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ABSTRACT 15 

Thanks to its mesoscopic kinetic nature, the discrete Boltzmann method (DBM) has the 16 
capability to investigate unsteady detonation with essential hydrodynamic and thermodynamic 17 
nonequilibrium effects. In this work, an efficient and precise reactive DBM is employed to 18 
investigate the impact of the amplitude and wave length of the initial perturbation, as well as 19 
of the chemical heat on the evolution of unsteady detonation with the nonequilibrium effects. 20 
The following conclusions have been made. (I) The initial perturbation amplitude only affects 21 
the unsteady detonation in the early period, and the detonation becomes self-similar with 22 
minor phase differences subsequently. (II) For a smaller wave length, the pressure increases 23 
faster with a higher oscillation frequency in the early period but reduces soon afterwards. The 24 
global nonequilibrium strength is larger for a smaller wave length, but is rather small when 25 
the wave length is small enough. (III) With increasing the chemical heat release, the pressure 26 
and its oscillation increase, and the nonequilibrium effect strengthens, but the oscillatory 27 
period reduces. When the wave length or chemical heat release is small enough, there is no 28 
transverse wave or cellular pattern, and the two-dimensional unsteady detonation reduces to 29 
the one-dimensional one. In this case, the maximum pressure shows a relatively weak 30 
oscillation, low average value, and long oscillatory period.  31 
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1. INTRODUCTION 32 

Detonation is a type of compressible reactive fluid flow induced by a preshock wave, after 33 
which the chemical heat releases violently [1-3]. The shock wave coupled with a chemical 34 
reaction zone is regarded as the detonation wave propagating forwards with a supersonic 35 
speed. Detonation has wide application in engineering, industry, and safety, such as mining, 36 
gas explosion, blasting demolition, cleaning equipment, surface coating, pulse detonation 37 
engine, rotating detonation engine, etc. Due to its great importance, detonation has been 38 
studied extensively with experimental [3-8], analytical [9-13] and numerical methods [14-20] 39 
since more than a century ago. One of the earliest milestones in detonation theory is the 40 
Chapman and Jouguet (CJ) model based on conservation laws [9-10]. Another milestone is 41 
the Zeldovich-von Neumann-Döering (ZND) model, which is based on the assumption that 42 
the preshock front (as a strong discontinuity) is followed by the chemical reaction in a 43 
constant-area, inviscid, compressible flow [11-13]. These theoretical models, though being 44 
formulated for idealistic situation, continue to offer insight for more practical problems in 45 
detonation.  46 

With the rapid development of computer hardware and computational science, numerical 47 
simulations have become indispensable for studying detonation in recent decades. The 48 
majority of numerical simulations have been carried out using macroscopic models, based on 49 
the reactive Euler or Navier-Stokes (NS) equations, which have the capability of capturing the 50 
main features of detonation, but give no detailed thermodynamic nonequilibrium information 51 
[14-16]. In contrast, microscopic methods, such as molecular dynamics, have had successes in 52 
providing detailed behaviours of detonation including nonequilibrium effects involving 53 
chemical species, at a significantly increased cost compared with macroscopic methods [19-54 
20]. To date, mimicking the detonation process with high accuracy, efficiency and robustness 55 
remains a great challenge, because detonation involves a broad range of physicochemical 56 
phenomena, interacts over various spatial and temporal scales, contains changeable fluid 57 
interfaces, where both hydrodynamic and thermodynamic nonequilibrium effects often play 58 
essential roles [21-23].  59 

As a central equation in kinetic theory, the Boltzmann equation has the capability of 60 
describing complex fluid flows with abundant nonequilibrium effects. However, it turns out to 61 
be particularly difficult to use the Boltzmann equation itself to solve for practical 62 
nonequilibrium situations due to its complexity in differential and integral form. To obtain 63 
their solutions, there are roughly two categories of methods. The first class is the stochastic 64 
method, including the well known direct simulation Monte Carlo [24]. Its drawbacks mainly 65 
include slow numerical convergence and random fluctuations. The second one is the 66 
deterministic simulation, such as the discrete unified gas-kinetic scheme [25], the lattice 67 
Boltzmann method [26-27], discrete Boltzmann method (DBM) [28-38], etc.  68 

In recent years, the DBM has achieved remarkable success in simulating thermal phase 69 
separation [28-29], fluid instabilities [30-32], combustion and detonation [33-38], etc. The 70 
pioneering DBM for detonation [28], which is presented by Yan et al., is a hybrid finite 71 



 3 

difference scheme where the discrete Boltzmann equation describes the fluid behaviour and 72 
the Lee-Tarver model controls the chemical reaction [39]. In 2016, Lin et al. proposed a 73 
double-distribution-function DBM for combustion and detonation, where one set of the 74 
discrete distribution function is for chemical reactant and the other set for product [35]. In 75 
2019, a multiple-relaxation-time DBM is developed for detonation, where both chemical 76 
reaction and fluid flow are described by discrete Boltzmann equations.  77 

Very recently, in the paper for the 9th International Seminar on Fire and Explosion Hazards, 78 
the DBM is preliminarily adopted to simulate the unsteady detonation with both 79 
hydrodynamic and thermodynamic nonequilibrium effects [38]. As an extended version of 80 
this paper, we carry out more in-depth and comprehensive research on unsteady detonation. In 81 
the following, the reactive DBM is introduced firstly, and three methods to obtain the reaction 82 
term are reviewed briefly. Then the DBM is employed to study the impact of perturbation 83 
amplitude, wave length, and chemical heat on the physical field of unsteady detonation with 84 
nonequilibrium effects.  85 

2. DISCRETE BOLTZMANN METHOD FOR REACTIVE FLOWS 86 

The DBM is based on the discrete Boltzmann equation, which is a special discretization form 87 
of the Boltzmann equation in velocity space. All physical quantities (including the density, 88 
momentum, and energy) are naturally coupled as they are described by the same one set of 89 
discrete distribution functions if . At the same time, the chemical reaction is associated with 90 

the fluid flow by the reaction term iR  on the right-hand side of the reactive Boltzmann 91 

equation as below, 92 

 ( )1 eqi
i i i i i

f f f f R
t τ

∂
+ ⋅∇ = − +

∂
v ,  (1) 93 

where t  denotes the time, τ  the relaxation time, eq
if  the discrete equilibrium distribution 94 

function, iv  the discrete velocity.  95 

 96 

 97 

Fig. 1. Schematic of the discrete velocities: (a) D2V24 and (b) D2V16. 98 
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 99 

Figure 1 delineates two kinds of discrete velocities, two-dimensional twenty-four-velocities 100 
(D2V24) [34] and sixteen velocities (D2V16) [35-36]. To be specific, the formula of D2V24 101 
reads [34], 102 

 8

16

for 1 8
for 9 16
for 17 24,

a i

i b i

c i

v i
v i
v i

−

−

≤ ≤
= ≤ ≤
 ≤ ≤

v
v v

v

,
,  (2) 103 

with 104 

 
( )
( )

cyc: 1 0 for 1 4
cyc: 1 1 for 5 8.i

i
i

± ≤ ≤=  ± ± ≤ ≤
v

, ,
,

  (3) 105 

The mathematical expression of D2V16 takes the form [35-36], 106 

 

( )
( )
( )
( )

cyc : ,0 1 ~ 4,
cyc : , 5 ~ 8,
cyc : ,0 9 ~ 12,
cyc : , 13 ~ 16,

a

b b
i

c

d d

v i
v v i
v i
v v i

± =
 ± ± ==  ± =
 ± ± =

v   (4) 107 

where cyc denotes the cyclic permutation, av , bv , cv , and dv  are adjustable parameters.  108 

To be consistent with traditional macroscopic equations in the hydrodynamic limit, it is 109 
required that eq

if   and iR  satisfy the following moment relations [34], 110 

 eq eq
i ii

f d d fηΨ = Ψ∑∫∫ v  , (5) 111 

 i ii
R d d RηΦ = Φ∑∫∫ v  , (6) 112 

eqf   and R  take the form 113 

 ( ) ( )1/2 21 exp
2 2 2 2

eqf
T IT T IT
ρ η
π π

− ⋅ −  = − −  
   

v u v u
 , (7) 114 

 ( ) 2 2

2

1
2

eqD IT I
R f T

IT
η− + + − +

′=
v u

 , (8) 115 

where ρ  indicates the density, u  the velocity, T  the temperature, 2 / ( )T Q D Iλ′ ′= +  the 116 
varying rate of temperature due to chemical reaction, Q  the chemical heat release per unit 117 
mass of fuel, λ  the mass fraction of chemical product, 2D =  the translational degrees of 118 
freedom, I  the extra degrees of freedom due to vibration and/or rotation. In Eqs. (5) and (6), 119 
the parameters Ψ , iΨ , Φ  and iΦ  determine the physical accuracy and computational 120 

efficiency. The more the elements, the higher the accuracy. At the level of reactive Navier-121 
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Stokes, the minimal elements are 1Ψ = , v , ( )2η⋅ +v v , vv , ( )2η⋅ +v v v , vvv , 122 

( )2η⋅ +v v vv , 1iΨ = , iv , ( )2
i i iη⋅ +v v , i iv v , ( )2

i i i iη⋅ +v v v , i i iv v v , ( )2
i i i i iη⋅ +v v v v , 123 

1Φ = , v , ( )2η⋅ +v v , vv , and 1iΦ = , iv , ( )2
i i iη⋅ +v v , i iv v  where η  and iη   124 

corresponding to vibrational and/or rotational energies. In D2V16, the parameter i αη η= , bη , 125 

cη , and dη  for 1 4i≤ ≤ , 5 8i≤ ≤ , 9 12i≤ ≤ , and 13 16i≤ ≤ , respectively [35-36]. In D2V24, 126 

i aη η= , bη , and cη , for 1 8i≤ ≤ , 9 16i≤ ≤ , and 17 24i≤ ≤ , respectively [34].  127 

It is noteworthy that the DBM is capable of capturing both hydrodynamic and thermodynamic 128 

nonequilibrium [28-38]. Here let us introduce the nonequilibrium strength 2
ii

∆ = ∆∑ , in 129 

terms of 1
neq

ii
f∆ =∑ , 2

neq
i ixi

f v∆ =∑ , 3
neq

i iyi
f v∆ =∑ , ( )2

4
2neq

i i ii
f v η+∆ =∑ , 130 

2
5

neq
i ixi

f v∆ =∑ , 6
neq

i ix iyi
f v v∆ =∑ , 131 

2
7

neq
i iyi

f v∆ =∑ , ( )2
8

2neq
i i i ixi

f v vη∆ +=∑ , ( )2
9

2neq
i i i iyi

f v vη∆ +=∑ , 3
10

neq
i ixi

f v∆ =∑ ,132 
2

11
neq

i ix iyi
f v v∆ =∑ , 2

12
neq

i ix iyi
f v v∆ =∑ , 3

13
neq

i iyi
f v∆ =∑ , ( )2 2

4
2

1
neq

i i i ixi
f v vη∆ +=∑ , 133 

( )2
15

2
i i ix iyi

v v vη+∆ =∑ , ( )2 2
6

2
1

neq
i i i iyi

f v vη∆ +=∑ , and ( )neq eq
i i if f f= − . Actually, 1 0∆ =  134 

for mass conservation, 2 3 0∆ = ∆ =  for momentum conservation, and 4 0∆ =  for energy 135 

conservation. i∆  may not equal zero for 4i >  in a nonequilibrium state.  136 

For the sake of simplification, the treatment of chemical reaction is based upon assumptions 137 
as follows. The chemical reaction is irreversible and exothermic. The electronic excitation, 138 
ionization and radiation are not under consideration. The chemical reaction is much slower 139 
than the relaxation process but faster than the hydrodynamic flow variation [22]. In this study, 140 
a two-step reaction scheme, 141 

 ( )1 1expI I sHk E T Tξ − − ′ = −   , (9) 142 

 ( ) ( ) ( )11 1 expR RH k E Tλ λ −′ = − − −  , (10) 143 

is adopted to mimic the essential dynamics of a chain-branching reaction [40]. In Eq. (9), ξ  is 144 
the reaction progress variable in the induction period, sT  the initial shocked temperature,  IE  145 

the global activation energy describing the temperature sensitivity of the thermally neutral 146 
chemical induction process, Ik  the pre-exponential factor for the ignition process, ( )H H ξ=  147 

a step function, i.e., 1H =  for 1ξ <  and 0H =  for 1ξ ≥ . In Eq. (10), RE  and Rk  are 148 

respectively the activation energy and pre-exponential factor for the heat release process. 149 
Thus, variable ξ  in Eq. (9) indicates the state of the pre-ignition process in the thermally 150 
neutral induction zone, and variable λ  in Eq. (10) controls the subsequent step of the rapid 151 
energy release at and after ignition [40]. 152 
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Calculation of the reaction term is the key step for the discrete Boltzmann modelling of 153 
reactive flows. Now, let us introduce three ways to obtain its mathematical expression. 154 

(I) Type I 155 

A straightforward method is to discretize the reaction term in the velocity space by replacing 156 
the velocity v , the parameter η , and the equilibrium distribution function eqf  with their 157 

discrete counterparts iv , iη , and eq
if  in Eq. (8), we get the discrete form of the reaction term 158 

as below, 159 

 ( ) 2 2

2

1
2

i i eq
i i

D IT I
R f T

IT
η− + + − +

′=
v u

 . (11) 160 

Obviously, the expansion in the above equation contains factors 2 eq
i if−v u  and 2 eq

i ifη . 161 

Hence, to ensure that the discrete reaction term obeys the moment relations in Eq. (6), the 162 
elements 2ηΨ = vv , ( )2 2η η⋅ +v v , ( )2η⋅ + ⋅v v v vv , ( )2 2η η⋅ +v v v , and corresponding 163 

2
i i i iηΨ = v v , ( )2 2

i i i iη η⋅ +v v , ( )2
i i i i i iη⋅ + ⋅v v v v v , ( )2 2

i i i i iη η⋅ +v v v  should be included in 164 

Eq. (5) in addition to the aforementioned minimal elements. Actually, these relations are all 165 
satisfied in the D2V24 [34].  166 

(II) Type II 167 

An alternative approach is to compute the reaction term based on its physical definition [35-168 
36]. Specifically, the reaction term is the variation rate of the distribution function due to the 169 
chemical reaction,  170 

 ( )*1 eq eq
i i iR f f

τ
= −  , (12) 171 

where ( ),  ,  eq
if Tρ= u and ( )* *,  ,  eq

if Tρ= u  denote the discrete equilibrium distribution 172 

function before and after the chemical reaction, respectively. Since the chemical reaction is 173 
much faster than the hydrodynamic flow variations [22], neither density nor flow velocity 174 
changes during a relatively small time interval of chemical reaction, while the temperature is 175 
affected by the chemical heat, i.e., * = +T T Tτ ′ . 176 

(III) Type III 177 

A direct way to calculate the reaction term is by the matrix inversion method [37-38]. 178 
Specifically, Eq. (6) can be uniformly rewritten as  179 

 =RM CR ,  (13) 180 
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where ( )T
1 2 16R R R=R   represents the set of discrete reaction terms, 181 

( )T
1 2 16R R RM M M=RM   the set of kinetic moments, and C  a square matrix linking 182 

the velocity space to moment space. The elements of RM  are 1 0RM = , 2 0RM = ,  3 0RM = , 183 

( )4RM D I Tρ ′= + , 5RM Tρ ′= , 6 0RM = , 7RM Tρ ′= , ( )8 2R xM D I u Tρ ′= + + , 184 

( )9 2R yM D I u Tρ ′= + + , 10 3R xM u Tρ ′= , 11R yM u Tρ ′= , 12R xM u Tρ ′= , 13 3R yM u Tρ ′= , 185 

( ) ( ) 2 2
14 2 2 5R x yM T D I D I u u Tρ ′ = + + + + + +  , ( )15 4R x yM u u D I Tρ ′= + + , 186 

( ) ( )2 2
16 2 2 5R x yM T D I u D I u Tρ ′ = + + + + + +  . The elements of C  are 1 1iC = , 2i ixC v= , 187 

3i iyC v= , 2 2
4i i iC v η= + , 2

5i ixC v= , 6i ix iyC v v= , 2
7i iyC v= , ( )2 2

8i i i ixC v vη= + , ( )2 2
9i i i iyC v vη= + , 188 

3
10i ixC v= , 2

11i ix iyC v v= , 2
12i ix iyC v v= , 3

13i iyC v= , ( )2 2 2
14i i i ixC v vη= + , ( )2 2

15i i i ix iyC v v vη= + , 189 

( )2 2 2
16i i i iyC v vη= + . Hence, the discrete reaction term is obtained as below [37-38] 190 

 1−= RR C M  . (14) 191 

It is noteworthy that type I has 9 moment relations satisfied by the reaction term, requiring 24 192 
moment relations satisfied by the discrete equilibrium distribution function, and the D2V24 is 193 
employed correspondingly [34]. For types II and III, there are 16 moment relations satisfied 194 
by both the discrete equilibrium distribution function and reaction term, and, consequently, 195 
the D2V16 is utilized. Moreover, type II is at the level of the first-order temporal accuracy 196 
[35-36]. Therefore, type III [37-38] is physically more accurate and numerically more precise 197 
than the types I and II. In this paper, type III is adopted for numerical simulations.  198 

3. SIMULATION OF UNSTEADY DETONATION 199 

In this section, the DBM is adopted to simulate and investigate the unsteady detonation with 200 
both hydrodynamic and thermodynamic nonequilibrium effects. The computational domain, 201 
with the area x yL L× , is divided into two parts. The burnt and fresh gas compositions are 202 

imposed on the left L  and right R  parts, respectively. The fresh gas flows into the domain 203 
from the right side, and the burnt gas flows out from the left boundary. The simulation 204 
domain is bounded by an outlet (inlet) boundary condition on the left (right) side and periodic 205 
boundary conditions in the vertical direction. The initial physical field takes the form,  206 

 

0

0

0

tanh ,
2 2

tanh ,
2 2

tanh ,
2 2

L R L R

L R L R

L R L R

x x
W

x xT T T TT
W
x x

W

ρ ρ ρ ρρ −+ −  = −    
 −+ −  = −  

 
 −+ −  = −  

 

u u u uu

  (15) 207 
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with quantities ( Lρ , LT , Lu ) =  (1.48043, 2.06314, 1.69953 x− e ) and ( Rρ , RT , Ru ) =  (1, 1, 208 

2.51603 x− e ). The hyperbolic tangent function, tanh, is used to smooth the interface between 209 

the two parts in the computational domain, and the layer width is /150xW L= . In order to 210 

trigger the unsteady flow, a perturbation of a sine curve ( )0 /10 cosxx L A ky= −  is imposed on 211 

the interface, with an amplitude A  and wave number 2 yk Lπ= , where the wave length is 212 

equal to yL . The schematic of the initial configuration for subsequent simulation of the 213 

unsteady detonation is shown in Fig. 2.  214 

It should be noted that the evolution of unsteady detonation is practically important in the 215 
fields of industrial explosion safety, mining and detonation propulsion, etc. The unsteady 216 
characteristics are usually associated with spatial and temporal inhomogeneities, such as 217 
inhomogeneous concentrations, temperature gradients, flow variations, non-uniform 218 
geometries, introduced by many factors in storage, transportation and working conditions. 219 
Such inhomogeneities play a significant role in the entire process of detonation starting from 220 
the initiation. To represent such effects, we introduce initial perturbations in the imposed 221 
amplitude and wave length. 222 

 223 

Fig. 2. Schematic of the initial configuration for simulation of unsteady detonation. 224 

 225 

Fig. 3. Contours of density (a), temperature (b), pressure (c), reaction progress variable (d), 226 

streamline (e), and nonequilibrium strength (f) at the time 0.1t =  in the detonation process. 227 

 228 

Figure 3 illustrates physical quantities (density, temperature, pressure, reaction progress 229 
variable, streamline, and nonequilibrium strength) at a time instant in the process of the 230 
unsteady detonation. It is evident in Figs. 3 (a)-(c) that the density, temperature, and pressure 231 
increase abruptly from right to left around the pre-shocked front due to the compressible 232 
effects. Afterward, as shown in Fig. 3 (d), the chemical reaction takes place, and the chemical 233 
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energy releases violently in the reaction zone. Figure 3 (e) shows that the flow direction (as 234 
well as the velocity magnitude) is significantly affected by the pre-shocked front and 235 
transverse waves that enhance the detonation instability. The transverse waves collide 236 
periodically behind the pre-shocked wave and generate peaks of pressure and temperature in 237 
the product zone. Comparison between panels (a)-(e) and (f) indicates that the nonequilibrium 238 
effect is strong near the pre-shock front, transverse wave, and Mach stem, where physical 239 
gradients are quite sharp. Consequently, the nonequilibrium manifestation could be employed 240 
to probe the fine structures of the unsteady detonation. It is indeed quite easy to identify the 241 
pre-shock wave, the transverse wave, the reaction zone, the triple point, and the cellular 242 
structure in panel (f).  The triple point is located at the junction of the pre-shock front, Mach 243 
stem, and transverse wave, and its spatiotemporal trajectory is actually a cellular pattern.  244 

 245 

3.1. Impact of perturbation amplitude 246 

Figure 4 exhibits the maximum pressure and global nonequilibrium strength in the evolution 247 
of unsteady detonation with various initial perturbation amplitudes. Figures 4 (a) and (b) 248 
illustrate the maximum pressure within time periods 0.0075 0.018t≤ ≤  and 0.091 0.1t≤ ≤ , 249 
respectively. Figures 4 (c) and (d) plot the global nonequilibrium strength within time 250 
periods 0.0075 0.018t≤ ≤  and 0.091 0.1t≤ ≤ , respectively. The global nonequilibrium 251 
strength is dxdy∆∫∫  where the integral is extended over the whole computational region 252 

x yL L× .  253 

 254 

Fig. 4. The maximum pressure and nonequilibrium strength in the evolution of detonation 255 
with various perturbation amplitudes. The solid, dashed, dotted and short-dashed lines 256 
represent the initial perturbation amplitudes 1 100yA L= , 2 50yA L= , 3 25yA L= , 257 

4 12.5yA L= , respectively. 258 



 10 

 259 

It can be found in Figs. 4 (a) and (c) that, in the primary period, both the maximum pressure 260 
and global nonequilibrium strength are larger for a larger initial perturbation amplitude, and 261 
the maximum pressure has different oscillations under various initial perturbations. It is clear 262 
in Figs. 4 (b) and (d) that, in the later period, the physical fields change periodically and 263 
similarly with only some phase differences under various initial perturbation amplitudes. 264 
Therefore, the initial perturbation amplitude only impacts on the formation of the unsteady 265 
self-sustained detonation in the early period. Afterward, the amplitude or shape of the initial 266 
perturbation is “forgotten” gradually, and the detonation becomes self-similar with only a 267 
phase difference in the later process. Physically, everything left behind the sonic or supersonic 268 
front is “forgotten” after the stabilization of a detonation wave, which is different from a 269 
subsonic wave (i.e. flame) whose formation and evolution are affected by the initial 270 
perturbation in the whole process.  271 

3.2. Impact of wave length 272 

 To study the effect of the wave length of initial perturbation on the detonation process, we 273 
take into account four cases with wave lengths 3

1 2.5 10yL −= × , 3
2 5 10yL −= × ,  2

3 10yL −= , and 274 
2

4 2 10yL −= × . Figure 5 illustrates the contours of nonequilibrium strength at the time 0.1t =  275 

in the detonation process with various wave lengths of initial perturbation. It can be found that 276 
the maximum nonequilibrium strength increases with the increasing wave length, because the 277 
maximum physical gradient is larger for a larger wave length. Moreover, the cellular size 278 
becomes smaller for a smaller wave length. As shown in Fig. 5 (a), the transverse wave and 279 
cellular pattern disappear when the wave length is small enough.  280 

 281 
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 282 

Fig. 5. Contours of nonequilibrium strength at the time 0.1t =  in the detonation process with 283 
various wave lengths: (a) 3

1 2.5 10yL −= × , (b) 3
2 5 10yL −= × , (c) 2

3 10yL −= , and (d) 284 
2

4 2 10yL −= × . 285 

 286 

 287 

Fig. 6. The maximum pressure and nonequilibrium strength in the evolution of detonation 288 
with various wave lengths. The solid, dashed, dotted and short-dashed lines represent the 289 
wave length 3

1 2.5 10yL −= × , 3
2 5 10yL −= × , 2

3 10yL −= , and 2
4 2 10yL −= × , respectively. 290 

 291 

To have a quantitative study of the wave length on the detonation process, we plot the 292 
evolution of the maximum pressure and nonequilibrium strength under the condition of 293 
various wave lengths. Figure 6 displays the evolution of global nonequilibrium strength 294 
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dxdyω ∆∫∫ , with 8ω = , 4 , 2 , and 1  for the cases with 3
1 2.5 10yL −= × , 3

2 5 10yL −= × , 295 
2

3 10yL −= , and 2
4 2 10yL −= × , respectively. Here the parameter ω  is used to make the integral 296 

extended over the same computational region. It is clear in Figs. 6 (a)-(b) that, for a smaller 297 
wave length, the pressure increases faster with a higher oscillation frequency in the early 298 
period, reduces earlier afterward, and becomes smaller in the later stage. In particular, in the 299 
case when the wave length is small enough, the two-dimensional unsteady detonation reduces 300 
to the one-dimensional unsteady detonation. The maximum pressure exhibits relatively small 301 
oscillations, low average value, and long oscillatory period. Moreover, from Figs. 6 (c)-(d), 302 
we can find that the global nonequilibrium strength is larger for a smaller wave length, but is 303 
rather small when the wave length is small enough. Mathematically, global nonequilibrium 304 
strength is a function of local nonequilibrium strength and the nonequilibrium area.  With 305 
reducing wave length, the physical gradients reduce, hence the local nonequilibrium strength 306 
decreases. On the other hand, the nonequilibrium area increases with decreasing wave length. 307 
Consequently, there is a competition between the reducing physical gradients and increasing 308 
nonequilibrium area, and the global nonequilibrium strength increases as the increasing 309 
nonequilibrium area dominates.  Both local nonequilibrium strength and area become small 310 
when the wave length is small enough.  311 

3.3. Impact of chemical heat 312 

Finally, the impact of chemical heat release on the evolution of detonation is investigated. We 313 
perform simulations with various chemical heat releases of 0.5Q = , 1.0 , 1.5 , and 2.0 . Figure 314 
7 exhibits contours of nonequilibrium strength at the time 0.1t =  in the detonation process. It 315 
is clear that the case with 0.5Q =  is significantly different from the other three cases with 316 

1.0Q = , 1.5 , and 2.0  that are similar with periodic evolution of transverse wave and cellular 317 
pattern. There is no transverse wave or cellular pattern when the chemical heat release is 318 
small enough, as shown in Fig. 7 (a). Furthermore, with the increase of chemical heat, the 319 
nonequilibrium strength increases. The detonation becomes more violent, and the physical 320 
gradients are sharper for a larger value of chemical heat. Mathematically, the nonequilibrium 321 
effect is larger for a larger value of either physical gradient or chemical heat [35].  322 
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 323 

Fig. 7. Contours of nonequilibrium strength at the time 0.1t =  in the detonation process with 324 
various values of chemical heat release: (a) 0.5Q = , (b) 1.0Q = , (c) 1.5Q = , and (d) 2.0Q =  325 

 326 

 327 

(a)                                              (b)                                                 (c) 328 

Fig. 8. The maximum pressure ( a, b) and global nonequilibrium strength ( c) in the evolution 329 
of detonation with various values of chemical heat release 330 

 331 

Figure 8 illustrates the evolution of the maximum pressure and global nonequilibrium strength 332 
dxdy∆∫∫ , where the integral is extended over the whole physical region. It is evident that 333 

both quantities are higher for larger chemical heat release. They display periodic oscillations 334 
as the time goes on, and the periods are 0.0059 , 0.0051 , 0.0046 , and 0.0043 , for cases with 335 

0.5Q = , 1.0 , 1.5 , and 2.0 , respectively. Therefore, the period reduces with increasing 336 
chemical heat. The magnitude of the oscillations increases with the chemical heat release.  337 

CONCLUSIONS 338 

As a mesoscopic kinetic method, the DBM has the capability to simulate unsteady detonation 339 
with both hydrodynamic and thermodynamic nonequilibrium effects beyond traditional 340 
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macroscopic fluid models. The fluid flow and chemical reaction are naturally coupled via the 341 
reaction term on the right-hand side of the discrete Boltzmann equation. Three types of 342 
methods are introduced to obtain the reaction term: (i) to discretize the original reaction term 343 
in the velocity space, (ii) to compute the reaction term on the basis of its physical definition, 344 
and (iii) to calculate the reaction term with the matrix inversion method. The last approach, 345 
which is physically more accurate and numerically more precise [37-38], has been adopted to 346 
investigate the nonequilibrium effects in the unsteady detonation process.  347 

The impact of perturbation amplitude, wave length, and chemical heat on the evolution of 348 
detonation is studied in detail. The following results have been obtained.  349 

(I) The initial perturbation amplitude or shape only impacts on the formation of the unsteady 350 
self-sustained detonation during the initial period.  351 

 (II) For a smaller wave length of the initial perturbation, the pressure increases faster with a 352 
higher oscillation frequency in the early period, but reduces earlier afterwards, and becomes 353 
smaller in the later stage. The global nonequilibrium strength is larger for a smaller wave 354 
length, but is rather smaller when the wave length is small enough. In this case, the maximum 355 
pressure shows a relatively small oscillation, low average value, and long oscillatory period. 356 

(III) With increasing chemical heat release, the pressure and its oscillation increase, and the 357 
nonequilibrium effect strengthens as well, while the oscillatory period reduces. 358 

(IV) If the wave length of the initial perturbation or chemical heat release is small enough , 359 
there is no transverse wave or cellular pattern, and the two-dimensional unsteady detonation 360 
reduces to the one-dimensional one.  361 
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