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Neutrino self-interactions (νSI) beyond the Standard Model are an attractive possibility to soften
cosmological constraints on neutrino properties and also to explain the tension in late and early time
measurements of the Hubble expansion rate. The required strength of νSI to explain the 4σ Hubble tension is
in terms of a pointlike effective four-fermion coupling that can be as high as 109GF, where GF is the Fermi
constant. In this work, we show that such strong νSI can cause significant effects in two-neutrino double beta
decay, leading to an observable enhancement of decay rates and to spectrum distortions. We analyze
self-interactions via an effective operator as well as when mediated by a light scalar. Data from observed
two-neutrino double beta decay are used to constrain νSI, which rules out the regime around 109GF.
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I. INTRODUCTION

The discrepancy between cosmic microwave back-
ground (CMB) and local measurements of the Hubble
constant, known as the Hubble tension, has grown to about
4σ [1–5]. If indeed a physical fact, it would imply that
nonstandard particle physics or cosmology is required.
Introducing a neutrino self-interaction (νSI), i.e., a four-
neutrino contact interaction, to inhibit neutrino free-
streaming in the early Universe can resolve the Hubble
tension. The required strength of νSI needs to be much
larger than the Fermi effective interactions predicted in the
Standard Model (SM) [6–10]. Writing the interaction as
GSðννÞðννÞ,1 there are two regimes for the coupling GS: a
strongly interacting regime with GS ¼ 3.83þ1.22

−0.54 × 109 GF

and a moderately interacting regime with 1.3 × 106 <
GS=GF < 1.1 × 108 [9].
The required strong νSI have drawn considerable atten-

tion [11–23], but in general they are difficult to probe in
laboratory experiments due to the absence of electrons or
quarks involved. Assuming that νSI are mediated by new
light bosons, existing constraints come from big bang
nucleosynthesis [12,24,25], pion/kaon decay [26–28], Z
invisible decay [29,30], LHC searches [31], and supernova
neutrinos [16–19]. There are currently no direct constraints
on the νSI operator without any assumption on its origin.

In this paper, we propose to search for νSI in double beta
decay experiments.2 These experiments search for the
lepton number violating, and thus SM-forbidden, neutrino-
less double beta decay (0νββ) [33,34]. The standard
diagram of this process is the exchange of a massive
Majorana neutrino; see Fig. 1 (left). As part of this effort,
the SM-allowed two-neutrino double beta (2νββ) decay is
measured with increasing precision and may itself be used
to probe physics beyond the Standard Model [35]. In the
presence of νSI, two neutrinos can be emitted via the
effective νSI operator; see Fig. 1 (right). The final state of
this νSI-induced double beta (2νSIββ) decay is identical to
that of 2νββ decay.
In previous studies of double beta decay, indirect

constraints on νSI mediated by light scalars were obtained
[36–43]. It was assumed that the scalar is emitted in the
decay, hence is lighter than the Q-value of double beta
decay. For a scalar particle ϕ that couples with strength gϕ
to two electron neutrinos, one finds from searches for
so-called Majoron emitting double beta decays that
gϕ ≲ 10−4–10−5 [38,39]. Taking mϕ ¼ 1 MeV, this bound
on the Yukawa coupling corresponds to GS ≲ ð10–103ÞGF.
If νSI are not mediated by light scalars or the scalar mass is
larger than the Q-value, this bound does not apply. In this
case, the effect of νSI operators on double beta decay
becomes more important, which we will investigate here.

II. νSI-INDUCED DOUBLE BETA DECAY

In the standard 0νββ mechanism, two neutrinos pro-
duced in double beta decay annihilate due to a Majorana
mass term, leaving only electrons in the leptonic final
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1Here we adopt the Weyl spinor notation, with ν being a two-
component spinor, and the combination ðννÞ is a scalar product.

2For future prospects in beta decay experiments, see Ref. [32].
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states, as shown in Fig. 1 (left). Under the presence of νSI
operators,

LLNC
νSI ¼ GSðνeνeÞðν̄αν̄βÞ; or

LLNV
νSI ¼ GSðνeνeÞðνανβÞ; ð1Þ

where α; β ¼ e, μ, τ are flavor indices, and Fig. 1 (right)
implies that the two electron-antineutrinos (ν̄e) generated
by neutron decay can take part in the νSI interaction and
convert in the 2νSIββ process to νανβ or ν̄αν̄β. Note that both
the lepton number conserving (LNC) and violating (LNV)
interactions in Eq. (1) can lead to 2νSIββ.
Assuming that the momenta of leptonic final states are

negligible compared to the momenta of the neutrino
propagators [the typical values of the former and the latter
are of order Q ¼ Oð1Þ MeV and pF ¼ Oð100Þ MeV,
respectively], the two processes in Fig. 1 share the same
nuclear matrix elements (NMEs). Consequently, we can
compute the decay rate of 2νSIββ using the NME of 0νββ,

ΓνSI ¼
����GSme

2R

����
2

GνSIjM0νj2: ð2Þ

Here me denotes the electron mass, R is the radius of the
nucleus, M0ν is the 0νββ NME, and GνSI is the 2νSIββ
phase space factor (derived in the Supplemental Material
[44]), which reads

GνSI ¼
2cνSI
15

Z
dp1dp2p2

1p
2
2ðQ − T12Þ5F2ðp1; p2Þ; ð3Þ

where p1 and p2 are the momenta of the two electrons.
The Q-value is given in Table I for various isotopes
and F2ðp1; p2Þ stands for the Fermi function correction
caused by the Coulomb potential of the nucleus. Finally,
T12 ¼ E1 þ E2 − 2me is the total kinetic energy of both
electrons, implicitly depending on p1 and p2, and neutrino
masses in the final state have been neglected. The constant
cνSI is determined by cνSI ¼ ðG4

F cos
4 θCÞ=ð256π9m2

eÞ,
where θC denotes the Cabibbo angle. Note that the electron
massme and nuclear radius R are included in Eq. (2) so that
the normalization of the NME and phase space factor
conforms with that adopted in the literature.
Using Eqs. (2) and (3), it is straightforward to compute

ΓνSI. It should be noted, however, that the electron spectrum
of 2νSIββ is very similar to that of 2νββ decay. Potential
differences will be discussed later. Here let us first focus on
the total decay rate. The total rate Γ2ν of 2νββ decay has
been measured precisely for many isotopes. For example,
the 2νββ rate of 136Xe has been measured to a 3% level [52].
Nonetheless, there remains a considerable uncertainty in
the theoretical prediction of the 2νββ decay rate arising
from the NMEs. Unresolved issues such as the quenching
of the effective nuclear axial coupling gA in 0νββ decay
likely provide a major error source. We proceed with a
conservative requirement that the 2νSIββ rate is less than
the 2νββ rate,

ΓνSI=Γex
2ν < 1; ð4Þ

where Γex
2ν stands for the experimentally measured value

of 2νββ.
Taking the best-fit value of GS ¼ 3.83 × 109GF of the

strongly interacting regime and the interacting boson model
(IBM-2) NMEs [46], we compute the decay rate ΓνSI
(assuming the unquenched value gA ¼ 1.269 in the calcu-
lation of the NMEs) and compare it with Γex

2ν in Table I. By
requiring ΓνSI=Γex

2ν < 1, we obtain the corresponding con-
straints on GS, which is presented in Fig. 2. Here, we also

TABLE I. Estimate of 2νSIββ decay rates for several isotopes. Here, Q is the correspondingQ-value, T2ν
1=2 represents the experimental

2νββ decay half-lives adopted from Ref. [45] that can be translated to the experimental 2νββ decay rates using Γex
2ν ¼ log 2=T2ν

1=2 and ΓνSI
denotes the theoretical prediction for the 2νSIββ decay rates computed from Eq. (2), assuming GS ¼ 3.83 × 109GF. Bounds on GS
obtained according to Eq. (4) are presented in the last row. Nuclear matrix element values from IBM-2 [46] are used to obtain the values
in this table.

48Ca 76Ge 136Xe 100Mo 128Te 130Te

Q=MeV 4.263 [47] 2.039 [48] 2.458 [49] 3.034 [48] 0.8659 [50] 2.527 [51]
T2ν
1=2=year 5.30 × 1019 1.88 × 1021 2.17 × 1021 6.88 × 1018 2.25 × 1024 7.91 × 1020

ðΓνSIÞ−1=year 2.52 × 1018 1.42 × 1020 1.55 × 1019 2.94 × 1018 4.04 × 1022 9.08 × 1018

ΓνSI=Γex
2ν 78.6 49.5 528 8.76 209 326

GS=GF < 4.32 × 108 5.44 × 108 1.67 × 108 1.29 × 109 2.65 × 108 2.12 × 108

FIG. 1. Left: Neutrinoless double beta decay via Majorana
neutrino exchange. Right: νSI-induced double beta decay.
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use NME values computed in the interacting shell model
(Shell) [53] and quasiparticle random phase approximation
(QRPA) model [54]; the corresponding limits on GS are
shown in Fig. 2, indicating the uncertainty arising from
nuclear theory uncertainties. As one can see, the strongly
interacting regime for GS favored by the cosmological data
causes ΓνSI=Γex

2ν > 1 for all the isotopes listed in Table I. For
some isotopes, ΓνSI can be even 1 or 2 orders of magnitude
higher than Γex

2ν. Even including the theoretical NME
uncertainties, most isotopes can fully exclude the cosmo-
logically favored strongly interacting regime band, given
the premise that two νe are involved in the νSI.

III. ENERGY AND ANGULAR DISTRIBUTIONS

We now consider possible distortions of the electron
energy and angular distributions arising from the νSI-
induced contribution. For an exact contact interaction
of four neutrinos and neglecting final state lepton
momenta, one can show that the electron spectra of
2νSIββ decay are the same as that of 2νββ decay; see the
Supplemental Material [44]. However, considering that
the νSI operator may be generated by light mediators, the
corresponding energy dependence of GS can cause
observable spectral distortions, as we shall discuss below.
We should mention here that the spectral distortions
depend on the underlying model for νSI, which currently
still lacks comprehensive exploration. There are various
possibilities to generate the νSI effective operator, as
shown in Fig. 3, where both tree and one-loop level
diagrams are illustrated.
At tree level, the νSI operator can be opened via either an

s-channel (diagram I) or a t-channel (diagram II) scalar
mediator. For vector mediators, most of the discussions

below apply as well.3 For the s- and t-channel diagrams,GS
has the following energy dependence:

GS ¼
−m2

ϕ

s −m2
ϕ

G0
S ðs-channelÞ; ð5Þ

GS ¼
m2

ϕ

tþm2
ϕ

G0
S ðt-channelÞ; ð6Þ

wheremϕ is the mediator mass and s≡ p2, t≡ −q2 with p
and q being the momenta of the mediators in the tree
diagrams. In the context of 2νSIββ, they are of order t ∼ p2

F
and s≲Q2, respectively. The values of GS at zero
momentum transfer are denoted as G0

S ¼ g2ϕ=m
2
ϕ, with

the coupling gϕ between ϕ and the neutrinos. Note that
in Eq. (5) we omit the small effect of the ϕ decay width.
At the one-loop level, the νSI operators can be generated

e.g., by the box diagram in Fig. 3. The corresponding
energy dependence ofGS is much more complicated than in
the tree-level case. In general, it depends on both s ¼ p2

and t ¼ −q2. However, for most loop diagrams, there are
no simple analytical expressions similar to Eqs. (5) and (6).
For the box diagram, we can obtain a simple result
assuming all the particles running in the loop have the
same mass mϕ and that s ≪ t ≪ m2

ϕ. With these assump-
tions, following the calculation in Ref. [56], we get

GS ¼ G0
S

�
1 −

3

10

t
m2

ϕ

þ � � �
�
: ð7Þ

Compared to Eq. (6), where the expansion in t yields
GS ¼ G0

Sð1 − t=m2
ϕ þ � � �Þ, the t=m2

ϕ term in Eq. (7) has a
different coefficient but the same sign. In addition to the
box diagram, other one-loop diagrams are also possible, as
illustrated by diagrams IV and V in Fig. 3. Such diagrams
can be roughly regarded as tree-level diagrams with energy-
dependent couplings or mediator masses, which may cause
more elusive effects in probing νSI in experiments of

FIG. 2. Upper limit on the νSI coupling GS from 2νββ decay
data for several isotopes and three different NME calculations as
indicated. The blue band corresponds to the strongly interacting
regime GS ¼ 3.83þ1.22

−0.54 × 109GF favored by cosmological data,
which here is excluded by observations of 2νββ of various
isotopes.

FIG. 3. νSI generation at tree and loop level. Here, scalar
(vector) lines may also be replaced by vector (scalar) lines.

3However, if the s-channel mediator is a vector boson, the
process would be suppressed by the tiny neutrino masses due to
the required chirality flipping [55].
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different energy scales. Here we only mention these
possibilities and refrain from further discussions4.
Among the aforementioned possibilities, only the

s-channel case in Eq. (5) can be analyzed without involving
novel nuclear physics calculations. Other t-dependent
scenarios necessarily involve integrals over q that are
different from the one in 0νββ decay, which calls for a
dedicated study in the future. Here we proceed only with
the s-channel case, specifically for mϕ ≳Q. While the
t-channel may also contribute in this regime, its effect is
expected to be considerably smaller due to the large t
suppression in the propagator. For GS in Eq. (5), we have
derived the 2νSIββ differential decay rate in the
Supplemental Material [44] yielding the dependence,

dΓνSI

dp1dp2d cos θ12
∝ jG0

Sj2p2
1p

2
2F

2ðp1; p2Þ

× IsðT12Þð1 − β1β2 cos θ12Þ: ð8Þ

Here, cos θ12 ¼ p1 · p2=ðp1p2Þ with the angle 0 ≤ θ12 ≤ π
between the two emitted electrons and βi ¼ pi=Ei are the
electron velocities. The effect of the s-channel mediating
scalar is captured by the function,

IsðT12Þ ¼
Q − T12

4ð2πÞ4
�
ξ
2þ cos ξ
sin ξ

− 3

�
; ð9Þ

where ξ ¼ 2 arcsinððQ − T12Þ=mϕÞ. It is a function of the
total electron kinetic energy T12, and as we will see it can
cause distortions of both the energy and angular distribu-
tions of the electrons. In the limit mϕ → ∞, the effective
operator is recovered, and the dependence approaches
IsðT12Þ ∝ ðQ − T12Þ5 yielding a phase space factor equiv-
alent to 2νββ decay.
We first consider the energy distribution. All modern

double beta decay experiments measure the differential
decay rate dΓνSI=dT with respect to the total electron
kinetic energy. This rate is computed by integrating over
cos θ12, p1 and p2 with the total kinetic energy T ¼ T12

fixed at a given value. As noted, in the limit mϕ → ∞,
dΓνSI=dT will have the same energy distribution as that of
2νββ decay.
In Fig. 4 (left), we show the electron energy distributions

of 2νSIββ and 2νββ decay for the isotope 100Mo with an
s-channel mediator mass mϕ ¼ Qþ 0.1me, slightly above
the kinematic threshold. For comparison, we also show a
vertical line corresponding to 0νββ decay and the distri-
bution for Majoron emission (0νββϕ) taken from Ref. [42].
As can be seen in Fig. 4, the energy spectrum of 2νSIββ
decay is shifted towards lower energies when compared to

the 2νββ spectrum. The shift can be understood qualitatively.
With increasing T the energy taken away by neutrinos is
smaller, leading to a smaller value of s and hence a smaller
value of the s-channel GS. To determine the experimental
sensitivity to such distortion, we have performed a simple
χ2-fit to the NEMO-3 data [58] as detailed in the
Supplemental Material [44]. We find that for ΓνSI ¼ r2Γ2ν

with r ¼ 16%, the χ2-value is changed by Δχ2 ¼ 9 (3σ),
which implies that if the spectral distortion is taken into
account, the bound onGS can be approximately improved by
1 order of magnitude. We emphasize that this applies for the
specific mediator mass mϕ ¼ Qþ 0.1me and the sensitivity
will decrease for larger masses.
In addition to the energy distribution, the angular

distribution can also be measured in dedicated experiments
such as NEMO-3 [58] and SuperNEMO [59]. From Eq. (8),
the angular distribution of 2νSIββ decay is obtained by
integrating out p1 and p2. The result takes the form,

dΓνSI

d cos θ12
¼ ΓνSI

2
ð1 − kνSIθ cos θ12Þ; ð10Þ

where the angular correlation kνSIθ can be computed
according to Eq. (8). For 2νββ and 0νββ decay, the electron
angular distributions take the same form as Eq. (10), but
with different angular coefficients kθ [59,60]. We refer to
those as k0νθ and k2νθ , respectively. For 100Mo, the numerical
values are kνSIθ ¼ 0.58 (using again mϕ ¼ Qþ 0.1me),
k2νθ ¼ 0.65 and k0νθ ¼ 0.88. With these values, we show
in Fig. 4 (right) the angular distributions of electrons for the
three processes. Again, we have performed a χ2-fit to the
NEMO-3 data [58], and the result is r < 29% at 3σ
confidence level. This indicates that the angular distribution
is less sensitive than the energy distribution to distortions
from 2νSIββ. This is in fact interesting, as among the
running and future experiments only one (SuperNEMO)
has sensitivity on the angular distribution.

IV. CONCLUSION AND DISCUSSION

The search for 0νββ decay constitutes one of the most
important aspects to determine the nature and properties of
neutrinos. As we have demonstrated in Figs. 2 and 4, in the

FIG. 4. Energy (left panel) and angular (right panel) distribu-
tions of 2νSIββ, in comparison with other types of ββ decay. All
spectra are normalized to 1 at the peaks (left) or at cos θ12 ¼ 0
(right), so the figure is in arbitrary units.

4We note that νSI may also lead to significant corrections to the
neutrino self-energy, which is not fully identical to the neutrino
mass in 0νββ [57]. The effect is quite model-dependent and can
be studied if a complete model of νSI has been constructed.
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presence of νSI involving two νe, there can be significant
effects not only on the total rates of 2νββ decay, but also on
the spectrum shapes. If only the total rates are considered, we
find that 136Xe currently has the best sensitivity to νSI. The
observed 2νββ rate implies GS < ð0.17− 0.22Þ × 109GF,
which is significantly lower than the cosmologically fav-
oured value GS ¼ 3.83þ1.22

−0.54 × 109GF in the strongly inter-
acting regime. However, one should note that this bound
does not apply if only νμ and ντ participate in νSI.
Including spectral distortions could further improve the

sensitivities. This is of interest when the particle that
mediates the self-interactions has a mass that is larger
than the available Q-value of the double beta decay.
The distortions are caused by the energy dependence of
the effective coupling GS and hence are affected by the
underlying models for νSI. In this work, we only consider
an s-channel mediating scalar, which allows us to evade
nuclear physics calculations and to quantitatively show
spectral distortions of the energy and angular distributions.
For other possibilities containing a t-channel dependence,
very different spectral distortions could appear, which will
be addressed when a more dedicated study involving
nuclear physics calculations is carried out.

In our calculations, we neglected potential interference
between the SM 2νββ and 2νSIββ processes, which in
principle would be present if two electron antineutrinos are
emitted in the νSI-mediated process. When the 2νββ rate
can be theoretically determined precisely, interference term
could be of significant importance—see the Supplemental
Material [44].
In summary, our work shows that strong νSI favored by

the cosmological data might have an impact on 2νββ decay
experiments. Precision measurements of 2νββ decay spec-
tra combined with more theoretical effort in computing
NMEs have the potential of probing hidden interactions of
neutrinos. Furthermore, it demonstrates the importance
of having access to energy and angular distributions of
electrons in double beta decay experiments.
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