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Introduction
The past decade has proven the therapeutic benefit of  instructing the immune system to identify and kill 
cancer cells (1, 2). Immune checkpoint inhibitors (ICIs), such as anti–programmed cell death-1 (anti–
PD-1), anti–programmed cell death ligand (anti–PD-L1), and anti–cytotoxic T lymphocyte–associated 
protein 4 (anti–CTLA-4) antibodies, are now a standard of  care for some previously incurable cancers 
(3). These agents unleash the killing power of  cancer-antigen–targeted effector T cells that infiltrate these 
immune responsive cancers. These T cells often recognize tumor-specific proteins called neoantigens that 
differentiate the tumor cell from its normal cell of  origin. Neoantigens arise from nonsynonymous muta-
tions, chromosomal rearrangements that result in fusion proteins, and/or insertions and deletions of  bases 
into the genome (indels) during tumorigenesis (4, 5). They are presented to T cells by human leukocyte 
antigen (HLA) molecules on the tumor cell surface and are expressed only on tumors and not on normal 
cells. Certain tumors, such as melanomas and cancers with mismatch repair deficiencies (MMR-d) that 
lead to microsatellite instability (MSI), express a high burden of  neoantigens (6, 7), whereas others, such as 
pancreatic cancers, glioblastomas, and MMR proficient (MMR-p) colon cancers, have modest to low neo-
antigen burdens (8–10). While the former group of  tumors respond well to ICIs, the latter fail to induce and 
attract quality effector T cells within the tumor and, thus, respond poorly to single or dual agent ICIs (11).

One approach being developed to improve ICI responses against tumors with low mutational burden is 
to sequence the neoantigens in a given patient’s tumor and formulate a neoantigen-targeted vaccine to evoke 
high-quality, robust, neoepitope-specific T cell responses that can then be enhanced by ICIs. Such highly “per-
sonalized” vaccines have shown considerable promise in patients with hypermutated tumors such as melanoma. 
Patients with melanoma vaccinated with either synthetic long peptides (SLPs) (15–30 amino acids) or poly-neo-
epitope RNA (10 selected mutations within 27 amino acid peptides) displayed neoepitope-specific T cells in 

In prior studies, we delineated the landscape of neoantigens arising from nonsynonymous point 
mutations in a murine pancreatic cancer model, Panc02. We developed a peptide vaccine by 
targeting neoantigens predicted using a pipeline that incorporates the MHC binding algorithm 
NetMHC. The vaccine, when combined with immune checkpoint modulators, elicited a robust 
neoepitope-specific antitumor immune response and led to tumor clearance. However, only a 
small fraction of the predicted neoepitopes induced T cell immunity, similarly to that reported for 
neoantigen vaccines tested in clinical studies. While these studies have used binding affinities to 
MHC I as surrogates for T cell immunity, this approach does not include spatial information on the 
mutated residue that is crucial for TCR activation. Here, we investigate conformational alterations 
in and around the MHC binding groove induced by selected minimal neoepitopes, and we examine 
the influence of a given mutated residue as a function of its spatial position. We found that 
structural parameters, including the solvent-accessible surface area (SASA) of the neoepitope and 
the position and spatial configuration of the mutated residue within the sequence, can be used to 
improve the prediction of immunogenic neoepitopes for inclusion in cancer vaccines.
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peripheral blood, which were shown to kill tumor cells expressing these neoantigens in vitro (12, 13). Two recent 
studies in patients with glioblastoma, a tumor type with a low neoantigen burden, reported the successful use 
of a personalized vaccine approach to stimulate neoantigen-specific T cell responses in peripheral blood. One 
patient was also noted to have T cells that trafficked into the tumor (9, 14). In a preclinical murine model of  
pancreatic cancer, we used a similar SLP-neoantigen–based vaccine approach to induce quality T cells that 
trafficked into a lower neoantigen burden tumor. We found that combination ICIs were also required to fully 
activate these tumor infiltrating T cells (TILs) to eradicate tumors (15).

The current pipeline for personalized vaccines in both preclinical and clinical settings uses whole 
exome sequencing (WES) and RNA sequencing (RNA-seq) to identify mutated proteins expressed in tumor 
tissue. An in silico algorithm, NetMHC, is then used to predict the binding affinity of  each neoepitope to 
its MHC molecules. Those neoantigens with MHC binding affinities greater than 500 nM are predicted 
as being immunogenic and, hence, have been selected for inclusion in vaccines. However, in all 4 clinical 
studies (9, 12–14), only a small fraction of  the neoantigens selected using MHC binding algorithms elicited 
robust neoantigen-specific T cell responses in the peripheral blood. Likewise, in our pancreatic cancer mod-
el, there was a discordance between MHC binding affinities as reported by NetMHC (versions 3.2, 3.4, and 
pan 2.8) and immunogenicity, as assessed by IFN-γ production by CD8+ T cells (2). Furthermore, there are 
instances where NetMHC-predicted neoepitopes have been noted to be functionally inhibitory (16).

A major challenge in further developing these personalized vaccines is the need to create algorithms 
that accurately select neoantigens expressed by a given patient’s tumor that are more likely to elicit the high-
est quality and most durable T cell responses. A recent study posits that the quality of  neoantigens, noted 
for their similarity to pathogen-derived antigens known to elicit T cell responses, better predicts immu-
nogenicity than T cell quantity alone (17, 18). Furthermore, structural modeling using existing crystal 
structures of  HLA molecules suggest that the neoepitope, when presented at the MHC groove, must be 
solvent exposed to be recognized by the T cell receptor (TCR) (19). Of  170 neoepitopes predicted by Net-
MHC 3.4, 3.2, and pan 2.8 in a mouse colon cancer cell line (MC38), only 7 neoantigens were identified 
on mass spectrometry, of  which 2 were immunogenic by qualitatively examining solvent exposure (19). 
We have defined immunogenicity narrowly as generating a positive response on our ELISPOT, with our 
readout showing IFN-γ–producing CD8+ T cells isolated from splenocytes vaccinated with respective neo-
epitope-corresponding peptides. More recently, there have been attempts to develop neural networks using 
the a general immune epitope database (IEDB), consisting mainly of  viral antigens, by incorporating total 
binding energy scores from crystallographic and modeled structures (20). Here, we present a comprehen-
sive structural evaluation in atom-level detail of  how the solvent exposure and the configuration of  the 
mutated residue within the MHC I grove facilitates its recognition by T cells.

Results
NetMHC predicts neoepitope immunogenicity inconsistently. We subjected the murine pancreatic Panc02 tumor to 
WES and identified 878 nonsynonymous mutations (Figure 1A). Two hundred and sixty-nine of these were 
predicted by NetMHC to bind either H-2Kb or H-2Db with affinities ≤ 1000 nM. NetMHC predicted 8– to 9–
amino acid–long minimal epitope peptides (MEPs) for the neoantigens as potential vaccine candidates (Table 
1). We directly tested immunogenicity in vitro using an ELISPOT assay for IFN-γ–producing CD8+ T cells. 
Figure 1B shows an imperfect correlation between the immunogenicity of individual MEPs and their predicted 
binding affinity derived from NetMHC. Certain MEPs, such as 20-3, 66-2, and 84-1, 175-1, and 175-2, were 
predicted to have high binding affinities stronger than 500 nM, a cut-off  used in clinical studies (9, 12), but 
failed to elicit T cell responses. In contrast, MEP 237-3 was predicted to be a poor binder based on a lower 
binding affinity (<500 nM) but displayed the most potent immunogenic response. NetMHC correctly predict-
ed the immunogenicity of certain variants, such as MEP 77-2 and 77-3. Thus, despite being widely used, the 
NetMHC-based algorithm does not consistently predict the immunogenicity of HLA/MHC binding MEPs.

Structural templates influence neoepitope exposure. The α1 and α2 subdomains of  MHC fold to form a 
groove, with the curved base as a β-sheet and 2 α-helices separated at the top to accommodate 8– to 10–
amino acid–long peptides. Therefore, we evaluated conformational alterations in and around the binding 
groove induced by selected minimal neoepitopes to understand the influence of  a given mutated residue as 
a function of  its spatial position.

We constructed multiple structural models of  9 MEP-HLA complexes (Figure 2A). Template-based homol-
ogy modeling is based on the selection of  templates with the highest sequence similarity to the modeled sequence.  
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Alignment of  our MEPs to the 40 H-2Db and 45 H-2Kb MHC I crystal structures available in PDB revealed 
sequence similarities between 33% and 87% (Table 2). We also found multiple templates in PDB that exhibit-
ed near-sequence similarities with a given MEP.

Structural modeling using existing crystal structures of  HLA molecules suggest that neoepitopes 
must be exposed to solvent to be recognized by the TCR (19, 20). As we noted several high-sequence 
similarity–exhibiting structural templates for each MEP, each identified structural template needed to be 
inspected carefully for side chains that were either buried or exposed to solvent. For example, for MEP 
44-1, which was immunogenic, we identified 5JWD as a high-sequence similarity template (at 55%) in 
which the mutated cysteine (Cys) residue side chain was solvent exposed (Table 2 and Figure 2A). Like-
wise, when modeling the nonimmunogenic 44-2 variant, 2ZOL was chosen at a 33% homology because 
the Cys side chain was in a buried state. For MEP 66-1, of  the 5 identified templates, namely 1JPF, 
3CCH, 3CH1, 3TBV, and 3TBW, we selected 1JPF with a sequence similarity of  55% (Table 2). For 
MEP 84-1, 4PG9 was selected with a sequence similarity of  75% from 4 templates, namely 1KPV, 2VAB, 
4PG9, and 4PGC. For MEP 175-1, 7 templates (1KPV, 2VAB, 4PG9, 4PGC, 4PGD, 4PGB, and 4PGE) 
were identified, and 4PG9 was chosen with a sequence similarity of  62% (Table 2). For MEP 237-1, 
2FO4 was selected with a sequence similarity of  87%. Three variants of  MEP 77 were modeled (77-3, 
77-5, and 77-6), in which the mutant Ser residue was solvent exposed, with 1BQH, ILK2, and 1S7R 
being chosen for the 3 variants (62%, 62%, and 50% homology, respectively). Overall, multiple templates 
based on epitope sequence homology were identified. The final template was chosen after taking into 
account whether the mutant residue was buried or exposed to solvent.

For initial testing, 8– to 9–amino acid–long epitopes containing the mutated residue, which had been 
previously tested for immunogenicity, were modeled into the MEP-HLA complexes using existing MHC 
I–peptide complex structures extracted from PDB as starting conformations (Figure 2A). To compare the 
modeled MEP-HLA complexes with the existing MEP-HLA complexes, we carried out an assessment of  
root square mean deviations (Cα RMSD), a measure of  the average distance between atoms of  docked pro-
teins, for each optimized peptide with its corresponding template. The generally low Cα RMSD (0.75–1.33 
Å) indicated that optimized complexes resembled the native complex conformation (Table 2).

Mutated residue orientation and SASA predict immunogenicity. Each modeled MEP-HLA complex was 
used to investigate the effect of  the spatial position of  the mutated residue, both qualitatively by exam-
ining buried (in) versus exposed (out) configurations (Figure 2A, top and side views), and quantitatively, 

Figure 1. Identification of immunogenic tumor neoantigens in a murine pancreatic cancer model. (A) Pipeline for identifying nonsynonymous mutations 
in murine Panc02 cells by whole exome sequencing (WES); examining the transcriptome by RNA-seq; predicting binding affinity and minimal epitopes by 
NetMHC; generating synthetic long peptides (SLPs) for ELISPOT assays; and performing structural modeling on selected neoepitopes. For further details, 
please refer to ref. 15. (B) Inadequate correlation between predicted binding affinity (NetMHC 3.2, 3.4, and pan 2.8) of MEPs and their immunogenicity, 
as assessed by ELISPOT for IFN-γ–producing T cells in vitro (n = 3 mice per group) (for details on immunogenicity data, please refer to ref. 15). Note the 
clustering of high-affinity MEPs with poor immunogenicity (upper left quadrant).
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by calculating solvent-accessible surface area (SASA) (Table 3, Table 4, and Table 5). Prior modeling 
of  mutant MEPs in murine colon cancer suggested that mutated residues oriented toward the solvent 
interface were more likely to be immunogenic and that residue numbers 3–7 of  any presented peptide 
were involved in TCR recognition (19). However, this may not always be the case, as an Ala residue at 
position 2 in MEP 237-1, which is solvent exposed, triggers immunogenicity (Table 5 and Figure 2A). 
Table 3, Table 4, and Table 5 list the contribution of  different parameters calculated by the GETAR-
EA module within FANTOM 4.0; this includes an automated output on whether the mutated residue 
is buried (in) or solvent-exposed (out). Of  note, high SASA values (>20) noted with MEP 44-1, 77-3, 
77-5, 77-6, and 237-1 showed an outward configuration of  the mutated residue, whereas MEPs with 
low SASAs (<15), namely 44-2, 66-1, 175-1, and 84-1, displayed buried residues. Figure 2B shows that 
the high-SASA MEP-HLA complexes predicted good MEP immunogenicity, whereas those with low 
SASA values were less immunogenic.

Shuffling mutated residues alters SASA, orientation, and immunogenicity. Table 3, Table 4, and Table 5 
show that, across the board, SASA values for each amino acid varied within MEP-HLA complexes. 
For example, the Leu residue next to the Ser in the MEP 77 models displayed SASAs of  3.32, 10.49, 
and 40.13 (Table 4). Hence, we posit that the spatial position of  residues would determine SASA. A 
contribution of  the spatial position to immunogenicity is best appreciated with MEP 44 (Table 3). The 
MEP 44-1–HLA complex with the mutated Cys residue at position 3, namely LSCLNWSTL, was con-
structed such that the side chain of  Cys was solvent exposed (Figure 2A). The complex was confirmed 
by GETAREA to have a high SASA value (58.9) and an outwardly facing Cys side chain (Table 3). MEP 
44-2 peptide also elicited a robust CD8+ T cell response on ELISPOT (Figure 1B). However, a shift of  
Cys by just 1 amino acid to position 2 (SCLNWSTLV) in MEP 44-2 lowered SASA by ~100-fold (to 
0.51), buried the mutant Cys, and rendered the MEP less immunogenic on ELISPOT (Figure 2B).

To further test the hypothesis that the position of  the mutated residue within a MEP can alter the 
orientation and SASA of  that residue within the MHC I groove, we created 2 variants of  MEP 77-5 by 
shifting the Ser residue by 1 amino acid. Notably, MEP 77-5 showed a low binding affinity on NetMHC 

Table 1. Sequences of MEPs that bind H-2Db or H-2Kb

MEP Minimal epitope
20-1 (Db) VAFGHSNL

20-2 VAFGHSNLF
20-3 VAFGHSNLFI

23-1 (Db) KIAFLPFAYL
23-2 IAFLPFAYLV

44-1 (Db) LSCLNWSTL
44-2 SCLNWSTLV

66-1 (Db) CGMENQVLV
66-2 LALGPFCGM
66-3 CGMENQVLVI

77-1 (Kb) RIYSLFNLS
77-2 RIYSLFNLSM
77-3 LSMGKLEKM
77-4 SLFNLSMGKL
77-5 FNLSMGKL
77-6 IYSLFNLSM

84-1 (Kb) VVVGNHNQV
175-1 (Kb) LPLAFTLL

175-2 LLPLAFTLL
237-1 (Kb) SAYQFRVC

237-2 SAYQFRVCA
237-3 SAYQFRVCAE

239-1 (Kb) ISISKCAAC

Mutated residues are noted in bold.
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(Figure 1B and Figure 2A). However, since it was immunogenic on ELISPOT and displayed an outward-
ly pointing Ser residue with a high SASA (51.27), we predicted that shuffling the position of  the Ser resi-
due within the MHC groove would alter SASA and residue orientation — and, therefore, immunogenici-
ty. In the first sequence, the mutated Ser residue was shuffled from fourth to fifth position (FNLSMGKL 
→ LFNLSMGK) (termed MEP 77-5v1) (Table 6). In the second sequence, the Ser residue was shuffled 
from the fourth to the sixth position (FNLSMGKL → SLFNLSMGK) (termed MEP 77-5v2).

Figure 2. Modeling neoepitopes in selected MHC I templates. (A) Side (left panels) and top views (right panels) of modeled complexes between MEPs and 
appropriately selected MHC I template (also see Table 3, Table 4, and Table 5). MEP annotation and sequence are shown with the mutated residue in red. The ball 
represents the mutated residue and displays either an outward or inward orientation. This qualitative data are consistent with corresponding data from GETAREA 
that annotate the mutant residue and calculate the solvent-accessible surface area (SASA) (Table 3, Table 4, and Table 5). (B) Relationship between SASA (Å2) of 
the mutated residue of a given MEP and its immunogenicity, as assessed by ELISPOT for IFN-γ (for details on immunogenicity data, please refer to ref. 15).
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For MEP 77-5v1, 3 templates were identified (1G7P, 1VAD, 1G7Q), of  which 1G7P was selected 
exhibiting 50% similarity. MEP 77-5v2 identified 4 templates (1S7Q, 1S7R, 1S7S, 1S7T), from which 1S7T 
was selected with 50% similarity (Figure 3A and Table 6). GETAREA analysis of  the variant MEP-HLA 
models revealed low SASAs and buried Ser side chains. Both variant peptides also displayed poor immu-
nogenicity on ELISPOT assays (Figure 3B). Thus, shuffling the mutated residue by 1 and 2 positions in 
the original MEP 77-5 significantly attenuated immunogenicity. In all, both post hoc and a priori modeling 
testify to the critical roles of  SASA and mutant residue orientation and position in predicting the immuno-
genicity of  minimal neoepitopes.

Discussion
We studied the presentation of 9 predicted neoepitopes used in our pancreatic cancer vaccine PancVAX 
(15) by modeling these onto MHC I templates derived from crystal structures from the Protein Data Base 
(PDB). Much more complex than previously envisioned (19), we show that the prediction of  cancer neo-
antigen immunogenicity by in silico modeling (a) depends upon the selected template, (b) correlates with 
the SASA of  the neoepitope, and (c) can be modified by shuffling the mutated residue within the sequence, 
which, in turn, exposes or buries the single mutated residue. This atomistic detail provides the framework 
for incorporating 3D structural parameters into automated machine learning algorithms as a high-through-
put neoepitope prediction tool of  the future.

For effective personalized cancer vaccines, it is imperative that nonsynonymous mutations arising during 
tumorigenesis not only yield expressed antigens that are processed and presented, but that the neoantigens 
that are included in a vaccine are able to trigger a robust and durable T cell response. In our Panc02 model, 
we have effectively demonstrated a biologically meaningful response after vaccination with PancVAX by 
demonstrating both reduced tumor growth and induction of  neoantigen-specific T cells within the tumor 
(15). Following WES, which identifies DNA variants, RNA-seq and, in some instances, mass spectrometry, 
have been used to identify the DNA variants that are tumor-expressed proteins and neoepitopes presented on 
MHC (2, 9, 12–14). However, it has been much more challenging to determine which expressed neoantigens 
evoke a neoepitope-specific T cell response within tumor tissue and in peripheral blood.

Recent studies have used NetMHC to determine binding affinities of  expressed neoantigens to HLA 
and MHC I as surrogate readouts for T cell immunity. An algorithm based on artificial neural networks, 
NetMHC, is trained for 81 different human HLA alleles and 41 animal MHC I alleles, which include 
murine MHCs (21, 22). The algorithm has been used widely to predict MHC-peptide binding for 8-, 10-, 
or 11-amino acid peptides (using 9–amino acid trained predictors) in several pathogenic viral proteomes, 
including SARS, influenza, HIV, and hepatitis C (23, 24). This training has resulted in 75%–80% confirmed 
HLA/MHC I binders, with further validation and benchmarking using large sets of  nonredundant affinity 
data (22–24). However, in the case of  tumor neoantigens, NetMHC binding has only inconsistently pre-
dicted an immune response (2, 9, 12–14) (Figure 1B). In both glioblastoma and melanoma trials, patients 
were vaccinated with up to 20 SLPs based on NetMHC predictions. In the melanoma studies, only 2–4 

Table 2. MHC I templates selected from Protein Data Base (PDB) for each neoepitope

Name Mutation MEP Minimal epitope Template homolog 
PDB ID

Sequence similarity 
%

Cα RMSD with 
template

Glb1l2 R36C
44-1 LSCLNWSTL 5JWD 55 1.20

44-2 (Db) SCLNWSTLV 2ZOL 33 1.33
Map2k5 A11G 66-1 (Db) CGMENQVLV 1JPF 55 0.95

Rasa3 Y740S
77-3 (Kb) LSMGKLEKM 1BQH 62 0.84

77-5 FNLSMGKL 1LK2 62 0.77
77-6 IYSLFNLSM 1S7R 50 1.02

Clcn7 D771G 84-1 (Kb) VVVGNHNQV 4PG9 75 0.86
Bsg A8P 175-1 (Kb) LPLAFTLL 4PG9 62 1.01
Ttn E19018A 237-1 (Kb) SAYQFRVC 2FO4 87 0.75

Gene name, point mutation, minimal epitope peptide (MEP), and its annotation, selected MHC I template (PDB ID), percent sequence similarity, and Cα 
RMSD values are shown.
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SLPs evoked a neoepitope-specific CD8+ T cell response in the peripheral blood, whereas in the glioblas-
toma study, only 1 patient generated a CD8+ T cell response to 2 neoepitopes. Likewise, in our study with 
murine pancreatic cancer, Figure 1B illustrates a cluster of  high-binding MEPs, such as 20-1, 20-2, and 
77-1, among others, that display minimal or no immunogenicity.

The inconsistent prediction of neoepitope immunogenicity may indeed arise from the fact that NetMHC 
is trained to enact binding affinities of foreign pathogenic antigens, not tumor neoantigens. Specifically, it may 
not be trained well enough to distinguish as precisely between tumor neoantigens arising from point mutations 
with just a single amino acid difference. This apparent discrepancy will then be consistent with the “quality 
model,” in which high-quality neoantigens are considered to rank closer to pathogen-derived peptides (17, 18). 
In this instance, it would also be biologically meaningful to hypothesize that the mutated residue must be prom-
inently exposed to solvent at the MHC I groove to be detected as foreign by the TCR (19).

We tested this hypothesis by structural modeling to calculate specifically a well-characterized parameter 
for solvent exposure, SASA (25). SASA has been used widely to evaluate the structure, function, and stabil-
ity of  proteins. Its uses have ranged from drug design and discovery, to studies on the protein-DNA binding 
interfaces, to understanding phylogenetic coevolution of  proteins (26, 27). Here, we present a comprehensive 
SASA-based structural analysis of  MEP-HLA complexes to further inform the immunogenicity of  a given 
neoantigen before its inclusion in a vaccine. Importantly, the automated calculation of  SASA by GETAREA 
is also accompanied by “in” or “out” annotation on orientation of  the mutant residue — overall providing a 
comprehensive readout for solvent exposure

Furthermore, and to a higher level of  atomistic detail, our prespecified modeling and β-testing both 
show that minor changes in the positioning of  mutated residue within the MEP can have a profound 

Table 3. Solvent-accessible surface area (SASA) and annotations of neoepitope orientation of MEP 44 and 66

MEP Residue Total Apolar Backbone Sidechain Ratio (%) In/out

44-1
(LSCLNWSTL)

Leu 1 23.62 23.62 0.03 23.59 16.10 i
Ser 2 12.78 4.96 8.99 3.78 4.90 i
Cys 3 58.90 5.36 7.50 51.41 50.30 o
Leu 4 15.38 9.39 7.53 7.85 5.40 i
Asn 5 49.60 12.93 0.21 49.39 43.20 o
Trp 6 2.97 0.85 2.13 0.85 0.40 i
Ser 7 17.58 17.44 11.15 6.44 8.30 i
Thr 8 56.51 52.68 1.20 55.31 52.10 o
Leu 9 10.18 9.33 0.85 9.33 6.40 i

44-2
(SCLNWSTLV)

Ser 1 0.18 0.18 0.00 0.18 0.20 i
Cys 2 0.51 0.13 0.35 0.16 0.20 i
Leu 3 2.51 2.49 0.13 2.38 1.60 i
Asn 4 82.78 24.18 9.67 73.11 64.00 o
Trp 5 12.59 0.07 12.59 0.00 0.00 i
Ser 6 39.43 28.96 16.57 23.86 29.50 o
Thr 7 31.79 23.98 10.71 21.08 19.80 i
Leu 8 59.29 59.29 0.00 59.29 40.60 o
Val 9 0.01 0.01 0.00 0.01 0.00 i

66-1
(CGMENQVLV)

Cys 1 0.00 0.00 0.00 0.00 0.00 i
Gly 2 2.46 2.46 2.46 0.00 2.80 i
Met 3 7.34 4.48 4.12 3.22 2.00 i
Glu 4 61.76 60.54 11.80 49.97 35.40 o
Asn 5 118.28 36.30 11.73 106.55 93.20 o
Gln 6 0.01 1.22 7.93 0.08 0.10 i
Val 7 36.27 36.27 6.40 29.87 24.40 o
Leu 8 85.65 83.63 2.02 83.63 57.20 o
Val 9 0.82 0.00 0.00 0.82 0.70 i

Readouts from GETAREA on modeled MEP–MHC I template complexes. Shown are the MEP numbers, sequences, amino acids in the 9-mers (with mutated 
residue shown in bold), total SASA values (total), apolarity, and contribution of the backbone and side chains in each post–processed PDB file. The ‘in’ or 
‘out’ configuration is also annotated for each residue.
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effect on T cell recognition and immunogenicity. While for MEP 44-2 (LSCLNWSTL), the complex 
displayed a high SASA, a solvent-exposed Cys side chain, and a robust CD8+ T cell response, a shift of  
the Cys residue by just 1 amino acid (SCLNWSTLV) in MEP 44-2 buried the Cys, reduced SASA by 
~100-fold, and rendered the MEP less immunogenic. In our β-testing protocol, we created 2 variants 
of  immunogenically responsive MEP 77-5, FNLSMGKL → LFNLSMGK and FNLSMGKL → SLF-
NLSMGK, by shifting the mutated Ser from position 4 to position 5 or 6 in the 8-mer. Both a single 
and 2–amino-acid shuffle reduced SASA, buried the Ser residue, and diminished immunogenicity.  

Table 4. Solvent-accessible surface area (SASA) and annotations of neoepitope orientation of the variant peptides

MEP Residue Total Apolar Backbone Sidechain Ratio (%) In/out

77-3
(LSMGKLEKM)

Leu 1 3.32 3.32 0.00 3.32 2.30 i
Ser 2 34.55 25.03 2.63 31.92 41.20 o
Met 3 15.88 9.36 8.25 7.23 4.60 i
Gly 4 22.61 19.45 22.61 0.00 25.90 o
Lys 5 78.34 70.83 2.27 76.06 46.20 o
Leu 6 0.99 0.37 0.62 0.37 0.30 i
Glu 7 8.83 8.39 6.09 2.74 1.90 i
Lys 8 81.26 52.66 5.00 76.26 46.40 o
Met 9 31.72 27.19 1.52 30.21 19.10 o

77-5
(FNLSMGKL)

Phe 1 41.83 41.83 0.00 41.83 23.20 o
Asn 2 0.12 0.12 0.12 0.00 0.00 i
Leu 3 10.49 10.49 5.06 5.43 3.70 i
Ser 4 51.27 22.94 3.21 48.06 62.10 o
Met 5 15.32 1.36 14.48 0.84 0.50 i
Gly 6 25.52 24.10 25.52 0.00 29.30 o
Lys 7 91.94 56.31 4.11 87.83 53.40 o
Leu 8 1.95 1.37 0.59 1.37 0.90 i

77-5v1
(LFNLSMGK)

Leu 1 5.43 1.94 3.49 1.94 1.30 i
Phe 2 4.28 2.62 2.54 1.74 1.00 i
Asn 3 10.02 5.14 6.28 3.74 3.30 i
Leu 4 98.95 95.69 3.26 95.69 65.40 o
Ser 5 20.60 0.71 12.61 7.99 10.30 i
Met 6 53.10 52.78 3.89 49.21 31.10 o
Gly 7 12.86 11.03 12.86 0.00 14.80 i
Lys 8 4.48 0.00 4.48 0.00 0.00 i

77-5v2
(SLFNLSMGK)

Ser 1 4.35 0.36 0.29 4.07 5.30 i
Leu 2 6.74 5.65 1.09 5.65 3.90 i
Phe 3 28.44 25.24 3.45 25.00 13.90 i
Asn 4 40.83 5.90 5.78 35.05 30.70 o
Leu 5 170.96 156.02 29.72 141.23 96.60 o
Ser 6 37.89 16.53 14.74 23.16 29.90 i
Met 7 85.28 80.96 10.38 74.90 47.30 o
Gly 8 27.36 23.65 27.36 0.00 31.40 i
Lys 9 6.68 1.65 5.03 1.65 1.00 i

77-6
(IYSLFNLSM)

Ile 1 16.47 16.47 0.00 16.47 11.20 i
Tyr 2 4.23 2.27 0.00 4.23 2.20 i
Ser 3 12.63 5.10 0.34 12.29 15.90 i
Leu 4 104.87 95.67 9.27 95.60 65.40 o
Phe 5 134.09 130.86 15.81 118.27 65.70 o
Asn 6 17.72 13.91 10.92 6.80 5.90 i
Leu 7 40.13 39.07 3.73 36.39 24.90 o
Ser 8 37.26 16.64 1.19 36.07 46.60 o
Met 9 0.28 0.00 0.28 0.00 0.00 i

Readouts from GETAREA on modeled MEP–MHC I template complexes. Shown are the MEP numbers, sequences, amino acids in the 9–mers (with 
mutated residue shown in bold), total SASA values (total), apolarity, and contribution of the backbone and side chains in each postprocessed PDB file. The 
‘in’ or ‘out’ configuration is also annotated for each residue.
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That these atom-level modifications alter immunogenicity would again make it unlikely for current 
versions of  NetMHC, to detect subtle differences in the position of  the mutant residue at the MHC I 
groove, without further training on 3D events.

A recent open-source package, MHCflurry, has been presented as a more accurate predictor of  
MHC I binding compared with 2 publicly available algorithms, NetMHC4.0 and NetMHCpan, particular-
ly for non-9 amino acid peptides (i.e., peptides of  lengths 8 and 10–15) and portends a ~400-fold higher 
speed (28). It is different from the NetMHC versions in that it uses a publicly trainable architecture and 
mass spectrometry–identified peptides for model selection (28). While we await more data on outcomes 
from the new algorithm, it is unclear whether these algorithms can be trained to seek information on 
protein structure. Given our data, we find that any new module or automated learning machine to more 
accurately predict neoantigen immunogenicity must have access to PDB and be able to extract the best 
template. A major challenge is likely to be centered on the selection of  the correct template from several 
high-sequence homology templates for each minimal epitope.

Table 5. Solvent-accessible surface area (SASA) and annotations of neoepitope orientation of MEP 84, 175 and 237 

MEP Residue Total Apolar Backbone Sidechain Ratio (%) In/out

84-1
(VVGNHNQV)

Val 1 7.54 7.54 2.68 4.85 4.00 i
Val 2 1.74 0.98 0.76 0.98 0.80 i
Gly 3 7.29 7.29 7.29 0.00 8.40 i
Asn 4 68.99 8.22 2.72 66.27 58.00 o
His 5 9.15 6.34 5.56 3.59 2.30 i
Asn 6 63.65 17.32 4.79 58.86 51.50 o
Gln 7 76.60 22.98 7.96 68.64 47.80 o
Val 8 6.29 4.30 2.00 4.30 3.50 i

175-1
(LPLAFTLL)

Leu 1 4.55 0.00 4.55 0.00 0.00 i
Pro 2 2.51 2.51 0.00 2.51 2.40 i
Leu 3 116.97 107.69 9.35 107.62 73.60 o
Ala 4 76.86 56.00 20.86 56.00 86.30 o
Phe 5 9.13 3.68 8.18 0.95 0.50 i
Thr 6 31.91 19.23 8.36 23.55 22.20 i
Leu 7 84.83 80.13 4.70 80.13 54.80 o
Leu 8 92.80 84.68 7.26 85.53 58.50 o

237-1
(SAYQFRVC)

Ser 1 9.84 4.76 8.22 1.62 2.10 i
Ala 2 26.99 24.84 2.16 24.83 38.30 o
Tyr 3 20.71 16.75 8.26 12.46 6.50 i
Gln 4 41.30 5.74 18.11 23.19 16.10 i
Phe 5 83.07 83.07 2.37 80.70 44.80 o
Arg 6 85.38 37.21 6.40 78.98 40.40 o
Val 7 52.06 50.46 1.87 50.19 41.00 o
Cys 8 0.43 0.00 0.27 0.16 0.20 i

Readouts from GETAREA on modeled MEP–MHC I template complexes. Shown are the MEP numbers, sequences, amino acids in the 9–mers (with 
mutated residue shown in bold), total SASA values (total), apolarity, and contribution of the backbone and side chains in each postprocessed PDB file. The 
‘in’ or ‘out’ configuration is also annotated for each residue.
 

Table 6. MHC I templates selected from Protein Data Base (PDB) for each variant peptide

Name Mutation MEP Minimal epitope Template homolog 
PDB ID

Sequence similarity 
%

Cα RMSD with 
template

Rasa3 Y740S
77-5v1 LFNLSMGK 1G7P 50 0.78
77-5v2 SLFNLSMGK 1S7T 50 0.73

Gene name, point mutation, MEP and its annotation, selected MHC-I template (PDB ID), percent sequence similarity, and Cα RMSD values are shown.
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Methods
Neoantigen identification pipeline. Extracted DNA and RNA from a murine pancreatic cancer cell line Panc02 
(29) was subject to WES and RNA-seq, respectively. The raw sequencing files from WES were aligned 
to the mm9 reference genome using bowtie2. Variants were called using freebayes and subsequently 
annotated using Annovar (2). Tumor-specific peptide sequences were extracted using R and analyzed by 
locally maintained NetMHC 3.2, 3.4, and pan 2.8 algorithms (https://github.com/rosgood/Panc02_Vari-
ant_ID/commit/899bdd743f671822ef17749769d100ae7f65e698) (2). All mutated epitopes predicted to 
bind to H-2Kb or H-2Db with an affinity of  ≤ 1000 nM were manually curated by Integrated Genomics 
Viewer. Pipeline is available on git repository at https://github.com/rosgood/Panc02_Variant_ID/com-
mit/899bdd743f671822ef17749769d100ae7f65e698. For neoepitopes with predictions of  ≤ 1000 nM, cor-
responding 20-mer peptides with mutations centered at position 11 were synthesized initially at 70% purity 
by Peptide 2.0. Further details are available in ref. 15.

Immunogenicity testing. Groups of  6-week-old male C57BL/6 mice (3–4 mice per group) each received 
a pool of  5–6 SLPs at 50 μg per peptide, the known H-2Kb–binding OVA (amino acid positions 152–171) 
peptide GLEQLESIINFEKLTEWTSS (10 μg), and poly IC:LC (10 μg) (InVivoGen). An initial injection 
of  the vaccine into the hind limb was followed by a boost at day 7 and IFN-γ ELISPOT at day 13 to evalu-
ate CD8+ T cell responses (30). We also mapped the minimal epitopes of  the respective 20-mers by similarly 
testing 8– to 11–amino acid–long peptides corresponding to the expected minimal immunogenic epitopes 
as predicted by NetMHC to have binding affinities of  ≤ 1000 nM (15).

T cell isolation and ELISPOT. CD8+ T cells were isolated from freshly harvested splenocytes by first cre-
ating a single-cell suspension by passing the spleen through a 40-μm filter in CTL media (RPMI with 10% 
FBS [Thermo Fisher Scientific], 0.5% L-glutamine, 1% penicillin/streptomycin [Invitrogen], and 0.05 mM 
2-mercaptoethanol [Thermo Fisher Scientific]). Erythrocytes were removed by ACK lysis, and the resulting 
T cells were washed, counted, and isolated using the Dynal CD8+ negative isolation kit (Dynal, Invitrogen) 
per manufacturer’s instructions. Multiscreen 96-well filtration plates (MilliporeSigma) were coated over-
night at 4°C with 100 μL/well of  anti–mouse IFN-γ mAb AN18 (100 μg/mL, Mabtech, catalog 3321-3-250).  

Figure 3. β-Testing of MEP variants for SASA and immunogenicity. The position of the Ser residue in MEP 77-5 was shifted by 1 amino acid in 2 variant 
models, MEP 77-5v1 (FNLSMGKL → LFNLSMGK) and MEP 77-5v2 (FNLSMGKL → SLFNLSMGK). (A) Side (left panels) and top views (right panels) of mod-
eled complexes between MEPs and selected MHC I template. The ball represents the mutated residue. Calculated SASA and other GETAREA parameters 
are shown in Table 4. (B) Immunogenicity of variant MEPs by ELISPOT for IFN-γ–producing T cells. An H-2Kb–binding OVA (OVA-Kb) peptide is used as 
control (for details, see Methods) (n = 3 mice per group).
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Wells were washed 3 times each with PBS and blocked for 2 hours with CTL media at 37°C. A total of  1 × 
105 T2 APCs was pulsed with 2 μg peptide in 100 μL CTL media for 2 hours at 37°C, 5% CO2. After T cell 
isolation, 1 × 105 CD8+ T cells were added to the capture plate in 100 μL CTL, followed by the addition of  
T2 APCs with peptide and incubation for 18 hours at 37°C at 5% CO2. Cells were removed from the plate 
by washing 6 times, 2 minutes per wash, with PBS plus 0.05% Tween-20 (MilliporeSigma). Wells were 
incubated for 2 hours at room temperature with 10 μg/mL biotinylated anti–mouse IFN-γ mAb R4-6A2 
(Mabtech, catalog 3321-6-250) in 0.05% FBS diluted in PBS. Wells were washed as before, incubated with 
avidin peroxidase complex (Vectastain ELITE ABS kit; Vector Laboratories) for 1 hour at room tempera-
ture, and washed again. AEC substrate was added, and wells were developed for 10–15 minutes at room 
temperature. The reaction was stopped with tap water, and plates were allowed to dry for 24 hours before 
they were counted using an automated image ELISPOT reader (ImmunoSpot).

Structural modeling. To understand the structural influence of  the mutated residues in the MEP as a func-
tion of  its spatial position and configuration, we constructed multiple MEP-HLA complexes. The template 
structures to model the peptides were identified by searching the PDB using PSI-BLAST (31) for their cor-
responding homolog in H-2Kb and H-2Db structural sets. MEP 44 and 66 were modeled as MHC I H-2Db, 
while MEP 77, 84, 175, and 237 were modeled as MHC I MHC I H-2Kb complexes. Hits that exhibited 
highest sequence identity were selected. The MEP and template sequences were aligned using ClustalX (32). 
The final template was chosen from the selected set, wherein the mutated residue was solvent exposed.

We generated models of  each MEP using MODELLER v9.20 (33) and evaluated stereochemical prop-
erties using PROCHECK (34) and ProSA (35). Multiple models were generated, with a final model being 
chosen based on low-energy function and a low Cα RMSD overlap between the template and the modeled 
MEP. The peptide in the protein-peptide complex was then optimized using a Rossetta-based algorithm 
implemented in the FlexPepDock server (36). In short, the starting structure was refined in 200 indepen-
dent FlexPepDock simulations. Of  these, one half  was run in the high-resolution model, while the other 
100 included a low-resolution preoptimization step, followed by high-resolution refinement. Models gener-
ated were then ranked based on their Rosetta generic full-atom energy score. The final model was selected 
based on solvent accessibility of  the mutated residue in the MEP and the lowest energy score from the 
FlexPepDock optimization.

Derivative measures. We derived SASA of  each residue of  a given MEP using GETAREA, a pro-
gram implemented within FANTOM (http://curie.utmb.edu/getarea.html). In addition to SASAs, this 
calculation yielded atomic solvation energies and their gradients for the macromolecules. Briefly, the 
server accepts PDB coordinates as an input file and reports several outputs, including total surface area, 
apolarlty, and contribution of  the backbone and side chains in a postprocessed PDB file (Table 3, Table 
4, and Table 5). Furthermore, an indication of  whether the amino acid is buried (in) or solvent exposed 
(out) is annotated for each residue in the PDB file (Table 3, Table 4, and Table 5). All structural calcu-
lations and figures were generated using ICM-Pro software (25).

Study approval. All animal studies were reviewed and approved by the Johns Hopkins IACUC and Bio-
hazards Committee. Animals were kept in pathogen-free conditions and were treated in accordance with 
institutional and American Association of  Laboratory Committee policies. All efforts were made to limit 
animal pain and discomfort.
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