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Abstract: Seismic fragility assessment of building portfolios usually involves empirical approaches, or 
numerical, mechanics-based approaches applied to properly-sampled index buildings representative 
of defined structural typologies. These approaches often neglect the effect of building-to-building 
variability on portfolio seismic risk estimates. Alternatively, metamodeling techniques can be adopted 
to surrogate complex mechanical analyses and to properly include class variability. However, 
commonly-used metamodels rely on various simplifying assumptions. In this study, Gaussian process 
regression is adopted to address these limitations. The proposed method is demonstrated for 
seismically-deficient RC school buildings with construction details typical of some developing 
countries (e.g., in Southeast Asia), for which field data is available. Gaussian processes estimating 
the fragility statistics of such schools are fitted based on thousands non-linear time-history analyses 
for over 100 building realisations within the considered structural class. To further increase the 
tractability of the methodology, alternative metamodels are defined based on numerical non-linear 
static (pushover) analyses, or analytical “by hand pushover” through the Simple Lateral Mechanism 
Analysis (SLaMA) method. Four validation structures (outside the training set) are defined and 
analysed through the same approaches. Preliminary results from this study show predicted-to-
“observed” errors below 10%, highlighting the accuracy of the fitted metamodels. Moreover, non-linear 
static approaches (SLaMA or numerical pushover), coupled with the capacity spectrum method, 
produce sound results, drastically reducing the computational burden in the model calibration. 

1. Introduction 
Seismic fragility is quantitatively expressed as the conditional probability that a structure will reach or 
exceed a specified level of damage (or Damage State, DS) for a given value of a considered ground-
motion Intensity Measure (IM). Fragility relationships describe such conditional probability for 
increasing values of the ground-motion IM, taking the form of cumulative distribution functions (CDFs). 
These relationships are a key ingredient in any seismic risk assessment exercise, particularly in the 
case of building portfolios. Fragility relationships can be obtained empirically, using observed (post-
event) damage data, through expert opinion, or simulating the structural response through 
computational models and analysis types of different complexity and computational demand. 

If the number of structures of interest is particularly large (e.g., in the case of building portfolios), it may 
be unfeasible to run refined analyses (using refined models) for each individual structure within the 
portfolio. Therefore, various building classes are often defined in terms of few parameters (e.g., 
material/lateral-load resisting systems, height, age of construction), assigning a specified fragility 
relationship to each class. Such relationships, usually derived for an “average” archetype building of 
the class (an “index” building), are adopted for all the buildings in the class. To include class (i.e., 
building-to-building) variability in practical seismic risk assessment applications, surrogate 
metamodels may be adopted for each building class. A metamodel is a model of a model: it defines a 
relationship between a given set of inputs and outputs, obtained by analysing a relatively-small set of 
samples (e.g., structures in the same class) and subsequently fitting a function for the outputs that will 
replace (or surrogate) the real model.  

This allows one to have a computationally-efficient tool to capture the complex and implicit relationship 
between model input(s) and outputs, such as seismic fragility parameters as a function of structural 
geometry, materials, detailing, etc. At the same time, metamodels allow to capture both structure-
specific uncertainties (materials, geometry/detailing, modelling) and class-specific uncertainties. 
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These are especially important when assessing individual structures, for instance through the 
Performance-Based Earthquake Engineering (PBEE) framework. However, commonly-adopted 
metamodels suffer for some drawbacks, such as: 1) the user should specify the functional form for the 
fitting, potentially generating substantial misfit or, conversely, physically-unsound overfit; 2) they often 
rely on simplifying assumption (e.g., homoscedasticity, i.e., the variance of the error term is 
independent of the value of the input variables).  

To address the above issues, it is proposed here to adopt Gaussian Process (GP) regressions 
(Rasmussen & Willams, 2006) to develop a flexible, fast and accurate metamodel for the seismic 
fragility parameters of building classes. The proposed approach is demonstrated for seismically-
deficient Reinforced Concrete (RC) school buildings with construction details typical of developing 
countries (such as Philippines and Indonesia), for which field data is available. To this aim, a Design 
of Experiment (DoE) is defined considering (>1000) combinations of selected geometrical and 
mechanical properties of the case-study portfolio. For each combination, a fragility curve is defined 
based on non-linear time-history analyses for 150 unscaled real (i.e., recorded during past events) 
ground motions. Several GPs are fitted to the numerical results of the structural analyses. Four extra 
buildings (not considered in the training of the model) are also numerically analysed.  

It is worth noting that significant computational effort may still be needed to calibrate such metamodel 
for a single structural class, i.e., thousands of time-history analyses are needed. To increase the 
tractability of the approach, two simplified but accurate analysis methods are also adopted as 
alternatives. In particular, the same metamodeling methodology is applied deriving force-displacement 
curves through the analytical approach Simple Lateral Mechanism Analysis (SLaMA, NZSEE 2017; 
Gentile et al., 2019a) or numerical pushover. The Capacity Spectrum Method (CSM, Freeman, 1998), 
adopting the same set of recorded ground motions, is applied using such curves. Therefore, two 
alternative sets of fragility functions are derived, together with the corresponding GP metamodels. 
Although a systematic analysis of the bias and dispersion in the fragility parameters due to the 
simplified methods is outside the scope of this paper, the preliminary results from this study indicate 
that such an approach might be feasible in practice.  

2. Gaussian Process Regression 
GPs overcome all the downsides of the commonly-used surrogate modelling techniques and, for this 
reason, they are selected in this paper. A GP is a non-parametric statistical method that finds a 
multivariate Gaussian distribution over the possible functions that can fit a set of observed data. The 
mathematical formulation of a GP regression is briefly described in Section 2.1.  

2.1. Overview of Gaussian Process regression 
Given a set of training data, a GP defines a multivariate Gaussian distribution over all the functions 

that fit such data. In other words, the GP outputs for any arbitrary set of inputs defines a joint 
normal distribution. The mathematical form of a GP is described in Eq. 1). and are two different 
input vectors (of arbitrary dimension), is a mean function, Eq. 2), defined as the expected value 
of the GP, and is a covariance function (or kernel), Eq. 3), capturing the correlation among 
different input sets reflecting it in the output. 

   (1) 

   (2) 

   (3) 

The starting point of the fitting procedure is the definition of a prior distribution, which will be converted 
into a posterior based on the observed data (in a Bayesian approach). Generally, a zero mean function 
is assigned for the prior, since this has a negligible influence on the posterior. The topology of the 
output functions - with particular reference to its smoothness - is governed by the covariance function, 
which specifies the covariance between pairs of random variables. The nature of the covariance 
function is the main input from the user and should reflect the expected behaviour of the output. A 
common choice in engineering applications is the squared exponential covariance, Eq. 4), which 
reflects the “stability” of the involved physical quantities (i.e., a small perturbation of the input produces 
small changes in the output). In such equation,  is the distance between two input sets, 𝜎"# 
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represent the length scale of the output in each input dimension. 𝜎$# is the signal variance, which can 
be seen as the variance of single observations (i.e. the covariance function is equal to when the 
distance between  and  is zero). The parameters of the covariance are called hyperparameters 
since those are not specified by the user but learnt from the data (GPs are non-parametric models). 

   (4) 

The posterior incorporates in the GP the knowledge embedded in the training data. In particular, this 
is obtained by conditioning the joint prior distribution, Eq. 5, to the observed data. Equations 6,7 and 
8 describe this by assuming a vector of (known) training outputs y, for which each component is related 
to a vector of inputs. The column vector inputs are collected in the X matrix. The pairs ( ) are 

related to the (unknown) test data.  is the noise variance, which is a hyperparameter that reflects 
the uncertain nature of the training pairs. 

   (5) 

   (6) 

   (7) 

   (8) 

The last step of the procedure is the determination of the hyperparameters. This is done by maximising 
the likelihood,  , which is the probability of predicting the training data y, given the training 
input set X and a set of hyperparameters 𝛉. This is carried out adopting numerical optimisation 
algorithms often available by default in many programming languages. 

3. Methodology 
This study involves the derivation of seismic fragility curves for a class of seismically-deficient RC 
school buildings representative of the construction practice in some developing countries (Section 4). 
The main objective of the work is to develop a set of GP surrogate metamodels to predict the median 
and logarithmic standard deviation of the fragility functions defined for four different damage states. 
The desired surrogate metamodel is depicted in Figure 1 while the necessary steps to obtain it are 
described in the following:  

1. Design of Experiment. An experimental design matrix is defined considering combinations of 
selected geometrical and mechanical properties of the school buildings. A three-factorial DoE has 
been selected for this study. The adopted values are shown in Section 4, Table 2. As a result, a group 
of 196 building realisations are defined; 

2. Analysis. For each entry of the DoE, seismic fragility functions are estimated using different 
analysis techniques with increasing refinement. The first step of this process is to obtain a cloud of 
points in the Engineering Demand Parameter (EDP) vs IM space. For this study, the maximum inter-
storey drift has been selected as the EDP while the IM is defined as the geometric mean (Avg SA) of 
the pseudo-spectral acceleration in the interval [0.2T1,min, 2T1max], where T1,min, and T1max are 
respectively the minimum and maximum elastic period for the buildings in the DoE. 150 unscaled 
natural ground motions are selected from the SIMBAD database (Selected Input Motions for 
displacement-Based Assessment and Design, Smerzini et al., 2014). As in Rossetto et al., 2016, these 
records are selected by first ranking the 467 records in terms of their Peak Ground Acceleration (PGA) 
values (by using the geometric mean of the two horizontal components) and then (arbitrarily) keeping 
the component with the largest PGA value. 

The EDP values to be used in the cloud analysis are computed in three different ways. Firstly, SLaMA 
is adopted to derive analytically a force-displacement capacity curve and the expected plastic 
mechanism for the considered structure. Then, the CSM, is adopted to calculate the inter-storey drift 
demand for each of the 150 ground motions. A refined model has been defined using the FEM 
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software Ruaumoko (Carr, 2016) to derive numerically the force-displacement curve. Such model is 
capable of predicting the flexural, bar slip and shear failure of RC beams and columns, together with 
shear failure in the beam-column joints and strength degradation. The CSM is applied to calculate the 
maximum inter-storey drift for the selected 150 ground motions. Finally, the most refined considered 
method is the full non-linear time-history analysis, conducted adopting the above-mentioned numerical 
model (including stiffness and strength degradation) and ground motions. For each method, the 
building realisations are analysed by means of two different two-dimensional analyses in the 
transverse and longitudinal directions. 

The linear least square method is applied on the derived (EDP, IM) pairs, estimating the conditional 
mean and standard deviation of EDP given IM and deriving the commonly-used power-law model 

, where a and b are the parameters of the regression. The derived probabilistic seismic 
demand model is used to define the median ( ) of four lognormal fragility curves, one for each DS, 
and the corresponding logarithmic standard deviation  (which is the same the four curves, due to 
the homoskedasticity assumptions in the cloud approach). 

3. GP fitting. For each of the calculated output parameters (medians and standard deviation for each 
DS for the three considered analysis methods), a surrogate metamodel is fitted. This is done adopting 
a constant mean function, a squared exponential covariance function with different length scale in 
each input dimension and zero noise (different assumptions will be tested in future studies by the 
authors). This last setting reflects the deterministic nature of any numerical analysis (i.e., if the analysis 
is repeated, the output value does not change). Moreover, additional (less complex) Gaussian 
processes are fitted to surrogate the non-linear static force-displacement curve. In particular, the 
displacement and base shear at yielding and ultimate (both SLaMA- and numerically-based) are 
treated as output parameters.  

Finally, four additional buildings (not considered in the DoE, and outside the training set of the GPs) 
have been analysed with the same above-mentioned procedure. The results are compared with the 
predictions of the surrogate metamodels. 

 
Figure 1: Description of the surrogate model approach. 

4. Illustrative application 
4.1. Description of the case study and Design of Experiment 
The case-study building class selected for this study represents seismically-deficient RC school 
buildings, defined based on large data collection exercises (e.g., Nassirpour et al., 2018; Gentile et 
al., 2019b) involving Rapid Visual Surveys for over 200 school buildings carried out to collect 
administrative, geometric and mechanical data related to the investigated buildings. 

The analysis of the collected data allows to firstly define building archetypes based on the most 
common lateral load resisting system, average geometrical and mechanical features and structural 
details. Then, the distributions of the collected data are used to define the DoE, selecting the most 

EDP = aIMb

µ
β



 GENTILE & GALASSO 

5 

relevant varying parameters and their samples. The archetype building (Figure 2) is a two-storey 
rectangular-plan frame building and it represents approximately 80% of the surveyed schools. 
According to the collected geometrical data, the parameters with a significant variation are the number 
of longitudinal bays and the length of the transverse bays, while other parameters such as the number 
of storeys, the length of the corridor bay, the dimension of the beams/columns have negligible 
variability within the survey sample.  

The knowledge on the material properties is comparatively lower than for geometry, given the visual 
nature of the data collection. Indeed, average values related to Indonesian statistics (Saputra, 2017) 
for the concrete cylindrical strength and steel yield stress have been used (24MPa and 400MPa, 
respectively). Moreover, Coefficients of Variation (CoV) respectively equal to 18% and 5% are 
selected based on literature studies (Nowak & Szerszen, 2003; Galasso et al., 2014). It is worth 
mentioning that both the analytical and numerical models adopted for the study are significantly 
affected by such quantities, since those affect the flexural and shear characterisation of beams, 
columns and beam-column joints.  

Structural detailing is the last major variable in the DoE. Although measured data is not available, two 
different simulated design approaches are conducted to reflect two different nominal seismic 
performances. To this aim, the buildings are simulated designed according to the Uniform Building 
Code (1997) and the American Society of Civil Engineers (ASCE) 7-10. In fact, building codes in the 
developing countries typically refer (and are fully consistent with) to the UBC and/or the United States 
codes. However, some of the provisions in such codes have not been fully applied (e.g. stirrups in the 
joints) in the simulated design to somehow take into account the potential lack of code enforcement 
(observed during the field survey). The resulting detailing for the two categories (Table 1) leads to 
“Pre-Code” and “Low-Code” configurations, as defined in HAZUS MH4 (HAZard United States;  
Kircher et al., 2006). 

 
Figure 2: Geometry of the archetype building.  

According to the above considerations, the selected parameters for the DoE are structural detailing, 
the number of longitudinal bays, the length of the transverse bays, concrete cylindrical strength and 
steel yield stress. The sampling values for the three-factorial design are shown in Table 2. Clearly, the 
number of longitudinal bays have no influence on the analysis in the transverse direction (the 
analogous is valid for the length of the transverse bays). Therefore, 54 models are sampled for each 
building direction, leading to a total of 108 models x 150 ground motions = 16200 analyses for each 
of the three considered analysis techniques. 

 Typical beam Typical column Typical joint 
Pre-Code 3f16 top 3f16 top No stirrups 
 3f16 bottom 3f16 bottom  
 f10@150mm stirrups f10@200mm stirrups  
Low-Code 3f16 top 3f16 top No stirrups 
 3f16 bottom 3f16 bottom  
 f10@150mm stirrups f10@100mm stirrups  

Table 1: Structural details for the as-built configuration. 

4.2. Results and Discussion 
As explained in Section 3, for each realisation in the DoE, three increasing-refinement analysis 
methods are adopted. This is done to quantify the bias of the simplified methods (with respect to 
the full non-linear time-history analyses) in the estimation of the fragilities (median and 
dispersion). Although a surrogate metamodel based on time-history analyses can substantially 
reduce the computational effort needed for regional scale seismic fragility applications, its 
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calibration for a single class of buildings still requires thousands of time-history analyses. 
Therefore, simplified methods may be needed to render feasible such a metamodeling approach 
for a high number of building classes. 

Variable Samples 
Structural detailing Pre-Code  Low-Code  
Number of longitudinal bays,   [-] 6 9 12 

Length of transverse Bays,   [m] 2.92  3.71 4.50 

Concrete cylindrical strength, [MPa] 19.68 24.00 28.32 

Steel yield stress,  [MPa] 380   400 420 

Table 2: Design of experiment. 

Figure 3a shows the longitudinal fragility analysis results for a Low-Code building in the DoE. Firstly, 
it is evident that the analytical approach (SLaMA) provides a particularly-good approximation of the 
numerical pushover, both in terms of plastic mechanism and force-displacement curve. The two 
approaches diverge for very high displacements, well beyond the ultimate limit state of the frame, 
where strength degradation (not considered in SLaMA) takes place. Such a minor discrepancy is 
reflected in Figure 3b, where the EDP vs IM cloud is shown, as predicted according to the CSM 
adopting the selected150 ground motions as an input. Indeed, the largest SLaMA vs Pushover 
discrepancies for maximum inter-storey drift are recorded for high values of the IM (geometric mean 
of the pseudo spectral acceleration), which forces high drift demand to the structure. Interestingly, very 
good match is shown, overall, among the non-linear static methods and the non-linear dynamic 
approach, considering the simplified nature of the formers. Figure 3c shows the estimated fragility 
curves for four different damage states (DSi, Slight Damage, Moderate Damage, Extensive Damage, 
Complete Damage), which are based on drift limits equal to [0.25 0.6 1.5 2] %, which represent 
average values valid for the entire DoE. The highest error on the estimation of the fragility is registered 
for DS4: respectively +7.3% and -8.7% on the median for SLaMA and pushover with respect to the 
time-history (+30.2% and 38.0% for the dispersion). 

 
Figure 3: Longitudinal analysis results for the Low-Code, 9-bays, 𝑓(-400MPa, 𝑓)-19.7MPa building 

realisation. 

Although the results presented in Figure 3 are promising and are qualitatively representative of the 
majority of the analysed buildings in the DoE, there are some other case studies in which the error 
trend increases among the non-linear static approaches and the refined time-history. Figure 4 shows 
one of such cases, which suggest that more investigations are needed before suggesting applying 
simplified non-linear static approaches for fragility analysis. In particular, such greater error in the 
fragility estimation (Figure 4c) could be ascribed to the application of the CSM using the spectra of 
recorded ground motions. Indeed, using a linear factor to downscale a natural elastic spectrum 
according to the expected ductility demand might not be appropriate since the resulting inelastic 
spectrum is not sufficiently smooth.  

Nbays,x
Lby
fc

fy
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Figure 4: Transverse analysis results for the Pre-Code, 𝐿+(-4.5m, 𝑓(-380MPa, 𝑓)-24MPa building 

realisation. 

The output from the analytical and numerical analyses for the DoE is adopted to fit a number of GPs. 
In particular, the median and the dispersion of the fragility curves are used (  ). Moreover, 
each force-displacement curve is represented in bi-linear form and a GP is fitted for the displacement 
and base shear of the yielding and ultimate point (both for SLaMA and pushover, ). An 
additional subscript is added to such parameters to indicate the adopted analysis method (i.e. SL, PO 
and TH for SLaMA, pushover and time-history respectively). A single GP is fitted for each of these 
parameters, for each structural vulnerability class (Pre-/Low- code) and for each analysis direction, 
leading to 92 different GPs. 

To demonstrate the achieved goodness of fit, Figure 5 shows the fitted GP related to the median of 
the DS2 fragility based on non-linear time-history (  ), related to the transverse analysis of the Pre-
Code vulnerability class. The higher-dimensional function is “sliced” for three different values of the 
steel yield stress ( ), represented in each panel of the figure, and further sliced for three different 

values of the length of the transverse bay ( ), represented by each line in the panels. It is evident 
that, after the maximisation of the likelihood function, the mean function of the GP is capable of 
interpolating the observed data (negligible noise is considered for numerical purposes). Moreover, the 
shaded areas in the figure represent the 95% confidence bounds of the predictions. Those clearly 
indicate that the highest uncertainty is expected for predictions for intermediate values between two 
observed points, although the highest registered 95% confidence range is approximately equal to 

 with respect to the mean. The central panel of this figure also shows the kernel adopted 
hyperparameters (length scale in each input dimension, , and signal variance ). 

 
Figure 5: Pre-Code, transverse direction GP for the DS2 fragility median based on full time-history. 

For a thorough validation of the entire set of calibrated GPs, four “test” buildings are defined according 
to geometrical and mechanical parameters within the ranges of the DoE (Table 3). Such buildings are 
analysed (SLaMA, pushover and time-history) to obtain the above-mentioned parameters that define 
both the force-displacement and the fragility curves (“observed” data). The same parameters are 

µ1,µ2,µ3,µ4,β

δ y ,δu,VBy ,VBu

µ2,TH

fy
Lby
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therefore predicted adopting the calibrated GPs, and a relative error is calculated in the form of 
“(predicted – observed) / observed”. 

 
 Details   [m]  [MPa]  [MPa] 
Test 1 Pre-Code 9 3.5 21.9 416 
Test 2 Pre-Code 6 4.0 27.6 390 
Test 3 Low-Code 12 4.3 26 385 
Test 4 Low-Code 6 3.7 23 419 

Table 3: Building parameters for the test cases.  

Figure 6 shows the relative error for all the parameters and all the test cases. Although the results are 
still preliminary, it is interesting to highlight that the error is considerably below 10% for most of the 
parameters, which highlights the excellent performance of the GPs in surrogating such a complex 
mechanical analysis. This is particularly valid for the force-displacement parameters (mean absolute 
error 1.4%, maximum 5.9%) and the fragility parameters based on the non-linear static methods 
(mean absolute error 1.7%, maximum 13.1%). On the other hand, the fragility parameters based on 
time-history analyses present a higher error trend (mean absolute error 4.2%, maximum 21.7%). 
Although more investigation is needed, this is likely to be due to the relatively “unstable” nature of the 
observed fragility (see also Figure 5). In turn, the preliminary results indicate that this might be due to 
the “random” P-delta related collapses in the time-history analyses. Therefore, it is deemed that a 
more refined fitting of the clouds to include such cases in the probabilistic seismic demand model can 
significantly improve the overall goodness of fit, along with the accuracy of the mechanics-based 
results.  

It is worth mentioning that such results refer to the surrogated vs observed error, and therefore refer 
only on the ability of the GP to effectively surrogate complex mechanical analyses. They do not give 
any insight on the relative effectiveness of one analysis method with respect to the others. As 
mentioned above, this aspect requires more investigation before such a research question can be 
fully answered. 

 

 
Figure 6: Predicted vs observed error for the four test buildings. 

Nbays,x Lby fc fy
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5. Conclusions 
This study aims at developing a flexible, fast and accurate mechanics-based metamodel for seismic 
fragility curves of classes of structures. Such metamodel, based on GP regression, allows to account 
for class-variability in regional scale seismic fragility assessment applications, avoiding the need to 
rely on empirical methods nor using a single fragility curve for the entire structural class. Moreover, 
negligible computational power is needed to adopt the fitted metamodel. As opposed to commonly-
used metamodeling techniques, the Gaussian process approach allows to have full probabilistic 
predictions, which renders it more appropriate for regional-scale risk applications. 

Such method is demonstrated for seismic-deficient RC schools with construction details typical of 
developing countries (such as Philippines and Indonesia), for which real data is available. Gaussian 
processes to estimate the fragility curves of such schools are fitted on the basis of thousands of time-
history analyses for over one hundred building realisations within the structural class. To further 
increase the tractability of the methodology, alternative metamodels are defined based on numerical 
pushover analyses or analytical “by hand” non-linear static analyses by means of the SLaMA method. 
Four “test” buildings (outside the calibration set) are defined and analysed by the same means. 
Predicted vs “observed” error define the accuracy of the fitted metamodels. 

For the test sets, the predicted vs “observed” error is below 10% for the majority of the analysed 
parameters. However, a more refined fitting of the probabilistic seismic demand model is needed 
before confirming the observed error trends (which will be presumably reduced). Although a 
systematic analysis of the bias of the simplified methods is still needed, non-linear static approaches 
(SLaMA or numerical pushover), coupled with the CSM, seem to be capable of producing sound 
results, drastically reducing the computational demand. Also, the generic ground-motion set used in 
this study could be replaced by ad-hoc, site-specific (e.g., hazard-consistent) ground-motion sets. 

More investigations are needed to refine these preliminary results. However, these seem to indicate 
that metamodels based on Gaussian process regression could be an appealing solution for the 
seismic fragility analysis of building portfolios. Moreover, the analytical method SLaMA could be 
combined to the metamodel, to effectively “control” the mechanics of the problem and avoid a black 
box effect. In other words, SLaMA could be easily applied to all the cases in the regional assessment, 
to predict the force-displacement curve and the expected plastic mechanism. Therefore, those could 
be used as additional inputs to the metamodel, adopted to predict the fragility curves. 
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