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ABSTRACT

The progress of a fermentation is usually assessed by visual comparison of the time profiles 

of the data with those from other batches or from a standard or model. In this work the 

comparative reasoning process was automated, thereby eliminating the problems caused by 

human inconsistencies and bias, and facilitating a more thorough usage of all available data. 

The comparative reasoning was extended to include non-numerical and single-value data.

A relational data base structure was designed to record all batch sheet and descriptive data 

from any fermentation and to enable the comparison of these data from one batch to another.

The quantitative time variant data from two fermentations may be dissimilar in a strict 

numerical sense but may exhibit similar patterns or trends. Conventional numerical 

techniques cannot be used to detect these similarities. A graphical analysis process was 

developed to enable detection of periods of approximate similarity in two time profiles: the 

data were simplified by segmentation into linear episodes, described qualitatively using the 

descriptive language of an expert, and algorithms were devised for the comparison of these 

data from batch to batch.

The results of comparing the data base and graphical information were used to identify 

discrepancies between fermentations and determine cause-effect relationships.

The comparative techniques were used to analyse the data from a set of recombinant, protein 

producing, laboratory scale fermentations and thus enable reasoning about the effects of 

sterilisation conditions and inoculum concentration on the progress of the fermentation. The 

results concurred with manual analysis of the data. The computerised tools improved 

understanding of the process because all available data could be analysed in a thorough and 

consistent manner.

The comparative reasoning tools have the potential to improve the on-line detection and 

diagnosis of faults in a production process and can provide a link between fermentation and 

downstream processing data analysis.

The comparative reasoning tools require no a priori knowledge of the process and can be 

applied to any type of data with no dependence on the magnitude of the values. The tools 

can therefore be used in both research and production environments and on any fermentation 

process.
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1 INTRODUCTION

The interpretation of fermentation data generally involves a comparative assessment of the 

data with respect to other, historical or concurrent, fermentation data sets or a standard data 

set. This analysis process is usually carried out manually by a fermentation expert - a 

process operator, a plant manager, or a technologist. This thesis describes the development 

and implementation of techniques which automate this comparative analysis of fermentation 

data. The emphasis of the work was on the emulation of the techniques used by the 

fermentation experts as, thus far, these have proved the most suitable for application to a 

process that is best described using approximate quantitative values and qualitative 

statements. The idea was not to usurp the role of the expert in the comparative reasoning 

process but to improve on areas where the expert’s abilities are limited.

In this chapter the data available from a fermentation facility are described and the 

techniques used for the analysis of these data are introduced. The current use of comparative 

analyses is highlighted along with a discussion of the limitations which result from the 

manual nature of these comparisons, in particular the lack of consistency, the existence of 

human bias and an inability to utilise all the available data. Computerised tools were 

developed to automate the comparative reasoning process and thereby eliminate the 

problems inherent in manual analysis. These tools are described in Chapters 2 and 3 and 

summarised in Table 1.1. The scope of this study is defined at the end of this chapter with a 

discussion of the extent of automation achieved (Section 1.2).

DATA TYPE CURRENT COMPARATIVE 
ANALYSIS TOOLS

NEW COMPARATIVE 
ANALYSIS TOOLS

Time Invariant 

Time Variant

Data are recorded manually in 
note books or on batch sheets. 
Numerical quantities are used for 
reporting (ie to sum m arise results) 
and to manually com pare 
perform ance of batches.
(Chapter 1).

Data are recorded automatically. 
Time profiles are used to  visually 
com pare da ta  from batch to batch. 
(Chapter 1).

Data are systematically recorded 
in a  data  base .
Qualitative and quantitative 
information are used in automatic 
com parisons betw een batches. 
(Chapter 2).

Data are recorded automatically. 
Three com puter program s 
(DSIMP, QUAL, MATCHER) 
automatically com pare all time 
profiles in a  routine and consistent 
manner.
(Chapter 3).

Table 1.1: The comparative reasoning tools developed in this work for the
analysis of fermentation data and the analogous techniques in current
use. „Chapter 1 18



1.1 Fermentation Data

Two major categories of fermentation data were defined for this work: time invariant data 

and time variant data. The time invariant data category can be further subdivided into batch 

sheet data, descriptive data and expert comments. This section lists the components of each 

of these data categories and describes how they are used in the analysis of fermentations. 

Deficiencies in the analysis process are identified and the requirements for an improved 

analysis procedure are detailed.

1.1.1 Time Invariant Data

1.1.1.1 Batch Sheet Data

The batch sheet data are those pieces of information that describe the physical and chemical 

components of the fermentation, the operating conditions, and the control mechanisms used 

to achieve the desired operating conditions. A list of typical batch sheet data is given in

Table 1.2.

Batch Number
Organism
Product(s)
Start date and time 
End date and time 
S eed  or Production run 
Medium details:

Vessel
Initial broth volume 
Sterilisation details for vessel 
Sterilisation details for medium 
Inoculum details:

composition 
com ponent suppliers 
com ponent lot numbers 
com ponent grade

source
volume
condition for addition, eg age

Details of medium make-up:
mix tank batch number 
volume of mix tank 
operator

operator 
Initial operating conditions 
Scheduled operating condition changes 
Other operating condition changes 
Details of feeds 
Disposition of final broth 
Equipment used, eg pum ps

Table 1.2: Typical batch sheet data for a bacterial fermentation.

Chapter 1 19



During developmental work the batch sheet data are recorded in notebooks so as to keep a 

record of the conditions of each experimental batch. It is very rare for the recording of the 

data to be formalised and even less common to use the data to its fullest potential during 

subsequent analyses.

The most obvious danger of an informal recording process at this level is that important 

information may be left out because the researcher may think it obvious or even unimportant 

to the investigations. As a simple example, consider a series of experiments designed to 

investigate the effect of temperature on a given fermentation: a number of fermentations 

would be carried out at different temperatures and the results analysed to find the 

temperature which resulted in the most productive fermentation. During the course of such a 

set of experiments all other environmental factors, such as pH and pressure, would be held at 

prespecified levels, however it is very easy to ignore the effect of, for example, different lot 

numbers of medium components or slightly different sterilisation regimes, especially when 

they have not been recorded. Similarly, when a large number of experimental fermentations 

have been carried out it becomes very difficult to include all the batch sheet information in 

the manual analysis process and the unintentional changes in conditions are often ignored. 

The comparison between fermentation batches thus only utilises part of the data available 

and may not elicit a true picture of the effects of various conditions.

Data recorded only in a researcher’s notebook are not immediately available to other 

researchers. This becomes particularly important when downstream processing operations 

are developed separately from the fermentation process. The information passed on to the 

downstream operations research team, in many cases, would reflect the fermentation 

workers’ interpretation of what is important and could well omit pertinent facts.

Pilot plant trials and production runs avoid some of these problems because the batch sheet

data are usually recorded on standard forms, as required by regulatory bodies or in-house

procedures. These forms are generally exhaustive (as long as recording is strictly enforced). 

However, the information available is usually only used for reporting purposes, little

recourse is made to these data during data analysis.

During production it is feasible that the batch sheet data could provide important information 

for fault diagnosis. Again, it is often the ‘not so obvious’ changes in operating procedures, 

such as a new supplier of a medium component, that result in aberrant operation. Fault 

diagnosis procedures that do not include the batch sheet data cannot be fully effective. If the 

analysis process is manual, it may take some time to search through the plethora of data

Chapter 1 20



available from each batch to find the required information.

It is apparent that there is a need for a more sophisticated means of handling batch sheet data 

at both research and production levels. The requirements of such a tool would be:

1. to formalise the recording process at the research level;

2. to make all data readily available to all people involved in the work;

3. to facilitate the search for differences between fermentation batches.

Classical mathematical techniques cannot be used to improve the handling of this generally 

qualitative batch sheet information. However, the increasing sophistication of data base 

technologies offers a viable means of automating the storage of batch sheet data and 

facilitating comparisons between the data of different fermentations. The use of data bases 

in fermentation facilities is described in Chapter 2.

1.1.1.2 Descriptive Data

Descriptive data are single value quantities that are used to summarise various aspects of a 

fermentation and include various yields, rates, other model parameters and event times as 

listed in Table 1.3. These values are derived from directly or indirectly measured variables 

using defining relations, mass and energy balances, and process and mathematical models.

Initial biom ass concentration
Initial substrate concentration
Maximum growth rate
Maximum specific growth rate
Maximum substrate utilisation rate
Maximum specific substrate utilisation rate
Maximum production rate
Maximum specific production rate
Yield of biom ass on substrate
Yield of product on substrate
M aintenance coefficients
Final biom ass concentration
Final product titre
Event times

Table 1.3: Examples of descriptive data for a batch bacterial fermentation.
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The major benefit of these data is in reporting the results of experimental work or in 

summarising production runs. The facts represented by these data are actually displayed in 

the time profiles discussed in Section 1.1.2. As it is easier for the human mind to make 

comparisons between pictorial data rather than numerical data it is more common for the 

analysis of the descriptive data to take place along with the time variant data. In some 

situations however, these descriptive data are important in the characterisation of a 

fermentation and are used in comparisons between fermentations. In these cases, the 

descriptive data can be treated in a data base in a similar fashion to the batch sheet data as 

described in Chapter 2 and illustrated in Chapter 4.

1.1.13 Expert Comments

The data category ‘Expert Comments’ includes any observations made by anyone involved 

in the operation or analysis of a fermentation batch. Examples would include the colour of a 

broth after sterilisation, the failure of any sensors, and reasons for aborting a run. These 

comments are generally recorded as a postscript to the batch sheet information, either in the 

recording notebook or on the batch sheet record itself. Very little use is made of this 

information. It is possible that such comments, when linked with the quantitative data of the 

particular batch, could be useful in fault diagnosis procedures. For example, if a batch is 

found to be operating in a non-standard manner it may be possible to find a historical batch 

that behaved in a similar manner and use the expert comments of the previous batch to infer 

a diagnosis on the current batch and decide the type of action required based on the outcome 

of the historical batch.

The expert comments are qualitative information and can therefore be treated in the same 

way as the batch sheet data. As mentioned previously, a data base is an appropriate medium 

for the treatment of qualitative data and will be introduced in Chapter 2.

1.1.2 Time Variant Data

Any variable that is monitored over the course of a fermentation falls into the category of 

time variant data (Table 1.4). The controlled variables such as temperature, pressure, air
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flow rate, agitation rate, pH and dissolved oxygen are monitored to show that the desired set 

points are being achieved. The variables which reflect biological activity, eg biomass 

concentration, substrate levels, product concentration, carbon dioxide evolution rate, oxygen 

uptake rate, respiratory quotient, pH (or acid or alkali addition when pH is controlled), and 

dissolved oxygen, are used to assess the performance of the fermentation. This section 

considers the use and analysis of these data, firstly in a fermentation development 

environment and, secondly, in an established production process.

Table 1.4: Examples of time variant data for a batch bacterial fermentation.

During the development of a new fermentation the relative performance of the experimental 

batches is used to determine the optimal operating conditions for the fermentation. The 

most common means of assessing the relative performance of the fermentations is a 

comparison of the profiles of the time variant data from each batch. The type of information 

that is readily available from the time profiles includes trends, maximum and minimum 

values, slopes (or rates), abrupt changes, and event times. The combination of these features 

forms a pattern or picture which is readily amenable to comparison with other patterns. 

Although most of this information can be presented numerically, for example as the 

descriptive data described in Section 1.1.1.2, the human mind is better able to assess 

pictorial representations of data especially when it is necessary to compare one set of values 

with another: ‘Graphics reveal data. Indeed graphics can be more precise and revealing than 

conventional statistical computations’ (Tufte 1983). Thus it would be common for a 

researcher to overlay time profiles from different experimental batches, either using graphics 

packages or manually overlaying hard copies of the profiles, and assess whether or not the 

patterns were identical or showed significant differences.

Tem perature
Pressure

Exit oxygen concentration 
Carbon dioxide evolution rate 
Oxygen uptake rate 
Respiratory quotient 
Biomass concentration 
Substrate(s) concentration(s) 
Product(s) concentration(s) 
Growth rate 
Product formation rate 
Substrate utilisation rate

Air flow rate 
Agitation rate 
pH
Alkali addition volume 
Add addition volume 
Broth volume
Dissolved oxygen concentration 
Exit carbon dioxide concentration
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For a complete picture of the relative performance of a fermentation it is not sufficient to 

consider the time profiles of only one or two variables. TTie pattern of any one fermentation 

actually consists of the information from all the monitored and calculated variables. It is the 

comparison of this overall pattern with that from other fermentations that gives a true picture 

of the relative performance of a fermentation. This is important in ascertaining the causes of 

any observed differences between fermentations. For example, if the pH profiles differed 

between two fermentations but no other profiles showed significantly different patterns, then 

it is likely that the pH measurement from one of the batches was faulty but the performance 

of the two fermentations would still be considered similar. This comparison of all the time 

variant variables from one fermentation with those from another fermentation can be quite an 

arduous task when a large number of fermentations have been performed. It is also very 

difficult to achieve consistency when comparing a large number of variables simultaneously: 

different signal and noise magnitudes must be dealt with, conflicting results may occur due 

to faulty measurements, and a lot of information must be retained and interpreted.

Consistency of comparison can be a major problem in any manual assessment of data 

especially when the data are contaminated with both sensor and process noise. In 

fermentation data analysis there is the additional problem of not being able to accurately 

monitor the true state of the biological system: a lack of suitable sensors prevents on-line 

measurement, and interference by media components, time delays and inadequate techniques 

impair off-line measurements. Because of the inability to adequately monitor the biological 

state variables understanding of the process is incomplete. Therefore it is usually assumed 

that small differences between the quantitative data of different fermentations do not indicate 

significant changes in the performance of the fermentation. These small differences may be a 

shifting in time of an event or a difference in the rate of change or level of a variable. 

However, judgement of what is a significant effect and what is not is purely subjective and 

may differ from expert to expert or even from day to day.

No automated techniques exist to facilitate this process of comparing data sets during 

developmental stages; it is left up to the researcher to be as thorough and as consistent as 

time constraints and human ability allow.

The data analysis requirements, personnel availability and time constraints in a production 

environment are quite different from those in a research situation. During a production run 

the time variant data are used for purposes of control, fault detection and fault diagnosis. 

Physical control of the environmental variables such as temperature and pressure is readily 

achieved using conventional control algorithms (Carleysmith and Fox 1984, Wang and
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Stephanopoulos 1986, Fordyce et al. 1990). However, any automated control requiring some 

knowledge of the state of the process currently relies on simple empirical models of the 

process. The applicability of these models is limited to use over certain portions of the 

fermentation and can only be considered adequate if the environmental conditions are the 

same as those used in developing the model and if the process disturbances and noise 

characteristics can be considered invariant.

Despite progress in the area of modelling of fermentations (Fish et al. 1989, Montague et al. 

1989, Dhurjati and Leipold 1990), still the most commonly used means for detecting faulty 

operation is the by-eye observations of the experts. On-line monitored and calculated 

variables are usually displayed on a computer screen and the plant managers or operators 

ensure the profiles follow the expected pattern. This expected pattern may be a mental 

picture of what the profiles usually look like, or a standard profile based on previous 

successful batches of the fermentation. The usefulness of a graphical representation for 

control purposes is identified by Hale and Sellars (1981): ‘The human mind has a remarkable 

facility for extracting key observations out of the thousands of data points displayed 

[graphically]. Frequent use of this view of a process leads to mental models of these patterns 

... Operators become conscious that things don’t look right without going through a 

structured analysis.’

This manual comparison of on-line time profiles suffers from a lack of consistency between 

operators or from day to day because of the poorly characterised nature of the fermentation 

process: no matter how carefully the physical environment is controlled two batches of a 

fermentation will never be exactly the same, the assessment of what is similar and what is 

not is again a matter of opinion. The difference in processes from batch to batch is a direct 

result of the inability to monitor the biological state variables on-line. In the event of there 

not being an expert present, as may happen on shift work, the visual detection scheme is 

further hindered as an expert is generally better able to detect when something has gone 

wrong and is more likely to be able to track the cause through his/her experience with the 

process.

In an industrial environment it is essential to detect faults as soon as they occur, find the 

cause of the fault and take action to rectify the situation in as short a time as possible so as to 

prevent irreparable damage to the process or, where necessary, terminate the batch without 

wasting valuable time and resources. Manual comparison of fermentations is time 

consuming as it is necessary to look at a number of variables: a faulty sensor may result in 

abnormal behaviour for one variable while a fault with the biological system would normally
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be manifested in aberrant behaviour in more than one variable. The situation can be 

improved by automating the comparison of fermentation data.

In some industrial settings a ‘band profile’ is produced for each of the on-line variables: each 

time a successful fermentation is completed, the on-line data points from this run are added 

to the appropriate band profile, thus producing an envelope-shaped template which defines 

the outer limits for the values of the particular variable for subsequent fermentations 

(personal communication, A Stockett, Merck Sharp and Dohme, Woodbridge, NJ, USA). If 

the profile of a current fermentation deviates from the expected path or moves outside the 

envelope then it is possible that something has gone wrong with the batch. It is important to 

define how many erroneous data points can be tolerated before a fault is positively identified, 

this will vary with the frequency of data collection and the dynamics of the process. The 

definition of acceptable limits for each variable by this process alleviates the problem of 

inconsistency between comparisons and removes the need for an expert to be present. The 

process is still time consuming and relies on the operating staff performing the checks at 

regular intervals. It is also not possible to detect the causes of faults using this technique.

It is evident that the comparison of patterns in the data is the primary technique used in the 

interpretation of time variant fermentation data. Automation of this comparison process 

would lead to a more consistent interpretation of the data and should significantly reduce the 

manual work load required in the analysis. Techniques have been developed for the 

automation of the comparative analysis of time variant data. These employ ideas from the 

fields of pattern recognition, qualitative reasoning and fuzzy logic and are described in detail 

in Chapter 3.

1.2 Definition and Extent of ‘Automation’

The aim of this work, as stated earlier, was to automate the comparative reasoning 

techniques used by an expert in the analysis of fermentation data. It is useful to define what 

is meant by the term ‘automate’ in this context and the extent of the automation.

In this work the term ‘automate’ is used to describe the process of employing computer 

packages or software to perform tasks usually carried out by humans. Therefore, automating 

the comparative reasoning techniques of fermentation experts required the development of
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computer programs to perform the task of comparing the fermentation data. A fully 

automated comparative reasoning process would also require that the results of the 

comparisons be interpreted by the computer, however this was not attempted in this work.

In developing the comparative reasoning tools it was acknowledged that the user is not 

incompetent and should be encouraged to apply his/her expertise to the reasoning process. 

Dreyfus and Dreyfus (1986) warn against attempting to provide computer-only technology 

as an alternative to human expertise: ‘[cognitive] support systems must be designed as 

vehicles through which the user can exercise his expertise more effectively.’ The 

computerised tools were therefore designed to complement the skills of the expert. In the 

previous section some of the shortfalls of a manual analysis were identified: often not all 

data are recorded; qualitative data are commonly ignored in the analysis process; data are not 

readily available to other researchers; the comparison of time variant data lacks consistency 

from one expert to another and even from day to day; and the consideration of all time 

variant variables is time consuming. It is in these areas that the automation of the 

comparative analysis process would be beneficial. Computer programs and packages were 

therefore developed to:

1. formally record all fermentation data in a form that facilitates reporting of the data, 

makes the data available to other users and enables detection of differences between 

different batches with particular attention to qualitative data (Chapter 2);

2. compare time variant data between batches in a manner that is consistent from one 

comparison to the next and ensuring that all variables can be treated with the same 

techniques (Chapter 3).

The user is then able to interpret the results of the comparisons using his/her expertise. This 

is illustrated in Chapter 4 with the analysis of a set of experimental Escherichia coli 

fermentations.

An important feature of this work is that the computerised tools are generic to all batch and 

fed batch stirred tank fermentation processes, there is no system specificity built into the 

programs. This prevents loss of salience of the tools as new processes are developed and 

allows the tools to be applied to processes in the developmental stages.

It should be noted that the intention of the work presented here was not to produce an 

industrially useful fully integrated tool, but was rather to investigate the feasibility of 

automating comparative reasoning techniques and to demonstrate the efficacy of the
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individual tools developed. Industrial implementation requires a professional programmer 

who is able to optimise the programs developed in this work whilst tailoring the application 

to the specific needs of the user.
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2 COMPARATIVE ANALYSIS OF TIME INVARIANT DATA

2.1 Introduction

The category ‘time invariant data’ consists of the batch sheet information, the descriptive 

data and expert comments. The majority of the data are qualitative and thus cannot be 

treated with classical mathematical techniques. This chapter outlines a detailed data base 

structure which enables the storage, manipulation and comparison of all time invariant 

fermentation data.

2.1.1 Data Bases

A data base is an organised collection of interrelated data. The data stored within the data 

base are totally independent of the programs that use or change them. A data base generally 

has two major functions: firstly, to store data in a logical, organised fashion and, secondly, to 

allow manipulation of the data for the purpose of extracting useful information usually by 

way of queries from the user.

There are three main types of data base architecture: hierarchical, network and relational.

In a hierarchical data base data are represented in a tree type structure, the hierarchy is 

chosen by the designer. Such an architecture is only useful if all queries are to be based on 

items in the top level of the hierarchy because items lower down are inaccessible other than 

by a path from the top. Fermentation data do not lend themselves to this type of structure 

because data are often accessed from different levels of the hierarchy. Two user queries 

exemplifying this are: ‘access all Penicillium chrysogenum fermentations’ and ‘access all 

fermentations run at a temperature exceeding 40°C’; these queries could only be executed if 

the desired element were the top level of the hierarchy.

A network style data base is based on records and links. The developer defines relationships 

between data during the initial configuration of the data base. These predefined search paths 

allow rapid searching, however this is at the cost of flexibility as the user cannot alter
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relationships between data at a later stage.

Relational data bases are the most commonly used of the architectures. The relational data 

model was first proposed by Dr E F Codd of IBM in 1969 (Codd 1970). In this model all 

data are defined and accessed as simple tables made up of rows {records) and columns 

{fields). Different tables can be linked if they include common fields, for example a 

fermentation batch number could be used to link a table describing the broth components of 

a fermentation with a table describing the operating conditions of the same fermentation. 

Although searching through the data base is slower than in a network data base, the ability to 

define data relationships at the time of the search confers greater flexibility on the system.

A data base can be described as a server which hands out data to any client process that 

needs it (Lewis 1990). In small applications the data base and associated programs reside on 

a single machine whilst in larger applications the server is usually situated on a mainframe or 

mini or on a dedicated node of a Local Area Network (LAN) and the client programs reside 

on a separate system, often a personal computer (PC). When the data and programs are 

physically separated a bridge is required to link them. In February 1987 Structured Query 

Language (SQL) was made the official American National Standards Institute (ANSI) 

standard data base language and can be used, not only to provide the link between the client 

and the user, but also in stand-alone or single-user PCs to manipulate relational data (Pascal 

1989). SQL uses simple COBOL-like English for data definition and manipulation. The 

major benefits of SQL are that, firstly, a single SQL statement can replace a dozen lines of 

code in an application program; secondly, the user can describe the data required and not be 

concerned with how to retrieve it; and, thirdly, SQL allows entire sets of data to be 

manipulated at once, instead of one record at a time as in traditional systems. The usual 

procedure is for SQL statements to be embedded in either third or fourth generation 

programming languages and then used to interact with the relational data base: the client 

systems frame their requests in SQL, the SQL server interprets those requests and chooses a 

reasonable strategy for implementing them.

Most data base packages allow an alternative to the use of programming languages to 

facilitate the query process: Query By Example (QBE). In QBE an image of the data base 

tables is filled in by the user stipulating the requirements of the query, SQL statements are 

then created by the system without the user needing to know any SQL syntax. This 

technique is very useful for simple or dedicated applications as very little programming 

knowledge is required.
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There are many relational data bases on the market today, all of which are being constantly 

updated. The choice of an appropriate system depends on the size and complexity of the 

application. A number of articles appear in the various computing journals and magazines 

each year discussing the merits of different data bases (PC Magazine 7(9) 1988, Lewis 1990, 

Finkelstein 1990). Of the SQL-server relational data base management systems Ingres 

(Ingres Corp., Alameda, CA), Oracle (Oracle Corp., Belmont, CA) and Informix (Informix 

Software Inc., Menlo Park, CA) dominated the market in 1990 (Lewis 1990). The PC data 

base market is extremely competitive with all the major players such as Microsoft, Informix, 

Gupta Technologies and Borland International having very good products (PC Magazine 

7(9) 1988, Lewis 1990).

2.1.2 Data Bases in Fermentation

In Section 1.1 the deficiencies of current data recording and analysis techniques in 

fermentation plants were detailed. The most conspicuous deficiency was the omission of 

qualitative data from the analysis process. This was because standard computing techniques 

could not readily manipulate this type of data. The rapid development of relational data base 

technology over the past decade has provided a platform for both the organised storage and 

effective analysis of qualitative data.

The descriptive data (Section 1.1.1.2) can, and should, be treated in the data base 

environment along with the batch sheet data and expert comments. Thus all information, 

other than the time profile data, can be readily stored and manipulated in one place, 

minimising the need for manual cross-referencing and significantly reducing search times. It 

is possible that the time profile data could also be stored within the data base, however this 

was not investigated here.

The availability of commercial relational data base packages has improved since Fox (1984) 

described the use of archived historical files to aid the analysis of fermentations. In his work 

each file required a user-specified descriptive header for the fermentation, giving batch 

details and subsequently providing a capability for the comparison of batch details in future 

search-and-analyse operations. With the availability of structured relational data bases under 

the control of efficient data base management systems, the ideas proposed by Fox (1984) can 

be put into practice more readily. Fastert (1990) observed that the use of data bases for the
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storage of fermentation data is in fact becoming more popular, citing the ease of retrieving 

data based on user-specified search parameters as the principal reason for the increasing 

usage.

Morris et al. (1991) have taken full advantage of emerging technologies in their proposed 

fermentation supervisory control system which employs both a relational data base (Ingres) 

and knowledge based systems. The data base records all on-line and off-line process data as 

well as set-up information and provides this information to the knowledge bases and other 

components of the system as required. The structure and function of the data base was not 

discussed in detail but its inclusion in the supervisory system is indicative of the benefits this 

technology can impart relative to the traditional data storage and retrieval methods.

2.2 Development of a Fermentation Data Base

This section describes the development of a data base for fermentation data. All data 

available from a fermentation were listed and grouped into table-like structures, emulating 

the format of a relational data base. The usage of the data base is also described: the user 

inputs required (Section 2.2.2), the outputs provided by the data base (Section 2.2.3) and the 

means by which the data base aids the desired comparative analysis of fermentation data 

(Section 2.2.4).

2.2.1 Data Base Structure

A relational architecture was chosen as the most appropriate for the development of a 

fermentation data base as it is important to be able to analyse data using any type of 

relationship and to change that relationship as required.

In any practical situation a server system would most likely be required because of the 

amount of data generated in a fermentation environment and to enable multiple users to gain 

access to the data. The emphasis of this work was on defining the structure of the data for 

the data base and not on creating a complete working system. The adaptation of the data
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structure to a working system will be specific to the particular data base chosen. Time 

constraints, software and hardware availability and the complexity of dealing with a large 

server system dictated the choice of a simple platform for development work: the personal 

computer (PC). SmartWare II (Informix Software Inc., Menlo Park, CA), was chosen for the 

development work. This is a stand-alone PC-based package which has its own programming 

language and allows all common data base transactions. The use of the SmartWare II Data 

Base enabled better understanding of the capabilities of relational data bases.

The planning stages of data base development are extremely important. In this work the 

required information, and its organisation, were carefully thought out prior to the building of 

the data base. The structure of the fermentation data base evolved by firstly listing all pieces 

of information available from a fermentation and then arranging the data into linked tables, 

emulating the format of a relational data base. This study was concerned only with batch and 

fed batch stirred tank fermentations, information specific to fermentations utilising 

immobilisation technologies, solid-state fermentations, continuous fermentations and 

biotransformations were not considered.

Two main types of tables were defined for this work: the batch sheet tables and the inventory 

tables.

The batch sheet tables contain all the information pertaining to the fermentation batches: 

each row, or record, represents a different fermentation batch and each column, or field, 

relates to a specific piece of information such as the vessel used. Some pieces of information 

cannot be described by single entries and thus require their own tables linked to the main 

table. For example a description of the medium composition of a batch requires a list of the 

medium components, their concentrations, and the grade, lot number and supplier of each 

component. This information can not reside in a single record thus a ‘media’ table is 

required. The main batch sheet table and its appendices are described in Tables 2.1 to 2.11.

The descriptive data are often peculiar to a given fermentation and thus are not included in 

the standard batch sheet table. For example, in one type of fermentation the maximum rate 

of substrate utilisation may be important whilst in another fermentation, which utilises a 

complex medium, substrate concentration may not be observable. The descriptive data are 

thus placed in fermentation specific fields in the data base. The user defines the individual 

fields as required for each process. Fermentation specific fields can be added at any time.
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FIELDS DETAILS

Batch Number A string that uniquely identifies the batch
Organism From the Organism inventory
Type of Organism Automatic from Organism Inventory
Strain From the Strain inventory
Plasmid From the Plasmid inventory
Purpose of Batch Seed/growth/production
Oxygen Requirement Aerobic/anaerobic/facultative
Number of S tages Input by operator
S eed  Type From S eed Type inventory

S tage Number Input by operator
Vessel Id From Vessel inventory
Vessel Type Automatic from Vessel inventory
Vessel Volume Automatic from Vessel inventory
Mode of Operation Batch/fed batch/continuous
Medium Name From Medium inventory (if standard medium)
Mix Tank Batch Number If medium mixed in a  mix tank
Batched By Operator responsible for media m ake up
Volume From Mix Tank If medium mixed in a  mix tank
Liquid Volume Initial working volume in fermenter
Inoculum Volume Could be volume/spore count/no. of loops etc
Inoculated By Operator responsible for inoculation
Start Date Input by operator
S tart Time Input by operator
End Date Input at end of run
End Time Input at end of run
Length of Run Calculated
Com ments Observations m ade by operator

Table 2.1: A list of the column, or field, headings for the main data base table with
details of the type of input required for the respective fields.
(Id = identification number)
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FIELDS DETAILS

Batch Number 
Product
Type of Production 
Comments

A link to the main data base  
From the Product Inventory 
Primary/secondary/unknown 
eg virus like particles, inclusion bodies

Table 2.2: The column, or field, headings for the product data base table. A new
record is required for each different product expected.

FIELDS DETAILS

Batch Number 
S eed  Id

A link to the main data  base  
Input by the operator

Table 23: The column, or field, headings for the seed data base table.
(Id = identification number)

FIELDS DETAILS

Batch Number 
Inoculum Source

A link to the main data base  table
Batch number of previous stage. If first stage
this will be the seed  identification number.

Table 2.4: The column, or field, headings for the inoculum data base table.
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FIELDS DETAILS

Batch Number
Material
Concentration
Amount
Supplier
G rade
Lot Number

Sterilisation Group

A link to the main data base  table 
From Materials inventory 
Standardise units 
Standardise units 
From Supplier inventory 
Input by operator
Input by operator (if more than one lot number 
used then add another record, ie another row) 
Link to sterilisation data  base

Table 2.5: The column, or field, headings for the medium data base table.

FIELDS DETAILS

Batch Number A link to the main data base  table
Sterilisation Group Each medium com ponent (Table 2.5) is

sterilised in a  group, identified by this num ber
Method From Sterilisation inventory
Equipment From Equipment inventory
Tem perature -s
Pressure
Length
Volume
Pre-sterile Volume Depending on the method, the
Post-sterile Volume appropriate fields are filled in
Pre-sterile pH
Post-sterile pH
Number of Loops
Flow Rate

Data File The file containing the sterilisation data  (if
appropriate)

Table 2.6: The column, or field, headings for the sterilisation data base table.
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FIELDS DETAILS

Batch Number 
Variable 
Set Point 
Type of Control 
High Alarm 
Low Alarm 
Set By 
Data File 
Com ments

A link to the main data base  table 
From Variables inventory 
Input by operator 
From Control inventory 
Input by operator 
Input by operator 
Supervisor/operator 
File containing data 
Observations m ade by operator

Table 2.7: The column, or field, headings for the initial operating condition data
base table.

FIELDS DETAILS

Batch Number A link to the main data base  table
Variable From Variables inventory
Age Time of change
Set Point Input by operator
Type of Control From Control inventory
High Alarm Input by operator
Low Alarm Input by operator
Set By Supervisor/operator
Basis Scheduled/unscheduled
Com ments Observations m ade by operator

Table 2.8: The column, or field, headings for the operating condition changes data
base table. A new record is required for each variable whose status 
changes and for each operating condition change.
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FIELDS DETAILS

Batch Number A link to the main da ta  base  table
Material From Materials inventory
Concentration Standardise units
Supplier From Supplier inventory
G rade Input by operator
Lot Number Input by operator
Method Shotwise/conti nuous/on-dem and
Basis Age or condition eg pH<7.0
Equipment From Equipment inventory
Amount/Feedrate Input by operator
Sterilisation Group Link to sterilsation da ta  base
Data File File containing da ta  if appropriate

Table 2.9: The column, or field, headings for the feeds data base table. A new
record is required for each feed and each change to the feed regime.

FIELDS DETAILS

Batch Number 
Variable
M easurem ent Technique
Measuring Instrument
M easured By
Age
Value

A link to the main data base  table
From Variables inventory
Reference to technique
From Instruments inventory
Operator
Input by operator
Input by operator

Table 2.10: The column, or field, headings for the descriptive data table.

FIELDS DETAILS

Batch Number 
Variable
M easurem ent Technique 
Measuring Instrument 
M easured By 
Data File

A link to the main data base  table 
From Variables inventory 
Reference to technique 
From Instruments inventory 
Operator
File containing data

Table 2.11: The column, or field, headings for the time variant data table.
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BATCH NO: C447
—► Penicilium chrysogenum

TYPE OF ORG: Saccharomyces cerwisiae
STRAIN: Baal us subtilis

PLASMID: Escherichia col

AIM : Add new
02 REQUIREMENT:
NO. OF STAGES: Select item
SEED TYPE:

Figure 2.1: Example of the use of an inventory table to standardise data 
base input

The second main type of table, the inventory tables, are like dictionaries as they provide an 

inventory of all previously, or commonly, used pieces of information such as types of 

organism and equipment available. An example of the use of an inventory table is given in 

Figure 2.1: a new batch is being added to the data base and the operator is about to input the 

name of the organism used, rather than type in the name, the operator selects it from the 

inventory table which is displayed when the Organism field is highlighted. If the required 

name were not present in the inventory the table would be updated by the inclusion of the 

new name and the data base management system would request other pertinent information 

such as the strain used. In this way the inventory tables grow with time. The purpose of the 

inventory tables is to standardise input: spelling mistakes are prevented and any one piece of 

information can have only one format so that data base searches and comparisons are 

facilitated. The different inventory tables are listed in Table 2.12.

The structure of the fermentation data base is summarised in diagrammatic form in Figure 

2.2. The link between the main batch sheet table and the subsidiary batch sheet tables is the 

Batch Number which is the common field. Each record in the main table must have a unique 

batch number but the subsidiary tables may contain a number of records for each 

fermentation thus the batch number may be repeated, for example if there were two products 

expected from a particular fermentation then there would be two records with the same batch 

number in the Product data base table. The inventory tables are linked to the rest of the data 

base through the field names as described above and shown in Figure 2.2.

The fermentation data base was designed to fulfil two major tasks: firstly, the input and 

output of fermentation data for purposes of reporting and documentation and, secondly, 

comparative analyses of fermentations. These are discussed in the following sections.
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DATA BASE FIELDS DETAILS

Organism Organism Name 
Type of Organism 
Oxygen Requirement

bacteria/yeast/m ou Id/... 
aerobic/anaerobic/facultative

Strain Name of Strain 
Organism Name May have many different strains of one 

organism, but each strain is specific to only 
one organism

Plasmid Name of Plasmid 
Comments eg stability

Product Name of Product

S eed  Type Seed  Type spores/lyophilised/loop/frozen suspension/...

Vessel Vessel id 
Vessel Type 
Vessel Volume

Erlenmeyer/stirred tank/airlift/...

Medium Medium Name Som e commomly used media are  given 
nam es for ea se  of identification

Supplier Supplier's Name

Materials Name of Material

Sterilisation Method filtration/autoclave/continuous/batch - direct 
steam /batch - indirect steam

Equipment Equipment id eg type of filter, id of pump

Variables Variable Name

Control Type of Control auto m atic/cascad e/...

Instruments Instrument id Instruments used  for monitoring/measuring 
variables

Table 2.12: Details of the Inventory Data Bases used to standardise input to the 
Fermentation Batch Sheet Data Bases.
(id = identification number)
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2.2.2 Data Input

Meticulous data recording is essential if the data base approach is to be successful: 

incomplete records would not only result in gaps in the information about the process but 

would also complicate the comparison of different data sets. Some fields, such as Batch 

Number, must be filled for every batch. However, it should be possible to leave fields empty 

when data are not available or are known to be incorrect, although undesirable this may be 

unavoidable. When gaps do occur in a data base record the comparison of that record with 

other records must indicate that data were unavailable otherwise false conclusions may be 

drawn (Section 2.2.4).

The data base management system should help the user during the data input process by 

specifying the order in which fields should be filled and by providing standardised inputs 

when required by way of the inventory tables. It is essential that any gaps in the data base 

can be filled after completion of the batch, for example at the time of data input it may not be 

known which pump will be used for a particular feed, this can be included in the data base 

when the information becomes available.

Some of the steps in the setting up of an Escherichia coli fermentation record (described in 

Chapter 4) are outlined in Figure 2.3. The figure shows a ‘user friendly’ interface which 

guides the user through the input procedure step by step. A format such as this ensures that 

no data are omitted in the recording process. The inventory data base tables are used to 

standardise and facilitate the input of data. It can be seen in Figure 2.3 that when the 

Organism field has been filled the Type o f Organism and Oxygen Requirement fields are 

automatically filled from information in the Organism inventory table. The Organism 

inventory table is linked to the Strain inventory table so that only those strains that 

correspond to the organism being used appear in the pop-up menu for the Strain field. These 

links were summarised in Figure 2.2.

The above processes describe the input of qualitative data to the data base. The input of 

quantitative data is complicated by the need to include the uncertainty in the measurement. 

This is best achieved by recording the value, or mean value, in one field and then, in 

response to a request from the data base management system, providing the size of the 

uncertainty. From this the data base management system can record the data value as a range 

rather than an exact number. Where standard errors are involved, the data base management 

system can provide the required uncertainty data. The use of quantitative data in the data 

base is discussed in more detail in Section 2.2.4.
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BATCH NO: C447
Panicilium chryaogenum

TYPE OF ORG: Saccbaromyoat cerevmiae
STRAIN: Badlut tubtilu

PLASMID: —► Eacharicbm oof

AIM: Add new
OgREQUIREMENT:
NO. OF STAGES: Select Hem
SEED TYPE:

(I)

BATCH NO: 
OROANISM: 
TYPE OF ORO:

C447
Escherichia coli 
Bacteria

—► DH5
PLASMID:
AIM:
OgREQUIREMENT: Aerobic 
NO. OF STAGES:

Add new

Select Hem

SEED TYPE:

J  V
(ii)

BATCH NO: 
ORGANISM: 
TYPE OF ORO: 
STRAIN:

C447
Escherichia coli 
Bacteria 
DH5

—► PKK2.7
AIM :

Add newOg REQUIREMENT: Aerobic 
NO. OF STAGES: Select Hem
SEED TYPE:

(iii)

BATCH NO: 
ORGANISM: 
TYPE OF ORG: 
STRAIN: 
PLASMID:

C447
Escherichia coli 
Bacteria 
DH5 
PKK2.7

—► Production 
Biomass 
Seed

Og REQUIREMENT: Aerobic 
NO. OF STAGES:
SEED TYPE: Select Hem

(iv)

BATCH NO:
ORGANISM:
TYPE OF ORG:
STRAIN:
PLASMID:
AIM:

C447
Escherichia coli
Bacteria
DH5
PKK2.7
Production

O?REQUIREMENT: Aerobic
NO. OF STAGES:
SEED TYPE:

(V)

BATCH NO:
ORGANISM:
TYPE OF ORG:
STRAIN:
PLASMID:
AIM :
Og REQUIREMENT: Aerobic 
NO. OF STAGES: 2
SEED TYPE:

C447
Escherichia coli 
Bacteria 
DH5 
PKK2.7 
Production

J  V
(Vi)

Spores 
Loop

- Frozen Suspension 

Add new 

Select Hem

BATCH: C447 Escherichia coll DH5 PKK2

NO. OF PRODUCTS: 1
NO. OF SEEDS: 1
NO. OF INOCULUM SOURCES: 1

r

(vii)

BATCH: C447 Escherichia coll DH5 PKK2,

J  V

Ethanol
SEED ID: Penicillin
INOCULUM SOURCE: —► aFGF

Add new

Select Hem

(viii)

Figure 2.3: The first stages in entering a new fermentation record to the data base. The data base 
management system guides the user through the input routine ensuring that all available 
information is entered. The pop-up menus provide a list of options for each entry.
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2.2.3 Data Output

The output of batch information is important for reporting and for data analysis. Most data 

base packages have a reporting capability through which standardised output can be 

programmed according to the requirements of the user. A complete data base record for the 

production stage of a laboratory scale Escherichia coli acidic fibroblast growth factor (aFGF) 

fermentation (Chapter 4) is presented in Figure 2.4 (some details were omitted for 

proprietary reasons). It may not be necessary to include all information in some reports and 

the output can be tailored to meet the needs of the user.

2.2.4 Data Comparisons

The major purpose of this work was to develop techniques for comparative analysis of 

fermentation batches. A data base environment is ideal for the treatment of qualitative and 

single-value quantitative data. The data base tables described earlier (Tables 2.1 to 2.12) 

were designed specifically to facilitate the comparison of data from different fermentations.

It was not within the scope of this project to programme the comparison of the data base 

information as it is thought that individual users will tailor the system to suit their own 

needs. The programming will be dependent on the data base chosen. The envisaged process 

would be as follows.

The batches to be compared are specified directly by the user or are selected as a result of a 

search through the data base. The search for appropriate batches is easily carried out using 

Query By Example (QBE): the user enters information into various fields of an image of the 

data base tables specifying the requirements of the query. For example to retrieve all E. coli 

fermentations in which aFGF was the product and the inoculum concentration was 0.25%, 

‘Escherichia coli’ would be entered into the Organism field, ‘aFGF’ would be entered into 

the Product field and 0.25 would be entered into the Inoculum Volume field. The result of 

this query would be a list of all the records satisfying these criteria.
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BATCH: C 447 ORGANISM: Escherichia coli PRODUCT: aFG F STAGE: 2 (of 2)

BACKGROUND INFORMATION:

Type of Organism: 
Type of Production: 
Strain:
Plasm id:
S e e d  Type:
S e e d  id:
No. of S tag es:

Bacteria
N/A
DH5
PKK2.7
Frozen S uspension

This information can be 
omitted for most reports

BATCH INFORMATION:

V essel: BL4 Biolafitte
Mode: Batch
Medium Name: N/A
Mix Tank Batch No.:None
Liquid Volume: 
Inoculum Source: 
S tart Date:
End Date:

C om m ents:

MEDIUM DETAILS:

10 L 
C447I
May 3 0 ,1 9 9 0  
May 3 1 ,1 9 9 0

A good run

15 L (stirred tank)

Volume from Mix Tank:

Inoculum Volume: 0.1 L 
Time: 08:00 
Time: 14:00

Batched By: CTM 

Inoculated By: CTM 

Length: 30 h

C onponent Cone Amount Supplier G rade Lot No. Sterilisation
G roup

Bulk N/A N/A N/A GMP N/A 1
H eat Labile N/A N/A N/A GMP N/A 2
H eat Reactive N/A N/A N/A GMP N/A 3

STERILISATION DETAILS:

Sterilisation
Group

Method Equipment Tem p
°C

P ress
(psig)

Length pH0 pH, V0 V, 
fmin) (I) (U

1 In situ - direct Biolafitte BL4 122 15 20 7.22 6.97 7.5 7.6
2 Filtration 0.22(i cellulose aceta te
3 Autoclave N/A 123 15 60

Figure 2.4 (a): A ample data base report Some data are not presented for proprietary reasons, eg a full 
list of medium components. More detailed reports for each data base table can be 
requested. (N/A = unavailable information). Continued in Fig 2.4 (b).
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BATCH: C447 ORGANISM: Escherichia coli PRODUCT: aFG F STAGE: 2 (of 2) P .2

INITIAL OPERATING CONDITIONS:

Variable S et Pt Type of Control Hi Alarm Lo Alarm S et By D ata File

Tem perature 37 °C Auto N/A N/A CTM C447TM P
P ressu re 5 psig Auto N/A N/A CTM C 447PR S
DOT > 20 % Auto N/A N/A CTM C447DOT
Air Flow C ascad e  (DO) N/A N/A C447AIR
Agitation R ate C ascad e  (DO) N/A N/A C447RPM
pH 7.0 Auto N/A N/A CTM C447PHD

OPERATING CONDITION CHANGES:

None

FEEDS:

Material Cone Supplier G rade Lot No Method Basis Equip Sterilisation
G roup

D ata
File

NaOH 2M N/A N/A N/A O n-dem and pH<7 N/A None C447ALK

DESCRIPTIVE DATA:

Variable M easurem ent
Technique

M easured
By:

Age
(h)

Value

Harvest time Est from g lucose CTM 14.8 -

Maximum aFG F HPLC CTM 14.8 3 .6  units/g
H arvest aFG F HPLC CTM 14.8 3.6 units/g

TIME VARIANT VARIABLES:

Variable M easurem ent
T echniaue

M easured
Bv:

D ata File

CER
OUR
RQ
OD
DCW
G lucose
aFG F

From CO 2

From O 2

CER/OUR
Spectrophotom eter
Microwave
Beckm an Analyser
HPLC

Auto
Auto
Auto
CTM
CTM
CTM
CTM

C447CER
C 4470U R
C447RQD
C 4470D D
C447DCW
C447GLU
C447FG F

Figure 2.4 (b): A sample data base report Some data are not presented for proprietary reasons. More 
detailed reports for each data base table can be requested. (N/A = unavailable 
information). Continued from Fig 2.4 (a).
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Once the appropriate batches have been selected the data base itself can only provide a 

listing of all the information about each batch. The actual comparison of this information is 

achieved through a programming language. The comparison program must compare each 

field in the batches being considered and record those fields that differ. As mentioned earlier 

the report of the comparison must also indicate those fields that are empty so as to prevent 

incorrect assumptions being made. Any ‘expert comments’ available for any of the batches 

being compared must also be included in the comparison summary as these may help the 

interpretation. The result of the comparison of the time invariant data is thus a difference 

summary containing:

1. a list of differences between the data contained in the respective data base records;

2. a list of all the missing data (empty fields) in the batches being compared;

3. any expert comment from the batches of interest.

This information is then combined with the outcome from the comparison of the time variant 

data (Chapter 3) and the analyst interprets the overall results.

The comparison of quantitative data is somewhat more complex than that of qualitative data. 

For example a final product titre of 1.5 g.L'1 may not be significantly different from a titre of 

1.7 g .L 1, whereas two pH values that differ by 0.05 may be considered different. For this 

reason imprecise quantitative data must be recorded as an interval representing the range of 

uncertainty of the data. For some variables, such as pH, the uncertainty bounds will be a 

constant, eg +/- 0.02. This fact can be stored in the data base and linked to all pH  fields (eg 

pH of a broth before and after sterilisation) so that when a pH value is read in it is 

automatically converted to a range encompassing 0.02 units either side of the reading. Other 

variables have non-constant uncertainty bounds in which case the operator must input the 

lower and upper limits of the data. The comparison of these data then requires investigation 

of the intervals: overlapping intervals indicate similarity whilst non-overlapping intervals 

indicate dissimilarity. Examples of the comparison of time invariant quantitative data are 

given in Chapter 4.

With sufficient foresight, the data base developer should be able to create a front-end process 

by which an inexperienced user can perform any desired query. Alternatively, an 

environment in which queries can easily be built would be desired.
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2.3 Discussion

The amount of data available from a single fermentation is very large, as shown in the data 

base tables presented in this chapter. This is the main reason why information is often not 

recorded, especially during research work where only the ‘essential’ data are noted. By 

formalising the data recording process all data will be recorded and all relevant information 

will then be available for analysis. The data base also facilitates the dissemination of 

information as other personnel have access to the data in a standardised form.

The aim of this work was to investigate the feasibility of automating the comparative 

analysis of fermentation data. The data base described above allows data to be organised in 

such a way as to enable comparisons between data sets. The most important advantage of 

using a data base is that all the information is collected in one place in a structured manner. 

The inventory tables ensure that the input is standardised, eliminating potential grammatical 

problems.

A considerable amount of work is required in the development of a data base for a 

fermentation facility. The benefits achieved by formalising the recording of fermentation 

data alone justify the effort required. In Chapter 4 the data base tables are shown to be of 

great use in analysing a set of real fermentations. The comparative analysis of the data in 

these tables not only provided a list of differences between the fermentations, but also 

prompted the analyst to consider all the data before establishing the possible causes of 

differences in the performance of the fermentations. A much greater understanding of the 

fermentation was achieved. This further reinforces the usefulness of a data base in 

fermentation work.

2.4 Future Extensions

As mentioned earlier, it should be possible to include the time profile data in the data base, 

thus eliminating the need for different storage areas. With the possibility of embedding SQL 

statements in third generation languages the integration of the time profile comparisons and 

data base comparisons could be implemented thus reducing the amount of manual 

intervention.
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The introduction of multi-media data bases (Informix OnLine, Informix Software Inc., 

Menlo Park, CA) brings with it the ability to store images, a feature which could be 

exploited to improve the reporting and analysis of fermentations. For example images from 

microscopic investigations or image analysers could be recorded and thus be available for 

analysis, comparative or otherwise, whenever required. It is also possible that the graphical 

comparison procedures outlined in Chapter 3 could be simplified using this medium but, at 

this stage, it is unclear how this could be achieved or whether the software systems are 

powerful enough to direct these analyses.

With the rapid advancement of computerised technologies it appears that there is 

never-ending potential for improving the way processes are monitored, controlled and 

analysed, both in research and production. Often it is not possible or feasible to investigate 

all these possibilities. Data bases are one technology that is worth adopting: the use of data 

bases for the storage of data greatly facilitates both reporting and retrieval of information for 

further analyses; and, if it can be used on a plant- or even company-wide scale, a data base 

can be even more powerful with data transfer between disciplines being greatly facilitated 

(making adequate allowance for security of sensitive information) resulting in a better 

awareness of the process as a whole (Svenson and McLean 1991).
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3 COMPARATIVE ANALYSIS OF TIME VARIANT DATA

3.1 Introduction

The analysis of a fermentation involves comparison of the time variant data with data from 

other fermentations or with a model (Chapter 1). Computer routines were written to 

automate this comparative analysis: the routines simplify the data using a piecewise linear 

representation, describe the simplified data using approximate qualitative terms and compare 

the qualitative descriptions of one data set with another. The comparison process is 

summarised in Figure 3.1. This section reviews the relevant literature, explains the choice of 

a linear representation of the data and provides the rationale for the qualitative descriptors 

used in describing the data. Sections 3.2, 3.3 and 3.4 describe the computer routines for the 

simplification, qualitative description and comparison of the data respectively. The 

interpretation of the results is manual and is described in Section 3.5. The overall process for 

the analysis of time variant data is discussed in Section 3.6 and is applied to a set of 

experimental fermentations in the following chapter.

All data sets are individually simplified 
into piecewise linear data segments

The two data sets to be compared are 
described using qualitative terminology

The qualitative descriptions of the linear data 
segments from the two data sets are compared

The results are interpreted manually in conjunction 
with the results o f  the comparison of the time 

invariant data (Chapter 2)

Figure 3.1: Summary of the procedure for the comparative analysis of time variant fermentation 
data. All data sets are individually simplified by piecewise linearisation. The two 
data sets to be compared are then described using the approximate qualitative 
terminology of an expert. The data sets are then compared and the results 
interpreted manually. The first three steps are performed by computer routines.
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3.1.1 Data Simplification

Many of the methods described in the literature for the analysis of graphical data consider 

groups of consecutive data points, rather than the data points themselves, as the primitive 

element of the graph. There are a number of reasons for taking this approach to simplify the 

data being analysed, those pertinent to fermentation data are as follows:

1. the effect of noise in the measurements is reduced;

2. when the data are to be compared with other data sets it is likely that the sampling 

points for the two sets do not coincide, thus a point by point comparison is not possible;

3. the manual analysis of fermentation time profiles would typically involve comparison 

of the characteristic microbial growth phases (Bailey and Ollis 1986) of the two batches 

being considered. The batch to batch variation commonly observed in fermentation 

processes is often manifested by slight variations in the lengths of these growth phases. 

This precludes the use of a point by point comparison of data sets: very little 

information can be obtained from comparing, say, a point in the lag phase with one in 

the exponential phase;

4. as alluded to in point 3, the grouping of data points emulates the way an expert views 

the data.

This simplification of the data is very much dependent on the type of information required 

from the data set and the form of the grouping is chosen to accentuate the underlying trends, 

or patterns, inherent in the data. The grouping of the data may be based solely on domain 

dependent knowledge, that is information specific to the process of interest, or it could be 

based on the geometric characteristics of the profiles themselves.

The grouping of fermentation data into distinct phases is an example of the use of domain 

dependent knowledge. Much of the recent work in automating fermentation data analysis for 

control purposes has concentrated on the development and use of process models which 

utilise domain dependent knowledge in the same way an expert would. The models created 

are based on an expert’s view of the time variant data, ie the time profiles are segmented, by 

an expert, into intervals which reflect the physiological states of the organism (Halme 1989, 

Konstantinov and Yoshida 1989, 1990a, 1990b, Stephanopoulos and Tsiveriotis 1989, 

Locher et al. 1990, Morris et al. 1991). Process data are then compared with these models to 

enable identification of the current state of the bioreactor and thus trigger applications 

appropriate to this state. Where there are sufficient consistent data from a process, such
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models may prove valuable for state identification. However, in the developmental stages of 

a fermentation the trajectories of the process variables are not consistent because of the 

changes in operating conditions and therefore it is not feasible, at this stage, to define a 

model which describes the process. If the analysis of experimental data were to be based on 

the comparison of data grouped according to physiological states then an expert would be 

required to segment the data from each individual batch. Very little advantage could be 

achieved from automating the remainder of the analysis process.

In situations where domain dependent information is not useful in segmenting time profiles, 

the geometric characteristics of the profile may relay useful process information. Geometric 

characteristics describe the shape of a graph and do not require any process specific 

information for their definition. The geometric characteristics of interest are very much 

dependent on the type of process: linear features were considered important in the analysis of 

electrocardiograms (Udupa and Murthy 1980, Pietka 1991) and in the assessment of the 

performance of an aluminium rolling mill (Love and Simaan 1988) whilst curved data 

segments were used to identify subterranean geological formations in the analysis of 

pressure-time curves from well tests (Mcllraith 1989) and in the extraction of trends from 

chemical engineering process data (Cheung and Stephanopoulos 1990a, 1990b). However, 

the geometric representation identified for a particular type of process is generic to all 

examples of that process.

A geometric representation of fermentation data was preferred to a domain dependent 

representation for two main reasons:

1. no process specific information is required for the simplification of the data thus the 

same tools can be used for any fermentation process;

2. no prior knowledge of the fermentation is required to perform the simplification and so 

the same tools can be used for the analysis of both developmental and industrial data.

The analysis of time variant fermentation data commonly involves consideration of such 

features as the occurrence, extent and level of any maxima or minima, the rate at which these 

extremes are approached, and the time and level at which rates change. An expert would 

thus segment a time profile into intervals of roughly constant slope and use this 

representation as the basis for interpretation. It would therefore seem reasonable to use a 

piecewise linearisation of the data as a starting point for the automatic analysis of time 

variant fermentation data. In this work techniques were developed to simplify fermentation 

data into piecewise linear segments.
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The development of a piecewise linearisation scheme for noisy data is not trivial. The most 

important point to be considered is how the end points of each line are to be specified. If 

domain specific information is not to be used the end points must be found from the data 

themselves. The linearisation methods used by Pietka (1991) and Love and Simaan (1988) 

were investigated for their applicability to fermentation data.

Pietka (1991) used the ‘fan method’ (Blanchard and Barr 1985) to segment 

electrocardiograms (ECGs) into linear data pieces. In the fan method the first data point is 

taken as the anchor of the first line segment, straight lines are drawn from this anchor to 

successive data points until the maximum distance between the line segment and the points 

covered by the line exceeds a prespecified threshold value. At this stage the end point of the 

line segment is fixed and the process is repeated using this data point as the anchor for the 

next line segment. The fan method of linearisation is not appropriate to use in the presence 

of noisy data, as in fermentations, for two reasons. Firstly, it places considerable weight on 

the data points at which the lines begin and end. A technique which finds a ‘best fit’ line 

through the data, with each point having an equal weighting, would be more suitable. 

Secondly, if the data contained noise spikes (that is ‘blips’ in the data), the use of the 

maximum distance between the line and the raw data as the goodness of fit criterion would 

be inappropriate, noise spikes would not be removed from the data set without prior filtering. 

A measure of the average distance between the line segment and the raw data would be a 

better indicator for the goodness of fit in the presence of noisy data as this would enable 

smoothing of the noise spikes.

Love and Simaan (1988) employed a combination of three nonlinear filters to smooth data 

from an aluminium rolling mill and extract the linear features. The filters were variations on 

the general moving average filter and essentially removed noise from the data by replacing 

groups of consecutive points with the mean of those points. Piecewise linearisation was 

achieved by smoothing the slopes between consecutive data points in a similar manner. This 

linearisation process required the prior specification of four ‘fitting variables’: two filter 

lengths (the number of consecutive points that were averaged in the moving average filters) 

and two threshold values (values which distinguish noise from real process occurrences). 

Love and Simaan (1988) chose these fitting variables by trial and error but indicated that the 

values chosen have considerable effect on the resulting data structure. For a completely 

automatic system in which human bias is to be minimised the fitting variables should either 

be fixed for all data sets or should be automatically chosen as some function of the 

underlying noise of the signal.
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A piecewise linearisation technique was developed for the simplification of fermentation 

data. The problems inherent in the simplification techniques described above were used as 

guidelines for the development of the novel linearisation technique:

1. the method must deal with noisy data that often contains noise spikes, thus an average

distance, rather than a maximum distance, should be used as the measure of the

acceptability of the fit of the linear data piece;

2. the weighting on all data points should be equal;

3. the number of fitting variables that require prior specification should be minimised and, 

if possible, the fitting variables should be related to the underlying noise of the signal.

Minimisation of the number of fitting variables also implied that the data should not require 

smoothing prior to the linearisation procedure as this would involve yet another fitting 

variable.

The piecewise linearisation procedure for the simplification of fermentation data uses a 

robust statistical fitting technique (M-estimates) to fit a line to a portion of a data set. The 

line is then extended or reduced until the average deviation between it and the raw data is 

within a limit specified by an estimate of the signal noise. Consecutive lines are 

extrapolated or interpolated so that they intersect but if in so doing the fitting requirement is 

violated the lines must be refitted over fewer data points. The process is repeated until the 

whole data set is covered. The piecewise linearisation technique is described in Section 3.2.

A number of fermentation researchers use curve fitting techniques to aid data analysis. Prior 

to commencing work on piecewise linearisation, a cubic spline fitting technique was 

investigated as a tool for the comparative analysis of fermentation data. The methods were 

complicated by the specification of smoothing parameters. Furthermore, it was found that 

simply smoothing the data, as is the general aim of fitting techniques, does not facilitate the 

comparison of fermentation data sets because of the batch to batch variations alluded to 

earlier: further tools must be employed to delineate which sections of two profiles are to be 

compared. The cubic spline technique is described in detail in Appendix 1.
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3.1.2 Qualitative Representation of the Data

The expert analysis of a profile is not usually a purely quantitative procedure, it is common 

to consider the graph using a combination of qualitative and quantitative information. The 

linear segments described in the previous section may be viewed in terms of their relative 

slopes, for example ‘steep’ or ‘shallow’, and their relative lengths, for example ‘long’ or 

‘short’. The use of qualitative abstractions of numerical quantities facilitates the analysis 

process by providing a looser description of the data thus making allowance for ambiguities 

in the data set. This is of particular importance in fermentation data where both noise in the 

measurements and minor batch to batch variations would complicate a strict quantitative 

comparison of the data from different batches.

Numerical data provide the first and most complete description of the process: the 

quantitative description of an electrocardiogram (ECG) specified the length and angle of 

each linear data piece (Udupa and Murthy 1980, Pietka 1991) whilst the description of the 

linear portions of the aluminium rolling mill data consisted of the initial and final x and y 

coordinates of each segment (Love and Simaan 1988). These quantitative descriptions of the 

data were not used in subsequent analyses but were abstracted to qualitative descriptors.

Despite the approximate nature of the final description of the data, rules must be stipulated 

for the abstraction of the numerical quantities to the qualitative values, or labels. These rules 

define which aspects of the data are to be described qualitatively, the number of qualitative 

divisions required, and the actual mapping of the quantitative values to the qualitative 

regions.

The aspects of the data that are to be described qualitatively depend on the information 

required for the subsequent analyses and on the form of the data. For a curved data piece the 

qualitative description may include an indication of the length of the curve, eg ‘long’ or 

‘short’, the rate of the curve, eg ‘gradual’ or ‘rapid’, and the shape of the curve, eg ‘concave’, 

‘convex’ or ‘linear’ (Mcllraith 1989). A number of representations have been used for linear 

data pieces. Love and Simaan (1988) described each linear segment of the aluminium 

rolling mill data as being a ‘flat’ or a ‘ramp’ and retained the quantitative information to 

provide a more complete picture. The flats and ramps description was useful in determining 

periods of constant and non-constant behaviour in the performance of the rolling mill. In the 

analysis of ECGs, Pietka (1991) divided the range of possible angles a line could make with 

the horizontal into nine qualitative regions, for example the qualitative region labelled ‘h’
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described all lines whose angles with the horizontal were between 0° and 16°. Pietka’s 

segmentation of the quantitative angle space was more sensitive than the seven qualitative 

regions used by Udupa and Murthy (1980) for the same type of data. Both Udupa and 

Murthy (1980) and Pietka (1991) retained a quantitative measure of the length of each line as 

this was considered important in the analysis of the ECGs. An inherent problem with using 

the angle a line makes with the horizontal is that the value of this angle is dependent on the 

scale of the two axes of the profile. ECGs are presumably drawn to a standardised scale, 

however, this is not the case for most engineering applications, including fermentation data. 

An alternative description of linear data pieces would include measures of the change in both 

the x-dimension and the y-dimension of the line. This provides the same amount of 

information as the methods of Udupa and Murthy (1980) and Pietka (1991) but may be more 

meaningful in the analysis of some processes. In the analysis of a fermentation time profile 

both duration and magnitude are important thus the latter description of the data is more 

applicable.

The number of qualitative regions and the boundaries of the regions are purely subjective 

choices and reflect the developer’s interpretation of the system being studied. The adequacy 

of the choices can only be judged by applying the segmentation rules to the data and visually 

assessing the results. If the technique being developed is to be automatic then the 

segmentation rules must be applicable in any situation that may arise for the system in 

question.

The boundaries of the qualitative regions define the mapping of the quantitative values to the 

appropriate region. The definition of the boundaries can be crucial to the resulting 

representation of the data. Returning to Pietka’s qualitative description of ECGs (Pietka 

1991), the divisions between qualitative regions were fixed. This was possible because the 

limits of the angle space are well defined, that is the angles a line makes with the horizontal 

must fall within the range -90° to 90°. There are no such limits to the possible values of the 

change in magnitude or temporal extent of a linear segment in a fermentation time profile. 

Therefore the mapping of quantitative values to qualitative regions must be a relative 

function, dependent on the range of values present in the data being investigated.

A further consideration in the specification of segmentation rules is the sharpness of the 

boundaries between qualitative levels. Pietka’s qualitative description of the angles of the 

lines present in an ECG (Pietka 1991), which was outlined above, implies that a line that 

makes an angle of 5° with the horizontal would be indistinguishable from one that makes an 

angle of 15° with the horizontal. However, a line whose angle with the horizontal was 15°
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would be considered different from one whose angle with the horizontal was 17°. Such 

sharp distinctions between qualitative levels can lead to anomalies in the comparison of data 

pieces, it would be more desirable to allow some amount of fuzziness at the boundaries 

between qualitative values. This can be achieved by specifying a fuzzy area about each 

boundary, if a quantitative measure falls within this fuzzy area then it can belong to either of 

the two regions separated by the boundary. The size of the fuzzy area is again a matter of 

subjective choice for the developer of the system. An alternative would be to use a 

technique from the field of artificial intelligence known as ‘fuzzy logic’ (Zadeh 1965, 

Kaufmann and Gupta 1991).

Konstantinov and Yoshida (1989, 1990a, 1990b), Fu et al. (1989) and Postlethwaite (1989) 

have utilised fuzzy logic in the analysis of fermentation data. In these examples the 

qualitative regions were described as overlapping fuzzy sets and membership functions 

assigned to each variable according to the value of the variable, this membership function 

indicates the degree to which a variable is a member of a fuzzy set. Thus, at a particular 

value, a variable may belong to the ‘high’ set with a membership function of 0.7 and the 

‘medium’ set with a membership function of 0.2. The technique of fuzzy logic exploits an 

expert’s qualitative view of time variant data and eliminates the problem of sharp boundaries 

between qualitative regions. However, a number of drawbacks in the techniques precluded 

their use in the work reported here.

• The main drawback is the extensive amount of work required in the specification of 

the membership functions. In developmental work it is necessary to use all available 

variables in the relative assessment of performance of the experimental runs and 

membership functions would be required for each of these variables; the choice of 

these membership functions is entirely subjective and has considerable influence on 

the resulting data representation thus the developer must spend a lot of time achieving 

a suitable balance between the different membership functions.

• As mentioned previously, the analysis of time variant data during developmental work 

cannot proceed using a point by point comparison of the data because of the time 

shifts effected by the changes in operating conditions, thus it is not appropriate to 

describe the data points individually as done by Konstantinov and Yoshida (1989, 

1990a, 1990b), Fu et al. (1989) and Postlethwaite (1989).

• If the data are to be represented by linear data segments, as indicated previously, both 

the temporal extent and the change in magnitude must be described and membership
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functions would be required for both these dimensions thus further increasing the 

work required in the development of the system.

• Furthermore, with the progress of the fermentations changing from batch to batch, the 

temporal extents and changes in magnitude for the various linear data pieces may vary 

considerably thus complicating the task of specifying membership functions that 

would be applicable in all situations.

A qualitative data structure was defined to describe linear data segments in fermentation 

data. The requirements of this data structure were:

1. both the duration and the change in magnitude of each linear segment must be

described;

2. the number of qualitative regions must reflect an expert’s interpretation of the data;

3. the specification of the boundaries, and therefore the mapping of the quantitative data to

the qualitative regions, must cope with considerable variations in the changes in 

magnitude and temporal extent of the linear segments from batch to batch;

4. the boundaries between qualitative divisions must not be too severe.

The qualitative description of fermentation data proceeds by, firstly, defining the qualitative 

intervals and fuzzy boundaries for the two data sets being compared and, secondly, using 

these definitions to provide a qualitative representation of the data sets. The rules for 

defining the intervals and fuzzy boundaries are generic to all fermentation data sets but the 

specific values are dependent on the two data sets under consideration. The procedure is 

described in Section 3.3.

3.1.3 Comparison of the Time Variant Data

The previous section discussed the abstraction of the linearised time variant data to a 

qualitative representation. The next step is to undertake a meaningful comparison between 

the qualitative representation of one data set and that of another data set. In this work it was 

found that the most effective comparison method was simply to match the qualitative labels 

of each linear data piece with corresponding data pieces in another time profile (Section 3.4). 

The identification of congruous data pieces in different profiles was not straightforward and
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required a rather tortuous trial and error procedure.

Techniques that have been used for the comparative analysis of numeric data in the past, 

such as syntactic pattern recognition (Udupa and Murthy 1980, Mcllraith 1989, Pietka 

1991), rule based systems (Love and Simaan 1988, Chen et al. 1989, Halme 1989, Karim 

and Halme 1989, Stephanopoulos and Tsiveriotis 1989, Clapp and Ruel 1991, Cooney et al. 

1991, Morris et al. 1991) and neural networks (Cooney et al. 1991, Morris et al. 1991) were 

not used for reasons described below.

Tou and Gonzalez (1974) defined syntactic pattern recognition as ‘the characterisation of 

patterns by primitive elements and their relationships’. The relationships between patterns 

describe the various sequences of patterns, or grammars, that represent valid structures in the 

system of interest. For example, in the analysis of ECGs different sequences of straight 

lines, represented by lengths and angles, are indicative of different cardiac patterns (Pietka 

1991). A number of training instances are required to define the grammar of the system, ie 

the set of all patterns that are recognised in the system. The comparison involves ‘parsing’ 

an unknown pattern, ie determining whether or not the new pattern represents a 

grammatically correct structure and, if so, labelling it according to the pattern class to which 

it belongs. Thus a successful match between an unknown pattern and a categorised pattern 

in ECG analysis would allow classification of the test signal and therefore a description of 

the cardiac cycle being studied.

Syntactic pattern recognition is successful in fields in which a strict grammar can be defined 

and a limited number of patterns will describe all possible scenarios. This is not the case 

during the developmental stages of a fermentation where changes in process conditions and 

unpredictable biological variations result in poorly characterised system performance. In an 

established process, a syntactic grammar could be devised for the ideal trajectories which 

would then allow the detection of out of control processes. However, the development of 

grammars for faulty operation, which would be needed for fault analysis, would require 

experience of all possible faults. Syntactic pattern recognition would not be suitable in the 

analysis of faults that had not been previously experienced. The process development work 

could be used to yield a number of ‘fault grammars’ and new faults encountered during 

production could be learnt by the pattern recognition system. However, each fault and each 

combination of faults would generally result in a different fermentation pattern making the 

set of possible patterns extremely large. It is unlikely that a comprehensive pattern 

recognition system could be developed to cover all possible scenarios required for the 

process of fault analysis. Syntactic pattern recognition in fermentation work is thus limited
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to fault detection in established processes and fault analysis only in situations that have been 

experienced previously.

Graphical reasoning may also be carried out using a rule based system in which previous 

experience is used to relate graphical observations or sequences of features to specific 

occurrences. In fermentation work a number of expert systems have been developed in which 

the time variant data at any point in the fermentation are compared with rule based models of 

the system and the current physiological state is identified (Chen et al. 1989, Halme 1989, 

Karim and Halme 1989, Stephanopoulos and Tsiveriotis 1989, Clapp and Ruel 1991, 

Cooney et al. 1991, Morris et al. 1991). The major disadvantage with the expert system 

approach is the extensive amount of work required to set up the system: a large number of 

test cases must be run and analysed by an expert before formulating the rules. An expert 

system can therefore only be used once the developmental work on a fermentation has been 

completed. Expert systems are expected to be as good as, or even better than, a human 

expert in assessing the current situation and suggesting appropriate actions. However, the 

performance of an expert system is totally unpredictable in situations for which rules are 

unavailable which can lead to unacceptable results. A human expert relies on intuition and 

years of experience which can never be encoded in series of rules; expert systems, as they are 

today, do not have the capacity to build up this type of knowledge. Furthermore, many of 

the rules in an expert system, especially those relating to metabolic events, are process 

specific thus the rule generation procedure must be repeated for every process to be analysed.

Neural network systems have been developed by Cooney et al. (1991) and Morris et al. 

(1991) as a means of recognising patterns in fermentation data and thus identifying the 

current state, detecting and analysing faults, and estimating variables. Neural networks are 

computing systems composed of a number of interconnected layers of simple neuron-like 

processing elements which process information by their dynamic response to external inputs 

(Rumelhart and McClelland 1986). They were designed to computationally emulate the 

cerebral neural structure and its behaviour. A neural net is trained by feeding it a large 

number of data sets, such as the raw sensor data and derived variables, along with the 

corresponding outputs, such as the state, estimated variables and information about faults. 

The network learns to recognise patterns in the data and, essentially creates an internal model 

relating the inputs to the outputs. After training is complete the network will determine the 

pattern of any input data and apply the appropriate ‘model’ to obtain the associated output. 

Neural networks are somewhat different from the other techniques presented as the raw data 

are treated directly rather than being simplified and described qualitatively. The concept of 

comparing the data with past cases is, however, similar. Like the other techniques presented,
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neural networks cannot be employed in the analysis of data from experimental fermentations 

because of the batch to batch variability and thus the lack of suitable training instances. 

Additionally, neural networks are ‘black box’ processes in that they are unable to provide the 

user with the line of reasoning followed in relating a set of inputs to the outputs. There is 

always some reluctance to employ analytical tools whose mechanism is not well understood, 

thus the introduction of neural networks to industrial processing staff would require a 

considerable amount of educational effort. Furthermore, a different neural network must be 

developed for each different process, which, in a large company, would result in a 

considerable amount of developmental effort and computing space.

The matching of qualitative labels between profiles has a number of advantages over the 

techniques described above:

1. the matching procedure can be used for both experimental and industrial data as no 

prior knowledge of the process is required;

2. no process specific information is required thus the matching procedure can be used 

on any fermentation process;

3. the line of reasoning in the matching procedure is easy to follow as it is based on a 

simple comparison of qualitative labels that have a clear interpretation.

The remainder of this chapter describes the techniques developed for the simplification, 

qualitative description and comparison of fermentation data. In Section 3.5 the interpretation 

of the results of the comparative process is described and the relative merits of the tools are 

discussed in Section 3.6. All the examples used in the following sections are from the 

fermentations described in Chapter 4, unless otherwise stated. The details of the 

fermentations are not required to understand the examples in this chapter as they are merely 

used to illustrate the techniques developed.
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3.2 Data Simplification

3.2.1 Overview

The first step in the comparison of time invariant data is the simplification of the data into 

piecewise linear data segments. The objectives of the linearisation procedure were:

1. to remove noise and group the data to facilitate comparisons;

2. to summarise the data in a form that resembles an expert’s view of the data.

It was important that the procedure did not require any a priori knowledge of the process 

and could be used to simplify both experimental and industrial fermentation data.

The simplification procedure can be broken down into three functional parts:

1. pretreatment and input of raw data;

2. simplification of data to give a piecewise linear approximation;

3. output of results.

The methods used to achieve each of these functions, and the theory behind some of the 

techniques used, are presented in the following sections.

The data simplification routines (DSIMP) were written in RM/FORTRAN v2.4 to run on a 

personal computer (Tandon PCA 40 AT) and later transferred (without alteration) to a Sun 

Sparc Station 1. Plotting was carried out using Simpleplot v2-10 (054) from Bradford 

University Software Services on the PC and Pro-Matlab from the Math Works Inc. on the 

Sun.
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3.2.2 Raw Data

In some situations it may be necessary to ‘clean up* the data prior to input to the 

simplification routines: any data logged prior to inoculation or subsequent to harvesting 

must be removed from the data files. These extraneous data should be eliminated at the 

source by ensuring the logging system is turned on and off at the appropriate times but in the 

less sophisticated logging systems this is often overlooked.

Where repeated measurements are available it is necessary to calculate mean values and 

measures of the spread of the data, such as the range and standard deviation. These 

calculations are readily carried out in a spreadsheet environment. The SmartWare II 

spreadsheet (Informix Software Inc., Menlo Park, CA) was used in this work, and the 

calculations are discussed in Section 3.2.3.2.I. A statistical data base (Ghosh 1989) may be 

a more appropriate medium for the storage and manipulation of the off-line data as it would 

eliminate the double handling of the data.

The raw on-line data are stored in standard ASCII files in two column format: (time,value). 

Off-line data, which are usually obtained by averaging a number of repeated measurements, 

are stored in ASCII files as (time,mean,minimum,maximum) as detailed in Section 3.2.3.2.I. 

The name of each data file identifies the batch number of the fermentation and the variable 

monitored for ease of identification, eg C447CER.DAT contains CER data from the 

fermentation with batch number C447. The input routine requires the user to identify the 

file containing the data to be simplified and places these data into two one dimensional 

arrays (TIME and VALUE).

3.2.3 Linearisation of the Data

3.2.3.1 The Best Fitting Line

Linear data pieces have been identified as the most appropriate data structure for the 

simplification of fermentation profiles (Section 3.1.1).
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The choice of method for the linearisation of the data was dictated by the form of the data. 

Fermentation data are typically noisy containing both random fluctuations and occasional 

outliers. It is possible that the random element is normally distributed (ie a Gaussian model) 

in which case a piecewise linear least squares fit to the data would result in a reasonable 

approximation. However, in the presence of outliers a least squares fit may not be 

appropriate. In a Gaussian model the probability of occurrence of outliers is very small, thus 

a least squares fit of the data would be considerably distorted in order to bring any outliers 

into line. Robust statistics are used to deal with cases where the Gaussian model is a bad 

approximation or where outliers are evident in the data set (Press et al. 1986). A robust 

statistical estimator is insensitive to ‘small departures’ from the idealised assumptions for 

which the estimator is optimised. ‘Small departures’ may be either fractionally small 

departures from all data points or fractionally large departures for a small number of data 

points eg outliers. M-estimates are robust estimators that follow from maximum likelihood 

arguments, minimising some measure of the absolute deviations such as the mean or sum. 

The use of M-estimates means that no assumptions need to be made about the noise 

distribution of the data set and the prior removal of outliers is not required. It is assumed in 

the following theory of M-estimates that all data points are equally weighted.

Let y be the array of dependent variables and x the array of independent variables. The aim

of the estimation procedure is to fit a straight line to this data:

y = a + bx (3.1)

where b is the slope of the line and a the point at which the line crosses the y-axis. The 

function to be minimised in finding the best line to represent this data is:

N
L lyj - a - bxjl (3.2)
i=l

where N is the number of raw data points over which the line is to be fitted.

The basis of this minimisation is that the median of a set of numbers is also that value which 

minimises the sum of the absolute deviations.

The method for minimising Equation 3.2 is as follows.
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For fixed b the value of a which minimises Equation 3.2 is:

a = median{yj - bxj} (3.3)

The following must hold at the minimum:

N
0 = £  xj sign(yj - a - bxj) (3.4)

i=l

Substituting Equation 3.3 into Equation 3.4 results in an equation in a single variable (b) 

which can be solved by bracketing and bisection to give the ‘best fitting’ line to a series of 

raw data points.

This routine, coded in MEDFIT, ROFUNC and SORT in Press et al. (1986, pp 544-545) was 

used to fit straight lines to fermentation time profiles. (For the purposes of this discussion 

this routine is called PRESS). The initial guess to the best fitting line is the least squares 

solution, this is refined using bracketing and bisection until the line of least absolute 

deviation is found. It was observed that the PRESS routine occasionally did not find the line 

of minimum absolute deviation but that the bracketing and bisection methods used diverged 

from the optimal result. In order to rectify this the bracketing and bisection was carried out 

as described by Press et al. (1986) but at each step the minimum sum of absolute deviations 

of all steps thus far was recorded; if, at the termination of the PRESS routine, the sum of 

absolute deviations about the line was not smaller than the recorded minimum, the line that 

had resulted in the minimum was substituted as the best fitting line. The different fits 

obtained by the PRESS routine and the improved routines are shown in Figure 3.2.

3.2.3.2 The Goodness of Fit Criterion

One of the major problems encountered when fitting any form of line or curve to raw data is 

that of specifying how closely the line must fit the data: the fit must be close enough to 

permit the line to follow the trend of the data but not so close that the line is distorted by 

noise in the measurements. A suitable line is one in which some measure of the deviations 

about the line is less than a pre-specified goodness of fit criterion. Most curve fitting and 

linearisation techniques require manual specification of the goodness of fit criterion, there is 

no fundamental basis for the choices made other than the results are deemed adequate by the 

user. This is not suitable for a fully automated system which is intended to remove all 

sources of human bias and inconsistencies.
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Figure 3.2: The robust estimation procedure of Press et al. (1986), used to fit the straight line in 
(a), does not always select the best fitting line of all the lines encountered in the 
iterative fitting procedure (as shown in this example). The fitting procedures were 
altered so that the best fitting line is always selected. The resuldng line, for the 
same data set, is shown in (b). The best fitting line is that which has the smallest 
mean absolute deviation between the line and the raw data. The mean absolute 
deviation between the line in (a) and the raw data is 73.49 units while the mean 
absolute deviation between the line in (b) and the raw data is 24.71 units. (The 
oxygen uptake rate data are from batch C440 of the fermentations described in 
Chapter 4).
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It is apparent that the goodness of fit criterion must in some way reflect the uncertainty or 

error in the measurement in question so that the resulting line is representative of the most 

plausible underlying trend in the data. The goodness of fit criteria used in the linearisation 

procedure are described below and summarised in Table 3.1.

DATA TYPE GOODNESS OF FIT CRITERIA

R epeated  m easurem ents
- retrospective analysis
- a  number of batches

R epeated m easurem ents
- correlation

R epeated m easurem ents
- established process

Single m easurem ent from single 
instrument

Single m easurem ent from multiple 
instruments

The line m ust p ass  between the maximum and 
minimum values at each  sam ple point. If the interval 
between the m ean value and either the minimum or 
maximum value at any point is less than three average 
standard deviations, the line must p ass  within three 
average standard deviations of the m ean value.

The line m ust p ass  between the maximum and 
minimum values at each  sam ple point. If the interval 
between the m ean value and either the minimum or 
maximum value at any point is less than the accuracy 
of the correlation, the fitting criterion at that point is 
overridden by the uncertainty in the  correlation.

The line must p ass  within th ree average standard 
deviations of the m ean value at each  sam ple point.

The goodness of fit is specified by the instrument 
precision or a  knowledge of the instrument’s  behaviour. 
The value, or proportionality constant, stays the sam e 
for all u ses  of a  particular instrument.

The goodness of fit is specified by the precision of the 
individual instruments or by experimental investigation. 
The value, or proportionality constant, stays the sam e 
for all u se s  of a  particular combination of instruments.

Table 3.1: Summary of the fitting criteria for the piecewise linearisation of the
different types of time variant fermentation data.

3.2.3.2.1 Repeated Measurements at Each Sample Point

Where repeated measurements are taken to obtain a single value, such as is usually the case 

for off-line data, the distribution of the repeats can be used to determine the goodness of fit
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criterion. The standard deviation is a measure of the spread of the readings for any one 

sample, however, unless a normal distribution can be assumed, interpretation of the standard 

deviation is difficult. It is rare to take more than four measurements at each sample point in 

fermentation work. With so few values there is no validity in assuming the errors in the 

readings would follow a normal distribution. The readings cannot be considered to be 

independent within each sample because the dilutions are usually made from a single sample 

tube (Esener et al. 1981), thus further invalidating the use of the standard deviation as a 

meaningful measure of the spread of the readings. For these reasons it was considered to be 

more valid to use the range of values as a measure of the accuracy of the readings, assuming 

that the true value would most likely fall somewhere between the minimum and maximum 

recorded values.

The analysis of experimental data usually occurs retrospectively with a number of batches 

being considered together. A large number of off-line data measurements are therefore 

available. It is thus possible to obtain an overall picture of the accuracy of the measurements 

of each variable by considering the average standard deviation of all samples from all 

available fermentations. From the Central Limit Theorem it is then reasonable to assume 

that the errors can be approximated by a normal distribution and, from the Empirical Rule, it 

can be expected that 99.73% of all readings would fall within three standard deviations of 

the mean value at each sample point.

For off-line data, therefore, the first fitting requirement is that the lines must pass within the 

range covered by the measured values at each point. Overriding this condition is a minimum 

goodness of fit criterion of three times the average standard deviation. Thus, if the interval 

between the mean value and either the minimum or maximum value at any one sample point 

is less than three times the average standard deviation the goodness of fit criterion at that 

point becomes three times the average standard deviation. This minimum fitting criterion 

was introduced to avoid the stringent fitting constraints arising when the range of repeats 

from a sample is very small. Although, taken on its own, this would seem to indicate an 

accurate measurement, the statistical evidence provided by the other samples refutes this 

possibility.

For some off-line measurements correlations are made between the physical measurement 

and a meaningful quantity, for example the optical density of a fermentation broth is usually 

converted to a measure of biomass concentration by way of an experimentally determined 

linear correlation. In this situation the measurement of biomass concentration cannot be 

considered to be any more accurate than the accuracy of the correlation. The minimum
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goodness of fit criterion is therefore stipulated from the accuracy of the regression equation 

parameters. An example of this is given in Chapter 4.

In the work reported in Chapter 4 these goodness of fit calculations were performed in the 

SmartWare II spreadsheet (Informix Software Inc., Menlo Park, CA) prior to the data being 

read in to the simplification routines. The outputs from the spreadsheet calculations were 

the average standard deviation over all the fermentations being considered and ASCII files 

containing the time, mean value, minimum value and maximum value at each sample point 

for each of the fermentations. In the simplification routine the minimum and maximum 

values were adjusted to reflect the goodness of fit requirement at each particular data point, 

that is when the standard deviation criterion or the correlation accuracy criterion overrode 

the range criterion the values were adjusted accordingly.

In an established process the average standard deviation of a particular type of off-line 

measurement is unlikely to change significantly over the course of time, unless measurement 

techniques or equipment are changed. In this situation, where there are a large number of 

examples from which to determine the appropriate statistics, it is possible to use three times 

the average standard deviation as the sole goodness of fit criterion.

3.2.3.2.2 Single Measurements at Each Sample Point

For on-line measurements that utilise a single instrument reading, such as dissolved oxygen 

and pH, the precision of the instrument can be used to specify the goodness of fit criterion. 

Approximate values for instrument precision are usually stipulated in the technical data 

sheet provided by the supplier. It is expected that the goodness of fit criteria selected for 

on-line measurements will be generic to all processes using the same equipment. Where 

technical data sheets are not available, the goodness of fit criteria can be chosen based on 

experience with the measurements being considered. Again, the criteria chosen in this way 

must be utilised for all fermentations so as to maintain consistency in the linearisation of the 

data. In Chapter 4 examples of appropriate goodness of fit values are given for on-line data 

from a set of experimental fermentations.

Some fermentation variables utilise measurements from a number of instruments. Carbon 

dioxide evolution rate (CER in (L of C 02).(L of broth)'1.h 1) and oxygen uptake rate (OUR 

in (L of 0 2).(L of broth)'1.h'1) are calculated from mass spectrometer, mass flow meter and
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volume readings as follows:

CER = (FiyV)((C02)out((N2)in/(N2)out) - (CO,)*)

OUR = (F J V X iO ^  - (02)oul((N2)in/(N2)oul))

(Omstead et al. 1990), where F^ is the inlet air flow rate (L of air.li'1); V is the volume of 

broth in the fermenter (L); (C O ^ , (0 2)m and ( N ^  are the inlet volume fractions of carbon 

dioxide, oxygen and nitrogen respectively (L of gas.(L of air)'1); (C O ^ j, (0 2)out and (N2)out 

are the outlet volume fractions of carbon dioxide, oxygen and nitrogen respectively (L of 

gas.(L of air)'1). The values of CER and OUR are usually converted to mmol of gas per litre 

of broth per hour (mmol.L'Lh1).

An estimation of the error in these CER and OUR measurements was given as four percent 

of the signal value (K.M. Stone, UCL, personal communication). This value was based on 

experimental work using a 7 L LH fermenter, a VG MM-80 magnetic sector mass 

spectrometer (VG Ltd, UK), a HI-TECH F I00 thermal mass flow meter and controller 

(Bronkorst High Tech B.V., Netherlands) and manual volume measurements.

When the signal size was small it was found that this value underestimated the errors; it was 

also found that the implied proportionality of the error was only very approximate. To 

compensate for this the error in the CER and OUR measurements was calculated as follows:

1. the range of values is calculated for each batch:

range = maximum value - minimum value;

2. if a series of batches is being analysed the average of the ranges is calculated;

3. the goodness of fit criterion (gof) is then calculated:

gof = 0.04 * average range.

During the development of a new fermentation process it is feasible that the CER and OUR 

maximum values will change as the process is improved. The average range of CER and 

OUR values is updated each time a new batch or series of batches is available for analysis. 

However, the goodness of fit criterion used in previous batches is not altered - once a data 

set has been linearised it is stored as such and is not updated.
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For an established process the average range of CER and OUR values is similarly updated as 

each batch is completed. If a run is to be analysed on-line the goodness of fit criterion 

calculated from all previous batches is used, the goodness of fit cannot be updated until the 

completion of a batch.

Despite the fact that the goodness of fit criteria for the CER and OUR were based on a 

particular experimental system the same values were found to give acceptable results for 

data obtained using completely different equipment (Chapter 4).

Other fermentation variables, such as the respiratory quotient and oxygen transfer 

coefficient, were not considered in this work. Determination of an appropriate goodness of 

fit for these variables would be required prior to their linearisation. The main requirement in 

determining a goodness of fit criterion is that the same criterion can be used for all processes 

using the same instruments. If different instruments are used for different processes it may 

be necessary to adjust the goodness of fit criterion.

3.2.3.2.3 Inputs Relating to Goodness of Fit

The linearisation routines are initiated by determining the type of data to be analysed, ie 

repeated readings at each point or individual readings. The appropriate data input routine is 

then employed. The user is asked to supply the goodness of fit criterion for the data: for 

off-line data this is the average standard deviation, for on-line data it is the precision of the 

instrument or an estimation thereof. At present this input process is manual and the 

calculations are carried out separately from the linearisation routines. The use of a statistical 

data base may facilitate automation of this procedure. Alternatively the goodness of fit 

information could be incorporated into the standard relational data base described in Chapter 

2 using a separate ‘Goodness of Fit’ table with fields for the variable, the instrument and the 

goodness of fit.

3.2.3.3 Piecewise Linearisation Algorithm

The piecewise nature of the desired representation requires that there be some means of 

specifying the end points of each linear data segment. The constraints on each line are that
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they must intersect with the previous line and must satisfy the goodness of fit criterion. A 

recursive scheme was developed to find the best sequence of contiguous line segments as 

described below.

A line is initially fitted over one hundred raw data points using the procedure described in 

Section 3.2.3.1. The start point of the line is the first data point for the first line, and all 

subsequent lines start at the last point covered by the previously fitted line. The lines are not 

constrained to pass through these data points as the algorithm finds the best fit line through 

all the data points being covered. If there are less than one hundred points remaining in the 

profile, the line is fitted over all remaining data points. The choice of one hundred points 

was purely arbitrary. A number of initial step sizes were investigated but there was very 

little effect on the outcome of the simplified data.

The goodness of fit of the line is assessed by comparing the mean absolute deviation 

between the line and the raw data with the goodness of fit criterion (Section 3.2.3.2). If the 

mean absolute deviation is less than, or equal to, the goodness of fit criterion then the line is 

considered to be a good fit. An attempt is then made to extend the line to cover a further one 

hundred data points, the best fit line is obtained and the fit assessed. This is repeated until 

the whole data set is covered or a bad fit is encountered.

If, at any stage, the mean absolute deviation between the line and the raw data is greater than 

the goodness of fit criterion, the line is deemed to be a poor fit. Rather than reducing the 

number of points covered by the line, the line is extended over one more point (if not at the 

end of the data set), the best fit line is obtained and the fit reassessed. This is to ensure that 

the bad fit was not a result of a single outlying point. At this stage, if the fit is good, the line 

is extended over a further one hundred points and the process is repeated. However, if the fit 

is still poor or the line reached the end of the data set, it is necessary to fit the line over a 

reduced number of data points. The line is fitted over fifty less data points (or half the initial 

step size if this were less than one hundred). If the line is still not acceptable it is refitted to 

cover one more data point to ensure a ‘bad’ point had not been encountered. If the fit is still 

not good the line is then fitted over ten less data points and its acceptability reassessed. In 

the event that the fit is still poor the length of the line is increased by one again and the fit 

reassessed. This contraction by ten and expansion by one is repeated until within ten data 

points of the last acceptable fit, or within ten points of the previous line, and the line is then 

reduced one point at a time until a good fit is found and this line is then accepted. If, prior to 

this last set of reducing the line by single points, a good fit is encountered, the line is then 

increased by ten data points repeatedly until the fit is bad again and then reduced one data
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point at a time until the fit is good. The line is then accepted. The end point, in the time 

dimension, of this line becomes the starting point of the next line. The process is repeated 

until the whole data set is covered.

If the line being fitted is not the first line it must intersect with the previous line. Each time 

the length of a line is extended or reduced and the best fit line is obtained, the new line and 

the previous line are extrapolated or interpolated so that they intersect. If the goodness of fit 

of either line is poor then the new line must be extended or reduced (depending on the 

current position in the algorithm) as described above. In some situations an acceptable fit 

cannot be found for a sequence of data points and so it is necessary to return to the previous 

line and refit it over one less point (or more if this subsequently results in a bad fit).

The algorithm for extending and reducing the line segments is summarised in Figure 3.3.

An example of the piecewise linearisation of a carbon dioxide evolution rate profile from a 

recombinant, protein producing fermentation is shown in Figure 3.4(a). The piecewise 

linearisation of the oxygen uptake rate profile from a more complex mycelial secondary 

metabolite fermentation is shown in Figure 3.4(b). These two fermentations were carried 

out at Merck Sharp and Dohme Research Laboratories (Rahway, NJ, USA) using completely 

separate facilities, including fermenters and measuring instruments. However, the goodness 

of fit criterion, calculated as described in Section 3.2.3.2, was applicable in both cases. The 

linearisation of an off-line data profile is shown in Figure 3.4(c).

The examples in Figure 3.4 demonstrate the ability of the linearisation process to remove 

noise from the data. The simplified profiles in Figure 3.4 are also a good summary of how

an expert views the data: variations in the metabolic activity in each of the data sets are

clearly visible, A further important feature of the profiles in Figure 3.4 is that the

simplification procedure adequately linearised two data sets with completely different 

process dynamics and was able to cope with variations in the range of magnitudes covered 

by the different data sets; no alterations in the fitting procedures or the goodness of fit 

criteria were required.

The piecewise linearisation can be carried out in real time with no alterations to the program. 

On the Sun Sparc Station the linearisation is almost instantaneous for a data set containing 

about seventy five data points, whilst for a data set containing 850 data points the

linearisation occurs in approximately ten seconds. The linearisation may take up to two 

minutes on a PC AT which is not acceptable for real time analyses, but the faster Intel 80386 

and 80486 based personal computers should linearise large data sets in a matter of seconds.
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Fit a  line over N-N1 data points, or (O' 
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fewer if have reached end of data set

Fit a  line over 
N-N+1 data points

End of data 
s ^ s e t ? ^

Fit a  line over 
N«N-N2 data points

Fit a  line over 
N=N+1 data points

■Hs this line"' 
acceptable?

Fit a  line over N-N+N3 data points, or 
fewer if have reached end of data set

Fit a  line over 
N-N-N3 data points

" is  this line'' 
acceptable’

End of data 
v  set?

Fit a  line over 
N-N+1 data points

Pit a  line over 
N-N+1 data points

f̂ it a  line over 
N-N-1 data points ♦

''H un out o rV ^  
lints in this line? 
S j i e  N-2'Y /S

\  Go back to previous line |

Move on to 
next line

End of data 
s .  s e t ? ^ ^

N o te s :  i) N1 = initial step size (100); N2 = N1/2 (minimum * 15); N3 = N1/10 (minimum »  10);
li) Each time a  line is fitted to N data points the line Is extended or contracted to the point of 

intersection with the previous line; if the point of intersection lies outside the time range 
covered by the two adjacent lines or the absolute deviation over either line is too large then the 
line is not acceptable.

Figure 3.3: Algorithm for stepping through a data set to find the best sequence of piecewise 
contiguous straight lines
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3.2.3.4 Linearisation of Control Data

For set point controlled data it would be assumed that a single horizontal line through the 

data at the set point would adequately describe the data unless the control had been faulty or 

the set point had been changed intentionally. For the work presented in Chapter 4 the only 

information required from variables that were controlled at a constant level was whether or 

not the set point was adequately maintained. This information was obtained by the operator, 

from the control system, and was stored in the data base.

Some variables may be controlled at a constant level for only a portion of the fermentation, 

for example it is common to maintain the dissolved oxygen concentration above a minimum 

level, thus the dissolved oxygen concentration is only controlled during periods of high 

aerobic metabolic activity. In these situations the data prior and subsequent to the control 

periods provide important information about the process. The DSIMP routines are therefore 

applied to these data as described above.

3.2.4 Output

The output from the DSIMP routines is a two dimensional array containing the time and 

value of the endpoints of each linear data piece. These can be stored in ASCII files if 

required.
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3.3 Qualitative Representation of the Data

3.3.1 Overview

The second step in the comparison of time invariant data produces an approximate 

qualitative representation of the linearised data.

A qualitative representation was chosen because it reflects an expert’s view of the data and 

avoids the rigidity imposed by strict numerical quantities in the subsequent comparison 

process.

The minimum requirement of the qualitative representation was stated earlier to be the 

description of the magnitude and duration of each linear data segment. The rulers which 

map the quantitative data to the qualitative representation were required to be generic to all 

data sets but had to allow for the wide variations in both magnitude and duration that occur 

between different types of data and between different types of fermentation.

The qualitative description procedure can be broken down into three functional parts:

1. input of simplified data from DSIMP;

2. mapping of the quantitative data to qualitative intervals;

3. output of results.

The methods used to achieve each of these functions are described in the following sections.

The computer routines for the qualitative description of the time profile data (QUAL) were 

written in RM/FORTRAN v2.4 to run on a personal computer (Tandon PCA 40 AT) and 

later transferred (without alteration) to a Sun Sparc Station 1.
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3.3.2 Input of Simplified Data

A data set is described qualitatively to facilitate comparison with another data set. The 

qualitative description of a data set is necessarily a relative phenomenon, for example the 

qualitative term ‘short’ implies that an entity is short relative to all other entities being 

considered. This relative nature of the qualitative description requires that the two data sets 

be considered together. The input to the qualitative description routines is therefore the 

simplified representation of the two data sets being compared, as generated by DSIMP. The 

data are stored in two two-dimensional arrays.

3.3.3 Mapping of Quantitative Data to Qualitative Intervals

The attributes chosen to provide the qualitative description of each linear segment were:

1. the direction of the line, which indicates whether the slope is positive or negative;

2. the magnitude extent of the line, which is defined as the change in y value from the

beginning to the end of the line;

3. the temporal extent, or duration, of the line;

4. the starting position (y-value) of the line; and

5. the slope of the line.

The latter two descriptors are not necessary for the description of the important features of a 

fermentation profile (Section 3.1.2) but were included to facilitate the comparison procedure 

as described in Section 3.4.

Qualitative rulers were defined to dictate the mapping of quantitative values to qualitative 

intervals for each of the five attributes of a linear data piece.

The definition of the magnitude extent, temporal extent, starting position and slope rulers 

required reference values which were solely dependent on the range of values of each 

attribute in the two data sets being considered.
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3.3.3.1 Magnitude Ruler

The magnitude ruler defines the relationship between the quantitative and the qualitative 

measures of the magnitude extent of a line.

The reference value for the magnitude extent ruler is the largest possible change in y-value 

for any one line, ie the difference between the largest and smallest signal values in the data 

set. This value is calculated for both profiles being considered and the average of the two 

becomes the reference value. The use of the average value is important when comparing two 

profiles with vastly different maximum values as it enables sufficient resolution between 

lines with small changes in magnitude.

Five qualitative intervals for magnitude extent are calculated based on the reference value: 

the size of the basic interval of the ruler is one eighth of the reference value; the ‘very small’ 

and ‘very large’ intervals cover an area equivalent to the basic interval whilst the ‘small’, 

‘medium’ and ‘large’ intervals cover an area twice the size of the basic interval, ie one 

quarter of the reference value (Figure 3.5(a)). The nine numerical labels depicted in Figure 

3.5(a) enable interpretation by computer algorithms, each covers an area equivalent to the 

basic interval and their use is described in Section 3.3.3.6.

The magnitude ruler is a sliding ruler: the bottom of the ruler is placed at the beginning of 

the line being measured and the qualitative magnitude extent of the line is read from the 

ruler at the end point of the line. For lines with a negative slope the ruler is rotated through 

180°.

3.3.3.2 Duration Ruler

The duration ruler defines the relationship between the quantitative and the qualitative 

measures of the temporal extent of a line.
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The qualitative intervals on the temporal extent ruler are delineated using the average 

duration of all the lines as a reference value. If each line were to cover the same temporal 

extent the average duration would be the overall duration of the fermentation divided by the 

number of linear data pieces in the time profile. This value is calculated for each profile 

being considered and the average of the two used as the reference value.

It was not possible to use a reference value similar to that adopted for the magnitude ruler 

because most of the lines would have temporal extents residing in the ‘very small’ or ‘small’ 

intervals, the resolution would be too coarse. This is most evident when a data set contains 

one line with a very long temporal extent, as is often encountered in data from fermentations 

whose product is formed subsequent to microbial growth (an example is displayed in Figure 

3.4(b)).

Five major qualitative intervals for the temporal extent ruler are calculated based on the 

reference value: the size of the basic interval of the ruler is one quarter of the reference 

value; the ‘very short’ interval covers one basic interval, the ‘short’, ‘medium’ and ‘long’ 

intervals cover an area twice the size of the basic interval and the ‘very long’ interval covers 

the remainder of the duration ruler (Figure 3.5(a)). The number of numerical labels required 

depends on the duration of the fermentation and each one covers an area equivalent to the 

basic interval.

The duration ruler, like the magnitude ruler, is a sliding ruler: the left point of the ruler is 

positioned at the start point of the line being measured and the qualitative duration is read 

from the ruler at the end point of the line.

3.3.3.3 Starting Position Ruler

The starting position ruler assigns a qualitative label to the numerical value of the initial 

y-value of a line. It is essentially the same as the magnitude ruler however it is stationary: 

the bottom of the ruler remains fixed at the minimum point of the two profiles being 

compared, the qualitative starting point is read from the ruler at the start point of the line 

being measured.
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3.3.3.4 Slope Ruler

The slope ruler defines the relationship between the quantitative and the qualitative 

measures of the slope of a line.

A human’s perception of the slope of a line is heavily influenced by the scales of the x- and 

y-dimensions thus complicating the definition of the slope ruler and limiting its use in the 

comparison process. Nevertheless, the qualitative description of slope is used to identify 

horizontal lines (Section 3.3.3.5), to guide the combination of lines within a profile (Section 

3.4.3), and to aid the decision of which lines should be compared (Section 3.4.4).

The average slope for each profile is determined as the ratio of the maximum possible 

change in magnitude for that profile to the overall duration of that fermentation. This value 

is calculated for both fermentations and the average used as the reference value for the slope 

ruler which is again divided into five qualitative regions (Figure 3.5(a)). The divisions 

between the qualitative intervals occur at one fifth, one half, one and a half times, and five 

times the reference value. The intermediate intervals, described by numerical labels, divide 

each interval in half again. The boundary points were chosen by trial and error and are 

purely the subjective choice of the developer.

For lines with a negative slope the minor image (through the horizontal axis) of the slope 

ruler is used.

3.3.3.5 Direction Ruler

The qualitative description of direction distinguishes between increasing, decreasing and 

horizontal periods of a profile. It is important that increasing periods in one fermentation are 

not compared with decreasing periods in another fermentation as, even though the absolute 

changes in magnitude and time may be similar, the different direction of the lines points to 

obvious differences in metabolic action.

A horizontal line is defined as one whose change in magnitude is ‘very small’ and whose 

absolute slope is less than half of the ‘very small’ qualitative slope interval.
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The ruler for direction was straightforward and followed the ideas of Bobrow (1985): the 

direction of a line with a positive slope is given a qualitative label of +1, a horizontal line 

has a direction of 0, and a line with a negative slope has a direction of -1.

3.3.3.6 Fuzzy Boundaries

Fuzzy intervals were required at the boundaries between qualitative regions for each ruler 

with the exception of the direction ruler. The use of fuzzy intervals ensures that a numerical 

quantity that falls at the very end of one qualitative interval on the ruler is not considered to 

be different from a quantity at the very start of the next qualitative interval.

Again it was necessary that the fuzzy intervals be defined relative to the values of the 

attributes of the linear data pieces in the data sets being investigated. Various sizes of fuzzy 

intervals were investigated. The applicability of the fuzzy intervals was judged visually: 

data sets were simplified, described qualitatively and compared, if the result of the 

comparison was considerably different from a manual comparison the description of the 

fuzzy interval was deemed unacceptable. The most successful fuzzy interval was that 

achieved by dividing each qualitative interval in half and stipulating that attributes whose 

values resided in adjacent half intervals could be considered similar. Thus a line whose 

temporal extent was in the upper half of the ‘short’ interval would be similar to a line whose 

temporal extent was in the lower half of the ‘medium’ interval. The numerical labels on 

each of the rulers in Figure 3.5(a) identify the fuzzy intervals. In the comparison process 

attributes are considered to be similar if their numerical labels describe the same or adjacent 

positions on the appropriate qualitative ruler.

Describing two profiles qualitatively by the above techniques is rapid and thus can be used 

for on-line applications.
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3.3.4 Output

The output from the algorithm is two arrays containing the qualitative descriptions of the 

linear data pieces, one array for each profile. An example of one such array is given in 

Figure 3.5(b). Each array has six columns describing, from left to right, the line identifier, 

the direction of the line, the change in magnitude of the line, the duration of the line, the 

slope of the line and the starting position of the line. It is a very compact and clear 

representation of the fermentation profile. When each of the qualitative labels is translated 

into the corresponding qualitative term the language of an expert is evident: for example the 

carbon dioxide evolution rate of the fermentation described in Figure 3.5(a) initially 

increased from a very small value to a small value over a medium length of time at a 

medium rate.

The reference values which define the sizes of the intervals in each qualitative ruler are 

determined from the range of values in the two data sets being considered. The qualitative 

description of a profile may therefore vary depending on the data with which it is to be 

compared thus the output from the QUAL algorithms is not permanently stored. Figure 3.6 

shows two different qualitative descriptions of a single carbon dioxide evolution rate profile 

resulting from comparison with two different fermentations. QUAL must therefore be 

performed on each pair of profiles that are to be compared.

3.4 Comparison of Simplified Data

3.4.1 Overview

The comparison of two data sets occurs after they have been converted to a qualitative 

representation. It was important that the comparison procedure be generic to all 

fermentation data sets and not require any prior knowledge of the fermentation.

The data comparison routines can be broken down into four functional parts:

1. input of qualitative description of data from QUAL;

2. the combination of adjacent lines within a profile;
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Figure 3.6: a) the qualitative description of profile C in relation to profile A. b) the 
qualitative description of profile C in relation to profile B. The differences 
between the two descriptions are highlighted in the tables. The two carbon 
dioxide evolution rate profiles are from the E. coli fermentations described in 
Chapter 4. Profile A is from batch C447, profile B from batch C444 and profile 
C from batch C441.
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3. comparison of the linear data pieces from two profiles;

4. output of the results.

The methods used to achieve each of these functions are described in the following sections.

The profile comparison routines (MATCHER) were written in RM/FORTRAN v2.4 to run 

on a Tandon PCA 40 AT personal computer. These were later transferred (without 

alteration) to a Sun Sparc Station 1.

3.4.2 Input of Qualitative Description of Data

The qualitative descriptions of the profiles, as generated by QUAL, are transferred to the 

MATCHER algorithms in the form of two arrays which were described in Section 3.3.4. 

The order in which the data are input does not affect the result.

3.4.3 Combining Adjacent Lines

It would normally be expected that two profiles of the same variable from similar 

fermentation batches would exhibit the same number of linear data pieces upon linearisation. 

However, the imperfect nature of fermentation data sometimes precludes this. An example 

is shown in Figure 3.7. Visual inspection would suggest joining the second and third linear 

data pieces of profile A to enable an adequate comparison with the second line of profile B. 

As this occurred in a number of cases, a qualitative algebra for the combination of adjacent 

lines was devised as described below.
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Figure 3.7: The linearisation of two glucose concentration profiles from the E. coli 
fermentations described in Chapter 4. Visual inspection would suggest joining line 
segments 2 and 3 in profile A. The comparison algorithm automatically joins these 
two lines so as to improve the match. Profile A is from batch C447 and profile B 
from batch C443.

1. If the qualitative direction of one line is +1 and the qualitative direction of the other

line is -1 the lines cannot be combined.

2. If the slopes of the two lines differ by more than two qualitative units and neither of

the lines is ‘small’ they cannot be combined because the resulting line would be 

significantly different from the raw data. A ‘small’ line is one whose magnitude 

extent and temporal extent are described as ‘very small’, ie have qualitative labels of 

1.

3. When two lines are combined the resulting magnitude extent and temporal extent are

found from adding the individual qualitative labels. If either of the lines being 

combined is horizontal (direction = 0) then the resulting magnitude extent is the same 

as that of the non-horizontal line. Table 3.2 shows the qualitative algebra devised for 

combining magnitude extents and Table 3.3 shows the rules for combining temporal 

extents.
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+ 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9 9
3 4 5 6 7 8 9 9 9
4 5 6 7 8 9 9 9 9
5 6 7 8 9 9 9 9 9
6 7 8 9 9 9 9 9 9
7 8 9 9 9 9 9 9 9
8 9 9 9 9 9 9 9 9

direction=
0

1 2 3 4 5 6 7 8

Table 3.2: Qualitative aigebra for the combination of magnitude extents of linear data pieces.

+ 1 2 3 4 5 6 7 .

1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 10
4 5 6 7 8 9 10 11
5 6 7 8 9 10 11 12
6 7 8 9 10 11 12 13
7 8 9 10 11 12 13 14

Table 3.3: Qualitative algebra for the combination of temporal extents of linear data pieces.

+ 1 2 3 4 5 6 7 8 9

1 1 2 2 1 1 1 4 4 III 1 1 1
2 2 2 3 3 4^ IIIIII 6 .
3 s 2 3 3 4 4 5^v * . 1 1 ! 6:
4 N3 4 4 5 5 6^ ■ Ill : m
5 111 N4 5 5 6 6 7^ i f ! !
6 4 4 V 5 6 6 7 7 8^
7 4 1 1 1 ;.s N6 7 7 8 8
8 111 1 1 1 1 1 1 6 n7 8 8 9
9 l i f 1 1 1 6 ; 7 • ? ;- s 8 9 9

mag. = 0 
dur. = 0

1 2 3 4 5 6 7 8 9

Table 3.4: Qualitative algebra for the combination of slopes of linear data pieces. The 
shaded region marks those combinations that would result in unacceptable lines, 
(mag. = magnitude extent, dur. = duration or temporal extent).

Chapter 3 88



4. The starting position of the combined lines remains the same as the starting position 

of the first line.

5. When two lines are combined the resulting qualitative slope is the average of the two 

qualitative slope intervals as shown in Table 3.4.

It was found that the automatic combination of adjacent lines whose qualitative slopes were 

identical would help the comparison process. This is performed prior to comparison of the 

data set.

3.4.4 Comparison of Linear Data Pieces

The comparison algorithm compares two time variant fermentation data sets which have 

already been linearised and described in qualitative terms. The algorithm performs like a 

human expert by selecting those lines from each profile which correspond. The two profiles 

are assumed to be similar until proven otherwise, thus the algorithm investigates a number 

of combinations of lines and determines which gives the most satisfactory comparison 

between the two profiles.

Some terms will be defined prior to describing the comparison algorithm. A number of 

worked examples are provided at the end of this section to clarify the different aspects of the 

routines.

The comparison routine compares two profiles, one is labelled ‘A’, the other ‘B \ The lines 

in each profile are labelled, for example, ‘A l’ for the first line in profile A, ‘B4’ for the 

fourth line in profile B.

A directional episode is made up of a series of consecutive line segments with the same 

direction, ie the slope of each line in a directional episode has the same sign. Any line that is 

deemed to be horizontal (qualitative value of direction = 0) is initially included in the 

directional episode of the previous line. In the case of fermentation time profiles a change in 

direction from one linear data piece to the next is indicative of changes in metabolic action 

thus, when comparing profiles, lines of different direction cannot be considered similar.
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Dividing the profiles into directional episodes introduces boundaries across which 

comparisons cannot be made.

A match is the result of comparing lines from two different profiles. There are four types of 

matches:

1. a one-to-one match, eg line A1 is compared with line Bl;

2. a two-to-one match, eg line A1 is combined with line A2 and compared with line Bl;

3. a one-to-two match, eg line A1 is compared with the combination of lines Bl and B2;

4. a null match where there are no lines in one of the profiles to compare with a line, or

lines, in the other profile.

For linear data pieces to be considered similar they must have the same qualitative 

descriptions, that is the same direction, magnitude extent, temporal extent and starting 

position. For each of the qualitative descriptors similarity is denoted by congruent or 

adjacent numerical labels. Thus a horizontal line (direction = 0) can be similar to a line with 

positive slope (direction = +1) if all other attributes are the same; a line with a ‘medium’ 

change in magnitude (magnitude = 5) is similar to a line with a ‘large’ change in magnitude 

(magnitude = 6) if all other attributes are the same.

Often not all of the four qualitative descriptors are the same for the two components of a 

match. A measure of the degree of similarity was therefore introduced in the form of a 

match score. At each comparison the similarities of the magnitude extents, temporal 

extents, starting positions and slopes are determined. Qualitative descriptors that are similar 

are given a match value of one, whilst those that are dissimilar are given a match value of 

zero. The match score is the sum of the match values over all the qualitative descriptors of a 

match excluding direction and starting position. Similarity of direction is a necessity for all 

lines that are compared and is thus not included in the match score. The starting position 

descriptor was introduced late in the work to aid recovering the match after a bad fit had 

been encountered (described later), it should be included in the match score in the future.

The algorithm is initiated by matching line A1 with line B l, lines A1 and A2 with line B l, 

and line A1 with lines Bl and B2. The best of these matches is the one with the highest 

match score. Figure 3.8 demonstrates this portion of the routine. If it is not clear which 

match is best it is then necessary to assess the results obtained by comparing the next 

available line in each profile for each of the three scenarios. For example, in the one-to-two 

match, line A2 would be compared with line B3, as shown in the hypothetical example in 

Figure 3.9. The match score for this match would then be added to that of the previous
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SCENARIO: Currently at start of both profiles. Attempt to find the best match between profiles A and B.

STEPS: i) Compare A1 with B1, A1+A2 with Bl, A1 with B1+B2.
ii) The best of these matches is recorded.

30-■

10 - .

Line Direction Magnitude Duration Slope Start

A1 -1 2 7 3 9
A2 -1 7 5 6 7

A1+A2 -1 9 12 15] 9

0 10 20 30
Age (h)

15--

10 - -

5 - .

10 20 300

Line Direction Magnitude Duration Slope Start

B1 -1 1 3 2 9
B2 -1 2 4 4 8

B1+B2 -1 3 7 3 9

Age (h)

• Raw Data; -a- Simplified Data; 0  Line Number

Trial Matches

Lines Magnitude Duration Slope Start Match
Score

A1 -*B1 1 0 1 1 2
A1+A2+B1 0 0 0 1 0
A1 -+B1+B2 1 1 1 1 3

Best Match; A1+B1+B2

Figure 3.8: Example showing the first step in the comparison of glucose concentration profiles 
from two E. coli fermentations. The fermentations are described in Chapter 4. 
Profile A is from batch C443 and profile B from batch C442.
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SCENARIO: Currently at start of both profiles. Attempt to find the best match between profiles A and B.

STEPS: i) Compare A1 with B1. A1+A2 with B1, A1 with B1+B2.
ii) A1 matched to B1 and A1 matched to B1+B2 have the sam e match score, therefore 

examine the next matches;
iii) A2 is compared with B2, and A2 is compared with B3, the match scores from these 

matches are added to those of the respective previous matches;
iv) the best match is recorded.

20 - -

15--

10 - .

5 - .

0 10 20 30

Line Direction Magnitude Duration Slope Start

A1 -1 2 6 3 9
A2 -1 7 5 6 7

30-.

25 -.

20 - -

15-.

10 - .

5 - .

0 10 20 30

Line Direction Magnitude Duration Slope Start

B1 -1 1 5 3 8
B2 -1 1 1 4 8
B3 -1 7 5 6 7

B1+B2 -1 2 6 4 8

-■-Simplified Data; 0  Line Number

Trial Matches

Lines Magnitude Duration Slope Start Match
Score

A1 ->B1 1 1 1 1 3
A1 +  B1+B2 1 1 1 1 3
A2 +B 2 0 0 0 1 0
A2 -+B3 1 1 1 1 3

Sums of Match Scores: (A1+B1) + (A2-K32) -  3
(A1-»B1+B2) + (A2->B3) -  6

Best Match: A1+B1+B2

Figure 3.9: Example showing how the comparison algorithm chooses between matches with 
identical match scores. The profiles are hypothetical examples.
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match, in this example the one-to-two match. The largest of the combined match scores 

indicates which of the initial matches is best. When the best possible match for the lines 

being investigated has been found it is recorded in the match record (Section 3.4.5).

If the last entry in the match record does not include the first lines of a directional episode 

and the previous entry involves a combination of lines for one of the profiles, the algorithm 

then attempts to improve the match even further: the separation and subsequent rematching 

of the combined lines is investigated as follows. By way of an example (Figure 3.10), lines 

A1 and A2 have been matched with line Bl and line A3 has been matched with line B2, the 

combined match score for these two matches is MSI. Separation and rematching results in 

line A1 being matched with line B l and line A2 being matched with line B2, the combined 

match score for these two matches is MS2. The higher of MSI and MS2 indicates the best 

two matches and these are thus recorded in the match record.

If the latest entry in the match record is bad, ie the match score is less than two, and one of 

the lines in the match is horizontal, an attempt is made to move the horizontal line over to 

the next directional episode. If the horizontal line compares well with the first line of the 

next directional episode, ie the match score resulting from the comparison is greater than, or 

equal to, two, then the horizontal line becomes the first line of the next directional episode 

and the match record is updated. The rationale behind this follows from the definition of a 

horizontal line. Lines with extremely small slopes are described as ‘horizontal’ because the 

inaccuracies in the data may mask the ‘true’ direction, ie a line with an extremely small 

positive slope is indistinguishable from, and could equally have been described by, a line 

with an extremely small negative slope. Thus the presence of a horizontal line will 

complicate the process of distinguishing the end points of directional episodes as the line 

could belong to either the increasing or the decreasing episode. If a horizontal line disturbs 

the matching process the possibility of an incorrectly partitioned time profile is investigated 

by moving the horizontal line to the next directional episode to see if this improves the 

comparison.

The algorithm now moves on to the next available line in each profile. If there are lines left 

in the current directional episode of both profiles the above steps are repeated. However, if 

only one of the profiles has unmatched lines in the current directional episode, there are 

three possible courses of action, as depicted in Figure 3.11.

1. If any of the unmatched lines are horizontal an attempt is made to move the line over 

to the next directional episode as described above.
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SCENARIO: Currently have A1+A2 matched to B1. Would separating A1 and A2 improve the subsequent 
match?

STEPS: I) Compare A3 with B2, A1 with B1, A2 with B2;
ii) which pair of matches gives the best combined match score?
iii) this match is recorded.

20- -

15-.

10 - -

30200 10

Line Direction Magnitude Duration Slope Start

A1 1 1 2 1 1
A2 1 2 2 2 2
A3 1 4 1 6 3

A1+A2 1 3 4 1 1

25

20 - .

15--

10-.

5 - .

10 20 300

Line Direction Magnitude Duration Slope Start

B1 1 3 3 2 1
B2 1 1 2 1 3
B3 1 4 1 6 3

-u- Simplified Data; ©  Line Number

Trial Matches

Lines Magnitude Duration Slope Start Match
Score

A1 -> B1 0 1 1 1 2
A2 -* B2 1 1 1 1 3
A1+A2+B1 1 1 1 1 3
A3 + B 2 0 1 0 1 1

Sums of Match Scores: (A1+B1) + (A2-+B2) -  5
(A1+A2+B1) + (A 3->B2)-4

Best Match: A1 -*B1 / A2 +B2

Figure 3.10: Example showing the separation and rematehing of lines in an attempt to improve a 
match record where a previous match had contained combined lines. The profiles 
are hypothetical examples.
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SCENARIO: Currently have A1 matched with B1, A2 matched with B2 and A3 matched with B3+B4. There are 
no more lines in profile A to match with B5.

STEPS: i) B5 is horizontal but there are no more directional episodes to move it to;
if) the previous match does not contain combined lines (profile A) therefore cannot attempt to 

separate and rematch;
iii) attempt to combine B5 with B3+B4 and assess  the resulting match score.

35

25-•

10-.

5 - .

0 10 20 30

Line Direction Magnitude Duration Slope Start

A1 -1 1 5 2 9
A2 -1 2 5 4 8
A3 -1 6 6 6 6

Age (h)

1 5 - .

0 10 20 30

Line Direction Magnitude Duration Slope Start

Bl -1 1 4 2 8
B2 -1 2 4 4 8
B3 -1 5 4 6 7
B4 -1 2 2 6 2
B5 0 1 2 1 1

B3+B4 -1 7 6 6 7
B3+B4+B5 -1 8 8 [41 7

Age (h)

• Raw Data; -a- Simplified Data; ©  Line Number

Trial Matches

Lines Magnitude Duration Slope Start Match
Score

A2 ■+• B2 1 1 1 1 3
A3 -► B3+B4 1 1 1 1 3
A3 -► B3+B4+B5 0 0 0 1 0

Best Match: A 2-»B2/ A3+B3+B4

Resulting Match Record

Lines Magnitude Duration Slope Start

A1 -> B1 1 1 1 1
A2 +  B2 1 1 1 1
A3 -» B3+B4 1 1 1 1

- -► B5 - - - -

Figure 3.11: Example demonstrating the options available when there are extra lines in either of 
the current directional episodes. The two glucose concentration profiles are from 
the E. coli fermentations described in Chapter 4. Profile A is from batch C441 and 
profile B from batch C442.
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2. If the previous entry m the match record contained combmed lines, the separation and 

rematching of these lines is investigated as described previously.

3. The possibility of combining the left over lines into the last match is investigated. For

example, if the last entry in the match record was line A3 matched to line B2 and the 

left over line is line A4, then line A4 is combined with line A3 and compared with

line B2. If the resulting match score is greater than, or equal to, that of line A3

matched to line B2, then the combined lines are accepted as a good match. More than 

two lines can be combined in this situation.

If all three of these attempts to deal with the left over lines are unsuccessful then these lines 

are recorded in the match record as a null match.

When the end of a directional episode is reached the algorithm moves onto the next 

directional episode and the above routines are repeated. However, if the last entry in the 

match record was bad as shown by a match score of zero or one, an attempt is made to 

rematch the lines. The main benefit of this process is seen when one of the profiles suffers 

some small disturbance but then recovers to its normal path; without the rematching routine 

the profiles would be considered dissimilar from the point of the disturbance, whereas with 

the ability to rematch the lines it is possible to record the areas of the disturbance as a null 

match and then continue matching the remaining lines. The rematching routine is as follows 

and is shown in the example in Figure 3.12.

• The first step is to find the line in profile A from which to begin the rematching: the

match record is searched backwards until either a match is found in which all four 

match values are equal to one, in which case the next line in profile A is the starting 

point, or the beginning of the current episode is reached and this line is then the 

starting point.

• The next step is to find the line in profile B from which to start the rematching: if the 

starting point in profile A belongs to a non-null match then the starting point in profile 

B is the line after that which is currently matched to the starting line of profile A, 

otherwise the starting line in profile B is the line after that which belongs to the last 

non-null match prior to the match containing the starting line of profile A. These two 

starting lines must be of the same directions and must have the same qualitative 

description for their starting positions. The starting line in profile B is increased by 

one until these criteria are met or there are no more lines present in profile B, in which 

case the starting line in profile A is increased by one and the search process repeated.

Chapter 3 96



Having found the appropriate starting lines these lines are then compared.

• If the resulting match score is greater than, or equal to, two then the match is 

considered adequate, the match record is updated and the algorithm continues, as 

before, to compare subsequent lines.

• If the match is poor then the algorithm steps through all remaining lines in profile B 

attempting to match them to the starting line in profile A using the same procedure. If 

the end of profile B is reached and a suitable match has not been found, the algorithm 

returns to the starting line in profile B and attempts to match this with the next line in 

profile A.

In this manner, all the lines in profile B are compared with all the lines in profile A until

either a suitable match is found or all the lines have been exhausted.

The rematching routine also makes it possible to skip the first linear data piece of either 

profile in the comparison process. If the first directional episode ended in a bad match then 

the rematching routine starts at lines A1 and B2, or the next line in B that has the same 

direction and starting position as line A l. There are two situations where the skipping of the 

first line may be important. Firstly, it may happen that the recording instrument is not 

turned on at the start of the process resulting in missing data which would disrupt the 

comparative analysis. Secondly, the initial, or lag, phase of a fermentation is notoriously 

variable as it is dependent on a large number of factors (Bailey and Ollis 1986), thus it is 

often desirable to relax the comparison over the initial stages. An example is shown in 

Figure 3.13.

Finally, when the end of one of the profiles is encountered, any remaining lines in the other 

profile are recorded as null matches after ensuring that they cannot be combined with the 

lines in the previous match.

The general flow of the comparison algorithm is summarised in Figure 3.14.

The comparison of two profiles using the above algorithm is a rapid process and is thus

suitable for on-line applications.
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SCENARIO: Currently, in the second directional episode, have A4 matched with B5, A5 matched with B6 and
A6 is recorded a s  a  null match. Thus have a bad match at the end of a  directional episode,
attempt to rematch the lines.

STEPS: I) the initial starting points for rematchlng are lines A4, the beginning of the directional episode,
and B6, the line arter that which is currently matched to A4, but the starting points differ so this 
match is not allowed;

ii) lines B7 and B8 cannot be matched to A4 because they are of a  different direction;
iii) lines B9 and B10 have different starting points from A4 and thus cannot be matched;
iv) line A5 becomes the starting point in profile A for rematching and, following the sam e reasoning 

as i), ii) and iii), line B9 is the starting point in profile B for rematching;
v) the resulting match is good thus the match record is updated and the comparison continues.

140

100 ■■

80-■

0 10 20 30

Line Direction Magnitude Duration Slope Start

A4 -1 3 7 5 8
A5 -1 4 1 8 6
AS -1 2 4 5 2

Age (h)

140

100 ■ -

0 10 20 30

Line Direction Magnitude Duration Slope Start

B5 6 1 8 9
B6 -1 1 2 3 4
B7 1 2 1 7 4
B8 1 1 4 2 5
B9 -1 4 1 8 5
B10 0 1 5 1 1

Age (h)

• Raw Data; Simplified Data; 0  Line Number

Match Record Prior to Rematching

Lines Magnitude Duration Slope Start

A4 -► B5 0 0 0 1
A5 -*B6 0 1 0 0
A6 -► - - - - -

Match Record After Rematching

Lines Magnitude Duration Slope Start

A4 -► B5 0 0 0 1
- -► B6+B7+B8 - - - -

A5 -+B9 1 1 1 1
A6 -> B10 1 1 0 1

Figure 3.12: Example demonstrating the rematching of lines after a directional episode ends with 
a bad match. The two carbon dioxide evolution rate profiles are from the E. coli 
fermentations described in Chapter 4. Profile A is from batch C441 and profile B 
from batch C442.
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SCENARIO: Currently, in the first directional episode, have A1 matched with B1, A2 matched with B2 and B3 is 
recorded as a  null match. Thus nave a  bad match a t the end of a  directional episode, attempt to 
rematch the lines.

STEPS: i) because this is the first directional episode the rematching starts with lines A1 and B2, note that
the starting positions of these two lines are similar; 

ii) the resulting match Is good thus the match record is updated and the comparison continues.

140

120

100

80-■

60--

40-.

20 -.

20 300 10

Line Direction Magnitude Duration Slope Start

A1 1 1 4 4 1
A2 1 7 6 6 1

Age (h)

140

120 - ■

100 - .

80-■

10 20 300

Line Direction Magnitude Duration Slope Start

B1 0 1 3 1 1
B2 1 2 5 5 1
B3 1 7 6 7 2

Age (h)

• Raw Data; -m-  Simplified Data; ©  Line Number

Match Record Prior to Rematching

Lines Magnitude Duration Slope Start

A1 -► B1 1 1 0 1
A2 ->B2 0 1 1 1

- -* B3 - - - -

Match Record After Rematching

Lines Magnitude Duration Slope Start

- ->B1 - _ .
A1 + B 2 1 1 1 1
A2 + B 3 1 1 1 1

Figure 3.13: Example demonstrating the rematching of lines after the first directional episode 
ends with a bad match. The two carbon dioxide evolution rate profiles are from the 
E. coli fermentations described in Chapter 4. Profile A is from batch C447 and 
profile B from batch C441.
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Match line: 
A1+A2 to B1;

» A1 to B1;
A1 to B1+B2

*-------------------
The best of these matches is 
recorded in the match record

Match next line of A 
with next line of B; 

next two lines of A with 
next line of B; next line 
of A with next two lines 

of B

Separate and rematch the 
combined lines. If this results 
in a  better match, then update 

match record

Are any lines in this 
match the first line of a  

directional episode?

oes the previous 
► Onateh contain combined 

lines?

If this horizontal line compares 
well with the first line of the next 
directional episode it becomes 

the first line of this episode, and 
the match record is updated

Are any of the 
lines in the match 

horizontal?

Is the 
match bad?

Are there lines 
left in the current directional 

episode of both 
rofiles?

Move on 
to next 

directional 
episode

re there lines left in 
only one profile in the current 

directional episode?
irectionalmatch

Can only follow 
this loop onoa for 

•ach dir. eo.

Attempt to rematch the last 
directional episode 

(described in the text)

Does this horizontal 
line compare well with the first line of the 

next directional episode?

Move horizontal line into 
next directional episode and 

move on to this episode

Is the ne 
unmatched line 

orizontal?

Does separating and 
rematching the combined lines 

improve the match2

Does the previous 
match contain combined 

lines?

Update match record 
and move on

Does adding the 
unmatched line into the 
revious match improv 

the match?

Update match record

Store the unmatched 
lines as a  null match

Figure 3.14: Simplified flow of MATCHER software for the comparison of two profiles 
(particulars are described in the text)
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3.4.5 O utput

The result of the comparison process is an array called the match record, an example of 

which is given in Figure 3.15. Each row of the array describes the outcome of a comparison 

and is interpreted as follows:

column 1: first line of profile one in this match

column 2: last line of profile one in this match

column 3: first line of profile two in this match

column 4: last line of profile two in this match

column 5: match value resulting from comparing the magnitude extent of these lines

column 6: match value resulting from comparing the temporal extent of these lines

column 7: match value resulting from comparing the slopes of these lines

column 8: match value resulting from comparing the starting positions of these lines

A match value of one indicates that the qualitative descriptors of the lines being compared 

are similar, whilst a value of zero indicates that the qualitative descriptors are dissimilar. The 

sum of columns five, six and seven is the match score.

3.5 Interpretation of the Comparison

The match record, obtained from the comparison of time variant data, is interpreted 

manually. It is envisaged that the initial steps of the interpretation will be automated using a 

small number of coded rules. The final interpretation is to be carried out by an expert.

The aim of the comparative analysis is, initially, to determine whether or not two profiles are 

similar. Similarity of two profiles is denoted by a match record in which all the match 

values are equal to one. A number of other results also indicate similarity:

1. As mentioned earlier the lag phase of a fermentation is notoriously variable, thus 

dissimilarity of the first lines of the profiles is not usually considered significant 

although it should still be noted. It is essential that, unless a null match has been 

recorded, the qualitative descriptor of the starting position of the first lines is the same.
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a
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1 4 0

120 - •

100 -.

80-■

60-■

4 0 - .

0 20 3010

• Raw Data; -m- Simplified Data; ©  Line Number

Match Record

Lines Magnitude Duration Slope Start

A1 A1 B1 B1 1 1 1 1
A2 A2 B2 B2 1 1 1 1
A3 A3 B3 B4 0 1 1 1
A4 A4 B5 B5 0 0 0 1

- B6 B8 - - - -

A5 A5 B9 B9 1 1 1 1
A6 A6 B10B10 1 1 0 1

Figure 3.15: The match record summarising the comparison between profiles A and B. Columns 
one to four, under the heading 'Lines', are the lines compared in a match. In other 
examples of the match records in this chapter the second and fourth columns have 
been omitted unless lines have been combined. The results of the comparison are in 
columns five to eight: a value of 1 indicates similarity, a value of 0 indicates 
dissimilarity and arepresents a null match. The two carbon dioxide evolution rate 
profiles are from the E. coli fermentations described in Chapter 4. Profile A is from 
batch C441 and profile B from batch C442.
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2. In a number of situations it was observed that match values of one were obtained for the 

magnitude extent and temporal extent of two lines being compared while the match 

value for slope was zero. Quantitatively, this is nonsense as the definition of slope is 

the ratio of the change in magnitude to the change in duration of a line, thus if the 

magnitude and duration of two lines are the same then the slope should also be the 

same. The discrepancy arises from the difficulty of describing the slope qualitatively. 

In such a situation the zero match value for slope is ignored. However, when two 

adjacent lines are combined to form a match with another line, a zero match value 

indicates that the slopes of the combined lines were significantly different and the 

combination was not desirable, thus this zero match value cannot be ignored.

3. At the end of the match record a null match, or null matches, for only one of the profiles 

implies that this fermentation was carried on longer than the one it is being compared 

with. The null match is noted but does not influence the general similarity of the two 

profiles.

4. When performing an on-line comparison, the magnitude extent or temporal extent of 

the latest linear data piece may not compare well with those of the appropriate line in 

the historical or standard profile. If these qualitative descriptors are smaller than those 

of the historical or standard batch, but the slope descriptors are similar, then it is 

assumed that the in-progress batch will eventually match that of the historical or 

standard batch. No action is taken to alter the course of the in-progress run.

These rules could feasibly be formalised to form a small rule-based interpretation of the 

match record. At present the rules are applied to the match records manually. The result of 

applying the rules to all the time variant variables of a pair of fermentations is a list 

summarising those variables that differed between the two fermentations. This list is 

combined with that produced by the comparison of the time invariant data to give a concise 

difference summary of the two fermentations.

The analyst must then interpret these results to establish which factors caused the deviations 

in fermentation performance. The analyst must return to the qualitative descriptions and 

match records to determine what the differences in time variant variables were. This process 

could easily be automated and the results provided in the difference summary. The analyst 

then uses his/her expertise to relate causes to effects. The process is greatly facilitated by 

having all the information summarised in one place. If conclusive evidence is not available 

then further investigations may be required; the information in the difference summary gives
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an indication of what factors need to be looked at in these investigations.

Examples of the use of these tools in a research environment, and the interpretation of the 

results, is presented in Chapter 4. The use of the tools in an on-line environment is 

discussed in Chapter 5.

3.6 Discussion

The procedure developed for comparing time variant fermentation data consists of four main

steps:

1. simplification of the data into piecewise linear segments;

2. abstraction of the data to a qualitative description;

3. comparison of the qualitatively described linear data pieces from two data sets;

4. interpretation of the results.

FORTRAN computer routines have been written for the first three steps and the final 

interpretation is carried out manually. The process is summarised in Figure 3.16.

These tools for the comparison of time variant fermentation data require no prior knowledge

of the fermentation process being analysed and can therefore be applied to both

developmental and industrial data. The tools do not rely on process specific information 

either so they can be used to analyse data from any type of fermentation without adaptation. 

The only user-specific information required is the goodness of fit criterion used to guide the 

linearisation of each data type. However, this fitness criterion is defined for each type of 

data and each instrument used and does not alter from one batch to another or from one 

process to another.

There were two objectives to be achieved by the linearisation of the time variant data: firstly, 

to facilitate comparison of the data by removing noise and grouping data so that 

non-corresponding time points from two data sets did not hinder the comparison, and,

secondly, to summarise the data in a form that resembles an expert’s view of the data. This

latter objective was included to ensure that the manipulation of the data was meaningful to 

the user thus encouraging use of the tools. The results obtained by the linearisation routines
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( raw  data SET 1 ) ( r a w  d a t a  s e t  2 )

Remove extraneous data points 
Determine goodness of fit criteria

Input of data and goodness of fit criteria 
Piecewise linearisation of data 
Storage of results in ASCII files

endpoints of linear 
data pieces

endpoints of linear 
data pieces

qualitative descriptions

match record

difference summary

DSIMP DSIMP

Pretreatment of dataPretreatment of data

RESULTS OF 
COMPARISON OF 
TIME INVARIANT 

DATA

INTERPRETER 
Manual interpretation of the match record

INTERPRETER 
Manual interpretation of the difference summary

MATCHER
Compare the qualitative labels of corresponding linear data pieces from the two data sets

QUAL
Define qualitative rulers for magnitude, duration, slope and starting position 
Describe data qualitatively using above rulers and a  direction indicator

Figure 3.16: Summary of the tools developed for the comparative analysis of time variant 
fermentation data. All data sets are individually simplified by piecewise 
linearisation. The two data sets to be compared are then described using the 
approximate qualitative terminology of an expert The qualitative descriptions of 
the linear data segments from the two data sets are then compared. A difference 
summary is produced by combining the results of comparing both the time variant 
data and the time invariant data (Chapter 2) and is interpreted by the human analyst. 
DSIMP, QUAL and MATCHER are FORTRAN computer routines that were 
developed to perform the individual steps of the comparison procedure. The terms 
in italics are the outputs from each step.
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were amenable to comparison as shown by the examples in this chapter, thus the first 

objective was achieved. The time profiles used to illustrate the workings of the comparative 

analysis tools also show that the second objective was met: the linearisation of the time 

profiles very approximately segmented the fermentation into its growth phases, ie lag phase, 

fast growth phase, stationary phase and decline phase (Bailey and Ollis 1986). In some 

situations more than one line segment was used to describe the data in each phase of the 

fermentation but it was still possible to apply some physiological meaning to the simplified 

data sets. This was achieved without providing the simplification routines with a template 

of what the data were expected to look like. No prior knowledge of the fermentation was 

required as all the information came from the data sets themselves.

A goodness of fit value dictates how close the line segments must be to the raw data in the 

simplification routines. Guidelines for the specification of goodness of fit criteria were 

developed in this work. The means of determining appropriate goodness of fit values was 

achieved by trial and error. It was found that the use of slightly different values did not 

actually affect the final comparison results so long as the same technique was used for 

finding the goodness of fit in both data sets being considered and the fits were reasonably 

close to the raw data. However, the resulting simplified data may not resemble an expert’s 

view of the process and thus acceptability of the tools would be limited. In Chapter 4 it is 

shown that the linearisation of the data highlights correlations between various events in the 

variables of a fermentation, for example the maximum value in one variable may always 

occur at the same time as the minimum value in another variable. If an ‘incorrect’ goodness 

of fit value were applied to the data, the highlighted ‘events’ may not have any physiological 

meaning and thus would not be of any use in improving understanding of the process. The 

choice of an appropriate goodness of fit value is therefore very important. The guidelines 

presented in this chapter result in goodness of fit values that dictate an adequate fit in all 

situations examined.

The simplified data were described qualitatively so as to enable ‘imprecise’ comparisons. 

The qualitative rulers were not based upon any fundamental principles but were chosen by 

trial and error. The results appear to be adequate and it will be seen in the next chapter that 

comparisons based on these qualitative descriptions do concur with visual comparison of the 

data. The slope ruler was the only one that had questionable results and may need further 

refinement. The importance of the slope descriptor in the final comparisons was reduced as 

a result.

The definition of the qualitative rulers remains the same for every variable and for every
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type of fermentation, no process specific information is required.

The use of the qualitative rulers not only provides a mechanism for finding approximate 

similarities between data sets but does so in a consistent manner. This is what makes these 

techniques superior to manual analysis of the data.

The comparison routines work on the principle of ‘similar until proven otherwise’ and 

recognise that some portions of two data sets may be similar whilst others differ 

substantially: lines are combined, separated and skipped over until almost every 

combination has been investigated in an attempt to find the best possible match between two 

data sets. Humans have a remarkable ability to perform such manipulations without 

conscious effort. However, the benefits of consistency and the ability to consider all 

variables rather than a select few, justify the effort required in automating the comparison 

process.

The comparison tools can be applied to any data set that reflects the dynamics of a batch or 

fed batch process but cannot be used for data whose values do not change considerably over 

the course of the fermentation. For example, the qualitative description routine (QUAL) and 

the comparison routine (MATCHER) cannot be applied to temperature or pressure data 

which have been controlled at a constant level throughout a fermentation. The piecewise 

linearisation routine (DSIMP) could be applied to these data if required. The application of 

QUAL to set point data gives unacceptable results: in data sets that have been controlled at 

a single set point the maximum possible change in magnitude is very small thus the 

divisions of the magnitude ruler would be minuscule and comparison of the magnitude 

descriptor would be meaningless. The same is true for the start position ruler and the slope 

ruler. The definition of a horizontal line is also affected by the small overall change in 

magnitude of set point controlled data, lines that would be considered horizontal by visual 

inspection would not be defined as such by the QUAL routines. For this reason the set point 

controlled data are recorded with the time invariant data in the data base, with the 

appropriate set point being noted. If a deviation from the set point occurs this would 

normally be detected by the control system and the operator would be alerted by an alarm. 

This fault would be recorded in the data base in the comments field. It is possible to use 

QUAL and MATCHER on faulty set point data. This would be useful for a fault analysis 

system where it is required to utilise information from previous fermentations in which 

similar faults had occurred; the detection of similar faults would be facilitated by QUAL and 

MATCHER. This is discussed further in Chapter 5.
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The final step in the comparative analysis of fermentation data is the interpretation of the 

difference summary, ie determining why the differences between two fermentations 

occurred and what implications this has to the process as a whole. This final interpretation 

has not been automated but left to the analyst. It is important that both the time variant and 

time invariant data are considered at this stage as both provide vital information about the 

process. This is demonstrated in the examples in the next chapter.
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4 COMPARATIVE REASONING IN A DEVELOPMENTAL 
ENVIRONMENT - AN EXAMPLE

In this chapter the comparative reasoning tools developed in the previous two chapters are 

used to analyse a set of experimental fermentations. The conclusions of the analyses were 

the same as those obtained by a previous manual analysis of the data but significantly more 

insight into the process was obtained using the computerised techniques. The analysis 

demonstrates the efficacy of the individual comparative reasoning tools and highlights the 

benefits of automating the comparison of fermentation data.

4.1 Introduction to the Experimental System

During the course of this study a series of laboratory scale Escherichia coli fermentations

were carried out at Merck Sharp and Dohme Research Laboratories (MSDRL, Rahway, New

Jersey, USA). The objectives of the experiments were:

1. to determine the effects of sterilisation conditions on fermentation performance with a

view to scale up;

2. to determine the effects of inoculum concentration on fermentation performance with

a view to scale up;

3. to provide a comprehensive data set with which to develop and test the techniques for

the automated comparative analysis of fermentation data.

| The product of the experimental fermentations was Acidic Fibroblast Growth Factor (aFGF),

| described in the next section.
|

Chapter 4 109



4.1.1 Acidic Fibroblast Growth Factor

Acidic Fibroblast Growth Factor (aFGF) is a protein produced in the brain, heart and other 

organs. The protein is a mitogen, a substance which induces cellular division. This 

mitogenic activity has been observed on a wide variety of cells in culture, including 

fibroblasts, vascular and corneal endothelial cells, chondrocytes, osteoblasts, myoblasts and 

glial cells (Thomas and Gimenez-Gallego 1986). Little is known about the normal activities 

of aFGF in vivo although it is known to induce blood vessel capillary growth. Thomas and 

Gimenez-Gallego (1986) hypothesised that, because of the broad spectrum of target cells in 

culture, it is likely that fibroblast growth factors are general tissue growth factors that 

stimulate and coordinate mitogenesis in many cell types during animal growth, maintenance 

and tissue repair. aFGF is thus thought to have potential therapeutic use as a topical wound 

healing agent for bums, bedsores and ulcers, and as a healing agent in comeal transplants.

Bovine and human aFGFs have been purified and amino acid sequencing has shown that 

both have 140 amino acid residues and are very similar in construct (Gimenez-Gallego et al. 

1985, Gimenez-Gallego et al. 1986).

The bovine aFGF gene has been synthesised (Linemeyer et al. 1987) and subsequently 

converted to a human synthetic aFGF gene by point mutations (Linemeyer et al. 1987). The 

synthetic gene was cloned into a pKK2.7 plasmid vector through an EcoRI-Sall linkage, 

downstream to a tac promoter (Linemeyer et al. 1987). The bacterial host chosen by 

Linemeyer et al. (1987) for expression of the recombinant aFGF was E. coli DH5. This 

transformed strain was used in these studies.

4.1.2 The Effect of Sterilisation Conditions on Fermentations

One of the objectives of the experimental work was to assess the effect of differing 

sterilisation conditions on the aFGF fermentation with a view to scale up. The effects of 

sterilisation on a fermentation process are dependent on the medium components and, in a 

batch process, differ with the size of the operation. A new technique for assessing the effect 

sterilisation has on a fermentation medium is introduced in Section 4.1.2.1 and was used 

successfully in these investigations.
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The most common method of sterilising fermentation media and equipment is steam heating 

under pressure (Corbett 1985). Despite the many advantages of using continuous 

sterilisation (Corbett 1985), a batch process is still frequently used on both laboratory and 

industrial scales.

The primary deleterious effect of heat sterilisation is the destruction of medium components, 

either by thermal degradation or by unwanted chemical reactions, and this in turn affects the 

performance of the microbial culture growing in that medium. The most commonly 

observed effect is the destruction of sugars by the Maillard or browning reaction: reducing 

sugars react with the amino groups of proteins when heated resulting in a decrease in the 

amount of sugars available, the destruction of amino acids and the formation of toxic 

substances which may interfere with the subsequent fermentation (Gottschalk 1972). The 

solubility of various substances in the medium is also affected by sterilisation conditions: 

different combinations of media components, pre-sterile medium pH and length of heating 

have been shown to have different effects on the solubility of certain media constituents 

such as the nitrogen source, altering the availability to the microorganism and thus having 

considerable influence on the subsequent fermentation pattern (Corbett 1985). Heat labile 

media components, such as many vitamins, are degraded during the sterilisation process 

(Benterud 1977) and, where possible, are usually separately filter sterilised.

Mathematical and experimental investigations of batch sterilisation processes (Deindoerfer 

and Humphrey 1959, Singh et al. 1989) show that increasing the heat stress on the medium, 

ie subjecting the medium to longer or harsher sterilisation, increases the extent of nutrient 

degradation. The effect on process performance depends on the nutrients present and on the 

nutritional requirements of the microorganism.

A typical batch sterilisation cycle is characterised by a heat up phase, followed by a holding 

period, and finally a cool down phase. The slope and duration of the heating and cooling 

temperature profiles are very dependent on equipment heat transfer capabilities and are 

therefore a function of scale. In large fermenters the medium is subjected to increased heat 

stress because of the longer sterilisation times required to achieve sterility and longer heat up 

and cool down periods resulting from the smaller heat exchange surface per unit volume 

(Buckland 1984). Prior to scale up of a fermentation it is therefore desirable to examine 

what effect increasing the heat stress has on the medium and on the resulting performance of 

the fermentation. In the work reported here large scale sterilisation conditions were 

simulated on a smaller scale by altering the hold time and cooling water flow rate during 

sterilisation. The effect these changes had on the progress of the aFGF fermentation gave an 

indication of what would be expected on scale up.
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4.1.2.1 Detecting Media Changes Caused By Sterilisation

The effects of differing sterilisation regimes are process dependent. It is difficult to 

determine the extent of degradation that has occurred in a medium during sterilisation 

without carrying out a complete chemical analysis on the broth which is an extremely time 

consuming task and does not give immediate results. A qualitative assessment of the relative 

amount of degradation occurring may be obtained from the change in pH of the medium 

during sterilisation, however, this is not a very sensitive indicator. An alternative technique, 

using the absorption spectrum of the medium, was investigated in this work as a novel 

method for assessing the amount of nutrient degradation that occurred during sterilisation. 

The rationale for introducing this new technique is described below.

The absorbance of proteins in the UV range of the spectrum is caused by the peptide groups, 

the aromatic amino acids and the disulphide bonds. Aromatic amino acids also give rise to 

fluorescence emission. Schmid (1989) explains the phenomena of absorption and emission 

in proteins and describes in detail the experimental protocols for measuring these 

occurrences. Differing concentrations and conformations of proteins and protein 

components give rise to different spectral characteristics, thus measurement of the difference 

in spectral properties of a protein-containing medium before and after sterilisation should 

give an indication of the extent of changes that occurred in the protein component of the 

medium.

Peptide bonds absorb strongly below 230 nm, whilst the aromatic side chains of tyrosine, 

tryptophan and phenylalanine absorb in the 230-300 nm range, and disulphide bonds show 

weak absorbance at about 250 nm (Schmid 1989). The position of the absorption peaks 

depends on the nature of the molecular neighbourhood of the chromophores and the 

intensity and shape of the peaks depend on the number and kind of chromophores and their 

position in the protein molecule, that is the degree of burial of the respective side-chains in 

the interior of the protein. For these reasons it is difficult to interpret the absorption

| spectrum of an unknown complex mixture of proteins and protein components.
I
i
| The applicability of absorption spectroscopy to fermentations was investigated using broth

j samples from some of the fermentations carried out in this work. The changes in the spectra

over sterilisation were found to provide useful information, but should be used in 

conjunction with pH measurements, not as an alternative. Although not investigated here, it 

is also possible that the absorption spectrum of a medium prior to sterilisation could be used

Chapter 4 112



to indicate non-standard broth compositions resulting from incorrect batching or a change in 

the quality of the broth components.

A single beam spectrophotometer was used in this work to obtain the absorption spectra of 

pre- and post-sterile fermentation broths (Section 4.2.6.5). Schmid (1989) describes the use 

of double-beam spectrophotometers, or microprocessor-controlled single-beam 

spectrophotometers, for accurately measuring difference spectra which are a useful means of 

monitoring conformational changes in a protein as the difference in the absorption spectra 

between the native and the unfolded protein is generally small. These techniques would 

obviously improve the analysis of changes in fermentation broths.

Measurements of fluorescence could also be used to measure the effects of sterilisation on a 

protein-containing fermentation medium and, because of the large changes in fluorescence 

emission as a result of conformational changes in the proteins, would be more sensitive than 

absorption measurements (Schmid 1989, Cantor and Timasheff 1982).

4.1.3 The Effect of Inoculum Concentration on Fermentations

The second objective of these experiments was to determine the effect of inoculum 

concentration on the aFGF fermentation.

In order to provide the same inoculum concentration on a large scale as on the laboratory 

scale a number of seed stages may be required. Several problems may occur as a result of 

this:

1. the likelihood of contamination increases;

2. a further source of variation is introduced especially when the progress of the seed

trains is not monitored;

3. if a mutant organism is being used the risk of reversion to wild type increases as the

number of generations increases;
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4. for recombinant organisms increasing the number of generations may result in the loss 

of an unstable plasmid;

5. each time the culture is transferred to a new stage it is subjected to a change in 

environment; as the number of transfers increases the organism may become less 

capable of adjusting to these changes and a loss in viability or slow down in 

metabolism may result;

6. for each extra seed stage another fermenter is required thus another series of issues 

relating to GMP (Good Manufacturing Practice) operation is introduced.

For these reasons it is often worth reducing the number of seed stages used in a process. 

This may be achieved either by using a lower inoculum concentration or by combining a 

number of first stage seeds to provide the required inoculum concentration.

The use of a lower inoculum concentration may result in a longer lag phase thus increasing 

the overall length of the fermentation. The implications of this must be assessed prior to 

scale up. Experiments were carried out to determine the effect of a low inoculum 

concentration on the aFGF fermentation.
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4.2 Materials and Methods

The materials and methods used in these fermentation experiments followed the MSDRL 

Standard Operating Procedures (SOPs) for laboratory scale aFGF fermentations (with the 

exception of the scanning spectroscopy work and the data analysis procedures which were 

new). Some details have been omitted from the descriptions given below for proprietary 

reasons.

4.2.1 Organism

The organism used for the aFGF fermentations was Escherichia coli strain DH5 containing 

the pKK-aFGF plasmid vector. The cultures were provided by Merck Sharp and Dohme, 

Rahway, New Jersey, USA.

4.2.2 Seed Preparation

The seed medium consisted of glucose, salts and complex protein sources. All medium 

components were GMP grade and the same lot number of each component was used for all 

fermentations in this work. The heat sensitive medium components were filter sterilised 

through 0.22 pm cellulose acetate membrane units. Medium components that react when 

heated were dissolved in deionised water and separately sterilised at 123°C for 90 minutes. 

The remaining components were dissolved in deionised water in a 2 L Erlenmeyer flask, pH 

adjusted with 50% sodium hydroxide to 7.0 and sterilised at 123°C for 90 minutes. The 

seed media for this work were prepared at the outset and stored at 4°C until required.

Prior to inoculation, the sterilised medium components were combined in the 2 L 

Erlenmeyer flask to give a volume of approximately 300 mL. The seed medium was

inoculated with 0.6 mL of a frozen suspension of E. coli DH5 pKK-aFGF. The seed flask 

was incubated for 12 hours on a shaker at 220 rpm and 37°C.
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4.2.3 Fermentations

The aFGF fermentation experiments were carried out in two 15 L Biolafitte fermenters (BL3 

and BL4, Biolafitte, Poissy, France).

The fermentation medium was the same as the seed medium containing glucose, salts and 

complex protein sources. Lactose was included as the inducer of aFGF synthesis. All 

medium components were GMP grade.

The preparation of the heat sensitive medium components and those that react on heating 

was the same as for the seed medium described above. The remaining components, 

including antifoam, were dissolved in deionised water, pH adjusted with 50% sodium 

hydroxide to 7.2 and sterilised in situ at 122°C using direct steam injection. In some 

experiments glucose was added to the bulk broth prior to sterilisation so as to determine the 

effect this had on the subsequent fermentation (Table 4.1). The sterilisation conditions often 

found in larger vessels were simulated over the course of the experiments by subjecting the 

media to longer sterilisation holding times and by turning off the cooling water to extend the 

cool down phase. Details of the sterilisation conditions of each fermentation are given in 

Table 4.1. The sterilisation sequence was computer controlled and is described in Section

4.2.4.4.

BATCH
NUMBER

STERILISATION 
HOLDING TIME 

(h)

GLUCOSE 
STERILISED 

IN SITU

OTHER
CONDITIONS

C439 1.00 no
C440 1.00 no
C441 0.33 no
C442 0.33 no
C443 1.50 no
C444 1.50 no
C446 0.33 yes
C447 0.33 no
C449 1.00 yes
C450 0.33 no slow cooling after sterilisation
C451 0.33 no
C452 0.33 no 0.25%  v/v inoculum

Table 4.1: Details of aFGF fermentation experiments.
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During sterilisation the condensate from steam injection increased the broth volume to no 

more than 8.5 L so that, with the addition of the remaining medium components, the final 

working volume was 10 L. The ‘open position’ of the valve controlling the flow of steam to 

the broth was adjusted manually to compensate for fluctuations in the steam supply. 

However, in some batches the valve was not adjusted correctly and the condensate pick-up 

resulted in a broth volume exceeding 8.5 L. Broth was removed from these fermenters prior 

to the addition of the remaining broth components thus giving a final working volume of 

10 L but with a lower concentration of some components.

After sterilisation, the remaining medium components were added to the fermenter and 

sterile deionised water was added when necessary to give a final broth volume of 10 L. The 

pH was adjusted to 7.0 with 2M sodium hydroxide. The control system actually maintained 

the pH at about 6.8 rather than the desired 7.0, however this was consistent throughout the 

study.

100 mL (25 mL in C452) of seed culture were inoculated into the sterilised growth medium 

in the fermenters. Whenever two fermentations were run concurrently the seed was taken 

from the same inoculum vessel. The culture was grown for about 24 hours at 37°C and 5 

psig. Dissolved oxygen tension in the broth was controlled above 20% of air saturation with 

the agitation rate and air flow rate under cascade control. During growth 2M sodium 

hydroxide was added as required to maintain a neutral pH.

4.2.4 Computer Process Control and Data Acquisition System

The laboratory scale fermenters were under the control of a Fisher Provox Process Control 

System enhanced with a Hewlett Packard A series supervisory computer. The coupling of 

these two systems enabled the following range of facilities for all fermentations:

1. monitoring directly measured variables;

2. mathematical manipulation of acquired data;

3. control loop implementation;

4. on-line display of process data;

5. sequential (batch) control;

6. archival of batch data.
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Figure 4.1: Process control and data acquisition system (adapted from D.R. Omstead, K.D.
Reda, J.M. Maglaty, T.D. Harrington, 'Continuous and Batch Control of 
Fermentors', MSDRL report).

Examples of these capabilities are described below. The complete process control and data 

acquisition system is summarised schematically in Figure 4.1.

4.2.4.1 Directly M easured Variables

The variables that were monitored directly, via analog to digital conversion, are listed in 

Table 4.2.

4.2.4.2 Derived Variables

Most data obtained from a fermentation require some form of mathematical manipulation, 

whether it be a simple linear scaling to produce engineering units or a more complicated 

combination of variables to provide more useful information. The variables calculated by the 

supervisory computer from the fermentation data are listed in Table 4.2.
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DIRECTLY MEASURED 
VARIABLES

DERIVED
VARIABLES

Tem perature Carbon Dioxide Evolution Rate

Dissolved Oxygen Tension Oxygen Uptake Rate

P ressure Respiratory Quotient

pH

Air Flow Rate

Agitation Rate

Vent G as Composition

Volume

Cumulative Alkali Addition

Table 4.2: Directly measured and derived variables monitored by the Provox and
host computer.

4.2.4.3 Controlled Variables

Temperature, pressure, pH, dissolved oxygen, air flow rate and agitation rate were 

controlled by the Fisher Provox Process Control System. Most of the parameters were under 

set point control using the standard proportional, integral, derivative (PID) algorithm.

Dissolved oxygen was under cascade control with, firstly, the air flow rate and, secondly, the 

agitation rate. In this the output from a standard PID dissolved oxygen control loop is 

cascaded to control the set point for the air flow rate. When the air flow rate reaches a 

pre-specified maximum value the dissolved oxygen control loop output then dictates the set 

point for the agitation rate (Buckland 1990). The relationships between the dissolved 

oxygen value and the air flow rate and agitation rate set points were previously coded into 

the Process Control System.
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4.2.4.4 Sequential Control

Automatic sequential control was used to provide a reproducible sterilisation sequence for 

all fermentation batches. This process is essentially the opening, closing and adjustment of 

utility valves such that the temperature in a fermenter rises to 122°C for a predetermined 

time and is then systematically lowered to the required operating temperature. As described 

earlier, the valve controlling the steam flow to the broth was adjusted manually to 

compensate for fluctuations in the steam supply. A simplified description of the sterilisation 

sequence is given in Table 4.3.

STEP
LABEL

BASIS FOR 
ACTION

CONTROL
ACTION

Heat Start O pen jacket steam  valve 
C lose air inlet

Heat filter When T=95°C Open filter steam  valve

Superheat When T*105°C Set vent orifice

Sterilise When T=122°C Control tem perature 
Start timer

Cool When time -  
hold time

Close steam  valves 
O pen city w ater valves

Hold When T-50°C Close city w ater valves 
O pen chilled water valves

Table 43: Steps in the sterilisation sequence for the Biolafitte fermenters.
(Adapted from D.R. Omstead, ‘Computer Applications in Fermentation 
Processes’, MSDRL report).

4.2.4.5 Data Archival

All monitored variables from the fermenters were stored in two column ASCII format 

(time,value) on the host computer. Each different variable was stored in a separate file 

which was labelled by batch number and variable type for ease of recognition.
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4.2.5 Sampling

Samples of 20 to 40 mL were aseptically removed from the fermenters at one to two hourly 

intervals for off-line analysis of biomass concentration by optical density and dry weight, 

glucose concentration and aFGF concentration. Samples were put on ice as soon as they 

were removed from the fermenter so as to slow down metabolic activity as quickly as 

possible and thus obtain a more accurate picture of the state of the culture at the time of 

sampling. Broth samples were stored at -18°C prior to aFGF analysis.

A small amount of inoculum from each batch was reserved for determination of the optical 

density and glucose concentration of the seed culture at the time it was introduced to the 

fermenters. Again this was stored on ice until the measurements were taken.

4.2.6 Analytical Techniques

In each of the techniques described below the preparation and measurement process was 

performed three or four times on each sample. The SmartWare II spreadsheet (version 1.02, 

Informix Software Inc., Menlo Park, CA) was used to obtain average values and standard 

deviations for each sample. Average standard deviations for each off-line variable were 

calculated for use in the simplification routines: this required averaging the standard 

deviation of all samples from all the experimental fermentations. The results were stored in 

four columns (time, average value, minimum value, maximum value) in files for input to the 

simplification routines (DSIMP, described in Chapter 3). For each set of readings 

Chauvenet’s criterion (Holman and Gajda 1978) was used to test for outliers which were 

discarded when found (Appendix 2).

4.2.6.1 Biomass M easurement by Optical Density

Whole broth was accurately diluted with deionised water to obtain an optical density reading 

of between 0.2 and 0.5 units at 550 nm. A Bausch and Lomb Spec 20 spectrophotometer was 

used. The biomass concentration was expressed in grams of biomass per litre of broth by
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correlating the optical density readings with dry cell weight measurements (Section 4.3.2.1).

4.2.6.2 Biomass M easurement by Dry W eight

10 mL of whole broth were vacuum filtered through a pre-weighed Millipore HA 0.45 pm 

filter using a Gelman Sciences Vacuum Filtration Manifold. The filter was washed with the 

same volume of deionised water and microwaved in a Micro-Mite Conair Cuisine 

microwave for 10 minutes, allowed to cool and reweighed to give the dry cell weight of the 

broth.

4.2.6.3 Glucose Assay

A Beckman Glucose Analyzer was used to measure the glucose concentration in the 

fermentation broth. Deionised water was used for dilution as required.

4.2.6.4 aFGF Crude HPLC Assay

Broth samples were prepared for aFGF analysis as follows. A known volume of broth (V) 

was spun for 15 minutes at 5600 rpm in a Beckman TJ-6 centrifuge. 0.5*V mL of 6M 

guanidine hydrochloride were added to the pellet and mixed at room temperature for 5 to 

15 minutes. 0.5*V mL of 0.1% trifluoroacetic acid were added to the suspension and 

microcentrifuged in eppendorf tubes for 30 seconds. The supernatant was filtered through a

0.45 pm CR PTFE Gelman Acrodisc for HPLC analysis.

A Spectra-Physics HPLC system was used for the detection of aFGF in the prepared 

samples. The HPLC system consisted of a Spectra-Physics SP8800 ternary HPLC pump, 

SP8880 autosampler and SP4400 integrator, and a LDC/Milton Roy Spectro Monitor III 

detector. 20 pL of prepared sample were injected onto a Polymer Laboratories 

PLRP-S 8 300 A column (# 1512-1801) operated at 60°C. A gradient solvent system was 

employed: solvent A was 0.05% trifluoroacetic acid in HPLC grade water, solvent B was 

60% acetonitrile and 0.05% trifluoroacetic acid in HPLC grade water. With a flow rate of
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1 mL/min the mobile phase was initially 70% A and 30% B, after 0.3 minutes equal 

amounts of A and B were pumped through the column, at 9 minutes the proportion was 

40:60 A:B, and at 9.1 minutes the original proportions were resumed, the elution was 

complete after 15 minutes. UV absorbance of the column effluent was monitored at 220 nm. 

An aFGF standard, supplied by MSDRL, was used to provide a calibration curve for 

conversion of the absorbance values of the fermentation samples to aFGF concentrations.

4.2.6.5 Spectroscopic Analysis

The absorption spectra of pre- and post-sterilisation fermentation broths were used to 

investigate the effects of sterilisation on the protein component of the broth (Section

4.1.2.1). The absorption spectra were obtained by scanning spectroscopy using a Hewlett 

Packard 8451A Diode Array Spectrophotometer. The broth samples were diluted 1:10 with 

deionised water and scanned at wavelengths from 190 nm to 820 nm.

4.2.7 Data Analysis Tools

Tools for the comparative analysis of fermentation data were described in the previous two 

chapters. These tools were used for the analysis of the twelve aFGF fermentations described 

above. The application of the comparative analysis tools was divided into two parts: 

preparation of the data and comparative reasoning as summarised in Figure 4.2 and 

described below.
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linearised datadata base tables

Record batch sheet data 
in data base

Calculate descriptive data 
and associated uncertainties; 

record in data base

Pretreatment of data; 
remove extraneous data; 
determine goodness of fit criteria

DSIMP:
input data and goodness of fit criteria; 
piecewise linearisation of data; 
storage of results in ASCII files

To comparative analyses To comparative analyses

Complete data base tables Complete set of linearised data
from two fermentations from two fermentations

qualitative descriptions

list of differences 
between 

data base entries

match record

list of differences 
between 

time variant data

difference summary

Comparison of entries in 
data base tables

INTERPRETER 
Manual interpretation of the match record

INTERPRETER 
Manual interpretation of the difference summary

MATCHER:
Compare the qualitative labels of corresponding 
linear data pieces from the two data sets

QUAL:
Define qualitative rulers for magnitude, duration, 
slope and starting position;
Describe data qualitatively using above rulers and a  
direction indicator

Figure 4.2: Summary of the process by which the comparative analysis tools were applied to the 
aFGF data. The data from all twelve fermentations were prepared as described in 
the upper part of the diagram (’DATA PREPARATION’). The analysis of any two 
fermentations then proceeded through the 'COMPARATIVE ANALYSES' steps. 
DSIMP, QUAL and MATCHER are FORTRAN computer routines that were 
described in Chapter 3. The data base was described in Chapter 2. The terms in 
italics are the outputs from each step.
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4.2.7.1 Data Preparation

The data from all twelve aFGF fermentations were treated in the same manner prior to the 

comparative analysis.

1. The time invariant batch sheet data and any comments on the experiments were

recorded in the data base tables described in Chapter 2.

2. Descriptive data were calculated using the SmartWare II spreadsheet (version 1.02,

Informix Software Inc., Menlo Park, CA) and included in the data base tables (Section 

4.3.1.2).

3. On-line time variant data were ‘cleaned up’ by removing all data recorded prior to

inoculation and subsequent to harvesting. This was carried out in the SmartWare II 

spreadsheet environment.

4. The first major step in the comparative analysis of time variant fermentation data was 

the simplification of each data set into piecewise linear segments using a FORTRAN 

program, DSIMP, which was described in Chapter 3. The inputs required for this 

routine were:

• time, mean value, minimum value and maximum value at each sample point for

each off-line data set;

• the average standard deviation over all data sets for each off-line variable;

• time and value at each sample point for each on-line data set;

• the goodness of fit value for each on-line variable.

Where necessary, the SmartWare II spreadsheet was used to calculate these values.

Each of these processes is described in detail in Section 4.3.
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4.2.7.2 Comparative Reasoning

For any two fermentations being compared in this work the comparative analysis process 

was as shown in the second part of Figure 4.2. The simplified time variant data were 

described in qualitative terms and compared using two FORTRAN programs, QUAL and 

MATCHER respectively, described in Chapter 3. The results of this comparison and the 

comparison of the data base information were then combined in a difference summary which 

was interpreted manually.

A difference summary lists all the differences between the two fermentations being 

compared. The interpretation of each difference summary required the distinction between 

causes and effects. The analyst had to establish which data were indicative of performance 

changes within the fermenter, these are the effects which necessarily must have been a result 

of a perturbation to the system, ie a cause. The perturbation to the system may be obvious, 

such as a different fermenter, it may be intentional, such as a change in the length of 

sterilisation, or it may be unintentional, such as a faulty control variable. Links between 

causes and effects were made by careful analysis of the difference summaries. The data 

which were indicative of performance changes in the aFGF fermentations are listed in Table

4.4. A difference in any of these variables between two fermentations was indicative of a 

perturbation to the system.

TIME INVARIANT DATA TIME VARIANT DATA
INDICATIVE OF INDICATIVE OF

FERMENTATION FERMENTATION
PERFORMANCE PERFORMANCE

Harvest time Biomass
aFGF titres Glucose

Carbon dioxide evolution rate 
Dissolved oxygen tension 
pH
Agitation rate 
Air flow rate 
Alkali addition

Table 4.4: The data reflecting the dynamics of the aFGF fermentations. Any
differences detected in these variables during the comparative analyses 
were indicative of variations in the performance of the fermentation.
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4 .2 .8  D ata A nalysis P rotocol

The analysis of the twelve aFGF fermentations was carried out after completion of the 

experiments. The analysis protocol was as follows:

1. the reproducibility of the aFGF fermentation was examined;

2. features in the time variant data were identified;

3. the specific research objectives were investigated.

4.2.8.1 Reproducibility

The aim of most fermentation research work is to investigate the behaviour of a process in 

different environments. As described in Chapter 1 this investigation involves a comparative 

analysis of data from experiments in which the microorganism is exposed to the different 

environments. For the comparative analysis of the data to be valid it is essential that the 

process is approximately reproducible: if fermentations run under identical conditions do not 

exhibit similar behaviour it is not possible to divorce the effects of enforced operating 

condition changes from those of unknown factors.

A particular fermentation process is considered to be reproducible if two fermentations, run 

under identical conditions, show no difference in performance when compared using the 

comparative analysis tools described in the previous section. The indicators of performance 

for the aFGF fermentations were listed in Table 4.4. The reproducibility of a particular 

fermentation process needs to be demonstrated only once.

The steps involved in examining the reproducibility of the fermentations were:

1. pairs of fermentations were selected, from the data base, such that the only intentional

differences were the fermenters used and/or the inoculum and/or the date of operation;

2. the time invariant data and linearised time variant data from each pair of fermentations 

were compared using the comparative analysis tools as described in the lower part of 

Figure 4.2;

3. the results, ie difference summaries, were searched for evidence of reproducibility;
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4. where differences in performance were found in these supposedly identical 

fermentations, attempts were made to explain the differences using the information in 

the difference summaries; conclusions were recorded in the data base comments fields 

and were utilised in the subsequent analyses.

The search for pairs of ‘identical’ fermentations must be described in more detail. In this 

work the pairs of fermentations that had been operated under supposedly identical 

conditions were identified by the analyst. These batches were then extracted from the data 

base tables using the batch number as the identifier. This was possible because of the small 

number of fermentations and because the experimental programme had been designed to 

provide repeated batches. In other situations it may be necessary to compare the batch sheet 

tables of the data base to find suitable fermentations. However, a well designed 

experimental programme will always provide repeats and pairs could be identified in the 

comments section of the appropriate records in the data base.

4.2.8.2 Features o f the Data

The linearised time profiles produced by DSIMP, the linearisation routine, were arranged in 

two ways for analysis:

1. all profiles of one variable were grouped together and compared from batch to batch 

using the comparative analysis tools QUAL and MATCHER as described in the lower 

part of Figure 4.2;

2. all profiles of one fermentation were grouped together to identify features in the data: 

when the end points of the linear segments from different variables occurred at 

approximately the same time a correlation between the variables was noted thus 

improving understanding of the fermentation.

The fermentations that were used to identify features of the aFGF data were those that had 

been designated as ‘identical’ fermentations in the investigation of reproducibility. The 

identification of features of the data sets is described in more detail in Section 4.4.2.
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4.2.8.3 The Research Objectives

The effects of the different sterilisation regimes and inoculum concentrations were assessed 

by comparing the data from the appropriate fermentations using the comparative analysis 

procedure described in Figure 4.2. The identified data features and information from the 

reproducibility investigations were used in the analysis.

4.3 Data Preparation

The first step in the analysis of the aFGF fermentations was the preparation of the data for 

comparative analysis. The batch sheet data and experimental observations were recorded in 

data base tables, descriptive data quantities were calculated and recorded in the data base 

tables, and the time variant data were simplified by piecewise linearisation after determining 

appropriate fitting criteria. These processes are described below.

4.3.1 Time Invariant Data

4.3.1.1 Batch Sheet Data

The batch sheet data, recorded for each batch, are summarised in the example in Table 4.5. 

Most of this information was provided prior to start-up of each batch. However, some data 

were dependent on occurrences during the run, thus the batch sheets required updating. For 

example, post-sterile volume and pH were added after sterilisation, while the duration of the 

fermentation and any changes to operating conditions were added after each run was 

completed.

Quantitative data generally have some inherent uncertainty in the measurement. For 

comparative purposes it is therefore not feasible to consider a single value as being 

representative of the measurement. As mentioned in Chapter 2, numerical data must be
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FERMENTATION DETAILS

Batch Number: C447
Organism: Escherichia coli
Type: Bacteria
Strain: DH5
Plasmid: PKK2.7
Organism  id: ***

O 2  Requirement: Aerobic
Mode of Operation: Batch
Aim: Production
Product: aFG F
Number of S tages: 2
S eed  Type: Frozen Suspension

STAGE DETAILS

Stage: 1 2

Vessel: 2 L Erlenmeyer Flask 15 L Biolafitte BL4
Liquid Volume: 0.3 L 10 L
Start Date: May 30, 1990 May 31, 1990
Start Time: 20:00 h 8:00 h
Length: 12 h 30 h
Inoculum Volume: 0.6 mL 100 mL
Medium: MedM1 Med M2

MEDIUM DETAILS (MedM1 and MedM2)

MEDIUM STERILISATION
COMPONENT GROUP

G lucose 1
Heat Labile Components 2
Heat Reactive Com ponents 1
Other 3

Note: MedM1 contains no inducer (lactose)

I

Table 4.5(a): Batch sheet information for aFGF fermentation (Batch C447)
(continued in Table 4.5(b)).
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STERILISATION DETAILS

GROUP METHOD DETAILS

1 Autoclave 123°C; 15psig ; 90 mins

2 Filter 0.22pm  cellulose acetate

3 In situ steam 122°C; 15psig ; 20  mins; V0*7.5 L;
sterilisation Vf-7.6 L; pHo-7.2; pHf=7.0

INITIAL CONDITIONS

VARIABLE TYPE OF CONTROL SET POINT

Tem perature
Pressure
Air Flow
Agitation
pH
DO

Auto
Auto
C ascade from DO 
C ascade from DO 
Auto 
Auto

37°C 
5 psig 
4.9 Ipm 
375 rpm 
7.0
> 20 % sat.

FEEDS

MATERIAL CONC METHOD BASIS

NaOH 2M On dem and pH < 7.0

Table 4.5(b): Batch sheet information for aFGF fermentation (Batch C447) 
(continued from Table 4.5(a)).
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recorded in the data base as an interval covering the range of possible values for that 

particular quantity. When comparing the quantity with one from another data base record 

overlapping intervals indicate similarity. In this work uncertainty intervals were required for 

the broth volumes before and after sterilisation, the pH values of the broth before and after 

sterilisation, and the optical densities and glucose concentrations of the inocula prior to 

inoculation.

Broth volumes were read from a scale marked in 0.5 L increments on the sight glass of the 

fermenters. The measurements were assumed to be within 0.25 L of the true value, that is 

half of the smallest interval on the scale, as per engineering convention, and were recorded 

as an interval from the smallest possible value to the largest possible value. This can be 

done automatically by programming the data base management system to convert the single 

value input to a range according to a pre-recorded error convention.

Individual pH values before and after sterilisation were also recorded as a range, 

encompassing 0.05 pH units either side of the recorded value. The accuracy of a pH meter 

would normally be 0.01 to 0.02 pH units, however, after sterilisation the pH meter must be 

recalibrated which involves aseptically removing a sample of sterile broth, measuring the pH 

of the broth on a separate pH meter and adjusting the fermenter pH meter as appropriate; the 

resulting calibration, and any subsequent recalibrations, can only be approximate.

The inoculum data (optical density and glucose concentration) were recorded as a range 

from the minimum to the maximum of the measured values for each inoculum. This can be 

misleading as one extremely large or small measurement could distort the recorded value. 

However, the application of Chauvenet’s criterion (Appendix 2) did not detect any outliers 

in the readings so this was not of great concern. These measurements were only very 

approximate: the measurements were taken up to an hour after inoculation and, even though 

stored on ice in the meantime, it is conceivable that further growth had taken place; also the 

inoculation flask may not have been well mixed during inoculation thus resulting in an 

unrepresentative sample.

4.3.1.1.1 Media Changes Caused by Sterilisation

As the aim of the experiments was initially to determine the effect of sterilisation conditions 

on the performance of the fermentation, the batch sheet data that show changes in the 

fermentation broth during sterilisation are highlighted here.
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Figure 4.3: Changes in pH of aFGF fermentation broths over sterilisation.
Sterilising for 90 minutes with no glucose present and sterilising 
with glucose in the bulk medium resulted in significant changes 
in the pH of the broth.

The most common indicator of medium changes during sterilisation is the broth pH. A 

summary of these results is presented in Figure 4.3. These data were recorded in the batch 

sheet with error bounds of 0.1 pH units either side of the calculated value (when adding or 

subtracting values their absolute errors are summed). It is evident from Figure 4.3 that, 

during sterilisation, the broths in fermenter BL3 consistently had less of a decrease in pH 

than the broths in BL4. Significant changes in broth pH were seen when the medium was 

sterilised for 90 minutes with no glucose present and when the medium was sterilised for 20 

or 60 minutes with glucose in situ. These are discussed in more detail in Section 4.4.

The absorption spectra of pre- and post-sterile fermentation broths were investigated as an 

alternative indicator of the effects of sterilisation on the media (Section 4.1.2.1). These 

measurements were taken after completion of all the fermentations, using broth samples that 

had been stored at -18°C. Not all broths were analysed. The broths measured showed strong 

absorbance at wavelengths of approximately 210 nm, most likely as a result of the peptide

X
*

Ferm enter BL3 
Ferm enter BL4

X C 449

X C446

*  C444

X C 4 4 3

:C447, C452 
-C442 
[C451 
IC441

■C440

[C439

*  C450

 1 1 1 1 1
20 min 60 min 90 min 20 min 20 min 60 min 

no glucose no glucose no glucose no glucose glucose glucose
slow cool

Sterilisation Conditions
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bonds in the protein source, and 255 nm, as a result of the presence of either aromatic acids 

or disulphide bonds (Schmid 1989). Both the wavelength and absorbance of each absorption 

peak were recorded in the batch sheet; the accuracy of the readings would be greatly 

improved if they could be taken directly from a microprocessor attached to the 

spectrophotometer rather than reading the values from the hard copies of the spectra.

The absorption spectra of pre- and post-sterilisation broths of batch C447 (sterilised for 20 

minutes with no glucose in the medium) are shown as an example in Figure 4.4. There was 

no change in the absorption spectrum of the broth during sterilisation. The results of all the 

absorption readings are summarised in Table 4.6 and the changes in absorption over 

sterilisation are summarised in Figure 4.5. Significant changes in absorption at both 210 nm 

and 255 nm were observed in the two batches sterilised with glucose in the bulk medium, 

these changes increased with increasing length of the heating process. These effects are 

discussed in more detail in Section 4.4.

3

2

1

0
820190

Wavelength (nm)

Figure 4.4: Absorption spectra of pre- and post-sterile fermentation broths of batch C447. The 
absorption spectrum of the broth did not change during sterilisation. A number of 
the pre-sterilisation broths exhibited the same spectrum, thus this was defined as the 
standard.
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PRE-STERILE
ABSORBANCE

POST-STERILE
ABSORBANCE

BATCH at at at at
NUMBER 210 nm 255 nm 210 nm 255 nm

C439 N/A N/A 2.39 0.75
C440 N/A N/A 2.39 0.75
C441 N/A N/A N/A N/A
C442 N/A N/A 2.42 0.61
C443 2.57 0.95 2.39 0.69
C444 2.57 0.95 2.57 0.95
C446 2.57 0.89 2.79 1.68
C447 2.57 0.95 2.57 0.95
C449 2.57 1.35 3.00 2.25
C450 2.57 0.84 2.57 0.95
C451 N/A N/A 2.42 0.78
C452 N/A N/A 2.57 0.89

Table 4.6: Summary of absorbance spectra for aFGF fermentation broths. The
absorbance maxima occurred at wavelengths of approximately 210 nm 
and 255 nm. The changes that occurred during sterilisation are 
indicative of changes in the protein components of the media. (N/A = 
data not available).

C447 C443 C444 C450
Batch Number

C446 C449

3 - -

8

■ ■■ /  /H;: V

C447 C443 C444 C450 C446 C449
Batch Number

n  Pre-Sterile Broth; 0  Post-Sterile Broth

Description of fermentations: C447: 20 minute sterilisation, no glucose present 
C443: 90 minute sterilisation, no glucose present 
C 444:90 minute sterilisation, no glucose present 
C450: 20 minute sterilisation, slow cool, no glucose present 
C446: 20 minute sterilisation, glucose present 
C449: 60 minute sterilisation, glucose present

Figure 4.5: Changes in the absorbance of some of the fermentation broths over sterilisation. The
wavelengths at which maximum absorption occurred were approximately 210 nm and 255 
nm. The most significant changes occurred when glucose was present in the medium 
during sterilisation (C446 and C449). The protein component of batch C443 was diluted 
due to poor control of steam injection and this resulted in a decrease in the absorption 
levels at both wavelengths.

Chapter 4 135



A number of the pre-sterile broths had identical absorption characteristics, this spectrum was 

thought to be most representative of the fermentation media prior to sterilisation and thus 

was identified as the standard (Figure 4.4).

The measurement of absorption spectra was found to be rapid and the results were very 

reproducible and extremely useful, as will be demonstrated later in this chapter.

4.3.1.2 Descriptive Data

The descriptive data consisted of the ‘recommended harvest time’ (th), the aFGF 

concentration at the recommended harvest time (aFGFh), the maximum aFGF concentration 

(aFGFm), the time at which this maximum aFGF concentration occurred (tm). These values 

were defined and calculated as described in the following sections and were recorded in the 

data base tables. The correlation between optical density and dry cell weight was also 

considered to be a descriptive entity but is described in Section 4.3.2.1 with the optical 

density and dry cell weight data.

4.3.1.2.1 The Recommended Harvest Time

During aFGF production the broth is usually harvested before the glucose concentration has 

fallen to 5 g.L'1, so as to avoid the problems that may occur when the microbial metabolism 

switches from utilisation of glucose to utilisation of other carbon and nitrogen sources such 

as amino acids. This point is termed the ‘recommended harvest time’ (th) and typically 

occurs about 15 hours after inoculation. Most of the fermentations were run for 

approximately 25 hours, allowing them to progress past the recommended harvest point. 

This was done to obtain as much information as possible from each fermentation but, as the 

metabolism of the organism changes after glucose exhaustion, data obtained after th have no 

direct bearing on the industrial aFGF production process.

During production the harvest point is predicted by extrapolating the glucose concentration 

profile, which is usually approximately linear approaching 5 g.L'1. The linearisation of the 

glucose profiles using DSIMP roughly simulates the on-line extrapolation procedure and so 

was used to find the approximate harvest points by linear interpolation. The results are
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presented in Table 4.7 and were included in the data base tables.

The accuracy of the recommended harvest point could not be determined. It was thus 

recorded in the data base without the error bounds required for comparisons. However, the 

similarity of the recommended harvest points from separate batches could be obtained from 

comparison of the respective glucose profiles as described in Section 4.4.

4.3.1.2.2 Characterisation of aFGF Production

All aFGF titres were converted to normalised units.L'1 and normalised units per gram of dry 

cells (Appendix 3) for proprietary reasons. The results are presented as time profiles in 

Appendix 3. The crude HPLC analysis of aFGF was found to be very unreliable with 

relative errors of up to 60% of the mean aFGF value calculated. The HPLC technique only 

gave an approximation of the relative levels of aFGF.

The relatively infrequent aFGF measurements and the unreliability of the results precluded 

the use of the linearisation routine, DSIMP, on the product profiles. The remaining 

comparative analysis tools, QUAL and MATCHER, could also not be used on the aFGF 

profiles. aFGF production was thus described by way of the aFGF concentration at the 

recommended harvest point (aFGFh) and the maximum aFGF concentration achieved during 

the fermentation (aFGFm). The calculations are presented in Appendix 3. At each sample 

point the aFGF concentration was recorded as an interval incorporating an appropriate 

measure of the spread of the repeats (Appendix 3). The maximum aFGF value, for each 

batch, was taken as the aFGF range which contained the largest of the maximum values. 

The true maximum aFGF value could not be accurately determined because of the low 

sampling frequency. The harvest aFGF value was estimated at the recommended harvest 

point, ie the time at which glucose reached 5 g .L 1. In these calculations it was assumed that 

the true aFGF profile, between any two sample points, was linear, making this an extremely 

approximate determination. The aFGF harvest values were calculated by linear interpolation 

to give an expected value and its associated uncertainty and then converted to an interval so 

as to facilitate comparisons (Appendix 3). The results of the aFGF calculations are 

summarised in Table 4.7 and were recorded in the data base tables.
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a)
BATCH

NUMBER
HARVEST 

TIME (th) 
(h)

aFG F <3> th 
(aFGFSh) 
(units.g '1)

aFGF @ th 
(aFGFvh) 
(units.L*1)

C439 17.5 2.9 - 3.4 42.1 - 53.2
C440 14.9 1 .7 -2 .5 2 2 .8 -3 1 .7
C441 16.4 4.0 - 4.8 65.4 - 74.4
C442 14.7 4.1 - 4.9 61.1 -7 2 .3
C443 16.8 2.2 - 2.6 28.8 - 38.7
C444 15.4 2.5 - 3.2 37.9 - 48.4
C446 13.6 1.9 - 2.6 1 3 .3 -2 4 .8
C447 14.8 3.3 - 3.8 48.9 - 58.5
C449 12.4 0.2 - 0.6 00.0 - 6.96
C450 14.7 1 .4 -1 .6 1 7 .9 -2 7 .2
C451 15.1 1 .5 - 1.7 25.1 - 34.0
C452 16.0 2.4 - 3.0 34.8 - 47.4

b)
BATCH

NUMBER
TIME OF 

MAX aFGF 
(h)

MAX aFG F 
(aFGFsm) 
(units.g '1)

MAX aFG F 
(aFGFvm) 
(units.L*1)

C439 25.0 3.1 - 3.7 54.6 - 67.2
C440 14.0 1.7 - 2.8 23.0 - 35.6
C441 18.0 5.0 - 6.1 9 0 .6 -1 0 3 .2
C442 14.2 4.2 - 5.1 6 1 .7 -7 4 .3
C443 10.0 2.2 - 2.8 29.7 - 42.3
C444 18.0 2.7 - 3.3 44.5 - 57.1
C446 18.0 2.1 -2 .6 22.3 - 34.9
C447 16.0 3.2 - 4.1 60.8 - 73.4
C449 19.9 1 .0 -1 .6 9.7 - 22.3
C450 17.9 2.7 - 3.6 47.3 - 59.9
C451 18.0 2.2 - 2.8 44.6 - 57.2
C452 18.0 2.4 - 3.0 44.3 - 56.9

Table 4.7: aFGF harvest values (a) and maximum values (b) for each aFGF
fermentation. The aFGF values are given in specific terms, ie 
normalised units per gram dry weight of cells, and in volumetric terms, 
ie normalised units per litre of broth.
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4.3.1.3 Expert Comments

Comments made about the fermentations included such observations as the colour of the 

broth subsequent to sterilisation and the occurrence of any operational faults. These will be 

reported as necessary in the following discussion.

4.3.2 Off-Line Time Variant Data

The off-line measurements made during the aFGF experiments consisted of the optical 

density of the broth, the dry cell weight, the glucose concentration and the aFGF 

concentration (discussed in Section 4.3.1.2). These off-line measurements were investigated 

for the presence of outliers, their accuracies were determined, conversions to meaningful 

data were made and the goodness of fit criteria, for use in the linearisation routine (DSIMP), 

were calculated.

Chauvenet’s criterion (Holman and Gajda 1978) did not detect any outliers in the off-line 

data from the laboratory scale experiments (Appendix 2). This does not indicate that the 

data were ‘good’ but rather that there was no evidence to assume that any of the readings, for 

any one sample, were significantly different.

A summary of the accuracy of each monitored off-line variable is given in Table 4.8 and the 

goodness of fit criteria used in the simplification routines are listed in Table 4.9.

4.3.2.1 Biomass Concentration

The biomass concentration was initially determined by measuring the dry cell weight of the 

broth samples. The relative error in these measurements was approximately 10% on values 

ranging from 0.4 g.L'1 to 17.8 g.L'1. Dry cell weight measurements were made less 

frequently than optical density readings because they were considerably more time 

consuming and generally less reproducible (the relative error in the optical density readings 

was 2%). The dry cell weight measurements were used to find the relationship between the
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OFF-LINE
VARIABLE

MIN
VALUE

MAX
VALUE

AVE
STD
DEV

AVE
ABS

ERROR

AVE
REL

ERROR

MAX
REL

ERROR

Optical
Density

0.7 42.3 0.4 0.3 2% 8%

DCW (1) 
(g-L1)

0.4 17.8 0.6 0.4 10% 60%

DCW (2) 
(g-L-1)

0.7 20.0 0.2 0.1 2% 20%

G lucose
(g-L'1)

0.2 34.1 0.5 0.4 2% 10%

aFG F
(units.L'1)

1.2 96.9 2.1 1.5 10% 60%

aFGF
(units.g '1)

0.3 5.5 N/A 0.3 20% 70%

Table 4.8: Accuracy of off-line monitored and derived variables.
(DCW (1): measured dry cell weight; DCW (2): dry cell weight from 
regression; std dev: standard deviation; rel error: relative error; abs 
error: absolute error)
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VARIABLE GOODNESS OF FIT (GOF) 
CRITERIA

GOF 
(MIN GOF)

Glucose within bounds se t by range 
(minimum -  3 * average std dev) (1.5 g.L '1)

Dry Cell Weight within bounds se t by range 
(minimum ■ 3 * average std dev) (0.5 g.L '1)

CER 4%  of average maximum value 3.85 arb. units

pH estim ated m easurem ent precision 0.05

DOT estim ated m easurem ent precision 2 % air sat.

Air Flow Rate estim ated m easurem ent precision 0.5 L m in '1

Agitation Rate estim ated m easurem ent precision 10 rpm

Alkali Addition estim ated m easurem ent precision 0.5

Tem perature
(sterilisation)

estim ated m easurem ent precision 1 °C

Table 4.9: Goodness of fit criteria for the fermentation variables simplified using
DSIMP.
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optical density and dry cell weight so that optical density measurements alone could be used 

to determine the approximate biomass concentration in the broth.

Optical density readings are affected by the presence of coloured substances in the broth 

which cause background absorbance. It would be expected that, if the colour of the media 

changed, the optical density of the broth, for a given cell concentration, would also change. 

In the fermentations where glucose was sterilised in situ considerable colouring of the 

medium was observed and the longer the sterilisation the darker the colour. A rough plot of 

dry cell weight versus optical density for all the fermentations suggested the possibility of a 

difference in the correlation between optical density and dry cell weight for the batch that 

had undergone a sixty minute sterilisation with glucose in situ (C449). A statistical test was 

devised to investigate the possibility of a difference in correlations (Mendenhall and Sincich 

1988) and is presented in detail in Appendix 4.

The conclusion of the statistical analysis was that the correlation between optical density and 

dry cell weight for batch C449 was significantly different from that of all the other aFGF 

fermentations. The equations describing the relationship between optical density and dry 

cell weight were found to be:

y = -1.76 + 0.47xj for C449 (4.1)

y = 0.55 + 0.46xj for the other fermentations (4.2)

where y is the predicted value of the dry cell weight and Xj is the optical density.

The correlations are shown in Figure 4.6 and were stored in the data base tables in the 

appropriate field.

Each optical density reading was converted to a dry cell weight measurement using the 

correlation equations. These dry cell weight values were averaged for each sample and used 

as the biomass concentration profiles. Determination of the accuracy of this calculated dry 

cell weight is described in Appendix 4 and summarised in Table 4.8.

Two factors were taken into consideration when specifying the goodness of fit criterion for 

the linearisation of the biomass concentration profiles. The lines should pass within the 

range covered by the minimum and maximum measured value at each sample point, unless 

this spread is smaller than three times the average standard deviation of all samples (Section

3.2.3.2.1). The determination of the range of values must take into consideration the
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uncertainties in the regression equation and the optical density readings; the calculations are 
presented in Appendix 4.

The biomass concentration data used in the linearisation routine, DSIMP, were thus the 

mean, minimum and maximum at each sample point and the average standard deviation.

DCW -  0.55 + 0.46OD 
D C W --1.76 + 0.47OD

8--

35 4025 3010 15 200 5
Optical Density (corrected for dilution)

+ raw data for C449; ■ raw data for other batches;

 correlation for C449;  correlation for other batches

Figure 4.6: Linear correlations between optical density (OD) and dry cell weight
(DCW) for aFGF fermentations. The medium in batch C449 was 
coloured due to a long period of sterilisation with glucose in the medium 
and thus the correlation was affected.
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4.3.2.2 Glucose Concentration

The first fitting requirement in the simplification of glucose concentrations was that the lines 

should pass within the range covered by the measured values at each point. However, as 

described in Section 3.2.3.2.1, a minimum goodness of fit criterion was specified as three 

times the average standard deviation of the glucose measurements (Table 4.8).

The glucose concentration data used in the linearisation routine, DSIMP, were the mean, 

minimum and maximum at each sample point and the average standard deviation.

4.3.3 On-Line Time Variant Data

The monitored and derived on-line variables were listed previously in Table 4.2.

Before the on-line data could be used in the simplification routines it was necessary to 

remove any data that had been logged prior to inoculation, as indicated by the inoculation 

time in the batch sheets, or subsequent to harvesting, as indicated by the rapid changes in 

data values. In some fermentations the control signals from the previous fermentation were 

inadvertendy not cleared from the computer prior to inoculation; any data recorded prior to 

the clearing of these signals were removed from the data file.

A number of comments about the on-line data were recorded both during operation and in 

the retrospective analysis as described below.

The data from batches C439 and C440 may not be very accurate as all instruments were 

recalibrated after these runs.

After completion of the work it was found that there was an error in the CER and OUR 

equations on the host computer. This error affected the scale of the values but not the shape 

of the time trajectories. The CER and OUR are thus presented in arbitrary units.

The oxygen uptake rate (OUR) data were found to be unsuitable for linearisation. OUR 

data, like carbon dioxide evolution rate (CER) data, are generally useful because they can be
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correlated with the physiology and metabolism of the microorganism (Omstead et al. 1990). 

However, when the sampling frequency is low relative to the dynamics of the process, as in 

these experiments, the relatively large noise in the OUR measurements masks the true 

dynamics and precludes the use of the OUR data in further analyses. Ongoing research 

(P.N.C. Royce, UCL, personal communication) has indicated that noise in mass 

spectrometry data is approximately proportional to the size of the measurement signal. The 

maximum exit gas concentration of carbon dioxide is approximately 3% whilst the inlet 

concentration is close to 0%. These two values are subtracted from each other in the carbon 

dioxide evolution rate (CER) calculations and the resulting noise is essentially that of the 

3% signal reading. The inlet gas oxygen concentration is approximately 21% and the 

minimum outlet concentration is about 18%. The error associated with each of these values 

is approximately six to seven times that of the maximum carbon dioxide reading and, when 

the two oxygen values are subtracted from each other to give OUR, the uncertainties are 

additive giving an error of the order of fourteen times larger than the error in the CER 

values. In this work, even though the general shape of the oxygen uptake rate profiles was 

discernible to the human eye (Appendix 5, Figure A5.9), the data simplification routines 

were too sensitive to the large fluctuations that occurred and it was not possible to specify an 

adequate goodness of fit parameter for the linearisation routines. The goodness of fit 

suggested in Chapter 3, ie 4% of the maximum value, resulted in a ‘spiky’ linearisation, the 

lines followed the data too closely. The goodness of fit was increased to find a suitable 

value. A linearisation with no ‘spikes’ was obtained with a goodness of fit of nearly twice 

the initial value however the resulting fits were poor with large deviations between the raw 

data and the linear segments. Thus the simplification of the OUR data was deemed 

unacceptable. By increasing the sampling rate, relative to the dynamics of the process, it 

would be easier to extract the true trends of the process from the noise. This is shown in the 

OUR data from a mycelial secondary metabolite fermentation obtained from Merck Sharp 

and Dohme Research Laboratories (Figure 3.4(b)) where the sampling rate for mass 

spectrometry data was the same as in these experiments but the dynamics of the mycelial 

process were much slower, consequently it would be possible to simplify the OUR data and 

use it in further analyses.

As a result of the poor quality of the OUR data, respiratory quotient data (CER/OUR) were 

also unavailable.

The alkali addition data were also treated as suspect. During the initial comparative analyses 

(Section 4.4) using MATCHER (the computer routine which compares time variant data) the 

alkali addition data were often found to differ from batch to batch. On closer examination of
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the match records (produced by MATCHER) and the difference summaries it was found that 

the amount of alkali added to fermenter BL3 was consistently less than that added to 

fermenter BL4 (Appendix 5, Figure A5.6). The reasoning behind this was that the alkali 

addition pumps had not been calibrated prior to use and the conversion to a volume, utilised 

by the host computer, relied on this calibration. It was also not known whether the same 

pumps were used throughout the study or if the settings had been changed. This further 

justifies the need for strict recording of all information including pumps and pump settings. 

In the comparative analyses presented in Section 4.4, alkali addition was only recorded in 

the difference summaries if the match record showed a difference in the temporal extents of 

the linear data pieces; differences in the magnitudes, slopes and starting positions were 

ignored.

This work was carried out away from the site of the experimental research thus the 

instrument precision data, required for the specification of the goodness of fit values, were 

not available for dissolved oxygen, pH, alkali addition, air flow rate and agitation rate. 

Values were chosen based on a general knowledge of the approximate accuracies that should 

be expected from these instruments when operating in a fermentation environment. The 

goodness of fit values are listed in Table 4.9.

Temperature and pressure were controlled at a constant level throughout the fermentations, 

and thus the only information required about these data was whether or not the control was 

adequate. This information was recorded by the operator for inclusion in the data base, 

based on observations from the control system during the process.

4.3.4 Linearisation of Time Variant Data

The FORTRAN routine DSIMP, described in Chapter 3, was used to linearise the time 

variant data. The results are shown in Appendix 5 and are reproduced in the text where 

necessary to clarify discussions.
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4.4 Comparative Reasoning (Analysis and Discussion of Results)

In the previous section the aFGF data were prepared for comparative analysis. The results of 

these preparations were data base tables containing all the time invariant data and linearised 

time profiles of the time variant data. This section describes the analysis of these data using 

the protocol described in Section 4.2.8: the reproducibility of the aFGF fermentation was 

examined, features of the data were identified and the effects of sterilisation conditions and 

inoculum concentration were investigated. The analyses used the tools described in 

Chapters 2 and 3: the data base tables were used to compare time invariant data; the 

FORTRAN routines QUAL and MATCHER were used to compare time variant data; the 

results of the comparisons were summarised in difference summaries (Section 4.2.7.2) and 

interpreted manually.

As mentioned in Section 4.3.3, some data were not available for comparative analysis: 

oxygen uptake rate data, respiratory quotient data, and the magnitudes, slopes and starting 

positions of the alkali addition data.

The comparison of the recommended harvest times was not straight forward and was carried 

out manually. The comparison of quantitative data in the data base requires the 

consideration of error bounds (Section 2.2.4); however, the recommended harvest point, 

calculated from the glucose concentration profiles (Section 4.3.1.2.1), was recorded as a 

single value without error bounds. Information on the similarity of the harvest points was 

extracted from the comparison of the glucose time profiles: if two glucose profiles were 

found to be similar, the recommended harvest point of the two batches was considered to be 

similar; if two glucose profiles were different the qualitative values of the magnitudes and 

durations were summed separately, up to and including the line covering the harvest point, if 

the resulting sums for both profiles were equal then the harvest points were considered to be 

the same otherwise it was concluded that the two batches would have been harvested at 

different times. This procedure was carried out manually. Summing the qualitative values 

for magnitude and duration is, in effect, the same as overlaying the profiles, ignoring what 

happens either side of the point of interest, and determining if the glucose concentrations 

approach the harvest level at approximately similar times. The data base management 

system must contain an option to exclude fields, such as the recommended harvest time, 

from the standard data base comparisons.

The aFGF values were not very accurate and thus differences detected when comparing these
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values, whilst investigated, were treated with caution.

In the following sections the difference summaries for all the comparative analyses are 

presented and discussed. The difference summaries do not provide ‘answers’ but indicate 

which Fields in the data base tables to investigate further and which match records contain 

important information. The match records and qualitative descriptions have been presented 

along with the simplified time profiles to illustrate some of the results obtained from the 

comparative analyses of the time variant data. The profiles were not required for the actual 

analysis as all the necessary information was contained in the qualitative descriptions.

4.4.1 Reproducibility of the Fermentations

A fermentation must be shown to be approximately reproducible prior to an investigation 

into the effects of enforced operating condition changes: if a fermentation does not perform 

consistently under identical conditions it is then not possible to analyse the true effects of 

intentional changes in the fermentation environment. The information contained in this 

section, whilst not directly relevant to the investigation of the effect of sterilisation

conditions and inoculum concentration on the aFGF fermentation, provides the justification

for eliminating some of the fermentations from the study and for treating the data of other

fermentations with caution. The investigation is reported in detail to demonstrate the

utilisation of the computerised comparative analysis tools. A summary of the findings is 

presented in Section 4.4.1.6.

The fermentations used in the reproducibility investigation were:

• C439/C440 sterilised for sixty minutes with glucose sterilised

separately; the media were prepared simultaneously and the 

two batches were seeded from the same inoculum; the

fermentations were run concurrently under the same

operating conditions; different vessels were used.

• C441/C442/C447/C451 sterilised for twenty minutes with glucose sterilised

separately; the fermentations were run under the same

operating conditions; the media for C441 and C442 were
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prepared simultaneously, these two batches were seeded 

from the same inoculum and were run concurrently; 

batches C442 and C447 were fermented in the same vessel

(BL4), C441 and C451 were fermented in the other vessel

(BL3).

• C443/C444 sterilised for ninety minutes with glucose sterilised

separately; the media were prepared simultaneously and the 

two batches were seeded from the same inoculum; the 

fermentations were run concurrently under the same

operating conditions; different vessels were used.

The results of comparing the data base tables and the simplified time variant data of each 

pair of fermentations are summarised in the difference summary in Table 4.10 (the key to 

this table, and all subsequent difference summaries, is given in Table 4.11) and the

interpretation of these results is presented below.

The criterion for reproducibility is that the comparative analysis tools detect no difference in 

performance between two fermentations operated under identical conditions. The 

reproducibility of a fermentation process needs to be demonstrated only once. The 

comparison of batches C447 and C451 provided evidence of the reproducibility of the aFGF 

fermentation (Table 4.10): the MATCHER routine detected no differences in the time

variant data and the only performance differences reported from the data base comparison 

were the aFGF values which were earlier stated to be very approximate and thus of little 

value in assessing the performance of the fermentations. (The differences in the aFGF 

values are discussed later). The conclusions of the comparative analysis tools were in 

agreement with visual inspection of the time variant data from these two fermentations 

(Figure 4.7) thus demonstrating the efficacy of the automated techniques.

Eight pairs of fermentations were expected to behave similarly but only C447/C451 

demonstrated this reproducibility. Visual comparison of the time profiles of C443/C444 

(Figure 4.8), C441/C447 and C441/C451 indicated approximate similarity, however, the 

comparative analysis tools detected a number of significant differences between these

batches (Table 4.10). During visual inspection of the time profiles it was assumed that the 

uncertainties in the data were sufficiently large to account for the slight differences in the 

profiles. The computerised tools were superior to visual analysis in these situations because 

the software made use of all available quantitative data, ensuring that the variation in each
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BATCH
NUMBERS

DIFFERENCES
IN

TIME INVARIANT 
DATA

DIFFERENCES
IN

TIME VARIANT 
DATA

OBSERVATIONS

C439/C440 Tanks
Post-sterile pH

^sterilisation 
Harvest Time 
aFG Fvhi aFGFvm 
aFG FSh, aFGFsm

Sterilisation
Biomass
Glucose
CER
DOT
pH
Agitation

Medium dilution in both 
No pre-sterile abs. spec, in 

C439 and C440 
Tem perature fault C440 
Foaming C440

C441/C442 Tanks
aFG Fvm

Sterilisation
CER
DOT
pH
Agitation

Tem perature fault C442 
DOT fault in both 
Foaming C442 
No abs. spec. C441

C443/C444 Tanks
Post-sterile pH
ApHsterilisation
^^sterilisation 
Post-sterile abs. spec. 
aFGFvm

Biomass
DOT
pH
Agitation

Medium dilution C443

C441/C447 Tanks 
Inoculum 
Post-sterile pH
^^sterilisation 
aFGFVh. aFGFVm 
aFG FSh, aFGFsm

Sterilisation
Glucose
CER
DOT
pH
Agitation

DOT fault C441 
No abs. spec. C441

C442/C447 Inoculum

^sterilisation 
Post-sterile abs. spec. 
aFGFVh
aFG FSh, aFGFsm

Sterilisation
Glucose
CER
DOT
pH
Agitation

No pre-sterile abs.spec. in 
C442

Tem perature fault C442 
DOT fault C442 
Foaming C442

Table 4.10(a): Difference summary of fermentations intended to be operated under
identical conditions (continued in Table 4.10 (b)). The
abbreviations are described in Table 4.11.
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BATCH
NUMBERS

DIFFERENCES
IN

TIME INVARIANT 
DATA

DIFFERENCES
IN

TIME VARIANT 
DATA

OBSERVATIONS

C447/C451 Tanks
Inoculum

^^sterilisation 
Post-sterile abs. spec. 
aFG FSh, aFGFsm 
aFG FVh, aFGFvm

No pre-sterile abs.spec, in 
C451 

C451 shorter
No off-line da ta  first 10 h of 

C451

C441/C451 Inoculum 
^V steriiisation 
aFG FSh, aFGFsm 
aFG FVh, aFGFvm

Sterilisation
CER
DOT
Agitation

No abs. spec. C441 
DOT fault C441 
C451 shorter
No off-line data  first 10 h of 

C451

C442/C451 Tanks
Inoculum
^Vsteriiisation 
Post-sterile abs. spec. 
aFGFsh, aFGFsm 
aFGFVh, aFGFvm

Sterilisation
CER
DOT
pH
Agitation

No pre-sterile abs.spec. in 
C442 and C451 

Tem perature fault C442 
DOT fault C442 
C451 shorter
No off-line da ta  first 10 h of 

C451

Table 4.10(b): Difference summary of fermentations intended to be operated under
identical conditions (continued from Table 4.10 (a)). C447/C451
demonstrates the reproducibility of the aFGF fermentation. The 
abbreviations are described in Table 4.11.
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TABLE ENTRY EXPLANATION

abs.spec. Absorption spectrum

aFG FSh The specific aFGF concentration at the harvest time (units.g '1)

aFG F sm The maximum specific aFG F concentration (units.g'1)

aFG Fvh The volumetric aFGF concentration at the harvest time (units.L*1)

aFG Fvm The maximum volumetric aFGF concentration (units.L'1)

Batched medium The media com ponents sterilised in the fermenter by direct steam  
injection

Harvest Time Time at which glucose reached 5 g.L '1, the recom m ended harvest time

Inoculum Different source vials of inoculum were used for ferm entations carried out 
on different days

Medium dilution The bulk medium com ponents w ere diluted by excessive condensate 
accumulation during sterilisation

ApHsterilisation C hange in broth pH over sterilisation

Tanks Two ferm enters were used in the experiments: BL3 and BL4

Variable (eg pH) The match record indicated differences in the time profiles of this variable

^sterilisation Change in broth volume over sterilisation

Vq,sterilisation Broth volume prior to sterilisation

Table 4.11: Key to entries and abbreviations in difference summaries (Tables 4.10 
and 4.13 to 4.17). Other explanations are given in the text.
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Figure 4.7: Simplified time variant data from batches C447 and C451 illustrating the 
reproducibility of the aFGF fermentations. (There were no data available for the 
first 10 h of C451 glucose and biomass profiles, the dashed lines are an 
extrapolation back to the time zero concentrations).
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Figure 4.8: Simplified time variant data from batches C443 and C444. Visual comparison of
these profiles had assumed that there was very little difference between the two 
fermentations but the comparative analysis tools detected significant differences 
which were explained by the dilution of medium components that occurred in 
batch C443.
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measurement was taken into account and thereby concluded that the differences in the time 

profiles were significant. Additionally, the results of the computerised analysis were not 

prejudiced by prior expectations: even though these pairs of fermentations were expected to 

be the same, small variations were recognised and recorded. During the interpretation of the 

results the researcher may discount these variations as being unimportant but, in this case, if 

these variations had been detected whilst the experiments were still in progress further 

investigations would have been warranted.

Comparison of batches C447 and C451 demonstrated the reproducibility of the aFGF 

fermentation. The variations in the other fermentations that were expected to demonstrate 

reproducibility had to be explained before the data from these fermentations could be used in 

any further analyses. The effects of the perturbations observed during the reproducibility 

investigations are discussed in the following sections.

The data from batches C439 and C440 were treated with caution in the following analyses. 

The comparison of these two batches highlighted a number of differences in performance 

(Table 4.10); both media dilution (Section 4.4.1.2) and faulty temperature control (Section 

4.4.1.4) were possible causes. However, the accuracy of the data from these two batches was 

questionable as the fermenter instruments were not calibrated until after their completion.

4.4.1.1 Fermenters BL3 and BL4

The similarity of fermentations C447/C451 show that the two fermenters, BL3 and BL4, 

performed comparably during the course of the experiments.

The media sterilised in fermenter BL4 consistently underwent a larger change in pH during 

sterilisation than the media sterilised in BL3 (Figure 4.3). The reason for this is unknown 

but there was no apparent effect on the fermentations as shown by the similarity of 

C447/C451.
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4.4.1.2 Media Changes During Sterilisation

When direct steam injection is used for sterilisation it is inevitable that there is an increase in 

volume during the sterilisation process due to condensation of the steam. In these 

experiments the broth volume, prior to sterilisation, was set so as to allow for this volume 

increase and not dilute out the medium components.

Differences in the amount of condensate accumulated were detected in the

comparison of the batch sheet data from a number of the fermentations and recorded in the 

reproducibility difference summary (Table 4.10). This batch to batch variation was due to 

poor adjustment of the valve controlling the flow of steam to the broth (Section 4.2.3). No 

analysis of the incoming steam was undertaken so it was not known whether any impurities 

were being added during sterilisation. It is possible that the large amount of condensate 

accumulated in batch C451 (1.15 L), relative to that accumulated in batch C447 (0.1 L), was 

responsible for the difference in the absorption spectra of the post-sterile media of these two 

batches (Figure 4.9). However, without the analysis of the pre-sterile medium of C451 the 

possibility of an altered medium composition cannot be eliminated. The comparison of 

batches C447 and C451 (Table 4.10) showed that the difference in the post-sterile media had

3

2

1 -1 C447 pre and post 
2 C451 post

0
820190

Wavelength (nm)

Figure 4.9: Absorption spectra of pre- and post-sterile fermentation broths of batch C447 and 
post-sterile broth of C451. There was no pre-sterile spectrum for C451. The lower 
absorption maxima in C451 may have been the result of an incorrect broth 
composition or of changes occurring during sterilisation.
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very little effect on the performance of the fermentations. It is possible that the recorded 

difference in the product titres of the two batches was a result of the different post-sterile 

broth compositions but, with the poor aFGF data, this could not be verified. If it were found 

that a medium exhibiting a low absorbance resulted in low productivity then, based on this 

evidence, a production batch could be abandoned, or the required adjustments to the media 

made, prior to inoculation. This demonstrates the potential of scanning spectroscopy as a 

tool for fault detection in a fermentation facility.

It proved difficult to control the amount of steam introduced to the vessel and, in three 

fermentations, the volume increase was greater than anticipated and some media had to be 

removed after sterilisation to achieve the desired working volume. As a result the media 

components present during sterilisation were diluted: C439 suffered a 5% dilution, C440 an 

8% dilution and C443 a 15% dilution. The post-sterile additions to the media, such as 

glucose and lactose, were not diluted. The extent of the dilution is illustrated in the 

respective absorption spectra of the post-sterile broths (Figure 4.10). It is not known

whether the change in the absorption spectra was due solely to the diluted medium 

components or if impurities in the condensate contributed.

3

2,3

2

1 1 C447 pre and post, C443 pre
2 C439 and C440 post
3 C443 post

0
820190

Wavelength (nm)

Figure 4.10: Absorption spectra of pre- and post-sterile fermentation broths of batches C447 and 
C443 and post-sterile broths of C439 and C440. The media in C439, C440 and 
C443 had been diluted during sterilisation, this is reflected in the lower absorption 
maxima.
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In the reproducibility investigations dilution of the broth affected the comparisons of batches 

C439/C440 and C443/C444. The effects of dilution on batches C439 and C440 could not be 

isolated from the effect of the temperature fault in C440: either of these perturbations could

have resulted in any of the performance differences in these two batches. However, as

fermentation C443 suffered the largest amount of dilution, any effects resulting from 

dilution would be more evident in this fermentation than in the others. The differences 

between C443 and C444 were the changes in the medium as a result of dilution during 

sterilisation, the biomass, DOT, pH and agitation rate profiles and the maximum volumetric 

aFGF concentrations (Table 4.10). These differences can be explained with reference to the 

dilution of the broth in C443.

The effect of dilution on the absorption spectrum of the broth was described above. The

change in pH of the broth during sterilisation was significantly less in C443 than in C444,

however, it was noted earlier that the different fermenters had some influence on this.

The comparison of the biomass data of batches C443 and C444 is shown in Figure 4.11.

Qualitative Descriptions

Line Dir Mag Dur Slope Start

A1 1 1 6 2 1
A2 1 2 3 5 1
A3 1 4 4 6 3
A4 1 3 7 4 6

B1 1 1 5 1 1
B2 1 1 3 4 1
B3 1 2 2 6 2
B4 1 4 3 6 3
B5 1 3 7 4 7

B3+B4 1 6 5 6 2

g 20-.

10-.

Age (h)

— C443 (A); C444 (B)

Match Record

Lines Magnitude Duration Slope Start

A1 +B1 1 1 1 1
A2 -+B2 1 1 1 1
A3 -+B3+B4 0 1 1 1
A4 ->B5 1 1 1 1

Figure 4.11: Comparison of biomass data from batches C443 and C444. Dilution 
of the medium components in C443 resulted in a lower biomass yield 
as shown by the different magnitudes in the match record.
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The change in magnitude of the lines representing the period of fastest growth was smaller 

in C443 than in C444. It was concluded that the loss of complex broth components caused 

by dilution of the broth in C443 was detrimental to biomass production. The growth rates of 

the two fermentations were the same, as shown by the similarity in the slopes of all the 

linear data pieces in the qualitative descriptions of the profiles (Figure 4.11). There was no 

evidence that the specific production rate had been affected by the dilution.

The comparison of the pH profiles of batches C443 and C444 detected a difference in the 

temporal extent of the lines representing the control period: the time between inoculation 

and the onset of increasing pH was shorter in C443 than C444 (Figure 4.12). During the 

interval that pH is held at a constant level the organism is metabolising the glucose resulting 

in acidic products being released from the cells, the addition of alkali maintains a neutral pH 

in the broth. It would normally be expected that the end of glucose metabolism would 

correspond with the end of pH control, this is shown to be the norm in Section 4.4.2. 

However, in both C443 and C444 pH control ended before the exhaustion of glucose (Figure 

4.13) indicating that some other nutrient was limiting the growth (this is discussed further in 

Section 4.4.3.1). This growth limiting substrate was in shorter supply in C443 than in C444, 

as indicated by the earlier end of pH control in C443, implying that the substrate was present 

in the bulk media during sterilisation and was diluted in C443. The difference in the pH 

control periods was not detected in the comparison of the alkali addition profiles but was 

still thought to be a real effect: the greater number of lines in the pH profiles means that the 

duration descriptor is more sensitive than in the alkali addition profiles. The difference is 

obviously small but the detection of it was important to the analysis of the effect of dilution 

in the media. Visual inspection of the pH profiles, prior to the availability of the 

comparative analysis tools, had not detected the difference in the length of pH control in 

these two fermentations and had not observed the lack of correlation between the end of pH 

control and the depletion of glucose. Understanding of the process was enhanced by the use 

of the comparative analysis tools.

The differing post-control pH behaviours in C443 and C444 (Figure 4.12) concur with the 

expected behaviour in a medium in which the levels of secondary nutrients have been 

altered. Upon depletion of the simple carbohydrates the organism’s metabolism switches to 

utilise other carbon and nitrogen sources such as organic acids or the amino acids of any 

proteins in the medium, resulting in an increase in pH and cessation of pH control. In batch 

C443 there was a lower concentration of secondary nutrients because of the dilution that 

occurred during sterilisation and it would therefore be expected that the behaviour after 

glucose exhaustion would be different.
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Qualitative Descriptions

x
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Line Dir Mag Dur Slope Start

A1 0 1 11 1 1
A2 1 4 6 6 1
A3 -1 1 3 4 4
A4 1 4 2 8 3
A5 1 1 1 5 7

B1 0 1 13 1 1
B2 1 4 2 8 1
B4 -1 1 3 3 4
B5 1 5 2 8 4
B6 1 2 3 6 8

Age (h)

C443 (A); - J - C 4 4 4  (B)

Match Record

Lines Magnitude Duration Slope Start

A1 +B1 1 0 1 1
A2 -+B2 1 0 0 1
A3 ->B3 1 1 0 1
A4 -* B4 1 1 1 1
A5 -+B5 1 0 1 1

Figure 4.12 : Comparison of pH data from batches C443 and C444. The control period 
was longer in C444 (duration of first lines). The post-control profiles were 
initially different as shown by the poor matching in the match record. These 
differences were a result of the diluted medium in batch C443.
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Figure 4.13: The end of pH control did not correspond with glucose exhaustion in batches 
C443 and C444 which underwent prolonged sterilisations. This implied that a 
nutrient, other than glucose, was limiting the growth. The availability of this 
essential nutrient had been reduced by the excessive heat stress.
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In the aFGF experiments a high agitation rate was employed when required to maintain the 

dissolved oxygen level above 20% of air saturation; as the metabolic activity of the 

organism decreases, due to exhaustion of readily assimilated nutrients, the demand for 

oxygen decreases and the agitation rate can be lowered. A number of differences in the time 

courses of the agitation rate data of batches C443 and C444 were indicated in the match 

record of these profiles (Figure 4.14). In C443 the agitation rate was lowered more rapidly 

than in C444 implying that the supply of secondary nutrients was lower in C443 and thus 

the metabolic activity ceased more abruptly after glucose exhaustion. This would not have 

an effect on the production process as it occurred after the usual harvest time.

The reported differences in the DOT profiles occurred very late in the fermentation and 

would not have an effect on the production process but are, again, indicative of changes in 

the availability of the nutrients utilised after glucose exhaustion.

Qualitative Descriptions

Line Dir Mag Dur Slope Start

A1 0 1 14 1 1
A2 1 7 5 8 1
A3 -1 1 1 2 7
A4 1 2 1 8 7
A5 -1 5 13 6 8

B1 0 1 13 1 1
B2 1 8 6 8 1
B3 -1 3 11 4 8

800

700-■

o 500--

400-. ©

300
3020100

Age (h)

— C443 (A); _ * ~ C 4 4 4  (B)

Match Record

Lines Magnitude Duration Slope Start

A1 -*B1 1 1 1 1
A2 +B2 1 1 1 1
A3+A4 -* - - - - -
A5 ->B3 0 0 0 1

Figure 4.14: Comparison of the beginning of the agitation rate data from batches 
C443 and C444. The maximum agitation rate, used to maintain 
dissolved oxygen in the broth, was lowered more rapidly in C443 as 
shown by the comparisons of lines A5 and B3.
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It was concluded that reducing the concentrations of the pre-sterile media components by up 

to 15% has a slight deleterious effect on biomass production in the aFGF fermentation as a 

result of decreasing the supply of essential nutrients. The other effects were small and 

generally occurred after the recommended harvest time (around 16 h, Table 4.7) thus would 

not be detrimental to the production process.

The result of this comparison must be heeded when using the biomass and pH profiles of 

C443 in subsequent analyses; a note to this effect was made in the data base ‘observations’ 

field of batch C443. However, as all the differences between batches C443 and C444 were 

readily explained as being effects of the dilution of media components in C443, the data 

from these two batches was considered to be suitable for use in any further analyses.

This example demonstrates the role of the difference summary in tracing cause-effect 

relationships and stresses the importance of recording all information in the data base. An 

observation such as accidental medium dilution may easily be overlooked in manual 

analysis but has been shown to be important in interpreting the different behaviour of two 

fermentations.

4.4.1.3 Variations in Inocula

Age was used as the basis for the time of transferral of the inoculum to the fermenters. This 

is not considered to be a suitable practice as the resulting variability in inoculum condition 

and size can have deleterious effects on the ensuing fermentation (Buckland 1984). 

However, on a small scale, where the inoculum vessel is a shake flask, it is difficult to 

monitor the growth of the culture and often the only indicator available is culture age. The 

optical densities and glucose concentrations of each inoculum prior to inoculation are listed 

in Table 4.12. It is evident from the similarity of batches C447 and C451 that inocula with a 

wide range of optical densities (4.8 to 6.6) and glucose concentrations (7.4 to 8.6 g .L 1) had 

very little effect on the progress of the aFGF fermentation.

However, there is evidence that the inocula used in batches C441 and C442, which came 

from the same source vial, performed differently from the other inocula used. The difference 

summary reported variations in the CER and glucose data of batches C441 and C442 when 

compared with C447 and C451; these differences occurred in the first linear data piece, ie 

the lag phase, which is usually evidence of variations in the inoculum. It will also be shown 

later (Section 4.4.1.5) that the metabolic activity of C441 and C442 was slightly higher than
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in the other batches and more aFGF was produced. These effects are indicative of a highly 

active inoculum which may have been a result of the growth state of the bacteria at the time 

of inoculation but may also be a result of a spontaneous mutation in the recombinant 

organism. Changes in the genetic make-up of an organism cannot be routinely monitored 

and thus present a barrier to any comprehensive comparative analysis programme.

BATCH
NUMBERS

OPTICAL
DENSITY

GLUCOSE
(g.L*1)

C439 & C440 5.8 8.4
C441 & C442 6.4 7.3
C443 & C444 5.7 6.9
C446 & C447 4.8 7.4
C449 & C450 4.9 7.5
C451 & C452 6.6 8.6

Table 4.12: Inoculum data for aFGF fermentations.

Inoculum variation may have been responsible for the reported low aFGF titre in batch C451 

(Table 4.10). This was investigated further by comparing the aFGF titre of C447 with that 

of C452, which had been seeded with a smaller volume of the same inoculum as that used in 

C451. The appropriate batch to use in this investigation was found by searching the data 

base tables for a fermentation with the same inoculum identification number as C451. The 

aFGF titre of C452, 41.1 normalised units.L'1, was less than that of C447, 

53.7 normalised units.L1, but more than that of C451, 29.6 normalised units.L'1. A 

difference in the activity of the inocula of batches C447 and C451 cannot be ruled out; 

however, it is also possible that the difference in the post-sterile broths, indicated by the 

different absorption spectra values, was responsible for the lower aFGF production in C451.

The biomass and glucose profiles for C451 and C452 contained very little data in the early 

stages of the fermentations. The shapes of the biomass and glucose profiles during the 

initial growth phases were therefore not available and the effect of the inocula on biomass 

production and glucose consumption for these two batches could not be determined. 

Although this suggests a fundamental deficiency in the comparative analysis tools it should 

be noted that this lack of data would also hinder manual analysis.
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4.4.1.4 Temperature Control

A problem with the service module attached to fermenter BL4 resulted in a fault in the 

temperature control of batches C440 and C442 as noted in the batch sheet tables. The results 

of comparing these batches with other batches gave an indication of the effects a temperature 

fault has on the aFGF fermentation. The CER, DOT, pH and agitation rate profiles of 

batches C440 and C442 differed from those of the fermentations they were compared with 

(Table 4.10). The temperature excursion in C442 had no effect on the cell growth or glucose 

utilisation as evidenced by the comparisons with batches C441, C447 and C451 (the 

reported difference in the glucose profiles of C442 and C447 occurred in the lag phase, prior 

to the temperature fault). The poor temperature control in C440 had no effect on glucose 

utilisation (the differences in the glucose profiles of C439 and C440 occurred prior to the 

temperature problem). The difference in biomass between C440 and C439 may be a result 

of the difference in temperature but seems unlikely based on the evidence of C442.

The effects of the temperature fault on batch C442 were complicated by the occurrence of a 

fault in the control of dissolved oxygen which is discussed in the next section.

The CER (Figure 4.15), agitation rate and post-control pH profiles of C440 and C442 were 

very different from those of the other batches but the effects were not consistent. This was 

attributed to the differences in dissolved oxygen in the broths of C440 and C442, as 

discussed in Section 4.4.1.5, and also the fact that the fermenter instruments were 

recalibrated after batch C440 which may have caused some discrepancies in the data. 

Despite these differences, the lack of effect of temperature on the biomass and glucose data 

indicates that the aFGF fermentation is fairly resistant to brief temperature excursions.

The aFGF yield in C442, at the recommended harvest point, was higher than that in both 

C447 and C451, but comparable to the yield in C441 (Table 4.7). It was thought that the 

high yield was a result of a highly active inoculum, as the same inoculum was used to seed 

C441 and C442. The similarity of the aFGF yield at the recommended harvest point with 

that of C441 suggests that the temperature fault in C442 did not adversely affect the specific 

production rate of the organism. The high temperature in C442 probably prevented batch 

C442 from reaching the same maximum aFGF yield as C441 but the anaerobic conditions 

experienced would also have contributed to this effect, the faults could not be treated 

separately.
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Figure 4.15: 'Normal' temperature and carbon dioxide evolution rate (CER) profiles were seen in 
batch C447. Batches C442 and C440 had poor temperature control and their CER 
profiles did not follow the expected pattern.
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The differences between C439/C440 and C441/C442 could not be fully explained by the 

temperature fault because of the inconsistencies observed between the two comparisons. As 

stated earlier the data from batches C439 and C440 were suspect and should not be used in 

further analyses. The comparison of C441 and C442 is further discussed in the next section.

4.4.1.5 Dissolved Oxygen Concentration Control

The control settings did not allow a quick response when the DOT initially fell below the 

specified minimum level of 20% of air saturation. As a result the dissolved oxygen 

concentration in the broth fell below the control level for a brief period about 10 hours after 

inoculation in all the fermentations. This is seen in the raw data in Appendix 5 (Figure 

A5.4) but does not show up in the linearised data. As this occurred in all the fermentations 

its effect could not be determined.

A problem with the control of dissolved oxygen was noted in batches C441 and C442; the 

dissolved oxygen levels fell below the control level a second time, at about 13 hours (Figure

4.16). In both fermentations the point at which dissolved oxygen was lower than the 

specified minimum corresponded to the peak respiration rates indicating high levels of

metabolic activity (Figure 4.16). The effect of the low dissolved oxygen concentration in 

batch C442 was complicated by the occurrence of the temperature fault.

The linearised time profiles (Figure 4.16) showed the course of events to be as follows: 

when the CER exceeded 100 arbitrary units (approximately) the dissolved oxygen decreased 

below the minimum value of 20% of air saturation; in batch C442 the increase in

temperature, which occurred at about the same time as the dissolved oxygen fault, initially

led to a further increase in metabolic activity, as illustrated by the increasing CER, and 

consequently a further decrease in dissolved oxygen followed by a rapid decrease in

respiration; when the CER fell below 100 units the dissolved oxygen concentration returned 

to the control limit of 20% of saturation and the agitation rate was decreased as the high 

level was no longer required to maintain the dissolved oxygen level. No other aFGF batches 

had carbon dioxide evolutions rates exceeding this level of 100 units. The agitation rate and 

air flow rate upper limits were not high enough to introduce sufficient oxygen into the 

system to maintain an acceptable dissolved oxygen level during high levels of metabolic 

activity.
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Figure 4.16: Poor control of the dissolved oxygen tension (DOT) was observed in batches C441 
and C442. The DOT fell below the lower limit of 20% when the carbon dioxide 
evolution rate (CER) reached approximately 100 units. When the DOT reached 0% 
in C442 the CER decreased rapidly.
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In C442 the dissolved oxygen was reduced to 0% of air saturation. The lack of oxygen in 

the broth necessarily affected the metabolic activity of the cells. This was observed in the 

rapid decline in carbon dioxide evolution rate (which may also have been influenced by the 

high temperature). The decrease in the respiration rate of the organism allowed the 

dissolved oxygen to increase again and the cells continued to metabolise the substrates 

available. When the respiration rate of the organism slowed down the agitation rate 

decreased rapidly as the demand for oxygen lowered, this accounts for the observed 

differences in the agitation rate profiles. The lack of oxygen in the broth may also have been 

responsible for the aFGF concentration in C442 not reaching the same high level as in C441.

The DOT in C441 fell to approximately 10% of air saturation with only a brief fluctuation in 

respiration which did not significantly affect the CER, biomass or glucose time profiles as 

shown by comparison of C441 with C447 and C451 (the noted differences in CER and 

glucose occurred in the lag phase, prior to the DOT problem). The alteration in metabolic 

activity in C441 was reflected in the differences between the agitation rate profiles. The low 

dissolved oxygen concentration caused the metabolic activity of the organism to slow down, 

the oxygen requirement was therefore lower and the agitation rate decreased. The effect on 

pH was not clear as the observed differences may also have been a result of the high 

metabolic activity of the organism or the medium composition (discussed below).

In conclusion it is reasonable to assume that a reduction of DOT to 10% of air saturation for 

a brief period of time is of no consequence to the fermentation whilst DOT levels below 

10% of air saturation alter the pattern of the respiration data but have little effect on biomass 

or glucose.

It is interesting to note that the high aFGF values recorded in both C441 and C442 occurred 

after the DOT fell below the control level.

During manual analysis of the data, prior to the availability of the comparative analysis 

tools, it had been assumed that the unusual time profiles of batch C442 had resulted from the 

temperature fault and that there was no reason to assume that C441 was any different from 

C447 and C451. No connection was made between the dissolved oxygen fault and high 

metabolic activity. The computerised comparisons did not detect any differences between 

the CER profiles of C441/C447 and C441/C451 (other than in the lag phase, prior to the 

DOT problem), they were not considered significant. The connection was made obvious 

when looking at the linearised time variant data: the simplified DOT data highlighted where 

the fault occurred and the coincidence with the high metabolic rate was easily seen (Figure
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4.16). This was not detected whilst the experimental system was still available: the high 

metabolic activity in C441 and C442 resulted in high aFGF titres (69.9 normalised units.L'1 

and 66.7 normalised units.L*1 respectively at the recommended harvest point, Table 4.7) 

thus, if the cause could be found and implemented, an improvement in aFGF production 

could be achieved.

Comparisons of batches C441 and C442 with C447 and C451 (Table 4.10) indicated the 

possible causes of the high levels of metabolic activity in C441 and C442: these include the 

sterilisation temperature profile, the inoculum and the medium composition, as indicated by 

the different absorption spectrum of C442. The sterilisation temperature profiles were very 

slightly different in the heating up and cooling down phases. It was thought that there would 

not be any significant effect on the medium as a result of these differences. The inoculum 

used in C441 and C442 was from the same seed vessel. Although there was no evidence to 

show that the inoculum was significantly different from those used in the other 

fermentations (Table 4.12) no analysis of the original frozen suspension was provided and 

thus this cannot be discounted as a possible cause of the high metabolic activity. The 

possibility of an incorrect medium composition was implied by the lower absorption 

maxima in the post-sterile broth of C442 (Figure 4.17). There were no pre-sterile absorption 

data for C442 and no absorption data for C441. The media for C441 and C442 were 

prepared at the same time and any mistakes may have been duplicated. In conclusion it is 

likely that the high metabolic activity observed in C441 and C442 was a result of either the 

inoculum or the medium composition.

3
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1 C447 pre and post
2 C442 post

0
820190

Wavelength (nm)

Figure 4.17: Absorption spectra of pre- and post-sterile fermentation broths of batch C447 and 
post-sterile fermentation broth of C442. The difference in the absorption spectrum 
of C442 was probably due to an incorrect medium composition.
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The analyses presented in this section and the previous one discussed the possible causes of 

the differences observed when batches C441 and C442 were compared with each other and 

with C447 and C451. The inoculum or medium composition of C441 and C442 resulted in 

high metabolic activities, and temperature and DOT faults affected the pH and agitation rate 

profiles of C441 and C442 and the CER profile of C442. The data from C442 were not used 

in subsequent analyses because of the extremely different behaviour of the CER profiles. 

C441 data were used but with caution.

This example again shows the role of the difference summary in tracing cause-effect 

relationships. The list of differences presented in the difference summary indicates where 

the analyst must look to reason about what occurred in the fermentations.

4.4.1.6 Summary of Reproducibility Investigations

Few conclusive cause-effect relationships were found in this analysis. However, the process 

illustrates the important role of the comparative analysis in pointing where to direct any 

further investigations. If the above analyses had been carried out when the experimental 

system was still available a number of the indicated cause-effect relationships could have 

been investigated.

Although this analysis was time consuming it was important to ensure that the aFGF 

fermentation is reproducible; there would be little point in attempting to compare data from 

fermentations where, even under identical conditions, the performance varies significantly. 

In situations where fermentations were expected to behave similarly and did not, it was 

necessary to investigate why the variations had occurred, ie to determine that the 

fermentations had not in fact been operated under the intended identical conditions. This led 

to an improved understanding of the process as the effects of these unintentional 

perturbations were examined. It was also important to determine if any of the fermentations 

were faulty before using them in the planned comparisons.

The conclusions from the reproducibility investigations were as follows:

1. comparison of batches C447 and C451 demonstrated the reproducibility of the aFGF 

fermentations;
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2. the data from batches C439 and C440 should only be used with caution in subsequent 

analyses;

3. a problem with DOT control and the possibility of either an incorrect medium 

composition or an unusually active inoculum suggest caution in the use of data from 

batch C441;

4. batch C442 should not be used in subsequent analyses because of poor temperature 

control and temporary anaerobic operation;

5. the dilution of batch C443 resulted in a reduced biomass yield and a shorter period of 

pH control;

6. glucose was not the limiting substrate in batches C443 and C444;

7. the aFGF yield differed in batches that were otherwise reproducible, C451 and C447, 

it was not possible to determine what a typical value was;

8. batches C443, C444, C447 and C451 may be used with confidence in subsequent 

analyses (keeping in mind points 5, 6 and 7);

9. the transfer of inoculum on the basis of age may not be satisfactory based on the 

evidence of batches C441 and C442, this requires further investigation;

10. a 15% reduction in the concentration of the bulk media components may be possible 

as it has very little effect on the resulting fermentation (up to the recommended 

harvest point) as shown by the comparison of C443 and C444;

11. the effect of temperature excursions was not conclusive but appeared to be small;

12. a reduction of dissolved oxygen tension in the broth to 10% of air saturation has little 

effect on the fermentation (C441) but a reduction to 0% of air saturation causes an 

immediate precipitous decline in respiration (C442).

These observations were utilised in the analysis of the effects of sterilisation conditions and 

inoculum volume on the aFGF fermentation in Sections 4.4.3 and 4.4.4.

Prior to the availability of the comparative analysis tools a manual analysis of the aFGF 

data had been carried out. This analysis had concluded that there were no significant 

differences between batches C443/C444, C441/C447, C441/C451 and C447/C451. Use of 

the comparative analysis tools detected significant differences in all these pairs of 

fermentations except C447/C451 thus prompting a detailed investigation of why these 

differences had occurred which resulted in an improved understanding of the process. The 

comparative analysis tools were more consistent than visual analysis in the detection of 

differences between the data sets; manual analysis was prejudiced by prior expectations of 

which batches should have behaved similarly.
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Perhaps the most notable benefit of the comparative analysis tools was that the effort 

involved in comparing the time variant data was significantly reduced as there was no longer 

a need to manually overlay all the different profiles to perform the relevant comparisons. 

The computer routines performed the comparisons automatically and summarised the results 

in match records thus allowing more time to be spent on determining why differences 

occurred rather than on detecting the differences. The inclusion of the data base 

comparisons also significantly improved the analysis by ensuring all information was 

summarised in one place allowing a more comprehensive reasoning process.

4.4.2 Features of the aFGF Data

The linearised time profiles were very useful in highlighting correlations between different 

variables. The points at which the linear segments join identify events in the fermentation; 

events identified in one variable often coincide with events in another variable; these 

correlations are features of a particular fermentation. Correlations between different 

variables are useful in fault detection and diagnosis: when an expected correlation is not 

apparent in a data set there is evidence of aberrant behaviour. Correlations can also be used 

to predict when an event is likely to occur in on-line operation.

The desired correlations are found in the time variant data of fermentations operated under 

standard conditions in which no faults are apparent.

Fermentations C441, C442, C447 and C451 were intended to be operated under standard 

conditions, that is, under the conditions that would be used in an aFGF production run. The 

data from C447 and C451 were very similar, C441 deviated slightly from these ‘standard’ 

batches and C442 was shown to be faulty. Features common to batches C447, C451 and 

C441 were identified to aid subsequent analyses.

Acidic products are usually produced as a result of simple carbohydrate metabolism, this is 

borne out by the fact that the point at which glucose was exhausted in the aFGF 

fermentations corresponded to the point at which pH control ended as shown by the 

cessation of alkali addition to the broth (Figure 4.18).

The growth rate of the organism (slope of the biomass profile) began to decrease just prior to 

glucose exhaustion (Figure 4.18). This decrease in growth rate is a result of a reduced
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Figure 4.18: Correlations between variables from 'standard' aFGF fermentations. The exhaustion 
of glucose corresponds with the end of alkali addition and occurs about the same 
time as the growth rate slows down. The recommended harvest time (glucose = 5 
g.L’1 ) occurs just after the peak CER.
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driving force for transport of glucose across the cell membrane caused by the low sugar 

concentration.

The point at which the carbon dioxide evolution rate began to decrease occurred just prior to 

the recommended harvest point, ie a glucose concentration of 5 g .L 1 (Figure 4.18). During 

operation of a production scale process the harvest point is determined by extrapolating the 

off-line glucose measurements to predict the time at which 5 g.L'1 will be reached. 

However, as is usually the case, it would be beneficial to be able to use an on-line 

measurement for prediction of this point and the carbon dioxide evolution rate profile could 

be used for this.

4.4.3 The Effect of Sterilisation Conditions

One of the aims of this work was to determine the effects of different sterilisation regimes 

on the aFGF fermentations. The data from these experiments are analysed here using the 

computerised comparative techniques.

A typical sterilisation temperature profile for the 15 L Biolafitte fermenters is shown in 

Figure 4.19. During the reproducibility investigations small differences were observed in
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Figure 4.19: Temperature profile for the sterilisation of batch C447. The shape of this profile is 
typical of the 15 L Biolafitte sterilisation process.
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the heating up and cooling down phases of the sterilisation temperature profiles. These were 

a result of attempting to control the amount of steam introduced to the vessel. It was 

thought that these small differences would have had no effect on the fermentation broths. 

The sterilisation pressure profiles were not available for analysis.

4.4.3.1 Increased Length of Sterilisation - No Glucose Present

The data from the fermentations in which glucose was sterilised separately from the bulk 

medium (C441, C443, C444, C447 and C451) were compared, using the comparative 

analysis tools, to assess the effects of lengthening the sterilisation holding time. The results 

of the comparisons are summarised in Table 4.13. Batches C439, C440 and C442 were not 

included in the comparative analyses because of observed anomalies (Section 4.4.1). The 

interpretation of the comparisons also acknowledged the facts that C441 exhibited a 

relatively high metabolic activity and that the biomass yield in batch C443 had suffered 

because of dilution of the medium components (Section 4.4.1).

The effects on the media are shown in the absorption spectra in Figure 4.20 and the changes
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Figure 4.20: Absorption spectra of pre- and post-sterile fermentation broths of batches C443, 
C444 and the standard (C447). Sterilising for ninety minutes did not affect the 
absorption characteristics of the broth (C444). The lower absorption of C443 was 
due to a diluted medium composition.
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DIFFERENCES DIFFERENCES
BATCH IN IN OBSERVATIONS

NUMBERS TIME INVARIANT TIME VARIANT
DATA DATA

C441/C444 Tanks Sterilisation DOT fault C441
Inoculum Biomass No abs. spec. C441
Post-sterile pH CER

ApHsterilisation DOT
aFG FSh, aFGFsm pH
aFG FVh, aFGFvm Agitation

C447/C444 Inoculum Sterilisation
Post-sterile pH CER
ApHsteriiisation DOT
aFG FVh ,aFGFvm pH
aFG FSh Agitation

C451/C444 Tanks Sterilisation No pre-sterile abs.spec. in
Inoculum CER C451
Post-sterile pH pH C451 shorter

ApHsterilisation Agitation No off-line d a ta  first 10 h of

AVsterilisation C451
aFG FVh ,aFG FSh

C441/C443 Inoculum Sterilisation Medium dilution C443
Post-sterile pH Biomass No abs. spec. C441
ApHsterilisation CER DOT fault C441
AVsterilisation DOT
aFGFsh, aFGFsm pH
aFG FVh, aFGFvm Agitation

C447/C443 Tanks Sterilisation Medium dilution C443
Inoculum Biomass
Post-sterile pH CER
AVsterilisation DOT
Post-sterile abs. spec. pH
aFG FVh, sFGFvm Agitation
aFGFsh. aFGFsm

C451/C443 Inoculum Sterilisation Medium dilution
Post-sterile pH Biomass No pre-sterile abs .spec . in
ApHsterilisation CER C451
Post-sterile abs. spec. pH C451 shorter
aFG FVm> ^FGFSh Agitation No off-line da ta  first 10 h of

C451

Table 4.13 Difference summary for fermentations sterilised over differing lengths
of time with glucose not present in the bulk medium during
sterilisation. The abbreviations are described in Table 4.11.
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in pH in Figure 4.3. The broths of batches C447 and C444, sterilised for twenty minutes and 

ninety minutes respectively, had identical absorption characteristics both before and after 

sterilisation, ie sterilisation did not alter the protein components of the broths. Lower 

absorption maxima were observed in the post-sterile broth of batch C443 as a result of the 

dilution of the medium components. There were no absorption data for C441. The broths 

sterilised for twenty minutes underwent very small changes in pH: from 0.05 to 0.25 pH 

units. Sterilisation for sixty minutes did not result in a larger change in pH, however a 

sterilisation holding period of ninety minutes resulted in a significantly larger decrease in 

pH (in the range of 0.4 to 0.7 pH units). In many fermentations the hydrolysis of proteins 

would constitute the major change in the medium during sterilisation. However, in the 

medium used for the aFGF fermentations the major protein source consisted of partially 

hydrolysed proteins and it would be expected that the effect of heat stress on this medium 

would be considerably less than on a medium containing a more complex protein source. 

The similarity of the absorption spectra before and after sterilisation demonstrated this. The 

large changes in pH of batches C443 and C444 indicated that sterilising the broth for 

extended periods of time (ninety minutes) did have some influence on the media. This was 

most likely a result of changes in the solubility of some media components (Corbett 1985) 

and indicates that if, on scale up, the sterilisation holding time were to be increased 

substantially, there would be some effect on the fermentation broth.

The changes in broth pH and absorption spectra as a result of sterilisation reflected different 

occurrences in the media and thus should be used in conjunction to determine the effects of 

sterilisation.

The difference summary (Table 4.13) lists the effects of the increased sterilisation hold times 

on the performance of the fermentations. These include the biomass concentrations, the 

carbon dioxide evolution rates, the dissolved oxygen, the pH, the agitation rates, and the 

aFGF titres.

There was no effect on the biomass production in C444 (except when compared with C441) 

or on glucose utilisation. The discrepancy in biomass production between C441 and C444 

was further evidence of the high metabolic activity in C441 and did not imply that the 

biomass yield in C444 was any lower than in a typical fermentation. The differences in 

biomass concentrations between C443 and the other batches were a result of the dilution of 

the media (Section 4.4.1.2) and were not relevant to this part of the investigation.

The comparison of the CER profiles of batches C444 and C447 is shown in Figure 4.21.
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The line representing the most rapid increase in CER, ie the fast growth period, had a shorter 

temporal extent in C444 than in C447. Upon closer inspection this was seen to be a result of 

the fast growth period starting later in C444 than in C447. After the fast growth period the 

CER begins to decrease but the match record in Figure 4.21 shows that this decrease was 

more rapid in C447 than in C444. Further differences, towards the end of the fermentations, 

were also noted in the match record. The comparison of the CER profile of C444 with C451 

and C441 and the CER profile of C443 with C447, C451 and C441 gave similar results.

Qualitative Descriptions

140
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B 100
C3
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UJo

20

20 30100
Age (h)

C444 (A); — C447 (B)

Line Dir Mag Dur Slope Start

A1 1 1 3 3 1
A2 1 2 4 5 1
A3 1 7 4 7 3
A4 -1 2 7 3 9
A5 -1 4 2 8 8
A6 -1 1 1 6 4
A7 -1 2 1 8 3
A8 -1 1 1 4 2

B1 1 2 4 4 1
B2 1 7 7 7 2
B3 -1 3 6 5 8
B4 -1 5 2 8 6
B5 -1 2 8 3 2

Match Record for C444/C44Z

Lines Magnitude Duration Slope Start

A1 -> . . . .

A2 -+ B1 1 1 1 1
A3 -► B2 1 0 1 1
A4 B3 1 1 0 1
A5+A6 -► B4 1 1 1 0
A7 -+ - - - - -

A8 -► B5 1 0 1 1

Figure 4.21: Comparison of carbon dioxide evolution rate profiles from batches C444 
and C447. The poor matches in the match record show that sterilising for 
90 minutes (C444) resulted in a slightly different fermentation from one in 
which the broth was sterilised for 20 minutes (C447).
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Comparison of the pH profile of C443 with those of C447 (Figure 4.22), C451 and C441 

showed that the length of the first linear data piece, ie the control period, was shorter in 

C443. This was a result of the dilution of secondary nutrients during sterilisation of batch 

C443 (Section 4.4.1.2).

The comparison routine, MATCHER, concluded that the lines representing the post-control 

pH data of the batches that had been sterilised for ninety minutes (C443 and C444) were 

significantly different from the corresponding lines in the batches sterilised for twenty 

minutes (C447, C451 and C441). The comparisons with C447 are shown in Figure 4.22.

Glucose was not the limiting substrate in batches C443 and C444 (Section 4.4.1.2). In the 

fermentations operated under standard conditions the end point of pH control coincided with 

glucose exhaustion and occurred just after the growth rate and carbon dioxide evolution rate 

slowed down (Section 4.4.2). In batches C443 and C444 the correlation between carbon 

dioxide evolution rate, growth rate and pH control was as expected but glucose exhaustion 

occurred nearly four hours after the expected time (Figure 4.23). The comparison of C443 

and C444 in the reproducibility investigations (Section 4.4.1.2) had concluded that the 

limiting substrate had been present in the bulk medium during sterilisation as it was present 

in smaller amounts in C443 which had been diluted during sterilisation. It is therefore 

apparent that sterilising the broth for ninety minutes results in the destruction of an essential 

nutrient. This would account for some of the differences observed in the CER and 

post-control pH profiles. In Figure 4.23 it is seen that, in a ‘standard’ fermentation (C447), 

the decrease in carbon dioxide evolution rate corresponded with the switch from glucose 

metabolism to the metabolism of secondary nutrients. It was stated earlier that this initial 

period of decreasing CER was slower in C443 and C444 than in C447, C441 and C451. In 

C443 and C444 the rate of metabolic activity had started to decrease because an essential 

nutrient (not glucose) had run out, but as glucose was still present the metabolic rate did not 

decrease as rapidly as in C447 where glucose had been exhausted by this stage. Similar 

reasoning can be applied to explain the differences in the post-control pH profiles.

The differences in dissolved oxygen and the agitation rates observed between C447 and the 

two fermentations sterilised for 90 minutes (C451 did not proceed this far) were most likely 

a result of different availabilities of minor substrates in the medium.

The effect on the aFGF production was not conclusive. The aFGF titres at the recommended 

harvest points were lower than those in C441 and C447 but higher than those in C451 (Table 

4.7).
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Qualitative Descriptions
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3010 200

Line Dir Mag Dur Slope Start

A1 0 1 9 1 1
A2 1 3 5 6 1
A3 -1 1 2 4 3
A4 1 4 2 8 3
A5 1 1 1 5 6

B1 0 1 11 1 1
B2 1 5 1 8 1
B3 1 5 6 6 5
B4 1 1 3 4 8

Age (h)

—■—C443 (A); C447 (B)

Match Record C443/C447

Lines Magnitude Duration Slope Start

A1 ->B1 1 0 1 1
A2 ->B2 0 0 0 1

-+B3.B4 - - - -
A3.A5 -► - * - - -

Qualitative Descriptions

Line Dir Mag Dur Slope Start

A1 0 1 10 1 1
A2 1 3 1 8 1
A3 -1 1 2 2 4
A4 1 4 1 8 3
A5 1 2 2 5 7

B1 0 1 11 1 1
B2 1 4 1 8 1
B3 1 5 6 6 4
B4 1 1 3 4 8

xa .

200 10 30
Age (h)

C444 (A); C447 (B)

Match Record C444/C447

Lines Magnitude Duration Slope Start

A1 -+B1 1 1 1 1
A2 + B 2 1 1 1 1

-+■ B3 - - - -
A3.A4+ - - - - -
A5 ->B4 1 1 1 1

Figure 4.22: Comparison of pH data from batches C443, C444 and C447. The 
comparisons of C443 and C444 with each of C451 and C441 were similar. 
The pH control of C443 was over a shorter period (durations of first lines) 
and the post-control profiles for both C443 and C444 were different from 
those of the fermentations run under standard conditions.
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Figure 4.23: In C447, the 'standard' fermentation, glucose exhaustion corresponded with the
cessation of alkali addition and the slowing down of growth rate and CER. In C443 
and C444 glucose exhaustion occurred about 4 hours later than was expected from 
the patterns exhibited in C447.
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These effects that occurred as a result of longer sterilisation times indicate that, even though 

the heat reactive and heat labile medium components were sterilised separately, there is the 

potential for some changes in the performance of the fermentation on scale up. As

mentioned earlier these changes are a result of the longer sterilisation periods having an 

effect on the solubility of some of the medium components, especially the nitrogen source

(Corbett 1985). Although the performance of the fermentation was obviously affected,

albeit very slightly, by lengthening the sterilisation hold time, the minimal effects on 

biomass production and glucose utilisation indicate that the overall effect on the

fermentation is not detrimental. However, the true effect on the aFGF yield needs further 

investigation. The ninety minute sterilisation period experienced in C443 and C444 is more 

excessive than would normally be seen on scale up, thus it is believed that the effect of the 

increased heat stress on scale up would be minimal to the aFGF fermentation.

Prior to the availability of the computerised tools this comparative analysis had been carried 

out manually. The manual analysis had concluded that there was no difference between the 

batches sterilised for twenty minutes and the batches sterilised for ninety minutes and 

therefore the increased heat stress on scale up would not affect the aFGF fermentation. The 

structured analysis carried out using the computerised tools not only detected differences in 

the data but enabled the analyst to reason about the causes of the differences and, in so 

doing, learn more about the process.

4.4.3.2 A Longer Sterilisation Cool Down Period

A slower cool down period subsequent to sterilisation was used to simulate the conditions of 

a larger fermenter in batch C450. The sterilisation profile is shown in Figure 4.24. The 

effect this had on the progress of the fermentation was assessed by comparing the data from 

this fermentation with data from fermentations in which the standard sterilisation sequence 

had been used. Again the comparisons with C447 and C451 were thought to be most 

indicative of the effects the extended cooling period had on the fermentation. The results of 

the comparative analysis are summarised in Table 4.14.
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Figure 4.24: Temperature profile for the sterilisation of batch C450 showing the long cooling 
time. The profile from batch C447 is shown for comparison.

BATCH
NUMBERS

DIFFERENCES
IN

TIME INVARIANT 
DATA

DIFFERENCES
IN

TIME VARIANT 
DATA

OBSERVATIONS

C441/C450 Tanks 
Inoculum 
Post-sterile pH

^sterilisation 
aFG FSh, aFGFsm 
aFGFVh, aFGFvm

Sterilisation
Glucose
CER
DOT
pH
Agitation

No abs. spec. C441 
DOT fault C441

C447/C450 Inoculum
Pre-sterile abs. spec. 
aFGFsh
aFG FVh, aFGFvm

Sterilisation
Glucose
CER
Agitation

C451/C450 Tanks
Inoculum
AVsterilisation 
Post-sterile abs. spec.

Sterilisation
CER
Agitation

No pre-sterile abs.spec. in 
C451 

C451 shorter
No off-line d a ta  first 10 h of 

C451

Table 4.14: Difference summary for fermentations with different lengths of cooling
after sterilisation. The abbreviations are described in Table 4.11.
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Figure 4.25: Absorption spectra of pre- and post-sterile fermentation broths of batch C450 and 
the standard (C447). The initial medium compositions differed and the longer cool 
down period after sterilisation in C450 increased the absorbance of the broth.

The effect on the media was a small increase in the broth’s absorbance at 255 nm showing 

the potential for media degradation on scale up where harsher sterilisation conditions 

generally occur (Figure 4.25). The post-sterile broth’s absorbance characteristics were 

similar to those of the standard broth. The change in the broth pH with the extended cooling 

period, 0.18 pH units, was similar to that observed for the standard cooling period (Figure 

4.3).

The comparison of the glucose data from batches C450 and C447 highlighted a number of 

dissimilarities (Figure 4.26). This was a result of C450 showing an initial increase in 

glucose concentration. As no glucose was added to the medium during this period it was 

thought that this was a result of poor measurement and was ignored. In this example the 

conclusions of the comparative analysis tools were overridden by expert interpretation of the 

results. However, this was done with careful consideration of the linearised profiles and the 

facts presented in the difference summary.

The comparison of the carbon dioxide evolution rate profiles is shown in Figure 4.27. The 

match record shows a difference in the initial lines of the CER profiles, ie the lag phase, and 

a difference in the change in magnitude of the lines representing the fast growth period. 

Despite the difference in the fast growth period the maximum CER levels were similar (the
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Qualitative Descriptions

Line Dir Mag Dur Slope Start

A1 1 1 5 1 8
A2 -1 2 3 4 8
A3 -1 1 2 3 7
A4 -1 7 6 6 7
A5 0 1 2 1 1

B1 -1 1 9 2 9
B2 -1 3 4 6 8
B3 -1 5 4 6 5
B4 0 1 2 1 1

10 - -

10 20 300
Age (h)

C450 (A); — C447 (B)

Match Record for C450/C447

Lines Magnitude Duration Slope Start

A1 -»• - . . . .

A2+A3 -► B1 1 1 0 1
A4 -► B2+B3 1 0 1 1
A5 -> B4 1 1 1 1

Figure 4.26: Comparison of glucose concentration profiles from batches C450 and 
C447. The linearisation of the data showed an initial increase in glucose 
concentration in C450 but no glucose was added during the fermentation. 
This effect was ignored, ie the user overrode the conclusions of the 
comparative analysis tools.
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Qualitative Descriptions
140

120  ■■

100
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20-- ©

2010 300

Line Dir Mag Dur Slope Start

A1 1 1 2 2 1
A2 1 2 4 5 1
A3 1 6 5 7 2
A4 -1 2 7 4 8
A5 -1 5 1 8 7
A6 -1 1 4 2 2

B1 1 2 4 4 1
B2 1 8 6 7 2
B3 -1 3 6 5 9
B4 -1 5 1 8 6
B5 -1 2 7 3 2

C450 (A); -m -  C447 (B)

Match Record for C450/C447

Lines Magnitude Duration Slope Start

A1 -► . . .

A2 -> B1 1 1 1 1
A3 -►B2 0 1 1 1
A4 -►B3 1 1 1 1
A5 -►B4 1 1 1 1
A6 B5 1 0 1 1

Figure 4.27: Comparison of carbon dioxide evolution rate profiles from batches C450 
and C447. The comparison of C450 with C451 was similar. The null 
match indicates a difference in the lag phase of the fermentations. The 
smaller change in magnitude of line A3, when compared with B2, did not 
indicate a lower peak CER in C450 because the starting positions of the 
next lines were similar; it was in fact an effect of the differences in the lag 
phase.

Chapter 4 186



match record showed no difference in the starting positions of the lines following the fast 

growth period). It was concluded that the recorded difference in the fast growth lines was a 

result of the differences in the lag phase. It is likely that the lag phase differences were a 

result of the different inocula used in the two fermentations. Similar effects were seen in the 

comparison of C450 with C451.

The aFGF concentration in C450 at the recommended harvest time, 

22.6 normalised units.L'1, was similar to that of C451 but lower than the titres in C447 and 

C441. No reduction in biomass production was detected by the comparison routine.

It was not possible to conclude whether these differences in the performance of batch C450 

were results of the longer sterilisation hold time or if the inoculum had had some effect. 

Batch C449 was seeded from the same inoculum source as C450 but was run under 

completely different conditions and thus could not be used to check the performance of the 

inoculum. The possibility that the inoculum could have been the cause of the variations in 

batch C450 had not been considered during manual analysis; the computerised tools 

highlighted a fact that had been previously overlooked.

It is apparent that there is the potential for changes in the medium to occur when subjected 

to increased heat stress. The effects on the subsequent fermentation were small and could not 

conclusively be attributed to the different sterilisation conditions. It was believed that the 

scale up of the aFGF fermentation should not be hindered by the effects of sterilisation.

4.4.3.3 Sterilising with Glucose Present

Comparing the fermentations where glucose was sterilised in the bulk medium (C446 and 

C449) with those in which glucose was sterilised separately (C439, C440, C441, C447 and 

C451) showed many differences in the progress of the fermentations (Table 4.15). Batch 

C446 had been sterilised for twenty minutes and was therefore compared with fermentations 

that had also been sterilised for twenty minutes but in the absence of glucose. The same 

criteria were used for choosing the batches to compare with C449 but the sterilisation period 

was sixty minutes. Again C442 was not used in the comparisons and the results of 

comparisons with C439 and C440 were treated with caution (Section 4.4.1).
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BATCH
NUMBERS

DIFFERENCES
IN

TIME INVARIANT 
DATA

DIFFERENCES
IN

TIME VARIANT 
DATA

OBSERVATIONS

C441/C446

C447/C446

C451/C446

C439/C449

C440/C449

Inoculum Sterilisation
Post-sterile pH Glucose
ApHsterilisation CER
Harvest Time DOT
aFG FSh, aFGFsm pH
aFGFvh, aFGFvm Agitation

Tanks Biomass
Post-sterile pH G lucose

ApHsterilisation CER

AVsterilisation DOT
Pre-sterile abs. spec. Agitation
Post-sterile abs. spec.
Harvest Time
aFGFsh, aFGFsm
aFG FVh, aFGFvm

Inoculum G lucose
Post-sterile pH CER
ApHsterilisation DOT

AVsterilisation Agitation
Post-sterile abs. spec.
Harvest Time
aFGFsh
aFGFvh, aFGFvm

Inoculum Sterilisation
Vo.sterilisation Biomass
Post-sterile pH G lucose
ApHsterilisation CER
AVsterilisation DOT
Post-sterile abs. spec. pH
Harvest Time Alkali addition
aFGFsh, aFGFsm Agitation
aFGFvh, 3FGFVm Air Flow

Tanks Sterilisation
Inoculum Biomass
Vo.sterilisation Glucose
Post-sterile pH CER
ApHsterilisation DOT
AVsterilisation pH
Post-sterile abs. spec. Alkali addition
Harvest Time Agitation
aFG FSh, aFGFsm Air Flow
aFGFyh, 3FGFVm

Batched medium differs 
Broth darker in C446 
No abs. spec. C441 
DOT fault C441

Broth darker in C446 
Batched medium differs

Broth darker in C446 
Batched medium differs 
No pre-sterile abs.spec. in 

C451 
C451 shorter
No off-line da ta  first 10 h of 

C451

Broth darker in C449 
Batched medium differs 
Medium dilution C439 
No pre-sterile abs.spec. in 

C439 
OD-DCW correlation

Broth darker in C449 
Batched medium differs 
Medium dilution C440 
Foaming C440 
No pre-sterile abs.spec. in 

C440 
OD-DCW correlation 
Tem perature fault C440

Table 4.15: Difference summary of fermentations sterilised with and without 
glucose in the bulk medium. The abbreviations are summarised in 
Table 4.11.
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Figure 4.28: Absorption spectra of pre- and post-sterile fermentation broths of batches C446, 
C449 and the standard (C447). The glucose in the medium of C446 and C449 
reacted with the other broth components before and during sterilisation resulting in 
different absorption spectra. Sterilising for sixty minutes (C449) had a greater effect 
than sterilising for twenty minutes (C446).

The pre-sterile fermentation broths of C446 and C449 had different absorption 

characteristics from the standard broths but the results were not consistent (Figure 4.28). 

This was most likely a result of the components of the media reacting prior to the 

measurement. Sterilisation with glucose in situ resulted in significant changes in the 

post-sterile absorption spectra with increased absorbance at both 210 nm and, more 

noticeably, at 255 nm, accompanied by a slight red shift, that is a slight increase in the 

wavelength of the absorption maxima, and a broadening of the absorption bands. Large 

changes in pH of the media were also noted (Figure 4.3). These changes in the media were a 

result of Maillard reactions occurring during the heating process (Section 4.1.2).

In the comments section of the data base tables it was noted that the broths of both C446 and 

C449 were somewhat darker after sterilisation. This was a result of caramelisation of the 

sugars during the excessive heating of the sterilisation process. The effect on C449 was veiy 

pronounced and altered the optical density of the broth resulting in a different correlation 

between optical density and dry cell weight as discussed in Section 4.3.2.1.
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The comparison of the glucose profiles of C446 and C447 is shown in Figure 4.29. The 

starting positions of the first linear data pieces, ie the initial glucose concentrations, differed. 

During sterilisation of batch C446 the glucose reacted with the amino groups of the proteins 

thus reducing the glucose concentration in the broth. The low initial glucose concentration 

in batch C446 resulted in a different pattern of glucose metabolism as shown by the 

dissimilarities in the match record of the comparison (Figure 4.29). Similar effects were 

noted in all the comparisons in Table 4.15. The actual rates of glucose utilisation, that is the 

slopes of the linear data pieces in the glucose profiles, were not affected and thus the 

recommended harvest time was earlier in those fermentations that had started with lower 

glucose concentrations.

30

c 20--

10 20 300
Age (h) 

C446 (A); —*■

Qualitative Descriptions

Line Dir Mag Dur Slope Start

A1 -1 1 7 2 6
A2 -1 6 6 6 6
A3 0 1 2 1 1

B1 -1 2 7 2 9
B2 -1 4 3 6 9
B3 -1 6 3 6 6
B4 0 1 2 1 1

• 0447(B )

Match Record for C446/C447

Lines Magnitude Duration Slope Start

A1 -> B1 1 1 1 0
A2 -► B2+B3 0 1 1 0
A3 -► B4 1 1 1 1

Figure 4.29: Comparison of glucose concentration profiles from batches C446 and 
C447. Sterilising with glucose in the bulk medium (C446) resulted in a 
lower initial glucose concentration (start positions of first lines). The 
maximum glucose utilisation rate (slope of line 2 in C446 and lines 2 and 
3 in C447) was not affected.
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An example of the differences in the CER profiles resulting from sterilising glucose in situ 

is given in Figure 4.30. The line representing the fast growth period covered a longer 

temporal extent in batch C446, ie it took longer to reach the maximum carbon dioxide 

evolution rate. The other comparisons summarised in Table 4.15 also showed this effect and 

indicated that the maximum CER value was generally lower when glucose had been 

sterilised in situ. These effects are a result of the lower availability of substrate.

Qualitative Descriptions

Line Dir Mag Dur Slope Start

A1 1 1 3 2 1
A2 1 7 11 6 1
A3 -1 3 3 6 8
A4 -1 3 1 8 5
A5 -1 1 5 4 2

B1 1 2 4 4 1
B2 1 8 5 7 2
B3 -1 3 5 5 9
B4 -1 5 1 8 7
B5 -1 2 6 4 2
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20 30100
Age (h)

C446 (A); -» _ C 4 4 7 (B )

Match Record for C446/C447

Lines Magnitude Duration Slope Start

A1 -► B1 1 1 0 1
A2 -* B2 1 0 1 1
A3 -► B3 1 0 1 1
A4 B4 0 1 1 0
A5 -► B5 1 1 1 1

Figure 4.30: Comparison of carbon dioxide evolution rate (CER) profiles from batches 
C446 and C447. C446, the batch sterilised with glucose in the bulk 
medium, took longer to reach the peak CER as shown by comparison of 
the durations of the second lines.
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Qualitative Descriptions

Line Dir Mag Dur Slope Start

A1 1 1 4 1 1
A2 1 7 8 5 1

B1 1 1 3 2 1
B2 1 3 3 5 1
B3 1 5 3 6 3
B4 1 2 4 4 8

§ 20-.

30200 10
Age (h)

C446 (A); C447 (B)

Match Record for C446/C447

Lines Magnitude Duration Slope Start

A1 -> B1 1 1 1 1
A2 -► B2+B3 1 0 1 1
- -> B4 - * - -

Figure 4.31: Comparison of biomass concentration profiles from batches C446 and 
C447. The duration of the last line in C446 was longer than the 
corresponding lines in C447, but the increase in biomass concentration 
(magnitude) was the same. C447 went on to achieve a higher biomass 
yield than C446.

The low glucose concentration also led to a reduced biomass yield in fermentations C446 

and C449 (Figure 4.31).

The air flow rate was the first level of control used to counteract the lowering of the 

dissolved oxygen in the broth as the cells consumed oxygen. The difference in the air flow 

rate of C449 when compared with C439 and C440 was that the time at which the air flow 

began to increase was delayed in C449. The lower amount of glucose available in the broth 

resulted in a slower metabolism. The same effect was observed in the agitation rate profiles 

of C449.

As mentioned earlier a high agitation rate was employed during intervals of high metabolic
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activity so as to maintain the dissolved oxygen above a minimum level of 20% of air 

saturation. The agitation rate profiles are therefore indicative of the amount of effort 

required to counteract the consumption of oxygen by the organism. Unlike the other 

fermentations, the rate of agitation in C446 and C449 was not increased to the maximum 

level of 700 rpm, indicating a lower level of metabolic activity in these fermentations. This 

was again due to the lower initial glucose concentration.

The differences in the pH and DOT profiles in the latter parts of some of these fermentations 

were indicative of differences in the availability of minor substrates which was expected as 

many of them would have been involved in the Maillard reactions during sterilisation.

Comparison of the pH profile of C449 with that of C439 and C440 had shown a discrepancy 

in the temporal extent of the first lines, ie the ‘control’ portion of the profile. This was 

investigated using the data features identified in Section 4.4.2. Alkali addition to the broth 

stopped about six hours before the pH began to increase (Figure 4.32) thus it was not the 

length of pH control that was unusual but the fact that the broth remained neutral without the 

addition of alkali. Contrary to the previously described relationships between variables 

(Section 4.4.2) the maximum growth rate was maintained and the carbon dioxide evolution 

rate continued to increase after alkali addition had ceased (Figure 4.32) and glucose had been 

exhausted (not shown in Figure 4.32). This indicates that the organism was able to utilise 

the products of the Maillard reactions as substrates to maintain cell production. The 

by-products were not acidic like those of glucose metabolism. This effect had not been 

detected during manual analysis of the data prior to the availability of the comparative 

analysis tools. The linearisation of the profiles and subsequent identification of features in 

the data (Section 4.4.2) are very powerful aids to the understanding of the process.

The aFGF concentration at the recommended harvest time in C446, 

19.0 normalised units.L'1, was less than that in both C447 and C451. It was not clear if the 

productivity of the cells in C446 had been affected, as the amount of aFGF produced per 

gram of biomass was between that of C447 and C451. The lower biomass concentration in 

C446 had resulted in the lower volumetric aFGF yield. Sterilisation for sixty minutes with 

glucose in situ (C449) resulted in a significant decrease in both specific and volumetric 

aFGF yields.

These large discrepancies identified in this comparative analysis justify the extra work 

involved in sterilising glucose separately from the bulk medium.
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Figure 4.32: The broth in C449 remained neutral for approximately six hours after alkali addition 
ceased (b). In both C446 (c) and C449 the maximum growth rate and increase in 
CER continued after cessation of alkali addition to the broth. These effects were a 
result of sterilising broths C446 and C449 with glucose in situ. Batch C447 had 
glucose sterilised separately and is provided for comparison (a).



4.4.3.4 Increased Length of Sterilisation - Glucose Present

The effects of increasing the sterilisation period with glucose present in the bulk medium 

were more pronounced than when glucose had been sterilised separately. The differences 

between batches C446 and C449, sterilised for twenty and sixty minutes respectively, are 

summarised in Table 4.16.

BATCH
NUMBERS

DIFFERENCES
IN

TIME INVARIANT 
DATA

DIFFERENCES
IN

TIME VARIANT 
DATA

OBSERVATIONS

C446/C449 Inoculum
Vo.sterilisation 
Post-sterile pH
ApHsterilisation 
AVsterilisation 
Pre-sterile abs. spec. 
Post-sterile abs. spec. 
Harvest Time 
aFGFsh, aFGFsm 
aFGFyh

Sterilisation
Glucose
CER
DOT
pH
Agitation

Broth dark in both 
Broth darker in C449 
OD-DCW correlation

Table 4.16: Difference summary for fermentations sterilised over differing lengths
of time with glucose present in the bulk medium during sterilisation. 
The abbreviations are described in Table 4.11.

The longer sterilisation time of sixty minutes (C449) resulted in larger increases in the 

absorbance of the broth at both 210 nm and 255 nm and a more pronounced broadening of 

the absorption peaks (Figure 4.28). A much larger change in the pH of the medium was also 

observed after sixty minutes sterilisation than occurred after twenty minutes sterilisation 

(1.91 and 1.01 respectively, Figure 4.3). These observations verified the fact that the amount 

of glucose that reacts with the amino groups of the proteins in the Maillard reactions is 

dependent on the extent of the heat stress.

The broth in batch C449 was considerably darker than that in C446 as a result of the 

caramelisation of the sugars during prolonged sterilisation. This affected the optical density 

of the broth and resulted in a different correlation between optical density and dry cell 

weight as discussed in Section 4.3.2.1.
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Qualitative Descriptions

Line Dir Mag Dur Slope Start

A1 -1 2 6 3 9
A2 -1 8 5 6 9
A3 0 1 2 1 1

B1 -1 3 7 3 7
B2 -1 5 4 6 5
B3 0 1 2 1 1

= 20 -.

o  io.?

5 - .

20 30100
Age (h)

C446 (A); — C449 (B)

Match Record for C446/C449

Lines Magnitude Duration Slope Start

A1 -► B1 1 1 1 0
A2 -+ B2 0 1 1 0
A3 -> B3 1 1 1 1

Figure 4.33: Comparison of glucose concentration profiles from batches C446 and 
C449 both of which had glucose sterilised in situ. Sterilising for 60 
minutes (C449) resulted in a lower initial concentration than sterilising for 
20 minutes (C446) as shown by the start positions of the first lines.

The difference in the glucose profiles is also evidence of the longer sterilisation time 

allowing more glucose to react with the protein components: the glucose concentration in 

the broth after sterilising for sixty minutes was significantly less than that after twenty 

minutes (Figure 4.33). This resulted in a different pattern of glucose metabolism. The rates 

of glucose consumption did not alter as a result of the lower initial glucose concentration, as 

indicated by the similarity of the slopes of the lines in the glucose profiles (Figure 4.33), and 

so the recommended harvest time was earlier when the initial glucose concentration was 

lower.

The smaller amount of glucose available in batch C449 also resulted in a lower peak carbon 

dioxide evolution rate and a slower initial decline in the carbon dioxide evolution rate after 

the fast growth period (Figure 4.34).
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Line Dir Mag Dur Slope Start

A1 1 1 3 2 1
A2 1 8 11 6 1
A3 -1 4 3 7 9
A4 -1 4 1 8 6
A5 -1 2 5 4 3

B1 1 1 3 2 1
B2 1 7 12 5 1
B3 -1 1 3 4 7
B4 -1 5 2 8 6
B5 -1 1 1 3 2

Age (h)

C446 (A); — C449 (B)

Match Record for C446/C449

Lines Magnitude Duration Slope Start

A1 -> B1 1 1 1 1
A2 -k B2 1 1 1 1
A3 B3 0 1 0 0
A4 -► B4 1 1 1 1
A5 ->■ B5 1 0 1 1

Figure 4.34: Comparison of carbon dioxide evolution rate profiles from batches C446 
and C449. Glucose was sterilised with the bulk medium. Sterilising for 
60 minutes (C449) resulted in a lower peak CER than a sterilisation period 
of 20 minutes (C446) as shown by the different start positions of the third 
lines.
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Qualitative Descriptions

cO
2 "©

i  60-■(0

Line Dir Mag Dur Slope Start

A1 -1 3 5 5 8
A2 -1 4 3 7 6
A3 -1 2 1 8 2
A4 0 1 14 1 1

B1 -1 1 6 2 8
B2 -1 5 4 7 8
B3 -1 3 2 8 3
B4 0 1 11 1 1

0 10 20 30
Age (h)

C446 (A); — C449 (B)

Match Record for C446/C449

Lines Magnitude Duration Slope Start

A1 -► B1 0 1 0 1
A2 -+ B2 1 1 1 0
A3 -> B3 1 1 1 1
A4 ->• B4 1 0 1 1

Figure 4.35: Comparison of beginning of dissolved oxygen tension (DOT) profiles 
from batches C446 and C449. The initial difference in magnitude 
describes a slower metabolic rate in C449 which resulted from a lower 
initial glucose concentration. The length of the control region (lines 4) 
was shorter in C449.

The initial decrease in dissolved oxygen concentration was also much slower in batch C449 

and the length of the control period for DOT was shorter in C449 (Figure 4.35) which is 

again indicative of a slower metabolic rate as a result of the lower substrate availability.

The agitation rate profiles of C446 and C449 were very different. The most notable effect 

was that the amount of agitation required to maintain the dissolved oxygen above the 

required level was significantly less in C449 than in C446. The demand for oxygen in C449 

was obviously much lower than in C446 because of the smaller amount of carbon source 

available.
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Similar to the cases where glucose was sterilised separately, the lengthening of the 

sterilisation had no observable effect on the biomass profiles. A marked difference in the 

aFGF concentration at the harvest point was noted, with less aFGF being produced in the 

batch that had been sterilised longer (C449).

The difference in pH indicated in the difference summary (Table 4.16) was a shorter 

‘control’ length in C446. In the previous section the neutrality of the broth in C449 after 

cessation of alkali addition was described as being a result of the organism consuming 

products of the Maillard reactions without the production of acidic by-products. It is clear 

from the comparison with C446 that the longer sterilisation period was required to 

synthesise these alternative substrates. However, a look at the biomass and carbon dioxide 

evolution rate profiles of C446 in relation to the cessation of glucose metabolism (Figure 

4.32) shows that alternative substrates were also available in this fermentation as the 

metabolic activity did not slow down as was expected (Section 4.4.2).

The inocula used in batches C446 and C449 came from different sources and thus could 

have been responsible for some of the observed variations between the two fermentations. 

However, all the variations could be explained with reference to the changes in the media 

occurring during sterilisation thus any effect of the inocula was thought to be minor.

4.4.3.5 Summary of the Effects of Sterilisation on the aFGF Fermentation

The presence of partially hydrolysed proteins and the absence of glucose in the bulk media 

greatly reduced the effects of increasing heat stress during sterilisation on the subsequent 

fermentation. The medium did alter during prolonged sterilisation even when glucose was 

not present: essential nutrients were lost and replaced glucose as the limiting substrate thus 

affecting the pattern of growth. The yield of biomass was not significantly altered and the 

effect on productivity was inconclusive. The results implied that the effect of sterilisation 

on scale up would be minimal.

Glucose should not be sterilised with the bulk medium components as this results in a 

significantly inferior fermentation. Increasing the length of sterilisation when glucose is 

present in the bulk medium reduces the quality of the fermentation even further.

Absorption spectroscopy was shown to be a useful technique for analysing the effect of

Chapter 4 199



sterilisation conditions on the protein component of the fermentation broth. It was evident 

that the information from pH changes and absorbance changes as a result of sterilisation 

should be used in conjunction to ascertain the effects of the sterilisation on the medium. The 

changes in absorbance were indicative of both concentration and conformational changes in 

the protein components of the media such as those caused by the Maillard reactions and 

other thermal degradation products, whilst the changes in pH reflect this information to 

some extent but also include the effect of changes in solubility of various medium 

components (Corbett 1985). Further chemical analyses are required to determine the true 

meaning of these indicators.

4.4.4 The Effect of Inoculum Concentration

The differences between a fermentation with a 1% v/v inoculum (C451) and one with a 

0.25% v/v inoculum (C452) are summarised in Table 4.17. The post-sterile absorption 

spectrum of C451 had lower maxima than that of C452 (Figure 4.36). This could have been 

a result of the larger amount of steam condensate that accumulated in C451 during 

sterilisation: 1.15 L in C451 compared with 0.75 L in C452. The first lines of the alkali 

addition rate profiles differed (Figure 4.37) indicating that C452 had a slightly longer lag 

phase than C451 but this was not seen in any of the other data. The harvest aFGF 

concentration in C452 was greater than that in C451 but the discrepancies in this 

measurement emphasised throughout this discussion preclude drawing any conclusions from 

this. No other differences were observed between these two fermentations.

BATCH
NUMBERS

DIFFERENCES
IN

TIME INVARIANT 
DATA

DIFFERENCES
IN

TIME VARIANT 
DATA

OBSERVATIONS

C451/C452 Tanks
Inoculum Size 
Post-sterile pH
4 V s terilisation  
Post-sterile abs. spec. 

aFG FSh« aFGFvh

Alkali Addition No pre-sterile abs .spec. in 
C451 and C452 

No off-line da ta  first 10 h of 
C451 and C452

Table 4.17: Difference summary for fermentations with different inoculum sizes.
The abbreviations are described in Table 4.11.
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Figure 4.36: Absorption spectra of post-sterile fermentation broths of batches C451 and C452 
and pre- and post-sterile standard broth (C447).
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Age (h)

Line Dir Mag Dur Slope Start

A1 0 1 4 1 1
A2 1 3 5 5 1
A3 1 6 6 6 3
A4 1 1 3 2 8

B1 0 1 6 1 1
B2 1 3 5 5 1
B3 1 5 5 6 3
B4 1 1 2 4 7

C451 (A); C452 (B)

Match Record for C451/C452

Lines Magnitude Duration Slope Start

A1 -> B1 1 0 1 1
A2 -+ B2 1 1 1 1
A3 -> B3 1 1 1 1
A4 -► B4 1 1 0 1

Figure 4.37: Comparison of alkali addition profiles from batches C451 and C452.
Alkali addition started later in C452 as shown by the different durations of 
the first lines.
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The production vessel for the aFGF fermentation is not likely to be very large thus the 

problems of providing a large inoculum are not particularly relevant. It should also be noted 

that the aFGF plasmid is reportedly relatively stable (personal communication, K 

Gbewonyo, Merck Sharp and Dohme) thus again the provision of a smaller inoculum is not 

of great import. The major reason for investigating the possibility of using a smaller 

inoculum is that it reduces the number of seed vessels required, thus reducing the lead up 

time and the number of issues relating to GMP (Good Manufacturing Practice) operation. If 

these latter issues are of great concern, the results show that reducing the size of the 

inoculum is a viable option.

4.5 Scale Up

The aim of the laboratory scale aFGF experiments reported in the previous sections was to 

evaluate some of the effects scale up would have on the aFGF fermentations. A pilot plant 

scale aFGF fermentation (1900 L, working volume of 840 L) was carried out in conjunction 

with MSDRL personnel and provided verification of the predictions relating to sterilisation 

conditions. The results are not reported here.

Aside from the scale of operation there were two major differences between this run and the 

laboratory scale experiments: two seed stages were used, the second being run in the

Biolafitte fermenter (BL4), so as to provide a 1% v/v inoculum; the medium components 

were of a lower quality with non-GMP grade materials being used and cerelose replacing 

glucose. Minor changes to the operating conditions were also made with the pressure being 

held at 10 psig and the dissolved oxygen being controlled above 30% of air saturation using 

the agitation rate, air flow rate was constant at 0.5 vvm.

The pilot scale fermentation was subjected to a longer sterilisation than expected and the 

heat up and cool down periods were considerably longer than in the 15 L fermentations. The 

complex medium components batched prior to sterilisation were of a lower quality in the 

large scale fermentation than in the 15 L experiments and would have contained higher 

levels of carbohydrates and non-hydrolysed proteins, thus it was expected that there would 

be slightly more nutrient degradation as a result of sterilisation. This was in fact observed as 

the post-sterilisation medium was slightly coloured. However, by separately sterilising all 

heat sensitive and heat reactive components the effect of the increased heat stress on the
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medium components was minimal and there was little apparent difference in the kinetics of 

the fermentation as predicted from the smaller scale experiments: the biomass production 

was very similar to the 15 L experiments and the aFGF harvest concentration was 

comparable to the smaller scale results.

4.6 Assessment of the Computerised Comparative Techniques as a 
Tool for Data Analysis in a Developmental Environment

The aims of this chapter were threefold: to determine the effects of the sterilisation regime 

and the inoculum concentration on the aFGF fermentation and to demonstrate the utilisation 

and efficacy of the computerised comparative analysis techniques presented in Chapters 2 

and 3. The preceding sections used the computerised comparative techniques to fulfil the 

first two objectives. The performance of these tools is assessed in this section.

A manual analysis of these fermentations had been carried out prior to the availability of the 

computerised tools. The major conclusions reached by the two methods were the same. 

However, considerably more information about the process was obtained using the 

computerised techniques.

The procedure for applying the comparative analysis tools to experimental fermentation data 

was summarised in Figure 4.2: the data were prepared for comparative analysis by recording 

the time invariant data in the data base and linearising the time variant data using a 

FORTRAN program called DSIMP; the linearised data sets were then described 

qualitatively and compared with other data sets using two more FORTRAN programs, 

QUAL and MATCHER; the results from this comparison were combined with the results 

from comparing the data base information in a difference summary which was interpreted 

manually.

The data preparation steps were time consuming but were essential to the effective 

comparison of the data. The framework of the data base tables had been prepared prior to 

the experimental work and was an excellent guide to structured recording of process 

information. The calculations for the uncertainty levels in the descriptive data, and 

goodness of fit values for the time variant data, were stipulated at the beginning of the 

analysis and were consistent throughout. This was important as it maintained a consistent
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basis for the comparison of the data. It was a simple task to program a spreadsheet to

perform the desired calculations on the raw data and output the required pieces of

information in a form suitable for the simplification routines.

The final step in the preparation of the time variant data was the simplification of the data 

into piecewise linear segments. The user must exercise discretion in deciding when the 

linearisation of a particular variable is not practical. In these analyses the product titre and 

the OUR were excluded from the linearisation and comparison processes. The low 

frequency of product samples and the large amount of variability in each set of repeats

precluded the use of the linearisation process on these data. An expert may have been able

to visualise ‘best fit’ lines through these data for each fermentation but these would be 

purely speculative and would probably differ from one expert to another. The OUR data 

were very noisy and it was not possible to use the specified goodness of fit on these profiles. 

The main problem with this is that the resulting linear fits would have very little physical 

meaning: the linearisation of, for example, the carbon dioxide evolution rate profiles 

approximately divided the time course into the typically recognised growth phases of the 

fermentation; attempts at linearising the oxygen uptake rate profiles did not achieve this as 

the fluctuations in the data interfered with the fits. The user must use his/her expertise to 

make judgements on situations like these, the computer does not totally usurp the human’s 

role in the analysis process.

The piecewise linearisation of the remaining variables reflected how an expert would view 

the data. It is important to recognise that the algorithm for the linearisation of the time 

variant data is generic to all fermentation processes and can be applied to any fermentation 

variable without the need for a priori knowledge of what the profiles ‘should look like’. 

The same techniques could be used on a completely different process with the only 

alterations being the goodness of fit values for on-line variables monitored using different 

pieces of equipment. This is necessary for a process in the developmental stages as the 

relative positions of event times (the join points of adjacent lines), and even the number of 

events, may change with the different conditions being investigated.

The linearisation of the time variant data highlighted relationships between variables of the 

same fermentation. In some fermentations these relationships were violated and detection of 

these discrepancies gave further insight into the effects of some perturbations to the system. 

An example of this was the effect of sterilising for prolonged periods with glucose excluded 

from the bulk medium (Section 4.4.3.1). It was concluded that prolonged sterilisation had 

altered the availability of an essential nutrient, other than glucose, and thus affected the
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fermentation pattern. It was the linearisation of the data that highlighted these relationships 

thus initiating this line of reasoning. An additional computer algorithm could be developed 

to extract these correlations from the simplified data: each event time in each variable would 

be systematically compared with the event times in all other variables and a list of 

correlations provided. The qualitative duration descriptor could be used for this with the 

event times being depicted by the sum of the qualitative durations of all earlier linear data 

pieces. Two event times would coincide if their qualitative descriptions were within one 

unit of each other. During developmental work these relationships may change as the 

fermentation environment is changed, their inclusion in the comparison process would 

provide useful information.

The reproducibility of the aFGF fermentation was examined prior to investigation of the 

research objectives. During manual analysis of the fermentations a cursory assessment of 

reproducibility had been made and concluded that batches C443/C444, C441/C447, 

C441/C451 and C447/C451 demonstrated the reproducibility of the aFGF fermentation. A 

detailed examination had not been attempted because of the excessive time involved in 

visually comparing all the various time profiles. The computerised comparative analysis 

tools automatically compare the time profiles and summarise the results in match records 

thus reducing the time involved in determining which data differ. The analyst is then able to 

investigate why variations occur and is aided by the difference summary which lists all 

possible (identifiable) causes. Comparative analysis using the computerised tools concluded 

that the reproducibility of the aFGF fermentation was demonstrated by batches C447 and 

C451. Significant differences were found in the other fermentations that had previously 

been identified as similar. These differences were identified as being significant because 

they exceeded the uncertainty limits of the comparisons. The automated tools were more 

consistent than visual comparisons because the uncertainties in the data were taken into 

account in the comparison, manual analysis had assumed that the uncertainties were large 

enough to account for the variations in the data sets. One of the biggest advantages of the 

automated techniques is that expectations do not affect the outcome of the comparisons, all 

differences are recorded whether they are considered to be important or not. It is only in the 

interpretation of the difference summaries that expert opinion is introduced. However, 

because all differences between two fermentations are recorded in a single place, the 

interpreter would tend to consider all possibilities before making decisions on cause-effect 

relationships.

The reproducibility investigations were extremely important in justifying the subsequent 

comparative analyses between the fermentations which provided the desired information
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regarding the sterilisation conditions and inoculum concentrations. There would be little 

point in comparing fermentations which did not behave consistently under identical 

operating conditions; the true effects of the operating condition changes could not be 

determined. The additional information obtained during the examination of reproducibility 

improved understanding of how the process responded to various perturbations in the 

system, provided plausible explanations for a number of observations and identified some 

factors as having no effect on the outcome of the fermentation. Very little of this 

information had been obtained during the manual analysis of the data. It is common for a 

researcher to look only for the information that is being sought, in this case, the effect of the 

sterilisation conditions and inoculum concentration. A lot of other information is often 

available as was shown here. The combination of the data base and MATCHER routines 

facilitated the extraction of information from the fermentations that were expected to behave 

similarly. The summaries of the results, ie the difference summaries, enabled the tracing of 

cause-effect relationships.

The final step in the analysis of the aFGF fermentations was the investigation of the research 

objectives, ie the effects of sterilisation conditions and inoculum concentration on the 

fermentations. The major conclusions reached by the automated analysis were the same as 

those reached by manual analysis of the data, however, considerably more information was 

gained by using the computerised comparative analysis tools. The knowledge gained by 

applying the computerised tools during the reproducibility investigations helped to explain a 

number of the effects observed when examining the research objectives. The features of the 

data, highlighted by the linearisation of the profiles, were also instrumental in explaining 

variations in the fermentation patterns.

It is expected that even greater benefits will be achieved by applying the automated tools to 

the on-line analysis of fermentation data. The comparisons involving batches C441 and 

C442 showed the potential of the comparison tools for detecting faults in a process. The 

fault in the dissolved oxygen control of these two batches had been noted during operation 

and was thus recorded in the ‘Expert Comments’ but the fault was also identified by 

MATCHER when comparing these DOT profiles with those from other batches. This 

implies that the computerised comparative analysis tools could feasibly be used for the 

on-line detection of faults. This is discussed further in Chapter 5.

The overall aim of this work was to demonstrate the feasibility of automating the 

comparative analysis of fermentation data. The results of this chapter have shown that the 

analysis of data in a developmental environment was greatly improved by automation. The
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analysis was:

thorough because all information was routinely recorded in a structured fashion;

• consistent because the uncertainty criteria were not altered between batches;

• not influenced by prior expectations of how the data should behave;

• not dependent on prior knowledge of the process and could therefore be used on

completely unseen fermentations;

• not dependent on the particular data being analysed or the magnitudes of the data;

• not totally under the control of the computer, the analyst performs the final

interpretation and can override any of the conclusions of the computerised tools.

A much greater understanding of the aFGF fermentation was gained by application of the 

computerised analysis tools. It is possible that the same information could have been 

obtained from a thorough, and time consuming, manual analysis but it is unlikely that the 

same consistency and unbiased results would have been achieved.

The data base tables and FORTRAN routines (DSIMP, QUAL and MATCHER) developed 

in this work are the main elements of an automated comparative reasoning programme. The 

intention of this work was not to provide a complete working system but to investigate the 

competence and benefits of the individual tools and thus demonstrate the feasibility of 

automating the comparative analysis process. The individual components of the 

comparative analysis programme were shown to perform the desired functions and they 

greatly facilitated the analysis of a set of twelve experimental fermentations. Professional 

computer systems personnel are required to fully automate the tools and to link them for 

optimal performance and it is likely that individual implementations of the tools will be 

tailored to the specific needs of the users. The obvious improvements in the analysis of 

experimental data justify the work involved in developing the complete system.

4.7 Conclusions

1. The effects of changes in heat stress during sterilisation on the kinetics of the aFGF 

fermentation were minimal when the heat labile and heat reactive medium 

components, including glucose, were sterilised separately from the bulk medium. 

Some effect on the medium was observed: the availability of an essential nutrient was
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reduced and subsequently became the limiting substrate altering the pattern of the 

fermentation slightly.

2. Sterilising glucose in situ resulted in a decrease in performance of the fermentation as 

increases in the heat stress further decreased the performance.

3. Because of the minimal effect of heat stress the kinetics of a large scale aFGF 

fermentation can be approximately predicted from small scale experiments.

4. The absorption spectra of pre- and post-sterile broths, in conjunction with pH 

measurements, give valuable information regarding the extent of medium degradation 

occurring as a result of sterilisation.

5. The absorption spectra of a medium differs when components are diluted and thus 

could be used to detect changes in the composition of the medium.

6. Lowering the inoculum level from 1% v/v to 0.25% v/v resulted in a slightly longer 

lag phase but otherwise had no effect on the growth or production kinetics of the 

fermentation.

7. Analysis by way of the computerised comparative reasoning tools reached the same 

overall conclusions as manual analysis. However, understanding of the process was 

greatly improved by a more thorough analysis.
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5 FURTHER APPLICATIONS OF THE COMPARATIVE 
REASONING TOOLS

The capabilities and benefits of the individual components of the automated comparative 

reasoning programme have been demonstrated in the retrospective analysis of twelve 

experimental fermentations. With this foundation it is possible to consider the application 

of the comparative analysis tools to other areas of the fermentation industry. This chapter 

outlines the extension of these tools to:

1. the detection of faults during a production run;

2. the diagnosis of faults on-line;

3. the integration of information from the fermentation and information from the

downstream processing operations.

These applications were outside the scope of this study but are included here to show the 

potential of automated comparative reasoning as a generic and universal instrument for 

fermentation data analysis. A brief description of each application is given below.

5.1 On-Line Fault Detection

5.1.1 Fault Detection Techniques

In any production process aberrant operation must be detected rapidly so that action can be 

taken to rectify the problem. A number of fault detection techniques have been employed in 

industry and many more have been proposed in the literature. These will not be reviewed 

here but three are worth mentioning because of their wide use.

Perhaps the most widely utilised technique in a processing environment is a visual 

assessment of the data. In a typical fermentation plant on-line evaluation of the process is 

carried out by the plant manager or operators who ensure the time profiles of the monitored 

and calculated variables follow an expected pattern. The expected pattern may be a mental 

picture of what the profiles usually look like, or a standard profile based on previous

Chapter 5 209



successful runs. If the profile of a current fermentation deviates from the expected path then 

it is possible that something has gone wrong with the batch and some action may be required 

to rectify the problem. The problems with this manual approach were described in Chapter 

1: the comparison lacks consistency from batch to batch, operator to operator and day to day, 

and the consideration of all variables is time consuming.

A technique commonly used in the fermentation industry for the detection of faults was 

introduced in Chapter 1: a ‘band profile’ is produced for each of the on-line variables; if the 

data from a current fermentation move outside this band then faulty operation is indicated. 

This process is usually performed manually and is dependent on the operator being vigilant.

Statistical process control is a fault detection technique used in other engineering fields 

(Oakland 1986, Keats and Hubele 1989) which could possibly be applied to fermentations. 

Essentially, statistical process control procedures differentiate between chance or random 

variations in a process and ‘assignable causes’, ie large variations that are attributable to 

some cause. The concept is similar to that of the band profile but utilises a statistical basis 

for the analysis of the data. The assumptions used in statistical process control methods are 

(Montgomery and Friedman 1989):

1. the data are obtained from the process via periodic samples;

2. observations are statistically independent, both between and within samples;

3. rational subgrouping is used in the selection of samples and sample sizes are larger

than one;

4. the data follow some particular probability distribution; for variables data it is usual to

assume normality.

Control charts, the most common technique in statistical process control, are not robust to 

departures from the independent or uncorrelated data assumption. The assumption of 

normality is of somewhat less concern. In fermentations, data from one sample to the next 

are correlated, for example the biomass concentration at one time is dependent on how the 

biomass has developed throughout the fermentation thus far. The assumption of within 

sample independence in fermentations is also violated: all samples are drawn from one 

fermenter and thus must be related. Furthermore, for fermentation on-line data only one 

measurement is taken at each time point thus the third assumption is not valid.

One method of dealing with serial correlation is to model the process data with an empirical 

stochastic model (Montgomery and Friedman 1989). The residuals from such a model
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would then be uncorrelated if the process is in statistical control. The usual control charting 

methods of statistical process control could then be applied to the residuals. The 

determination of models for fermentation data is not always possible and could frustrate 

attempts to employ statistical process control.

However, the number of assumption violations would indicate that statistical process control 

techniques would not be appropriate for fault detection in fermentation systems.

The comparative analysis tools provide an alternative technique for fault detection. The 

adaptation of the tools to a processing environment is discussed in the next section.

5.1.2 Adaptation of the Comparative Analysis Tools to Fault Detection

The use of a computerised comparative analysis process for on-line fault detection requires 

the definition of an average, or standard, data set as a baseline for the comparison. A 

standard data base record and standard time profiles are required.

The standard data base record consists of all information that is generic to the process, such 

as the usual operating conditions, medium components, suppliers of the ingredients, 

equipment used, and average values of any descriptive variables (based on all successful 

historical batches). The record can be updated after completion of any successful batch or 

after adjustments to the process.

The standard time profiles are also based on all previous successful batches. For each 

variable the data from the historical fermentations are combined to create one profile which 

is then simplified into linear segments using the algorithm coded in DSIMP (Chapter 3). 

The goodness of fit values described in the previous chapters can be used here but it may not 

be necessary to do so. When all the data are plotted on a single graph a band or envelope is 

formed and the outer limits of this band could be used to constrain the piecewise 

linearisation of the data, that is the lines must remain inside the envelope. The standard 

profiles can be updated after each completed run or after alterations to the process.

The fault detection process then proceeds as described in Figure 5.1. The comparison 

procedure is repeated at regular intervals during a fermentation and all data up to the current 

point are included in the analysis.
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TIME INVARIANT DATA TIME VARIANT DATA

linearised datadata base tables

qualitative descriptions

list of differences 
between 

data base entries

match record

list of differences 
between 

time variant data

Standard data 
base tables

Alert operator of differences

Simplified standard 
data profiles

Comparison of entries in 
data base tables

Record batch sheet and 
descriptive data 

in data base

DSIMP:
Linearise data using standard 

goodness of fit criteria

Alert operator of differences 
in descriptive quantities; 

list all differences if required 
for fault diagnosis

INTERPRETER 
Automatic interpretation of the match record

MATCHER:
Compare the qualitative labels of corresponding 
linear data pieces from the two data sets

QUAL:
Define qualitative rulers for magnitude, duration, 
slope and starting position;
Describe data qualitatively using above rulers and a 
direction indicator

Figure 5.1: Summary of the process by which the comparative analysis tools can be used for 
on-line fault detection. DSIMP, QUAL and MATCHER are FORTRAN computer 
routines that were described in Chapter 3. The data base was described in Chapter
2. The terms in italics are the outputs from each step.
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The time invariant data, ie the batch sheet information and any descriptive data, are recorded 

in the data base as described in Chapter 2. This process is similar to the use of batch sheets 

but is more structured. The information in the data base record is then compared with that in 

the standard data base record. Any differences in descriptive data values are immediately 

brought to the attention of the operator as these are indicative of variations in the 

performance of the process. Differences in the batch sheet information are useful in fault 

diagnosis which is discussed in the next section.

The time variant data are simplified by piecewise linearisation using DSIMP. All the data 

pretreatment discussed in Chapters 3 and 4, ie the removal of extraneous data points and the 

calculation of goodness of fit values (used in the fitting of linear data segments), must be 

carried out automatically. The simplified time profiles of the current fermentation and the 

standard fermentation are described qualitatively using the algorithm coded in QUAL and 

compared using MATCHER. The result of each comparison is a match record which 

indicates whether the lines in the profiles were similar or not. A computer routine must be 

written to automatically interpret the match record. When any differences between the 

current fermentation and the standard are detected in the match record the operator must be 

informed by an alarm.

An alternative to the above procedure for the comparison of time variant data is to compare 

the raw data of the current fermentation with the linearised standard profile. If the mean 

absolute deviation between the raw data and the linearised data is greater than the goodness 

of fit value a fault is indicated.

Process specific features of the data can also be included in the comparison procedure. In 

Chapter 4 correlations between event times in variables were highlighted by the linearisation 

of the time variant data, for example the point at which pH control ceased corresponded with 

glucose exhaustion. Computer routines should be developed to search for these correlations 

during operation. Violation of the standard correlations indicates a variation in the process 

and the operator must be informed.

This on-line fault detection process was simulated using data from the aFGF fermentations 

(Chapter 4). Batch C447 was used as the ‘standard’ data set and batch C442 was used to 

simulate an on-line process. The ‘on-line’ comparison of the carbon dioxide evolution rate 

profiles is shown in Figure 5.2. After each data point was obtained in C442, DSIMP was 

used to simplify the data up to and including the most recent point. The simplified profile 

was then compared with the complete simplified profile of C447 using QUAL and
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Figure 5.2: On-line detection of faulty carbon dioxide evolution rate data, a) the match 
record shows the fermentation was proceeding well at 13.13 h. The 
difference in duration between lines A3 and B2 does not indicate a problem 
because the duration of A3 was less than that of B2 and is expected to 
continue, b) the match record shows a deviation from the normal profile at 
14.63 h, the magnitude of line A3 was larger than that of B2; the expected 
event time, ie a change to a negative slope, had been passed, c) manual 
observation detected the error two measurements later at 15.63 h.
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MATCHER. A fault was detected in C442 at 14.63 h. Manual analysis of the CER data 

during actual operation of batch C442 had not detected the fault until 15.63 h, two samples 

later. It should be remembered that more than one variable must be consulted to corroborate 

the detection of faulty operation and the set point controlled variables must be included in 

this analysis. In batch C442 both the temperature and the dissolved oxygen profiles deviated 

significantly from their set points thus confirming the presence of a fault in the process.

The example demonstrates the ability of the computerised analysis techniques to detect 

faults during on-line operation. These techniques overcome the shortcomings of a manual 

process for the detection of faults: all data can be examined with relative ease, the presence 

of an expert is not required and the comparison process is consistent from batch to batch and 

from day to day. Another important advantage of the comparative analysis tools is that the 

line of reasoning followed in the fault detection process is easy to understand and is 

therefore more likely to be accepted by operating staff.

When the time variant data are considered alone, the computerised comparison techniques 

have two main advantages over the band profile method for fault detection. Firstly, the 

comparison of all variables is possible in a much shorter period of time. Secondly, the 

correlations between events in the variables, detected through the linearisation of the data, is 

a powerful tool in the detection of aberrant behaviour but cannot be exploited in the band 

profile method. These advantages alone should warrant the adoption of the comparative 

analysis tools. The data base forms a useful addition to the fault detection process as it 

allows the inclusion of time invariant data. If fault analysis is required, then the 

computerised techniques have considerable advantages over manual analysis, these are 

described in the next section.

The tools developed in this work provide the building blocks for an on-line fault detection 

process. A complete working system requires the development of computer routines to:

1. automatically remove extraneous data from the raw data files and, where necessary, 

calculate goodness of fit values for the linearisation routine;

2. interpret the match records, ie the results of the comparison of the time variant data;

3. identify correlations between the event times of variables in the standard fermentation 

and search for these correlations in in-progress fermentations.

An overall management routine is also required to schedule the operations, manage the data 

files, link the individual modules and provide the necessary output.
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5.2 On-Line Fault Diagnosis

A second area in which the comparative analysis tools can be employed is the diagnosis of 

faulty operation. Once a fault has been detected in a process it is then necessary to find the 

cause of the fault, determine whether or not it is detrimental to the process, and decide if 

some action needs to be taken to rectify the problem. This process of fault diagnosis is 

generally based on previous experience of similar faults.

Much of the current work in fault diagnosis techniques is concentrating on the development 

of expert systems (Chen et al. 1989, Halme 1989, Karim and Halme 1989, Cooney et al. 

1991, Morris et al. 1991) and neural networks (Cooney et al. 1991, Morris et al. 1991). 

These were discussed in Chapter 3. The disadvantages with expert systems include the 

extensive amount of work required to set up the system, they are totally unpredictable in 

situations for which rules are unavailable, and a different expert system must be created for 

each process. Neural networks suffer from being black box systems, ie the line of reasoning 

is not available to the operator or analyst, and, like the expert systems, a different neural 

network is required for each process.

Manual fault diagnosis is probably still the most widely used technique in the fermentation 

industry. The process requires experienced personnel and suffers from the usual problems of 

human bias and inconsistencies.

The comparative analysis tools, in combination with a new technique called Case Based 

Reasoning (CBR), are an alternative means of detecting and diagnosing faults in a 

processing environment.

Experts often reason about a current problem by determining similarities between it and an 

actual previous problem that has been encountered, the reasoning used in the previous 

problem is used as a precedent for the current problem (Koton 1988). This is the 

fundamental premise behind a branch of artificial intelligence known as Case Based 

Reasoning (CBR). Applications of CBR described in the literature include menu planning 

(Kolodner 1987), the diagnosis of medical complaints (Koton 1988) and the resolution of 

disputes (Kolodner and Simpson 1987). The common element is that all the problems are 

solved by reference to previous similar problems, or cases.

The concept of CBR could potentially be applied to the analysis of aberrant behaviour in a
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fermentation process. The ‘cases’ would be completed fermentations and the ‘case base’ 

would contain all the time variant and time invariant data from each completed fermentation. 

The computerised comparative analysis techniques would be instrumental in the 

implementation of Case Based Reasoning in fermentations.

During the developmental work and initial stages of a new fermentation process the case 

base would be developed. A standard fermentation would be identified using the data from 

all successful fermentations as described in the previous section. All non-standard

fermentations, as determined by the comparative analysis tools, would be recorded in the 

case base as examples of faulty operation (cases). Some ‘generic’ faults may be identified 

during this process, for example if an increase in operating temperature generally resulted in 

a decrease in product yield this would be noted in the comments section of each case 

containing a temperature fault.

The fault diagnosis procedure involves:

1. detecting a fault;

2. searching the case base for a historical fermentation with a similar fault;

3. using the outcome of the historical fermentation to predict the outcome of the current

fermentation;

4. deciding on the required course of action.

The detection of a fault proceeds as described in the previous section and summarised in 

Figure 5.1.

Once a fault has been detected the case base is searched to find a historical fermentation 

which exhibited a similar fault. The case base is likely to be large and thus some search 

parameters must be defined. The first step is to investigate the differences between the time 

invariant data, ie the data base information, of the current run and the standard as these may 

indicate the cause of the fault. These causes can then be used to index the case base, ie to 

find historical batches in which the same fault had occurred.

If the cause of the fault is not clear or the search is not successful, the faulty time variant data 

are used to index the case base. The fault detection procedure would have indicated which 

time variant data differed from the standard and these are then compared with the time 

variant data of the historical batches in the case base. Only those historical cases that had 

variations in the same variables as the current case are investigated.
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Once a similar historical case has been found it can be used to predict what will happen in 

the current fermentation. If the behaviour of the historical fermentation, up to the current 

point, is similar to that of the in-progress one, a prediction of the behaviour of the current 

fermentation can be made by inferring the behaviour of the historical fermentation. The 

prediction required would normally be related to the productivity of the fermentation, for 

example the effect of the fault on the product yield. This information will be found in the 

time variant data or data base information of the historical batch.

The outcome of the prediction is then used to indicate whether or not action should be taken 

to rectify the situation or if it is advisable to terminate the batch. Expert comments provided 

for the historical batch may indicate what action is required.

Upon completion, the current batch is added to the case base as another example of faulty 

operation.

A significant amount of work is required in the development of a Case Based Reasoning tool 

for fermentations but once developed it can be used for all processes with each different 

process being sectioned into its own separate case base. The data base structure described in 

Chapter 2 would be the basic building block of the case base structure and the linearised 

profiles produced by DSIMP (Chapter 3) would be included within the structure. The case 

based reasoner must be linked to the fault detection system described in the previous section 

and must have access to the comparative analysis tools for the comparison of time variant 

data. The time taken to retrieve a similar case from memory is an important consideration 

for on-line work and could be prohibitory to the application of a case based reasoner.

The case based reasoning tool, in conjunction with the comparative analysis tools, offers 

significant advantages over the typical manual fault analysis: all data would be considered in 

the analyses, the absence of an expert would not be critical to the analysis of a fault, and the 

assessment of faults would not be influenced by human bias and inconsistencies. An 

important aspect of the Case Based Reasoning tools is that the operator can follow the line 

of reasoning in the diagnosis of any observed fault and can therefore make an informed 

judgement on the applicability of the result.
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5.3 Implications for Downstream Processing

The comparative reasoning tools can be used to improve the information link between 

fermentations and their subsequent downstream processing operations.

In many research environments the fermentation recovery operations are developed 

separately from the fermentation itself: the fermentation technologists concentrate on 

finding the relationships between fermentation operating conditions and fermentation 

performance whilst the downstream engineers look at altering the conditions of the recovery 

operations so as to optimise recovery of the biomass or product as required. This is not an 

ideal situation. The performance of downstream processing operations is heavily dependent 

upon the quality of the output from the fermentation step as a sequence of product recovery 

operations cannot perform optimally if the feed varies from the design specification. The 

current lack of suitable on-line sensors precludes complete characterisation of a fermentation 

broth during operation and hence the ability to control a fermentation to achieve a consistent 

output is severely limited. Relationships between fermentation and recovery performance 

are poorly documented but, if available, could be used to improve the recovery of product 

from ‘non-standard’ fermentation broths.

In Chapter 4 the comparative reasoning tools were applied to a set of fermentation 

experiments to determine the effects of various operating condition changes on the progress 

of the fermentation. It is possible that these operating condition changes and other, perhaps 

unintentional, changes may have some effect on the performance of the downstream 

processing operations. The expansion of the comparative analysis techniques to include 

recovery data would allow the detection of cause-effect relationships, not only within the 

downstream operations, but also between fermentation and downstream processes.

During a production fermentation, knowledge accumulated from previous fermentations 

enables an operator to evaluate the current situation and adapt operating conditions so as to 

provide as consistent an output as possible (Section 5.2). The inclusion of downstream data 

within this ‘case base’ of historical fermentations would enable correlations between 

recovery performance and fermentation performance and could be used to indicate 

adaptations to downstream operations to cope with non-standard feed streams (ie 

fermentation output) based on previous examples.

Putting these ideas into practice would ensure better utilisation of the data resources
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available and would enable better communication between the different teams of workers. It 

is envisaged that this would enable a greater understanding of the processes studied and 

thereby improve the operation of the processes.
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6 SUMMARY AND CONCLUSIONS

The aim of this work was to investigate the feasibility of automating the comparative

reasoning techniques used by an expert in the analysis of fermentation data. Automation

was considered desirable to overcome the problems inherent in manual analysis of the data:

1. not all data are routinely recorded;

2. it is difficult to keep track of all pieces of information when a large number of 

fermentations are being considered;

3. qualitative data are often ignored in the comparisons;

4. data are not readily available to other researchers;

5. the comparison of time variant data lacks consistency from one person to the next and 

even from day to day;

6. the consideration of all variables is time consuming.

Further requirements were specified prior to development of the automated comparative

reasoning tools:

1. the tools must be applicable in both research and production environments;

2. no prior knowledge of the process should be required for use of the tools in a 

developmental environment;

3. the line of reasoning used must not be obscured from the user as he/she needs to 

interpret the results;

4. the system must not be process specific.

The tools developed for the comparative analysis of fermentation data were:

• a relational data base;

DSIMP, a computer routine to simplify time variant data into piecewise continuous 

linear segments;

• QUAL, a computer routine to describe the linear data segments using the qualitative 

terminology of an expert;

• MATCHER, a computer routine to compare the qualitative description of one time 

profile with that of another time profile.

The analysis process begins with the preparation of the data in which the time invariant data
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are recorded in the data base and the time variant data sets are linearised by DSIMP. The 

simplified data from two fermentations are then described qualitatively using QUAL and 

compared using MATCHER. The results from this comparison are combined with the 

results from the comparison of the data base information of the two fermentations and 

interpreted manually.

The comparative reasoning tools were used in the analysis of a set of laboratory scale acidic 

fibroblast growth factor (aFGF) fermentations. Comparison of the data sets using these tools 

showed firstly that the aFGF fermentation was reproducible. A number of discrepancies in 

the data sets were explained by recourse to the comparison of the data base information. 

Most of these findings had not been identified in a previous manual analysis of the same 

data. The comparison tools were then used to show that a low inoculum concentration had 

very little effect on the process and, if glucose were sterilised separately from the bulk 

medium, the sterilisation conditions that would be experienced on scale up would not affect 

the performance of the fermentation. These conclusions concurred with those reached by 

manual analysis thus demonstrating the efficacy of the comparative analysis tools in a 

developmental environment.

The comparative analysis tools can also be applied to the on-line detection of faults and, 

with the aid of a Case Based Reasoning system, could feasibly be used to diagnose the cause 

of faults during production.

Data from downstream processing operations can be included in the comparative reasoning 

process enabling a greater understanding of the effects perturbations in the fermentation 

environment have on the subsequent recovery operations. This will result in a greater 

understanding of the downstream operations and should lead to improvements in the overall 

process.

The automated techniques have a number of advantages over a manual analysis process:

1. the data base guides the recording of the batch sheet data ensuring that all information

is available for analysis;

2. the detection of differences between the data base information of two fermentations

enables identification of possible causes of discrepancies in the data;

3. the identification of cause-effect relationships is facilitated by presenting all

information to the analyst for consideration;
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4. the comparisons of numerical data are more consistent because of the inclusion of

uncertainty values which remain constant for each variable from one batch to another;

5. the comparison process is not influenced by prior expectations of what the data should

look like;

6. automation of the comparison of time variant data removes the need to overlay all the

various time profiles and the analyst is therefore able to spend more time determining 

why there are discrepancies in the data rather than establishing that differences are 

present;

7. the linearisation of the time variant data highlights correlations between events in

variables of the same fermentation, violation of these correlations is useful in 

detecting and explaining aberrant behaviour.

The comparative reasoning tools can be applied to any fermentation process because they 

require no a priori knowledge of the process. This prevents loss of salience of the tools as 

new processes are developed or old ones improved and allows the tools to be applied to 

developmental processes.

The tools for the comparison of time variant data can be applied to any data sets that reflect 

the dynamics of the process. They also have no dependence on the magnitude of the data. 

However, extremely noisy data and data in which the sampling frequency is low relative to 

the dynamics of the process can not be simplified by the linearisation routine. These 

problems would be a barrier to any data analysis programme. Variables that are under single 

value set point control throughout a fermentation cannot be compared using MATCHER and 

are treated in the data base.

The line of reasoning used by the routines is easily followed: a listing of appropriate 

qualitative descriptions and match records enables the user to see the differences in the time 

variant data and the reporting facilities of the data base ensure that all information is readily 

available to the analyst as required. This is extremely important if the new analysis tool is to 

be accepted by the users.

Human intervention is required in the final interpretation of the comparisons. This is an area 

where the human expert is considerably more adept than the computer and no advantages 

would be attained by automation.

The tools developed in this work do improve the comparative analysis of fermentation data. 

The consistency of the comparisons, the extra information obtained as a result of applying
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these techniques in a developmental environment, and the potential benefits of applying 

them in a production environment, justify the work required in setting up a fully integrated 

comparative reasoning package.
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APPENDIX 1: Cubic Spline Smoothing of Fermentation Data

A number of fermentation researchers use curve fitting techniques to aid data analysis. In 

the early stages of this work a cubic spline fitting technique was investigated as a tool for the 

comparative analysis of fermentation data. The methods were found to be inadequate for the 

desired purposes: the methods were complicated firstly by the need to know the 

uncertainties in the data and, secondly, by the specification of smoothing parameters; it was 

also found that simply smoothing the data did not facilitate the comparison process. The 

cubic splines techniques are described below for completeness. A definition of cubic 

splines is given in Section A 1.1 along with a list of references. The tools used in this work 

are described in Section A 1.2. Practical details of the cubic splines software used are 

presented in Section A1.3. The cubic splines routines were applied to fermentation data to 

determine whether or not they would aid comparative analysis of the data; the results are 

presented and discussed in Section A1.4 and the conclusions of the work are summarised in 

Section A 1.5.

A l.l  Introduction to Cubic Splines

The mathematical description of an experimental curve is a form of function approximation. 

There are a number of methods available for the approximation of functions, eg polynomial 

approximations: least squares fit, Legendre polynomials, Chebyshev polynomials, spline 

functions; and non-polynomial approximations: rational functions, exponential functions, 

logarithmic functions. The most common approximations are the polynomial functions.

A problem that often arises when trying to approximate a function by means of a polynomial 

of high degree is that the polynomial starts to oscillate between data points which is 

undesirable if the polynomial is to be used for interpolation and it makes numerical 

differentiation meaningless. Spline approximations can be used to avoid this problem as 

splines are more stable than polynomials with less possibility of wild oscillations between 

data points.

Spline functions are essentially a chain of polynomial arcs of a specified degree (d). The 

arcs link together smoothly (with continuity of the first d-1 derivatives) at a set of chosen
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abscissa values known as knots.

Two classes of splines are distinguished: interpolating splines and smoothing splines. An 

interpolating spline is a polynomial between each pair of adjacent data points, ie the spline 

function interpolates between data values. The polynomials are connected together at the 

data points and the derivatives (up to a degree specified by the order of the spline function) 

of the functions on both sides of a data point are set to be equal at that point, thus producing 

a smooth, piecewise continuous curve. A smoothing spline is similar to an interpolating 

spline except that the errors in the measurements are taken into consideration and the spline 

is not forced through every data point. In general a smoothing spline is constructed using a 

trade-off between goodness of fit and smoothness of the curve. Interpolating splines are in 

fact a special case of a smoothing spline with the goodness of fit set to 100% or smoothing 

factor set to zero. Smoothing splines are more relevant for experimental data where the 

presence of uncertainties and noise precludes the use of interpolating splines.

Cubic splines are the most common splines used in curve fitting. A cubic spline is a 

continuous function which has continuous first and second derivatives and each interval 

between knots, the points at which the polynomials meet, is represented by a polynomial of 

degree not exceeding three. The theory of cubic splines approximation can be found in 

Greville (1969), de Boor (1978), Schumaker (1981), and Silverman (1985).

Spline functions have been used in a number of instances to smooth experimental data 

(Reinsch 1967 and 1971, Wold 1974, Dierckx 1975, Craven and Wahba 1979, McWhirter 

1981, Wegman and Wright 1983, Silverman 1985, Hutchinson and de Hoog 1985, Oner et 

al. 1986, Buono et al. 1986). The general procedure involves the determination of the spline 

function in each interval such that a cost function, which controls the smoothness of the 

curve and the goodness of fit, is minimised. The cost functions are usually based on those 

described by Reinsch (1967) and Craven and Wahba (1979).

There are two known examples of cubic spline routines developed specifically for 

fermentation data analysis: Erickson and co-workers (Oner et al. 1986, Buono et al. 1986) 

and Thornhill and colleagues at University College London (unpublished). The first of these 

is described briefly below and the second is described in more detail in Section A 1.2 as these 

routines were further developed and utilised in this work.

Oner et al. (1986) and Buono et al. (1986) used carbon and available electron balances to 

determine the best fitting cubic spline to biomass, substrate and product concentration data

Appendix 1 226



from some experimental fermentations. The determination of carbon and available electron 

balances requires calculation of derivative quantities which in turn requires that a smooth 

curve be drawn through each of the data sets. Cubic splines were used to provide this 

smooth curve and the derivatives thereof. Closure of the carbon and available electron 

balances was used to determine how good the spline fits were, the best fit was that which 

resulted in the smallest deviation from one in the balances. The procedure was as follows. 

A smoothing parameter must be provided for each data set to guide the spline fitting. A 

window of possible smoothing parameter values was defined for each data set based on the 

number of data points. Different smoothing parameters result in different curves and 

different combinations of smoothing parameters for the different variables result in different 

values for the parameters of the balance equations. A set of numerical experiments was 

defined using a central composite design: in each experiment a different combination of 

smoothing parameters was used, the spline function for each variable was determined using 

Craven and Wahba’s cost function (Craven and Wahba 1979), the derivative functions were 

calculated and appropriate values substituted into the balance equations. The closure of the 

balance equations was used to set up a response surface, the result from each numerical 

experiment contributed to a point on the surface. The minimum point on the surface 

identified the best closure of the balances and thus indicated the best combination of 

smoothing parameters (and best spline fits) for the variables under investigation.

Although the techniques gave adequate results there were two inherent problems. Firstly, 

the use of balance equations assumes considerable knowledge of the process as the kinetics 

of growth, substrate consumption and product formation must be known and it is not always 

possible to assume Monod kinetics as these workers did. When complex media are used it is 

usually not possible to obtain sufficient information to satisfy balance equations. It is also 

necessary to include variables other than those considered here to complete the balances, for 

example the carbon dioxide in the exit gas must be considered in a carbon balance. 

Secondly, each data point must be weighted for the spline determination. The procedure 

used by Buono et al. (1986) and Oner et al. (1986) was to hand-draw a smooth curve 

through the data and use the standard deviation of the raw data from this curve as the 

weighting for each data point. This precludes the use of this technique for on-line work and 

introduces a significant amount of human bias into the procedure.
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A1.2 Cubic Spline Theory (MSPLIN)

The software package MSPLIN was developed by staff and students at University College 

London for the fermentation researcher who requires a smooth and continuous 

representation of fermentation time variant data. The routines fit cubic splines to data using 

Dierckx’s algorithm (Dierckx 1975) with some modifications. The routines are more 

general than those described by Oner et al. (1986) and Buono et al. (1986) and can be 

applied on-line and off-line to fermentation data.

A brief account of the theory used in MSPLIN will be presented here. The practical aspects 

of using MSPLIN will be described in Section A 1.3 and the applicability of MSPLIN as an 

aid to the comparative analysis of fermentation data is discussed in Section A 1.4 with 

reference to some examples from Escherichia coli fermentations.

The unknown ‘smooth’ curve, ie that underlying the data, is designated g(x). The 

measurements (y) are then:

y(x) = g(x) + e(x) (A l.l)

where e(x) are the errors on each measurement.

The spline approximation to g(x) is s(x) which is defined on a set of m knots, t1<t2<...<tm, in 

which the first and last x-coordinates of the data set coincide with knots t4 and tm_3 

respectively. It takes the form:

m -4

s(x) = I  qb^x) (A 1.2)
i=l

The coefficients of the spline equation, cit are determined by minimising a cost function 

described below.

The basis functions, b^x), are known as normalised b-splines (Cox 1972, de Boor 1978). 

Each of these basis functions spans five knots, ti,ti+1,...,ti+4, and takes the form of a single 

localised positive hump which is zero when xStj or x£ti+4 and attains its peak at x=ti+2. The 

area between each knot is called an interval. Each of the intervals covering the data set, ie 

those between t4 and tm.3, has four b-splines contributing to the function describing that 

interval.
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The spline function in each interval is chosen such that a cost function is minimised. This 

cost function controls the smoothness of the curve and the goodness of the fit. The cost 

function used in MSPLIN is:

n m-4
p E  w ^X i)-^)2 + E [dr]2

i=l r=5
(A1.3)

where dr = (s(3)(tr))+ - (s(3)(tr))' (A 1.4)

The superscripts + and - indicate the value of the third derivative either side of the knot tr. In 

Equation A1.3 n is the number of data points. The weighting function, wit is the inverse of 

the variance of the errors, or noise, in the measurements. The error term is made up of a 

fixed error and a relative error.

The first term in Equation A 1.3 is the distance between the fitted curve and the raw data 

points and is a measure of the goodness of the fit. The second term describes the size of the 

discontinuities in the third derivatives of the function and is a measure of the smoothness of 

the curve. The smoothing parameter, p, controls the trade-off between the smoothness of the 

curve and the goodness of the fit.

The distribution of the goodness of fit term is chi-squared when s(x) is a good 

approximation to the underlying function g(x). The smoothing parameter p is chosen such 

that the discontinuities in the third derivatives at the knots are minimised subject to the 

constraint that the weighted goodness of fit term in Equation A1.3 is less than the 

chi-squared value corresponding to a user-specified percentage fit. If the smoothness

criterion cannot be met the number of knots is increased until a suitable value can be found. 

The coefficients in the spline equation are calculated by rearranging Equation A1.3 (details 

not presented here) and the appropriate values of the spline function, s(x), calculated using 

Equation A 1.2.

The Dierckx algorithm implemented in MSPLIN is only useful if the noise statistics of the 

measurements are known. In other instances the GCV (Generalised Cross Validation) 

method of Craven and Wahba (1979) (and later improved by Utreras 1980, Silverman 1984, 

Hutchinson and de Hoog 1985 and de Hoog and Hutchinson 1987) would be more 

applicable. When derived variables are required the GCV method is more accurate as shown 

by an analysis of the errors between the ‘true’ function and the spline function 

(N.F. Thornhill, UCL, private communication).
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A1.3 Practical Aspects of MSPLIN

The software package MSPLIN will perform the following tasks:

1. smooth a set of raw data using cubic splines;

2. smooth a portion of a raw data set;

3. divide two sets of raw data producing a smoothed result;

4. calculate first and second derivatives of the smoothed curves;

5. determine the integral of a smoothed curve between specified limits;

6. augment a low frequency data set using a related high frequency data set so that a

more accurate representation of the low frequency data set can be obtained;

7. plot the resulting smoothed curves to the screen or on hard copy.

A fermentation user menu has been provided which allows the user to select options such as 

‘calculate smoothed specific rate data’ or ‘calculate smoothed RQ (respiratory quotient) 

data’. These selections automatically trigger the appropriate routines: specific rate data 

requires finding the first derivative of the data and then dividing it by the biomass 

concentration (or other variable); calculation of RQ requires division of the CER data by the 

OUR data.

The routines are written in FORTRAN and are available for use on the MicroVax 2000 and 

on IBM and IBM compatible personal computers.

The raw fermentation data are read from files where they are stored in two column format 

(time,value). The user must supply the percentage error in the data, the resolution of the 

data, ie the fixed error term, and a goodness of fit for the smoothed profile. A goodness of 

fit of 100% results in an interpolating spline and a goodness of fit of 0% results in a single 

cubic polynomial fit.

The user can specify one of two output formats: the first lists the smoothed fermentation 

data at regular time intervals in two column format (time,value) and can be read to a file for 

storage; the second details the parameters of the spline equations which was useful during 

the development of the routines.
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A1.4 Results and Discussion

MSPLIN was used to smooth some time variant data from the Escherichia coli

fermentations described in Chapter 4 (the details of the experiments are not required to 

understand the following work). The results are presented and discussed here in relation to 

their applicability for use in the comparative analysis of fermentations.

The use of MSPLIN requires some knowledge of the errors in the experimental data. 

Unfortunately accurate error evaluations are not usually available and the user must guess at 

appropriate values. In this work the initial fitting for each variable utilised the results of the 

error analyses described in Chapter 4. If the resulting fit was deemed inadequate

adjustments were made until a suitable fit was obtained.

The characteristic S-shaped curves followed by many variables in batch fermentations are 

easily described by splines in most cases. An example is the E. coli biomass concentration

curve shown in Figure A l.l. The depletion of the substrate concentration also follows an

S-shaped pattern as shown in Figure A 1.2. In this instance the calculated uncertainties in the 

raw data did not allow a suitable approximation to the data (Figure A1.2(a)) and alterations 

were required (Figure A 1.2(b)).

10 20 
Age (h)

• Raw D ata; Cubic Spline Fit

Figure A 1.1: Cubic spline fits to optical density data from fermentation batch C447. The user 
inputs were: relative error 2%, resolution 0.1, and goodness of fit 80%.
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d; 25
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10
5
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5
3020100

Age (h)

Cubic Spline Fit

figure (a) (b)

relative error 
resolution 
goodness of fit

2 5 
0.1 0.1 
10 50

Figure A 1.2: Cubic spline Fits to glucose data from fermentation batch C447. The user inputs are 
summarised in the table and their effects seen in the figures. The fit in (a) is too tight The 
fit in (b) is acceptable.

Carbon dioxide evolution rate (CER) profiles are somewhat more complex than the 

S-shaped curves and a number of problems were encountered when trying to approximate 

these profiles with cubic splines. The relative error in CER data is estimated to be 4% 

(Chapter 3). This figure was used in the MSPLIN routines. Trial and error was used to 

determine appropriate values for the resolution and goodness of fit. For one data set (C447) 

values of 0.5 for the resolution and 10% for the goodness of fit were found to give a 

reasonable fit (Figure A 1.3(a)).

The effect of each of the input values on the resulting fit was evaluated by changing each 

value in turn by a small amount. The results are shown in Figure A1.3. A number of 

different combinations were found to give acceptable fits, although each of the fits was 

slightly different. This would make it difficult to determine which fit is best and the result 

would probably vary from user to user. Figure A 1.3 also shows that small changes in any of 

the input values can have drastic effects on the resulting spline approximation. This makes 

finding a suitable fit by trial and error a difficult task.
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figure (a) (b) (c) (d)

relative error 4 4 7 4
resolution 0.5 0.1 0.5 0.5
goodness  of fit 10 10 10 20

Figure A U ; Cubic spline fits to carbon dioxide evolution rate data from fermentation batch C447. The 
user inputs are summarised in the table and their effects seen in the figures, (a) and (d) are 
considered to be acceptable fits. In (b) the data have been interpolated. The fit in (c) is 
too loose.
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It was hoped that one set of input values could be used to smooth a particular variable for all 

fermentations. The input values used in Figure A1.3(a) were thus used to smooth other CER 

profiles, th e  results were poor as the spline fits followed the data too closely, ie the data 

were not smoothed (Figure A 1.4). Suitable fits were obtained for two of these profiles 

(C443 and C446) by altering the input values (results not shown). No suitable fit could be 

obtained for the CER profile from batch C442 because of the rapid decrease in the CER 

value at about 15 h, the splines either interpolated the data or smoothed out the major peak.

The inability of splines to adequately smooth data in which rapid changes occurred was also 

observed when trying to smooth pH data from the E. coli fermentations. In the best fit that 

could be obtained the spline became oscillatory in an attempt to ‘go around’ the steep comer 

in the data (Figure A 1.5). The fit is not a suitable approximation of the data.

Some of the problems alluded to here could be solved by implementing the GCV routines 

which assume no knowledge of the uncertainties in the data. The GCV routines would not 

enable the splines to adequately model data sets which change rapidly. The implementation 

of the GCV routines was not attempted as it was decided that cubic splines would not be 

suitable for the comparative analysis of fermentation data as described below.

Al.4.1 Applicability to the Comparative Analysis of Data

Cubic splines were investigated as a means of simplifying fermentation data to enable 

comparisons between two data sets. The most obvious means of comparison between two 

smoothed profiles is to perform some form of numerical differencing. For example, it would 

be possible to calculate the vertical difference between two profiles at specified time points, 

the sum of these differences could then be used as a measure of similarity. A number of 

problems were envisaged with such a technique as described below.

Firstly, a number of different smooth approximations can be obtained for any one profile 

(Section A 1.4), the best of these is a matter of subjective opinion; a numerical comparison 

using any of these different approximations would obviously give different results for the 

similarity metric. The comparative procedure would therefore not be any better than the 

current visual comparison of data which is also a matter of subjective judgement.
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Figure A 1.4: Cubic spline fits to carbon dioxide evolution rate data from different fermentation batches.
The user inputs for each of the fits were: relative error 4%, resolution 0.5, and goodness of 
fit 10%. The fit to profile (a) was acceptable. The others followed the data too closely, ie 
the data were not smoothed, and thus the fits were not acceptable.
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Figure A 1.5: Cubic spline fits to pH data from fermentation batch C447. The user inputs were: relative 
error 0.01 %, resolution 0.5, and goodness of fit 80%. The spline became oscillatory in an 
attempt to 'go around’ the sharp comer. The fit was not acceptable.
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Secondly, it is known that two fermentations may vary for only a short period of time; an 

overall similarity measure such as the one described here gives no information on where the 

processes differed and where they were similar making interpretation difficult.

Thirdly, the length of the lag phase of two fermentations often varies as a result of 

uncontrollable factors, this leads to slight differences in the time axis of the variables of 

these fermentations; numerical differences between the profiles would be strongly 

influenced by this shift and would not be a true representation of the similarity of the two 

profiles.

Another option for the comparative analysis of the splines data is to relax the description of 

the data using qualitative or semi-quantitative terminology as described in Section 3.1.2. 

However, this would require that the smoothed data be further simplified into data pieces 

utilising some feature of the data, eg linear or curved segments could be used as described in 

Section 3.1.1. The techniques that were developed in this work, and described in the body of 

the thesis, simplified the data using a linear segmentation and then compared a qualitative 

description of the simplified data. There appears to be no advantage in smoothing the data 

using cubic splines as the simplification was carried out in a single step.

A1.5 Conclusions

1. The MSPLIN package developed at UCL was able to smooth some fermentation data

sets using cubic splines.

2. Data sets containing rapid changes were not adequately smoothed.

3. The results for all data sets were dependent on the user’s choice of input error and

smoothing parameters which often had to be determined by trial and error.

4. The ‘best’ fitting profile was chosen by the user, different users may choose different

profiles. As a result of this subjective judgement, the comparison of data sets is not 

improved by smoothing them with splines.
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5. A numerical comparison between two data sets smoothed by MSPLIN would show 

large differences if two profiles were shifted slightly in the time dimension as a result 

of differing lag periods.

6. A numerical comparison between two spline-smoothed data sets would provide a 

single measure of similarity, it would not indicate that the two profiles were similar 

over some portions of the profile and different over other portions.

7. The abstraction of the spline-smoothed data to a qualitative representation to facilitate 

comparison would require a further simplification step in which the profile is divided 

into smaller portions which could be described qualitatively. This simplification can 

be performed in a single step without prior smoothing of the raw data as described in 

the body of the text and thus it was concluded that no advantage is conferred on the 

comparative analysis procedure by the application of cubic splines.
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APPENDIX 2: Outlier Detection for aFGF Off-Line Data

In any experimental work one needs to know the validity of the data. Bad data due to 

obvious blunders can be discarded immediately. Data that simply look bad cannot be 

thrown out unless something is obviously wrong. If bad points fall outside the range of 

normally expected random deviations they may be discarded on the basis of some consistent 

statistical data analysis.

Holman and Gajda (1978) suggest the use of Chauvenet’s criterion to determine outliers. 

Using this method a reading is rejected if the probability of obtaining the particular 

deviation from the mean is less than l/2n, where n is the number of measurements in a data 

set. The method is appropriate for small data sets, even down to n=2.

The steps involved in the outlier detection routine were:

1. calculate mean and standard deviation for each sample;

2. calculate deviation of each point from the mean and compare with the standard 

deviation;

3. eliminate points according to the above criterion;

4. recalculate the mean and standard deviation.

The algorithm was programmed using the Smart Ware II programming language (Informix 

Software Inc., Menlo Park, CA) and the data were manipulated in the SmartWare II 

spreadsheet.

The data investigated were the off-line measurements of optical density, glucose 

concentration, dry cell weight and volumetric aFGF concentration. No outliers were found 

in these data.
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APPENDIX 3: aFGF Calculations

A3.1 Conversion to a Specific Concentration

In the aFGF experiments the product concentrations were initially determined in volumetric 

terms, ie normalised units per litre of broth. When the product is intracellular, as was the 

case for the aFGF fermentations, it may be more meaningful to talk about the productivity of 

the cells. The aFGF values were therefore also calculated in specific terms, ie normalised 

units per gram of biomass.

The calculation of the specific aFGF for each sample was:

aFGFs = (mean aFGFv) / (mean DCW) (A3.1)

where

aFGFs = specific aFGF concentration (normalised units.(g biomass)'1) 

aFGFv = volumetric aFGF concentration (normalised units.L'1)

DCW = dry cell weight calculated from the correlation with optical density (g.L1)

The mean aFGFv and mean DCW values used in Equation A3.1 were the mean values 

calculated for each sample. The correlation between dry cell weight and optical density is 

discussed in Appendix 4.

A3.2 Uncertainties in the aFGF Measurements

Three or four aFGFv values were obtained for each sample. The mean and standard 

deviation of each sample were calculated and an average standard deviation over the 

complete set of fermentations was obtained. The average standard deviation was thought to 

be more representative of the spread of the measurements than that calculated for each 

individual sample where only three or four measurements contributed to the calculations.
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The aFGFs values were calculated as described in A3.1. Only one value was available at 

each sample point thus there was no means of calculating the standard deviation of the 

measurement. The uncertainties in the aFGFs values were obtained from the relative 

uncertainties in the dry cell weight and aFGFv values.

When the ratio of two values is obtained, the relative error in the result is calculated by 

adding the relative errors of the two component terms. Thus for aFGFs the relative errors in 

the mean aFGFy and mean DCW were required.

The method for obtaining the absolute error in the dry cell weight is presented in the next 

appendix (A4.2). This is converted to a relative error (5d) by dividing it by the mean dry cell 

weight.

The relative error in aFGFv, for each sample, was calculated from:

5v = (E abs(mean aFGFy - aFGFy)) / E aFGFy 

The relative error in aFGFs, for each sample, is therefore 

5 = 5  + 5 .s v d

and the absolute error in aFGFs is 

e = 8 * aFGFs s s

These uncertainties were calculated for each sample using the SmartWare II spreadsheet 

(Informix Software Inc., Menlo Park, CA).

The aFGF time profiles are presented in Figures A3.1 and A3.2. The ‘error bars’ represent 

three average standard deviations about the mean for aFGFy and the mean plus or minus the 

absolute error for aFGFs.
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A3.3 aFGF Concentration at the Recommended Harvest Point

The aFGF fermentations are usually harvested about the time that the glucose concentration 

reaches 5 g.L'1. In the experiments in Chapter 4 the fermentations were run past this point. 

The aFGF concentration was estimated at the recommended harvest point as a means of 

determining the productivity of the fermentation.

It was assumed that the aFGF concentrations were linear between each sample point and the 

aFGF harvest concentrations were determined by linear interpolation using the samples on 

either side of the recommended harvest time. The equations were obtained from 

Mendenhall and Sincich (1988, p.234).

For the volumetric aFGF values, where an average standard deviation was available, the 

following calculations yielded the required aFGF concentration and its associated 

uncertainty:

Let a  ̂ 2̂*̂ 1 ̂  
b = (th- ti) /( t2-ti)

Then

and

aFGFh = a * aFGFt + b * aFGF2
Oj2 = a2 * a  2 + fo2 * a 2

Where = the recommended harvest time 

tj = the time of the last sample before ^ 

t2 = the time of the next sample after th 

aFGFh = the estimated aFGF concentration at ^ 

aFGFj = the aFGF concentration at tj 

aFGF2 = the aFGF concentration at t2 

a  2 = the estimated variance in aFGF.n n

a 2 = a  2 = the average variance in the measured aFGF values

For the specific aFGF values the uncertainties were given in terms of an absolute error. The 

calculation of the aFGF harvest value then simply involved determining the upper and lower 

limits of aFGFh by interpolating separately between the upper bounds and the lower bounds 

of the two samples either side of the harvest time.

The harvest values are indicated on Figures A3.1 and A3.2 and are listed in Table 4.7.
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APPENDIX 4: Correlation Between Optical Density and Dry Cell 
Weight in aFGF Fermentations

An experimentally determined linear relationship between optical density and dry cell 

weight is often used to infer biomass concentration in a broth from the relatively straight 

forward optical density measurement. This was attempted in the aFGF fermentations 

described in Chapter 4. A rough plot of the dry cell weight versus optical density for all the 

fermentations suggested the possibility of a difference in the correlation for the batch that 

had undergone a sixty minute sterilisation with glucose in situ (C449). This was examined 

in A4.1. The uncertainties in the dry cell weight values are determined in A4.2.

A4.1 A Statistical Analysis of the Correlations Between OD and 
Dry Cell Weight

The possibility of a difference in the correlations between optical density and dry cell weight 

in the aFGF fermentations was investigated using a statistical test described by Mendenhall 

and Sincich (1988).

Three variables were defined: the dependent variable, dry cell weight (y); and the 

independent variables, optical density (Xj) and batch number (x2-x10). The batch number is a 

logical variable and is interpreted as follows:

x = f 1 if C439 
2 L 0 if not

x = f 1 if C442 
5 I  0 if not

x = f 1 if C440 
3 I 0 if not

x f 1 if C443 
6 I  0 if not

x = f 1 if C441 
4 I  0 if not

x r 1 if C444 
7 I  0 if not

x r 1 if C446 x r 1 if C447 x = f l i fC 4 5 0
8 I  0 if not 9 I  0 if not 10 1 0 if not

Note that if all of x2 to x10 are 0 then the batch number is C449. C451 and C452 were not 

included as no dry cell weight measurements were made on these fermentations.
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If a single line were adequate to describe the optical density - dry cell weight correlation for 

all the fermentations, the equation of that line would be:

E(y) = P0+ P ixi (A4-1)

where E(y) is the expected value of the dry cell weight and the f5s are the parameters of the 

first-order model.

If the correlations were in fact different, the equation representing all the lines would be:

E(y) = Po + P,x, + P2x2 + ... + p,0x10 +

P l l X l X 2  +  P | 2 X 1X 3 -  +  P l 9 X l X 10  ( A 4 - 2 )

The null hypothesis for the test was that a single line adequately describes the optical 

density - dry cell weight correlation for all the fermentations, whilst the alternative 

hypothesis was that at least one of the fermentations differs in its relationship between 

optical density and dry cell weight:

H«: p2 = p3 = ... = p i8 = p i,= 0

Ha: at least one of p2 to P19 differs from 0

The null hypothesis was tested by fitting the complete model (Eq. A4.2) and the reduced 

model (Eq. A4.1) using the regression capabilities of RS/1 (Release 4, BBN Software 

Products Corporation, Cambridge, MA, USA) and then conducting an F test on the reduction 

in the residual sum of squares caused by the fitting of the complete model. The results of the 

fits are presented in Tables A4.1 to A4.4.

SOURCE DF SUM OF MEAN F R-
SQUARES SQUARE VALUE SQUARE

regression 19 31.719 1.669 83.521 0.978
residual 36 0.720 0.020

Table A4.1: Portion of analysis of variance table for the ‘complete model’, ie
separate lines fitted to all fermentations. (DF = degrees of freedom).
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COEFFICIENT VARIABLE
NAME

FITTED
COEFFICIENT

5’
ft2
fi3
B4
a5
a6
B7
B8
fi*
b '°
B"
B12
b ' 3
B14
B15
fi’6
fi17
S"19

intercept -1.76
OD 0.47

C439 2.43
C440 1.76
C441 2.85
C442 2.68
C443 1.89
C444 2.18
C446 0.88
C447 2.25
C450 2.76

OD*C439 0.01
OD*C440 0.00
OD*C441 -0.02
OD*C442 -0.05
OD*C443 0.10
OD*C444 -0.01
OD*C446 0.09
OD*C447 -0.01
OD*C450 -0.04

Table A4.2: Coefficients table for the fitting of separate lines to all the
fermentations.

SOURCE DF SUM OF 
SQUARES

MEAN
SQUARE

F
VALUE

R-
SQUARE

regression 1 30.959 30.959 1130.425 0.954
residual 54 1.479 0.027

Table A4.3: Portion of analysis of variance table for the ‘reduced model’, ie a
single line fitted to all fermentations. (DF = degrees of freedom).

COEFFICIENT VARIABLE FITTED
NAME COEFFICIENT

Po intercept 0.33

p , OD 0.46

Table A4.4: Coefficients table for the fitting of one line to all fermentations.
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The test statistic is:

F = ((SSEj - SSE2) /  (k - g)) /  MSE2 (A4.3)

The rejection region is F > Fa (choose a=0.05)

where: SSEt = sum of squared errors for the reduced model = 1.479

SSE2 = sum of squared errors for the complete model = 0.720 

MSE2 = mean squared error for the complete model = 0.020 

k-g = number of (5 parameters specified in Ho = 19-1 = 18

and for the comparison with the F Tables

Vj = k-g = degrees of freedom for the numerator =18

v2 = n-(k+l) = degrees of freedom for the denominator = 56-20 = 36

n = sample size = 56

From Equation A4.3 F = 2.11 which is larger than the value in the F Tables,

1.84 < F Q5 < 2.01 (Mendenhall and Sincich 1988). Ho was therefore rejected and it was 

possible to conclude that at least one of the fermentations differs in its relationship between 

optical density and dry cell weight.

As it was observed earlier that the optical density - dry cell weight correlation for

fermentation C449 appeared to differ from the other correlations, the above procedure was 

repeated with C449 being excluded from the model: factors with x10 were removed from 

Equation A4.2; when all x2 to x9 are zero then the batch is C450. The results of the fits are 

presented in Tables A4.5 to A4.8.

SOURCE DF SUM OF 
SQUARES

MEAN
SQUARE

F
VALUE

R-
SQUARE

regression 17 34.190 2.011 83.322 0.978
residual 32 0.772 0.024

Table A4.5: Portion of analysis of variance table for the ‘complete model’, ie
separate lines fitted to all fermentations except C449. (DF = degrees 
of freedom).
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COEFFICIENT VARIABLE
NAME

FITTED
COEFFICIENT

1°
b
fl2
B3
b
B5
B6

fl8
B9
fl'°
fl"
fi’2
fi’3
fi’4
fl15
fl'8^17

intercept 1.00
OD 0.43

C439 -0.33
C440 -1.00
C441 0.09
C442 -0.08
C443 -0.87
C444 -0.58
C446 -1.88
C447 -0.51

OD*C439 0.06
OD*C440 0.05
OD*C441 0.02
OD*C442 -0.01
OD*C443 0.14
OD*C444 0.03
OD*C446 0.13
OD*C447 0.03

Table A4.6: Coefficients table for the fitting of separate lines to all the
fermentations except C449.

SOURCE DF SUM OF MEAN F R-
SQUARES SQUARE VALUE SQUARE

regression 1 33.852 33.852 1463.217 0.968
residual 48 1.110 0.023

Table A4.7: Portion of analysis of variance table for the ‘reduced model’, ie a
single line fitted to all fermentations except C449. (DF = degrees of 
freedom).

COEFFICIENT VARIABLE FITTED
NAME COEFFICIENT

Po intercept 0.55

p , OD 0.46

Table A4.8: Coefficients table for the fitting of one line to all fermentations
except C449.
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The following values were substituted into Equation A4.3

SSEj = sum of squared errors for the reduced model = 1.110 

SSE2 = sum of squared errors for the complete model = 0.772 

MSE2 = mean squared error for the complete model = 0.024 

k-g = number of P parameters specified in Ho = 17-1 = 16

and for the comparison with the F Tables

Vj = k-g = degrees of freedom for the numerator =16

v2 = n-(k+l) = degrees of freedom for the denominator = 50-18 = 32

n = sample size = 50

From Equation A4.3 F = 0.88 which is smaller than the value in the F Tables,

1.84 < F 05 < 2.01 (Mendenhall and Sincich 1988). There is no evidence to suggest that the 

optical density - dry cell weight correlation differs for the remaining fermentations.

The equations describing the relationship between optical density and dry cell weight are 

therefore:

y = -1.76 + 0.47Xj for C449 (A4.4)

y = 0.55 + 0.46xj for the other fermentations (A4.5)

where y is the predicted value of the dry cell weight.

The correlation equation for C449 was obtained by performing linear regression on the data 

from that fermentation only. The correlation for the other fermentations was that obtained in 

Table A4.7. The correlations are shown in Figure 4.6.

The regression also gave values for the errors on the parameter estimates, these are 

summarised in Table A4.9.
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BATCH SLOPE INTERCEPT

C449
others

0.47±0.04
0.46±0.01

-1.76±0.65
0.5510.22

Table A4.9: Parameter values for the regression equations and their errors.

A4.2 Uncertainties in the Dry Cell Weight Measurements

Each optical density reading was converted to a dry cell weight value using the appropriate 

correlation from A4.1. For each sample the standard deviation was determined and the 

average standard deviation over the full set of experiments was calculated to be 0.2.

For the simplification routines there were two goodness of fit criteria: three times the 

average standard deviation and the range of values at each sample. The larger of these for 

each sample was the governing criterion for fitting the linear data pieces.

There was obviously some error associated with the regression equations (Table A4.9) thus 

the range of values for each sample was modified to account for this: the lower value had the 

uncertainty subtracted from it and the upper value had the uncertainty added to it thereby 

increasing the range. The uncertainties were calculated as follows.

For all fermentations except C449:

regression equation: DCW = 0.55 + 0.46*OD

where

DCW = dry cell weight 

OD = optical density

When adding two values their absolute errors are added. When multiplying two values their 

relative errors are added.
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Let £j = absolute error in intercept (0.55) = 0.22 

es = absolute error in slope (0.46) = 0.01 

6S = relative error in slope = 0.01/0.46 = 0.02 

80 = relative error in OD = (abs(mean OD - OD))/OD

Then £d = £. + (5S + 8o)*0.46*OD

where £d is the absolute error in the dry cell weight value. Thus the range of values at each 

sample point is given by:

minimum DCW - ed to maximum DCW + £d

Similarly for batch C449:

regression equation: DCW = -1.76 + 0.47*OD

£| = absolute error in intercept (-1.76) = 0.65 

£s = absolute error in slope (0.47) = 0.04 

5S = relative error in slope = 0.04/0.47 = 0.09 

50 = relative error in OD = (abs(mean OD - OD))/OD

£d = £j + (5S + 8o)*0.47*OD

These uncertainties were calculated for each sample using the SmartWare II spreadsheet 

(Informix Software Inc., Menlo Park, CA).
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APPENDIX 5: Time Variant Data From aFGF Fermentations

The following graphs depict the time variant data from the aFGF fermentations described in 

Chapter 4. Where appropriate the data have been linearised using DSIMP.

The aFGF yield data were presented in Appendix 3.
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Figure A5.6(b): Alkali addition profiles for fermentations C446 to C452.
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Figure A5.7(a): Air flow rate profiles for fermentations C439 to C444.
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Figure A5.7(b): Air flow rate profiles for fermentations C446 to C452.
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Figure A5.8(a): Agitation rate profiles for fermentations C439 to C444.
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Figure A5.8(b): Agitation rate profiles for fermentations C446 to C452.
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Figure A5.9(a): Oxygen uptake rate (OUR) profiles for fermentations C439 to C444.

Appendix 5 271



OU
R 

(a
rb

itr
ar

y 
un

its
) 

OU
R 

(a
rb

itr
ar

y 
un

its
) 

OU
R 

(a
rb

itr
ar

y 
un

its
)

140
C446

120 - •

2010 300

140
C447

ocz>
O

20 30100
Age (h) Age (h)

140
C449

120

0 10 20 30

140
C450

120

3

30200 10
Age (h) Age (h)

140
C451

120

10 20 300

140
C452

120

100a
c3
i 80
I 60
DC

O 40

20 30100
Age (h) Age (h)

• Raw Data (points are joined to emphasise course of values)

Figure A5.9(b): Oxygen uptake rate (OUR) profiles for fermentations C446 to C452.
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Figure A5.10(a): Sterilisation temperature profiles for fermentations C439 to C444.
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