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Abstract: Three waste-derived adsorbent materials (wood-derived biochar, sludge-derived activated
carbon and activated ash) were pre-activated at the laboratory scale to apply them for the removal
of H,S from a biogas stream. The H,S removal capabilities of each material were measured by a
mass spectrometer, to detect the H,S concentration after the adsorption in an ambient environment.
The activated ash adsorbent has the highest removal capacity at 3.22 mgjyps g1, while wood-derived
biochar has slightly lower H,S removal capability (2.2 mggps g~!). The physicochemical properties of
pristine and spent materials were characterized by the thermogravimetric analyzer, elemental analysis,
X-ray fluorescence spectroscopy and N; adsorption and desorption. Wood-derived biochar is a highly
porous material that adsorbs H,S by physical adsorption of the mesoporous structure. Activated ash
is a non-porous material which adsorbs H,S by the reaction between the alkaline compositions and
H,S. This study shows the great potential to apply waste-derived adsorbent materials to purify a
biogas stream by removing HjS.
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1. Introduction

Facing significant environmental degradation, with continuous increases in natural resource
consumption, the new attention on green growth, but especially on low carbon development, turns
out to be crucial to the circular economy (CE) approach. In this field, pyrolysis and gasification of
carbonaceous materials such as waste tires, waste plastics and crude glycerol from the biodiesel
industry have potential to become profitable liquid, gaseous and solid products [1,2]. Liquid products
containing naphtha, tars and phenols can be applied straight away or upgraded as fuels [3]. Gas products
containing syngas (H, and CO), methane and others can also be used as fuels depending on their
purity [4,5] in several energy generators, such as: internal combustion engines (ICE) [6], microturbines
(MT) [7] and highly efficient solid oxide fuel cell (SOFC) systems [8]. Solid products, on the other
hand, are mainly chars that can be upgraded to activated carbons through chemical and/or physical
processes [9]. Biogas or in general gas products play the vital role of fulfilling the energy demand
worldwide, which could be applied in heat and power generation and vehicle fuel with proper
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purification [10]. To upgrade gas production for further application, catalysts are normally used,
for example, to enhance hydrogen production [11-14] and to play an important role in gasification
processes [15]. Transition metals are considered good catalysts for the reforming of hydrocarbons [16].
Nickel-based catalysts are most frequently used in the production of hydrogen by the thermochemical
processing of plastics and biomass primarily because of their stability at high temperatures and high
selectivity for hydrogen [17-19]. Hydrogen sulfide (H;S) as one of the impurities was found in the
biogas stream since the sulfur content in the feedstock was within a range of 100-200 ppm(v) [20].
HjS could lead to catalyst deactivation due to the corrosion of metal surfaces, the poisoning of catalysts
and sulfur dioxide formation in the combustion processes [5,21]. Elbaba et al. [22] found that the
deactivation of a Ni/Al,O3 catalyst in the gasification of a waste tire for hydrogen production was due
to sulfur poisoning and carbon deposition. As H,S would hinder the application of biogas economically
and environmentally [10], it is strictly necessary to remove the H,S from the biogas stream to improve
the purity and avoid catalyst deactivation.

Many of the adsorbents have been investigated for gas desulphurization, such as zeolite [23],
activated carbons [24-28], metal oxides supported by mesoporous silica [29], graphite oxide [30],
hydroxyapatite [31] and functionalized activated carbon [32]. Furthermore, specific modifications of the
adsorbents are normally required to improve the adsorption efficiency which are not environmentally
friendly and also increase the cost of the adsorbents [33], such as caustic or metal impregnation [32,34,35].
Alternatively, other waste-derived materials such as pyrolysis biochar, sludge collected from the
wastewater treatment plant and ash collected from the biomass gasifier will be investigated as
adsorbents to remove H,S from the biogas stream.

Few of the studies have been done by using waste-derived materials to purify biogas [33,36,37].
Hervy et al. [33] investigated the H,S removal efficiency of pyrolysis biochar and sludge at ambient
temperature in various dry gas matrices that include Ny, air and syngas. The results demonstrated
the activated chars derived from waste-derived materials could effectively play the role of syngas
desulfurization under dry atmosphere, which is eco-friendly and affordable. Florent et al. [36]
synthesized sewage sludge/porous carbon composites as H,S adsorbents. The good H,S removal
performance of sludge-derived adsorbents in gas desulfurization relates to the surface basicity due to
the high content of calcium and magnesium, and also the oxidation reactions with an inorganic phase
such as iron or copper species [38]. Juared et al. [37] investigated the H,S removal ability of biomass
ash and concluded it could be used for the removal of H,S from biogas in small and medium biogas
plants. Ahmad et al. [10] reviewed the different waste-derived materials as adsorbents (sewage sludge,
food waste, forestry waste, fly ash and industrial waste). They stated there is a big potential to utilize
these materials as alternative commercial H,S adsorbents with extensive studies.

Considering the complexity and large range of waste materials as potential H,S removal adsorbents,
there is a need to understand the mechanism of each type of adsorbent material for H,S removal
to find an eco-friendly and effective adsorbent. This work aims to compare the H,S removal ability
of three different waste-derived adsorbents, wood-derived biochar (WDC), sludge-derived carbon
(SDC) and activated ash (AA). The objectives were included the H,S adsorption capability and the H,S
adsorption mechanism by using these three waste-derived adsorbents in the field of the new circular
economy approach.

2. Materials and Methods

2.1. Materials

The wood-derived biochar (WDC) was collected from a 200 kWe wood pyrolysis reactor (Gruppo
RM Impianti Srl, Giarre, Italy) with the pyrolysis temperature at ~450 °C. The ash sample used in this
work is from a forestry wood chips boiler (3.3 MW, Viessman, Allendorf Germany). The activation
of WDC and wood ash was carried out in a 500 We tubular furnace (C.I.T.T., Milano Italy). The raw
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samples were heated to 700 °C with a ramp rate at 7 °C min~!. Carbon dioxide was the activating
agent with a constant flow rate of 100 mL min~! for 60 min under isothermal conditions.

The sludge-derived activated carbon (SDC) was prepared from an anaerobically digested and
dried sewage sludge collected from the SMAT wastewater treatment plant (WWTP) site (Castiglione
Torinese, Italy). Physical activation of milled sludge (~1 mm) was carried out in a stainless-steel reactor
with diameter ~34 mm and ~570 mm in length, which was externally heated by a tubular furnace to
600 °C. These low-temperature values were selected to simulate a direct coupling with SOFC engine
gas exhausts [39]. Nitrogen was the purge gas during the pyrolysis of the raw sludge sample for
physical activation, and carbon dioxide and air were the activating agents. The activated samples were
ground to obtain grain size ~400 um using a vibratory sieve shaker (Fritsch, Germany).

2.2. Experimental Set-Up

The schematic diagram for testing the H,S removal capability of the three selected samples is
shown in Figure 1. A mixture of gases (CH4-to-CO, ratio at 1.5 and H;S at 200 ppm(v)) was used
as simulated biogas. The mixture of the gas inlet was controlled by three individual specific mass
flow controllers (Bronkhorst EL-FLOW, NL), to simulate an average biogas mixture deriving from the
anaerobic digestion of organic waste. This concentration is representative of real biogas as reported in
the literature [40-42]. These sorbent materials were placed in Teflon tubes with an internal diameter of
25 mm. The aspect ratio between the sorbent height and plastic tube inner diameter is ~8.33. To remove
residual gases inside the pores, the samples were pre-treated using 200 NmL min~! N, flow for 30 min
at 120 °C. A gas flow of 919.9 NmL min~! was used for the H,S removal performance testing. The gas
outlet was analyzed by a mass spectrometer (MS) (QGA, Hiden Analytical Ltd., UK) to monitor the
online HyS concentration. The H,S removal tests were repeated for each sample to prove the reliability
of the H,S removal capability.

CcO, Temperature 30 °C

Ventilation
Mass @
Spec -

Gas cleaning filter

9)
l;[

MFC |+l

Figure 1. Schematic diagram of the H,S removal from a simulated biogas stream with wood-derived
activated carbon, sludge-derived activated carbon and activated ash.

2.3. Methodology

The H,S adsorption capacity in terms of mg g~! for H,S removal was calculated based on Equation
(1) [43,44], which was corrected considering that the area enclosed by the breakthrough curve and the
saturation line up to t; is estimated by the difference between the rectangle (t; (h) C;;, (ppmv)) and the
triangle (0.5 (t; — tp) (h) 1 (ppmv)) areas:

Qtot X MW X [Cipy Xt — (£ — t9) X 0.5]
Cads = 3
Vi xmx10

)
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where:

e 1y, breakthrough time at the last detection of 0-0.5 ppmv (h);

e 1, breakthrough time when the outlet H,S concentration is 1 ppmv (h);
e Qo = total gas flow rate (NL h™1);

e MW = molecular weight of the trace compound removed (g mol~?);

e  Cj, = inlet trace compound concentration (ppm(v));

eV, = molar volume (22.414 NL mol~1);

e m =mass of sorbent (g).

2.4. Characterization Methods

Elemental analysis: The elemental analysis for virgin and spent samples was obtained from
SOCOTEC, UK. The oxygen content was calculated by the difference. The chemical composition of each
pristine and spent adsorbent material was analyzed by a Panalytical X-ray fluorescence spectroscopy
(XRF) Epsilon 3XL.

Scanning Electron Microscopy: A Zeiss EVO 10 scanning electron microscope (SEM) was used
to characterize both the virgin adsorbents.

Thermogravimetric analysis: The ash contents of the virgin samples were estimated by using
a Netzsch STA 2500 Regulus thermogravimetric analyzer (TGA). The heating program started with
10 °C min~! to 120 °C and holding for 30 min to remove the moisture content in the virgin samples in
the presence of nitrogen. Then, the sample was heated to 800 °C with 10 °C min~! ramp rate to combust
the organic compound. The air flow was constantly at 40 mL min~'. The same TGA coupled with a
Hiden Analytical QGA Mass spectrometer was used to study the sulfur compounds” decomposition
behaviors with nitrogen as a constantly purged gas.

pH measurement: The pH values of the three virgin samples and the spent samples were
measured to compare the pH evaluation of the three different samples after the H,S adsorption.
Approximately 0.4 g of each of dry sample was added in 20 mL distilled water to make the homogenous
suspension for pH measurement, by using a Hanna Instruments pH meter.

Physical adsorption and desorption: The porous properties of the virgin char and spent samples
were determined by measuring the nitrogen adsorption and desorption isotherms from the samples
at equilibrium vapor pressure using the static volumetric method. Nitrogen adsorption—-desorption
isotherms were recorded at 77 K using a Micromeritics 3Flex surface characterization analyzer.
The samples were degassed at 300 °C overnight. Specific surface areas were determined according to
the Brunauer, Emmett and Teller (BET) model [45,46], with pore diameters, volumes and distributions
determined through Barrett-Joyner-Halenda (BJH) analysis [47].

3. Results and Discussion

3.1. HyS Removal Capacity

The H,S removal efficiency tests of three adsorbents were carried out in the simulated biogas
stream. The H;S removal capacity of each adsorbent is listed in Table 1, which shows the AA with the
highest removal capacity at 3.22 mgyyps g~ ! and SDC with the lowest removal capacity at 0.1 mggps g~ 1.
Each of the adsorbent materials has been repeated twice for the H,S removal test to confirm the
experimental reproducibility.

Table 1. H,S adsorption capacities of wood-derived biochar (WDC), sludge-derived activated carbon
(SDC) and activated ash (AA).

Sample WDC SDC AA
Cads (Mgs g™!)  22+4/-0.05 0.1+/-0.01 3.22 +/—0.06
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3.2. Characterizations of Adsorbents

Figure 2 is the SEM micrographs of virgin adsorbents which show the morphology of the adsorbent
particles. Figure 2a,b are the SEM micrographs of virgin WDC adsorbents, the particles have cracking
features. Figure 2¢,d are the SEM micrographs of virgin SDC that present as smaller particles supported
on the larger particles. Figure 2e,f are the SEM micrographs of virgin AA which demonstrate the
large cluster of fine power. Figure 3 is the thermogravimetric analysis of the three raw adsorbents
WDC, SDC and AA. The residue left after temperature-programmed oxidation is ash, whereas the
weight loss is caused by the oxidation of organic composition. The results show the ash contents
ranking of the three adsorbents is AA > SDC > WDC and the ranking of organic components is in
a reverse direction. The results are consistent with the elemental analysis results listed in Table 2,
where the carbon compositions for three raw adsorbents is ranked as WDC > SDC > AA. This result
could explain why the H,S removal capacity of WDC is higher than SDC in Table 1, because the
porous carbon content in WDC is 88.93% which is much higher than the content in SDC, which is
33.94%. The porosity of carbon could also be supported by the nitrogen adsorption and desorption
analysis shown in Table 4, where the WDC has the highest surface area and total pore volume that are
210.18 m? g~ and 0.5 cm? g7, respectively.

Mag= 1.01KX WD=7.0mm Signal A= SE1 W@ 10 um Mag= 3.01KX WD=7.0mm Signal A= SE1 W@
EHT=10.00kV  TitAngle= 0.0° Pixel Size =290.3 nm —A EHT=10.00kV  TitAngle= 0.0° PixelSize =97.45 nm

I .
Mag= 101KX WD=7.5mm Signal A= SE1 Mag= 3.01KX WD=7.5mm Signal A= SE1
EHT=10.01kV  Tit Angle= 0.0 Pixel Size =290.2 nm - EHT=10.01kV  TittAngle= 0.0 Pixel Size = 97.39 ni

Mag= 1.01KX WD= 7.5mm Signal A= SE1 @MQ 10 pm Mag= 1.01KX WD=7.5mm Signal A= SE1
EHT =10.01 kv Tilt Angle = 0.0 Pixel Size = 290.2 nm — EHT= 2.98 kv Tilt Angle = 0.0 Pixel Size = 290.2 nm

Figure 2. SEM micrographs of virgin WDC (a,b); virgin SDC (c,d); virgin AA (e,f).
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Figure 3. Ash contents for virgin WDC, SDC and AA.

Although SDC contains a higher amount of carbon (33.94 wt.%) compared with AA (7.42 wt.%) in
Table 2, the H,S removal capacity of SDC (0.1 mggyos g_l) is lower than AA (3.22 mgps g_l) and this
is related to the high ash content in AA (73.21 wt.%), as shown in Table 2. It has been reported that
the incineration residues that contain many compounds would form sulfides as H,S-trap materials
which can react with H,S at ambient temperature, such as manganese, zinc, copper and iron [37].
The porosity analysis results shown in Table 4 can also prove there is no significant difference between
SDC and AA in terms of surface area and total pore volume.

Table 2. Elemental composition, pH and ash content of virgin and spent adsorbent samples.

Elemental Analysis (wt.%)

Sample Name pH Ash (wt.%)
C H N o S

WDC 88.93 <0.08 0.11 10.88 - 7.2 7.94

Spent WDC 95.58 <0.08 0.16 4.18 - 7.3
SDC 33.94 42 5.18 56.68 - 7.9 32.68

Spent SDC 34.76 4.28 513 55.83 - 7.6
Activated ash (AA) 7.42 <0.08 <0.08 92.42 - 8.8 73.21

Spent AA 7.37 <0.08 <0.08 92.47 - 8.4

Table 2 lists the elemental composition and pH values for the virgin and spent adsorbent materials.
The CHNO compositions for virgin and spent WDC adsorbents are similar, and the pH value was
slightly increased from 7.2 to 7.3 which indicates the chemical reaction has mostly not happened during
the adsorption of Hy,S by WDC. The pH values for spent SDC and AA are slightly lower than the virgin
adsorbents that indicate the chemical reaction occurred between the H,S and the alkaline compositions.
In other words, the chemical adsorption of H,S by SDC and AA is more dominated than WDC.

Table 3 presents the ash composition of the pristine and spent adsorbent materials by XRF which
prove the existence of alkaline compositions, such as Fe, Cu, Mn and Ca. Calcium is the main mineral
species in WDC and AA adsorbents, and iron is the main mineral species in SDC adsorbents. Juarez
et al. [37] reported that alkaline or pH-neutral waste contain sulfites or a mixture of Fe-II, Fe-III,
Mn-II, Cu-I, Cu-II and Zn-II which play the role of potential H,S-trap materials. The possible reaction
for the H,S removal by SDC and AA adsorbents could relate to the “primary” and “secondary”
reactions [37]. The primary dissociation reactions include Reactions (2) and (3), and the suggested
secondary sulfidation reactions could be (3)—(11) [37,48,49].

OH™ + H,S = HS™ + H,0 @)

HS™ + OH™ = $*" + H,0O (3)
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FeO + H,S = FeS + H,O (4)
Fe;O3 + 3H»S = Fep Sz + 3H,0 5)
2Fe(OH); + 3HaS = FeS3 + 6HoO (6)
2FeOOH + 3H,S = FeyS3 + 4H,0 ?)
2HS™ +4HSOj3 = 35,052 + 3H,0 (8)
2HS™ + HSO; = %58 +30H" 9)
2— 2—
S +nS=52, (10)
MnO + H,S = MnS + HyO (Same with Cy, Ca and Ni) (11)

Ducom et al. [50] reported the primary reactions (Equations (2) and (3)) are acid-base reactions
since H,S is hydrophilic and dissociates in aqueous solution. The primary reactions occur very fast
which are not the dominant reaction for H,S removal. Sarperi et al. explained the possible Fe sulfidation
Reactions (4) and (5) [37]. The ash adsorbents may also contain hydrous ferrous oxide (HFO) and
goethite (FeOOH) with a high specific surface area which will react with H,S as shown in Equations (6)
and (7) [51]. Juarez et al. [37] suggested that Reactions (8)-(10) between H;S and sulfites will form
polysulfides and elemental Sg based on others’ research [52,53].

Table 3. Compositions of pristine and spent adsorbents materials detected by XRF.

Compositions (wt.%) WDC Spent WDC SDC SpentSDC AA  Spent AA

Mg 0.31 0.36 0.50 0.47 0.44 0.42
Al nd nd 2.72 2.68 1.78 1.70
Si 0.36 0.36 6.83 6.84 2.66 2.54
P 0.89 0.86 7.77 7.57 0.63 0.65
S 0.95 9.05 9.38 8.64 0.73 0.79
Cl 0.24 0.92 0.31 0.30 0.27 0.27
K 25.99 22.85 2.25 2.24 11.74 12.19
Ti 0.56 0.42 1.41 1.40 0.69 0.42
Ca 61.57 59.15 19.77 19.63 78.12 78.20
Fe 3.27 0.72 45.15 46.27 1.91 1.86

Mn 5.09 4.75 0.22 0.20 043 0.36
Zn nd 0.19 1.62 1.65 0.13 0.13
Cu nd nd 0.63 0.63 nd nd
Ni nd nd 0.29 0.30 nd nd
Sr nd nd 0.31 0.31 0.23 0.23
Cr nd nd 0.20 0.21 nd nd
Eu nd nd 0.12 0.13 nd nd

Total (wt.%) 99.22 99.44 98.96 98.98 98.98 99.05

nd: not detected by XRF or concentration less than 0.1 wt.%.

Table 4 shows the porosity of the virgin and spent waste-derived adsorbent materials. The surface
area of WDC decreased significantly from 210.18 to 96.95 m? g~! after the H,S removal. This could
explain the certain amount of H,S that was adsorbed by the porosity of WDC. However, there is
no significant change of surface area and total pore volume for SDC and AA would also support
the conclusion drawn earlier that the H,S removal capacity of WDC and AA was dominated by the
chemical reactions rather than the physical adsorption. Although the AA adsorbent is not as porous as
WDC, the surface area and total pore volume also decreased slightly which indicates that physical
adsorption also happened. In Table 4, the average pore diameter for virgin WDC is 19.64 A, which
indicates the presence of mesopores. Figure 4 illustrates the N, adsorption and desorption isotherms
of (a) virgin WDC, (b) spent WDC, (c) virgin SDC, (d) spent WDC, (c) virgin AA and (f) spent AA
adsorbent materials. According to the BJH pore size distribution illustrated in Figure 5a, the presence
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of mesopore distributions in the WDC sample can be confirmed. The mesopore has been reported as
the active site for H,S adsorption [33].

Table 4. Surface area, total pore volume and average pore diameter of virgin and spent adsorbents.

Sample Surface Area * Total Pore Volume Average Poore Diameter
(m?2 g1 (cm3 g-1) A)

WDC 210.18 0.50 19.64
Spent WDC 96.95 0.14 19.65
SDC 1.89 0.004 16.58
Spent SDC 1.59 0.004 16.60
Activated ash (AA) 9.38 0.011 96.29
Spent AA 4.66 0.0086 110.27

* Single point desorption total pore volume of pores less than 403.122 A diameter at P/Po = 0.95.

Figure 4a,b,e f exhibit kinds of type IV or V isotherms according to the IUPAC classification,
indicative of the presence of mesopores within the virgin and spent WDC and AA samples [54,55].
The hysteresis for virgin and spent WDC and AA samples adsorption isotherms shown in Figure 4a,b,e f
could relate to the morphological properties of the sample. The morphological properties have been
summarized by other researchers which include the pore size distribution, pore geometry and
connectivity of the porous materials [55,56]. The shape of the adsorption hysteresis loop exhibited
similar as Hsz shape indicates the porous material could have slit-shaped pores with two ends open,
which can be supported by other researchers’ findings [55,57,58]. The slope associated with the
hysteresis loop of the adsorption/desorption curves is related to the tensile strength effect [54,55,59].
The highlighted hysteresis curves that are shown in Figure 4b,f indicate the low-pressure hysteresis
due to the volume change of the adsorbent. It could be caused by the swelling of the non-rigid pores
in the spent SDC and AA adsorbent materials, or the pores have been occupied irreversibly by the
similarly sized molecules [55,60].
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Figure 4. N, adsorption and desorption isotherms of (a) virgin WDC, (b) spent WDC, (¢) virgin SDC,
(d) spent WDC, (e) virgin AA and (f) spent AA adsorbent materials.
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Figure 5a,b illustrate the pore size distributions of the virgin and spent WDC adsorbents. According
to the peak, peak A diminished significantly for the spent WDC in Figure 5b compared with the virgin
WDC shown in Figure 5a, and the total pore volume decreased from 0.50 to 0.14 cm? g~! as shown
in Table 4, indicating that the mesopore size ~38 A contributes to H,S adsorption. The peak A in
Figure 5c,d has no obvious change after H,S adsorption which could support the assumption made
earlier that the chemical reaction is more dominated by the H»S removal from the simulated biogas
stream by using the AA adsorbent material.

1.0 T T T T T T 0.020 T T T T T T

s [—vignwoe] 0 (6] — Spert WoC

08}

06

041

0.2

0.018 T T T T T T

(c) Virgin AA

0.015

0.012

0.009

BJH Desorption dV/dlog(D) Pore Volume(cm®/g-A)

0.006 -

0.003 - B
10 20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 9 100
Average pore diameter (A) Average pore diameter (A)

Figure 5. Barrett-Joyner-Halenda (BJH) pore size distribution of (a) virgin WDC, (b) spent WDC,
(c) virgin AA and (d) spent AA adsorbent materials.

In Figure 6a—d, peak A in the derivative thermal gravimetric (DTG) curves at temperature ~100 °C
indicates the removal of moisture in the samples. The results reveal that WDC and SDC contain such
an amount of moisture, but not the AA sample, according to the DTG and mass spectrometry results in
Figure 6. In Figure 6a-d, peak B at ~620 °C and peak C at temperature ~780 °C, and in Figure 6ef, peak
A at temperature ~750 °C and peak B at temperature ~780 °C are associated with the emission of CO,
from the adsorbent materials. The results are also supported by Hervy et al.’s research [33], that the
CO; emitted from adsorbents under the same TGA program at temperatures ~200, 620 and 750 °C; the
H,S emitted from adsorbents at temperature ~370 °C; and the SO, emitted at temperatures ~285 and
370 °C. There is no obvious SO, or H,S emitted from the virgin and spent adsorbent materials could
cause by the relatively small amount that the equipment is not sensitive enough.
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Figure 6. DTG-MS analysis of (a) virgin WDC, (b) spent WDC, (c) virgin SDC, (d) spent SDC, (e) virgin
AA and (f) spent AA under Nj.

4. Conclusions

This work compared the H,S removal capability of three types of adsorbent material from waste
(wood-derived biochar, sludge-derived activated carbon and activated ash) in ambient temperature.
The raw adsorbent materials were pre-activated under certain activation methods. A simulated biogas
stream with the CHy-to-CO, ratio at 1.5 and H;S concentration at 200 ppm(v) was used to test the
HjS removal efficiency of each adsorbent material. The concentration of H,S after the adsorption was
measured by an MS. The MS result shows that the AA adsorbent has the highest removal capacity at
3.22 mgpps g~} and WDC has slightly lower H,S removal capability at 2.2 mggps g!. The TGA result
shows that the ash residues composition of each adsorbent materials is ranked as AA (73.21 wt.%) >
SDC (37.68 wt.%) > WDC (7.94 wt.%). The ash content results are also supported by the elemental
analysis in which the carbon content of each adsorbent material is ranked as WDC (88.93 wt.%) > SDC
(33.97 wt.%) > AA (7.42 wt.%). The ash composition was measured by XRF which shows the existence
of alkaline mineral species in all adsorbent materials, such as Fe, Cu and Mn. The main mineral
species in the WDC and AA adsorbents is Ca, and the main mineral species in the SDC adsorbent is Fe.
WDC has relatively higher H,S removal capability (2.2 mgs g~1) compared with SDC (0.1 mgyps
g~1), which is due to the physical adsorption by its high porosity, so that the surface area of WDC is
210.18 m? g~!. The mesopores play the most important role in adsorbing HpS. AA has the highest
capability to remove HjS, which is due to the high content of ash residues which contain an alkaline
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mineral species that is more dominant in the H,S removal rather than physical adsorption. In summary,
this study indicates the potential to apply waste-derived adsorbent materials to remove H;S from a
biogas stream, especially by using WDC and AA.
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