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ABSTRACT

The aim of this project wasi?;uantlfy the relationships between the
fermentation and the early stages of the fermenter broth processing, and
the performance of the 1initial purification stage, namely fractional
precipitation. In addition the recovery of multiple products from a single
fermentation broth was appraised. Fractionation dlagrams were developed
as a means of evaluating the performance of two cut precipitation
procedures especlally where the first and second cuts were highly
Interactive, 1.e. the operation of the first cut determined the subsequent
fractionation.

The system used examined the recovery of two enzymes, glucose oxidase
and catalase produced intracellularly by the growth of Aspergillus niger in
stirred tank fermenters on scales between 30L and 4000L. The primary
recovery operations consisted of cell recovery in a basket centrifuge,
washing by resuspension and disruption in a Menton Gaulin homogeniser.
The removal of cell debris and the purification by fractional precipitation
using propan-2-ol was on a bench scale. The propan—2-o0l was added using
a gradient mixer to allow sampling of the protein - precipitant mix at
varying concentrations with the history of the material being close to that
experienced in a batch stirred tank. The titre of glucose oxidase,
catalase and total protein were measured in the supernatant once
precipitate had been removed in a centrifuge.

The results indicate that since none of the primary recovery operations
caused major differences In the initial purification all non-essential
operations could be removed. However in a simulation of the possible
consequences of genetic manipulation the effect of the relative levels of
the different products produced major differences in the purif ication.

The fractionation diagram was found to adequately represent systems
where product was lost through denaturation and where more than one

purification cut was taken.
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1 _Introduction

Y

1.1. Enzyme Production

l;l.l Overall Process Scheme

Enzymes may be recovered from plant and animal sources, but normally
only as a by-product. Their production by micro-organisms is the only
method allowing the large scale manufacture of a large variety of
different enzymes. At present the majority of enzymes produced
commercially are obtained extracellularly with few intracellular enzymes
having been {solated in lérge quantities, The main reason for this
dominance 1is the greater complexity of the recovery operation for
intracellular materials. When recovering an extracellular protein there is
no cell disruption necessary, there will be few other proteins present in
the broth and the product will not be exposed to the proteases present in
the cell (though there will be proteases excreted by the micro-organism).
There are disadvantages though; the volume of liquid to be processed is a
lot larger and contaminants from the spent liquor will be present. For
these reasons and the potential offered by the large number of
intracellular constituents the development of intracellular recovery
processes is the focus of most attention.

Typical schemes are shown in figure 1.1.

The main requirement for the primary recovery stages are that they
should give a high product recovery with a high rejection of contaminants,
whilst giving large volume reductions. They must also have good
reliability and be able to deal with variations {n broth quality while
having low energy requirements and low capital cost. The waste streams
must be suitable for either recycling or effluent treatment. The
subsequent stages will be more geared to a specific product and likely to
be more capital and labour intensive.

Figure 1.1 is misleading in the sense that the fermentation and
subsequent recovery steps are shown as separate entities while in reality
each step cannot be designed independently but should be considered as
part of the overall process and its integration into this scheme is of an
importance often underestimated. The action of each step will be affected
by every previous step and will in turn influence the performance of every

subsequent step. The knowledge of the interaction of variables between
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Figure 1.1 Diagram showing typical process schemes for

intra and extra cellular enzyme production
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different operations will allow the most efficlent use of resources and an
awareness of the points at which most development work should be
concentrated in order to improve the overall ylelds and purification of the

process.

1.1.2 Recovery of Several Products

The production and recovery is easler to optimise for a single product
than for several from the same fermentation since the conditions for high
yleld and purification of one enzyme are usually incompatible with
achieving the same for others. Additionally the strain improvement for
two or more enzymes from one strain is as difficult as improvement of two
separate organisms. The separation of several enzymes during a unit
operation will increase the both the costs and losses of each enzyme as
well as restricting the fractionation to mild operations which will not
damage the other enzymes.:

Since, however, the nature of a cell is such that there is always a
limit to the maximum concentration of a product, the recovery of other
constituents which have a significant concentration 1is commercially
attractive. This will be especially true of enzymes related in
physiological function where an increase in the translation of each is

linked.

1.1.3 Continuous Recovery

The majority of recovery processes which work well in a laboratory are
batch operations which suffer upon scale-up. This 1is normally due to
large scale batch operations being unable to be carried out without an
increase in processing times and either a decrease in mixing efficiency or
an increase in shear, which may cause damage. The scale-up of processes
such as centrifugation is also difficult as the larger diameter machines
cannot safely employ similar forces as their smaller counterparts.

To overcome some of these problems continuous flow recovery may be
used. This gives shorter processing times, allows use of smaller
equipment and enables much tighter and swifter control of the conditions
experienced by the enzymes. The smaller hold-up will reduce losses and

put less product at risk. This sort of operation however demands very
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reliable equipment and is a lot less flexible but in general, for large

scale recovery, 1t is necessary<’?’.

1.1.4 Yield and Purification

The efficiency of an operation is measured both by 1its yield and its .
purification of the product. The yield is a reflection of the losses which
have occurred whilst the purification depends upon removal of
contaminants. It is found that these two aims are sometimes contradictory
and depending upon the nature of the product a recovery process will be
biased in favour of one. The variation of yield with purification and visa
versa for individual steps and overall should be known quantitatively in
order to decide exactly where the balance between the two should lie.

The overall yield of a process is a function of the yield of each step
involved and the number of steps. As shown iIn figure 1.3 even a
relatively high step yield will give a fairly poor overall yield if a large
number of steps are involved.

The losses experienced are due to either physical damage (shear),
irreversible chemical denaturation or physical losses of product from the
process stream. Dunnill concluded that water soluble enzymes are stable
with respect to shear but that membrane bound enzymes are much more
shear sensitive. Chemical denaturation can be caused by extremes of
temperature, pH, salt concentration or by oxidation. These may be
avoided by prevention of localised concentrations of reagents by good
nixing and the elimination of air - liquid interfaces. Both of these are
easier to achieve with continuous reactors.

Increasing the yleld of a step may adversely affect other parts of the
process. During centirifugation an increase in recovery of either solid or
liquid will be achieved at the cost of lower flow rates and poorer
separation of the two phases. Increasing the yield during cell disruption
can lead to greater fragmentation which makes clarification harder whilst
with precipitation and some chromatography an increase in yield leads to
reduced purification.

A balance must be achieved between yleld and purification which takes
into account the cost of production, value of the product and the purity

required for its end use.
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Figure 1.2

Graph Showing an Analysis of the Methods
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1.1.5 Process Des

A recent review of protein purification literature‘’4’ indicates that the
steps involved and the order in which they are undertaken during protein
recovery do not vary as much as would be expected given the diversity of
starting materials and products. Figure 1.2 indicates that in over 80% of
the cases examined the first step was homogenization. Following this the
trends are not so clearly defined but precipitation is seen to be used
early on in the purification whilst gel filtration increases in use towards
the later stages. This is a reflection of the method costs, abilities to
handle large quantities of material and effects of impurities. Both ion
exchange and affinity chromatography appear to be used at various stages
which is an indication of both their power as purification methods and
their misuse, both of which will be discussed later.

In general however the 'typical’' procedure as indicated by figure 1.2 may
not always be the optimum design In terms of costs and ylelds as is
essential on a large scale.

An important aspect of the overall yield of a process 1s both the number
of steps involved and their individual ylelds, as indicated in figure 1.3.
A consequence of an increase in the number of steps decreasing the overall
yield 1s that when a process is designed additional steps may appear to
increase the performance of the system by enhancing subsequent steps but
their overall effect is a decrease in the yield of the process. Examining
figure 1.4 in this light, non-essential stages such as washing and
clarification should have their effectiveness evaluated while the addition
of new stages such as ultrafiltration, which may improve the performance
of the precipitation stages, should also be carefully thought out.

In order to limit the number of steps necessary to achieve a given
purification it is important to utilize the full potential of a purification
step, especially those - whose capacity for high
purification factors is largest. The potential for purification of several
stages is shown in figure 1.5. This graph indicates the potential of
affinity chromatography being over an order of magnitude higher than the
other methods mentioned, being able to achieve a purification factor of
100 - 1000. Whilst at the other end of the scale precipitation was
achieving on average a 3 fold purification. These figures can however be
mnisleading unless taken in conjunction with the average yields for each

method, where precipitation had the highest (81 %) and affinity
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Figure 1.4

Diagram Showing a Typical Flow Diagram
For the Production and Purification

of Glucose Oxidase
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Figure 15

Graph Showing the Average (Solid Line)
and Maximum (Dashed Line) Purification Factors
Achfeved for Several Purification Techniques

Analysed in a Review of Published Literature<’¢’
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Figure 1.6 _

Diagram Showing Typical Total Protein

and Enzyme Precipitation Curves
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chromatography the lowest (61 %).

The relationship between the yileld and the purification factor achieved
during a purification step 1is based upon a compromise. Figure 1.6
{llustrates the typical profiles for enzyme and protein during
precipitation, ifon exchange chromatography or gel filtration for example,
which may be subsequent stages in a purification procedure. As each step
bases the separation on a different property (solubility, charge, size) of
the molecules, in each case the total protein would be expected to spread
out over the complete range of for example lonic strengths during salting
out, while the product enzyme would appear in a much narrower range.
The compromise between yield and purification must therefore be reflected
in the positioning of the so called cuts. These may either be in a very
narrow range and so collect only a proportion of the enzyme but with
little contaminating protein or wide enough to collect the majority of the
enzyme but reduce the purification by also collecting contaminating
protein. ,'

The choice between high yileld and high purification must be a reflection
of the aim of a particular step. For example precipitation which the
figures above show normally achieved a high yield and low purification is
normally at the start of any procedure and its aim is therefore to handle
a crude mixture and to remove the non-proteineous material and some of
the contaminating proteins while recovering all of the product for the
future stages.

Figure 1.7 gives an example of the misuse of two purification
procedures, ion exchange and affinity. This figure again shows the
potential of affinity methods to give greater than 1000 fold purification
whilst for ion exchange 100 fold is its limit in the best circumstances.
To use affinity chromatography to its full therefore a solution of initial
purity of 0.1 - 1 % should be used i.e. the is little point in using ion -
exchange chromatography to increase the purity from 1 % to 10 % prior to
the affinity column thus limiting 1t to & maximum of a 10 fold
purification, as is happening in numerous cases in figure 1.7. The {on
exchange column should in fact be being used solely to clean up the
solutions to make them suitable for use on the more expensive affinity

columns.
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Figure 1.7
Graph Showing Purification Factor Achieved
as a Function of the Purity Beforehand for Two

Methods of Chromatography¢’4’
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1 erm tion

The production of glucose oxidase and catalase within a cell are linked
through catalase degrading a by-product of a glucose oxidase catalysed
reaction. The metabolic control of the relative levels of the two enzymes
by varying the micro-organisms growth conditions rather than genetic
manipulation has not been discussed in the literature so this section will
concentrate upon production of Jjust glucose oxidase, assuming that
catalase will be produced in tandem.

Numerous organisms have been used to produce glucose oxidase including
Penic{llium vitale, P. purpurogenum, P. notatum, P. amagasakiense and
Aspergillus niger®’. All except P. amagasaklense produce the majority of
the enzyme intracellularly, while it secrets most into the media. The
enzyme from different sources may show varying properties (for example
the enzymes from A.niger and FP.amagasakiense differ in that the turnover
number for the Penicillium enzyme is double that of the Aspergillus while
its Michaelis constant for glucose Is considerably lower<?®’,

The media used can vary and its effect upon the enzyme production is
not clear. For example in the growth of A.niger either sucrose or beet
molasses can be the carbon source whilst the nitrogen source varies
between corn steep liquor and sodium nitrate<¢?’,

The effect of the fermentation conditions, especially the oxygen supply
and mixing, wupon the yleld of an enzyme may be complex with an increase
in oxygen transfer rate raising productivity and rate of growth (as may be
expected from any substrate) while it has also been reported that over-
agitation and over—aeration may exert harmful effects¢'’. A study of the
effect of aeration and agitation upon both growth and glucose oxidase
production in A.niger has shown the effect of oxygen to be beneficial‘’’¢*’,
On both a small and semi-industrial scale increases in agitator speed,
which increased the dissolved oxygen concentration, caused increases, up
to a certain limit, of both rate of growth of the fungi and the total
glucose oxidase produced per unit mass of mycelia. In general therefore
the oxygen transfer rate must be kept above a minimum level, though the
removal of carbon dioxide and other inhibitors may also be a factor in
improved vyields through Iincreased agitation and aeration. As the
fermentation progresses efficient mixing becomes more difficult due to the
broths rheology becoming more complex and, 1in general, the viscosity

increasing. This 1is due to an increase iIn cell concentration and
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extracellular protein and is a function of the cells morphology, which
will be affected by inoculum size, stirrer speed and nutrients.

So far the variable parameters have only been considered in relation to
them increasing the titre of enzyme at the point of harvesting. The
fermentation stage will however effect each subsequent stage. The choice
of organism ié normally made for maximum productively and ease of genetic
manipulation, however it should also be taken into account that its size
and morphology will effect the choice of harvesting method, a mycelial
culture allowing use of rotary vacuum filtration. The choice of organism
will also affect its ease of disruption‘4’ and its nucleic acid content.
Nucleic acid content is important with respect to pumping, contacting and
precipitate reéovery as it effects the fluid viscosity. Choice of media
affects recovery since cell lysis during harvesting is more likely for a
bacteria if a cief ined media is used and disruption is also easler¢s’. The
time at which the fermentation is harvested will not only effect the
enzyme levels bﬁt also the ease of disruption‘s’> and the levels of nucleic
acids. The fermentation stage should therefore be developed with the
subsequent separation in mind as well as aiming to maximise enzyme

production.

1.3 Harvesting

Following the fermentation the biomass produced is normally separated
from the media, sometimes after cooling, then it may be washed and
resuspended in buffer or alternatively the <cells may be simply
concentrated and continue to the next stage suspended in media. Since
upon leaving the fermenter there is the possibility of contamination, this
stage is normally completed rapidly whilst trying to maintain sterility.
Additionally the broth may be chilled to slow down the metabolic activity
of both the required organisms and any contaminants.

The choice of machine to separate the broth from the cells depends upon
the organism; its size, density and morphology.

Continuous centrifuges such as the intermittent discharge disc bowl are
often used for unicellular organisms though not for mycelia.. The
disadvantages of these is that cell breakage may occur upon discharge and
also if the biomass level is high it may be above the optimum solids level
and give a poorly dewatered solid phase. They have however been used

effectively on both pilot and industrial scale, an example being the
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harvesting of E.colf during the continuous isolation of B-galactosidase‘®’.

Mycelial organisms lend themselves to filtration, though other
organisms such as bacteria‘'®’ have also been harvested this way. The
filterability of broths depends upon the type of micro-organism, the
qualitative and quantitative composition of the initial nutrient media and
the duration of the fermentation‘''’, Broth conditioning procedures such
as addition of flocculants, filter aids or pH or heat treatment can
enhance the filterability of the broth prior to harvesting‘'?’, For
filtration especially therefore, conditions upstream can have a significant
effect. Plate and frame filters are the most versatile type however they
are very labour intensive and need frequent cleaning especially with high
bioma;ss levels. The most popular type therefore is the rotary vacuum
filter which can be operated continuously and on a large scale. It also
offers the possibility of washing the mycelia at the same time.

The other possibility for harvesting is the use of cross-flow filtration.
Work by Kroner<¢®> showed that if it were not necessary to produce a highly
dewatered cell mass, then the cells could be concentrated by
microfiltration (up to about 40% (v/v)). He concluded however that for
large volumes, using the membranes available at present, the
transmembrane flux was too low, requiring high filter areas and large
feed pumps with a high energy demand. This method would only be of
interest if containment of the organism was of importance.

The choice of method may well depend upon the importance of a wash
stage. Russell‘””> has shown that resuspension of cells in broth has a
major effect upon the precipitation profiles of enzymes so washing to
remove the last traces of media may be important and this may be achieved
continuously as cells are recovered on a rotary vacuum filter.

When bacteria are recovered on an intermittent discharge disc centrifuge,
cells are liable to be disrupted‘®’> so any wash stage will result in the
loss of the protein released, thus in this case ceﬁtrifugation and washing

may be incompatible.
1.3.1 _Process Des for Wash Stage

Following the fermentation the biomass is normally separated from the
fermentation media, washed and resuspended in buffer prior to disruption.
Data from the production of B-galactosidase‘®’> shows that during

harvesting of the E.coll on an intermittent discharge disc-bowl centrifuge
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some bacteria was disrupted releasing 17% of the total protein and 22% of
the B-galactosidase for those cells grown on a simple synthetic medium
while for those grown on complex media 10% of the enzyme was released.
If these cells are subsequently washed before they are disrupted then this
protein will be lost.

The data above appears to indicate that a wash stage is an undesirable
process, however the situation is more complex if the effect of the wash
stage upon subsequent stages is considered.

Figures 1.8 to 1.12 show the effects of both broth and cell debris on
the precipitation profile, fractionation diagram and yield / purification
relationship for the precipitation of salicylate hydrogenase by both
ammonium sulphate and polyethylene glycol. The effect of the culture
supernatant for ammonium sulphate precipitation was to cause the enzyme
to come out of solution at a lower salt concentration whilst for PEG it
caused precipitation at higher concentrations. When these results are
converted to the yield / purification factor graphs, the effect of the
culture supernatant is marked but again produces different changes for PEG
and ammonium sulphate. Using ammonium sulphate, the presence of broth
causes a marked decrease in the purification achieved over the whole range
of yields. The effect for PEG is complicated further by the presence of
cell debris, but for both clarified samples an increase in yield is
observed, in the presence of broth.

An explanation of these results is difficult, especially with a lack of
information of the experimental conditions under which these results were
obtained. An obvious explanation for the shift in the ammonium sulphate
precipitation curve in figure 1.8 is that the fermentation broth has a
higher ifonic strength than the buffer. This does not however explain the
change in purification, especially for the ammonium sulphate precipitation.
Whether the pH of the buffer and the culture supernatant were identical is
unknown, but a change in this may have been responsible. The numerous
complex molecules present in the fermentation broth may have had an
effect.

In general therefore the effect of the presence of fermentation media on
subsequent stages, especlally fractional precipitation but also disruption
and chromatography should be established before the removal of this stage

is considered.
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