks et al. in 2015, which showed that UWF imaging detected approximately 
30% more neovascularisation i.e.  the presence of aberrant blood vessels in the retina and 
optic nerve head, which tend to bleed and can become sight threatening,  than standard 
two-field imaging when grading diabetic retinopathy (for 1562 treatment naïve eyes of 
patients referred from UK Diabetic Eye Screening service in England imaged with and 
without UWF imaging) (26).  
FFA and ICGA can be performed with UWF imaging, allowing more in-depth analysis of 
peripheral retinal perfusion, ischaemia and neovascularisation for common disorders such 
as diabetic retinopathy, retinal vascular occlusions and uveitis (see figure 3B).There has also 
been a greater appreciation of the peripheral effects of choroidopathies such serous 
chorioretinopathy (CSCR), and uveitis conditions using UWF ICGCA imaging. (27) (28) (29) 
Fundus autofluorescence with UWF imaging can provide salient information on the 
peripheral changes in common conditions such as uveitis, CSCR, AMD and retinal 
dystrophies (21,30,31,32,33). 
In addition, UWF imaging can limit the need for examination under anaesthesia (EUA) for 
children with learning difficulties, when a good, widefield retinal image can be taken in a 
non-contact fashion. In children, several studies have shown the utility of UWF in a variety 
of disorders including childhood retinal vascular disease, retinal dystrophies, uveitis, 
infection, trauma, tumours, retinopathy of prematurity, and retinal detachment. 
(19,34,35,36,37,38,39)  
UWF imaging provides a reliable means of electronic documentation, with objective 
assessment of changes, during follow-up appointments. It can be used to improve screening 
and as a valuable tool for virtual clinics with telemedicine. This could potentially reduce the 
need for hospital appointments, as well as enable ophthalmic healthcare provision in areas 
with limited access to such services. (20,40)  
 
3.5. Adaptive Optics 
 
Traditionally higher order aberrations, and problems such as astigmatism in the optical 
system of the eye, have limited the transverse (lateral) resolution of fundus photography 
and SLO devices. This occurs due to wave front distortions created by these aberrations. 
(41,42) This was overcome in the early 1990s when Shack Hartman wave front sensors used 
in astronomy, were automated and adapted for use in ophthalmology. A number of wave 
front sensors have since been developed to measure aberrations of the entire eye and thus 
allow calculation of the measured wave fronts (41).  The rapid uptake of this technology in 
ophthalmology occurred due to its need in correcting higher order aberrations during 
refractive surgery. (43,44,45)  
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As these aberrations can be dynamic and unique to each eye, an optical element that can be 
reshaped into an essentially limitless number of positions is required. This is achieved using 
highly deformable mirrors, which can change shape by tiny electronic motor actuators on 
their rear surface. (44,46)   
Applying this technology in an automated, real time fashion to existing cSLO and fundus 
cameras, has allowed imaging of the retina on a cellular level. (46) 
In recent years, the integration of AO with multiple ophthalmic imaging techniques such as 
optical coherence tomography (OCT) has increased both contrast and resolution with great 
success. Transverse resolution has improved from 10–15 μm to ~2 μm, allowing 
assessment of individual retinal cell types such as retinal ganglion cells, photoreceptors 
and the retinal pigment epithelium (46).  
AO’s utility has been recognised in the early diagnosis and assessment of disease 
progression in inherited retinal diseases (46). In 2006, the first three dimensional 
observations of living human retinal cone receptors was acquired with a high-speed AO 
spectral-domain OCT (SD-OCT) system (47). Gale et al. in 2019 (48) showed how AO 
automated cone measurements in subjects with retinitis pigmentosa are repeatable, as long 
as image quality is adequate.  
AO-OCT, however, is unable to detect fluorescent signals (49). Combined with scanning laser 
ophthalmoscopy (SLO), AO-SLO can detect fluorescent signals, allowing retinal 
microvasculature and associated blood flow imaging. This has higher resolution than more 
conventional FFA resulting in more detailed information about the retinal capillary network 
and benefits from being non-invasive. Limitations at present include the small field of view 
obtained, meaning peripheral pathology is difficult to image (49). Newer advancements 
include combining AO-SLO with AO-OCT allowing high resolution and tracking capabilities 
(50).  
 
3.6. Fundus autofluorescence 
 
With the widespread use of fluorescein angiography, the inherent fluorescent properties of 
the retina without a contrast agent, when excited by light of a certain wavelength were 
noted and this term was coined fundus autofluorescence (FAF). 
In the early 1990s Delori et al. were able to use spectrophotometry and examine excitation 
and emission spectra of FAF in the retina. (51) This highlighted the predominant source of 
fluorescence in the retina is lipofuscin, a fluorophore, which is a by-product of the visual 
cycle which accumulates within the retinal pigment epithelium (RPE) (52). 
As several adverse effects of lipofuscin on RPE have been shown in vitro including cell 
membrane lysis (53), generation of free radicals (54), photo-associated complement 
activation (55) and photo-induced apoptosis (56), lipofuscin accumulation has been 
implicated in the pathogenesis of a number of retinal conditions. As a result, 
autofluorescence imaging is used to examine the health of the RPE and photoreceptors. 
(51,57,58,59)  
SLO systems can be used for FAF with systems such as the HRA-2 blue peak 
autofluorescence system with an excitation wavelength of 488 nm (Heidelberg Engineering, 
Heidelberg, Germany), and Optos green autofluorescence system with an excitation 
wavelength of 532 nm (Optos PLC, Dunfermline, Scotland) (see figure 3C.). (2) 
Alternatively, fundus cameras, can also be used for FAF, as developed by Spaide et al. These 
require the addition of longer wavelength filters (excitation, 535-580 nm) to overcome 
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general retinal autofluorescence at all planes, particularly from macular pigment and the 
crystalline lens, as there are no confocal optics in the system. (60) 
FAF can highlight abnormalities in autofluorescence at the macula, and in the periphery with 
UWF FAF, with conditions such as age-related macular degeneration, retinal dystrophies and 
central serous retinopathy. (51,57,58,59) Areas of reduced or increased autofluorescence 
highlight a sick RPE, where there is an initial build-up of lipofuscin and thereafter damage to 
photoreceptors and loss of functional RPE. 
A newer method to quantify the extent of change, or damage has been developed called 
quantitative fundus autofluorescence (qAF). Here FAF intensity is quantified in a sample 
providing an indirect measure of the extent of lipofuscin accumulation in the RPE. (61,62)  
This is achieved by comparing the sample autofluorescence to a standardized fluorescent 
reference within the imaging device so the effects of variation in laser power and detector 
gain can be compensated for. With this FAF can then be compared over time, between eyes 
and between images obtained with different devices. (62) This technique enables a reliable 
comparison between images, including multiple examinations of the same individual at 
different timepoints (62), allowing assessment of disease progression and response to 
treatment. It has excellent repeatability and reliability (62) which was confirmed clinically by 
Reiter et al. in 2019 for patients with early and intermediate age related macular 
degeneration (AMD) (63). Apart from AMD (64), qAF has been shown to be of clinical value 
in retinal dystrophies such as Best’s diseases (65) and Stargard’s disease (66). In addition, as 
an indirect measure of lipofuscin density and distribution, qAF is a valuable research 
technique that can provide further insights into the pathophysiology of retinal conditions. 
(61) 
 
 
4.Photoacoustic Ophthalmoscopy 
 
Photoacoustic ophthalmoscopy (PAOM) works on the principle of the photoacoustic effect 
which was recognized by Alexander Graham Bell in the 1880s. (2) The phenomenon occurs 
when incident light on an object is converted from heat energy into kinetic energy, which 
creates a pressure wave of sound/photoacoustic wave. This has been used in photoacoustic 
microscopy where wideband ultrasonic waves (PA waves) are stimulated due to transient 
thermoelastic expansion, when a laser irradiates biological tissues (see figure 5.). The 
photoacoustic waves created are based on the optical absorption properties of the tissue 
of interest. A highspeed ultrasonic transducer can record these waves and convert this 
information into images. (67) 
PA imaging has already been used to measure both blood oxygen saturation (sO2) and 
melanin in areas of the body such as oesophagus, colon and skin, and therefore there has 
been investigation into its use in measuring retinal and choroidal sO2 as well as retinal 
pigmental epithelium (RPE) melanin. (68) 
Retinal and choroidal blood sO2 and melanin (in the RPE) have high optical absorption 
coefficients within the visible light spectral range, so their optical absorption properties can 
be used to perform PAOM and measure their respective concentrations. (69) 
The sO2 has been shown to be abnormal in a number of ophthalmic conditions such as 
glaucoma (70), retinal vascular occlusion (71) and diabetic retinopathy (72). RPE melanin 
loss contributes to age-related macular degeneration (AMD) progression (73). 

ACCEPTED M
ANUSCRIP

T



Several animal studies have successfully used photoacoustic ophthalmoscopy (PAOM) to 
image the retinal and choroidal vasculature and RPE melanin (74,75), showing potential uses 
and benefits in clinical practice. Issues with PAOM relate to the need for contact of the eye 
with the ultrasonic transducer, with either immersion of the eye in water or a coupling fluid, 
and the availability of suitable laser sources. This limit its use in the clinical setting at 
present. 
 
 
5.Optical coherence tomography 
 
5.1 OCT 
 
Further advances in retinal imaging were made in 1991, by David Huang, when optical 
coherence tomography (OCT) was developed. His work built upon exisiting knowledge of 
ophthalmic interferometry. (3) 
OCT can be thought of analagous to ultasonography, where instead of sound waves light is 
used. (3) OCT is used to create cross-sectional images of the retina (see figure 2A.). An OCT 
device works through an interferometer which has a reference arm with a mirror and a 
sample arm, which detects the light backscatter from the retina. There is a characteristic 
interference pattern created from light coming from the reference arm, and the tissue of 
interest to the sample arm which is based on the time delay between the two light waves. 
As one of the light waves intensity and time delay is known i.e. the reference arm, 
information about the light wave from the sample tissue can be extracted from the 
interference pattern. (3)This creates a reflectivity profile or A-scan. Several adjacent A-scans 
are combined to create B-scans images. (3) (76,77)As light has a much shorter wavelength 
than sound, the resolution of OCT (less than 10 μm), is far superior to ultrasonography. The 
retinal images produced have been comparable to histological samples, in terms of the level 
of detail. (3) 
Initially the technology available was time dependent and relied on the movement of the 
reference mirror, therefore was named time domain OCT (TD-OCT). (77) TD-OCT was limited 
by the speed of image acquistion and the resolution of images. There were devices such as 
the Stratus OCT commercially in use which were able to take around 400 A-scans per 
second. Then a decade afte creating OCT, Fourier domain OCT (FD-OCT) was invented with a 
subset known as spectral domain OCT (SD-OCT). (77) SD-OCT works through light echo 
interference patterns being detected as a function of the wavelength (by Fourier 
transformation), by an interferometer and a stationary reference arm. There is a broadband 
light source and the spectral interference pattern is dispersed by a spectrometer and 
collected at the same time on an array detector. This technology has allowed much faster 
imaging as compared to TD-OCT with better resolution, with commercial devices such as the 
Spectralis OCT(Heidelberg Engineering, Heidelberg, Germany)and Cirrus OCT (Carl Zeiss 
Meditec, Jena, Germany) which take upwards of 20,000 A-scans per second. (3,76,77) 
Optical coherence tomography (OCT) has now become an integral part of investigating 
patients with retinal and choroidal pathology centred around the macula, due to the limited 
area that can be scanned with this technology. This has been slightly improved with the 
advent of widefield OCT/OCTA. (22) It is used to detect evidence of fluid and structural 
damage, alongside the use of FFA/ICGA and colour fundus photography, in potentially sight 
threatening conditions such as neovascular age related macular degeneration, diabetic 

ACCEPTED M
ANUSCRIP

T



macular oedema, retinal vein occlusion, central serous retinopathy, glaucoma as well as rare 
retinal dystrophies and uveitis. (78,79,80,81)  The addition of enhanced depth imaging (EDI) 
counteracts the sensitivity roll-off characteristic of the technology, thereby, enabling an 
improved quality image acquisition of the choroid. (82) 
 
5.2. Swept source OCT  
 
Swept source OCT (SS-OCT) provides a different method for generating OCT images. A laser 
sweeps across a range of wavelengths. The interference pattern created from the reference 
and the sample arm can be recorded in almost real-time by a photodiode. (79) Therefore SS-
OCT technology enables the fastest scanning speed with greater than 100 000 A scans per 
second. The SS-OCT uses longer wavelengths of light, with super luminescent diodes at 800-
870nm. (79) With longer wavelengths used there is less signal strength decay (i.e. less 
sensitivity roll-off) versus depth which results in larger imaging ranges, allowing imaging of 
the vitreous, retina and choroid concurrently. So there can be enhanced imaging of the 
deep layers without reducing the resolution of the anterior structures, making it optimal for 
examination of the deeper layers of the choroid and sclera. (79,80,83) It also has better 
penetration through media opacities. (83,84) It has been shown to be superior to SD-OCT in 
imaging the posterior sclera (85), choroid,  and important layers of the retina (inner 
segment (IS)/outer segment (OS) line, and external limiting membrane (ELM)) (86). This 
includes a better visualisation of the choroidoscleral interface, which is necessary to get a 
reliable measure of choroidal thickness. (83,87,88) 
Measurements of choroidal thickness in healthy eyes, between SD-OCT with EDI and SS-
OCT, have been shown to have variable concordance. (87,89,90,91) In patients with retinal 
diseases SS-OCT choroid measurements are more consistent than SD-OCT, which is thought 
to be due to its better ability to visualise the choroidoscleral border, which can show a 
greater variability in diseased eyes. (91,92) Therefore SS-OCT is more useful in imaging a 
newly defined entity called pachychoroidopathy, i.e. choroidal thickening, which has been 
shown to be involved in numerous chorioretinal diseases including central serous 
retinopathy and polypoidal choroidal vasculopathy. (93)  
 
 
5.3.OCT Angiography 
 
OCT angiography (OCTA) is a new technology for imaging the vasculature of the retina and 
related pathology in a non-invasive manner. 
OCTA uses the principles of OCT to delineate retinal blood vessels by acquiring sequential 
OCT B-scans in the same position to detect blood flow. (94)  A decorrelation signal is created 
from the bulk movement of red blood cells in the retinal vasculature. (95) From this, en-face 
(birds eye view) images can be generated showing the different retinal and choroidal 
vascular plexii. The cross sectional B-scan can be correlated to the OCTA image, to find the 
depth and location of a vascular abnormality e.g. choroidal neovascularisation (CNV) (see 
figure 2C.). (94)  
There are various commercial devices available which use three types of OCTA algorithms, 
broadly speaking, to reconstruct images of retinal vasculature: phase, intensity or both. (95) 
These can use spectral domain  (SD-OCT) and the newer swept source OCT (SS-OCT). 
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The scan dimensions can range from 3x3mm to 12x12mm, with varying resolution and some 
newer models boast ultrawide field OCTA imaging. (95) Due to the limit of the scan 
dimensions this investigation is usually used to assess macular pathology. 
Discerning the retinal vasculature is important for common conditions such as neovascular 
age related macular degeneration (nAMD) and other non nAMD related CNVs. On OCT 
findings these CNV usually show subretinal and/or intraretinal fluid with associated 
subretinal thickening, which usually corresponds to leak on traditional dye-based imaging 
such as FFA/ICGA. (96) 
OCTA’s benefits over traditional dye-based imaging is the speed of the test, repeatability to 
determine any changes in a vascular abnormality and that the test is non-invasive, with no 
associated risk of anaphylaxis. (96) 
There are limitations with this technology due to motion and depth artefacts that can limit it 
use in diagnosis, as well its reduced ability to delineate vessels through fluid. Due to OCTA 
measuring the movements of red blood cells through the retinal vasculature, slow flow 
lesions can also be missed, such as retinal angiomatous proliferation. (97) 
Several studies have shown the clinical use of OCTA as compared to tradition imaging 
modalities such as FFA in diagnosing CNV in nAMD and other retinal pathologies like 
pathological myopia and central serous retinopathy (with sensitivities ranging from 50-67% 
and specificities from 87-91%). (97,98,99,100,101) OCTA can also assess biological activity of 
these CNV, particularly in patients already on treatment for the condition, but is not as 
accurate in assessment of early disease activity. (102,103) Like the traditional dye based 
modalities, OCTA can assess the ischaemic increase in the foveal avascular zone (FAZ) in 
conditions such as diabetic retinopathy, as well microvascular changes in the different 
vascular plexii (the superficial (SCP) and deep capillary plexus (DCP)) and the choriocapillaris 
around the macula relating to other retinal vascular conditions. (96,104,105,106,107) Unlike 
traditional angiography serial imaging can be easily obtained, with the opportunity for 
quantitative analysis of the condition. OCTA has also been used to detect changes in uveitis 
conditions. It can highlight many inflammatory retinal responses such as cystoid macular 
oedema, optic disc oedema, vascular abnormalities in retinitis or vasculitis and 
inflammatory CNVs. (108) 
UWF OCTA has now also become available from devices such as the Zeiss PLEX Elite 9000 
(Carl Zeiss Meditec, Jena, Germany). UWF OCTA creates a 70-degree field of view, with 
images of a maximum size of 12x12mm, and allows automated montaging of images to get 
an UWF image. (22) The benefits of this system are a better assessment of the peripheral 
retinal vasculature with neovascularisation or ischaemia, and the opportunity for sequential 
imaging for the same individual. However OCTA will still not show obvious leak and at the 
moment widefield SS-OCTA still requires montages to get a full peripheral view as compared 
to UWF-Fundus angiography (Optos PLC, Dunfermline, Scotland ). (109) UWF OCTA has 
shown promise in detecting common vascular abnormalities such as peripheral 
neovascularisation in common diseases such as proliferative diabetic retinopathy (22,110), 
retinal vein occlusion (111,112), as compared to traditional UWF FFA. (113,114)  
 
 
5.4.Intraoperative OCT 
 
Intraoperative OCT has been able to help with aspects of vitreoretinal surgery as well as for 
research purposes. (115) It uses the same principles of OCT technology and allows real time 
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OCT peri-operatively. Standard OCTs require adequate upright patient positioning to take 
retinal images. In 2009, with the production of handheld OCT, the team at Duke university 
were able to develop intraoperative OCT. (115) From this development the new 
intraoperative OCT models can be handheld, fixed to the microscope or can be needle 
guided for retinal surgery. (116) 
Handheld OCTs which can be either mounted or held directly in hand allow OCT visualisation 
of the retina with or without direct eye contact. These have proven particularly useful in 
paediatric patients, in reviewing cases such as retinopathy of prematurity, ocular albinism 
and retinal dystrophies. (116) The most used systems are the Bioptigen SDOIS /Envisu 
portable system (Bioptigen, Morrisville, NC) and the stand mounted Optovue IVue (Optovue 
Inc, California, USA). Handheld OCTs have issues with real time imaging in surgery, as the 
operating microscope cannot be used concurrently. (116)  
Needle guided intraoperative OCT allows intraoperative visualisation of the retina, even 
through dense media, and bypasses issues with traditional OCT of tissue scatter, giving good 
tissue depth resolution. (117) This can allow OCT review of vitreoretinal surgery through the 
pars plana port approach. By integrating this system into surgical instruments, A-scans and 
OCT images (B-scans) can be visualised during a procedure allowing for immediate review of 
operative success. (116)These instruments have not been used yet clinically, as there will be 
the need for a helper to hold the OCT integrated instrument in the correct position whilst 
the surgeon operates.  
The main intraoperative OCT devices that are in use during surgery are microscope 
integrated systems. They allows the operator to review OCTs directly whilst handling ocular 
tissue. These systems are either modular or fixed onto the microscope.  There are three 
main manufacturers of these- the Zeiss RESCAN 700 (Carl Zeiss Meditec, Jena, Germany) , 
the Haag-Streit Surgical iOCT (Haag Streit Surgical, Wedel, Germany) and the Leica 
Microsystems Bioptigen EnFocus (Leica Microsystems/Bioptigen, Morrisville, NC). (116) 
There have been two large studies- the PIONEER and follow on DISCOVER study which have 
looked at the feasibility of intraoperative OCT (iOCT) for retinal surgery to provide useful 
clinical information. The conditions that were reviewed were common vitreoretinal 
disorders such as macular holes, epiretinal membranes, vitreomacular traction and retinal 
detachments. (118,119) Both studies showed specific iOCT devices to be useful in certain 
vitreoretinal conditions (60% of time valuable information was provided and 30% of the 
time this may have altered the surgeons decision making). (118,119,120)  
iOCT may also prove to be beneficial in delicate sub macular surgeries such as subretinal 
gene therapy and subretinal protheses. (120) 
There have also been recent developments in heads up display technology in vitreoretinal 
surgery which may look to complement intraoperative OCT in future. (120) 
 
6.Molecular Imaging 
 
An upcoming clinical technology in ophthalmology is molecular imaging. In molecular 
imaging, probes known as biomarkers are used to help image targets and pathways. They 
chemically interact with their surroundings in order to alter the image formed in the area of 
interest (see figure 6.). By visualising molecular processes and changes before 
morphological changes occur at the cellular level, disease can be identified, prevented or 
treated earlier (121). 
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Retinal ganglion cell (RGC) dysfunction and apoptosis is observed in several ocular 
pathologies including glaucoma (122). A new molecular imaging technique called DARC 
(detection of apoptosing retinal cells) has demonstrated neuronal apoptosis in vivo for 
humans through the use of annexin 5 labelled with fluorescent dye DY-776 (ANX776) in a 
phase 1 trial with good clinical safety profile and is now being tested in a phase 2 trial (see 
figure 7.). (123,124) Other similar techniques involve the intravitreal injection of TcapQ for 
in vivo detection of RGC apoptosis. However, this molecule cannot be used in humans unlike 
the DARC technique (125).  DARC and CapQ can be used for quantitative imaging 
instrumentation and processing (126). By quantifying apoptotic RGCs, diagnosis and 
monitoring of glaucoma as well as other neurodegenerative conditions could be 
standardised. 
Animal studies show potential to tackle the challenge of detecting subclinical retinal 
changes, such as the injection of α-ICAM-1 probes to detect subtle changes in the diabetic 
retina pre-irreversible pathology (127). Other agents being studied in animals include 
HYPOX-1 and HYPOX-2 to identify hypoxic retinal tissue, often associated with diseases such 
as AMD and retinopathy of prematurity (128).  
Nanocrystals and particles are also being developed and combined with other imaging 
techniques such as fluorescein angiography and OCT (129,130) to target proteins such as 
VCAM-1 which are increased in choroidal neovascularisation.  
As we move forward, toxicity studies need to be conducted to ensure a good safety profile 
in humans. The rapid improvement in imaging techniques , suggests ophthalmology is likely 
to be at the forefront of molecular techniques utilisation for clinical care (121). 
 
7.Automation, reducing costs and increasing availability 
 
The future of OCT technology and other imaging systems, for retinal imaging, will be in 
creating low cost devices which will allow access to these technologies in the primary care 
and rural settings, or allow a model of self-care. (2,8,9,10,131) This will allow the further 
proliferation of tele-ophthalmology which has already been used with great success in the 
English Diabetic Eye Screening programme, when reviewing colour fundus photography, 
allowing the management and triage of over 83% of eligible patients with diabetes. (132) 
The use of artificial intelligence (AI), for grading these images, could allow even more 
efficient triaging of patients. AI algorithms such as IDx-DR, which have recently received 
FDA clearance for grading diabetic retinopathy from colour fundus images, have been 
shown to have a high diagnostic accuracy compared to human graders. (7) 
AI has also been used to automate retinal pathology detection on OCT images. The co-
operation of DeepMind and Moorfields Eye Hospital has yielded an algorithm, using deep 
convolutional neural networks, capable of detecting retinal pathology on OCT at a  
comparable level to a retinal specialist (accuracy 88.4%-91.6%). (6) 
 
 
8.Conclusion 
 
Ophthalmology as a medical field has advanced at great speed, with new imaging 
techniques improving our understanding and management of ocular pathology. This has 
occurred hand in hand with new therapeutics available in the form anti-vascular endothelial 
growth factor agents, as well as novel gene therapies being developed alongside stem cell 
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therapies for treatment of degenerative or hereditary retinal pathologies. (2) In terms of 
horizon scanning, in the future we will have more accurate, multimodal imaging with better 
resolution of ocular structures. Quantitative, non-invasive, serial microvascular analysis, 
oxygenation measurement and review of real time cellular changes in patients with retinal 
pathologies, will be possible using the combination of technologies such as OCT 
angiography, photoacoustic microscopy and novel molecular imaging. Better surgical 
outcomes through using intraoperative OCT will be available. Using artificial intelligence, 
telemedicine and providing wider access to personalised smart device based imaging 
systems, patients will get a faster and more personalised care. 
Ophthalmology currently faces a significant issue with a limited labour force and a rising 
burden of disease. (133)However, we can be cautiously optimistic that these advances will 
help us to meet this challenge and allow more patients to retain good eye health. 
 
9.Expert Opinion 
 
9.1. Expert commentary 
 
The automation of retinal imaging reviews will allow a better triaging of patients to 
specialist services, so clinicians can deal with an increasing demand on services. This is 
already being implemented with the likes of FDA approved algorithms for grading diabetic 
retinopathy. (7) The miniaturisation of retinal imaging technologies such as OCT, ultrawide 
field imaging and colour fundus photography, will allow these technologies in the 
community and rural settings where infrastructure is lacking. (2,8,9,10,27,131) Earlier 
diagnosis of retinal pathologies will occur, as well more timely management, with patient’s 
being able to have imaging at a more regular frequency. Some of the new technologies will 
still be limited to the hospital setting but will provide new insights into eye diseases even at 
a pre-morbid state. Advances in colour fundus photography, OCT, OCTA, and results of 
analysing big data such as the UK Biobank have provided useful and sometimes surprising 
results. (5)  The UK Biobank Eye and Vision Consortium was able to find a relationship 
between retinal nerve fibre layer thinning and likelihood of developing neurodegenerative 
conditions. (5) If we are able to detect conditions early, not only eye pathology but also 
other systemic conditions, then management guidelines will potentially change more 
towards a preventative rather than treatment strategy. For retinal pathologies this may 
allow more personalised and predictive treatment, rather than protocol based on a 
therapeutic molecule’s study outcome. For example, with early pre-pathological evidence of 
retinal degeneration, you may monitor an individual more closely, modify their risk factors 
and possibly provide earlier treatment, before clinically significant retinal pathology occurs. 
The effectiveness of these changes in imaging technologies will be based on their accuracy 
and availability to use. With an increasing population of patients with eye diseases, these 
technologies could all allow better resource utilization and the ability to handle an increased 
workload. (133) These changes are already being implemented to streamline ophthalmic 
services, for example,  with the adoption of new technologies such as OCT angiography 
commonplace amongst most ophthalmic centres. Newer teleophthalmology technologies, 
allowing remote triaging of ophthalmic conditions, such as Big Picture Medical are being 
trialled in centres such as Moorfields. (134)  
 
9.2. Key issues 
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The limitations to such progress in healthcare remain in the high standards required for 
medical technologies to be certified to be usable in humans, the technological lag in the 
health sector and issues regarding privacy and confidentiality when using new cloud based 
digital platforms. Barriers to this technological innovation will be around costs to the 
healthcare sector, the ability to standardize the level of care using such systems, and 
healthcare as well as public adoption of using these new technologies. In the setting of the 
United Kingdom, there has been an injection of money into programmes that have been 
created to foster innovation such as the Topol fellowship together with NIHR (National 
Institute of Health Research) funded schemes, which have been implemented after the 
publication of the report on the future of healthcare in the digital age. (135)  Companies 
from the private sector will also look to collaborate with healthcare services to provide 
these services. (6) National reviews from the likes of NICE UK (The National Institute for 
Health & Care Excellence United Kingdom) will allow standardization of technologies.  
Further research being undertaken is looking at more ways to automate pathology 
detection in different imaging modalities, teleophthalmology services, potential automation 
of surgery using OCT imaging and new insights from big data. Other areas of promise will be 
gene therapy technologies, genomics and epidemiological studies providing novel insights 
into ophthalmic disease. 
 
 
9.3. Five-year review 
 
In 5 years’ time there will be a rise in automation of retinal pathology diagnosis and a 
greater use of teleophthalmology services. We are already witnessing this change with the 
rise of virtual clinics in glaucoma and medical retina clinics. (136) Community services will 
have better retinal imaging modalities, and there may even be individual access to retinal 
imaging. There will also be more applications available to patients for regular reviews of 
vision assessment and therefore a more personalised care model. (8) Genetic diagnosis with 
rapid genome sequencing will be more readily available and will play a greater role in 
patient care. This will all be on the backdrop of greater pressures on healthcare services, so 
greater efficiency of services will be required to meet the unpresented demand. 
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Caption: Figure 1. (A) Right eye fundal photograph witht large disciform scar over the 
macula (highlighted by yellow arrow) (B) Left eye fundal photograph showing numerous 
macular drusen and subretinal macular haemorrhage (highlighted by yellow arrow) with 
associated macular oedema. 

 

Caption: Figure 2. (A) Left eye SDOCT of patient with myopic patient with suspected myopic 
CNV (B) FFA showing a vague leak suggestive of myopic CNV (C) OCTA showing clear 
vascular network corresponding to FFA leak. 
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Caption: Figure 3. (A) Left and right eye pseudo-colour Optos images showing right eye 
vitreous haemorrhage with hazy fundal view, and left sea fan peripheral neovascularisation 
secondary to bilateral sickle cell retinopathy (B) Left and right fundus fluorescein 
angiography showing bilateral peripheral ischaemia with capillary shutdown. There is also 
neovascularisation in either eye, which is evidenced by areas of hyperfluorescence nasally 
and temporally in the right eye and temporally in the left eye (C) Fundus autofluorescence, 
showing masking of right eye fundus due to vitreous haemorrhage. The Optos system 
(Optos PLC, Dunfermline, Scotland) used has scanning laser ophthalmoscopy allowing 
visualisation  through the right eye vitreous haemorrhage. In figure A eye lashes are visible 
inferiorly and there is evidence of horizontal/lateral stretching of the retina with 
minification of the posterior pole. Optos ultrawide field imaging has multiple ultrawide field 
imaging modalities available (in this case pseudocolour, fluorescein angiography and fundus 
autofluorescence). 
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Caption: Figure 7. (With permission from Professor Francesca Cordeiro) Image of detection 
of apoptosing retinal ganglion cells (DARC) using fluorescently labelled annexin 5 (ANX776). 
The right eye posterior pole image was captured with confocal scanning laser 
ophthalmoscope (HRA + OCT Spectralis, Heidelberg Engineering, Heidelberg, Germany) set 
to ICGA infrared fluorescence settings (diode laser 786 nm excitation; photodetector with 
800 nm barrier filter). The positive spots highlight individual retinal cells with yellow rings 
surrounding it for demonstrative purposes. Molecular imaging tools such as DARC could 
have an important role to play in the future for detecting early ophthalmic disease. 
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