

Comparing Adaptive Radiations Across Space, Time, and Taxa

Gillespie, Rosemary G ,1. University of California, Berkeley, Department of Environmental Science, Policy, and Management, 130 Mulford Hall, Berkeley, CA, USA 94720; gillespie@berkeley.edu,

Bennett, Gordon M ,1. University of California Merced, Life and Environmental Sciences Unit, Merced, CA, USA; gbennett2@ucmerced.edu,

De Meester, Luc ,1. University of Leuven, Laboratory of Aquatic Ecology, Evolution and Conservation, Leuven, Ch Deberiotstraat 32, BE; luc.demeester@kuleuven.be,

Fleischer, Robert C ,1. Smithsonian Institution, Center for Conservation and Evolutionary Genetics, National Zoological Park, 3001 Connecticut Ave NW, Washington, DC, USA 200083008; fleischerr@si.edu,

Harmon, Luke ,1. University of Idaho, Dept. of Biological Sciences, Moscow, ID, USA; lukeh@uidaho.edu,

Hendry, Andrew ,1. McGill University, Redpath Museum, 859 Sherbrooke St. W., Montreal, QC, CAN H3A 2K6; andrew.hendry@mcgill.ca

Knope, Matthew L ,1. University of Hawaii at Hilo, Dept. of Biology, 200 W. Kawili St., Hilo, HI, USA 96720; knope@hawaii.edu,

Mallet, James ,1. Harvard University, Cambridge, MA, USA; jmallet@oeb.harvard.edu,

Martin, Christopher ,1. University of North Carolina, Chapel Hill, NC, USA. 2. University of California Berkeley, Integrative Biology and Museum of Vertebrate Zoology, Berkeley, CA, USA; chmartin@unc.edu,

Parent, Christine E ,1. University of Idaho, Biological Sciences, Moscow, ID, USA; ceparent@uidaho.edu,

Patton, Austin H ,1. Washington State University, Biology Department, Pullman, WA, USA; austinhpattton@gmail.com

Pfennig, Karin S ,1. University of North Carolina at Chapel Hill, Department of Biology, Chapel Hill, NC, USA; kpfennig@email.unc.edu,

Rubinoff, Daniel ,1. University of Hawai'i at Manoa, Department of Plant and Environmental Protection Sciences, Honolulu, HI, USA; rubinoff@hawaii.edu,

Schluter, Dolph ,1. University of British Columbia, Vancouver, BC, CAN; schluter@zoology.ubc.ca,

Seehausen, Ole ,1. Eawag, Dubendorf, ZH, CH. 2. University of Bern, Bern, BE, CH; ole.seehausen@eawag.ch,

Shaw, Kerry ,1. Cornell University, Neurobiology and Behavior, Tower Road, Ithaca, NY, USA 14853; cls4@cornell.edu,

Stacy, Elizabeth ,1. University of Nevada Las Vegas, School of Life Sciences, Las Vegas, NV, USA; elizabeth.stacy@unlv.edu,

Stervander, Martin ,1. University of Oregon, Department of Biology, Eugene, OR, USA; mste@uoregon.edu,

Stroud, James T ,1. Washington University in Saint Louis, Biology, 1 Brookings Drive, Saint Louis, MO, USA 63130-4899; jamesTstroud@gmail.com

Wagner, Catherine ,1. University of Wyoming, Laramie, WY, USA; Catherine.Wagner@uwyo.edu,

Wogan, Guinevere O U ,1. University of California Berkeley, Environmental Science Policy, and Management, 130 Mulford Hall #3114, Berkeley, CA, USA 94720; gwogan@berkeley.edu

Running title: Commonalities in Diverse Adaptive Radiations

Abstract

Adaptive radiation plays a fundamental role in understanding the evolutionary process. However, the concept has provoked tremendous controversy, with disagreements linked to the very different systems being examined. Here we seek common ground among disparate adaptive radiations, ranging from plants to insects and vertebrates and remote islands to lakes and continents, to understand processes shared across adaptive radiations. The need for open ecological space into which a group can radiate was identified for all systems. However, radiations differ considerably in the mechanisms of speciation within the radiation, depending on the interplay between selection imposed by the external environment and the evolution of intrinsic incompatibilities arising during speciation. Introgression also may play a role in species differentiation, and hybridization between divergent lineages may generate adaptive novelties via recombination. Moreover, for lineages in which differentiation is tied to the external environment, divergent selection between environments may play a dominant role, with diversity increasing by increasing environmental specialization. In contrast, for lineages that become isolated without any shift in environment or associated divergent selection, secondary sympatry will lead to direct interaction between closely relatives and, given genetic incompatibility, ecological divergence through character displacement. The conclusion is that adaptive radiation is produced by multiple processes, with differences dictated largely by whether the drivers tend to be external to the radiation (mostly the environment) or internal (interactions among members of the radiation). Adaptive radiations will only be useful for understanding evolutionary phenomena if we make these distinctions in comparing processes across lineages.

Background

Adaptive radiation, the evolutionary divergence of members of a single monophyletic lineage into a variety of adaptive forms (Futuyma 1998), has been considered the connector that unites ecology and evolution (Givnish & Sytsma 1997). Since capturing the attention of evolutionary biologists when Darwin discovered his eponymous Galapagos finches, studies of adaptive radiation have been central in developing our understanding of the mechanisms that drive speciation, diversification, and many associated ecological and evolutionary processes (Givnish & Sytsma 1997; Grant & Grant 2014; Schlüter 2000; Simpson 1953). However, research on adaptive radiations is often as disparate as the ecologically differentiated species contained within a radiation, presenting the enormous challenge of generalizing across systems. One of the few uniting commonalities is that adaptive radiations generally require some form of ecological opportunity and are thus shaped by some form of divergent ecological selection (Schlüter 2000; Stroud & Losos 2016), though many other factors are clearly involved (Poelstra *et al.* 2018). There is limited consensus on what processes shape adaptive radiations across space, time, and taxa. As a result, a diversity of processes has been implicated, but still many questions remain, about the processes that lead to adaptive radiation. The current paper arose from a meeting of the American Genetic Association held in Waimea, Hawaii, in July 2018 with the goals of synthesizing our knowledge of ecologically, geographically, and taxonomically diverse radiations (Fig. 1) to provide a more general understanding of adaptive radiation. We identify common denominators that underlie adaptive radiations in order to inspire a general framework for explaining when - and how - they occur.

We begin by assessing factors important in driving adaptive radiation, with particular focus on factors outlined in Box 1.

Ecological arena (Box 1A): A proper understanding of adaptive radiation requires a joint focus on both ecological and evolutionary processes, and how each influences the other. The primary requirement for adaptive radiation is ecological opportunity, in the form of ecological space that is unoccupied or underutilized by competing taxa and that may be evolutionarily exploited. A powerful form of ecological opportunity appears to be the colonization of novel habitats or areas that are devoid of other ecologically similar species largely due to geographic isolation or similar barriers that limit initial colonization. Examples include the colonization of remote islands and newly formed crater lakes, or - for host-associated organisms - a previously defended host (Ehrlich & Raven 1964) by the evolution a novel adaptation that enabled a taxon to diversify to specialist niches thereby made available (Brown Jr 1958). The importance of opportunity points to the order of colonization of lineages as important in dictating which radiates; priority effects from a diversifying lineage may prevent subsequent lineages from gaining a foothold (De Meester *et al.* 2016; Fukami 2015; Fukami *et al.* 2007) although whether or not immigration history influences the extent of diversification can depend on the founding populations' prior evolutionary history (Knöpe *et al.* 2012a). Alternatively, priority effects from a non-radiating lineage may preclude establishment by a secondary colonizer from the same lineage within that niche, potentially facilitating ecological exploration in the secondary colonizer. Priority effects may also operate within a radiation, whereby once a given phenotype is occupied by a species then it is rendered unavailable to other species, although ecological character displacement may alter the outcome of such priority effects (Stroud *et al.* 2019).

Evolutionary potential will determine the speed of adaptive divergence, whereas the degree of geographic isolation combined with the dispersal capacity of taxa in the regional species pool will determine the rate at which the habitat can be filled with other species, reducing ecological opportunity for adaptive radiation. Time is thus crucial, in a "race" between adaptation and immigration (Gillespie & Baldwin 2010; Vanoverbeke *et al.* 2016). Thus, in the Hawaiian Islands, the oldest of the current high islands (Kauai, ca. 5 million years old) emerged at a time when previous islands were low and far apart (Price & Clague 2002). With the profound isolation, and hence time, there was greater opportunity for ecological exploration and diversification on Kauai (Gillespie 2016). Subsequent appearance of younger islands has been associated with increased opportunity for island hopping and hence less time for ecological exploration by a single lineage. As a result, a number of lineages are characterized by ecological diversification on the oldest island only, with colonization of the younger islands by island hopping of already diverse ecological forms. Within any given radiation, the tendency for lineages to progress from older to younger islands appears to be indicative of strong priority effects associated with initial establishment on older islands inhibiting back colonization from younger islands – the 'progression rule' (Shaw & Gillespie 2016).

External vs internal factors involved in initial divergence (Box 1B): Here we define external factors as those that arise external to the radiation itself, such as through interactions with the environment and internal factors as those that arise within the radiation itself without the need for interactions with the environment, potentially due to genetic incompatibilities or secondary sexual traits (Mendelson *et al.* 2014).

External barriers coupled with divergent selection – When initial divergence is shaped by ecological adaptation, reproductive isolation may evolve as a consequence of divergent selection (Nosil 2012; Rundle & Nosil 2005; Schlüter 2001, 2009). Similarly, host switching in parasites can generate new taxa via divergent ecological selection (Bush 1969; Drès & Mallet 2002; Feder

1
2
3 *et al.* 1988; Price 1980). This mechanism has been implicated in many other situations where
4 populations respond to divergent selection in different environments. Thus, the very young
5 lineages of sticklebacks and pupfish show strong evidence of disruptive selection in early
6 divergence (Hendry *et al.* 2009; Martin & Wainwright 2013; Schlüter 2000).
7

8 *Internal barriers coupled with geographic isolation – without divergent selection:* The
9 hypothesis involving external barriers described above requires ongoing divergent selection. By
10 contrast, populations experiencing the same selective environments could evolve internal barriers
11 owing to genetic incompatibilities that arise by chance in isolation. When reproductive isolation
12 can be achieved without divergent selection, the taxa formed may be more stable (i.e. less prone
13 to collapse; Seehausen 2006), though they may be formed at a slower rate (Seehausen *et al.*
14 2014). Included in this type of divergence would be mechanisms such as “mutation-order
15 speciation” (Mani & Clarke 1990), reproductive isolation evolving as a by-product of genetic
16 drift (Schlüter 2009) or environment-independent sexual selection, or scenarios where
17 populations have different segregating variants that are incompatible (Agrawal *et al.* 2011).
18 Moreover, population genetic models indicate that reproductive incompatibilities between
19 populations initially experiencing similar natural and sexual selection can be amplified as a result
20 of sexual traits (Mendelson *et al.* 2014). Such effects can lead to the rapid origins of ecologically
21 similar taxa, largely in allopatry and “non adaptive” (Rundell & Price 2009). However,
22 expansion within the environment may occur readily in such situations (Shaw & Gillespie 2016),
23 resulting in secondary sympatry, with interaction and associated ecological character
24 displacement (Cotoras *et al.* 2018).
25

26 **Role of Gene Flow (Box 1C):** Early work on speciation stressed the geographic isolation
27 between populations, with mutation, genetic drift and indirect effects of natural selection causing
28 speciation. It was generally believed that gene flow would counteract differentiation between
29 populations. Thus, much study focused on isolating mechanisms that prevented gene flow
30 (Merrell 1962). The rapidity of adaptive radiation then suggested various ways that
31 differentiation could be achieved, with much attention focused on founder events, and the
32 possibility that premating isolating mechanisms could evolve quickly through sexual selection.
33 Increasingly, it has been recognized that divergence can occur in the face of gene flow (Carson
34 1997) and more recent work suggests that speciation can occur without complete geographic
35 isolation (Mallet 2008; Servedio & Noor 2003). Various mechanisms have been proposed to
36 promote divergence, including chromosomal rearrangements that can prevent recombination and
37 allow genomic regions to diverge in the face of gene flow (Machado *et al.* 2007).
38

39 Recent studies have started to focus on the genomic consequences of admixture of previously
40 divergent populations. When such populations come together, hybridization may lead to
41 introgression or admixture depending on the degree of genetic divergence between the entities
42 involved, in particular because genetic incompatibilities tend to increase with genetic divergence
43 (Matute *et al.* 2010). However, the frequency of phenotypic novelties that can arise
44 spontaneously as a consequence of hybridization also tends to increase with genetic divergence
45 (Stelkens *et al.* 2009). Recent experimental work focusing specifically on the outcome of
46 admixture and hybridization shows how both the genetic difference between hybridizing species
47 and the number of hybridizing species affect the probability of reproductive isolation in the
48 admixed population, with a balance between the amount of genetic variation produced by hybrid
49 speciation and the generation of incompatibilities through novel genetic combinations. There
50 appears to be a “sweet spot” between the minimum divergence necessary for the evolution of
51

novel and advantageous recombinant genotypes and a maximum divergence, beyond which the accumulation of genetic incompatibilities eliminates any further benefit to hybridization (Comeault & Matute 2018). These sweet spots of divergence prior to admixture or hybridization have the potential to play a key role in adaptive radiation.

Co-occurrence of taxa within an adaptive radiation (Box 1D). Taxa within an adaptive radiation are adapted to different ecological niches. However, the geography of co-occurrence varies considerably between adaptive radiations: members of a radiation occur in allopatry, parapatry, mosaic sympatry, or pure sympatry. By definition, allopatry, parapatry, and mosaic allopatry all imply some level of spatial (or temporal) separation of populations, while sympatry requires regular dispersal between populations (Mallet *et al.* 2009) or that individuals are physically capable of regular interaction (Weber *et al.* 2017). Note that sympatry is related to the concept of alpha diversity, with both being spatially scale dependent; i.e., a given local area may contain many species, but very few species in any one portion of that area. Likewise, allopatry is related to beta diversity, or turnover between sites, both again being scale dependent. For the current manuscript we attempt to differentiate between situations where individuals of diverging populations do or do not interact on a regular basis throughout most of their range.

The relative importance of external and internal barriers (see above) may dictate the order of ecological divergence: Ecological divergence can arise in allopatry or parapatry (through adaptation to different environments) or sympatry (e.g. through species interactions that bring about ecological character displacement), or in combination. Several models of adaptive radiation have suggested that the initial separation of gene pools during speciation and/or adaptive radiation may follow predictable steps, with ecological divergence occurring along α (within site) and β (between site) axes at different time points during speciation (Ackerly *et al.* 2006; Gavrilets & Losos 2009; Streelman & Danley 2003).

Interactions with the environment and co-occurrence: The “habitat first rule” suggests that initial ecological divergence occurs as a consequence of environmental variability across space (Schluter 2000). A similar scenario has been suggested in a general vertebrate model (Streelman & Danley 2003). Among montane birds of New Guinea, for example, Diamond (1986) concluded that habitat divergence occurred first, and a similar argument might be made for Darwin's finches, given that co-occurrence of species formed early in the radiation tends to be lower than those formed later (Grant & Grant 2011)..

Interactions with close relatives and co-occurrence: Unlike the “habitat first” model discussed above, species attributes that allow local sympatry (e.g. α -niche divergence) appear to occur first in a radiation of western North American *Ceanothus* (Ackerly *et al.* 2006). Indeed, in many groups, divergence of traits that allow co-occurrence (α axis), such as specific leaf area in plants and trophic niche in animals, may be the first axis of divergence. These differences don't necessarily separate co-occurring species in space, but rather in use of resources within the space. This lies in contrast to the “habitat first” model discussed above where shifts in spatial use of the habitat tend to arise first under conditions of geographic separation. For example, trophic morphology has been suggested to diverge before macrohabitat shifts in cichlids from Lake Tanganyika (Muschick *et al.* 2014). Likewise, in much younger sympatric radiations of pupfishes, divergence in the trophic niche is clearly the initial axis of divergence (Martin & Wainwright 2011).

The arguments above come with many caveats. Thus, in the Darwin's finch case, high co-occurrence of young taxa might also suggest that early habitat divergence is not required for speciation, highlighting the challenge of inferring process from pattern using extant taxa only. Without a temporal sequence of events, it is impossible to test alternative hypotheses, or to infer the role of extinction on these clade-level patterns. Likewise, for cichlids, the pattern of initial divergence in trophic morphology appears to be inconsistent with the observation that trophic ecology is typically conserved within genera in Lake Tanganyika (Wagner *et al.* 2009).

Clearly needed are analyses across multiple radiations that can examine how and when ecological divergence occurs during the course of adaptive radiation. In particular, what is the role of (1) geographic isolation in similar environments potentially triggering initial non-ecological divergence, with ecological divergence occurring upon secondary overlap due to interactions between members within a lineage; relative to (2) environmental isolation and disruptive selection triggering habitat shifts in allopatry or parapatry. One of the few studies that has examined the relative timing of ecological and non-ecological factors in the early stages of adaptive radiation across multiple lineages, highlighted the importance of non-ecological processes in potentially serving as the initial axis along which taxa might diverge in many adaptive radiations (Rundell & Price 2009). Thus, initial non-ecological divergence can lead to non-adaptive radiation (see below), and may also be the precursor to adaptive radiation.

Rate and adaptive shifts (Box 1E): Adaptive radiation is frequently associated with an increase in the rate of diversification. However, diversification may be adaptive without any increase in rate, and can increase in rate without adaptation. These differences can arise from entirely different drivers. Hence, understanding of these requires that the different elements be recognized and separated.

Non adaptive radiation - acceleration in rate of diversification only Radiations have been broadly characterized as adaptive and non-adaptive (e.g., Rundell & Price 2009), referencing the extent to which species have ecologically diversified. Non-adaptive radiations, those clades that exhibit little ecological disparity, are classic examples of phylogenetic niche conservatism, in which ecology is conserved among closely related species over evolutionary time scales (Ricklefs and Latham 1992; Peterson 1999; Wiens 2004; but, see Losos 2008). Initially described as 'evolutionary diversification from a single ancestor, not accompanied by relevant niche differentiation' (Gittenberger 1991), such radiations are common in taxa that have low dispersal ability, such as land snails and salamanders. However, in some examples some large species radiations can involve complex mixtures of adaptive and non-adaptive processes (Rundell & Price 2009).

Adaptive shifts without increased rate of diversification Adaptive shifts are not always associated with increased rates of diversification (Wood *et al.* 2012). To this end, it is clear adaptive shifts may arise independently from increased rates of diversification and vice versa (Givnish 2015). Thus, it is important to separate the phenomena.

Adaptive shifts with increased rate of diversification Many of the classic adaptive radiations are associated with both rapid diversification as well as adaptive shifts. Given that adaptive radiations tends to be associated with ecological release (reviewed in Yoder *et al.* 2010), many authors have argued that the associated opportunity may lead to increased rates of lineage or morphological diversification. Indeed, many tests of adaptive radiation have focused

on this element, with key innovations often examined in the context of their tendency to lead to increased rates of diversification (Slowinski & Guyer 1993).

Common denominators of adaptive radiation – questions and answers

The lineages under consideration at the American Genetic Association conference included: Hawaiian *Metrosideros* and Hawaiian *Bidens* plants; Galapagos *Naesiotus* land snails; Hawaiian *Tetragnatha*, *Ariamnes*, and *Mecaphesa* spiders; Hawaiian *Laupala* crickets; Hawaiian *Nesophrosyne* leafhoppers; Hawaiian *Drosophila* flies, Hawaiian *Hyposmocoma* moths; South American *Heliconius* butterflies; North American threespine stickleback fish, East African cichlid fish, pre-Alpine European whitefish, Mediterranean labrine wrasses, San Salvador Island pupfishes, and Cameroon crater lake cichlid fish; Eastern plethodontid salamanders (*glutinosus* group); *Anolis* lizards of the Greater Antilles and mainland *Anolis* (subclade Draconura); and Darwin's finches, Tristan finches, and Hawaiian honeycreepers. This collection of study systems is not an exhaustive representation of all adaptive radiations. Here, our aim here is to generate commonalities across this wide array of taxonomic groups and geographic settings. If we can identify a set of commonalities, this will certainly guide future work in other systems.

Contributors addressed the following questions:

1. How did your lineage gain access to the (novel/under-utilized) eco-evolutionary space into which it radiated?

The majority of radiations started with ecological opportunity associated with geographic colonization of a new environment, or key innovations coupled with colonization of a new set of niches. For example, in *Heliconius* butterflies, key innovations arose *in situ* in the neotropics, which led to profound shifts in life history; here, key innovations are thought to have been: shortening of larval development time by specialization on new shoots of *Passiflora*, pollen-feeding, greater adult longevity, coevolution with larval and adult host plants, development of a flexible set of switch loci for Müllerian mimicry, and cognitive improvements (Gilbert & Singer 1975; Merrill *et al.* 2015).

2. How does the ancestral niche compare to what you know of the pattern of establishment of niches in new species?

For the majority of lineages, contributors speculated the ancestor to be a generalist with subsequent diversification leading to multiple specialist species. However, it is often difficult to determine whether the ancestor itself was generalist, or whether the generalist strategy arose during ecological release, or the expansion of ecological amplitude, upon colonization of new ecological space. Subsequently, a generalist ancestor can give rise to multiple descendant species in an adaptive radiation that are not simply partitioning broad niche space, but are also (often greatly) expanding total niche breadth across the descendant species that exceeds that of the generalist common ancestor (e.g., Rubinoff & Schmitz 2010). In cichlids, although the ancestor may be a generalist, its niche is only a small subset of the niche space that members of the radiation acquire (Joyce *et al.* 2005). In Hawaiian insects that feed on plants, some colonizing ancestors are thought to have arisen from generalists that may include polyphagous pests in their ancestral range, facilitating establishment in an ecosystem with restricted and depauperate flora (Bennett & O'Grady 2012). The expansion of total niche breadth in plant-associated insects beyond that of their ancestral range likely arose from (a) release from competition and/or predation that restricted ancestral plant use and (b) the opportunity to diversify by specializing on

novel plant lineages from other continents that are not present in the ancestral range of an insect lineage (Bennett & O'Grady 2013; Bennett & O'Grady 2012). In Hawaiian *Metrosideros*, where the recency of the radiation and hybridization among nascent taxa confound phylogenetic approaches (Percy *et al.* 2008; Wright *et al.* 2001), population genetic analyses strongly suggest the evolution of habitat specialists from a widespread relatively generalist taxon (Stacy *et al.* 2014; Stacy & Sakishima in review) and overall increase in niche breadth occupied by the lineage.

However, many of the radiation members are no more specialized than the ancestor, some perhaps even less, with classic examples from cichlid fish (Liem 1980) and Galapagos finches (De Leon *et al.* 2014).

In some lineages it appears that the ancestor was specialized and experienced ecological release at the outset of the radiation; in particular for Hawaiian spiders, moths and crickets (Otte 1994), Galapagos snails, and stickleback fish (cites?). Thus, in Hawaiian *Tetragnatha* spiders, the sister lineage almost certainly builds flimsy webs over water, while the Hawaiian lineage is found in almost every forest habitat and microhabitat (Gillespie 2016). Likewise in snails, the most likely sister group to Galapagos *Naesiotus* snails inhabits dry forest habitats whereas in Galapagos the snails are found to occupy a much wider range of habitats which they have adapted to (ref?).

In the mainland radiation of *Heliconius* butterflies, it appears that colonizing new ecological opportunities in already rather full ecological communities was the main driver. This contrasts with the situation of colonizing islands, where arguably a major trigger for radiation is reduced competition for the organism's normal niche.

3. Which factors best describe initial establishment of new species in your group?

This question addressed whether the radiation started by initial establishment in a preferred niche and exclusion of subsequent colonists, followed by radiation by expansion from this niche into many other niches. Or alternatively, whether the radiation is triggered by exclusion from the ancestral niche (perhaps by earlier colonists) leading to establishment in novel niches and associated radiation. Most contributors considered that initial establishment occurred in the preferred niche with subsequent colonists excluded (cf. priority effects; e.g. in *Laupala* crickets; (Shaw & Gillespie 2016)). However, opinions varied widely even for the same lineage, likely reflecting the difficulties in obtaining data that would support one or the other scenario. Indeed, without a timeline, distinguishing between initial colonization in an ancestral niche with a subsequent shift versus colonization in a new niche without that first step in the ancestral niche is very challenging.

Variations on these ideas were suggested for cichlids and Mediterranean labrine wrasses with initial establishment in the niche resembling the ancestral niche, but subsequent colonists were not excluded. In other words, secondary colonists were not excluded even though they had substantial niche overlap (both in microhabitat and trophic resources) with the earlier colonists. Ensuing radiation has occurred by rapid but gradual "cladistic expansion" from this niche into many other niches.

4. Which factors best describe initial reproductive isolation (i.e. factors that drive initial divergence between populations, some of which become species) in your group?

1
2
3 There are two clear mechanisms through which initial reproductive isolation can occur. The first
4 is ecological divergence - disruptive selection between different environments; the second is non
5 ecological – divergence in isolation without disruptive selection.
6

7 *Disruptive selection between different environments* - This mechanism was suggested for
8 all plants, fishes, and Galapagos and Tristan finches. Thus, the numerous forms of *Metrosideros*,
9 Hawaii's landscape-dominant tree, apparently formed and persist by disruptive selection with
10 genetic incompatibilities contributing to partial reproductive isolation in hybrid zones of at least
11 two taxa (Stacy *et al.* 2017). Tristan finches (*Nesospiza* spp.) colonized the isolated South
12 Atlantic Tristan da Cunha islands c. 4 million years ago (Ryan *et al.* 2013). The original
13 colonizers were small-billed (Sternvander 2015) and the island tree *Phylica arborea*, whose fruits
14 the large-billed finches now specialize on (Ryan *et al.* 2007), only colonized the Tristan da
15 Cunha islands \leq 2 million years ago (Richardson *et al.* 2003; Richardson *et al.* 2001). The arrival
16 of this new food source introduced disruptive selection pressure, which resulted in a miniature
17 radiation into replicate taxon pairs of small- and large-billed finches on each of two islands
18 (Ryan *et al.* 2007; Sternvander 2015).
19

20 The important point here is that selection for different environments appears to be the initial
21 driving force pulling gene pools apart, and this appears to be the driver of speciation in
22 *Heliconius* butterflies as well, where host plant switches or divergent mimicry aids coexistence
23 of new or incipient species (Merrill *et al.* 2015). This mode of initial divergence may mean that
24 few genetic incompatibilities exist; barriers are predominantly ecologically dependent. An
25 exception is the partial reproductive isolation observed between successional varieties of the tree,
26 *Metrosideros polymorpha*, on Hawaii Island, where differential adaptation to new and old lava
27 flows (Morrison & Stacy 2014) is associated with reduced fertility of hybrids, especially
28 backcross trees (Stacy *et al.* 2017). In continuously distributed trees, variation in population size
29 among diverging taxa may explain the simultaneous occurrence of strongly isolated taxa
30 confined to geographically narrow niches and incomplete speciation between two widespread
31 successional taxa, if drift promotes the fixation of incompatibilities only in small populations.
32

33 In Lake Victoria cichlids, initial ecological selection between niches is often divergent rather
34 than disruptive; however, disruptive selection emerges from the interaction of sexual selection
35 with the environment (Moser *et al.* 2018; Seehausen *et al.* 2008; van Rijssel *et al.* 2018). In
36 contrast, there is evidence of significant disruptive selection in other cases of Lake Victoria
37 cichlids (genus *Neochromis* (van Rijssel *et al.* 2018)), in Cameroon crater lake cichlids (Martin
38 2012), Tristan finches (Ryan *et al.* 2007), and Darwin's finches (Hendry *et al.* 2008). In some
39 Cameroon cichlids, disruptive selection gradients were only moderate in strength, suggesting that
40 disruptive ecological selection was not sufficient to drive species divergence (e.g. see Bolnick
41 2011; Bürger *et al.* 2006; Matessi *et al.* 2002) and that sexual selection instead was the primary
42 driver (Martin 2012, 2013). In the pre-Alpine whitefish radiation (Hudson *et al.* 2010;
43 Vonlanthen *et al.* 2012), divergent selection occurs between different spawning habitats (water
44 depth), possibly coupled with disruptive selection on trophic adaptations in the feeding habitat
45 (which is NOT the same as the spawning habitat in these radiations).
46

47 Initial ecological divergence has been demonstrated in Hawaiian insects. For example, trophic
48 interactions initially shape adaptive diversification among native Hawaiian leafhoppers
49 (Hemiptera: *Nesophrosyne*). Much of this ecological diversity among the >200 species in this
50 lineage has resulted from early adaptive diversification as these insects specialized on Hawaii's
51 endemic host-plant lineages (Bennett & O'Grady 2012). Here, there has been subsequent non-
52

adaptive diversification over geological time-frames and landscapes as species numbers were multiplicatively amplified as host plants and their dependent insects colonized, and diversified among, islands in the archipelago (Bennett & O'Grady 2013). A similar mixture of adaptive and non-adaptive processes has been inferred for the large cichlid radiations in East African Lakes Malawi, Victoria, and Tanganyika, where trophic adaptation and sexual selection have repeatedly influenced speciation (Kocher 2004; Seehausen 2015), likely frequently in fine-scale parapatry (e.g., Seehausen & Magalhaes 2011; Seehausen *et al.* 2008), but these processes also play out in a geologically complex landscape that presents, for some lineages, ample opportunity for geographic isolation (e.g., Arnegard *et al.* 1999; Sefc *et al.* 2017; Sturmbauer *et al.* 2001; Wagner & McCune 2009).

Divergence in isolation without disruptive selection - In contrast, the second mechanism through which initial reproductive isolation can occur is through some form of intrinsic reproductive incompatibility. In some situations, this may be a slow process and lead to non-adaptive radiation. Thus, in the plethodontid salamanders of the eastern United States, whose populations became isolated following the formation of the Appalachian mountain range (Kozak *et al.* 2006). Subsequently, isolated populations were unable to maintain connectivity and diversified non-ecologically into a series of morphologically cryptic alloaspecies; for example, the *Plethodon shenandoah* complex is now isolated on mountaintops, unable to tolerate environmental conditions of intervening lowlands. There is minimal coexistence among named species - instead they tend to replace each other geographically (Kozak & Wiens 2010). Among spiders in the Hawaiian Islands, non-adaptive radiation has been well described in *Orsonwelles* (Linyphiidae), with 13 species across the islands: all species have similar ecologies and none co-occurs with any other (Hormiga *et al.* 2003). Similarly, non-adaptive radiation has been well documented in Galapagos mockingbirds (Arbogast *et al.* 2006) and Galapagos tortoises (Beheregaray *et al.* 2004).

Sexual selection can also play a role in initial reproductive isolation without major ecological shifts, and lead to more rapid diversification. The native Hawaiian crickets of the genus *Laupala* show niche conservatism but nonetheless display species coexistence with up to four species in sympatry. Selection likely plays a role in speciation in this group but via divergent sexual selection rather than through ecological differentiation of resource use (Mendelson & Shaw 2005; Otte 1994; Xu & Shaw 2019). However, here again, since divergent sexual selection is often tied to ecology (e.g., Maan & Seehausen 2011) the distinction between adaptive and non-adaptive diversification can become blurred.

Isolation without ecological shifts may also play a major role in adaptive radiations. For example, anoles, Hawaiian insects and spiders, and Galapagos snails all appear to show that initial divergence happens in the same environment, presumably through intrinsic mechanisms, though in allopatry. However, the evidence for the phenomenon is varied and difficult to infer. Thus, most evidence points towards the evolution of reproductive isolation in allopatry in anole radiations (Losos 2009), with character displacement on secondary contact driving phenotypic divergence (Losos 2009, Stroud and Losos 2019). In Galapagos snails, it appears, based on geographical distributions, that initial divergence is the result of geographical isolation (Phillips *et al.*, this volume). When this geographical isolation is accompanied by divergent selection between different environments then ecological speciation might ensue, but the initial stage of divergence is most likely associated with geographical isolation and either premating or postmating intrinsic barriers.

5. Which factors best describe species persistence in your group?

The arguments were whether most entities persist once they have been formed or whether most are ephemeral - eliminated by ecological processes of exclusion or by introgression upon secondary contact, by reversal of speciation in primary contact, or by demographic stochasticity (Rosenblum *et al.* 2012; Seehausen *et al.* 2008). These ideas build on those of ephemeral diversification (Futuyma 1987). Most contributors thought that lineages are ephemeral; in other words, genetic entities often form that do not persist. However, the fate of the ephemeral lineages varies between lineages. In sticklebacks, it is likely that many species are ephemeral and have been extirpated by multiple mechanisms including demographic stochasticity in addition to ecological processes and introgression; ice-ages obliterated perhaps most freshwater species, so that most of today's three-spined stickleback species evolved from the marine species since the most recent glaciation. Likewise in pupfishes, reproductively isolated ecotypes may go extinct due to ecological or geological processes such as loss of hypersaline lake environments. For adaptive radiations involving slow-to-speciate taxa such as trees, the presence of multiple morphologically distinct yet weakly genetically diverged forms may be due to a mismatch between the rate of speciation and the temporal scale of environmental change. For example, in Hawaiian *Metrosideros*, where the most diverged taxa tend to be bounded by sharp ecotones, a large number of sympatric forms appear to be only weakly ecologically diverged and may reflect incomplete isolation on once-sharp ecotones that have since weakened on Hawaii's rapidly changing volcanic islands (Stacy *et al.*, this volume). Such forms are expected to disappear through introgression in this highly interfertile group.

In Lake Victoria cichlids, timelines are a good deal shorter. Thus, most entities persist at least for thousands of years (which is long in a 15,000-years-young radiation), but some get eliminated by speciation reversal. The scale of speciation reversal is mediated by environmental change (natural and anthropogenic), and the impact can be massive in parts of the radiation.

Similarly, local sympatry of sister species in *Heliconius* is widespread, suggesting speciation with gene flow, or if allopatric speciation was involved, rapid range change into sympathy after secondary contact (Rosser *et al.* 2015). Species persistence is due to occupation of different niches and assortative mating, aided possibly by F1 female hybrid sterility (i.e. conforming to Haldane's Rule (Haldane 1922), where the heterogametic sex (here the females) are most likely to suffer developmental disruption).

In several groups, the production of many ephemeral entities might contribute to some form of adaptive admixture. Thus, in *Heliconius*, the coming together of different lineages may, in the long run, lead to more radiation. In Hawaiian *Bidens*, species are generally fully isolated either by geography (on different islands) and/or by habitat (and pollination syndrome for the one bird pollinated *Bidens cosmoides* on Kauai), but when secondary contact occurs the species can meld back together into hybrid swarms since reproductive isolation has not yet occurred amongst any of the endemic Hawaiian species tested (Ganders & Nagata 1984; Knope *et al.* 2013). However, all of the Hawaiian species tested are reproductively isolated from taxa in their Central American sister clade (Knope *et al.* 2013), and this reproductive incompatibility appears to have arisen within the past ~2 Mya (Knope *et al.* 2012b, this volume). In Hawaiian *Metrosideros*, hybridization among taxa appears to be common where ranges overlap along environmental gradients (Stacy *et al.* 2016). Genetic evidence suggests widespread mtDNA leakage in

Hawaiian *Laupala* crickets, indicative of persistent hybridization across the radiation (Shaw 2002; Shaw & Gillespie 2016). Nonetheless, two clades of this group have persistently maintained genetic integrity in sympatry for at least 3.5 MY (Mendelson & Shaw 2005). In San Salvador pupfishes, adaptive introgression from a distant island 10 kya has contributed to the divergent trophic morphology of specialists in the radiation, perhaps arising from a previous ephemeral radiation (Richards & Martin 2017).

6. Which factors best describe how co-occurrence of species is achieved in your group?

Most contributors argued that new incipient species share ecological requirements similar to each other when they come into secondary contact; then character displacement gives rise to ecological divergence in sympatry. This scenario reflects the thoughts of researchers who study Caribbean *Anolis*, Hawaiian spiders, Hawaiian *Drosophila* fruitflies, Hawaiian *Nesophrosyne* leafhoppers, and Darwin's finches. In one case, the Hawaiian *Laupala* crickets, ecological character displacement does not apparently occur (relegating this group into the category of "non-adaptive" radiation). Xu and Shaw (this volume) provide evidence that some conserved features of mating behavior may yield mutual benefit to mate-searching females of co-occurring species, suggesting a novel mechanism stabilizing sympatry without ecological or reproductive character displacement. However, it should be noted that in many cases where similar species come into secondary contact there is extinction/exclusion, but this goes undetected and what we see is what is left, which is the case of successful character displacement. It may thus be difficult to know the frequency of successful character displacement.

In other groups, however, some form of ecological divergence appears to be involved prior to the resumption of sympatry of taxa. In sticklebacks, ecological character displacement is facilitated by initial ecological differences. In cichlids likewise, co-occurrence appears to come about possibly as character displacement, but also perhaps via having distinct ecologies before coming back into contact. The same is true for Darwin's finches (Grant & Grant 2006). The relative importance of these two is not clear in cichlids, and also there is little clear evidence for character displacement in cichlids (van Rijssel et al. 2018).

In the South American mainland radiation of *Heliconius* butterflies, ecological character displacement may begin very early during divergence to become the major driving force of speciation with gene flow (Rosser et al. 2015). It is not inconceivable that many island radiations, confronted by multiple available niches, might also diversify in a similar manner.

7. Which factor best describes how ecological disparity is achieved in your group?

The question here was the relative importance of adaptive admixture, developmental plasticity, evolvability, and / or lineage priority. Clearly, all of these may play a role or interact to facilitate radiation. Overall, it appears to be a combination of these factors that allows adaptive diversification, with priority effects involved in the initial establishment and exploration of ecological opportunity presumably setting the stage for subsequent diversification into multiple niches, the latter being achieved through a combination of adaptive admixture, developmental plasticity, and evolvability.

Stickleback evolvability is enhanced by standing genetic variation in the ancestral form (marine), but the source of this variation is likely admixture between marine and older freshwater populations; here, the main role of plasticity is to facilitate colonization and persistence, enabling adaptation. In other fishes, admixture can contribute to genetic variation. Thus, in many cichlid

groups, including those from the Rift Lakes and Cameroon (Poelstra *et al.* 2018), and pupfishes (Richards & Martin 2017), admixture may be critically important as a source of adaptive alleles; developmental plasticity can also open immediate access to novel niches in cichlids and evolvability, often facilitated by admixture, permits genetic differentiation and assimilation. Similarly, admixture likely contributed to evolvability in Galapagos finches (Chaves *et al.* 2016; Lamichhaney *et al.* 2015) and *Heliconius* butterflies (Merrill *et al.* 2015).

A second element here is whether, if a lineage occurs in discrete areas (eg islands within an archipelago; network of habitats), then does ecological disparity arise (i) at the base of the radiation (species related across "islands"); (ii) within "islands" in a replicated fashion (same ecological sets of taxa on each "island"); or (iii) within "islands" in an unpredictable fashion. In lineages where ecological disparity arises within a given island or lake, some degree of repeatability and the evolution of similar sets of habitat specialists, sometimes called 'ecomorphs' within each island/lake of an archipelago is a common pattern that is well known in Caribbean *Anolis* (Losos 2009), cichlids of the Rift Lakes (Brawand *et al.* 2014; Muschick *et al.* 2012)(Brawand *et al.* 2014; Muschick *et al.* 2012), sticklebacks (Rundle *et al.* 2000), alpine whitefish (Vonlanthen *et al.* 2012), Tristan finches (Ryan *et al.* 2007), Hawaiian *Tetragnatha* spiders (Gillespie 2004), and Hawaiian *Ariamnes* spiders (Gillespie *et al.* 2018). However, in other groups, the ecological disparity arises at the base of the archipelago-wide radiation, notably in Hawaiian *Hyposmocoma* moths (Haines *et al.* 2014), Hawaiian crab spiders (Garb & Gillespie 2009), Hawaiian *Nesophrhosyne* leafhoppers (Bennett & O'Grady 2013), Hawaiian *Drosophila*, and Hawaiian *Bidens* (Knope *et al.*, this volume). In other lineages, the pattern of diversification between islands is unpredictable, notably in Cameroon crater lake cichlids, Caribbean pupfish, Galapagos land snails, and Hawaiian *Metrosideros*.

Based on the responses above, we discuss generalities that may exist *within* a lineage that is undergoing adaptive radiation, in the context of **(1) Initial divergence, (2) Persistence of reproductive isolation, (3) Admixture leading to exchange of adaptive traits among diversifying lineages, (4) Ecological shifts and sympatry.**

Common denominators – initial divergence within the radiation

To initiate species formation in the course of adaptive radiation, a population generally must establish in a new environment or a new geographic location in the same environment (Mayr 1947)(Coyne & Orr 2004), although there are exceptions (Feder *et al.* 2012; Hendry *et al.* 2009; Mallet *et al.* 2009). However, the nature by which initial separation of colonists may be achieved is multifaceted, and comparisons across radiations often fail to find commonalities. While the first step clearly requires the founding of a new intraspecific population, in some situations this requires a shift in ecological tolerance where there are different selection pressures (Mayr 1947); in other situations the new population experiences no ecological shifts; here, ecological divergence is associated with subsequent interaction with close relatives (Brown & Wilson 1956).

It is important to separate the roles of external selection versus internal incompatibilities fostering initial divergence (Fig. 2). Both can give rise to reproductively isolated species in allopatry, although stable local co-occurrence requires a mechanism to overcome gene flow (Seehausen *et al.* 2014). Thus, we divide this part of the process into the relative roles of its two key elements – (i) isolation as a result of external effects coupled with divergent selection, (ii) isolation due to internal barriers *without* external divergent selection. The importance of these

two factors is also related to the degree of isolation; and the length of time of isolation, which we will discuss later. Divergent sexual selection, depending on the specific mechanism and the role of the environment, may fit comfortably within either element.

Which taxa are likely to diverge in which way? One of the major difficulties in dissecting out the relative importance of *external factors and initial divergent selection* versus *internal factors without divergent selection* (ecological differences may evolve later through interaction) in initiating early divergence within an adaptive radiation, is that we lack an adequate timespan over which to observe the early stages of radiation together with later stages. Thus, in many of the classic cases highlighting the role of disruptive selection in fostering early divergence, the lineages are very young (<50 ky) and tend not to co-occur, making it debatable as to whether the divergence translates into a full blown adaptive radiation. Where radiations are evident, it can be difficult to infer whether selection or geographic isolation alone created conditions for early divergence, and both factors are likely involved in cichlids. Similarly, in mainland anoles it seems likely that both mutation-order and ecological speciation may have taken place, as there has been abundant opportunity for both divergence in allopatry and sympatry respectively (Poe *et al.* 2017). Specifically, following initial colonization of upper Central America and the Nearctic ~30MY (at the time disconnected from South America and the incumbent mainland anoles), preliminary data suggests that Draconuran anoles rapidly dispersed across the hitherto uncolonized landmass, potentially initiating mutation-order speciation (Patton *et al.*, unpubl.). As diversity in this group accumulated, so did the number of sympatrically distributed species, consequently increasing the opportunity for ecological speciation. However, due to limited (as compared to their Caribbean counterparts) understanding of the ecology and evolutionary history of this group, these observations are at least in part speculative.

Plant radiations highlight the role of external factors and divergent selection: *Bidens* more likely are at the early stages of divergence driven by external factors, in that all endemic Hawaiian species that have been tested are cross-compatible with one another, but 70% of the 19 Hawaiian endemic species are single island endemics and 85% are allopatric when additionally considering habitat isolation within islands, and at least one species is reproductively isolated due to differences in pollination syndrome (Ganders & Nagata 1984). The numerous, predominantly infraspecific, morphotypes of *Metrosideros* differ in vegetative traits and are highly interfertile (Stacy *et al.* 2016) despite evidence of differential local adaptation across contrasting environments (e.g., (Ekar *et al.* in review; Morrison & Stacy 2014), Sakishima *et al.*, in prep.,). Common garden experiments with both *Bidens* (Gillett & Lim 1970; Knope *et al.* 2013) and *Metrosideros* (Cordell *et al.* 2000; Cordell *et al.* 1998; Corn & Hiesey 1973; Kitayama *et al.* 1997; Stemmermann 1983) show that the striking morphological differences amongst taxa are indeed due to genetic differences and not phenotypic plasticity.

Some animal radiations highlight the role of external factors and divergent selection The simultaneous use of specialized ecological niches for food and reproduction is likely important in shaping invertebrate radiations (e.g., singing, specializing on host plants for oviposition such as the Hawaiian *Drosophila* and Hemiptera, egg laying in open environments, etc.). Under such conditions, where strong connections with the external environment can clearly play a selective role, the initial stages of speciation may be external, due to the environment.

Some animal radiations highlight the role of internal factors and drift: For many animal radiations, whether or not the end result is co-occurrence, the initial stages of divergence are associated with geographic isolation and fostered by genetic drift rather than disruptive selection

drift (Schluter 2009). The role of geographic isolation without apparent disruptive selection has been well demonstrated in Hawaiian spiders (Cotoras *et al.* 2018) {Gillespie, 2005 #200}, crickets, and flies (Hiller *et al.* In press). It has also been suggested for the early stages of divergence in *Anolis* lizards (Glor *et al.* 2004; Glor *et al.* 2003; Knouft *et al.* 2006; Losos 2009) and Galapagos snails (C. Parent, unpubl. data).

To conclude, the mechanism through which initial divergence is achieved during the course of an adaptive radiation varies considerably across radiations depending on the interplay between external selection versus internal incompatibility fostering initial divergence (Schluter 2009) (Box 1B, Fig. 2). Organisms that exploit – and have strong associations with different environments, including many plants and plant-associated insects, will experience external divergent selection (Schluter 2001). In contrast, organisms that become isolated while remaining in the same kind of environment (Rundell & Price 2009), may diverge through internal mechanisms unrelated to divergent selection, potentially associated with sexual recognition (Carson 1997; Mendelson *et al.* 2014); here, ecological divergence can occur via secondary sympatry (Cotoras *et al.* 2018; Hiller *et al.* In press; Rundell & Price 2009) (see below).

Common denominators – the role of admixture

Many of the differences between populations are likely contingent on the genetic variability within each lineage, and on the availability of accessible new niches to that lineage. Contingency will thus determine the outcomes of divergent natural selection, and whether it can lead to speciation or adaptive radiation. One source of such contingency is whether colonizing lineages had an opportunity to hybridize and generate admixture variation.

Reproductive isolation often does not reach completion in speciation; occasional gene exchange may continue long after population separation, and sometimes for species that are millions of years divergent (Arnold 1997; Mallet 2005, 2008). Although gene flow between diverging populations tends to be thought of in general inhibitory to divergence, gene flow between more distantly related populations and species can bring together hitherto un-combined adaptive loci from different species that may prove advantageous for survival and further niche colonization and diversification (Abbott *et al.* 2013).

Admixture may act to facilitate adaptive radiation in two distinct scenarios (Seehausen 2004): 1) admixture between divergent taxa prior to adaptive radiation may facilitate the onset of adaptive radiation, a concept referred to as *hybrid swarm origins*; 2) admixture may occur during adaptive radiation, facilitating ongoing speciation within the adaptive radiation, a concept known as the *syngameon hypothesis*. Especially in the case of hybrid swarm origins to adaptive radiation, admixture may introduce new combinations of genes that prove adaptive in their new genomic context. Thus, admixture between divergent taxa has been implicated in establishing the radiation of Hawaiian silverswords (Barrier *et al.* 1999) and cichlids (Irisarri *et al.* 2018; Meier *et al.* 2017). It is possible that propensity for hybridization may help explain why only some lineages that colonize remote volcanic islands such as Hawaii radiate adaptively, whereas others persist and form minor allopatric variants of their progenitor species. As our ability to test for these patterns with genomic data mounts, tests of this hypothesis become more and more feasible.

Likewise for ongoing speciation, the role of admixture in the course of adaptive radiation has been well documented in a number of classic adaptive radiations such as Ko‘oko‘olau (*Bidens*) and silverswords in Hawaii (Carlquist *et al.* 2003; Carr 1987), Darwin’s finches in the Galapágos (Lamichhaney *et al.* 2015), *Heliconius* butterflies (Heliconius Genome Consortium 2012), and African cichlid fish (Seehausen 2015). This sets up a scenario where gene flow and selection towards local adaptive peaks may interact. This will often happen between diverging sister taxa but it may also happen between more distantly related taxa within a radiation. Especially in that latter case, gene flow may introduce new combinations of genes that prove adaptive in the recipient population. Thus, speciation with occasional introgressive gene exchange may be important for construction of new adaptive combinations in rapidly radiating taxa (Meier *et al.* 2017; Meier *et al.* 2018), in some cases leading to hybrid speciation (Marques *et al.* In press; Schumer *et al.* 2014) as well as adaptive introgression (Lamichhaney *et al.* 2018).

Whether admixture among members of a radiation actually enhances further speciation within adaptive radiation (Carr 1987) can be difficult to test as many well-studied adaptive radiations consist of young species that would be expected to be more compatible and therefore to undergo more introgression than older species in non-radiating lineages; yet this introgression does not necessarily increase speciation rate. Testing the syngameon hypothesis of adaptive radiation therefore requires combining population genomic, demographic and phenotypic analyses (Meier *et al.* 2018). Additionally, cases of hybrid speciation in adaptive radiation are a specific case of how admixture can directly lead to increased speciation (Lamichhaney *et al.* 2018). The hybrid swarm origin hypothesis for adaptive radiation on the other hand, makes predictions that cannot be confounded by the fact that young radiation species tend to hybridize. Its unique predictions are, first, that the most recent common ancestor of all members of a radiation is a population of hybrid origin between distinct species, and second, that new combinations of old genes that arose from the hybridization (i.e. that did not exist in either of the parental lineages alone) are important in speciation and adaptation during the radiation (Seehausen 2004). This combination of hypotheses receives its strongest support to date from work on the Lake Victoria Region superflock of cichlid fish radiations that all originated from hybridization between ecologically not very divergent *Astatotilapia/ Thoracochromis* species from the Upper Nile region and the upper Congo river, lineages which are not strongly ecologically divergent (Meier *et al.* 2017). Finally, there is abundant evidence for gene flow among different species during adaptive radiation which may facilitate adaptive divergence and speciation (e.g., Irisarri *et al.* 2018). There is also evidence that adaptive introgression from multiple outgroups may trigger adaptive radiation (Poelstra *et al.* 2018; Richards & Martin 2017; Richards *et al.* 2018).

To conclude, mechanisms for the separation of gene pools are clearly required for adaptive radiation (Box 1C). However, it appears that admixture may sometimes facilitate radiation, likely in conjunction with spatially heterogeneous or ecologically multifarious selection. There is now clear genetically-based evidence for both the hybrid swarm origin hypothesis and also for the mechanisms associated with the syngameon hypothesis of adaptive radiation. However, as genomic evidence for admixture in the history of adaptive radiations increases, there is a need to clearly distinguish between the processes associated with the models. Furthermore, these processes are distinct from the commonly discussed evidence for speciation-with-gene flow. Because there is a tendency of gene flow to homogenize variation if lineages are not strongly divergent and also a tendency for genetic incompatibilities to prevent any admixture of lineages when they are too divergent, there may be an optimal degree of divergence between populations or species at which admixture

1
2
3 **might facilitate adaptive radiation (Comeault & Matute 2018; Stelkens *et al.* 2010). The**
4 **timing of admixture is critical (Marques *et al.* In press) and likely depends on attributes of**
5 **the lineage in question, highlighting the need for comparative studies.**

6
7 **Common denominators – persistence, ecological shifts & sympatry within the radiation**

8
9 Genetic entities – which may be distinct populations or incipient species - are formed
10 continuously during adaptive radiation, but they tend to be ephemeral. Estimates of speciation
11 rates from the fossil record are much slower than both those predicted from mathematical models
12 and empirical data from recent diversification (Seehausen *et al.* 2014). Thus, while speciation -
13 or at least the formation of phenotypically distinct ecotypes - can be common and rapid in the
14 context of adaptive radiation, the persistence of most new entities may be short lived.

15 Evolutionary studies should therefore focus on not only the formation but also the *persistence* of
16 new species. Many, perhaps most, adaptive radiations have occurred so rapidly that it is difficult
17 to infer phylogenetic relationships among species (Rosenblum *et al.* 2012). Thus, in the case of
18 very young lineages that are not fully resolved radiations, many reproductively isolated ecotypes
19 form, but they tend to be eliminated by geological or climatological processes such as loss of
20 lake environments (e.g., paleo-lake Makgadikgadi: (Joyce *et al.* 2005)), or by glaciation (e.g.,
21 stickleback and whitefish), or by ecological processes of predation and exclusion (e.g.,
22 stickleback (Gow *et al.* 2006; Taylor *et al.* 2006) and Laguna Chichancanab pupfishes (Strecker
23 2006)). Another cause of non-persistence of many species in adaptive radiations is that as long as
24 reproductive isolation (and hence speciation) is merely a consequence of divergent adaptation to
25 alternative fitness optima or ecological niches, species will persist only as long as the fitness
26 optima exist. Fitness landscapes can change with changes in the physical and biotic environment,
27 and when such changes lead to the convergence of formerly distinct fitness peaks, the causes of
28 reproductive isolation will no longer persist and species will coalesce back into a single gene
29 pool. Such speciation reversal has been described in adaptive radiations of cichlids (Seehausen *et*
30 *al.* 1997), stickleback (Taylor *et al.* 2006); whitefish (Vonlanthen *et al.* 2012) and Darwin's
31 finches (Kleindorfer *et al.* 2014), and it may be widespread in some highly sympatric radiations
32 in general.

33 A major question centers on the circumstances that lead to persistence of entities as adaptive
34 radiation proceeds and as the environmental theater changes. To get at this, we must first assess
35 the hallmarks of adaptive radiation, notably the context of co-occurrence that allows species to
36 accumulate. Co-occurrence, or sympatry, can occur at multiple scales (Webb *et al.* 2002). For the
37 purposes of understanding adaptive radiation, the critical component is the extent to which the
38 co-occurrence involves interaction between closely related species.

39 *Regional co-occurrence.* Taxa may diverge in different habitats or microhabitats within a given
40 region. Thus, although they may appear that they co-occur on a broad scale, interactions will
41 tend to be limited to narrow zones of overlap. For example, the tendency in some fish to
42 specialize either on a littoral/benthic or a pelagic/limnetic life style can lead to divergent
43 selective pressures between juxtaposed habitat types. If these fish also breed in the habitat where
44 they feed, the inhabitants are sympatric at the scale of the lake, yet interact ecologically and
45 sexually across only a very narrow zone. Likewise, elevation zones may pose physiological
46 barriers to many organisms (De Busschere *et al.* 2010): On islands, this may lead to sympatry at
47 the island level but provides little opportunity for interaction. When perceived gradients are
48 more interdigitated, the distinction between sympatry and allopatry can become less apparent,

though equally important in imposing external selection. For example, plants may be affected by fine-scale environmental heterogeneity, with interaction between close relatives playing a more minor role in shaping patterns of co-occurrence (Anacker & Strauss 2014). In some fish, feeding grounds are distinct from breeding grounds, and when pelagic and littoral species converge on shared spawning habitats during breeding, ecological interactions may be limited but sexual interactions (and potential for gene flow) can be very strong. This is the case in some stickleback species pairs (Marques *et al.* 2016). The opposite can also be true, e.g. shared feeding habitat but separate spawning habitat, as in some salmonid radiations (Doenz *et al.* 2018).

In all of these situations, the external environment plays the major role in shaping the ecological and the mating traits of the organism.

Local co-occurrence. Here, species interact with each other through the large proportion of their range, as a result of which, ecological and mating traits might both be expected to be shaped by interactions between closely related species (Webb *et al.* 2002). Prior to such local co-occurrence, incipient species must be reproductively isolated to some extent, in order that interactions do not lead to homogenization.

We can now consider the probability that populations that have started to diverge either through external effects and disruptive ecological selection, or internal factors during geographic isolation without disruptive selection, will tend to persist.

1. Entities formed by external factors and divergent selection. The external environment and divergent selection can lead to reproductive isolation between descendant lineages, owing to genotype by environment interactions that disfavor intermediate phenotypes (Fig 3). Local adaptation can proceed most rapidly when it operates on standing genetic variation controlled by many genes (Schluter & Conte 2009) with F1 hybrids between nascent species having reduced fitness in either parental environment (Rundle & Nosil 2005). After such isolation, taxa may or may not come back together in local sympatry:

Returning to local sympatry (α scale): Nascent species are partially reproductively isolated, so maintenance of nascent species as genetically distinct requires ongoing divergent selection until genetically “intrinsic” reproductive barriers accumulate. These nascent species will be vulnerable to ecological perturbations that disrupt the regimes of divergent selection and dispersal (Nosil *et al.* 2009). Thus, lineages formed through ecological speciation may be particularly likely to be lost due to changes in selective regimes (Cutter & Gray 2016). The interplay between the temporal scales over which environments change and intrinsic barriers become fixed within diverging populations is therefore important, but an unanswered question is also whether intrinsic barriers will evolve and spread at all in nascent species that have some ongoing gene flow between them and are maintained by disruptive ecological selection.

Remaining in allopatry (β scale): Based on the arguments above, it is likely that entities formed in the context of divergent selection will tend to persist provided the pressure imposed by disruptive selection is maintained (Seehausen *et al.* 2014). Thus, β diversity (difference between sites) may increase by shrinking the scale of turnover, though diversity at the α scale (involving direct interaction among close relatives in sympatry) will not change. Besides the different selective pressures preventing secondary sympatry, there may exist barriers to return to sympatry, again leading to continued increase in β diversity but not α diversity. Barriers related to return to sympatry may involve ecological interactions (Pigot & Tobias 2013) or behavioral ones (Freeman *et al.* 2019). The opportunity for build-up of α diversity may also be limited as

1
2
3 the sibling species will each tend to perform better within their respective habitats or
4 microhabitats.
5

6 **2. Entities formed by internal factors with ecological divergence through secondary sympatry.**

7 The alternative to separation along the environmental/ habitat boundary is separation in
8 geographical space without any obvious disruptive selection (Fig. 4). In this case, populations in
9 similar and/or distinct environments become isolated for a period of time, potentially sufficient
10 to lead to the fixation of genetic incompatibilities. Here again, after such isolation, taxa may or
11 may not come back together in local sympatry:
12

13 *Returning to local sympatry (α scale):* First, returning to local sympatry may be quite
14 straightforward for entities thus formed because the environments are effectively the same. Thus,
15 ecologically similar entities will have the opportunity to interact (Cotoras *et al.* 2018). The
16 expectation is that, assuming competition for resources, ecological character displacement may
17 occur and stabilize coexistence among competing species (Germain *et al.* 2018), or competitive
18 exclusion may occur and return α -diversity to its original value. Which of these occurs when, and
19 why some lineages are more prone to one or the other outcome of competition, is an open
20 question in adaptive radiation research.
21

22 *Remaining in allopatry (β scale):* Second, sibling taxa may not return to local sympatry. Rather,
23 they may remain in allopatry as in the classic non adaptive radiations (Rundell & Price 2009). Or
24 alternatively, they may occur in various forms of microallopatry or mosaic allopatry, but again
25 without local interaction.
26

27 **To conclude, during adaptive radiation, when differentiation is tied to the environment,
28 divergent selection between environments will play the dominant role in shaping patterns
29 of diversity. Persistence of nascent species thus requires ongoing selection for different
30 environments. However, diversity can increase by reducing the scale of β diversity (ie,
31 higher rate of turnover between sites). In a number of lineages, however, the environment
32 plays a more minor role, and ecological divergence is achieved only through direct
33 interaction between closely related species (secondary sympatry), leading to accumulation
34 of α diversity through character displacement.**
35

36 **Conclusions**

37 The most important outcome from the current assessment is that adaptive radiation proceeds
38 along multiple distinct evolutionary trajectories, with different associated processes, and
39 the concept of adaptive radiation has been used to cover these multiple processes. Open
40 ecological space is one factor that seems to be common to all radiations, but even here, the
41 nature of the space and the extent to which it can be shared with and exploited by other lineages
42 varies substantially across radiations. The common view that adaptive radiations are identifiable
43 by an acceleration in rate of speciation and adaptive diversification, while fundamental to many
44 concepts, is not necessary in others. But perhaps most importantly, the processes involved in
45 species diversification within a radiation differ radically, and result in differences in spatial and
46 ecological patterns of species accumulation. In order to make progress in evolutionary theory, we
47 need to understand both commonalities and differences across many radiations. Thus, certain
48 lineages of lizards and spiders are known for the repeated evolution of co-occurring and
49 interacting ecomorphs (Gillespie *et al.* 2018; Losos 2009); this pattern may be associated with
50 the tendency for initial divergence to occur in similar environments in geographical isolation,
51 while ecological character displacement occurs in secondary sympatry (Fig 4). In contrast, other
52

lineages are known for repeated divergence in adaptation to the same two environments, such as high- and low-elevation wolf spiders in the Galapagos (De Busschere *et al.* 2010) and adaptation to wet and dry habitats in Hawaiian silverswords (Blonder *et al.* 2016). Once we recognize similarities and differences in processes underlying diversification across lineages, we can look at other aspects of the evolutionary process upon which adaptive radiations can shed light, most notably concepts of specialization, abundance, and equilibrium diversity, to name a few.

Glossary

- **Adaptive radiation** - evolutionary divergence of members of a single phylogenetic lineage into a variety of different adaptive forms (Futuyma 1998)
- **Admixture** - when individuals from two or more previously separated populations begin interbreeding resulting in the introduction of new genetic lineages into a population.
- **Developmental plasticity** - a developmental change in form or behavior caused by environmental conditions (West-Eberhard 2003).
- **Divergence** - can occur along different axes:
 - **Alpha (α) niche axes** are those that allow local sympatry such as microhabitat, temporal, or other resource partitioning
 - **Beta (β) niche axes** are those that reflect larger scale habitat and climatic variables.
- **Divergent selection** - selection in which a trait at either end of a spectrum has an advantage over the average
- **Diversification** - evolution of phenotypically and reproductively distinct species in a clade
- **Disruptive selection** - natural or sexual selection that favors extreme over intermediate phenotypes within a single population (Seehausen 2004)
- **Ecological character displacement** - the divergence of sympatric species to minimize ecological overlap
- **Ecological opportunity** - the availability of ecologically accessible resources that may be evolutionarily exploited (Stroud & Losos 2016)
- **Ecological speciation** - the process by which barriers to gene flow evolve between populations as a result of ecologically based divergent selection (Schlüter 2009)
- **Evolvability** - the capacity to generate heritable phenotypic variation (Stroud & Losos 2016)
- **Key innovation** - the evolution of a trait that allows a species to interact with the environment in a novel way
- **Geographic separation terms:**
 - **Allopatry**: Separated in space in such a way as to prevent the organisms from interacting during normal activity
 - **Sympatry**: No spatial separation, allowing organisms to interact regularly during normal activity
 - **Mosaic allopatry**: Separated in space in a mosaic manner, ie with no single clear boundary, but the separation still preventing the organisms from interacting during normal activity
 - **Microallopatry**: Despite overlapping range, microallopatric taxa are still separated in space with interaction between taxa prevented because they occupy different ecological niches.

- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- **Mutation-order speciation** - different and incompatible mutations fix in different populations adapting to the same selective pressure (i.e. uniform selection (Mani & Clarke 1990)). Mutations can arise stochastically in different order, allowing ‘mutation-order’ to serve as a stochastic driver of divergence (Nosil & Flaxman 2010).
- **Nonadaptive radiation** - lineage diversification with minimal ecological diversification, resulting in allopatric or parapatric (Rundell & Price 2009) and sometimes even sympatric taxa (Xu and Shaw this volume)
- **Prezygotic barriers** - anything that prevents mating and fertilization; **postzygotic barriers** - act after fertilization (zygote mortality, hybrid sterility)
- **Priority Effects** (De Meester *et al.* 2016; Fukami *et al.* 2007):
 - Ecological priority effect: the arrival order of species influences community dynamics and structure.
 - Genetic priority effect: an evolutionary priority effect whereby the arrival order of genotypes influences population genetic structure.
 - Evolution-mediated priority effect: the arrival order of genetic lineages or species and their evolution influences population genetic or community dynamics.
- **Reinforcement** - the evolution of traits that minimize hybridization between incipient species
- Reproductive isolation - factors involved in initial stages
 - **Extrinsic reproductive isolation**: Fitness reduction in hybrids that is dependent on the environment and that is mediated by genotype–environment interactions.
 - **Intrinsic barriers**: often due to genetic incompatibilities; these occur independent of the environment (for example, Bateson–Dobzhansky–Muller incompatibilities).

Boxes

Box 1. The poles of adaptive radiation. **A. Ecological opportunity** is a general requirement for adaptive radiation. The existence of opportunity often necessitates a barrier, the extent of which depends on the distance – which may be physiological or geographic – from the source and the degree to which organisms can survive in the surrounding matrix. **B. Within a given adaptive radiation**, initial divergence of species may be due to two factors, (i) external factors associated with divergent selection for a given environment, or (ii) internal factors due to reproductive barriers developing, often due to a period of isolation between sites, in the same kind of environment (Seehausen *et al.* 2014). In the former case, ecological divergence is associated with the environment. In the latter case, it may be associated with interaction between close relatives as a result of secondary sympatry (Cotoras *et al.* 2018). **C. The degree of co-occurrence among members of an adaptive radiation** varies widely, with many radiations requiring little interaction between close relatives. For example, sympatric speciation in Nicaragua cichlids appears to be the result of divergent selection between different environments (Barluenga *et al.* 2006); likewise for sticklebacks (Bolnick 2011), and wolf spiders in the Galapagos (De Busschere *et al.* 2010). In other situations, local sympatry and interaction between close relatives appears to be a critical part of the process of adaptive radiation, for example in Caribbean *Anolis* (Losos 2009) and Hawaiian spiders (Cotoras *et al.* 2018; Gillespie *et al.* 2018). **D.**

1
2
3 **Gene flow**, traditionally considered to hinder divergence between incipient species,
4 can serve to infuse variability that may foster adaptive radiation. The phenomenon has
5 now been well documented in cichlid fish (Meier *et al.* 2017) and *Heliconius*
6 butterflies (Mallet 2005), as well as many plants (Barrier *et al.* 1999; Friar *et al.* 2008),
7 although it is also found in many other lineages (Lamichhaney *et al.* 2018). Indeed, the
8 process may be common to many adaptive radiations. However, it is important to
9 distinguish between how admixture is achieved in order to assess its effects on the
10 process of adaptive radiation (Brock & Wagner 2018). **E. Rate of diversification** in
11 adaptive radiation. Adaptive radiation is frequently thought to be associated with an
12 increase in the rate of diversification (Gavrilets & Losos 2009; Schlüter 2000);
13 however, it may be that adaptive radiations do not require increased diversification
14 rates (Givnish 2015).
15
16

18 Figures

19 **Figure 1.** Model systems studied by contributors of the AGA 2018 President's Symposium:
20 Origins of Adaptive Radiation. Yellow dots represent areas where field studies have
21 been conducted and do not accurately represent the full range of each group. Anti-
22 clockwise from top-right; Cameroon crater lake cichlids, Caribbean *Anolis* lizards, San
23 Salvador pupfish (*Cyprinodon* sp.), Mexican (Lake Chichancanab) cichlids, spadefoot
24 toads (*Spea* sp.), stickleback fish (*Gasterosteus aculeatus*), Hawaiian spiders, *Laupala*
25 crickets, *Nesophrosyne* leafhoppers, Hawaiian *Metrosideros* plants, *Hyposmocoma*
26 moths, Hawaiian honeycreepers, Hawaiian *Bidens*, Galapagos land snails (*Bulimulus*
27 sp.), Darwin's finches (*Geospiza* sp.), mainland *Anolis* lizards, *Heliconius* butterflies,
28 Cameroon crater lake cichlids, *Neospiza* finches of the Tristan da Cunha archipelago,
29 and African Rift Lake cichlids. Photography credits anti-clockwise from top right: C.
30 Martin, J. Stroud, C. Martin, C. Martin, D. Pfennig, A. Hendry, R. Gillespie, K. Shaw,
31 G. Bennett, E. Stacy, D. Rubinoff, J. Jeffreys, M. Knope, C. Parent, A. Hendry, J.
32 Stroud, J. Mallet, P. Ryan, C. Wagner.
33
34

35 Figure 2. Contrasting roles of external factors and divergent selection associated with the
36 environment versus internal factors and incompatibility fostering initial divergence
37

38 Figure 3. Entities formed by external factors and divergent selection. The external environment
39 and divergent selection can lead to reproductive isolation between descendant
40 lineages, owing to genotype by environment interactions.
41
42

43 Figure 4. Entities formed by internal factors - separation in geographical space without any
44 obvious disruptive selection.
45
46

51 References

52
53 Abbott R, Albach D, Ansell S, *et al.* (2013) Hybridization and speciation. *Journal of*
54 *evolutionary biology* **26**, 229-246.
55
56
57
58
59
60

Ackerly D, Schwilk D, Webb C (2006) Niche evolution and adaptive radiation: testing the order of trait divergence. *Ecology* **87**, S50-S61.

Agrawal AF, Feder JL, Nosil P (2011) Ecological divergence and the origins of intrinsic postmating isolation with gene flow. *International Journal of Ecology* **2011**.

Anacker BL, Strauss SY (2014) The geography and ecology of plant speciation: range overlap and niche divergence in sister species. *Proceedings of the Royal Society of London B: Biological Sciences* **281**, 20132980.

Arbogast BS, Drovetski SV, Curry RL, et al. (2006) The origin and diversification of Galapagos mockingbirds. *Evolution* **60**, 370-382.

Arnegard ME, Markert JA, Danley PD, et al. (1999) Population structure and colour variation of the cichlid fishes *Labeotropheus fuelleborni* Ahl along a recently formed archipelago of rocky habitat patches in southern Lake Malawi. *Proceedings of the Royal Society of London. Series B: Biological Sciences* **266**, 119-130.

Arnold ML (1997) *Natural Hybridization and Evolution*. Oxford University Press, Oxford.

Barluenga M, Stölting KN, Salzburger W, Muschick M, Meyer A (2006) Sympatric speciation in Nicaraguan crater lake cichlid fish. *Nature* **439**, 719.

Barrier M, Baldwin BG, Robichaux RH, Purugganan MD (1999) Interspecific hybrid ancestry of a plant adaptive radiation: allopolyploidy of the Hawaiian silversword alliance (Asteraceae) inferred from floral homeotic gene duplications. *Molecular biology and evolution* **16**, 1105-1113.

Beheregaray LB, Gibbs JP, Havill N, et al. (2004) Giant tortoises are not so slow: rapid diversification and biogeographic consensus in the Galápagos. *Proceedings of the National Academy of Sciences* **101**, 6514-6519.

Bennett GM, O'Grady PM (2013) Historical biogeography and ecological opportunity in the adaptive radiation of native Hawaiian leafhoppers (Cicadellidae: Nesophrosyne). *Journal of Biogeography* **40**, 1512-1523.

Bennett GM, O'Grady PM (2012) Host-plants shape insect diversity: Phylogeny, origin, and species diversity of native Hawaiian leafhoppers (Cicadellidae: Nesophrosyne). *Molecular phylogenetics and evolution* **65**, 705-717.

Blonder B, Baldwin BG, Enquist BJ, Robichaux RH (2016) Variation and macroevolution in leaf functional traits in the Hawaiian silversword alliance (Asteraceae). *Journal of Ecology* **104**, 219-228.

Bolnick DI (2011) Sympatric speciation in threespine stickleback: why not? *International Journal of Ecology* **2011**.

Brawand D, Wagner CE, Li YI, et al. (2014) The genomic substrate for adaptive radiation in African cichlid fish. *Nature* **513**, 375.

Brock CD, Wagner CE (2018) The smelly path to sympatric speciation? *Molecular Ecology* **27**, 4153-4156.

Brown Jr WL (1958) General adaptation and evolution. *Systematic Zoology* **7**, 157-168.

Brown WL, Wilson EO (1956) Character displacement. *Systematic zoology* **5**, 49-64.

Bürger R, Schneider KA, Willensdorfer M (2006) The conditions for speciation through intraspecific competition. *Evolution* **60**, 2185-2206.

Bush GL (1969) Sympatric host race formation and speciation in frugivorous flies of the genus *Rhagoletis* (Diptera, Tephritidae). *Evolution* **23**, 237-251.

Carlquist S, Baldwin BG, Carr GD (2003) *Tarweeds and Silverswords. Evolution of the Madiinae (Asteraceae)*. Missouri Botanical Garden Press, St. Louis, Missouri.

1
2
3 Carr GD (1987) Beggar's ticks and tarweeds: masters of adaptive radiation. *Trends in*
4 *ecology & evolution* **2**, 192-195.
5 Carson H (1997) Sexual selection: a driver of genetic change in Hawaiian Drosophila.
6 *Journal of Heredity* **88**, 343-352.
7 Chaves JA, Cooper EA, Hendry AP, *et al.* (2016) Genomic variation at the tips of the adaptive
8 radiation of Darwin's finches. *Molecular Ecology* **25**, 5282-5295.
9 Comeault AA, Matute DR (2018) Genetic divergence and the number of hybridizing species
10 affect the path to homoploid hybrid speciation. *Proceedings of the National Academy of*
11 *Sciences* **115**, 9761-9766.
12 Cordell S, Goldstein G, Melcher P, Meinzer F (2000) Photosynthesis and freezing avoidance
13 in ohia (*Metrosideros polymorpha*) at treeline in Hawaii. *Arct Antarct Alp Res* **32**,
14 381-387.
15 Cordell S, Goldstein G, Mueller-Dombois D, Webb D, Vitousek P (1998) hysiological and
16 morphological variation in *Metrosideros polymorpha*, a dominant Hawaiian tree
17 species, along an altitudinal gradient: the role of phenotypic plasticity. *Oecologia*
18 **113**, 188-196.
19 Corn CA, Hiesey WM (1973) Altitudinal variation in Hawaiian *Metrosideros*. *Am J Bot* **60**,
20 991-1002.
21 Cotoras DD, Bi K, Brewer MS, *et al.* (2018) Co-occurrence of ecologically similar species of
22 Hawaiian spiders reveals critical early phase of adaptive radiation. *BMC evolutionary*
23 *biology* **18**, 100.
24 Coyne J, Orr H (2004) Speciation (Sinauer, Sunderland, MA).
25 Cutter AD, Gray JC (2016) Ephemeral ecological speciation and the latitudinal biodiversity
26 gradient. *Evolution* **70**, 2171-2185.
27 De Busschere C, Hendrickx F, Van Belleghem S, *et al.* (2010) Parallel habitat specialization
28 within the wolf spider genus *Hogna* from the Galápagos. *Molecular ecology* **19**, 4029-
29 4045.
30 De Leon LF, Podos J, Gardezi T, Herrel A, Hendry AP (2014) Darwin's finches and their diet
31 niches: the sympatric coexistence of imperfect generalists. *Journal of Evolutionary*
32 *Biology* **27**, 1093-1104.
33 De Meester L, Vanoverbeke J, Kilsdonk LJ, Urban MC (2016) Evolving perspectives on
34 monopolization and priority effects. *Trends in Ecology & Evolution* **31**, 136-146.
35 Diamond J (1986) Biology of birds of paradise and bowerbirds. *Annual Review of Ecology*
36 *and Systematics* **17**, 17-37.
37 Doenz CJ, Bittner D, Vonlanthen P, Wagner CE, Seehausen O (2018) Rapid buildup of
38 sympatric species diversity in Alpine whitefish. *Ecology and evolution* **8**, 9398-9412.
39 Drès M, Mallet J (2002) Host races in plant-feeding insects and their importance in
40 sympatric speciation. *Philosophical Transactions of the Royal Society of London.*
41 *Series B: Biological Sciences* **357**, 471-492.
42 Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. *Evolution* **18**,
43 586-608.
44 Ekar JM, Price DK, Johnson MA, Stacy EA (in review) Varieties of the highly dispersible an
45 hypervariable tree, *Metrosideros polymorpha*, differ in response to mechanical
46 stress and light across a sharp ecotone. *American Journal of Botany*
47 Feder JL, Chilcote CA, Bush GL (1988) Genetic differentiation between sympatric host races
48 of the apple maggot fly *Rhagoletis pomonella*. *Nature (London)* **336**, 61-64.
49
50
51
52
53
54
55
56
57
58
59
60

Feder JL, Egan SP, Nosil P (2012) The genomics of speciation-with-gene-flow. *Trends in genetics* **28**, 342-350.

Freeman BG, Tobias J, Schluter D (2019) Behavior influences range limits and patterns of coexistence across an elevational gradient in tropical bird diversity. *bioRxiv*, 528950.

Friar EA, Prince LM, Cruse-Sanders JM, *et al.* (2008) Hybrid origin and genomic mosaicism of *Dubautia scabra* (Hawaiian silversword alliance; Asteraceae, Madiinae). *Systematic Botany* **33**, 589-597.

Fukami T (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. *Annual Review of Ecology, Evolution, and Systematics* **46**, 1-23.

Fukami T, Beaumont HJ, Zhang X-X, Rainey PB (2007) Immigration history controls diversification in experimental adaptive radiation. *Nature* **446**, 436.

Futuyma DJ (1987) On the role of species in anagenesis. *The American Naturalist* **130**, 465-473.

Futuyma DJ (1998) *Evolutionary Biology*, 3rd edn. Sinauer, Sunderland, MA.

Ganders F, Nagata K (1984) The role of hybridization in the evolution of *Bidens* on the Hawaiian Islands, pp. 179-194 in *Plant Biosystematics*, edited by Grant WF. Academic Press, Toronto.

Garb JE, Gillespie RG (2009) Diversity despite dispersal: colonization history and phylogeography of Hawaiian crab spiders inferred from multilocus genetic data. *Molecular Ecology* **18**, 1746-1764.

Gavrillets S, Losos JB (2009) Adaptive radiation: contrasting theory with data. *Science* **323**, 732-737.

Germain RM, Williams JL, Schluter D, Angert AL (2018) Moving character displacement beyond characters using contemporary coexistence theory. *Trends in ecology & evolution* **33**, 74-84.

Gilbert LE, Singer MC (1975) Butterfly ecology. *Annual review of ecology and systematics* **6**, 365-395.

Gillespie RG (2004) Community assembly through adaptive radiation in Hawaiian spiders. *Science* **303**, 356-359.

Gillespie RG (2016) Island time and the interplay between ecology and evolution in species diversification. *Evolutionary applications* **9**, 53-73.

Gillespie RG, Baldwin BG (2010) Island biogeography of remote archipelagoes. *The theory of island biogeography revisited*, 358-387.

Gillespie RG, Benjamin SP, Brewer MS, Rivera MAJ, Roderick GK (2018) Repeated Diversification Of Ecomorphs In Hawaiian Stick Spiders. *Current Biology* **28**, 941-947.

Gillett G, Lim E (1970) An experimental study of *Bidens* (Asteraceae) in the Hawaiian Islands. *Univ Calif Publ Bot* **56**, 1-63.

Gittenberger E (1991) What about non-adaptive radiation? *Biological Journal of the Linnean Society* **43**, 263-272.

Givnish TJ (2015) Adaptive radiation versus 'radiation' and 'explosive diversification': why conceptual distinctions are fundamental to understanding evolution. *New Phytologist* **207**, 297-303.

Givnish TJ, Sytsma KJ (1997) *Molecular evolution and adaptive radiation* Cambridge University Press, Cambridge.

Glor RE, Gifford ME, Larson A, *et al.* (2004) Partial island submergence and speciation in an adaptive radiation: a multilocus analysis of the Cuban green anoles. *Proceedings of the Royal Society of London. Series B: Biological Sciences* **271**, 2257-2265.

Glor RE, Kolbe JJ, Powell R, Larson A, Losos JB (2003) Phylogenetic analysis of ecological and morphological diversification in Hispaniolan trunk-ground anoles (Anolis cybotes group). *Evolution* **57**, 2383-2397.

Gow JL, Peichel CL, Taylor EB (2006) Contrasting hybridization rates between sympatric three-spined sticklebacks highlight the fragility of reproductive barriers between evolutionarily young species. *Molecular ecology* **15**, 739-752.

Grant PR, Grant BR (2006) Evolution of character displacement in Darwin's finches. *science* **313**, 224-226.

Grant PR, Grant BR (2011) *How and why species multiply: the radiation of Darwin's finches* Princeton University Press.

Grant PR, Grant BR (2014) *40 years of evolution: Darwin's finches on Daphne Major Island* Princeton University Press.

Haines WP, Schmitz P, Rubinoff D (2014) Ancient diversification of Hyposmocoma moths in Hawaii. *Nature Communications* **5**, 3502-3509.

Haldane JB (1922) Sex ratio and unisexual sterility in hybrid animals. *Journal of genetics* **12**, 101-109.

Heliconius Genome Consortium (2012) Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. *Nature (London)* **487**, 94-98.

Hendry AP, Bolnick DI, Berner D, Peichel CL (2009) Along the speciation continuum in sticklebacks. *Journal of fish biology* **75**, 2000-2036.

Hendry AP, Huber SK, De Leon LF, Herrel A, Podos J (2008) Disruptive selection in a bimodal population of Darwin's finches. *Proceedings of the Royal Society B: Biological Sciences* **276**, 753-759.

Hiller A, Koo M, Goodman K, *et al.* (In press) Niche conservatism predominates in adaptive radiation: comparing the diversification of Hawaiian arthropods using Ecological Niche Modeling. *Biol J Linnean Society*

Hormiga G, Arnedo M, Gillespie RG (2003) Speciation on a conveyor belt: sequential colonization of the Hawaiian Islands by Orsonwelles spiders (Araneae, Linyphiidae). *Systematic Biology* **52**, 70-88.

Hudson AG, Vonlanthen P, Seehausen O (2010) Rapid parallel adaptive radiations from a single hybridogenic ancestral population. *Proceedings of the Royal Society B: Biological Sciences* **278**, 58-66.

Irisarri I, Singh P, Koblmüller S, *et al.* (2018) Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. *Nature communications* **9**, 3159.

Joyce DA, Lunt DH, Bills R, *et al.* (2005) An extant cichlid fish radiation emerged in an extinct Pleistocene lake. *Nature* **435**, 90.

Kitayama K, Pattison R, Cordell S, Webb D, Mueller-Dombois D (1997) Ecological and genetic implications of foliar polymorphism in Metrosideros polymorpha Gaud. (Myrtaceae) in a habitat matrix on Mauna Loa, Hawaii. *Ann Bot* **80**, 491-497.

1
2
3 Kleindorfer S, O'Connor JA, Dudaniec RY, *et al.* (2014) Species collapse via hybridization in
4 Darwin's tree finches. *The American Naturalist* **183**, 325-341.
5 Knope ML, Forde SE, T. F (2012a) Evolutionary history, immigration history, and the extent
6 of diversification in community assembly. *Frontiers in Microbiology* **2**, 273.
7 Knope ML, Morden CW, Funk VA, Fukami T (2012b) Area and the rapid radiation of
8 Hawaiian Bidens (Asteraceae). *Journal of Biogeography* **39**, 1206-1216.
9 Knope ML, Pender RJ, Crawford DJ, Wieczorek AM (2013) Invasive congeners are unlikely
10 to hybridize with native Hawaiian Bidens (Asteraceae). *American journal of botany*
11 **100**, 1221-1226.
12 Knouft JH, Losos JB, Glor RE, Kolbe JJ (2006) Phylogenetic analysis of the evolution of the
13 niche in lizards of the *Anolis sagrei* group. *Ecology* **87**, S29-S38.
14 Kocher TD (2004) Adaptive evolution and explosive speciation: the cichlid fish model.
15 *Nature Reviews Genetics* **5**, 288.
16 Kozak KH, Blaine RA, Larson A (2006) Gene lineages and eastern North American
17 palaeodrainage basins: phylogeography and speciation in salamanders of the
18 *Eurycea bislineata* species complex. *Molecular Ecology* **15**, 191-207.
19 Kozak KH, Wiens JJ (2010) Niche conservatism drives elevational diversity patterns in
20 Appalachian salamanders. *The American Naturalist* **176**, 40-54.
21 Lamichhaney S, Berglund J, Almén MS, *et al.* (2015) Evolution of Darwin's finches and their
22 beaks revealed by genome sequencing. *Nature* **518**, 371.
23 Lamichhaney S, Han F, Webster MT, *et al.* (2018) Rapid hybrid speciation in Darwin's
24 finches. *Science* **359**, 224.
25 Liem KF (1980) Adaptive significance of intra-and interspecific differences in the feeding
26 repertoires of cichlid fishes. *American Zoologist* **20**, 295-314.
27 Losos JB (2009) *Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles*
28 University of California Press, Berkeley, CA.
29 Maan ME, Seehausen O (2011) Ecology, sexual selection and speciation. *Ecology letters* **14**,
30 591-602.
31 Machado CA, Haselkorn TS, Noor MAF (2007) Evaluation of the genomic extent of effects of
32 fixed inversion differences on intraspecific variation and interspecific gene flow in
33 *Drosophila pseudoobscura* and *D. persimilis*. *Genetics* **175**, 1289-1306.
34 Mallet J (2005) Hybridization as an invasion of the genome. *Trends in Ecology and Evolution*
35 **20**, 229-237.
36 Mallet J (2008) Hybridization, ecological races, and the nature of species: empirical
37 evidence for the ease of speciation. *Philosophical Transactions of the Royal Society B:
38 Biological Sciences* **363**, 2971-2986.
39 Mallet J, Meyer A, Nosil P, Feder JL (2009) Space, sympatry and speciation. *Journal of
40 Evolutionary Biology* **22**, 2332-2341.
41 Mani GS, Clarke BC (1990) Mutational order: a major stochastic process in evolution.
42 *Proceedings of the Royal Society of London. B. Biological Sciences* **240**, 29-37.
43 Marques DA, Lucek K, Meier JI, *et al.* (2016) Genomics of rapid incipient speciation in
44 sympatric threespine stickleback. *PLoS genetics* **12**, e1005887.
45 Marques DA, Meier JI, Seehausen O (In press) A combinatorial view on speciation and
46 adaptive radiation. *Trends in ecology & evolution*.

Martin CH (2012) Weak disruptive selection and incomplete phenotypic divergence in two classic examples of sympatric speciation: Cameroon crater lake cichlids. *The American Naturalist* **180**, E90-E109.

Martin CH (2013) Strong assortative mating by diet, color, size, and morphology but limited progress toward sympatric speciation in a classic example: Cameroon crater lake cichlids. *Evolution* **67**, 2114-2123.

Martin CH, Wainwright PC (2011) Trophic novelty is linked to exceptional rates of morphological diversification in two adaptive radiations of *Cyprinodon* pupfish. *Evolution: International Journal of Organic Evolution* **65**, 2197-2212.

Martin CH, Wainwright PC (2013) On the measurement of ecological novelty: scale-eating pupfish are separated by 168 my from other scale-eating fishes. *PLoS One* **8**, e71164.

Matessi C, Gimelfarb A, Gavrilets S (2002) Long-term build up of reproductive isolation promoted by disruptive selection: how far does it go? *Selection* **2**, 41-64.

Matute DR, Butler IA, Turissini DA, Coyne JA (2010) A test of the snowball theory for the rate of evolution of hybrid incompatibilities. *Science* **329**, 1518-1521.

Mayr E (1947) Ecological factors in speciation. *Evolution* **1**, 263-288.

Meier JI, Marques DA, Mwaiko S, et al. (2017) Ancient hybridization fuels rapid cichlid fish adaptive radiations. *Nature communications* **8**, 14363.

Meier JI, Marques DA, Wagner CE, Excoffier L, Seehausen O (2018) Genomics of Parallel Ecological Speciation in Lake Victoria Cichlids. *Molecular Biology and Evolution* **35**, 1489-1506.

Mendelson TC, Martin MD, Flaxman SM (2014) Mutation-order divergence by sexual selection: diversification of sexual signals in similar environments as a first step in speciation. *Ecology letters* **17**, 1053-1066.

Mendelson TC, Shaw KL (2005) Sexual behaviour: rapid speciation in an arthropod. *Nature* **433**, 375.

Merrell DJ (1962) Evolution and genetics. *Evolution and genetics*.

Merrill RM, Dasmahapatra KK, Davey J, et al. (2015) The diversification of *Heliconius* butterflies: what have we learned in 150 years? *Journal of Evolutionary Biology* **28**, 1417-1438.

Morrison KR, Stacy EA (2014) Intraspecific divergence and evolution of a life-history trade-off along a successional gradient in Hawaii's *Metrosideros polymorpha*. *Journal of Evolutionary Biology* **27**, 1192-1204.

Moser FN, van Rijssel JC, Mwaiko S, et al. (2018) The onset of ecological diversification 50 years after colonization of a crater lake by haplochromine cichlid fishes. *Proceedings of the Royal Society B: Biological Sciences* **285**, 20180171.

Muschick M, Indermaur A, Salzburger W (2012) Convergent evolution within an adaptive radiation of cichlid fishes. *Current biology* **22**, 2362-2368.

Muschick M, Nosil P, Roesti M, et al. (2014) Testing the stages model in the adaptive radiation of cichlid fishes in East African Lake Tanganyika. *Proceedings of the Royal Society of London B: Biological Sciences* **281**, 20140605.

Nosil P (2012) *Ecological speciation* Oxford University Press.

Nosil P, Flaxman SM (2010) Conditions for mutation-order speciation. *Proceedings of the Royal Society B: Biological Sciences* **278**, 399-407.

Nosil P, Harmon LJ, Seehausen O (2009) Ecological explanations for (incomplete) speciation. *Trends in ecology & evolution* **24**, 145-156.

Otte D (1994) *The Crickets of Hawaii: Origin, Systematics, and Evolution* Orthoptera Society/Academy of Natural Sciences of Philadelphia, Philadelphia.

Percy DM, Garver AM, Wagner WL, et al. (2008) Progressive island colonization and ancient origin of Hawaiian Metrosideros (Myrtaceae). *Proceedings of the Royal Society B: Biological Sciences* **275**, 1479-1490.

Pigot AL, Tobias JA (2013) Species interactions constrain geographic range expansion over evolutionary time. *Ecology letters* **16**, 330-338.

Poe S, Nieto-Montes de Oca A, Torres-Carvajal O, et al. (2017) A phylogenetic, biogeographic, and taxonomic study of all extant species of Anolis (Squamata; Iguanidae). *Systematic biology* **66**, 663-697.

Poelstra JW, Richards EJ, Martin CH (2018) Speciation in sympatry with ongoing secondary gene flow and a potential olfactory trigger in a radiation of Cameroon cichlids. *Molecular Ecology* **27**, 4270-4288.

Price JP, Clague DA (2002) How old is the Hawaiian biota? Geology and phylogeny suggest recent divergence. *Proceedings of the Royal Society of London. Series B: Biological Sciences* **269**, 2429-2435.

Price PW (1980) *Evolutionary Biology of Parasites* Princeton University Press, Princeton, New Jersey.

Richards EJ, Martin CH (2017) Adaptive introgression from distant Caribbean islands contributed to the diversification of a microendemic adaptive radiation of trophic specialist pupfishes. *PLoS genetics* **13**, e1006919.

Richards EJ, Poelstra JW, Martin CH (2018) Don't throw out the sympatric speciation with the crater lake water: fine-scale investigation of introgression provides equivocal support for causal role of secondary gene flow in one of the clearest examples of sympatric speciation. *Evolution Letters* **2**, 524-540.

Richardson JE, Fay MF, Cronk QCB, Chase MW (2003) Species delimitation and the origin of populations in island representatives of Phylica (Rhamnaceae). *Evolution* **57**, 816-827.

Richardson JE, Weitz FM, Fay MF, et al. (2001) Phylogenetic analysis of Phylica L. (Rhamnaceae) with an emphasis on island species: Evidence from plastid trnL-F and nuclear internal transcribed spacer (ribosomal) DNA sequences. *Taxon* **50**, 405-427.

Rosenblum EB, Sarver BA, Brown JW, et al. (2012) Goldilocks meets Santa Rosalia: an ephemeral speciation model explains patterns of diversification across time scales. *Evolutionary Biology* **39**, 255-261.

Rosser N, Kozak KM, Phillimore AB, Mallet J (2015) Extensive range overlap between heliconiine sister species: evidence for sympatric speciation in butterflies? *BMC evolutionary biology* **15**, 125.

Rubinoff D, Schmitz P (2010) Multiple aquatic invasions by an endemic, terrestrial Hawaiian moth radiation. *Proceedings of the National Academy of Sciences* **107**, 5903-5906.

Rundell RJ, Price TD (2009) Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. *Trends in Ecology & Evolution* **24**, 394-399.

Rundle HD, Nagel L, Wenrick Boughman J, Schluter D (2000) Natural selection and parallel speciation in sympatric sticklebacks. *Science* **287**, 306-308.

Rundle HD, Nosil P (2005) Ecological speciation. *Ecology letters* **8**, 336-352.

Ryan PG, Bloomer P, Moloney CL, Grant TJ, Delport W (2007) Ecological speciation in South Atlantic island finches. *science* **315**, 1420-1423.

Ryan PG, Klicka LB, Barker KF, Burns KJ (2013) The origin of finches on Tristan da Cunha and Gough Island, central South Atlantic ocean. *Molecular phylogenetics and evolution* **69**, 299-305.

Schlüter D (2000) *The ecology of adaptive radiation* OUP Oxford.

Schlüter D (2001) Ecology and the origin of species. *Trends in ecology & evolution* **16**, 372-380.

Schlüter D (2009) Evidence for ecological speciation and its alternative. *Science* **323**, 737-741.

Schlüter D, Conte GL (2009) Genetics and ecological speciation. *Proceedings of the National Academy of Sciences* **106**, 9955-9962.

Schumer M, Rosenthal G, Andolfatto P (2014) How common is homoploid hybrid speciation? *Evolution* **68**, 1553-1560.

Seehausen O (2004) Hybridization and adaptive radiation. *Trends in ecology & evolution* **19**, 198-207.

Seehausen O (2006) Conservation: losing biodiversity by reverse speciation. *Current Biology* **16**, R334-R337.

Seehausen O (2015) Process and pattern in cichlid radiations - inferences for understanding unusually high rates of evolutionary diversification. *New Phytologist*.

Seehausen O, Butlin RK, Keller I, et al. (2014) Genomics and the origin of species. *Nature Reviews Genetics* **15**, 176.

Seehausen O, Magalhaes I (2011) Geographical mode and evolutionary mechanism of ecological speciation in cichlid fish. In: *Search of the Causes of Evolution*, pp. 1-29.

Seehausen O, Terai Y, Magalhaes IS, et al. (2008) Speciation through sensory drive in cichlid fish. *Nature* **455**, 620.

Seehausen O, Van Alphen JJ, Witte F (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection. *Science* **277**, 1808-1811.

Sefc KM, Mattersdorfer K, Ziegelbecker A, et al. (2017) Shifting barriers and phenotypic diversification by hybridisation. *Ecology letters* **20**, 651-662.

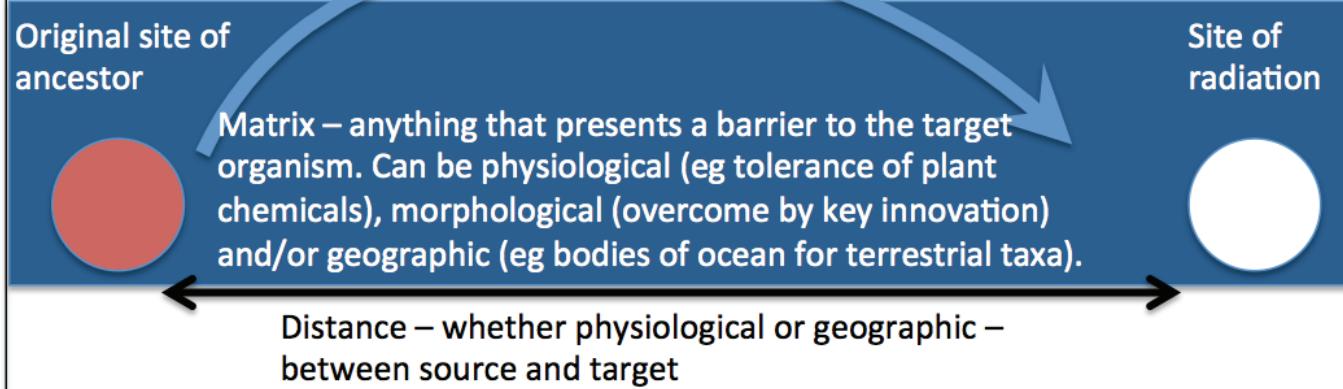
Servedio MR, Noor MA (2003) The role of reinforcement in speciation: theory and data. *Annual Review of Ecology, Evolution, and Systematics* **34**, 339-364.

Shaw KL (2002) Conflict between mitochondrial and nuclear DNA phylogenies of a recent species radiation: what mitochondrial DNA reveals and conceals about modes of speciation in Hawaiian crickets. *Proceedings of the National Academy of Sciences, USA* **99**, 16122-16127.

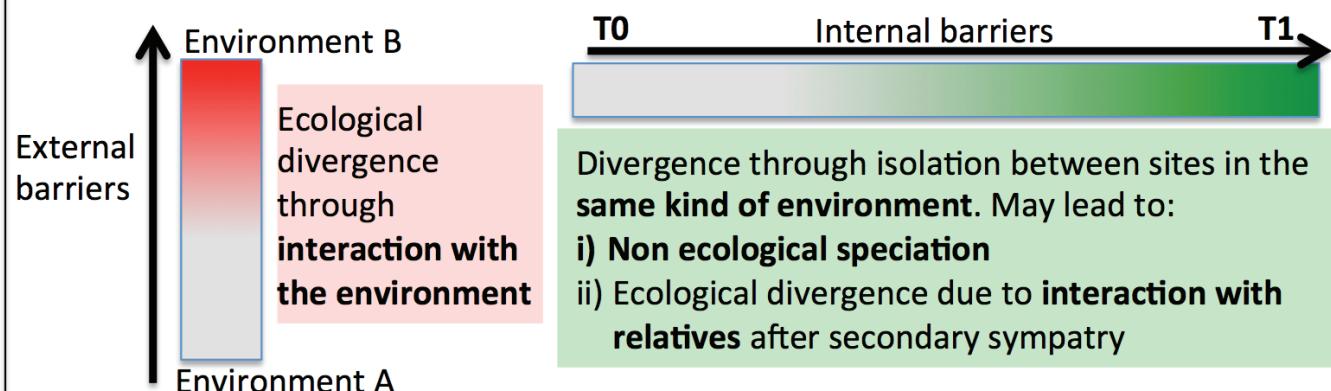
Shaw KL, Gillespie RG (2016) Comparative phylogeography of oceanic archipelagos: Hotspots for inferences of evolutionary process. *Proceedings of the National Academy of Sciences* **113**, 7986-7993.

Simpson GG (1953) *The Major Features of Evolution* Columbia Univ. Press, New York, N.Y.

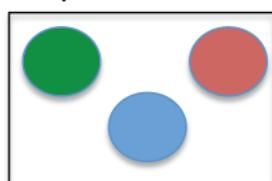
Slowinski JB, Guyer C (1993) Testing whether certain traits have caused amplified diversification: an improved method based on a model of random speciation and extinction. *The American Naturalist* **142**, 1019-1024.

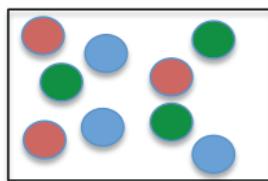

Stacy E, Johansen J, Sakishima T, Price D, Pillon Y (2014) Incipient radiation within the dominant Hawaiian tree Metrosideros polymorpha. *Heredity* **113**, 334.

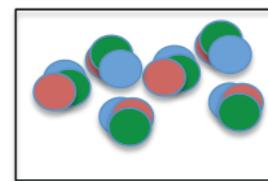
1
2
3 Stacy EA, Johansen JB, Sakishima T, Price DK (2016) Genetic analysis of an ephemeral
4 intraspecific hybrid zone in the hypervariable tree, *Metrosideros polymorpha*, on
5 Hawai'i Island. *Heredity* **117**, 173.
6
7 Stacy EA, Paritosh B, Johnson MA, Price DK (2017) Incipient ecological speciation between
8 successional varieties of a dominant tree involves intrinsic postzygotic isolating
9 barriers. *Ecology and Evolution* **7**, 2501-2512.
10
11 Stacy EA, Sakishima T (in review) Phylogeography of a highly dispersible landscape-
12 dominant woody species complex. *Journal of Biogeography*.
13 Stelkens RB, Schmid C, Selz O, Seehausen O (2009) Phenotypic novelty in
14 experimental hybrids is predicted by the genetic distance between species of cichlid
15 fish. *BMC Evol Biol* **9**, 283.
16 Stelkens RB, Young KA, Seehausen O (2010) The accumulation of reproductive
17 incompatibilities in African cichlid fish. *Evolution* **64**, 617-633.
18 Stemmermann L (1983) Ecological studies of Hawaiian *Metrosideros* in a successional
19 context. *Pac Sci* **37**, 361-373.
20
21 Stervander M (2015) *On Speciation in Birds – Genomic Signatures across Space and Time*.
22 PhD thesis, Lund University.
23 Strecker U (2006) Genetic differentiation and reproductive isolation in a *Cyprinodon* fish
24 species flock from Laguna Chichancanab, Mexico. *Molecular Phylogenetics and*
25 *Evolution* **39**, 865-872.
26
27 Streelman JT, Danley PD (2003) The stages of vertebrate evolutionary radiation. *Trends in*
28 *Ecology & Evolution* **18**, 126-131.
29 Stroud JT, Giery ST, Outerbridge MO, Feeley KJ (2019) Ecological character displacement
30 alters the outcome of priority effects during community assembly. *Ecology*.
31
32 Stroud JT, Losos JB (2016) Ecological opportunity and adaptive radiation. *Annual Review of*
33 *Ecology, Evolution, and Systematics* **47**, 507-532.
34 Sturmbauer C, Baric S, Salzburger W, Rüber L, Verheyen E (2001) Lake level fluctuations
35 synchronize genetic divergences of cichlid fishes in African lakes. *Molecular Biology*
36 *and Evolution* **18**, 144-154.
37 Taylor E, Boughman J, Groenenboom M, *et al.* (2006) Speciation in reverse: morphological
38 and genetic evidence of the collapse of a three-spined stickleback (*Gasterosteus*
39 *aculeatus*) species pair. *Molecular Ecology* **15**, 343-355.
40
41 van Rijssel JC, Moser FN, Frei D, Seehausen O (2018) Prevalence of disruptive selection
42 predicts extent of species differentiation in Lake Victoria cichlids. *Proceedings of the*
43 *Royal Society B: Biological Sciences* **285**, 20172630.
44
45 Vanoverbeke J, Urban MC, De Meester L (2016) Community assembly is a race between
46 immigration and adaptation: eco-evolutionary interactions across spatial scales.
47 *Ecography* **39**, 858-870.
48
49 Vonlanthen P, Bittner D, Hudson AG, *et al.* (2012) Eutrophication causes speciation reversal
50 in whitefish adaptive radiations. *Nature* **482**, 357.
51
52 Wagner CE, McCune AR (2009) Contrasting patterns of spatial genetic structure in
53 sympatric rock-dwelling cichlid fishes. *Evolution: International Journal of Organic*
54 *Evolution* **63**, 1312-1326.
55
56 Wagner CE, McIntyre PB, Buels KS, Gilbert DM, Michel E (2009) Diet predicts intestine
57 length in Lake Tanganyika's cichlid fishes. *Functional Ecology* **23**, 1122-1131.
58
59
60


1
2
3 Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community
4 ecology. *Annual review of ecology and systematics* **33**, 475-505.
5 Weber MG, Wagner CE, Best RJ, Harmon LJ, Matthews B (2017) Evolution in a Community
6 Context: On Integrating Ecological Interactions and Macroevolution. . *Trends in*
7 *Ecology & Evolution*, **32**, 1-14.
8 West-Eberhard MJ (2003) *Developmental plasticity and evolution* Oxford University Press,
9 Oxford.
10 Wood HM, Matzke NJ, Gillespie RG, Griswold CE (2012) Treating fossils as terminal taxa in
11 divergence time estimation reveals ancient vicariance patterns in the palpimanoid
12 spiders. *Systematic Biology* **62**, 264-284.
13 Wright SD, Yong CG, Wichman SR, Dawson JW, Gardner RC (2001) Stepping stones to
14 Hawaii: a trans-equatorial dispersal pathway for Metrosideros (Myrtaceae) inferred
15 from nrDNA (ITS+ ETS). *Journal of Biogeography* **28**, 769-774.
16 Xu M, Shaw KL (2019) The Genetics of Mating Song Evolution Underlying Speciation:
17 Linking Quantitative Variation to Candidate Genes for Behavioral Isolation. *Genetics,*
18 *genetics*. 301706.302018.
19 Yoder J, Clancey E, Des Roches S, *et al.* (2010) Ecological opportunity and the origin of
20 adaptive radiations. *Journal of evolutionary biology* **23**, 1581-1596.
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

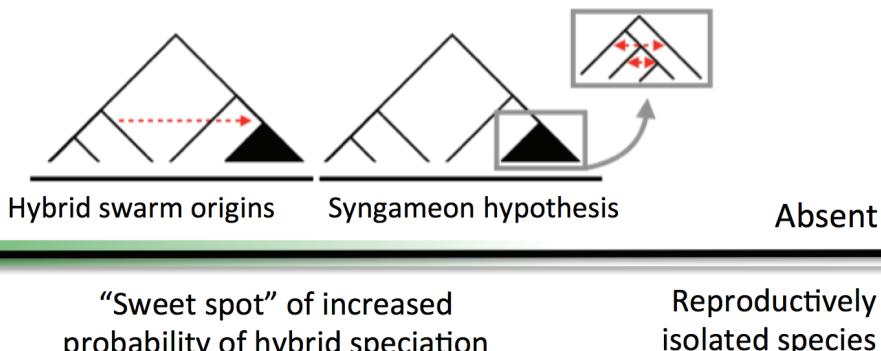
Box 1. The poles of adaptive radiation


A. Ecological opportunity: A feature of adaptive radiations is that they require novel niche space with associated "ecological opportunity". This opportunity requires isolation from the source.


B. Divergence due to external vs internal factors. Initial reproductive isolation may be caused by **divergent selection due to different environments**, or alternatively formation of **intrinsic barriers due to isolation between sites in the same kind of environment**


C. Co-occurrence of taxa within an adaptive radiation. Adaptive radiations differ widely in terms of local sympatry of component species. These differences can arise from radically different processes, and teasing apart these different perceptions is critical to inference of common process

Non interactive; locally allopatric



Non interactive; locally mosaic or micro-allopatric

Interactive; locally sympatric

D. Gene flow. Gene flow can hinder divergence, but can also infuse variability to allow adaptive radiation. This can take place through hybrid origins of entire radiating clades ("hybrid swarm origins") wherein admixture between one or more divergent lineages happens prior to the onset of radiation, or via hybridization within adaptive radiations that facilitates further speciation ("syngameon hypothesis"). There may be a "sweet spot" in which divergent lineages can admix or hybridize and give rise to variability that is key to adaptive radiation

E. Time and rate of diversification.

Acceleration in rate of diversification only.
Non adaptive radiation

Adaptive shifts only.
Slow accumulation of adaptive shifts over time

Acceleration in rate of diversification coupled with adaptive shifts

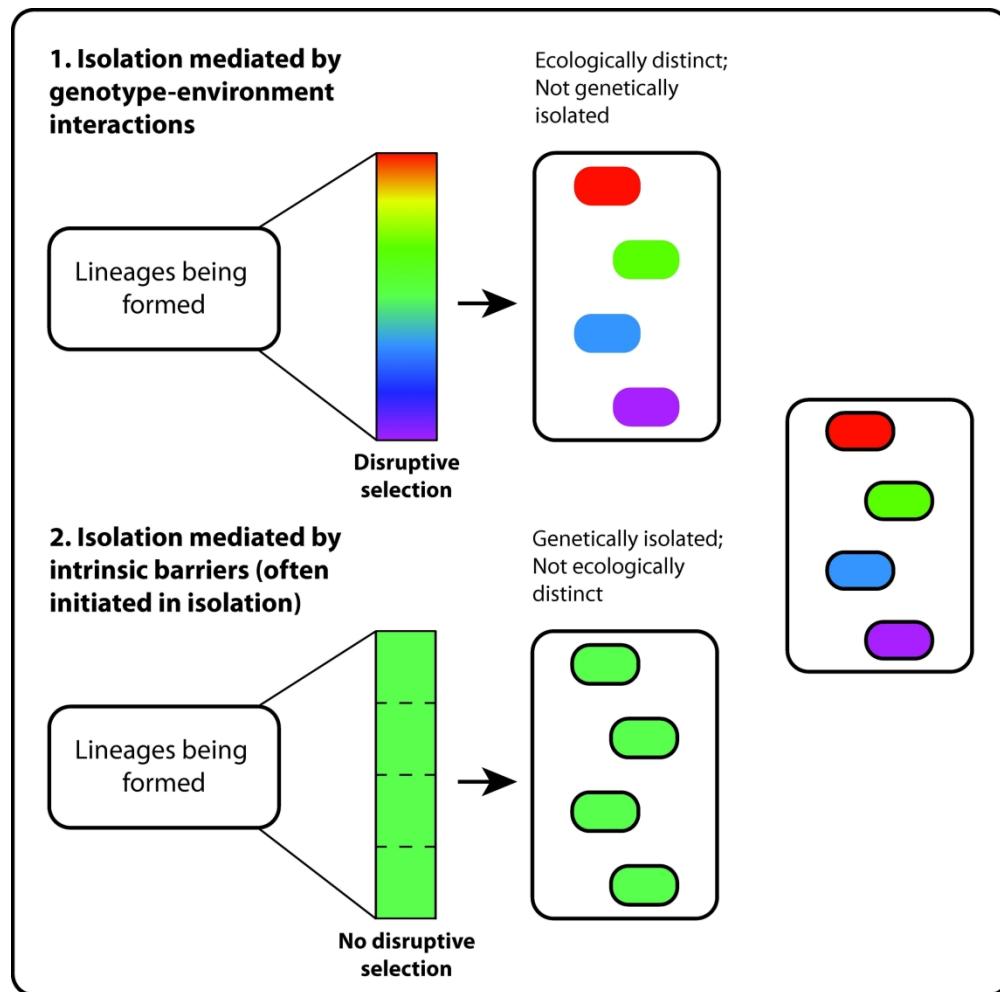


Figure 2. Contrasting roles of extrinsic selection associated with the environment versus intrinsic incompatibility fostering initial divergence

200x197mm (300 x 300 DPI)

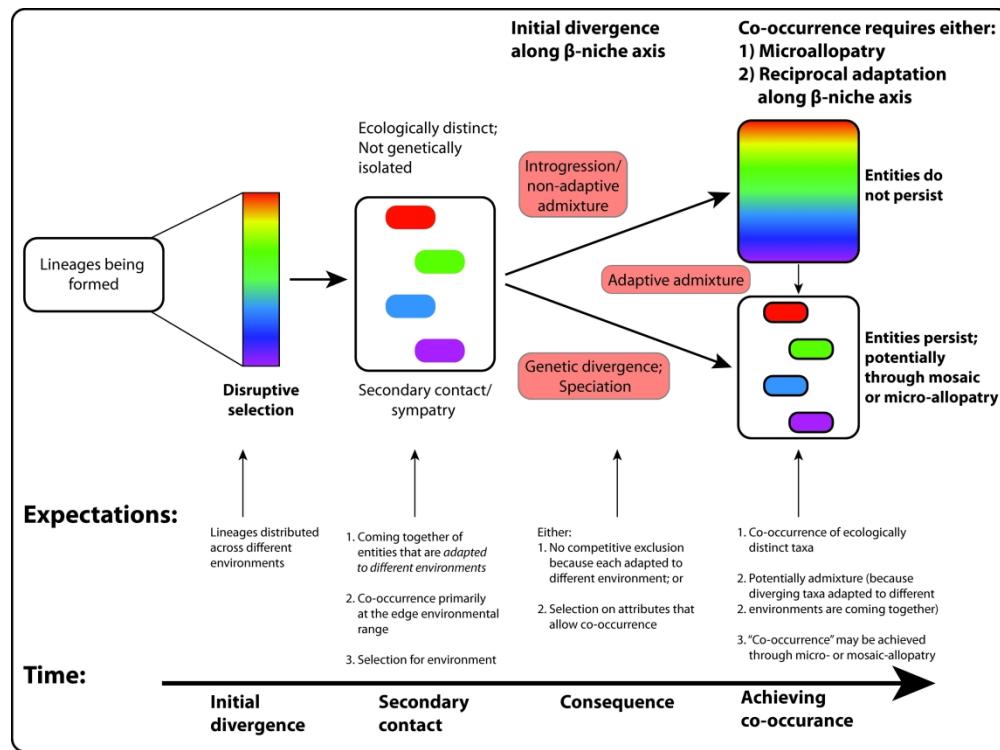


Figure 3. Entities formed by extrinsic factors and divergent selection. The extrinsic environment and divergent selection can lead to reproductive isolation between descendant lineages, owing to genotype by environment interactions

325x244mm (300 x 300 DPI)

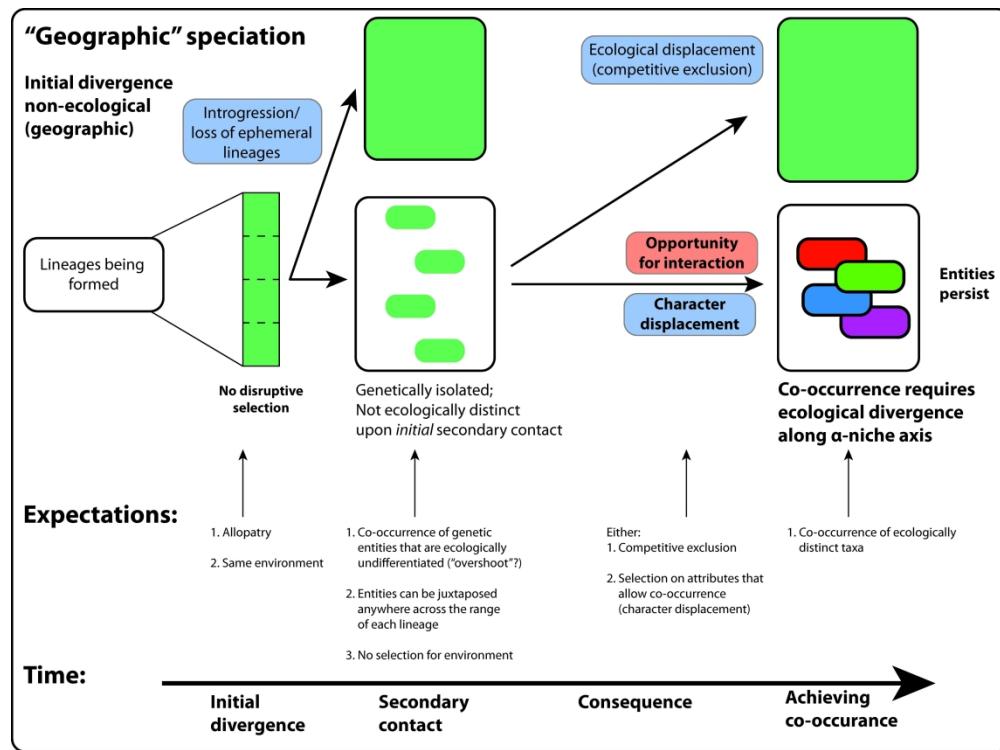


Figure 4. Entities formed by intrinsic factors - separation in geographical space without any obvious disruptive selection.

325x244mm (300 x 300 DPI)