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Abstract

In this thesis electron collisions are studied under two different scattering energy

regimes. Firstly, low energy electron-molecule collisions are considered. These

typically occur in interstellar medium, planetary atmospheres or industrial plasmas.

Under these conditions the electrons cannot be treated classically and so a quan-

tum mechanical approach is used. Using R-matrix theory two targets are studied:

nitric oxide (NO) and molecular hydrogen (H2). Owing to new developments in

the UKRMol+ code the boundaries of previous R-matrix calculations are pushed

to new limits in order to produce accurate cross-sections for electron-impact elec-

tronic excitation of H2. This includes the use of a B-spline continuum basis, a

triply-augmented target basis and a box size of 100 a0. NO is used as a prototypical

example of an open-shell molecule that exhibits mixed Rydberg-like and Valence

states. Systems like this are typically difficult to solve using standard quantum

chemistry approaches, and so the R-matrix with pseudo-states method is employed

to produce a set of improved potential energy curves, capable of being used in fur-

ther scattering calculations.

In the second regime, high energy electron-atom collisions are investigated.

These types of collision take place in strongly-driven systems, e.g., atoms in in-

tense laser fields. In this case, the scattering electron is provided by the neutral

parent atom as it is ionised by the external field. The specific focus of this work is

the phenomena of non-sequential double ionisation. A semiclassical Monte-Carlo

method is used based on the three step model, which fully accounts for two active

electrons, the Coulomb potential and the magnetic-field. Using this model the role

of magnetic-field effects in strong-field physics are investigated.
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The research conducted in this thesis concerns mostly fundamental physics. There-

fore, the impact to society is somewhat less immediate. Nevertheless, this research

has implications for the academic community that will no doubt influence society

further along the line.

Electron collisions are important for understanding the world around us,

whether they occur in natural environments, such as, planetary aurora, lightning

strikes or interstellar medium. Or whether they occur in man-made environments

like those found in the plasma etching industry, lasers or nuclear fusion reactors.

Furthermore, research conducted in the strong-field regime has already revolu-

tionised physics by providing access to high intensity, ultrafast laser pulses. Now it

is possible to observe electrons, atoms and molecules with unprecedented levels of

accuracy and detail.

The R-matrix calculations presented in this thesis are intended as a proof-of-

concept. They push the limits of previous R-matrix studies and provide an example

of the capabilities of the new UKRMol+ code. It is hoped that many more calcula-

tions like these will be carried out in future for a wide range of molecules, to satisfy

the demand for accurate cross-section data.

Finally, the studies of non-sequential double ionisation, presented in this thesis,

have identified important magnetic-field effects that were previously assumed to be

negligible. This body of work predominantly focussed on linearly-polarised laser

fields but given the flexibility of the theory it could be readily adapted to describe

more intricate experiments, such as those that employ two-colour lasers or pump-

probe beam experiments.
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Dr Zdeněk Mašı́n for allowing me to use his DCS code and for his helpful sugges-

tions with the UKRMol+ code. I would also like to thank Dr Mark Zammit, Liam

Scarlett, Prof Dmitry Fursa and Prof Igor Bray for providing their MCCC data and

useful discussions on the molecular hydrogen project. I thank Prof Paul Corkum

for his insightful contributions to our non-dipole recollision gating project. Ad-

ditionally, I thank Jakub Benda for his valuable help in debugging the UKRMol+

code.

I would like to thank all of the past and present members of ExoMol for wel-

coming me into the group and making me feel at home, with special thanks to:

Sergey Yurchenko for his enthusiasm and constant supply of memes; Tony Lynas-

Gray for his infectious kindness and Friday evening whiskies; and Victoria Clark

for being the heart of the ExoMol group and a great friend. I would also like to

thank the members of my former group, whom without, I would have given up long

before the end, i.e., Harry Banks, Arnau Casanovas and Ahai Chen.

I would like to thank all my former office mates for helping the days fly by:

Carlo Sparaciari, Tom Galley, Lorenzo Catani, Mike Staddon, Alex Paraschiv and

Eryn Spinlove. In addition, I also want to thank everyone who made UCL special

for me including: Jacob Lang, Erika Aranas, Andy Maxwell, Katy Chubb, Diana

Serbanescu and Duncan Little.

Finally, thanks to my “physics friends”: Simon Hind, Tom Vice (Kennelly)

and Josh Kettlewell*.

*also a mini shout-out to Bram Moolenaar et al. for making my life easier – vim <3



Publications

1. A. Emmanouilidou and T. Meltzer. Recollision as a probe of magnetic-field

effects in nonsequential double ionization. Phys. Rev. A, 95:033405, 2017.

doi:10.1103/PhysRevA.95.033405.

2. A. Emmanouilidou, T. Meltzer, and P. B. Corkum. Non-dipole recollision-

gated double ionization and observable effects. J. Phys. B: At. Mol. Opt.

Phys., 50:225602, 2017. doi:10.1088/1361-6455/aa90e9.
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Chapter 1

Introduction

“A very familiar example of scattering theory is called looking at things” – Tong

(2017).

1.1 Overview
Scattering theory is vital to our understanding of the universe. It has played an

important role in many discoveries from the mapping of DNA’s internal structure

to the first successful detection of the Higgs boson. The general idea is to bounce

projectiles off of an object that you wish to know more about. By measuring the

scattered projectiles many interesting properties of the target can be inferred. The

information that you can obtain is dictated by the choice of projectile. In this thesis

collisions of electrons with atoms and molecules will be considered.

Electron collisions are crucial for modelling man-made plasmas, astrophysi-

cal processes and planetary atmospheres (Bartschat and Kushner, 2016). They also

have direct implications for society via applications in medical physics, such as pro-

ton beam therapy (Gorfinkiel and Ptasinska, 2017), and nuclear power generation

via the Joint European Torus (JET) (Darby-Lewis et al., 2018). Furthermore, in the

presence of strong laser fields, electron collisions can lead to High-Harmonic Gen-

eration (HHG) and Non-Sequential Double Ionisation (NSDI) (Krausz and Ivanov,

2009). HHG led to the invention of high intensity, ultrafast laser pulses which has,

in turn, opened up an entire field of research allowing angstrom and attosecond

spatiotemporal resolution to probe the structure of atoms and molecules on their
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intrinsic time and length-scales (Bruner et al., 2015).

Table 1.1 gives a list of the atomic and molecular processes covered in this

thesis. This is by no means an exhaustive or complete list. For example, neither

rovibrational excitations in molecules nor dissociative effects are explicitly investi-

gated. The table is in approximate energy order from lowest energy collisions up

to intermediate and higher energy scattering. The molecular processes are consid-

ered in field-free environments, whereas the atomic processes will be studied in the

presence of strong laser fields.

Table 1.1 | List of processes that will be discussed in this thesis for atomic, A, and molecu-
lar, AB, targets.

Description Process

Molecular
Elastic Scattering AB + e− → AB + e−

Electronic Excitation AB + e− → AB∗ + e−

Single Ionisation AB + e− → AB+ + 2e−

Atomic
Single Ionisation A+ hν → A+ + e−

Double Ionisation (NSDI) A+ hν → (A+ + e−) + hν
(A+ + e−) + hν → A2+ + 2e−

Double Ionisation (sequential) A+ hν → A2+ + 2e−

In this thesis, two contrasting theoretical approaches will be employed – high-

level, ab initio theory and more approximate methods that allow for analytical in-

sight. If accuracy is required often fully-quantum, large-scale numerical calcula-

tions are the only way to go. However, to gain physical insight it can be preferential

to use approximate, semiclassical techniques that retain more analytical charac-

ter. This trade-off is highlighted in the recent review of strong-field processes, see

Amini et al. (2019). In the best case scenario, both techniques can be used, leading

to a deeper understanding. Although, this is often not possible.

This thesis has two main objectives. The first objective is to push the bound-

aries of previous R-matrix calculations by harnessing the latest features of the re-

cently released UKRMol+ code (Mašı́n et al., 2020). R-matrix calculations will

be carried out for two different targets, molecular hydrogen (H2) and nitric oxide
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(NO), in the low to intermediate scattering energy regime. These calculations are

intended as a proof-of-concept. H2 is one of the most widely studied molecules and

therefore it will provide a stringent test of the recently developed code and molec-

ular R-matrix theory in general. Studies carried out on NO move towards a more

realistic use case with a higher number of electrons. NO has specifically been cho-

sen due to its complicated electronic structure i.e., mixed low-lying Rydberg-like

and valence states. Hybrid state systems cannot be easily represented in scattering

calculations using traditional quantum chemistry approaches.

The second objective is to develop more analytical methods that can be used

to describe the phenomena observed in strong-field physics. That is, with the ad-

vent of table-top, high-power lasers, strong-field experiments are rapidly becoming

more accessible. Theory is somewhat playing catchup and there is a gap in the un-

derstanding of some of the most fundamental processes in atoms and molecules.

Whilst ab initio quantum-mechanical models are capable of providing extremely

accurate comparisons with experiment, semiclassical methods are sought that can

provide more physical intuition behind the phenomena being observed in experi-

ment.

1.2 Low Energy Scattering

At low scattering energies, i.e., below the first ionisation threshold E . Ip, the

theoretical treatment of electron scattering is difficult. This is due to the complex

interactions that can take place between the projectile electron and electrons con-

tained within the target, such as exchange and polarisation (Burke, 2011). In order

to provide an accurate description of the physics, any theoretical framework has to

take these effects into account. For this reason, at low scattering energies, if accu-

racy is required then ab initio fully-quantum theories are the only realistic option.

Whilst there are many successful perturbative approaches, these do not typically

become valid until larger scattering energies. As a result, discussion of perturbative

approaches will be reserved for intermediate scattering energies.

At low scattering energies, most theories rely on a close-coupling expansion
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which is carried out in order to model exchange and polarisation effects. This in-

cludes: the Kohn variational principle (Rescigno et al., 1995); the Schwinger varia-

tional principle (Huo, 1995); the R-matrix method (Burke, 2011); and the Conver-

gent Close-Coupling (CCC) method (Bray and Stelbovics, 1992). In the mid 1980s

a numerical benchmark was carried out using the Kohn (Schneider and Collins,

1985), Schwinger (Lima et al., 1985) and R-matrix (Baluja et al., 1985) methods

for electron-H2 collisions and it was found that the three methods produced con-

sistent results. Similar benchmarks have also been run for electron-atom collisions

including comparisons to the atomic CCC method (Bartschat et al., 1996a; Lange

et al., 2006; Bartschat et al., 2010). As yet, a benchmark comparison of the molec-

ular CCC (MCCC) method has not been carried out, however this will be addressed

in chapter 3.

Whilst there are similarities between the above methods, the R-matrix method

has one unique advantage that the others do not. That is, in the R-matrix method

configuration space is divided into two distinct regions. In the outer region, the

scattering electron is treated as being distinguishable from the N target electrons

and it is propagated in a simplified potential. Whereas, in the inner region all N + 1

electrons are treated on equal footing (Burke, 2011). Due to the separation of space

the inner region, which requires the diagonalisation of a computationally expensive

N + 1-electron Hamiltonian, is computed only once, i.e., independently of the scat-

tering energy (Tennyson, 2010). This allows an arbitrarily-fine energy grid to be

calculated in the outer region, which is crucial for reproducing narrow resonances

that could be otherwise missed.

Since early work carried out by Burke et al. (1971), the R-matrix method has

since been deployed on a large number of electron-atom and electron-molecule scat-

tering calculations, e.g., Branchett et al. (1990b), Zatsarinny et al. (2006) and Little

and Tennyson (2014) to name a few. For electron-molecule collisions, most of

the calculations were produced using the diatomic or polyatomic UKRMol codes

(Morgan et al., 1998; Carr et al., 2012). The UKRMol project has a long running

history and over the years many incremental changes have been contributed by a
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plethora of authors. Recently, however, a substantial re-write of the integrals code

was carried out by Mašı́n et al. (2020) and this has led to a new version of the code

called UKRMol+. This newly developed code introduces B-spline type orbitals for

use in the continuum. The inclusion of a mixed B-spline type orbital (BTO) and

Gaussian type orbital (GTO) continuum orbitals allows for larger scale scattering

calculations.

Historically, electron-polyatomic-molecule calculations used GTO-only con-

tinua. GTO functions have analytic integrals, making them faster and more accurate

to compute. However, the continuum must be orthogonalised to the target, which is

also typically expanded in GTOs, and without due care this leads to linear depen-

dence (Tennyson, 2010). This places a limitation on the maximum scattering energy

that can be calculated, as the maximum supported scattering energy is proportional

to the number of continuum GTOs. Furthermore, the R-matrix radius also affects

the completeness of the continuum basis. Larger radii require more GTOs to repre-

sent the same maximum scattering energy. Therefore, it was difficult to use diffuse

target basis sets – which are required for Rydberg-like states – because the target

orbitals began to leak outside of the R-matrix sphere. As a result R-matrix radii,

for electron-molecule calculations, were typically between 10 and 15 a.u. BTOs,

however, essentially eliminate the issue of linear dependence and therefore allow

much bigger R-matrix radii to be used – although, it must be said, they come with

an increase in computational cost.

Modelling of Rydberg states is not just essential to improve the accuracy of

electron scattering calculations, which depend heavily on the target description, but

also because they are interesting in their own right. Rydberg states are often pro-

duced and studied in experiments and they can even be used to control the nuclear

dynamics of the constituent atoms. For example, work carried out by Minns et al.

(2003) and Kirrander et al. (2007) demonstrated that time-delayed, coherent laser

pulses could be used to control the dissociation pathways of NO and H2 respec-

tively.
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1.3 Intermediate Energy Scattering

Intermediate scattering energies, E & Ip, present a challenge for theory. At this en-

ergy range fully-quantum ab initio approaches become computationally intractable,

due to the increased number of open channels and higher angular momenta. More-

over, the scattering energy is not quite high enough to use approximate methods

such as, perturbative or semi-empirical models that neglect the necessarily compli-

cated electron correlation effects. However, in lieu of a method that is tractable and

highly-accurate, both types of method have been used in literature to address the

demand for theoretical data.

Firstly, approximate methods such as the optical model potential (OMP) (Jain,

1986) and complex optical potential (COP) (Lee and Iga, 1999) have been used to

study a range of different electron-molecule collisions. These methods are capable

of providing elastic, inelastic and ionisation cross-sections but they cannot resolve

the contributions from individual excitations. Instead the inelastic cross-section is

a sum over all inelastic channels. Next up, there are the semi-empirical binary en-

counter (BEB) method of Kim and Rudd (1994) and the scaled BEB variants of

Tanaka et al. (2016). These methods use empirical data and fitting of experimental

oscillator strengths to obtain accurate ionisation cross-sections, and similarly to the

COP and OMP methods, they are also not capable of providing state-resolved in-

elastic cross-sections. Unfortunately, these methods are not suitable for plasma

modelling because state-resolved cross-sections are required as inputs for colli-

sional radiative models (Bartschat, 2013). One approximate method that is state-

resolved is the semiclassical impact parameter approach of Celiberto and Rescigno

(1993), based on earlier work by Hazi (1981). In this approach the target is treated

quantum-mechanically but the scattering electron is classical. Therefore exchange

effects are ignored and the method can only be applied to spin-allowed transitions

(Hazi, 1981).

Moving on, there are several notable theories in the non-perturbative regime

that have tackled electron-atom and electron-molecule collisions. These include:

the intermediate energy R-matrix method (IERM) (Burke et al., 1987); the molec-
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ular convergent close-coupling (MCCC) method (Zammit et al., 2017b), which is

based on the atomic CCC method (Bray and Stelbovics, 1992); and the R-matrix

with pseudostates method (RMPS) introduced by Bartschat et al. (1996b) for use

in electron-atom collisions and subsequently extended to molecules by Gorfinkiel

and Tennyson (2004). The IERM approach was capable of describing single and

double ionisation however it was difficult to generalise to larger targets. Similarly,

the MCCC approach is good at producing accurate, converged cross-sections at es-

sentially any scattering energy required, however, it also restricted in application to

one and two-active electron targets (Zammit et al., 2017a). The RMPS, on the other

hand, has proved to be widely applicable as it builds upon the generalisability of the

underlying R-matrix method (e.g., see Gorfinkiel and Tennyson (2005), Halmová

and Tennyson (2008) and Brigg et al. (2014)). In this approach, pseudostates are

added to the inner region solution which allow for the improved description of target

states, improved convergence of the polarisability and also they represent ionisation

channels in the infinite but discrete continuum (Bartschat et al., 1996b).

1.4 High Energy Scattering

In strong field physics, the strength of the laser’s electric field approaches that of the

atom. This means that the potential experienced by a bound electron is significantly

perturbed. In what is known as the three step model (Corkum, 1993), this forms the

first step of the process. Essentially, a bound electron tunnels through the modified

atomic potential into the continuum. Once the bound electron is liberated from the

core it is initially driven away by the oscillating laser field until a subsequent half-

cycle when it comes crashing back. Upon recolliding with the core, the electron

can either recombine with the parent atom, emitting a photon – this is known as

High-Harmonic Generation (HHG) – or it can collide with other bound electrons

to induce double or multiple ionisation. When double ionisation occurs, this is re-

ferred to as Non-Sequential Double Ionisation (NSDI). It was shown by Fittinghoff

(1994) and others (e.g., (Walker et al., 1994)) that it is recollisions that govern the

NSDI mechanism, by comparing measurements obtained in linearly-polarised light
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with those of elliptically and circularly-polarised light. Hence, the situation can be

viewed as an electron-atom collision where the projectile electron is provided by

the parent atom.

When scattering energies exceed the first ionisation potential, i.e., in the re-

gion of 2 − 5 Ip and above, the divide between the quantum and classical physics

contracts. Scattering electrons with high kinetic energy start to exhibit classical be-

haviour. This opens up the possibility of solving physical systems with increasingly

approximate methods whilst still yielding sensible results. In fact, these approxi-

mations are not just necessary to reduce the computational cost of fully-quantum

methods, but they can also offer more insight into the underlying physics.

Theoretical approaches to NSDI can be split into three main categories. Firstly,

there is the brute-force approach of numerically solving the Time-Dependent

Schrödinger Equation (TDSE) on a grid. These calculations are extremely expen-

sive, and as a result they were often carried out with reduced dimensionality, e.g.,

see work by Eberly et al. (1989) and Grobe and Eberly (1992). However, in the late

1990s Taylor and collaborators developed a code based on the R-matrix method,

HELIUM, which was one of the first codes to solve the TDSE in full dimension-

ality for more than one electron (Dundas et al., 1999; Parker et al., 2003, 2006).

Furthermore, this work was recently extended to provide a more accurate descrip-

tion of the two ionised electrons in the continuum (Wragg et al., 2015). Going

back to grid based methods, Ruiz et al. (2006) managed to solve the two elec-

tron TDSE by restricting the motion of the atomic nucleus to the polarisation axis,

which appears to be near the limit of what is currently achievable. Another ap-

proach to solving the TDSE numerically is that of (Feist et al., 2008) who used

a time-dependent close-coupling method to investigate non-sequential two-photon

double ionization of helium. However, most of these approaches are not extendable

to larger atomic systems and especially not molecules. That being said, this lack of

generality has since been addressed by another R-matrix based method, R-matrix

with Time-Dependence (RMT). This method exploits the benefits of the R-matrix

method to describe complicated multi-electron atomic targets (e.g., see (Hassouneh
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et al., 2014; Clarke et al., 2018)) and, most recently, molecular targets (Brown et al.,

2020) in a more general fashion.

Moving one rung up the semiclassical ladder, the next category includes the

Strong Field Approximation (SFA) methods. SFA has a long history dating back to

original work by Keldysh (1965), which was extended via separate efforts by Faisal

(1973) and Reiss (1980) to become Keldysh-Faisal-Reiss (KFR) theory. Initial work

by Lewenstein et al. (1994) and Becker et al. (1995) demonstrated that KFR-type

theories were capable of describing strong-field phenomena. Then, subsequent de-

velopments by Popruzhenko et al. (2002) and Liu and Figueira de Morisson Faria

(2004) extended this work to look at two electron processes, such as NSDI. One

great difficulty of the SFA approach has been the inclusion of Coulomb effects as,

typically, the residual Coulombic potential of the ionised atom is neglected in the

continuum. However, this has recently been addressed in work carried out by Yan

and Bauer (2012) and Maxwell et al. (2017), who used Coulomb-corrected SFA

theory to investigate above-threshold ionisation (ATI) interference patterns. That

being said, so far these corrections have only been applied in the case of single ac-

tive electrons which is insufficient to model two electron phenomena such as NSDI,

for instance, that can also be sensitive to the long-range Coulomb potential.

The third category concerns semiclassical trajectory methods. These meth-

ods are arguable the most approximate, however they can display surprisingly good

agreement with experimental and theoretical data e.g., see (Emmanouilidou et al.,

2011; Shvetsov-Shilovski et al., 2016). Monte-Carlo trajectory methods, for use

in strong-field physics, were first popularised by Leopold and Percival (1978) who

used this theoretical framework to describe ionisation of atoms in microwave fields.

In early work the initial conditions were governed by a classical microcanonical

distribution (Grochmalicki et al., 1991), however in later years Ammosov–Delone–

Krainov (ADK) theory became the standard approach (Ammosov et al., 1986). That

is, after the widespread adoption of the three-step model (Corkum, 1993), it was

assumed that the least bound electron could be accurately described as an electron

born into the continuum with a position, momentum and ionisation rate governed by
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ADK theory. This approach was successfully demonstrated by Chen et al. (2000)

who investigated the momentum distribution of recoil ions resulting from NSDI.

One of the additional benefits of trajectory methods is the ability to perform detailed

analysis on the trajectories that lead to a specific observable e.g., double ionisation,

which can provide valuable insights. For example, by analysing trajectories Yudin

and Ivanov (2001) and Bhardwaj et al. (2001) calculated the effect of the Coulomb

potential and pulse duration on the DI rate and Emmanouilidou et al. (2011) inves-

tigated the contribution of different ionisation pathways to NSDI at different laser

intensities.

1.5 Outline of the Thesis
The work presented in this thesis falls largely into two categories based on the scat-

tering energy of the projectile electron. As such, the remainder of this thesis is

separated into two parts. Part I concerns low and intermediate energy electron colli-

sions, whilst part II concerns higher energy collisions that occur in strongly-driven

systems. In chapter 2, R-matrix theory will be discussed in the context of low

and intermediate scattering energies. This is followed by the results obtained from

R-matrix calculations for molecular hydrogen and nitric oxide, chapters 3 and 4

respectively. Part II focuses on higher scattering energies such as those induced in

strong laser fields opening with chapter 5 which introduces a semiclassical theory

based on the three-step model. The results of this theory are presented in chapters 6

and 7, which investigate the effect of the magnetic-field on electron-atom collisions,

specifically in the context of non-sequential double ionisation. Finally, conclusions

drawn from the entire thesis are presented in chapter 8.
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Low to Intermediate Energy Electron

Collisions with Molecules
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Chapter 2

R-matrix Theory

This thesis is concerned with the interaction of electrons with atom and molecules.

Therefore, it is judicious to work on the energy scale of the atom. The classical Bohr

model of hydrogen provides a useful reference point. In this simplified picture the

classical radius of the bound electron is a0 = 0.529 Å and the ground state energy,

which is equivalent to the ionisation potential, is Ip = 0.5 Hartree. Low energy

collisions will describe energies that are smaller than the ionisation potential of

the atom or molecule i.e., E ≤ Ip. High energy pertains to collisions where the

scattering energy is much greater then the ionisation potential i.e., E � Ip. The

intermediate region is transition between the two regimes.

Atomic units will be used throughout this thesis unless otherwise stated. In

atomic units the electron mass me, fundamental charge e, Plank’s constant ~ and

Coulomb’s constant ke = 4πε0 are all set to one.

This chapter will develop the theory behind electron-molecule scattering at low

to intermediate energies – specifically, for molecular processes such as those listed

in Table 1.1. Molecules have many additional degrees of freedom that are simply

not present in atoms. For example, in addition to the electronic degrees of freedom,

molecules can undergo rovibrational excitation owing to the motion of their con-

stituent atoms. This greatly increases the difficulty of solving the time-independent

Schrödinger equation (TISE). However, due to the large mass ratio between the nu-

clei and the electrons, the problem can be split into two more manageable parts.

The nuclear wavefunction, which contains rovibrational effects, and the electronic
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wavefunction that deals with electronic excitation. This is the Born-Oppenheimer

(BO) approximation (Born and Oppenheimer, 1927). The approximation is valid

when the time scale of the electron motion is much faster than that of the nuclei.

For electron-molecule collisions this is generally true but it tends to break down

near resonances or excitation thresholds, where the scattering electron spends more

time in the presence of the nuclei (Morrison, 1988).

Using the BO approximation, R-matrix theory will be developed in the Fixed-

Nuclei (FN) approximation, where the nuclear degrees of freedom are frozen. This

approach neglects the rovibrational motion, however, these effects can be recuper-

ated in the Adiabatic-Nuclei (AN) approximation, as will be discussed in section

2.2.

a

z

R-matrix sphere

Figure 2.1 | The R-matrix sphere of radius a separates configuration space into an inner
and outer region.

Electron collisions with molecules can be described by the time-independent

Schrödinger equation.

HN+1Ψ = EΨ, (2.1)

where HN+1 is the non-relativistic Hamiltonian and E is the total energy. The exact
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form of HN+1 will be detailed later in this section. To solve equation 2.1 the R-

matrix approach is employed. The R-matrix method relies on the principle that

configuration space can be separated into two parts; an inner region and an outer

region. In the inner region the scattering electron is treated identically as the other

N target electrons – taking into account exchange and correlation effects analogous

to quantum chemistry methods. But outside this region, in the outer region, all the

complicated exchange and correlation effects can be neglected. In the outer region,

the scattering electron moves in a simplified potential that is determined by the

properties of the target. In the following target refers to the solitary molecule that

is contained within the inner region.

For scattering in three dimensions a sphere is usually the most sensible choice.

Figure 2.1 shows the typical setup for a diatomic molecule. The sphere is centred

on the molecule’s centre-of-mass (although there are other options (Fandreyer et al.,

1993)). The radius of the R-matrix sphere a is selected so that the charge density

of the molecule tends towards zero at the boundary. That is, outside the sphere the

scattering electron is treated as being distinguishable from the target electrons. If

the R-matrix sphere is not big enough then this approximation is no longer valid.

In order to simplify the theory it is preferential to use a body-fixed coordinate

system (Burke, 2011). In this coordinate system the molecule itself becomes the

frame of reference. It is typical convention to align the z-axis to the molecular axis

as shown in Fig. 2.2.

ith electron

A B
z

O

R

RA RB

rirAi rBi

Figure 2.2 | Body-Fixed reference frame for a diatomic molecule AB that is aligned along
the z-axis.

In Figure 2.2 R = RA + RB is the internuclear separation between the con-
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stituent atoms, A and B, with nuclear charge ZA and ZB respectively. ri is the

position of the ith electron with respect to the molecular centre-of-mass, O. Simi-

larly, rXi is the position of the ith electron with respect to atom A or B.

2.1 Fixed Nuclei Approximation

2.1.1 Outer Region

The R-matrix method used in this work can be summarised as follows. First, equa-

tion 2.1 is solved inside the R-matrix sphere, r < a. Then, the inner region solution

is used to construct the R-matrix at the boundary r = a. Equation 2.1 is then solved

in the outer region, r > a, in order to propagate the R-matrix to the asymptotic

limit, r → ∞, where the solutions can be matched to asymptotic expressions. It

is the matching of asymptotic expressions that allows K-matrices, S-matrices and

cross-sections to be determined. The theory presented in this section is based on the

derivations presented in Burke (2011).

Outside the sphere i.e., for r > a the Hamiltonian is

HN+1 = −1

2
∇2
N+1 +

N∑
i=1

1

riN+1

− ZA
rAN+1

− ZB
rBN+1

+
ZA + ZB −N

rN+1

, (2.2)

HN+1 = −1

2
∇2
N+1 + V (rN+1), (2.3)

where riN+1 is the distance between the ith and N + 1th electrons and rXN+1 is the

distance between the N + 1th electron and the atomic nuclei X = A or B. Here

V (rN+1) is used to represent the potential experienced by the N + 1th electron. In

the outer region, using the Hamiltonian given by Eq. 2.3, the solution of equation

2.1 can be expanded in the following way (Burke, 2011)

Ψ∆
j (E;R) =

n∑
i=1

Φ∆
i (XN ; r̂N+1σN+1)

F∆
ij (rN+1)

rN+1

. (2.4)

where the subscript j denotes the set of linearly independent solutions and E is the

total energy. Φ∆
i (XN ; r̂N+1σN+1) are channel functions which depend on the spin-

space coordinates of the N target electrons and the angular position r̂N+1 and spin
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σN+1 of the scattering electron. The radial dependence of the scattering electron is

contained in the reduced radial function F∆
ij (rN+1).

Applying equation 2.3 to equation 2.4 and projecting onto the channel func-

tions Φ∆
i (XN ; r̂N+1σN+1) leads to the following set of coupled differential equa-

tions (Burke, 2011),

(
d2

dr2
N+1

− `i(`i + 1)

r2
N+1

+
2(ZA + ZB −N)

rN+1

+ k2
i

)
F∆
ij = 2

n∑
i′=1

Vii′(rN+1)F∆
i′j,

(2.5)

where i = 1, . . . , n runs over the number of channel functions, ∆ is a set of con-

served quantum numbers that describe the total scattering state and `i is the scatter-

ing electron’s orbital angular momentum. The wavevector, ki, of a given channel is

defined as

k2
i = 2(E − EN

i ), (2.6)

where E is the total energy as before and EN
i is the energy of a specific target

state coupled to that channel. Using a multipole expansion, Vii′(rN+1) is given by

(Burke, 2011)

V ∆
ii′ (rN+1) =

∞∑
λ=0

α∆
ii′λ

rλ+1
N+1

. (2.7)

αii′λ are long-range potential coefficients and their form is given in Tennyson

(2010). Typically only the first few terms in λ are needed to achieve convergence.

λ = 0 is the static potential and is important for charged targets, otherwise for neu-

tral molecules the dipole λ = 1 and quadrupole λ = 2 potentials make the most

significant contributions.
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2.1.2 Inner Region

Inside the sphere, 0 < r < a, the Hamiltonian HN+1 treats all N + 1 electrons on

equal footing. It can be written as follows (Burke, 2011)

HN+1 =
N+1∑
i=1

(
−1

2
∇2
i −

ZA
rAi
− ZB
rBi

)
+

N+1∑
i>j=1

1

rij
+
ZAZB
R

, (2.8)

where rij is the distance between the ith and jth electrons and −1
2
∇2
i is the kinetic

energy operator, in position-space, for the ith electron. The solution of the TISE,

equation 2.1, in the inner region is expanded in a set of basis functions ψ∆
k (Burke,

2011)

Ψ∆
j (E) =

∑
k

ψ∆
k (XN+1;R)A∆

kj(E), (2.9)

where A∆
kj(E) are energy-dependent expansion coefficients, which depend on the

asymptotic boundary conditions satisfied by the wave function Ψ∆
j (E) at a given

energy E (Burke, 2011). The choice of basis function ψ∆
k is flexible and can be

altered depending on the purpose of the calculation. In general they are written in

this form

ψ∆
k = A

n∑
i=1

nc∑
j=1

Φ∆
i (XN ; r̂N+1σN+1)

uij(rN+1)

rN+1

a∆
ijk +

nL∑
i

χ∆
i (XN+1)b∆

ik. (2.10)

k runs over the total number of linearly independent basis functions nnc+nL, n and

nc are the number of channels and continuum functions retained in the expansion

respectively and nL is the number of L-squared functions. A is the antisymmetric

operator that ensures the wavefunction remains antisymmetric under the exchange

of two electrons. Φ∆
i are channel functions created by coupling the eigenstates of

the target to the spin-angle functions of the scattering electron (Burke, 2011). uij

are continuum functions which are centred on the molecular centre-of-mass. In the

UKRMol+ codes these continuum functions can be either Gaussian-Type Orbitals

(GTOs), B-Spline-Type Orbitals (BTOs) or a combination of both depending on
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the requirements of the calculation (Mašı́n et al., 2020). In each case, they are

centred on the molecular centre-of-mass and at the boundary r = a they have,

in general, a non-zero amplitude. These non-zero boundary amplitudes form the

link between the inner and outer region calculations via the R-matrix. χ∆
i are L-

squared functions that have vanishing amplitudes at the boundary r = a. They

represent short-range polarisation and correlation effects. a∆
ijk and b∆

ik are expansion

coefficients determined by the construction and diagonalisation of the inner region

Hamiltonian, HN+1 + LN+1, in a basis given by 2.10.

〈ψ∆
k |HN+1 + LN+1|ψ∆

k 〉 = E∆
kk′δkk′ . (2.11)

Unlike the outer region, the inner region is constrained by the R-matrix sphere. In

order to keep the Hamiltonian Hermitian an additional Bloch term LN+1 is required

(Bloch, 1957). The Bloch operator takes the form

LN+1 =
N+1∑
i=1

1

2
δ(ri − a)

(
d

dri
− b− 1

ri

)
. (2.12)

b is an arbitrary constant and in this work it is set to zero. This leads to a modified

form Eq. 2.1.

(HN+1 + LN+1 − E)Ψ∆
j (E) = LN+1Ψ∆

j (E). (2.13)

The solution of this equation is

Ψ∆
j (E) = (HN+1 + LN+1 − E)−1LN+1Ψ∆

j (E), (2.14)

Ψ∆
j (E) = GN+1LN+1Ψ∆

j (E), (2.15)

where GN+1 is a Green’s function. GN+1 can be spectrally decomposed into the

R-matrix basis functions ψ∆
k which are defined by Eq. 2.10, giving

|Ψ∆
j (E)〉 =

nt∑
k=1

|ψ∆
k 〉〈ψ∆

k |LN+1|Ψ∆
j (E)〉

E∆
k − E

. (2.16)
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This solution is valid for radial distances within the R-matrix sphere i.e., 0 < r ≤

a. By projecting Eq. 2.16 onto the channel functions Φ∆
i and evaluating at the

boundary rN+1 = a it is possible to link the inner and outer region wavefunctions

(Burke, 2011).

〈Φ∆
i r
−1
N+1|Ψ

∆
j,in(E)〉|r=a =

nt∑
k=1

〈Φ∆
i r
−1
N+1|ψ∆

k 〉〈ψ∆
k |LN+1|Ψ∆

j,out(E)〉
E∆
k − E

∣∣∣∣∣
r=a

, (2.17)

F∆
ij (a,E) =

n∑
i′=1

R∆
ii′(a,E)

(
a
dF∆

i′j

dr

)
. (2.18)

where the reduced radial functions F∆
ij are the same as those in equation 2.4. Equa-

tion 2.18 provides the link between the inner and outer region solutions. R∆
ii′ is the

R-matrix which is defined by

R∆
ii′(a,E) =

1

2a

nt∑
k=1

w∆
ikw

∆
i′k

E∆
k − E

. (2.19)

The channel reduced radial functions F∆
ij (a,E) are given by

F∆
ij (a,E) = 〈Φ∆

i r
−1
N+1|Ψ

∆
j (E)〉. (2.20)

w∆
i′k are boundary amplitudes and they are defined by

w∆
i′k = 〈Φ∆

i r
−1
N+1|ψ

∆
k 〉|r=a, (2.21)

=
nc∑
j=1

uij(a)a∆
ijk. (2.22)

The integrals in equations 2.20 and 2.21 are carried out over all of the N + 1 spin-

space coordinates XN+1 except for the radial coordinate of the scattering electron

rN+1. The final step required to obtain scattering amplitudes is to match outer re-

gion solutions with their asymptotic counterparts. Generally, the R-matrix sphere

is of the order of 10 a0 and as such, this is not sufficiently far enough away from

the molecule to be considered asymptotic. Therefore the R-matrix must be propa-

gated radially outwards e.g., using Light-Walker (Light and Walker, 1976) or BBM
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(Baluja et al., 1982) propagators, until the dipole and quadrupole potentials of the

molecule vanish. Typically propagation to 100 a0 is sufficient.

2.1.3 Asymptotic Region

Assuming that the R-matrix has been propagated to the asymptotic limit it is now

possible to match with asymptotic solutions. One approach is to use an asymptotic

expansion such as that of Gailitis (1976) which has been previously implemented

into R-matrix codes by (Noble and Nesbet, 1984). In the asymptotic limit i.e.,

r →∞, the solution is (Burke, 2011)

F∆
ij (r) ∼

r→∞

1√
ki

(sin θi + cos θiK
∆
ij ), (open) (2.23)

F∆
ij (r) ∼

r→∞
0. (closed) (2.24)

where ki is defined by equation 2.6. A channel is open if k2
i ≥ 0 and closed if k2

i <

0. For electronic excitation, channels are closed below threshold i.e., ifE−EN
i < 0.

For neutral molecules, such as those studied in this thesis, θi are diagonal matrix

elements defined by

θi = kir −
1

2
`iπ (2.25)

Equation 2.23 enables the construction of the K-matrix, K∆, with elements K∆
ij .

The K-matrix is a symmetric matrix of size no×no where no is the number of open

channels. All the scattering observables of interest, such as integrated and differ-

ential cross-sections, can be derived from the K-matrix. For example the scattering

matrix (S-matrix) is given by

S∆ =
I + iK∆

I− iK∆
, (2.26)

and the T-matrix is

T∆ = S∆ − I. (2.27)
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The differential cross-section dσ
dΩ

for a molecule to transition from initial state i to a

final state j is given by (Burke, 2011)

dσi→j
dΩ

=
kj
ki
|fji(θ, φ)|2. (2.28)

ki and kj are the channel wavevectors as defined in equation 2.6 and fji is the

scattering amplitude (as defined in Burke (2011) p.565) for the transition i→ j.

The integrated cross-section σ for scattering from an initial state i to a final

state j is obtained integrating over the scattering angles θ and φ. It is directly

proportional to the modulus squared of the T-matrix element Tji. The integrated

cross-section can be written (Burke, 2011)

σi→j =
1

2k2
i (2Si + 1)

∑
ΛSπ

∑
`im`i`jm`j

(2S + 1)|Tji|2, (2.29)

where Λ is the projection of the total orbital angular momentum of the electron-

molecule system onto the molecule axis and S is the total spin angular momentum.

π is the parity and is only conserved for diatomic homonuclear (or symmetric linear

polyatomic) molecules. `i and m`i correspond to the orbital angular momentum

and magnetic sublevel of the scattering electron. The first sum is carried out over

intermediate states, the second sum is over initial and final channels that contribute

to a given transition.

2.2 Adiabatic Nuclei Approximation

In the Born-Oppenheimer approximation the electronic and nuclear degrees of free-

dom are separated. This principle is used in the Adiabatic-Nuclei approximation.

First, the electronic problem is solved with the nuclei fixed in place i.e., the FN ap-

proximation. Then, using the vibrational wavefunctions, the nuclear motion effects

are recovered by averaging across FN calculations obtained at a range of differ-

ent geometries. Following the approach of Lane (1980) the vibrationally resolved
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cross-section is

σAN
i,νi→j,νj =

1

2k2
i (2Si + 1)

∑
ΛSπ

∑
`im`i`jm`j

(2S + 1)|〈νj|Tji(R)|νi〉|2, (2.30)

where the symbols have the same meaning as equation 2.29. However, if vibrational

resolution of the final state is not required then the following is obtained (Lane,

1980)

σAN
i,νi→j =

1

2k2
i (2Si + 1)

∑
ΛSπ

∑
`im`i`jm`j

(2S + 1)〈νi||Tji(R)|2|νi〉, (2.31)

= 〈νi|σFN
i→j(R)|νi〉, (2.32)

where the closure property has been used to sum over all final states νj . The AN

approximation is valid when the collision time is short compared to the period for

vibrational motion. This is predominantly true for high energy scattering and away

from resonances (Burke, 2011).

2.3 Scattering Models
The key to a successful R-matrix calculation depends heavily on the functions ψ∆

k

used to expand the solutions Ψ∆
j . Equation 2.10 details the form of these functions

ψ∆
k , which are solutions to the inner region Hamiltonian (equation 2.11). The first

term corresponds to placing N electrons into target orbitals Φ∆
i with the (N + 1)th

electron placed in a space-spin symmetry coupled continuum orbital uij . The sec-

ond term consists of L-squared functions that represent all N + 1 electrons occupy-

ing the molecular orbitals (MOs) of the target. Different approaches for construct-

ing these inner region solutions are grouped into categories which correspond to

different scattering models.

Before the N + 1 electron-molecule system is discussed, it is important to

select a model to describe the target. The target description relies on standard quan-

tum chemistry approaches that are well described in literature such as Szabo and

Ostlund (1989). Knowledge of these methods is assumed for brevity. For com-
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patibility with the UKRMol+ code the target can either be described by a Hartree-

Fock (HF) model, complete active space configuration interaction (CASCI) model

or full configuration interaction (FCI) model. This choice is largely influenced by

the number of electrons in the target molecule N . For small targets, N < 4, FCI

may be tractable however for anything bigger FCI quickly becomes computation-

ally unfeasible. Depending on the choice, target models will contain the following

configurations

(core)N , (HF)

(core)Nc(CAS)Na , (CASCI)

(CAS)N , (FCI)

where Nc and Na represent the number of electrons in the core (i.e., frozen MOs)

and the active space MOs respectively. The size of the CAS i.e., the number of

MOs available in the active space, will also depend on the number of electrons.

Generally, the bigger the CAS the more accurate the calculation – however, careful

selection of fewer but more appropriate orbitals can be more effective. Choice of

CAS is extremely context specific and a whole field of its own (Tennyson, 1996b).

For efficiency it is best to freeze as many of the core electronsNc as possible leaving

only the minimum required Na to capture the correct physics. The choice of target

model is dependent on the scattering model employed. Types of scattering model

include; static exchange (SE) and static exchange plus polarisation (SEP) which

both depend on HF targets; and close-coupling (CC) which can be used with either

a CASCI or FCI target depending on the size of the calculation (Tennyson, 2010).

For this work, only CC has been used. CC consists of configurations of the type

(target)N(continuum)1,

(target)N+1,

(target)N−1(virtual)1(continuum)1, (CASCI only)

(target)N−1(virtual)2, (CASCI only)
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where target represents one of the target models described previously e.g., FCI.

virtual corresponds to target MOs that are part of the basis set but not used in the

CAS and continuum corresponds to the continuum MOs. When FCI is used the

last two configurations (marked CASCI only) are redundant as they will be included

in the FCI expansion.

2.4 UKRMol+ Code
The results presented later in this thesis, Chapters 3 and 4, have been obtained using

the recently developed UKRMol+ codes which are based on the well established

UKRMol codes (Carr et al., 2012). The UKRMol+ code offers new functionality –

most notably that B-splines can now be used to represent the continuum. That is,

the continuum can now be represented by either a GTO only, GTO+BTO or BTO

basis set. The addition of B-splines has played a crucial role in removing the issues

associated with linear-dependence which tends to manifest as oscillatory behaviour

in the eigenphases.

The code release paper (Mašı́n et al., 2020) provides a detailed description of

the UKRMol+ codes. Therefore only the key points relevant to this thesis will be

included in this section.

2.4.1 UKRMol+ Inner

The workflow of a typical UKRMol+ inner region run is summarised in Fig. 2.3.

The starting point of any R-matrix scattering calculation is to obtain a molden file

which is typically generated by the third-party program MOLPRO (Werner et al.,

2012). This file contains preliminary molecular data such as the geometry, the

target basis set and the target molecular orbitals. This information is fed into

scatci integrals which generates all of the 1- and 2-electron integrals that

are used in the remaining programs.

The configuration state functions (CSFs) are generated in congen. These

CSFs are required by scatci, the program that builds and diagonalises the Hamil-

tonian matrix. Both congen and scatci are run twice, once for the N -electron

target and the second time for the N + 1-electron complex. It’s worth noting that
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most of the physics takes place in the construction of the N + 1-electron wavefunc-

tion (Eq. 2.10) and this is determined by configurations generated in congen.

denprop is used to generate target properties, such as the transition dipole

and quadrupole moments in addition to compiling the target states. The target states,

along with molecular integrals are used in the second run of congen and scatci.

This generates the inner region scattering states that are required to build the R-

matrix on the boundary, in addition to the boundary amplitudes and target properties

obtained previously. The generation of the R-matrix is carried out by an interface

program swinterf which is part of the outer region code suite UKRMol-out.

MOLPRON -electrons N + 1-electrons

molden file

scatci integrals

molecular integrals

boundary amplitudes

congen

target CSFs

scatci

target states

congen

scattering CSFs

scatci

scattering states

denprop

target properties

1

2

3

4

5

6

UKRMol-out

Figure 2.3 | UKRMol+ Process Flowchart for the inner region. Adapted from Mašı́n et al.
(2020) (see text for full description). On the left-hand side congen and scatci are first
run to solve the N -electron problem. Then, on the right-hand side, these two programs are
used again but now including the N + 1th scattering electron.

2.4.2 UKRMol+ Outer

The workflow of a typical UKRMol+ outer region run is summarised in Fig. 2.4.

Carrying on from the inner region, swinterf is used to generate channel and R-
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matrix data which is input into rsolve. rsolve is responsible for propagating

the R-matrix from the R-matrix sphere radius r = a to the asymptotic limit r →∞

(Light and Walker, 1976; Baluja et al., 1982). At the asymptotic limit the open

channels are matched to asymptotic solutions, thus providing the K-matrices (No-

ble and Nesbet, 1984). From the K-matrices it is possible to obtain eigenphases

(eigenp), resonances (reson) and T-matrices (tmatrx). The T-matrices are re-

quired to calculate the differential and integrated cross-sections using the programs

dcs and ixsecs respectively.

In addition to reson, timedel(n) is also capable of providing resonance

parameters and bound can be used to find bound states. However none of these

programs were used to obtain the results presented in this thesis.

swinterf

channel & R-matrix data

rsolvetimedel(n) bound

resonance parameters

K-matrices

bound energies

tmatrx eigenp

T-matrices eigenphase sums

ixsecsdcs reson†

integral
cross sections

differential
cross sections

resonance parameters

Figure 2.4 | UKRMol+ Process Flowchart for the outer region. Adapted from Mašı́n et al.
(2020) (see text for full description). †reson recursively calls rsolve.



Chapter 3

Benchmark Calculations of Electron

Impact Electronic Excitation of the

Hydrogen Molecule

This chapter is adapted from published work (Meltzer, Tennyson, Mašı́n, Zammit,

Scarlett, Fursa, and Bray, 2020).

Part I of this thesis investigates low energy electron collisions with molecules before

moving onto higher energy collisions with atoms in laser fields in Part II. In this

chapter electron collisions with molecular hydrogen are studied in order to produce

benchmark cross-section data. The work in this chapter and the next takes place in

the absence of any external fields.

The MCCC calculations contained in this chapter were carried out by Zammit,

Scarlett, Fursa and Bray.

3.1 Introduction
Molecular hydrogen is one of the simplest, most abundant molecules in the Uni-

verse. Understanding of how it interacts with its surroundings is of vital importance

for a large variety of physical systems, both naturally occurring and man-made e.g.,

fusion plasmas, planetary atmospheres and interstellar medium. In these environ-

ments, H2 molecules are subject to frequent collisions with low to high-energy elec-

trons.
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The equations that govern electron-molecule collisions are well understood;

however, accurate and reliable cross-sections for the different processes that can

occur are few and far between. Several recommended cross-section datasets for H2

have been assembled and published (Tawara et al., 1990; Yoon et al., 2008; Pitch-

ford et al., 2017), and yet, in their most recent review, Anzai et al. (2012) note that

benchmark cross-sections are still not available for a variety of cases. Thus far the

vast majority of recommended H2 data are based on experimental results. However,

due to practical reasons these data can not always be obtained via experiment. For

example, the required target may be unstable (short-lived), or hazardous, or both

e.g., T2.

Furthermore, it is often difficult to obtain complete sets of data that contain all

the cross-sections of interest across the required energy ranges. Therefore theory

must often be relied upon to provide this information. In addition, if cross-sections

are required from an initial state other than the ground state then theory is presently

the only realistic option. For example, electron impact cross-section data for elec-

tronic excitation from metastable excited states is of great interest for the modelling

of industrial and astrophysical plasmas, as outlined by Marinković et al. (2007).

In this work molecular convergent close-coupling (MCCC) theory and R-

matrix theory are used to produce a set of high-accuracy, benchmark cross-sections

for electron impact electronic excitation. This is similar in spirit to the conver-

gent close-coupling (CCC) and R-matrix comparisons for 1 and 2 (active) electron

atomic systems namely H (Bartschat et al., 1996a), He (Lange et al., 2006) and Mg

(Bartschat et al., 2010). A similar theoretical benchmark for total cross-sections for

excitation to the b 3Σ+
u state was performed using the Schwinger variational (Lima

et al., 1985), linear algebraic approach (Schneider and Collins, 1985) and R-matrix

(Baluja et al., 1985) approaches. It is important to note that this benchmark was

a theoretical benchmark of a two-state close-coupling calculation, and was not in-

tended to produce convergent cross-sections. The previous R-matrix calculation

was extended by a series of authors; Branchett et al. (1990a) expanded the target

model to include the first six excited electronic states, giving an improved integrated
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cross-section and subsequently differential cross-sections (Branchett et al., 1991);

Stibbe and Tennyson (1998) added adiabatic nuclei effects to study near-threshold

electron impact dissociation; and Trevisan and Tennyson (2002) then applied these

methods to other isotopes of hydrogen, namely deuterium and tritium.

The R-matrix method used in this work is well established and tested. On

the other hand, MCCC theory is more recent in its development (Zammit et al.,

2014), although it is based on the atomic CCC approach (Bray and Stelbovics, 1992)

which has been rigorously tested since its inception in the early 1990’s. A tutorial

summarising the MCCC theory is provided by Zammit et al. (2017a) and the theory

pertaining to the R-matrix method has been covered in chapter 2. Therefore, below

only the features of each theory that are relevant for this work are discussed.

Where data are available, theoretical calculations obtained in this work are

compared with experiment. For example, there are integrated and differential cross-

sections available for some of the lower-lying excited states at intermediate (14

eV to 17.5 eV) (Hargreaves et al., 2017) and higher energies (17.5 eV to 30 eV)

(Wrkich et al., 2002). As well as work carried out by Muse et al. (2008) which

provides elastic cross-sections from 1 eV up to 30 eV. Also, in a recent comparison

between theory and experiment, Zawadzki et al. (2018) provides cross-sections for

the X 1Σ+
g → b 3Σ+

u transition.

3.2 Method

3.2.1 R-Matrix

For the R-matrix calculations, the UKRMol+ suite of codes (Mašı́n et al., 2020) has

been utilised. This new and improved version of the former UKRMol codes has

been successfully used for a variety of molecular targets such as BeH (Darby-Lewis

et al., 2017), CO (Zawadzki et al., 2020) and pyrimidine (Regeta et al., 2016). The

most notable difference between UKRMol+ and UKRMol is the implementation of

B-spline type orbital (BTO) basis functions allowing the user to select a Gaussian

type orbital (GTO) only, mixed BTO/GTO or BTO only representation of the con-

tinuum. Use of BTOs greatly extends the range of possible R-matrix radii. The
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calculations in this work use a BTO-only continuum, a large molecular R-matrix

radius of a = 100 a0 and a triply-augmented target basis set especially designed for

Rydberg-like orbitals.

3.2.1.1 Target Model

The R-matrix method relies on a balanced description of the target and scattering

wavefunctions, N and N + 1 respectively (Tennyson, 1996b), where N is the num-

ber of electrons in the target. Molecular hydrogen is a two electron system. There-

fore the aim is to use the most comprehensive models available in each case. Full-CI

is the hallmark of accuracy in electronic structure methods and it provides an exact

solution to the Schrödinger equation within a given finite-sized one-electron basis

set (Knowles and Handy, 1984). This method is used with an augmented Dunning

basis set, especially designed to describe Rydberg-type excitations in molecules,

x-aug-cc-pVXZ (Dunning, 1989; Woon and Dunning, 1994). x-aug signifies that

the basis set is doubly, triply, quadruply-augmented where x = d, t, q, etc. Triply

augmented means that three additional, even-tempered basis functions are added for

each angular symmetry available in the original cc-pVXZ set. Traditional Dunning

basis sets, cc-pVXZ, are correlation consistent and hence provide a systematic way

of approaching the complete basis set limit as the number, X, of zeta functions is

increased – although they are largely designed for optimisation of the ground state.

Preliminary work found that moving from a singly augmented basis set to a

triply augmented basis set had a more profound effect on the target description than

increasing the number of zeta functions i.e., pVXZ for X = D, T, Q, etc. Figure

3.1 shows the convergence of different basis sets; the standard Dunning basis sets,

cc-pVXZ; and the augmented Dunning basis sets, x-aug-cc-pVXZ for an individ-

ual hydrogen atom. The hydrogenic target states should be degenerate for a given

shell, n. The standard Dunning basis sets fail to produce degenerate states even for

the first excited state of H i.e., n = 2. The standard Dunning basis sets do show

improvement as more zeta functions are added but they are clearly not sufficient.

As for the augmented Dunning basis sets, the situation is much better. The singly

augmented aug-cc-pVTZ basis set shows a marked improvement across all target
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1s 2s,2p 3s,3p,3d

Figure 3.1 | Convergence of H atom basis set for; Dunning basis sets, cc-pVXZ, where X
= T (solid), Q (dashed), 5 (dotted) and 6 (dot-dashed); and augmented Dunning basis sets,
x-aug-cc-pVXZ where X = T and x = s (blue), d (orange), t (red).

states for the H atom, even though the n = 2 level is not degenerate. The doubly-

augmented basis set d-aug-cc-pVTZ provides degenerate n = 2 states and finally

the triply-augmented basis set, t-aug-cc-pVTZ (tAVTZ hereafter), produces degen-

erate states up to n = 4 which are required for this work, where excitations of H2

for n ≤ 3 are considered. Hence, for this work tAVTZ was found to be the optimal

choice (see Fig. 3.2).

As mentioned previously, this calculation will use Full-CI and the tAVTZ

basis set. Therefore, the target model, in D2h symmetry1, can be expressed as

(19, 9, 9, 4, 19, 9, 9, 4)2. This notation is used to represent two electrons occupying

any spin-space symmetry allowed combination of Molecular Orbitals (MOs), where

the UKRMol+ code has the convention of ordering the MOs in terms of the eight

irreducible representation as follows, (Ag, B3u, B2u, B1g, B1u, B2g, B3g, Au). Using

1The polyatomic UKRMol and UKRMol+ codes work in Abelian symmetry. Therefore D2h is
used instead of D∞h, however it is possible to convert between the two point group symmetries as
and when required.
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Figure 3.2 | Potential energy curves for the ground state and the lower-lying excited
states. Reference data (black) from Kolos et al. (1986), Staszewska and Wolniewicz (1999),
Staszewska and Wolniewicz (2002), Wolniewicz and Dressler (1994) and Wolniewicz and
Staszewska (2003). UKRMol+ calculation (red) produced in this work using the tAVTZ
basis set and the Full-CI method.
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this model, the N -electron problem can be solved in order to calculate target state

energies (on average, 400 configuration state functions are generated per molecu-

lar spin-space symmetry). Target state energies were calculated at the equilibrium

geometry Re = 1.40 a0 to compare with accurate structure calculations of Ko-

los et al. (1986), Staszewska and Wolniewicz (1999), Staszewska and Wolniewicz

(2002), Wolniewicz and Dressler (1994), Wolniewicz and Staszewska (2003) and

the MCCC calculations of Zammit et al. (2017b) (see Table 3.1). Potential energy

curves from the aforementioned references are compared with our calculations in

Fig. 3.2.

For the excited states considered in this work, the R-matrix method produces

more accurate target states than the spherical MCCC method. This is due to the

difference in how the target is expanded in the two methods. MCCC uses single

centre expansion, which performs worse for lower target states, however it quickly

improves for the higher lying, Rydberg-like states. The R-matrix method however

uses a linear combination of atom-centred GTOs. This generally performs better

for the ground and low-lying excited states and in this work it performs well for all

the states listed in Table 3.1.

3.2.1.2 Scattering Model

In the R-matrix method the electronic density of the target must be contained within

the R-matrix sphere, which is of radius a. Therefore, for a given target basis set the

radial charge density of each of the MOs should be negligible at the boundary. It

was found in this work that 1 × 10−10 was a suitable threshold. For a doubly-

augmented basis set (d-aug-cc-pVTZ) this means an R-matrix radius of size a = 45

a0 is required, whilst for the tAVTZ basis set used here a radius of a = 100 a0 is

sufficient. Free-particle scattering provides a useful tool to validate the R-matrix

radius for a given target. It was found that radii that did not meet the criteria above

suffered from unphysical behaviour i.e., negative eigenvalues of the kinetic energy

matrix.

Up until now, an R-matrix sphere of size a = 100 a0 would have been impos-

sible, as the continuum basis set required to fill the space would suffer from severe
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Table 3.1 | Absolute target energies, E (a.u.), at the equilibrium bond length Re = 1.40 a0

compared to accurate electronic structure calculations.

E (a.u.)

state Ref RMf MCCCg

X 1Σ+
g -1.174a -1.173 -1.162

b 3Σ+
u -0.784b -0.784 -0.770

a 3Σ+
g -0.714b -0.713 -0.710

B 1Σ+
u -0.706c -0.705 -0.697

c 3Πu -0.707b -0.706 -0.701

EF 1Σ+
g -0.692d -0.691 -0.687

C 1Πu -0.689e -0.688 -0.683

e 3Σ+
u -0.644b -0.643 -0.640

h 3Σ+
g -0.630b -0.630 -0.628

d 3Πu -0.629b -0.628 -0.626

B′ 1Σ+
u -0.629c -0.628 -0.625

aKolos et al. (1986); bStaszewska and Wolniewicz (1999); cStaszewska and Wolniewicz (2002);
dWolniewicz and Dressler (1994); eWolniewicz and Staszewska (2003); fThis work; gZammit

et al. (2017b).

linear dependence. However, as mentioned previously, the new UKRMol+ codes

allow the use of BTOs which are numerically stable regardless of the size of the

R-matrix sphere. It was found that, for molecular hydrogen, using a BTO only con-

tinuum basis not only removed linear dependence issues but it also gave a better

description of the continuum. Moreover, the wall-clock time required to compute

continuum integrals was reduced for a BTO-only continuum compared to that of

the mixed BTO/GTO continuum. Details of the continuum basis can be found in

Table 3.2.

Table 3.2 | Parameters used for the continuum basis.

Property Value

Number of B-Splines (per L) 75

B-spline Order 9

Lmax 6
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The convergence of scattering observables also depends on Lmax, the maxi-

mum number of partial waves included. In principle, the higher the cut-off the

better. However, as will be discussed in section 3.3.3 this becomes computationally

intractable very quickly. For this calculation, Lmax = 6 provided the best compro-

mise between computational resources and accuracy.

It is found that a relatively large number of continuum BTOs are required and

this is due to two reasons. Firstly, an R-matrix sphere of 100 a0 has been used in

order to contain the charge density of the target. Secondly, integrated cross-sections

(ICS) are required up to scattering energies of 30 eV. Higher scattering energies

require more basis functions in order to converge. The convergence of the contin-

uum basis is verified by free-particle scattering. In free-particle scattering the target

potential is completely neglected, therefore the scattering electron experiences no

phase-shift. This means that the eigenphase sum, across the energy range consid-

ered, should be zero. Figure 3.3 shows how the convergence of the BTO continuum

basis set varies as a function of the number of B-splines. The eigenphase sum is

plotted for the Ag symmetry. It was found that satisfactory convergence is achieved

with 75 B-splines per angular symmetry.

A close-coupling expansion is employed to solve the scattering problem. This

is necessary for describing exchange and polarisation effects in addition to mod-

elling electronic excitation. To ensure balance between the N + 1 and N -electron

contributions in the close-coupling expansion, a similar treatment is required in the

N + 1 electron system as that used for the target. Two types of configuration state

function (CSF) are adopted in theN+1 system. There are those where one electron

occupies a continuum orbital, and those where all of the N +1 electrons occupy the

target molecular orbitals. This amounts to;

(target)2(continuum)1,

(target)3,

where target stands for the complete set of target molecular orbitals. Note that in

the first configuration step it is necessary to couple the target electrons to the appro-
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Figure 3.3 | Eigenphase sum for a free scattering electron in the Ag symmetry computed
with a continuum basis of 65 (black), 70 (blue), 73 (orange) and 75 (red) b-splines per
angular symmetry.

priate symmetry, in order to facilitate the identification of the correct target states

(Tennyson, 1996a). However, there are no such constraints on the “L2” configura-

tions generated in the second step. Using this model, all the target states below 30

eV vertical excitation energy are retained – which for this calculation is 98 states.

This generates an average of 65,000 CSFs per molecular symmetry. Preliminary

tests were carried out using fewer states e.g., all states up to 20 eV, however, it was

found that all the states below the scattering energy of interest must be included in

order to get accurate results. Past the energy of the last state included the scattering

cross-sections are incorrectly enhanced as there are fewer open channels.

As discussed in sec. 2.4.1, the construction of the N + 1 Hamiltonian is car-

ried out by the program scatci (Al-Refaie and Tennyson, 2017) which is based on

an earlier version written by Tennyson (1996a). A dramatic time-saving is gained

by re-using the target states already generated in the N -electron diagonalisation.

However, in preliminary studies it was found that there was a phase-inconsistency

(Tennyson, 1997) between the target states generated in the N and N + 1 calcu-

lations. This problem was resolved by reading in the CI vectors generated in the



3.2. Method 51

N -electron calculation.

In the scattering calculation, after the R-matrix has been constructed it must

be propagated outwards, as discussed in the theory section (sec. 2.1.3). For smaller

R-matrix radii, a ∼ 10 a0, the asymptotic limit is usually taken to be rasym = 100

a0. However, in this work the R-matrix radius is already a = 100 a0. As an initial

test, calculations were run without any propagation at all but this lead to spurious

resonances in the ICSs at the higher scattering energies. These resonances were

eliminated by increasing the asymptotic limit from rasym = 100 a0 to rasym = 200 a0.

To check convergence a further test was run with an asymptotic limit of rasym = 300

a0 which displayed no differences to the rasym = 200 a0 calculation. For this work,

the results obtained with the asymptotic limit rasym = 300 a0 are presented.

Up to now differential cross-sections obtained from UKRMol and UKRMol+

calculations were generated using the program POLYDCS (Sanna and Gianturco,

1998) which includes rotational excitation of the molecule but is limited to elec-

tronically elastic transitions. Therefore a new program has been developed for the

calculation of differential cross-sections (DCS) which includes only orientational

averaging of the molecule but is applicable to electronically inelastic transitions

and optionally employs the standard top-up procedure based on the first Born ap-

proximation for inelastic dipolar scattering. This will be discussed later in sec.

3.3.3.

3.2.2 Molecular convergent close-coupling

The MCCC method is a momentum-space formulation of the close-coupling theory.

The target spectrum is represented by a set of (pseudo)states generated by diagonal-

ising the target electronic Hamiltonian in a basis of Sturmian (Laguerre) functions.

For a suitable choice of basis the resulting states provide a sufficiently accurate

representation of the low-lying discrete spectrum and a discretisation of the con-

tinuous spectrum, which allows the effects of coupling to ionisation channels to be

modelled. Expanding the total scattering wave function in terms of the target pseu-

dostates and performing a partial-wave expansion of the projectile wave function

leads to a set of linear integral equations for the partial-wave T -matrix elements,
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which are solved using standard techniques. The strength of the MCCC method is

the ability to perform calculations with very large close-coupling expansions, al-

lowing for the explicit demonstration of convergence in the scattering quantities of

interest with respect to the number of target states included in the calculations and

the size of the projectile partial-wave expansion.

The MCCC method has been implemented for electron and positron scattering

on diatomic molecules in both spherical and spheroidal coordinates. The spherical

implementation is simpler and provides an adequate description of the molecular

structure at the mean internuclear separation of the H2 ground state. The spherical

MCCC method has been used for detailed convergence studies and the calculation

of elastic, excitation, ionisation, and grand-total cross-sections over a wide range of

incident energies. Spheroidal coordinates are a more natural system for describing

the electronic structure at larger R, where the target wave functions become more

diffuse. The spheroidal MCCC method has been utilised to calculate vibrationally-

resolved cross-sections for excitation of a number of low-lying states of H2, includ-

ing scattering on all bound vibrational levels of the ground electronic state (Scarlett

et al., 2020, submitted). This has allowed detailed studies to be performed for dis-

sociation of H2 in the ground and vibrationally-excited states (Scarlett et al., 2019a;

Tapley et al., 2018b,a; Scarlett et al., 2018), and vibrational excitation of the X 1Σ+
g

state via electronic excitation and radiative decay (Scarlett et al., 2019b). For clar-

ity of presentation, in the present work only the spherical MCCC results are used.

For details of the spheroidal MCCC method and comparisons of the spherical and

spheroidal MCCC cross-sections see Scarlett et al. (2020).

3.2.2.1 Target Model

The MCCC target structure is obtained using a CI calculation. The basis for the CI

expansion consists of two-electron configurations formed by products (n`, n′`′) of

one-electron Laguerre-based orbitals. To reduce the number of two-electron states

generated, one of the target electrons is allowed to occupy any one-electron orbital,

while the other is restricted to the 1s, 2s, and 2p orbitals. The largest target structure

calculation performed in this work utilises a Laguerre basis ofN` = 17−` functions
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with ` ≤ 3, which generates a total of 491 states. To improve the accuracy of the

X 1Σ+
g and b 3Σ+

u states, where the multicentre effects are strongest, the 1s Laguerre

function is replaced with an accurate H+
2 1sσg state obtained via diagonalisation of

the H+
2 Hamiltonian in a basis with N` = 60− ` functions for ` ≤ 8.

3.2.2.2 Scattering Models

Fixed-Nuclei MCCC calculations were performed at R = 1.448 a0 using a number

of scattering models, ranging from 9 to 491 states included in the close-coupling

expansion. This allowed for a detailed investigation of convergence and the ef-

fects of including various reaction channels (see Zammit et al. (2017b) for details).

The MCCC results presented here were obtained from the 491-state model, which

yielded convergent cross-sections for each of the transitions of interest. With re-

gards to the partial-wave expansion of the projectile wave function, angular mo-

menta up to Lmax = 8 have been included, as well as all total angular momentum

projections up to Mmax = Lmax. To account for the contributions from higher partial

waves an analytical Born subtraction (ABS) technique is utilised, which is equiva-

lent to replacing theL > Lmax cross-sections with their respective partial-wave Born

cross-sections. It is found that the partial-wave expansion with Lmax = 8 produces

convergent integrated cross-sections for all transitions considered here when used

in conjunction with the ABS technique. For dipole-allowed transitions, the partial-

wave convergence of the DCS can be considerably slower than it is for the ICS.

The method adopted to resolve this issue is discussed in Zammit et al. (2017b). For

the X 1Σ+
g → b 3Σ+

u transition, adiabatic-nuclei calculations have been performed

at low incident energies using a model consisting of 12 target states which yields

convergent cross-sections for the b 3Σ+
u state below approximately 15 eV. These

calculations are described in Scarlett et al. (2017).

3.3 Results
In this section, FN ICS and DCS for elastic and inelastic processes are presented.

For inelastic processes the first ten electronic excited states are considered. In the

second section the AN approximation is used to introduce nuclear motion effects
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which are particularly important close to threshold.

Table 3.3 | Absolute target energies, E (a.u.), and vertical excitation energies, ∆E (eV), at
the mean vibrational bond length R0 = 1.448 a0. RM data are from UKRMol+ (this work)
and MCCC from Zammit et al. (2017b).

E (a.u.) ∆E (eV)

State RM MCCC RM MCCC

X 1Σ+
g -1.172 -1.161 - -

b 3Σ+
u -0.796 -0.782 10.23 10.31

a 3Σ+
g -0.718 -0.715 12.35 12.14

B 1Σ+
u -0.712 -0.704 12.52 12.44

c 3Πu -0.712 -0.707 12.52 12.35

EF 1Σ+
g -0.697 -0.693 12.93 12.73

C 1Πu -0.694 -0.693 13.02 12.73

e 3Σ+
u -0.650 -0.647 14.21 13.99

h 3Σ+
g -0.636 -0.634 14.60 14.34

B′ 1Σ+
u -0.635 -0.631 14.63 14.42

d 3Πu -0.634 -0.632 14.65 14.39

The scattering calculations that follow were carried out at the mean vibrational

bond length, R0 = 1.448 a0, to provide the best comparison to experiment, within

the FN approximation. Table 3.3 lists the target states and the vertical excitation

energies obtained for both methods. Similarly, compared to Table 3.1, the R-matrix

target energies are more accurate than the MCCC method, as they are lower in

energy (note that both methods are variational). However, it should be noted that the

absolute energy is of less significance for this work, and that the vertical excitation

energies (relative to the ground state) are in good agreement.

3.3.1 Fixed-Nuclei Cross-Sections

ICS and DCS for the first ten target states (see Table 3.3); X 1Σ+
g , b 3Σ+

u , a 3Σ+
g ,

B 1Σ+
u , c 3Πu, EF 1Σ+

g , C 1Πu, e 3Σ+
u , h 3Σ+

g , B′ 1Σ+
u and d 3Πu are presented

in the following section. Where available, previously recommended cross-sections

and experimental results are plotted against the two theoretical calculations.
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3.3.1.1 Elastic Cross-Sections

The elastic ICS (Fig. 3.4) demonstrates good agreement between MCCC and R-

matrix theory. The calculated data lie within the error bars of the experiment con-

ducted by Muse et al. (2008). For the DCS (Fig. 3.5) at scattering angles exceeding

15◦ the two theories essentially overlap. At energies greater than 15 eV the R-matrix

calculations have a diminished forward peak and this is due to a lack of convergence

of the partial wave expansion. Due to computational constraints Lmax = 6 for the R-

matrix calculations. This compares to Lmax = 8 for the MCCC calculation, which

also employs the analytical Born subtraction technique. Nevertheless, scattering

angles close to θ = 0 or θ = 180 do not contribute as much to the ICS due to a sin θ

term in the integrand. Therefore, despite the differences in the DCSs the resulting

ICSs are similar.
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Figure 3.4 | ICS for elastic collisions. Comparison of the UKRMol+ and MCCC calcula-
tions with the measurements of Muse et al. (2008) and recommended data of Yoon et al.
(2008).

The recommended data of Yoon et al. (2008) for the ICS are noticeably lower

than those obtained from the R-matrix and MCCC calculations (Fig. 3.4). Whilst

they are within their specified margin of error (±20%), due to the excellent agree-
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ment between both theories and experiment for the DCS (Fig. 3.5), it is believed

that the recommended data should be revised upwards.
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Figure 3.5 | DCS for elastic collisions. Comparison of the UKRMol+ and MCCC calcula-
tions with the measurements of Muse et al. (2008).
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3.3.1.2 Triplet States

The first excited electronic state is b 3Σ+
u . For this state a fine energy grid has been

used for both the MCCC and UKRMol+ calculations. This allows an accurate com-

parison of the two ICSs. In Fig. 3.6 prominent resonance structures are observed

near 12 eV. Across the energy range considered the two calculations agree.

The current recommended cross-sections agree at low energy but from 15 eV

to 20 eV they appear to overestimate the cross-section. The newer experiment from

Zawadzki et al. (2018) is much closer to the two theories. The DCSs (Fig. 3.7) also

agree closely with these experimental data. The R-matrix calculations are a little

higher than the MCCC calculations for angles exceeding 135◦ but, again, the effect

of this on the ICS is insignificant.

For higher excited states i.e., those energetically above b 3Σ+
u , MCCC results

are presented on a coarser energy grid. Therefore, narrow resonant structures cannot

be compared. The ICSs for states a 3Σ+
g , c 3Πu and e 3Σ+

u (Figs. 3.8, 3.10 and 3.12

respectively) show good agreement between the MCCC and R-matrix theories.

The recommended data points are based on the EELS (Electron Energy Loss

Spectroscopy) experiment of Wrkich et al. (2002). The data points are sparse so it is

hard to quantitatively compare against the two theory calculations. However, given

agreement between the two theoretical calculations and more recent experiments,

it is proposed that the recommended cross-sections should be revised for all of the

triplet states considered so far.
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Figure 3.6 | ICS for the X 1Σ+
g → b 3Σ+

u transition. Comparison of the UKRMol+ and
MCCC calculations with the measurements of Zawadzki et al. (2018) and recommended
data of Yoon et al. (2008).
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Figure 3.7 | DCS for the X 1Σ+
g → b 3Σ+

u transition. Comparison of the UKRMol+ and
MCCC calculations with the measurements of Zawadzki et al. (2018).
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The DCSs shed more light on the comparison. Fig. 3.9 shows the a 3Σ+
g

state. Agreement is best for 17.5 eV and 30 eV. The general shape is present at

all three energies. That is, the cross-section dips around 60◦ and 120◦. However,

for intermediate angles the magnitude of the DCS is higher (especially for 20 eV)

than the theoretical calculations. EELS experiments are hard to conduct for excited

states of H2 because the states overlap in the spectra and the individual components

have to be deconvoluted. Based on the difficulty of these type of experiments for

highly-excited states it is postulated that the calculations are more reliable.
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Figure 3.8 | ICS for the X 1Σ+
g → a 3Σ+

g transition. Comparison of the UKRMol+ and
MCCC calculations with the recommended data of Yoon et al. (2008).
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Figure 3.9 | DCS for the X 1Σ+
g → a 3Σ+

g transition. Comparison of the UKRMol+ and
MCCC calculations with the measurements of Wrkich et al. (2002).
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For the c 3Πu state (Fig. 3.11) the situation is similar to the a 3Σ+
g state. There

is a slight downward slope towards higher scattering angles that is present in both

the calculation and the experiment. However, the experimental DCS at 20 eV is

approximately an order of magnitude higher.
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Figure 3.10 | ICS for the X 1Σ+
g → c 3Πu transition. Comparison of the UKRMol+ and

MCCC calculations with the recommended data of Yoon et al. (2008).
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Figure 3.11 | DCS for the X 1Σ+
g → c 3Πu transition. Comparison of the UKRMol+ and

MCCC calculations with the measurements of Wrkich et al. (2002).
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For the e 3Σ+
u state there is no qualitative agreement between theory and ex-

periment. At all three energies (shown in Fig. 3.13) there are large discrepancies

for low angle scattering i.e., below 30◦. This is not too surprising though as low

and high angle scattering is difficult to measure due to the physical constraints of

the experimental setup.
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Figure 3.12 | ICS for the X 1Σ+
g → e 3Σ+

u transition. Comparison of the UKRMol+ and
MCCC calculations with the recommended data of Yoon et al. (2008).
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Figure 3.13 | DCS for the X 1Σ+
g → e 3Σ+

u transition. Comparison of the UKRMol+ and
MCCC calculations with the measurements of Wrkich et al. (2002).
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The ICSs for states h 3Σ+
g and d 3Πu (Figs. 3.14 and 3.15) show agreement

between the two theories. However, the R-matrix calculation exhibits pronounced

features around 16 eV and 19 eV. In the standard R-matrix approach used in this

work, ionisation effects are not included. States above the ionisation threshold are

included but pseudostates are not explicitly included. To model ionisation, pseu-

dostates are required as implemented in the R-matrix with pseudostates (RMPS)

method (Gorfinkiel and Tennyson, 2005). As a result, the cross-section is overesti-

mated above ionisation threshold. This behaviour was demonstrated previously in

MCCC calculations when only the bound states were used (Zammit et al., 2017b).

In addition, weak transitions can also suffer from small oscillations, but the impact

is reduced as the size of the close-coupling expansion increases. Therefore, the

enhanced R-matrix cross-section is likely due to missing ionisation channels.

The DCSs for state h 3Σ+
g (Fig. 3.16) show broad agreement with the MCCC

data. There are no recommended data for either the h 3Σ+
g or d 3Πu states. For

the d 3Πu state (Fig. 3.17) there are more significant differences between the two

theories. As the target excitation increases, typically less agreement between the

two theories is expected. Higher excited states tend to be less accurately described

by the electronic structure calculations used in this work.
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Figure 3.14 | ICS for the X 1Σ+
g → h 3Σ+

g transition. Comparison of the UKRMol+ and
MCCC calculations.
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Figure 3.15 | ICS for the X 1Σ+
g → d 3Πu transition. Comparison of the UKRMol+ and

MCCC calculations.
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Figure 3.16 | DCS for the X 1Σ+
g → h 3Σ+

g transition. Comparison of the UKRMol+ and
MCCC calculations.
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Figure 3.17 | DCS for the X 1Σ+
g → d 3Πu transition. Comparison of the UKRMol+ and

MCCC calculations.
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3.3.1.3 Singlet States

Next the singlet target states are considered. ICSs for three dipole-allowed states,

B 1Σ+
u , C 1Πu and B′ 1Σ+

u , are shown in Figs. 3.18, 3.19 and 3.20 respectively. All

three ICSs show excellent agreement between MCCC and R-matrix theory. Further-

more, agreement with the recommended data, which is available for the B 1Σ+
u and

C 1Πu states, is extremely good at the energies considered here. Contrary to the

previous EELS experimental data, these recommended data were measured from

the optical emission of the electron impact electronically excited B and C states

(Liu et al., 1998).
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Figure 3.18 | ICS for the X 1Σ+
g → B 1Σ+

u transition. Comparison of the UKRMol+ and
MCCC calculations with the recommended data of Yoon et al. (2008).
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Figure 3.19 | ICS for the X 1Σ+
g → C 1Πu transition. Comparison of the UKRMol+ and

MCCC calculations with the recommended data of Yoon et al. (2008).
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u transition. Comparison of the UKRMol+ and
MCCC calculations.
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DCSs could not be determined in the emission experiments of Liu et al. (1998).

However, Wrkich et al. (2002) produced a set of EELS DCS which have been plot-

ted in Figs. 3.21 and 3.22. For the B 1Σ+
u state the agreement with experiment

is good. At 30 eV however the R-matrix calculation displays oscillations that are

not present in the MCCC Calculation. This is due to a lack of convergence in the

partial-wave expansion. Typically a Born correction would be applied to dipole al-

lowed transitions. However, in the present work this has not been possible. The

Born top-up requires a sufficiently converged cross-section, up to some intermedi-

ate number of partial waves, L̄max. For MCCC this is found to be L̄max = 25, or

more, depending on the scattering energy (Zammit et al., 2017b). A similar ap-

proach was attempted for the R-matrix calculation. Although this was not tractable

given currently available software and computational power (see sec. 3.3.3).

Similarly, the oscillations observed for the B 1Σ+
u state at higher energies are

also observed in states C 1Πu and B′ 1Σ+
u (Figs. 3.22 and 3.23). Furthermore, in all

of the singlet state DCSs, Figs. 3.21, 3.22, 3.23 and 3.25, the R-matrix calculation

has a lower forward peak. This is attributed, as in the elastic scattering case, to

a lack of convergence in the number of partial waves used. Regardless, forward

and backward scattering only make a small contribution to the total ICS. Therefore

the differences caused by the oscillatory behaviour and lower forward peak are lost

upon integration. This highlights the importance of using DCSs as a stringent test

of theories. Two theories may produce the same ICS but have different angular

profiles.
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Figure 3.21 | DCS for the X 1Σ+
g → B 1Σ+

u transition. Comparison of the UKRMol+ and
MCCC calculations with the measurements of Wrkich et al. (2002).
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Figure 3.22 | DCS for the X 1Σ+
g → C 1Πu transition. Comparison of the UKRMol+ and

MCCC calculations with the measurements of Wrkich et al. (2002).
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Figure 3.23 | DCS for the X 1Σ+
g → B′ 1Σ+

u transition. Comparison of the UKRMol+ and
MCCC calculations.
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In contrast to the dipole-allowed singlet states, the forbidden EF 1Σ+
g state

DCS (Fig. 3.25) is not as sensitive to higher partial-waves. Agreement between the

two theories is good. The agreement between theory and experiment is acceptable,

except for the scattering angles from 60◦ to 100◦ at 20 eV where the experiment

gives a larger cross-section, which could be due to the analysis of the measured

EELS.

Comparing the ICS (Fig. 3.24) between the two theories, the R-matrix cal-

culation is consistently above the MCCC data. Again, this is due to the absence

of ionisation channels in the R-matrix close-coupling expansion that leads to an

overestimated cross-section.

The recommended data are based on an emission experiment carried out by Liu

et al. (2003). Whilst the EF 1Σ+
g state is dipole-forbidden, the cross-section can be

inferred using a combination of theoretical and experimental considerations. There

is a difference in threshold for experiment, which occurs near 15 eV as opposed to

13 eV for the FN MCCC and R-matrix calculations. However the magnitude and

qualitative shape agree with theory.
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Figure 3.24 | ICS for theX 1Σ+
g → EF 1Σ+

g transition. Comparison of the UKRMol+ and
MCCC calculations with the recommended data of Yoon et al. (2008).
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and MCCC calculations with the measurements of Wrkich et al. (2002).
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3.3.2 Adiabatic-Nuclei Cross-Sections

In reality, the molecular geometry is not fixed and experiment effectively samples a

range of initial and final states. This will have an impact on both the integrated and

differential cross-sections. This behaviour is most notable near threshold (Stibbe

and Tennyson, 1998). At higher scattering energies, away from the threshold, the

two approximations converge as nuclear motion effects become less significant. The

AN approximation was introduced earlier in section 2.2 to address this issue and it

has been recently demonstrated by Scarlett et al. (2017) on molecular hydrogen.

In this work the ground vibrational wavefunction is used to vibrationally average

multiple FN calculations, carried out at a range of different nuclear geometries (see

equation 2.32). Although, in general, this method can also be used to produce

vibrationally resolved cross-sections as shown in equation 2.30.

In Fig. 3.26 both FN (dot-dashed line) and AN calculations (solid line) are

shown side-by-side for electronic excitation to the first excited state (X 1Σ+
g →

b 3Σ+
u ). For both the MCCC (red) and UKRMol+ (black) calculations there are two

main differences. The first is that resonant structures are washed-out and the second

is that the sharp turn-on near the vertical excitation threshold (10 eV) is smoothed

into a ramp. This is due to the vibrational averaging over different molecular ge-

ometries. The threshold for theX 1Σ+
g → b 3Σ+

u transition is essentially the vertical

excitation energy. For some geometries this will be lower than 10 eV and for others

it will be greater. The average is weighted by the square of the ground vibrational

wavefunction, which means the largest contributions occur at the maximum of the

wavefunction i.e., about R0. This is why the FN calculation at R = R0 and the

AN calculation are broadly similar. Adiabatic effects have consequences for near-

threshold electron impact dissociation of H2 (Stibbe and Tennyson, 1998).

The AN approximation requires FN calculations to be performed across a grid

of different internuclear bond separations. For this work, a grid size of ∆R = 0.05

a.u. was used for 0.95 < R < 1.95 a.u., with a finer grid of ∆R = 0.01 a.u.

used in the region closer to the mean vibrational bond length, 1.35 < R < 1.55

a.u. Due to the large number of FN calculations required it was not possible to use
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Figure 3.26 | Integrated cross-section for the X 1Σ+
g → b 3Σ+

u transition using the AN
approximation. (black) UKRMol+, (red) MCCC, (green dots) experiment from Zawadzki
et al. (2018).

the full model described previously (sec. 3.2.1). Therefore a smaller model was

used which featured a singly augmented aug-cc-pVTZ basis set and an R-matrix

radius a = 25 a.u. Due to the smaller radius, the continuum representation can

be simplified to 22 BTOs per angular momentum symmetry with Lmax = 4 without

sacrificing completeness. This model works well for the first excited state but due to

the simplified target description it cannot represent higher-excited states. As before,

all the target states below 30 eV are included which gives a 59-state model.

3.3.3 Including Higher Partial Waves

To include higher partial waves, specifically for dipole-allowed transitions, a top-up

procedure is required. A typical approach is to use a Born correction as suggested

by Norcross and Padial (1982). Its form applied to DCS is

dσ

dΩ
=

(
dσ

dΩ

)
Born

+
λmax∑
λ=0

(Aλ − ABorn
λ )Pλ(cos θ), (3.1)
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where the first term on the right hand side is the DCS calculated for inelastic dipolar

scattering in the first Born approximation and the second term includes the contri-

bution of the lower partial waves Aλ calculated with close-coupling and subtraction

of the corresponding Born partial waves ABornλ . Only orientational averaging of

the molecule is taken into account. This approach was used in previous R-matrix

calculations for inelastic collisions, but only for ICSs (Baluja et al., 2000; Kaur

et al., 2008; Mašı́n et al., 2012), which tend to converge quicker than DCSs. Re-

cently, Zawadzki et al. (2020) employed the Born correction described above for the

electronically inelastic DCS of CO. This method, however, requires a sufficiently

high partial wave cut-off, Lmax. At lower partial waves the analytic Born method is

less accurate and can overestimate the cross-section, leading to unphysical negative

cross-sections.

Born corrections have been successfully applied to DCSs for elastic collisions,

see e.g., Zhang et al. (2009) and Mašı́n et al. (2012). However, these cross-sections

are usually an order of magnitude larger than those for dipole-allowed inelastic

transitions. Hence, they are less susceptible to the oscillatory behaviour seen in

inelastic DCSs.

Figure 3.27 shows the DCS for the dipole-allowed B 1Σ+
u state. In solid black

the original R-matrix calculation without the Born correction is shown. If the Born

correction is applied to the DCS the dotted line is obtained. At 17.5 eV, the Born

corrected DCS displays unphysical behaviour around 150◦ where it becomes neg-

ative. The situation worsens for higher energies. This is due to an incomplete

convergence of the partial-wave Born contribution
∑

λA
Born
λ Pλ(cos θ).

To resolve this issue, the MCCC approach (Zammit et al., 2017b) has been to

run a smaller-sized calculation but with a higher cut-off e.g., L̄max = 25. The results

of this calculation are then used to augment the T-matrices of the more expensive

calculation. This allows the DCS contributions from higher partial waves to be

calculated with the more accurate MCCC theory before including the additional

contributions from the Born procedure.

A similar approach has been adopted in the R-matrix calculations, however
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Figure 3.27 | DCS for the B 1Σ+
u state calculated using the R-matrix method, with

Lmax = 6 (black) and the MCCC method (red). The Born top-up was applied to the original
calculation before (dotted) and after (dashed) the T-matrix elements were augmented with
a cheaper Lmax = 10 calculation.
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L̄max = 25 is currently not computationally feasible with the UKRMol+ codes.

Calculations using a smaller model, but with L̄max = 10, have been computed and

these were used to augment the T-matrices of the accurate R-matrix calculation with

Lmax = 6. When augmenting the T-matrix elements, care must be taken to phase-

match the two calculations. This can be achieved by comparing the transition dipole

moments of the target states involved in each transition.

The result of augmenting the T-matrices and applying the Born correction is

shown as the dashed line in Fig. 3.27. For the lowest scattering energy shown, 17.5

eV, the oscillatory behaviour is greatly reduced and the Born correction improves

the quality of agreement between the MCCC and R-matrix calculations. At 20

eV Born-corrected DCS is improved but it still shows oscillatory behaviour that is

characteristic of a lack of convergence. At 30 eV, even with the augmented T-matrix

elements the DCS remains oscillatory when the Born correction is applied.

In theory, an approach similar to the MCCC method can be developed for the

R-matrix calculations but there are two factors that currently inhibit further im-

provement. The first is that the target states from cheaper calculations need to be

shifted to the more accurate values from the expensive calculation. In this work

the energies were shifted in the outer region. This is not ideal and instead the en-

ergy shift should be implemented in the N + 1 scattering calculation, similar to the

approach used successfully by Stibbe and Tennyson (1997). Secondly, the outer re-

gion quickly dominates the computational resources required, both physical RAM

and CPU-time, as a large number of channels are generated for higher partial waves.

As a result a sophisticated approach would need to be implemented in the outer re-

gion to reduce the number of states included in the calculation.

As an alternative approach, a top-up to the DCS using a more basic method

was also attempted (Fig. 3.28). Two cheaper calculations with small basis sets, as

described in sec. 3.3.2 but using Lmax = 6 and Lmax = 10 were carried out. Then,

the difference between the two DCSs was computed and used to top-up the expen-

sive calculation. This approach does help to capture the forward peak scattering but

it was too susceptible to unphysical negative cross-sections when the differences
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between the cheap calculations became negative. This method behaved particularly

poorly in regions where the cross-section is small.
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Figure 3.28 | DCS for theB′ 1Σ+
u state calculated using the R-matrix method, with Lmax =

6 (black) and the MCCC method (red). The difference between two smaller calculations
with Lmax = 6 and Lmax = 10 was computed and added to the ICS of the full calculation
(dotted).

In summary, the MCCC approach to the Born top-up appears to be the most

sensible way forward, however there is still work to be done before it can be imple-



3.4. Conclusion 84

mented in R-matrix calculations.

3.4 Conclusion

In this work good agreement with recent experimental data has been demonstrated,

validated by two independent theories. There is less agreement with recommended

data, predominantly for the triplet states but this is believed to be due to the dif-

ficulties associated with the underlying experiments. Furthermore, any significant

differences between the two theories and experiments are well understood.

This is the first time the MCCC and R-matrix theories have been verified for a

molecular target. This work presents one of the largest molecular R-matrix calcu-

lations to date. Many novel features have been exploited for the first time: a triply-

augmented target basis set, a box size of 100 a.u. and the first B-spline only contin-

uum for a molecular target. This shows that both MCCC and R-matrix method can

be used to perform large-scale, high-accuracy close-coupling calculations.

Both fixed-nuclei and adiabatic-nuclei calculations have been compared. For

FN calculations, dipole-forbidden states generally show better agreement in the

DCSs. Whereas, for dipole-allowed states the R-matrix calculations show oscilla-

tory behaviour but this could be eliminated by using a higher cut-off in the number

of partial-waves. However, this is currently not tractable given currently available

hardware and software. All of the ICSs show good agreement between the two the-

ories with the exclusion of weak transitions that are more sensitive to the absence of

ionisation channels in the R-matrix calculations, leading to slightly enhanced cross-

sections. The AN ICS for the first excited state shows excellent agreement between

the two theories and the recent experimental data.

There are several directions for future work. Firstly, it would be interesting to

compare the effect of target model used in the MCCC calculations i.e., spherical

versus spheroidal. Preliminary results for the EF 1Σ+
g state suggest that the use of

a spheroidal model could improve the agreement between both theories.

Secondly, in order to accurately describe ionisation effects in the R-matrix

method the RMPS method would need to be employed. Whilst the RMPS method
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is implemented in UKRMol+, the calculations for this system are currently too ex-

pensive. Following this, further developments to the UKRMol+ integrals code are

required to reduce the computational cost of calculations, both in terms of wall-

clock time and RAM. The calculations presented in this work for molecular hy-

drogen, a two-electron system, required 1.5 Tb of RAM and 15 hours on a 36-core

machine. In order to study larger polyatomics, the UKRMol+ integral code requires

substantial optimisation.

Additionally, for the R-matrix calculations presented in this work it has not

been possible to carry out systematic, quantitative analysis of the uncertainties. This

is a common problem across the field for theoretical calculations (Chung et al.,

2016). A tractable approach that is capable of providing uncertainties for the data

calculated in this chapter would be the subject of future work.

Finally, a general approach for handling Born top-ups, similar to the ABS

method used in MCCC calculations would be desirable for the UKRMol+ calcu-

lations in order to reach convergence where larger numbers of partial-waves are

required (as discussed in sec. 3.3.3).



Chapter 4

Intermediate Energy Collisions

In this chapter, the R-matrix with Pseudostates (RMPS) method is used to investi-

gate the potential energy curves of nitric oxide, which display a complicated mixture

of Rydberg-like and valence-type states. Typically, producing continuous and accu-

rate curves for mixed valence and Rydberg state systems is a challenge for standard

quantum chemistry approaches. The RMPS method can also be used to investigate

intermediate energy electron collisions with molecules – extending the validity of

the traditional R-matrix approach.

4.1 Introduction
Intermediate energy collisions present a unique problem for many theoretical ap-

proaches as they bridge the realm between quantum and classical mechanics. High

energy scattering is typically harder to converge for ab initio approaches and semi-

classical, empirical or perturbative methods lack validity in the lower energy limit.

The later group includes techniques such as; binary encounter Bethe (BEB) (Kim

and Rudd, 1994; Khare et al., 1999); scaled BEB variants (Tanaka et al., 2016);

Deutsch-Märk (Deutsch et al., 2000); semiclassical impact parameter (Hazi, 1981;

Celiberto and Rescigno, 1993); and spherical complex optical potential (Jain, 1986).

At intermediate energies, this situation is even worse as the target can be ionised

and/or electronically excited. Therefore, in order to provide an accurate physical

description, the theory must be capable of representing both of these effects (Burke,

2011). This means that fully quantum ab initio methods must be used when accu-
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racy at intermediate energies is required.

For electron-atom collisions, several ab initio methods have been developed to

tackle this issue. The intermediate energy R-matrix (IERM) method was introduced

by Burke et al. (1987), however, this was only applicable to hydrogenic targets.

The Convergent Close-Coupling (CCC) method, discussed in the previous chapter

(chapter 3), was initially developed for electron collisions with atomic hydrogen

(Bray and Stelbovics, 1992) although more recently it has been applied to many

electron atoms (Bray et al., 2015) and few electron molecular (MCCC) targets (Za-

mmit et al., 2017b), albeit under the two-active electron approximation. The RMPS

method, developed by Bartschat et al. (1996b), was one of the first methods that was

capable of producing accurate and converged cross-sections, whilst also retaining

broad applicability to a range of different targets. Although initially developed for

electron-atom collisions, the RMPS method was later extended to molecular targets

by Gorfinkiel and Tennyson (2004, 2005). It has been successfully demonstrated

on a range of different molecules e.g., H2 and H+
3 (Gorfinkiel and Tennyson, 2005),

C−2 (Halmová and Tennyson, 2008; Halmová et al., 2008) and methane (Brigg et al.,

2014). Furthermore it has also been adapted to investigate positron collisions with

H2 (Zhang et al., 2011a) and acetylene (Zhang et al., 2011b).

The key feature of the RMPS method, as the name suggests, is the addition of

pseudostates via a set of pseudo-orbitals. The role of these pseudo-orbitals is three-

fold (Bartschat et al., 1996b). Firstly, they can be used to obtain more accurate target

states which, for a variational calculation, is reflected by lower (more negative)

target state energies. Secondly, they also generate pseudostates that are essential

for converging properties such as the polarisability (Jones and Tennyson, 2010). In

fact, Castillejo et al. (1960) found that even for atomic hydrogen the sum over all

of the infinite target states still only accounts for 81.4% of the polarisability. The

remaining 18.6% is provided by continuum terms. Finally, pseudo-orbitals can be

used to represent the highly excited states of the target or the infinite, but discrete,

continuum states that exist inside of the R-matrix sphere (Bartschat et al., 1996b).

The work in this chapter will take advantage of these features to improve the target



4.1. Introduction 88

states for the open-shell radical nitric oxide (NO).

NO is the simplest known thermally stable radical (Polák and Fišer, 2004).

It is found in the Earth’s atmosphere (although in minor abundance) either from

anthropogenic sources or natural sources such as lightning (Murray, 2016). NO

is a catalyst for ozone destruction (Schappe et al., 2002) and it plays a vital role

in the chemistry of the thermosphere and auroral activity Cartwright et al. (2000).

Furthermore it is an important biomolecule – serving as a messenger molecule in

the human cardiovascular, nervous and immune systems – and it is found in the

atmospheres of Venus and Mars, as well as in interstellar medium (Nagano and

Yoshimura (2002) and references therein). Accurate electron impact cross-sections

are required for collisional-radiative modelling of NO in aurora (Cartwright et al.,

2000).

NO is a 15-electron molecule and in its ground state the unpaired electron

occupies a degenerate, anti-bonding π∗-orbital. This can be represented as follows,

(1σ21σ∗22σ22σ∗23σ21π41π∗).

The unpaired electron manifests as a mixture of low-lying Rydberg-like and valence

states, which typically lead to discontinuous potential energy curves. The theoreti-

cal treatment of these two different types of state is of great difficulty for standard

quantum chemistry approaches as noted by numerous authors that have investigated

NO (De Vivie and Peyerimhoff, 1988; Polák and Fišer, 2003; Shi and East, 2006).

Typical strategies to mitigate these difficulties include, optimising different sets of

MOs and or constructing different target models, to compute a specific subsection

of target states. However, contrary to standard electronic structure calculations,

scattering calculations require that the target ansatz is constructed from a single set

of MOs and single target model. In addition, scattering calculations require both the

doublet and quartet target states as they can both couple to triplet scattering states.

This rules out the previous approaches and therefore a new method of calculating

target states for mixed Rydberg-like and valence type systems is sought. This forms

the principle aim of this work which is to generate accurate target states that are
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compatible for use in scattering calculations.

Electron impact cross-section data for nitric oxide are few and far between,

although recommended data have been compiled by Song et al. (2019), which en-

compass both experimental and theoretical sources. Of these sources the most com-

plete are the electronically inelastic cross-section data measured by Brunger et al.

(2000a) for DCS and Brunger et al. (2000b) for ICS. Recent theoretical endeav-

ours include; da Paixão et al. (1996) who use the Schwinger Multichannel Channel

method to calculate elastic DCS and ICS; Fujimoto and Lee (2000) who use a com-

plex optical potential to calculate absorption cross-sections, elastic ICS and DCS;

Trevisan et al. (2005) and Laporta et al. (2012) who study electronically elastic scat-

tering from 0 to 2 eV and 0 to 10 eV respectively; and Joshipura et al. (2007) who

use the “complex scattering potential-ionisation contribution” method to produce

ΣQinel ICS which is the summed cross-section over all electronically excited states

of NO. As far as is known, the only work to calculate electronically-excited state-

resolved cross-sections is Laricchiuta et al. (2017) who use the similarity approach

to produce ICS for the X 2Π → B 2Π and X 2Π → C 2Π transitions. There has

been one former R-matrix investigation, carried out by Tennyson and Noble (1986),

which employed a 6-state CC calculation to compute the resonance positions and

widths for the three lowest-lying resonances of the NO− anion but no cross-section

data were calculated.

4.2 Method

The methodology used in this chapter builds upon the theory presented in chap-

ter 2. Here the theory will be expanded to include pseudostates in the theoretical

framework. The RMPS method was initially developed for electron-atom collisions

and the theory is detailed in (Bartschat et al., 1996b) and Burke (2011). RMPS

was extended to molecules by Gorfinkiel and Tennyson (2004) with theory detailed

therein, in addition to Gorfinkiel and Tennyson (2005) and Tennyson (2010). The

following description is adapted from Gorfinkiel and Tennyson (2005).
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4.2.1 R-matrix with Pseudostates

The basic idea of the RMPS method is to add pseudostates, Φ∆
i , into the close-

coupling expansion, equation 2.10. These pseudostates are obtained by diagonalis-

ing the target Hamiltonian in a basis of configurations that contain both the target

MOs, φi, (Hartree-Fock or CASCI) and pseudo-orbitals, φ̄i, also known as pseudo

continuum orbitals (PCOs). The choice of PCO is not unique but due to compu-

tational reasons GTOs have historically been favoured for electron-molecule colli-

sions. The idea is that these PCOs are capable of representing polarised states of the

target or states of the positively charged parent ion. As such, they are typically cen-

tred about the molecule’s centre-of-mass. Gorfinkiel and Tennyson (2004) found

that even-tempered GTOs (Schmidt and Ruedenberg, 1979) were ideal for applica-

tion to polyatomic targets for two reasons. Firstly, as you increase the number of

PCOs they approach completeness. Secondly, the exponents, αi, are systematically

generated by the control of two parameters, α0 and β.

αi = α0β
(i−1) i = 1, . . . , nL. (4.1)

where, α0 specifies the effective width of the widest PCO and β determines the

spread of PCOs i.e., how closely grouped they are, as shown in Fig. 4.1. nL is the

maximum number of PCOs included in each partial wave L. As noted by Gorfinkiel

and Tennyson (2005) the choice of β is dictated by two opposing constraints. Small

values of β i.e., close to one, lead to a better distribution of pseudostates but they

also increase the likelihood of linear dependence caused by numerical instability.

The choice of α0 will be dependent on the target and/or quantities that are being

optimised. However, a basic requirement is that the PCOs – like the target MOs –

are contained within the R-matrix sphere which means that their amplitude on the

boundary must be negligible. Smaller values of α0 lead to more diffuse PCOs (see

Fig. 4.1).

PCOs are included into the close-coupling expansion via the following target
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Figure 4.1 | Even-tempered GTOs, exp(−αir2), for use as a PCO basis set, as a function
of the two parameters α0 and β.

configurations:

(core)Nc(CAS)Na , (CASCI)

(core)Nc(CAS)Na−1(PCO)1, (CASCI+PCO)

The CASCI configuration is the same as before (sec. 2.3), but now new configura-

tions, CASCI+PCO, are included that allow one target electron to occupy a PCO.

The new configurations provide a natural representation of Rydberg-like states,

whilst the original CASCI configurations generally describe valences states. In the

scattering model PCOs are included as follows,

(core)Nc(CAS)Na(continuum)1,

(core)Nc(CAS)Na−1(PCO)1(continuum)1,

(core)Nc(CAS)Na+1,

(core)Nc(CAS)Na(PCO)1,

(core)Nc(CAS)Na−1(PCO)2,



4.2. Method 92

The key difference between this scattering model and the ones presented in sec.

2.3 is the addition of two electron excitation into either the PCOs or a PCO and

a continuum orbital. These types of configuration essentially model the scattering

and ionised electrons both being in the (pseudo)continuum, which is necessary in

order to model the effects of ionisation and polarisation at intermediate scattering

energies. The choice of scattering model is not unique and it can have a pronounced

effect on both the tractability and accuracy of the calculation. This situation is

discussed in great detail by Halmová et al. (2008), who investigated the effect of

eight different scattering models on the C−2 anion.

4.2.2 Mixed Rydberg and valence states

Accurate ab initio potential energy curves, that take into account both types of

state (Rydberg-like and valence), were first attempted by De Vivie and Peyerimhoff

(1988) who used a Multi-Reference Double Excitation Configuration Interaction

(MRDCI) method to generate curves for the lower excited states. Data calculated

using their model were fit using a spline method in order to produce smooth curves.

Further work was carried out by Polák and Fišer (2003) who investigated the four

lowest-lying 2Σ+ states of NO. They used a different MRCI variant that is inter-

nally contracted (icMRCI) and for their four-state calculation they obtained smooth

curves but only for the 2Σ+ states. Shi and East (2006) improved upon the results of

De Vivie and Peyerimhoff (1988) by including more terms in the CI expansion but

they only targeted the doublet states of NO. Shi and East (2006) use state-averaged

CASCI calculations in order to obtain curves however they suffer from disconti-

nuities due to a change in the selection of states being averaged at different bond

lengths (Shi and East, 2006). To remedy this they employed a weight extrapolation

technique to smooth the curves but this method treats each of the target states in-

dependently. Gilmore (1965) used the Rydberg-Klein method to obtain numerical

curves from published spectroscopic data, which are widely used across the liter-

ature. The curves were not provided as supplementary data, however, data have

been extracted from this work using a plot digitiser (Rohatgi, 2017). The extracted

curves are shown in Fig. 4.2 for reference.
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Figure 4.2 | Potential energy curves for NO derived from spectroscopic data using Rydberg-
Klein method. Data were extracted using a plot digitiser from Gilmore (1965).

The UKRMol code requires one target model and one set of optimised molec-

ular orbitals that are capable of describing both the Rydberg and valence-type states

of the target. This rules out the Multi-Reference calculations of De Vivie and Pey-

erimhoff (1988) and Polák and Fišer (2003) because the MRCI method must be run

separately for each spin-space symmetry. Therefore it is not possible to obtain one

set of orbitals for all of the target states required. The CASCI approach of Shi and

East (2006) does indeed produce smooth curves but by manually averaging sepa-

rate calculations, with different numbers of states, which again is not possible for

the current work. Therefore a new approach is investigated that takes advantage of
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pseudo-orbitals and the RMPS method to obtain smooth PECs that also represent

the mixed Rydberg and valence-type states of NO.

4.3 Results

In the following section, PECs obtained via three different approaches will be pre-

sented; independent geometry CASCI, dependent geometry CASCI and dependent

geometry CASCI with the addition of pseudostates. Dependent geometry refers

to CASCI calculations that have been calculated based on MOs optimised from the

previous geometry, where as independent geometry calculations use no prior knowl-

edge. The aim of this work is to produce accurate PECs for the ground and first six

excited states of NO, namely, X 2Π, a 4Π, b 4Σ−, A 2Σ+, B 2Π, C 2Π and D 2Σ+

(see Fig. 4.2).

Producing a balanced R-matrix calculation using the RMPS method is a dif-

ficult challenge. If care is not taken, the target model and scattering model can

quickly become overwhelmingly large (Halmová et al., 2008). Therefore, the target

model considered in this work must be able to support a balanced N + 1-electron

treatment when the scattering electron is included. For this reason the target model,

for RMPS calculations, will use two types of configurations. The first, Type I, will

be the same as those used in the standard R-matrix CASCI calculations i.e., not

using the RMPS method. Here, target states are generated from a series of configu-

rations, using a CAS of (4,3,3,0) in C2v symmetry.

(4, 0, 0, 0)8(4, 3, 3, 0)7. (Type I)

To include pseudostates, an additional set of configurations (Type II) is used. Due

to the large number of configurations generated by adding an additional basis set,

the CAS is reduced to (2,2,2,0).

(4, 0, 0, 0)8(2, 2, 2, 0)6(26, 13, 13, 6)1. (Type II)

In both cases the same core configuration is used, in which the first 4 σ orbitals
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will be double occupied, which corresponds to freezing electrons in the first two s-

orbitals of each atomic site. The PCOs included in the second set of configurations,

Type II, were generated using α0 = 0.05, β = 1.4 and nL = 8, 8, 6 for L = 0, 1, 2

leading to (26,13,13,6) PCOs in C2v symmetry. For a standard CASCI calculations

i.e., not including pseudostates, only configurations of Type I will be used. For

RMPS target calculations, both Type I and Type II configurations will be used to

generate target (pseudo)states.

Figure 4.3 shows the PECs generated using a CASCI target model, where only

Type I configurations are included. For the target MOs a correlation-consistent

Dunning basis set, aug-cc-pVQZ (AVQZ hereafter) (Dunning, 1989; Kendall et al.,

1992), was used. The singly-augmented basis set contains additional diffuse basis

functions that are better at describing Rydberg-like states. Each geometry was cal-

culated independently of the neighbouring geometries and it can be seen that the

curves are strongly discontinuous (see Fig. 4.3).

For geometries below the equilibrium, R < Re = 1.15 Å, the lower-lying

excited states are generally Rydberg-like. As the lower states transition, from pre-

dominantly Rydberg-like, to valence-type character (near R=1.18 Å) the ground

state, X 2Π, jumps. This sudden change occurs because the character of the target

MOs has switched from Rydberg-like to valence, which leads to a better descrip-

tion of the ground state (Shi and East, 2006). This is a common issue with CASCI

calculations, but the effects can be mitigated by using MOs optimised in the pre-

vious geometry. Using the previous geometry’s MOs as a starting point allows a

smoother transition between calculations at different geometries, thus leading to

more continuous PECs.

There are several sensible choices for using previously optimised MOs. For

example, the starting point can be selected as the shortest or longest bond length

required – in this case either R = 1.05 Å or R = 1.40 Å respectively. In the-

ory starting from R = 1.05 Å provides a better description of the Rydberg-like

states but initial tests showed that calculations of this type suffered from severe dis-

continuities. Discontinuities arose as the bond length increased, passing through re-
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gions where state crossings and avoided crossings occur. Calculations which started

from larger bond lengths, working inwards, demonstrated much better behaviour as

shown in Figure 4.4. This figure shows continuous curves across the full range

of bond lengths considered. This has clearly come at the cost of the Rydberg-like

states, which have nearly all but disappeared, with the exception of the A 2Σ+ ex-

cited state. Although the aforementioned PECs are not sufficient for a complete

study of the NO molecule, they do at least provide a foundation on which to build.

It is already known that the RMPS method is capable of converging target

properties such as the polarisability and, in addition, that it can provide an improved

description of the target states (Bartschat et al., 1996b; Gorfinkiel and Tennyson,

2005). Here the RMPS method is employed to improve the description of the target

– specifically for the Rydberg-like states which have been poorly represented by

the previous CASCI calculations (using Type I only configurations). In the RMPS

method additional states, pseudostates, are introduced to the calculation by allowing

both Type I and Type II configurations.

Figure 4.5 shows the PECs generated by the RMPS method, which also use

MOs generated from the previous geometry. Compared to the previous CASCI cal-

culation (Fig. 4.4) these curves are also continuous, but now, at smaller internuclear

distances, the Rydberg-like states are partially recovered. That is, at small bond

lengths the C 2Π and D 2Σ+ states regain their Rydberg-like character, although

they are approximately 2 eV too high in energy. This is a significant improve-

ment over the previous two calculations. The A 2Σ+ Rydberg-like state is lowered

slightly in energy, relative to the ground state compared to Fig. 4.4. This indicates

that the A 2Σ+ state might be over-represented by the basis set compared to say the

valence states, however, the effect is small. The other excited states, a 4Π, b 4Σ− and

B 2Π are largely unaffected by the introduction of pseudostates, which is expected

as they are valence states.
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Figure 4.3 | Independent geometry CASCI PECs for NO using the AVQZ basis set. Data
from Gilmore (1965) are provided as a reference.
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Figure 4.4 | Dependent geometry CASCI PECs for NO using the AVQZ basis set. Data
from Gilmore (1965) are provided as a reference.
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Figure 4.5 | Dependent geometry CASCI PECs for NO using the AVQZ basis set with ad-
ditional pseudostates added via the RMPS method. Data from Gilmore (1965) are provided
as a reference.
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4.4 Conclusion and Further Work

The target description is arguably one of the most important factors of a scattering

calculation, which is often over-looked as remarked by Bartschat (2013). Sophisti-

cated, large-scale calculations based on an inadequate target will still give incorrect

results. Therefore the aim of this work was to resolve the outstanding issues asso-

ciated with modelling mixed Rydberg-like and valence state targets, before moving

on to the N + 1 scattering complex. To an extent, it has been shown in this work

that it is possible to model both Rydberg-like and valence states with a single set of

CASCI MOs and a unified target model that is not state dependent, as opposed to

MRCI calculations (see Fig. 4.5). Furthermore, this target model is compatible with

existing UKRMol and UKRMol+ codes that rely on the aforementioned properties

i.e., a single set of orbitals and a single target model.

Whilst a full scattering calculation has not been demonstrated yet for this target

model, preliminary tests show that it should be possible with current computational

resources. The N + 1 Hamiltonians generated in test calculations have dimensions

of the order 105 per scattering symmetry. The size of the N + 1 matrix is indicative

of the computational cost of the scattering calculation, as matrix diagonalisation

typically consumes a significant proportion of the total compute time and RAM.

The other major contribution comes from propagating large numbers of channels,

as was the case for previous work on molecular hydrogen (chapter 3). For the study

of H2, calculations were restricted to Lmax = 6 to limit the number of channels that

needed to be propagated through the outer region.

Traditionally, the standard R-matrix and RMPS methods utilise all of theN+1

eigenvalues in order to construct the R-matrix (see Eq. 2.19). This presents an

issue as the size of the Hamiltonian rapidly increases commensurate with the size

of the scattering model. However, this problem can be alleviated by adopting the

partitioned R-matrix approach (Tennyson, 2004), as successfully demonstrated by

Halmová et al. (2008) and Dora et al. (2009). In fact, Dora et al. (2009) carried out

one of the largest calculations to date, on the molecule uracil, in which they utilised

the partitioned R-matrix approach to diagonalise a matrix of dimension 218064,
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where only a small subset (less than 10%) of the eigenvalues were required. So, with

the application of the partitioned R-matrix approach and RMPS, electron-impact

electronic excitation of NO should be within reach of future theoretical work.
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Chapter 5

Strong-Field Theory

So far electron collisions have been considered in the absence of external electro-

magnetic fields, where the scattering energies have been small compared to the

ionisation potential Ip. In strongly driven systems however, the scattering energies

can quickly exceed this limit and the R-matrix approach becomes impractical and

or invalid. There are two main reasons for this. Firstly, even with the addition of

pseudo-states there is no way to accurately represent double (or multiple) ionisa-

tion. Secondly, the R-matrix method becomes computationally intractable due to

the large number of channels and target states required. That being said, the afore-

mentioned HELIUM code (Dundas et al., 1999) was capable of representing double

ionisation, however, as implied by the name it was only applicable to helium. In an

attempt to improve the applicability, Wragg et al. (2015) successfully adapted the

mixed finite difference and basis set approach used in the HELIUM code and applied

it to R-matrix with time-dependence (RMT) calculations. However, as yet, the two-

electron continuum RMT approach has only been applied to helium (Wragg and

van der Hart, 2016). For single ionisation however, the situation is somewhat im-

proved. RMT has been successfully demonstrated for single ionisation of molecular

hydrogen in weaker fields i.e., I = 1012 − 1013 W cm−2 (Brown et al., 2020) and

again, in theory, this can be extended to other molecules in a more general fashion.

In this chapter, semiclassical techniques are introduced that explore single and

double ionisation of atomic targets in the presence of strong-laser fields i.e., inten-

sities of the order I = 1014 − 1015 W cm−2.
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5.1 Three Step Model

The cornerstone of many strong-field physics theories is the three step model. It

provides a simplified picture of the underlying processes (Corkum, 1993). In step

one, a strong external electric field manipulates the atomic potential creating a po-

tential barrier through which the outermost electron can tunnel (see Fig. 5.1). In

the second step, the tunnel-ionised electron then propagates with its motion largely

dictated by the strong electric field. Initially the electric field will lead the electron

away from its parent ion. However, as the oscillating electric field changes direc-

tion the electron is driven back towards its parent ion. Thus leading to the third

step, where the energetic, recolliding electron can scatter from the parent ion or

interact with other bound electrons to give rise to multiple ionisation. For ellipti-

cally and circularly polarised (CP) light the first two steps are essentially the same,

but the likelihood of recollision (step 3) is significantly decreased due to the other

components of the electric field pushing the electron off course. This explains the

suppression of non-sequential double ionisation as seen by Fittinghoff (1994).

Figure 5.1 | In step I the atomic potential is modified by the presence of an external electric
field. This creates a barrier through which the electron can tunnel. In step II the electron
oscillates, with its motion dictated largely by the external electric field. As the electric field
changes direction the electron is sent back towards the parent ion. Finally, step III, the
electron returns to the ion and in this example ionises a second electron, leading to double
ionisation.
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5.2 Initial Conditions

5.2.1 Tunnel Exit

The three step model begins with a continuum electron. There are different ways

of selecting the initial conditions for the continuum electron. They can either be

selected from a classical micro-canonical ensemble e.g., Grochmalicki et al. (1991)

or by solving the Schrödinger equation for hydrogen-like system in a static field

e.g., Chen et al. (2000). Here the latter method is used.

The presence of an electric field alters the atomic potential. This can be seen

from the Hamiltonian below, given for a hydrogenic atom in a linearly polarised

laser field acting in the z-direction.

H = −1

2
∇2 + Veff, where Veff = −Z

r
+ zE, (5.1)

where −1
2
∇2 is the kinetic energy operator, r is the magnitude of the electron’s

displacement, z is the component of the electron’s position in the z-direction, E is

the electric field strength and Z is the atomic number. The atomic potential is tilted

becoming lower on one side and higher on the other. This creates a barrier through

which the electron can tunnel (see Fig. 5.1). The exact tunnel exit can be calcu-

lated by solving Schrödinger’s equation for the Hamiltonian above i.e., Hψ = εψ.

However, it is necessary to first transform from Cartesian to parabolic coordinates

(Landau and Lifshitz, 1965),

ξ = r + z, η = r − z, r =
1

2
(ξ + η) and z =

1

2
(ξ − η). (5.2)

ξ and η range from 0 to ∞. In parabolic coordinates it is possible to separate

variables i.e., ψ = ψ1(η)ψ2(ξ). This leads to the following equation,

∂2ψ1

∂η2
+

(
−Ip

2
+

1

2η
+

1

4η2
+

1

4
Eη

)
ψ1 = 0, (5.3)

where Ip is the ionisation potential. Equation 5.3 represents states that tunnel. There

is a corresponding equation for ψ2(ξ) but this relates to states that are bound. Equa-
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tion 5.3 has the form of a simple time-independent Schrödinger equation,

−1

2

∂2ψ

∂η2
+ (V − ε)ψ = 0, (5.4)

where,

V = − 1

4η
− 1

8η2
− 1

8
Eη and ε = −Ip

4
. (5.5)

The tunnel exit is found when V − ε = 0. This equation is cubic in terms of η and

can be solved analytically. The exit point in Cartesian coordinates in recovered with

the expression z = −η/2.

5.2.2 Tunnelling Rate

The tunnelling rate of an electron is calculated using Ammosov–Delone–Krainov

(ADK) theory (Ammosov et al., 1986). The ADK rate wadk is valid for laser fields

with photon energy ~ω � Ip and electric field strength E0 � Ea, where the char-

acteristic field strength of the atom is Ea = (2Ip)
3/2. For linearly polarised light it

can be written as follows

wadk = C

(
1

|E(t0, 0)|

)2neff−1

exp

(
−2(2Ip)

3/2

3|E(t0, 0)|

)
. (5.6)

C is a constant which can be found in Ammosov et al. (1986) but for this work it

is set to C = 1 (this does not affect the physics). The effective quantum number is

neff = Zeff(2Ip)
− 1

2 and |E(t0, 0)| is the magnitude of the electric field at the time of

tunnelling t0 and position y = 0. For circularly polarised light the above formula

still holds because at any given instant the field can be considered linear. Note that

the spatial dependence of the electric field is ignored for the tunnelling rate. This is

valid for two reasons. Firstly, it is assumed that the electron is initially bound i.e.,

close to the origin. Hence, the y-position will be close to zero. Secondly, the spatial

dependence of the laser field is a factor of 1/c smaller than the time dependence.

The initial velocity of the ionised electron is zero in the direction of the electric

field and the transverse velocity vt is governed by a Gaussian probability distribu-



5.2. Initial Conditions 107

tion, wv (Fu et al., 2001).

wv =
vt

|E(t0, 0)|
exp

(
−v2

t

√
2Ip

|E(t0, 0)|

)
. (5.7)

5.2.3 Microcanonical Distribution

For two (active) electron atoms, the initial conditions of the first electron (tunnel-

ionised electron) have already been discussed. However, there exists also a bound

electron (initially bound) that must be described. To model the initially bound elec-

tron, a microcanonical distribution can be used (Abrines and Percival, 1966). The

initial state of the bound electron can be approximated as a hydrogenic system, in

the absence of any external fields, with the binding energy −IBp . The Hamiltonian

is

H =
p2

2
− Z

|r|
= −IBp . (5.8)

A pseudo-random position r and momentum p are selected that satisfy the micro-

canonical condition,

wmicro = Kδ(−Ip −H(p, r)), (5.9)

where K is a normalisation constant (Abrines and Percival, 1966).

5.2.4 Importance Sampling

In Monte-Carlo simulations, large numbers of trajectories must be propagated. This

can be computationally expensive if improbable events wadk ≈ 0 are propagated.

For example, in Fig. 5.2 (a) the ADK rate is plotted as a function of time. There are

regions of the laser field where wadk ≈ 0 and others where wadk is large i.e., at the

peaks of the electric field. If samples are drawn from a uniform distribution, there

will be large numbers of trajectories propagated that do not appreciably contribute

to the final result.

The efficiency can be greatly improved by implementing importance sampling.
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In this approach, a new probability distribution function is selected from which the

samples are drawn. A good choice is one that increases the likelihood of samples in

regions where the integrand is large or rapidly varying (Kalos and Whitlock, 2008).

For this work, a good choice is the function (see Fig. 5.2 (b)).

W (t) =

∫ t

ti

wadk(t) dt. (5.10)

Uniform samples from this distribution i.e., Wx ∼ [0,Wmax] correspond to biased

distributions in time. Wmax is the maximum value of the function as calculated from

the start ti to the end of the laser field tf i.e., Wmax =
∫ tf
ti
wadk dt. To remove this

bias of importance sampling, each trajectory must be divided by its corresponding

rate wadk(tx). Hence the new weight is given by

wx = 1/wadk(tx). (5.11)

The randomly generated tunnel time tx is obtained by solving

Wx(tx) =

∫ tx

ti

wadk(t) dt. (5.12)

The probability of a certain process e.g., single ionisation (SI) can be calculated as

follows

P (SI) =

∑N(SI)
i=1 wixw

i
adk∑N(All)

j=1 wjxw
j
adk

=
N(SI)
N(All)

. (5.13)

N(All) is the total number of trajectories that propagated successfully and N(SI) is

the number of trajectories that produced single ionisation.

5.3 Non-Dipole Effects
In order to realise efficient simulations, often systems are modelled in the dipole

approximation. This is a restriction on the laser field which neglects the spatial

component of the vector potential, which in general is a function of time and space

i.e., A(r, t)→ A(t). This approximation is extensively used in strong field physics
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Figure 5.2 | (a) The ADK rate wadk (blue) scaled to unit area with the electric field E(t, 0)
(red) as a reference. The tunnelling rate is for a He atom in an 800 nm, I = 2.0 × 1015

W cm−2, FWHM = 12 fs laser field. (b) The sampling function W (t) =
∫ t
ti
wadk(t) dt.

and has been successfully deployed in a large number of quantum and classical

simulations (Parker et al., 2006; Staudte et al., 2007; Emmanouilidou, 2008). Its

validity relies on the fact that the wavelength of the electric field is significantly

larger than the intrinsic length scale of the atom (Ludwig et al., 2014).

The electric E and magnetic B fields are derived from the vector potential in

the following manner

E = −∂tA, (5.14)

B = ∇× A. (5.15)

From equation 5.15 it follows that if the spatial dependence of the vector potential

is neglected, then the magnetic field is effectively set to zero i.e., B = 0. This

approximation therefore ignores magnetic field effects. For the most part this is a

reasonable assumption, as the magnetic field is two orders of magnitude smaller

than the electric field. However, there are circumstances where this approximation

is no longer valid.

The dipole approximation is valid when the laser’s wavelength is sufficiently

larger than the length scale of the atomic target. Hence this creates, as expected,

a lower bound when using shorter and shorter wavelengths. There is, however, a

less obvious limit. To explain this, it is useful to first introduce a quantity called the

ponderomotive energy Up. The ponderomotive energy is the cycle-averaged energy
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of a free electron in a laser field. For linearly polarised, monochromatic light acting

in the x-direction the force on an electron is,

F = −E,

= −E0 cos(ωt) x̂. (5.16)

Note that in the dipole approximation the magnetic component of the Lorentz force

is zero. Integrating with respect to time (and dividing by the unit mass) gives the

velocity.

v = −E0

ω
sin(ωt) x̂. (5.17)

The ponderomotive energy is the average energy gained in one period of the laser,

T .

Up =
1

2

〈
v2
〉
,

=
1

T

E2
0

2ω2

∫ T

0

sin2(ωt) dt,

=
E2

0

4ω2
. (5.18)

From equation 5.18 it follows that this energy is directly proportional to the square

of the wavelength i.e., Up ∝ λ2. Therefore an increase in wavelength means that

the electron will gain more kinetic energy from the field and reach higher velocities.

This is where the second limit comes in. For sufficiently large velocities, relativistic

effects must be accounted for. This occurs in the following limit (in atomic units

me = 1 but it is shown for clarity) (Reiss, 2008, 2014).

2Up = mec
2 (Relativistic Limit), (5.19)

where c is the speed of light. However, even before this limit is reached the dipole

approximation will in fact breakdown due to magnetic field effects. The Lorentz
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force acting on an electron in a laser field is,

F = −(E + v× B), (5.20)

where v is the velocity of the electron. Previously (see Eq. 5.16), the second term

was neglected because the electric field is much larger than the magnetic field – in

fact |E| = c|B|. However, as the velocity increases the effect of the magnetic field

increases. Quantitatively, it is accepted that magnetic field effects become important

when the electron’s displacement β0 caused by the magnetic field approaches 1 a.u.

(Reiss, 2008, 2014).

β0 ≈
Up
2ωc

= 1.0 (Magnetic Field Effect Limit). (5.21)

Recent experiments have been carried out in proximity to the above limit (Eq. 5.21).

For example, Smeenk et al. (2011) investigated the effect of circularly polarised

light on Ne and Ar atoms. In the latter work two laser fields are used, λ = 800 nm

and λ = 1400 nm, across a range of intensities, I = 1014 − 1015 W cm−2. It was

shown that the average electron momentum in the direction of laser propagation

was greater than zero and increased with intensity and wavelength. This is contrary

to the dipole approximation which assumes no net momentum gain in the direction

of propagation. Ludwig et al. (2014) used longer wavelengths still (λ = 3400 nm)

to investigate the effect of linearly-polarised light on a variety of noble gas atom.

This work however focused on the peak offset in the momentum distribution, not

the average. It was shown that the peak offset was negative in all cases and that

the effect increased with intensity. This is a surprising result. A naive assumption

would predict that the offset would be positive due to the magnetic component of

the Lorentz force, FB = −v×B. However, it was identified that the negative offset

is likely the result of the Coulomb interaction, thus, reinforcing the importance of

modelling the ion’s potential accurately.
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5.4 Equations of Motion

In this work, magnetic field effects are fully accounted for by modelling the laser

field as follows. To simulate the laser field a vector potential with a Gaussian en-

velope is used, propagating in the y-direction. For elliptically-polarised light the

vector potential A(t, y) can be written,

A(t, y) = −E0

ω
e−( ct−ycτ )

2


sin(ωt− ky)

0

χ cos(ωt− ky)

 . (5.22)

Where χ is used here as an ellipticity parameter. The light is linearly polarised

for χ = 0, circularly polarised for χ = ±1 and elliptically polarised for values in

between. E0 is the electric field strength, ω is the frequency, τ = FWHM/
√

ln 4

(where FWHM is the intensity full-width half-maximum) and k = ω/c is the mag-

nitude of the wavevector.

The electric E(t, y) and magnetic B(t, y) fields can be derived from the vector

potential using equations 5.14 and 5.15 respectively.

E(t, y) = E0e
−( ct−ycτ )

2


cos(ωt− ky)− 2

ωτ

(
ct−y
cτ

)
sin(ωt− ky)

0

−χ
[
sin(ωt− ky) + 2

ωτ

(
ct−y
cτ

)
cos(ωt− ky)

]
 ,

(5.23)

B(t, y) = −E0

c
e−( ct−ycτ )

2


χ
[
sin(ωt− ky) + 2

ωτ

(
ct−y
cτ

)
cos(ωt− ky)

]
0

cos(ωt− ky)− 2
ωτ

(
ct−y
cτ

)
sin(ωt− ky)

 .

(5.24)
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For linearly-polarised (χ = 0) light this simplifies to,

A(t, y) = −E0

ω
e−( ct−ycτ )

2

sin(ωt− ky) x̂, (5.25)

E(t, y) = E0e
−( ct−ycτ )

2
[
cos(ωt− ky)− 2

ωτ

(
ct− y
cτ

)
sin(ωt− ky)

]
x̂,

(5.26)

B(t, y) = −E0

c
e−( ct−ycτ )

2
[
cos(ωt− ky)− 2

ωτ

(
ct− y
cτ

)
sin(ωt− ky)

]
ẑ.

(5.27)

The path of a particular trajectory is governed by the classical equations of mo-

tion. These can be derived from the Hamiltonian, which is in turn derived from the

Lagrangian.

In everything that follows, the subscripts 1 and 2 will be used to represent the

tunnelling and initially bound electrons respectively. The Lagrangian for a fixed

nucleus, two (active) electron atom can be written as follows (Goldstein, 1980),

L(qi, q̇i, t) =
q̇2

1

2
+

q̇2
2

2
+

Z

|q1|
+

Z

|q2|
− 1

|q1 − q2|
− q̇1 · A(q1, t)− q̇2 · A(q2, t),

(5.28)

where qi and q̇i are the position and velocity respectively. Note that the nucleus

is frozen. This is a suitable approximation as the nucleus is considerably massive

compared to the electrons. The Hamiltonian H(qi,pi, t), is obtained using,

H(qi,pi, t) =
∑

q̇ipi − L(qi, q̇i, t). (5.29)

The conjugate momentum pi is defined as pi ≡ ∂L
∂q̇i

.

p1 = q̇1 − A1, (5.30)

p2 = q̇2 − A2, (5.31)
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where A1 = A(q1, t) and A2 = A(q2, t). Therefore the Hamiltonian is,

H(qi,pi, t) =
(p1 + A1)2

2
+

(p2 + A2)2

2
− Z

|q1|
− Z

|q2|
+

1

|q1 − q2|
. (5.32)

For computational efficiency it is necessary to transform the generalised coor-

dinates via a KS-transformation (Stiefel and Kustaanheimo, 1965). The KS-

transformations are as follows,

(qi, 0)ᵀ = MiQi and (pi, 0)ᵀ =
MiPi
2Q2

i

, (5.33)

where,

Qi =


Qi1

Qi2

Qi3

Qi4

 and Mi =


Qi1 −Qi2 −Qi3 Qi4

Qi2 Qi1 −Qi4 −Qi3

Qi3 Qi4 Qi1 Qi2

Qi4 −Qi3 Qi2 −Qi1

 . (5.34)

Applying these transformations (equation 5.33) to the Hamiltonian (equation 5.32)

yields,

H(Qi,Pi, t) =
1

2

(
M1P1

2Q2
1

+ A1

)2

+
1

2

(
M2P2

2Q2
2

+ A2

)2

− Z

|M1Q1|
− Z

|M2Q2|
+

1

|M1Q1 −M2Q2|
.

(5.35)

But now the vector fields are defined as A1 = A(M1Q1, t) and A2 =

A(M2Q2, t). To regularise the Hamiltonian two new coordinates Q3 = t and

P3 = −H(Qi(t),Pi(t), t) ≡ −E(t) are introduced (Szebehely, 1967). The new

Hamiltonian Γ(Qi,Pi, t) can be written as,

Γ(Qi,Pi, t) = H(Qi,Pi, t)− E(t). (5.36)

In this extended phase-space the energy Γ(Qi,Pi, t) will be conserved. Notice that
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time t has now become one of the coordinates. A new fictitious time τ is introduced,

which can be scaled by a factor of g i.e., dt = gdτ . For this problem, a sensible

choice of scaling factor is,

g =
Q2

1Q
2
2

Q2
1 +Q2

2

. (5.37)

The regularised Hamiltonian is given by Γ∗ = gΓ.

Γ∗ = g

{
1

2

(
M1P1

2Q2
1

+ A1

)2

+
1

2

(
M2P2

2Q2
2

+ A2

)2

− Z

|M1Q1|
− Z

|M2Q2|
+

1

|M1Q1 −M2Q2|
− E

}
, (5.38)

=
1

Q2
1 +Q2

2

{
Q2

2P
2
1

8
+
Q2

1P
2
2

8
+
Q2

2Pᵀ
1Mᵀ

1

2
A1 +

Q2
1Pᵀ

2Mᵀ
2

2
A2

+
Q2

1Q
2
2

2
(A2

1 + A2
2)−Q2

2Z −Q2
1Z

+
Q2

1Q
2
2

|M1Q1 −M2Q2|
−Q2

1Q
2
2E

}
. (5.39)

The equations of motion are found in the usual way.

Q̇i =
∂Γ∗

∂Pi
, Ṗi = −∂Γ∗

∂Qi

, where i = 1, 2, 3. (5.40)

Recall that Q3 = t and P3 = −E(t). Hence, the equations of motion are,

Q̇1 =
Q2

2

Q2
1 +Q2

2

{
P1

4
+

Mᵀ
1 · A1

2

}
, (5.41)

Q̇2 =
Q2

1

Q2
1 +Q2

2

{
P2

4
+

Mᵀ
2 · A2

2

}
, (5.42)
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ṫ =
Q2

1Q
2
2

Q2
1 +Q2

2

, (5.43)

Ṗ1 =
−1

Q2
1 +Q2

2

{
2Q1

×
[
P 2

2

8
+

M2P2

2
· A2 +

Q2
2

2

(
A2

1 + A2
2

)
− Z −Q2

2E +
Q2

2

|M1Q1 −M2Q2|

]
+
Q2

2

2
A1 ·

∂M1P1

∂Q1

+Q2
2

(
M1P1

2
+Q2

1A1

)
· ∂A1

∂Q1

− 2Q2
1Q

2
2Mᵀ

1 · (M1Q1 −M2Q2)

|M1Q1 −M2Q2|(M1Q1 −M2Q2)2

}
, (5.44)

Ṗ2 =
−1

Q2
1 +Q2

2

{
2Q2

×
[
P 2

1

8
+

M1P1

2
· A1 +

Q2
1

2

(
A2

1 + A2
2

)
− Z −Q2

1E +
Q2

1

|M1Q1 −M2Q2|

]
+
Q2

1

2
A2 ·

∂M2P2

∂Q2

+Q2
1

(
M2P2

2
+Q2

2A2

)
· ∂A2

∂Q2

+
2Q2

1Q
2
2Mᵀ

2 · (M1Q1 −M2Q2)

|M1Q1 −M2Q2|(M1Q1 −M2Q2)2

}
, (5.45)

Ė =
1

Q2
1 +Q2

2

{
Q2

2

(
M1P1

2
+Q2

1A1

)
∂A1

∂t
+Q2

1

(
M2P2

2
+Q2

2A2

)
∂A2

∂t

}
.

(5.46)

Using the initial conditions discussed in section 5.2 and the equations of motion

given above, it is possible to carry out a Monte-Carlo simulation. Using the statis-

tics generated over millions of classically propagated trajectories it is possible to

calculate observables of interest such as double ionisation rates and momentum dis-

tributions.



Chapter 6

Magnetic-Field Effects

This chapter is adapted from published work (Emmanouilidou and Meltzer, 2017).

As mentioned previously, this part of the thesis is concerned with higher-energy

electron collisions with atoms in strong laser fields. In contrast with part I, the

scattering electrons described here originate from the atom itself. Whereas, for the

electron-molecule scattering considered in the first part, the scattering electron was

considered free beforehand.

The main effect considered in the following two chapters is non-sequential

double ionisation (NSDI). As discussed in the theory, sec. 5.1, NSDI can be most

easily understood using the three step model. Whilst this simplified model does not

capture all of the physics it does describe a number of the observed phenomena.

In the first step one of the target atom’s electrons tunnel ionises to the continuum.

Next, this continuum electron is driven back to the parent atom’s nucleus by the

field where, finally, it can lead to subsequent ionisation of a second electron.

In this chapter, magnetic field effects are investigated to challenge the use of

the commonly employed dipole approximation. In the following chapter (chapter

7) the mechanisms behind NSDI and magnetic field effects are explored in greater

detail.

6.1 Introduction
Non-sequential double ionisation in multiple-electron atoms is a fundamental pro-

cess that explores electron-electron correlation in strong fields. As such, it has at-
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tracted a lot of interest in the field of light-matter interactions in recent years (Becker

et al., 2005; Taylor et al., 2007). The majority of theoretical studies on NSDI are

delivered in the framework of the dipole approximation, particularly the studies

involving the commonly used near-infrared laser fields and intensities (Milosevic

et al., 2006).

As discussed in section 5.3, when the dipole approximation is applied the vec-

tor potential A of the laser field no longer depends on space. Therefore, magnetic

field effects are automatically neglected, since the magnetic field component of the

laser field B = ∇×A(t) is zero. However, in the general case where A(r, t) depends

both on space and time, an electron experiences a Lorentz force whose magnetic

field component FB increases with increasing electron velocity, since FB = v× B.

Due to scattering and recollision processes in the presence of strong laser fields,

high velocity electrons are readily produced. Therefore it is important to account

for magnetic field effects as the magnitude of electron velocity increases.

Criteria for the onset of magnetic field effects both in the relativistic and the

non-relativistic limit have already been formulated (Reiss, 2008, 2014), as discussed

in sec. 5.3. In the non-relativistic limit, where this work focuses, magnetic field

effects are expected to arise when the amplitude of the electron motion, β0, due to

the magnetic field component of the Lorentz force becomes 1 a.u. (see equation

5.21).

Studies addressing magnetic field effects include work by Palaniyappan et al.

(2005), who used a 3D semiclassical rescattering model that accounts for FB to

successfully describe the observed ionisation of Nen+ (n ≤ 8) in ultra-strong fields.

Moreover, non-dipole effects were addressed in theoretical studies of; stabilisa-

tion (Keitel and Knight, 1995); high-order harmonic generation by neglecting the

Coulomb potential (Chirilă et al., 2002) with a first order expansion of the vector

potential (Walser et al., 2000); and by using a Monte-Carlo simulation (Emelin and

Ryabikin, 2014). In recent studies of single ionisation (SI), the electron momentum

distribution along the propagation direction of the laser field was computed using

different quantum mechanical approaches (Chelkowski et al., 2014, 2015; Titi and
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Drake, 2012; Ivanov, 2015). For example, for H interacting with a 3400 nm laser

field at intensities ranging from 0.5 ×1014 W cm−2 to 1×1014 W cm−2 the average

momentum along the propagation direction of the laser field was found to increase

from 0.003 a.u. to 0.006 a.u. as the intensity increases (Chelkowski et al., 2015).

Thus, for single ionisation, the average momentum along the propagation direction

of the laser field increases with increasing β0, given β0 ≈ I/(8ω3c) (Chelkowski

et al., 2015; Smeenk et al., 2011). If magnetic field effects are not accounted for,

then this momentum component averages to zero. The motivation for these theoret-

ical studies was a recent experimental measurement of the average momentum in

the propagation direction of the laser field (Smeenk et al., 2011).

Figure 6.1 | Range of validity of the dipole approximation and momentum in double ioni-
sation. The white area indicates the range of intensities and wavelengths where the dipole
approximation is valid. β0 = 0.5 a.u. (dot-dash line), β0 = 1 a.u. (solid line) and β0 = 2
a.u. (dash line). The arrows mark the 800 nm and the 3100 nm wavelengths driving He
and Xe, respectively. At these wavelengths, for a range of intensities, the colour bars
indicate the ratio of the average sum of the electron momenta along the direction of FB
for double ionisation with twice the respective electron momentum for single ionisation〈
p1
y + p2

y

〉
DI /(2 〈py〉SI).

The work presented in this chapter reveals another aspect of non-sequential

double ionisation (NSDI) which has not been previously addressed. The strong

electron-electron correlation in NSDI is identified as a probe of magnetic field ef-

fects both for near-infrared and mid-infrared intense laser fields. Specifically, the

intensities considered are around 1015 W cm−2 for He at 800 nm and around 1014
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W cm−2 for Xe at 3100 nm where the rescattering mechanism underlies double ion-

isation (Corkum, 1993). For these intensities, it is found that the average sum of

the two electron momenta along the propagation direction of the laser field is un-

expectedly large. It is roughly an order of magnitude larger than twice the average

of the respective electron momentum for single ionisation. This average sum of the

momenta for double ionisation (DI) is shown to be maximum at intensities smaller

than the intensities satisfying the criterion for the onset of magnetic field effects

β0 ≈1 a.u. (Reiss, 2008, 2014). This is illustrated in Fig. 6.1 for He driven by a

near-infrared (800 nm) laser field and for Xe driven by a mid-infrared (3100 nm)

laser field. The motivation for choosing near-infrared laser fields is that they are

very common in strong field studies. Mid-infrared laser-fields are chosen because

magnetic field effects set in for small intensities, see Fig. 6.1, attracting a lot of

interest in recent years (Ludwig et al., 2014; Wolter et al., 2015).

6.2 Method

In this chapter a semiclassical trajectory model is used, referred to as the 3D-

SMND (3-Dimensional Semiclassical Monte-Carlo including Non-Dipole effects)

model, based on the theory presented in chapter 5. This is similar to the 3D-SMD

(3-Dimensional Semiclassical Monte-Carlo Dipole approximation) model used by

Emmanouilidou (2008), Emmanouilidou et al. (2011) and Chen et al. (2017) except

that non-dipole effects are now included. One further addition to the 3D-SMND

model is that the field can have arbitrary polarisation. However, this feature is not

used for the current work. The former 3D-SMD model was used previously to

identify the mechanism responsible for the finger-like structure observed in the 2D

correlated momentum distributions parallel to the polarisation axis (Emmanouili-

dou, 2008), which was predicted theoretically (Parker et al., 2006) and observed

experimentally for He driven by 800 nm laser fields (Staudte et al., 2007; Rudenko

et al., 2007). It was also used to investigate direct versus delayed pathways of NSDI

for He driven by a 400 nm laser field while achieving excellent agreement with fully

ab initio quantum mechanical calculations (Emmanouilidou et al., 2011). And most
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recently, the 3D-SMD model was used to identify the underlying mechanisms for

the carrier-envelope phase effects observed experimentally in NSDI of Ar driven by

an 800 nm laser field at a range of intensities (Kübel et al., 2016; Chen et al., 2017).

The following Hamiltonian is used,

H(qi,pi, t) =
(p1 + A1)2

2
+

(p2 + A2)2

2
− c1

Z

|q1|
− c2

Z

|q2|
+

c3

|q1 − q2|
. (6.1)

This Hamiltonian is similar to Eq. 5.32 however, three parameters c1, c2 and c3

have been introduced. These parameters can be set to one (zero) and they are used

to selectively turn on (off) the Coulomb interaction between the parent nucleus and

electrons 1 and 2 or the electron-electron interaction respectively. For example, to

neglect only the electron-electron interaction the parameters would be c1 = c2 = 1

and c3 = 0.

The vector potential experienced by electron i, Ai ≡ A(qi, t), has the same

form as that given by Eq. 5.25 for a linearly-polarised laser field propagating in

the y-direction. The fact that the spatial dependence of the laser field is included

allows the model to fully account for non-dipole effects during the time propagation.

Following equations 5.14 and 5.15 E and B are along the x- and z-axis, respectively.

Unless otherwise stated, all Coulomb forces as well as the electric and the magnetic

field are fully accounted for during time propagation.

The initial state in the 3D-SMND model is taken to be the same as in the

3D-SMD model (Emmanouilidou, 2008) as discussed earlier in sec. 5.2. However

this approach ignores the effect of the magnetic field on the initial conditions for

the tunnelling electron because equations 5.1, 5.6 and 5.7 have been derived in the

dipole approximation. Yakaboylu et al. (2013) showed that if non-dipole effects

were accounted for in the ADK rate (Ammosov–Delone–Krainov rate, see section

5.2.2) then the most probable transverse velocity, along the laser’s propagation di-

rection, ranges from 0.33 Ip/c to almost zero with increasing barrier suppression

ratio E0/Ea, where Ea = (2Ip)
3/2 and Ip is the ionisation energy of the tunnelling

electron. This is shown in Fig. 6.2.

In this work, the smallest intensities considered are 5×1013 W cm−2 for Xe and
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Figure 6.2 | Average y-component of the initial transverse momentum in the direction of
laser propagation

〈
pinitial
y

〉
as a function of the barrier suppression ratio E0/Ea.

7×1014 W cm−2 for He. At these intensities, if non-dipole effects are accounted

for in the ADK rate, the transverse velocity of the tunnelling electron is centred

around 0.17 IXe
p /c for Xe which is 5.5×10−4 a.u. (IXe

p =0.446 a.u.) and 0.12 IHe
p /c

for He which is 7.9×10−4 a.u. (IHe
p =0.904 a.u.). These values are significantly

smaller than the values of the average momenta along the propagation direction of

the laser field, which are presented in what follows. Thus, using the non-relativistic

ADK rate is a good approximation for the quantities addressed in this work. In

what follows, the tunnelling and bound electron are denoted as electrons 1 and 2,

respectively.

6.3 Results

6.3.1 Momentum Offset for SI of Xe and H

The accuracy of the 3D-SMND model is established by computing the momentum

distribution along the propagation direction of the laser field, py, for single ionisa-

tion (SI) and by comparing it with available experimental and theoretical results.

Ludwig et al. (2014) showed that the peak of the py distribution was observed to

shift in the direction opposite to the magnetic field component of the Lorentz force,

FB, for intensities of the order of 1013 W cm−2. This shift, poffset
y , was attributed

to the combined effect of the magnetic field and the Coulomb attraction of the nu-
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cleus (Ludwig et al., 2014). To compare with these experimental results, the shift

of the peak of the y-momentum distribution is computed for Xe interacting with a

3400 nm and a 44 fs FWHM laser field as the intensity increases from 3-6×1013

W cm−2. In Fig. 6.3 the shift of the peak of the py distribution is found to vary from

−0.0055 a.u. to −0.012 a.u. These results are in agreement with the simulations

and experimental results obtained by Ludwig et al. (2014).

Figure 6.3 | The peak of the momentum distribution, in the direction of laser propagation
poffset
y is given for Xe in a 3400 nm, 44 fs FWHM laser field. The experimental (red dia-

mond) and theoretical results (black circle) of Ludwig et al. (2014) plotted alongside the
results of the 3D-SMND model (blue square) described in this work.

Moreover, to compare with the results of Chelkowski et al. (2015), the average

of the momentum 〈py〉SI is computed for H driven by a 3400 nm and a 16 fs FWHM

laser field for intensities 0.5-1×1014 W cm−2. Using the 3D-SMND model, 〈py〉SI is

found to vary from 0.0022 a.u. to 0.0046 a.u. (see Fig. 6.4(a)). These values differ

by 27% from the results obtained by Chelkowski et al. (2015) and are thus in rea-

sonable agreement. The difference may be due to non-dipole effects not accounted

for in the ADK rate in the 3D-SMND model. In addition, the quantum calculation

used by Chelkowski et al. (2015) employs a 2D soft-core potential while a full 3D

potential is employed by the 3D-SMND model. The peak momentum offset, poffset
y ,

was also computed, as shown in Fig. 6.4(b). The momentum offset obtained by the

3D-SMND model is roughly half that of the 2D quantum calculation. Both models

experience the same trend of increasingly negative momentum offsets, similar to

the results obtained by Ludwig et al. (2014). The single ionisation results obtained

in this work were computed with at least 4×105 events and therefore the statistical
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error introduced is very small.

Figure 6.4 | (a) The average 〈py〉 and (b) the peak poffset
y of the momentum distribution in

the direction of laser propagation is calculated. Model parameters are for H in a 3400 nm,
16 fs FWHM laser field. The 2D quantum results (black circle) of (Chelkowski et al., 2015)
are plotted against the 3D-SMND model (blue square) described in this work.

6.3.2 Average Momentum for SI of He and Xe

The 3D-SMND model is now employed to compute 〈py〉SI for He driven by an 800

nm, 12 fs FWHM laser field and for Xe driven by a 3100 nm, 44 fs FWHM laser

field; the two laser fields have roughly the same number of cycles. First an analytic

expression is obtained relating 〈py〉SI with the average electron kinetic energy 〈Ek〉SI

(Smeenk et al., 2011; Chelkowski et al., 2014). When an electron interacts with an

electromagnetic field with all the Coulomb forces switched-off, i.e., c1 = c2 = c3 =

0 in Eq. 6.1, the Lorentz force is given by,

ṗ = −(E + v× B). (6.2)

To first order in 1/c this can be written,

ṗx = −Ex and ṗy = vxBz. (6.3)
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For an electron (in atomic units) vx = px and inspecting equations 5.26 and 5.27

gives Bz = −Ex/c. Therefore,

py =

∫
ṗy dt, (6.4)

py =
1

c

∫
pxṗx dt, (6.5)

py =
p2
x

2c
. (6.6)

So now, the change in y-momentum is given by,

py − py,0 =
p2
x

2c
−
p2
x,0

2c
, (6.7)

where py is the final momentum and py,0 is the initial. Recall that the ADK tun-

nelling rate assumes that the initial momentum in the direction of polarisation,

which in this case is the x-direction, is equal to zero. Hence,

py = py,0 + p2
x/2c (6.8)

Taking the average gives,

〈py〉 = 〈py,0〉+
1

2c

〈
p2
x

〉
. (6.9)

As discussed in section 6.2, the initial momentum in the direction of propagation of

the laser field is in general non-zero. In fact it was shown to be 〈py,0〉 ≈ 0.33 Ip/c

for small intensities diminishing towards zero for larger intensities (see Fig. 6.2).

For the parameters used in this section the initial momentum is typically of the order

10−4 a.u. and so to a good approximation this can be neglected.

〈py〉 =
1

2c

〈
p2
x

〉
≈ 1

c
〈Ek〉 . (6.10)

Comparing 〈py〉 and 〈Ek/c〉 from table 6.1, for the simplified model (c1,2,3=0) it is

found that the above relation holds i.e., 〈py〉 = 〈Ek/c〉.
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Table 6.1 | Single ionisation results for Xe and He.

SI Z=2 SI SI Z=2

c1,2,3=1 c1,2,3=0 c1=0,c2,3=1

I (×1015 W cm−2) 〈py〉a 〈Ek/c〉a 〈py〉a 〈Ek/c〉a 〈py〉a 〈Ek/c〉a

0.7 3.5 2.3 1.5 1.5 1.8 2.2

He 1.3 6.0 4.4 3.4 3.4 3.4 4.4

4.8 28 32 19 19 19 21

0.05 3.2 1.6 1.3 1.3 1.8 1.6

Xe 0.07 3.5 2.5 2.1 2.1 2.4 2.4

0.22 11 12 9.9 9.9 9.1 11

a Average momentum and kinetic energy given in ×10−3 a.u.

Next, 〈py〉SI and 〈Ek〉SI are computed with the 3D-SMND model fully account-

ing for all Coulomb forces and the presence of the initially bound electron in driven

He and Xe, i.e., c1 = c2 = c3 = 1 with Z = 2. The tunnelling electron is the one

that is mostly singly ionising. Figure 6.5(a) shows that, for He, 〈py〉SI varies from

0.0035 a.u. to 0.028 a.u. at intensities 0.7-4.8×1015 W cm−2. For Xe (Fig. 6.5(b)),

〈py〉SI varies from 0.0032 a.u. to 0.011 a.u. at intensities 0.5-2.2×1014 W cm−2.

Figure 6.5 | 〈py〉SI and 〈Ek〉SI /c are plotted as a function of intensity in (a) for He driven
by an 800 nm laser field and in (b) for Xe driven by a 3100 nm laser field.
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In Table 6.1, it is shown that 〈py〉SI and 〈Ek〉SI /c, when obtained with the full

model, do not differ by more than a factor of 3 from the values obtained when all

Coulomb forces are switched-off. Thus, the simple model yields the correct order

of magnitude for 〈py〉SI. It is also shown in Table 6.1, that with all Coulomb forces

accounted for, 〈py〉SI is no longer equal to 〈Ek〉SI /c both for driven He and for driven

Xe. For the full model, 〈Ek〉SI is no longer just the drift kinetic energy, mainly due

to the interaction of the tunnelling electron with the nucleus. Indeed, using the 3D-

SMND model with this interaction switched off, i.e., c1 = 0 and c2 = c3 = 1,

〈py〉SI is roughly equal to 〈Ek〉SI /c, see Table 6.1. 〈py〉SI is also shown in Table 6.1

to be more sensitive than 〈Ek〉SI to the interaction of the tunnelling electron with

the nucleus. Summarising the results for single ionisation, propagating classical

trajectories with initial times determined by the ADK rate and all Coulomb forces

switched-off yields the correct order of magnitude for 〈py〉SI.

6.3.3 Average Momentum for DI of He and Xe

For double ionisation, the average of the sum of the electron momenta along the

propagation direction of the laser field,
〈
p1
y + p2

y

〉
DI

, is computed for He driven by

an 800 nm laser field and for Xe driven by a 3100 nm laser field. Henceforth, super-

scripts e.g., the i in piy and Ei
k, are used to indicate electron 1 or 2 – as opposed to an

exponent. The parameters of the laser fields are the same as the ones employed in

the single ionisation section for He and Xe. The double ionisation results obtained

in this work were computed with at least 2×105 events and therefore the statistical

error introduced is very small.

The results are plotted in Fig. 6.6(a) for He at intensities 0.7-4.8×1015 W cm−2

and in Fig. 6.6(b) for Xe at intensities 0.5-2.2×1014 W cm−2. The values ob-

tained for
〈
p1
y + p2

y

〉
DI

are quite unexpected. Specifically,
〈
p1
y + p2

y

〉
DI

is found to be

roughly an order of magnitude larger than twice 〈py〉SI, with 〈py〉SI computed in the

previous section. For comparison, both
〈
p1
y + p2

y

〉
DI

and 2〈py〉SI are displayed in Fig.

6.6. It is shown that
〈
p1
y + p2

y

〉
DI
≈ 8× 2 〈py〉SI for He at 1.3×1015 W cm−2, while〈

p1
y + p2

y

〉
DI
≈ 13 × 2 〈py〉SI for Xe at 7×1013 W cm−2. For 1.3×1015 W cm−2

and 800 nm β0 = 0.18 a.u., while for 7×1013 W cm−2 and 3100 nm β0 = 0.58
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a.u. Thus,
〈
p1
y + p2

y

〉
DI
/2 〈py〉SI is found to be maximum at intensities considerably

smaller than the intensities corresponding to β0 ≈ 1 a.u., i.e., the criterion for the

onset of magnetic field effects (Reiss, 2008, 2014). This is shown in Fig. 6.1.

Moreover, unlike 〈py〉SI which increases with increasing intensity as expected

(Chelkowski et al., 2015),
〈
p1
y + p2

y

〉
DI

after reaching a maximum decreases with

increasing intensity for the range of intensities currently considered (Fig. 6.6(a,b)).

The mechanism behind this unexpected behaviour will be explored in the following

section.

Figure 6.6 |
〈
p1
y + p2

y

〉
DI and 2〈py〉SI are plotted as a function of intensity in (a) for He

driven by an 800 nm laser field and in (b) for Xe driven by a 3100 nm laser field.
〈
p1
y

〉
DI

and
〈
p2
y

〉
DI are plotted as a function of intensity in (c) for He driven by an 800 nm laser field

and in (d) for Xe driven by a 3100 nm laser field.
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6.3.4 Recollision Probing Magnetic Field Effects

The average electron momentum along the propagation direction is non-zero

when the magnetic field component of the Lorentz force FB is accounted for.

This force increases with increasing intensity, increasing strength of the mag-

netic field, and with increasing velocity along the direction of the electric field.〈
p1
y + p2

y

〉
DI
/2 〈py〉SI is found to be maximum at 1.3×1015 W cm−2 for 800 nm

and at 7×1013 W cm−2 for 3100 nm, intensities where the strength of the magnetic

field is not large. It then follows that it must be the velocities of the two escaping

electrons that are large at these intensities. Large electron velocities at intermediate

intensities are a result of strong electron-electron correlation, i.e., of the rescattering

mechanism (Corkum, 1993). In the rescattering scenario after electron 1 tunnels in

the field-lowered Coulomb potential it accelerates in the strong laser field and can

return to the core and undergo a collision with the remaining electron (Corkum,

1993).

In the following, evidence is provided that the large values of the momen-

tum ratio
〈
p1
y + p2

y

〉
DI
/2 〈py〉SI are due to recollisions. Specifically, it is shown that

recollisions are strong resulting in overall large kinetic energies compared to the

ponderomotive energy Up, which is given by Eq. 5.18, roughly at the intensities

where
〈
p1
y + p2

y

〉
DI
/2 〈py〉SI is maximum. It is also shown that recollisions are soft

resulting in overall smaller kinetic energies compared to the ponderomotive energy

Up at higher intensities where
〈
p1
y + p2

y

〉
DI
/2 〈py〉SI is found to be smaller.

This transition from strong to soft recollisions is demonstrated in the context

of He driven by an 800 nm laser field at intensities 0.7×1015 W cm−2, 2.0×1015

W cm−2 and 3.8×1015 W cm−2. To do so, an analysis of the doubly ionising

events is performed. It is noted that a similar analysis was found to hold for Xe

(not shown) where strong recollisions prevail at intensities 0.7×1014 W cm−2 and

1.0×1014 W cm−2 while soft ones prevail at 2.2×1014 W cm−2. Focusing on He, in

Fig. 6.7, the distribution of the tunnelling and recollision times is plotted. For the

intensities 0.7×1015 W cm−2, 2.0×1015 W cm−2 and 3.8×1015 W cm−2 considered

in Fig. 6.7 the ponderomotive energy Up is equal to 1.54 a.u., 4.39 a.u. and 8.35
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a.u., respectively. Thus, the maximum recollision energies 3.17 Up (Corkum, 1993)

are well above the second ionisation energy of He, which is 2 a.u. As expected, for

the smaller intensities (Fig. 6.7(a1,b1)), electron 1 tunnel-ionises at times around

the extrema of the laser field. For 3.8×1015 W cm−2 (Fig. 6.7(c1)) the electric

field is sufficiently strong so that electron 1 can tunnel-ionise at times other than the

extrema of the field.

The recollision time is identified for each double ionising trajectory as the

time that the electron-electron potential energy, Vee = 1/ |r1 − r2|, as a function

of time is maximum. For the smaller intensities the recollision times are centred

roughly around±2nT/3, with n an integer and T the period of the laser field, as ex-

pected from the rescattering model (Corkum, 1993) (Fig. 6.7(a2,b2)). At 3.8×1015

W cm−2 the recollision times shift and are centred around the extrema of the laser

field (Fig. 6.7(c2)). This shift of the recollision times signals a transition from

strong to soft recollisions (Emmanouilidou and Staudte, 2009).

This transition from strong to soft recollisions is further corroborated by the

average kinetic energy of each electron,
〈
E1,2
k

〉
, plotted in Fig. 6.7 as a function

of time – zero time is set equal to the recollision time of each double ionising tra-

jectory. For smaller intensities,
〈
E1,2
k

〉
changes sharply at the recollision time (Fig.

6.7(a3,b3)). The change in
〈
E1,2
k

〉
compared to the ponderomotive energy, Up, is

much smaller at 3.8×1015 W cm−2 (Fig. 6.7(c3)). The above results show that

for the smaller intensities electron 1 tunnel-ionises around the extrema of the field.

It then returns to the core, roughly when the electric field is small, with large ve-

locity and undergoes a recollision with electron 2 transferring a large amount of

energy (strong recollision). The strong recollisions result in higher asymptotic (in

time) kinetic energies of the electrons compared to Up. The ratios
〈
E1
k,x

〉
/Up and〈

E2
k,x

〉
/Up, where

〈
E1,2
k,x

〉
are the asymptotic (in time) average kinetic energies of

electrons 1 and 2 along the polarisation direction of the laser field, are 117% and

104% for an intensity of 0.7×1015 W cm−2 and 50% and 77% for an intensity of

2.0×1015 W cm−2.

The velocities of both electrons, along the direction of the electric field, are
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Figure 6.7 | Recollision underlying double ionisation of He driven at 800 nm. The intensi-
ties considered are (a) 0.7×1015 W cm−2, (b) 2.0×1015 W cm−2 and (c) 3.8×1015 W cm−2.
The distribution of tunnelling times (black line) are plotted in row 1. The distribution of rec-
ollision times (black line) are plotted in row 2. The electric field is denoted as a grey line
in the plots of the tunnelling and recollision times.

〈
E1
k

〉
(grey line) and

〈
E2
k

〉
(black line)

are plotted as a function of time in row 3 with time zero set equal to the recollision time of
each double ionising event. For 2.0×1015 W cm−2,

〈
E1
k

〉
(blue line) and

〈
E2
k

〉
(red line)

are also plotted in the absence of the magnetic field.
〈
p1
y

〉
(grey line) and

〈
p2
y

〉
(black line)

are plotted as a function of time in row 4 with time zero set equal to the recollision time of
each double ionising event. For 2.0×1015 W cm−2,

〈
p1
y

〉
(blue line) and

〈
p2

2

〉
(red line) are

also plotted in the absence of the magnetic field. Correlated momenta along the direction of
the electric field are plotted in row 5.
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determined mainly by the vector potential at the recollision time. Thus, both elec-

trons escape mainly either parallel or antiparallel to the electric field. Indeed, this

is the pattern seen in the plots of the correlated momenta along the direction of the

electric field in Fig. 6.7(a5,b5) where the highest density is in the first and third

quadrants. The correlated momenta are plotted in units of
√

2Up. These patterns

of the correlated momenta are consistent with direct double ionisation, that is, with

both electrons ionising shortly after recollision takes place (Feuerstein et al., 2001).

Indeed, analysing the double ionising events it is found that for He at 0.7×1015

W cm−2 direct double ionisation contributes 70%. Delayed double ionisation events

contribute 30%. In delayed double ionisation, also known as recollision-induced

excitation with subsequent field ionisation (RESI) (Kopold et al., 2000; Feuerstein

et al., 2001), one electron ionises soon after recollision takes place, while the other

electron ionises with a delay (Emmanouilidou et al., 2011).

In contrast, at the higher intensity of 3.8×1015 W cm−2, electron 1 tunnel-

ionises after the extrema of the laser field. It then follows a short trajectory and

returns to the core when the electric field is maximum with small velocity. Electron

1 transfers a small amount of energy to electron 2 (soft recollision). Indeed, the

ratios
〈
E1
k,x

〉
/Up and

〈
E2
k,x

〉
/Up are 35% and 52% for an intensity of 3.8×1015

W cm−2 and are smaller than the respective ratios for the smaller intensities.

The velocities of electron 1 and 2 along the direction of the electric field are

determined mostly by the values of the vector potential at the tunnelling and rec-

ollision times, respectively. As a result, the two electrons can escape in opposite

directions to each other, along the direction of the electric field. This pattern is

indeed observed for the plots of the correlated momenta in Fig. 6.7(c5) with high

density in the second and fourth quadrants. This antiparallel pattern was predicted

in the context of strongly-driven N2 with fixed nuclei (Emmanouilidou and Staudte,

2009). It was also seen in the case of Ar driven by intense ultra-short laser fields

(Chen et al., 2017) in agreement with experiment (Kübel et al., 2016).

For single ionisation of He and Xe, it was shown that using the tunnelling

times as the starting point, the 3D-SMND with all Coulomb forces switched-off
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i.e., c1 = c2 = c3 = 0, yields the correct order of magnitude for
〈
p1
y

〉
SI

. For

double ionisation of He and Xe, using the 3D-SMND model with all Coulomb

forces switched-off and with initial conditions taken to be the recollision times and

velocities,
〈
p1
y

〉
DI

and
〈
p2
y

〉
DI

are obtained and presented in Table 6.2. These values

of
〈
p1
y

〉
DI

and
〈
p2
y

〉
DI

agree very well with the values obtained using the 3D-SMND

model with all Coulomb forces accounted for, see Table 6.2. This agreement further

supports that recollision is the main factor determining
〈
p1
y + p2

y

〉
DI

.

Table 6.2 | Double ionisation results for Xe and He.

NSDIb c1,2,3=1, Z=2b NSDIb c1,2,3=0

t0 = trec, p1
0 = p1

rec, p
2
0 = p2

rec

Intensitya
〈
p2
y

〉
〈E2

k/c〉
〈
p1
y

〉
〈E1

k/c〉
〈
p2
y

〉
〈E2

k/c〉
〈
p1
y

〉
〈E1

k/c〉
0.7 12 14 25 16 13 15 25 16

He 1.3 22 22 80 21 24 24 82 20

4.8 25 32 73 47 33 37 74 43

0.05 10 11 65 9 11 11 67 8

Xe 0.07 14 13 80 10 15 14 81 9

0.22 38 27 30 17 45 34 30 16

a Intensity given in ×1015 W cm−2

b Average momentum and kinetic energy given in ×10−3 a.u.

Finally, the electron that contributes the most to the maximum value of〈
p1
y + p2

y

〉
DI

is identified both for driven He and Xe. The average y-momenta for

each electron,
〈
p1
y

〉
DI

and
〈
p2
y

〉
DI

, are plotted as a function of time in Fig. 6.7, with

time zero set equal to the recollision time of each double ionising trajectory. It is

shown in Fig. 6.7(a4,b4,c4) that it is mainly
〈
p1
y

〉
DI

that changes significantly at

the recollision time. This change is more pronounced for the smaller intensities

(Fig. 6.7a4,b4). In Fig. 6.7(b4), at intensity 2.0×1015 W cm−2, it is also illustrated

that in the absence of the magnetic field both
〈
p1
y

〉
DI

and
〈
p2
y

〉
DI

tend to zero with

time, as expected. In addition, in Fig. 6.6(c,d), for driven He and Xe, respectively,〈
p1
y

〉
DI

and
〈
p2
y

〉
DI

are plotted as a function of intensity. It is seen that
〈
p1
y

〉
DI

and〈
p1
y + p2

y

〉
DI

have maxima around the same intensities. At these intensities
〈
p1
y

〉
DI
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is significantly larger than
〈
p2
y

〉
DI

. Moreover, it is shown in Fig. 6.6(c,d), that once〈
p1
y

〉
DI

reaches a maximum at 2×1015 W cm−2 for He and at 1014 W cm−2 for Xe

it then decreases with increasing intensity, for the intensities considered. Thus the

average momentum of the tunnelling electron,
〈
p1
y

〉
DI

, is the one most affected by

strong recollisions.

6.4 Conclusion

In this chapter it was shown that the average sum of the electron momenta along the

propagation direction of the laser field,
〈
p1
y + p2

y

〉
DI

, has large values at intensities

where strong recollisions underlie double ionisation. This is an unexpected result.

For He driven by a near-infrared laser field and for Xe driven by a mid-infrared

laser field, the intensities where the average sum of the electron momenta along the

propagation direction of the laser field is maximum are smaller than the intensities

where magnetic field effects are predicted to be large. Thus, recollisions probe

magnetic field effects at smaller intensities than expected. However, it can also be

stated that a magnetic field probes strong recollisions through the measurement of

the sum of the electron momenta along the propagation direction of the laser field.

In order to investigate magnetic field effects, only the y-component of momen-

tum has been considered in this work. However, the Lorentz force for a linearly-

polarised magnetic field in the z-direction has two components in the x and y-

direction respectively. This means that the x-momentum should also be affected.

Indeed it will be, however, due to the large electron velocities in the x-direction,

caused by the electric field, these effects are not easily observed. That is, the mo-

tion due to the magnetic field is a factor of c ≈ 137 smaller than the motion caused

by the electric field. Another consideration is that, in the analysis presented in this

chapter, the tunnelling and initially bound electron have been treated as distinguish-

able. However, in an experiment this separation is not possible and so, observables

must be modified to reflect the indistinguishability of electrons. The average sum

momentum in the y-direction is obviously unaffected by this statement, but, for ex-

ample, the average tunnelling electron momentum in the y-direction 〈p1
y〉DI is not
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accessible to an experiment. This will be discussed in more detail in the following

chapter.

This chapter has identified a novel phenomena that has not previously been

addressed in the literature. However, the underlying mechanism has not been inves-

tigated. In the following chapter the mechanism behind this effect will be studied in

greater detail. Owing to the semiclassical trajectory-based approach, it is possible to

dig deeper into the results. By analysing the ensembles of trajectories that give rise

to specific double ionisation observables, it is possible to develop an understanding

of the mechanism and explain why magnetic field effects are more important than

previously expected.



Chapter 7

Recollision Gating

This chapter is adapted from published work (Emmanouilidou, Meltzer, and

Corkum, 2017).

In the previous chapter (chapter 6) magnetic field effects were investigated and

found to be non-negligible under previously accepted criteria (Reiss, 2008, 2014).

In this chapter the mechanism responsible for the larger-than-expected magnetic

field effect is explored in greater detail.

7.1 Introduction
In this work, it will be shown that, for NSDI, the magnetic field in conjunction

with the recollision acts as a gate. This gate selects a subset of the initial tunnelling-

electron momenta along the propagation direction of the laser field. Only this subset

of initial momenta lead to double ionisation. Phase-space is extremely sensitive

to the initial conditions and hence the specific subset of initial momenta strongly

influence the results obtained.

This recollision-gating mechanism is studied in the context of He when driven

by an 800 nm laser field at intensities 1.3×1015 W cm−2, 2×1015 W cm−2 and

3.8×1015 W cm−2. This gating is particularly pronounced at the smaller intensities

of 1.3×1015 W cm−2 and 2×1015 W cm−2 with β0 ≈ Up/(2ωc) = 0.18 a.u. and

β0 = 0.28 a.u., respectively. Therefore recollision-gating is important at intensities

well below those that satisfy the criterion for the onset of magnetic field effects, i.e.,

β0 ≈1 a.u. (Reiss, 2008, 2014).
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The propagation direction of the laser field is the same as the direction of the

FB force (to first order) which, in the current formulation, is along the +y-axis. The

tunnelling electron is the electron that initially tunnels in the field-lowered Coulomb

potential. When non-dipole effects are fully accounted for during the propagation

in time, it is shown that the y-component of the initial momentum of the tunnelling-

electron is mostly negative for events leading to double ionisation. In the dipole

approximation, the initial momentum of the tunnelling-electron that is transverse to

the direction of the electric field is symmetric with respect to zero.

The term non-dipole recollision-gated ionisation is adopted to describe ionisa-

tion resulting from an asymmetric distribution of the transverse tunnelling-electron

initial momentum due to the combined effect of the recollision and the magnetic

field. Non-dipole recollision-gated ionisation is a general phenomenon. It is found

that this mechanism underlies double electron escape in atoms driven by linearly

and slightly-elliptically polarised laser fields.

Moreover, it is found that non-dipole recollision-gated ionisation results in an

asymmetry in the following double ionisation observable. Let φ ∈ [0◦, 180◦] denote

the angle of the final (t→∞) momentum of each escaping electron with respect to

the propagation axis of the laser field. The observable in question is

PDI
asym(φ) = PDI(φ)− PDI(180◦ − φ), (7.1)

where PDI(φ) is the probability of either one of the two electrons to escape with

an angle φ. PDI(φ) and PDI
asym(φ) are accessible by kinematically complete exper-

iments. In the dipole approximation, PDI
asym(φ) = 0. When non-dipole effects are

accounted for, it is shown that PDI
asym(φ) > 0, for φ ∈ [0◦, 90◦]. This is in accord

with the effect of FB.

It is also found that PDI
asym(φ) has consistently non-zero values over a wide

interval of angles at lower intensities. This latter feature is an unexpected one.

For the intensities considered the FB force has small magnitude that increases with

intensity. Thus, one would expect the distribution PDI
asym(φ) to be very narrowly

peaked around 90◦ with values increasing with intensity.
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7.2 Method

In this work, ionisation in strongly-driven He is investigated using the same three-

dimensional semiclassical model – the 3D-SMND model described in chapter 6 –

that fully accounts for the magnetic field during time propagation. The Hamiltonian

describing the interaction of the fixed nucleus two-electron atom with the laser field

is given, as in chapter 6, by equation 6.1, and the vector potential, A, is given by

equation 5.22. All Coulomb forces are accounted for by setting c1 = c2 = c3 = 1.

The laser fields considered in the current work are either linearly polarised,

χ = 0, or have a small ellipticity of χ = 0.05. For A given by equation 5.22, the

electric, E, and magnetic, B, components of the laser field lie along the x- and z-

axis, respectively, and for χ = 0.05 there are small additional components along the

z- and x-axis, respectively (see equations 5.23 and 5.24). The propagation direction

of the laser field and the direction of FB are mainly along the y-axis.

Unless otherwise stated, all Coulomb forces as well as the electric and the

magnetic field are fully accounted for during time propagation. To switch-off a

Coulomb interaction, the appropriate constant is set equal to zero. For example, to

switch off the interaction of electron 1 with the nucleus, c1 is set equal to zero. The

initial state in the 3D-SMND model is setup in exactly the same way as the previous

chapter (chapter 6) and again in this work, the tunnelling and bound electrons are

denoted as electrons 1 and 2, respectively.

7.3 Results

The following results are obtained for He when driven by an 800 nm, 12 fs FWHM

laser field that is; linearly polarised at intensities 1.3×1015 W cm−2, 2×1015

W cm−2 and 3.8×1015 W cm−2; and slightly elliptically polarised with χ = 0.05

at 2×1015 W cm−2. At these intensities the ponderomotive energies are Up = 2.86

a.u., Up = 4.39 a.u. and Up = 8.35 a.u., respectively. Thus, the maximum energy

of electron 1, which is approximately E1
k ≈ 3.17 Up (Krause et al., 1992), is above

the energy needed to ionise He+.
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7.3.1 Asymmetry Due to the Magnetic Field

First, it is shown that the magnetic field causes an asymmetry in the double ionisa-

tion probability of electron i to ionise with an angle φ, which is denoted by PDI
i (φ)

with i = 1, 2 for electrons 1 and 2. P SI(φ) is the corresponding probability in single

ionisation. φ is the angle of the final momentum of electron i with respect to the

propagation axis of the laser field, i.e.,

cosφ = pi · ŷ/|pi|. (7.2)

The y-component of the electron momentum is parallel to the propagation direction

of the laser field and to FB.

To highlight this asymmetry the angular distributions, PDI
1 (φ), of the initially

tunnel-ionised electron and, PDI
2 (φ), of the initially bound electron are shown in

Fig. 7.1(a) and (c), respectively, whilst P SI(φ) is shown in Fig. 7.1(e). These plots

are at an intensity of 2×1015 W cm−2 with the magnetic field switched-on and off.

When the magnetic field is switched-on, the probability distributions are asymmet-

ric with respect to φ = 90◦. This asymmetry is due to the magnetic field. Indeed,

when the magnetic field is switched-off all distributions are shown to be symmetric

with respect to φ = 90◦. The latter is expected, since there is no preferred direc-

tion of electron escape on the plane that is perpendicular to the x-axis (polarisation

direction).

With the magnetic field switched-on the angular probability distributions are

asymmetric i.e., PDI
i (φ) > PDI

i (180◦ − φ) and P SI(φ) > P SI(180◦ − φ) for φ ∈

[0◦, 90◦]. Equivalently, the angular asymmetries are positive, PDI
i,asym(φ) > 0 and

P SI
asym(φ) > 0 for φ ∈ [0◦, 90◦], where the asymmetry is defined more generally

(compared to equation 7.1) as

Pα
asym(φ) = Pα(φ)− Pα(180◦ − φ), (7.3)

where α can be single (SI) or double (DI) ionisation. This positive asymmetry is

consistent with the gain of momentum due to the FB force being along the +y-axis.



7.3. Results 140

Figure 7.1 | Angular distributions of (a) the tunnelling electron, PDI
1 (φ), (c) the initially

bound electron, PDI
2 (φ) and (e) the ionised electron, P SI(φ), from single ionisation events

are plotted as a function of φ at 2 ×1015 W cm−2, with the magnetic field switched-on and
off. The asymmetries (b) PDI

1,asym(φ) of the tunnelling electron, (d) PDI
2,asym(φ) of the initially

bound electron and (f) P SI
asym(φ) in single ionisation are plotted as a function of φ at three

intensities with χ = 0 and at one intensity with χ = 0.05. φ is binned in intervals of 18◦.
†Intensity in units of 1015 W cm−2.
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That is, an electron is more likely to ionise with a positive rather than a negative

y-component of the final momentum.

The asymmetry with respect to φ = 90◦ is better illustrated in Fig. 7.1, where

PDI
i,asym(φ) and P SI

asym(φ) are plotted as a function of φ at 1.3×1015 W cm−2, 2×1015

W cm−2 and 3.8×1015 W cm−2 and at 2×1015 W cm−2 with χ = 0.05. Starting

with single ionisation, P SI
asym(φ) is almost zero at 1.3×1015 W cm−2. At the higher

intensity of 3.8×1015 W cm−2, P SI
asym(φ) is sharply centred around 90◦ reaching

roughly 7%, see Fig. 7.1(f). These features of P SI(φ) are in accord with the effect

of the FB force. FB is small for the intensities considered. Therefore, FB has an

observable effect mostly when the y-component of the electron momentum is small

as well, i.e., for an angle of escape φ = 90◦. In addition, |FB| is three times larger

for the higher intensity compared to the smaller one. As a result P SI
asym(φ) has larger

values at higher intensities.

In double ionisation, the asymmetry of the initially bound electron, PDI
2,asym(φ),

is plotted in Fig. 7.1(d). It is shown that this asymmetry most closely resembles

the corresponding asymmetry for single ionisation, P SI
asym(φ), rather than PDI

1,asym(φ)

in Fig. 7.1(b). Indeed, PDI
2,asym(φ) has larger values for higher intensities, as is the

case for P SI
asym(φ), reaching roughly 5.5% at 3.8×1015 W cm−2. Conversely, it is

found that the asymmetry of the tunnelling electron, PDI
1,asym(φ), exhibits different

behaviour to the SI asymmetry comparing Fig. 7.1(b) with Fig. 7.1(f). That is,

PDI
1,asym(φ) is much wider than P SI

asym(φ). Also, for φ ∈ [45◦, 90◦], PDI
1,asym(φ) has

higher values for the intensity 2×1015 W cm−2 compared to 3.8×1015 W cm−2

with 4% and 2.5%, respectively.

In chapter 6 it was shown that strong recollisions (Corkum, 1993) prevail

for strongly-driven He at 800 nm at intensities of 1.3×1015 W cm−2 and 2×1015

W cm−2, while soft ones prevail at 3.8×1015 W cm−2. It then follows that the

asymmetry for the tunnelling electron, PDI
1,asym(φ), has higher values for strong rec-

ollisions. This is also supported by the small values of PDI
1,asym(φ) at 2×1015 W cm−2

for a laser pulse with a small ellipticity of χ = 0.05, see Fig. 7.1(b). In Fig. 7.2

the tunnel time and recollision time distributions are shown as well as the correlated
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Figure 7.2 | (a) The distribution of tunnelling times (black line) and (b) the distribution of
recollision times (black line) with the x-component of the electric field denoted as a grey
line. (c) Correlated momenta along the x-direction.

momenta of the two electrons, Figs. 7.2(a), 7.2(b) and 7.2(c) respectively. Com-

paring these plots to Fig. 6.7(b1, b2 and b5) it is found that the recollisions are

marginally softer at 2×1015 W cm−2 for a laser pulse with χ = 0.05 compared to

that of linearly-polarised light. The difference is not so clear for in the tunnelling

times but comparing Figs. 7.2(b) and 6.7(b2) it is clear that the recollision times

are broader for χ = 0.05. For strong recollisions the time of recollision corre-

sponds roughly to zeros of the laser field, whilst for soft recollisions the time of

recollision corresponds to extrema of the laser field, as shown previously in Fig.

6.7(b1,c1) (Emmanouilidou and Staudte, 2009). Moreover, comparing Figs. 7.2(c)

and 6.7(b5), there is a slight increase in the top left and the bottom right quadrants

(antiparallel) for χ = 0.05 and a corresponding drop in the other two quadrants

(parallel). As discussed in section 6.3, antiparallel events are related to delayed

ionisation events that occur with softer recollisions.

Experimentally electron 1 can not be distinguished from electron 2. Therefore,

the angular probability distributions of electrons 1 and 2, PDI
1 (φ) (Fig. 7.1(a)) and

PDI
2 (φ) (Fig. 7.1(c)), respectively, are not experimentally accessible. However, in

a kinematically complete experiment, for each doubly-ionised event, the angle φ of

each ionising electron can be measured. Then, the probability distribution for any

one of the two electrons to ionise with an angle φ, PDI(φ), can be obtained, for

φ ∈ [0◦, 180◦]. In Fig. 7.3 the experimentally accessible DI asymmetry, PDI
asym(φ), is

plotted as a function of φ.
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Figure 7.3 | Experimentally observable DI asymmetry, PDI
asym(φ), for the two escaping elec-

trons as a function of φ. Three intensities are considered and φ is binned in intervals of 18◦.
†Intensity in units of 1015 W cm−2.

PDI
asym(φ) is found to have significant values at smaller intensities over the same

wide range of φ as PDI
1,asym(φ) does. However, PDI

asym(φ) < PDI
1,asym(φ) at the smaller

intensities. Moreover, at 3.8×1015 W cm−2 and at 2×1015 W cm−2 with χ = 0.05,

PDI
asym(φ) > PDI

1,asym(φ) at φ = 81◦ but has non zero values for a wider range of φ

compared to PDI
2,asym(φ). These features are expected since PDI

asym(φ) accounts for

both the tunnelling and the initially bound electron. However, the features of the

experimentally accessible PDI
asym(φ) still capture the main features of PDI

1,asym(φ).

In order to compare directly with future experiments, the computations pre-

sented here would need to account for intensity averaging over the focal volume

(Wang et al., 2005). Using the current results for intensities from 0.7×1015 W cm−2

to 3.8×1015 W cm−2 it is possible to estimate how intensity averaging affects the

distribution PDI
asym(φ). However, for a more accurate estimate, results at more inten-

sities than currently considered would be required. Experimentally, the peak laser

intensity is not necessarily the average intensity experienced by the target atoms.

Typically, apparatus along the beam line e.g., splitters and polarisers, will attenuate

the laser field reducing the intensity. Therefore, to crude approximation it is ex-
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pected that PDI
asym(φ) at 1.3×1015 W cm−2 and 2×1015 W cm−2 would be reduced

compared to the distributions presented in Fig. 7.3. Although, despite a reduction

due to focal averaging effects, the resulting DI asymmetries, PDI
asym(φ), still have non

zero values for a wide range of φ. To experimentally observe the transition shown

in Fig. 7.3, where the distribution PDI
asym(φ) at 3.8×1015 W cm−2 has smaller values

over a less wide range of φ compared to its values at 1.3×1015 W cm−2 and 2×1015

W cm−2 intensities higher than 3.8×1015 W cm−2 would have to be considered.

7.3.2 Asymmetric Transverse Initial Momentum

In the following sections, the mechanism responsible for the features of PDI
1,asym(φ)

will be discussed which relate to the features of the observable PDI
asym(φ). It is found

that this mechanism is a signature of recollision exclusive to non-dipole effects.

Furthermore, the magnetic field and the recollision act together as a gate that selects

only a subset of transverse initial momenta of the tunnelling electron that lead to

double ionisation.

For linearly polarised light, this gating is illustrated in Fig. 7.4(a1) and (a2)

at an intensity of 2×1015 W cm−2 with the magnetic field switched-on and off,

respectively. These plots show the probability distribution, P (p1
y,t0

), of electron 1

to tunnel-ionise with a y-component of the initial momentum equal to p1
y,t0

(note

that these plots only include trajectories that lead to double ionisation). It is found

that P (p1
y,t0

) is asymmetric when the magnetic field is switched-on. Specifically, it

is more likely for electron 1 to tunnel-ionise with a negative rather than a positive

y-component of the initial momentum. In addition, P (p1
y,t0

) peaks around small

negative values of the momentum of electron 1. Instead, P (p1
y,t0

) is symmetric

when the magnetic field is switched-off. Furthermore, the distribution of momen-

tum in the z-direction, P (p1
z,t0

), is symmetric around zero when the magnetic field

is switched-on and off (see Fig. 7.5(a)). This is expected since there is no force

acting along the z-axis due to the laser field. Figures 7.5(a) and (b) show P (piz,t0)

for electrons 1 and 2 respectively. For the tunnelling electron, electron 1, there

is a slight difference in the peak about zero. The distribution is marginally wider

with the magnetic-field switch-off. Trajectories with larger initial momentum in the
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transverse direction are less likely to return to the core when the magnetic field is

switched-on and so, trajectories with smaller transverse momentum are more likely

to lead to DI. The initially bound electron is less affected as seen in Figure 7.5(b).

Figure 7.4 | For events that lead to double ionisation, the distributions of the y-component
of the electron 1 momentum at two different times are plotted; (a1)-(a4) at the time electron
1 tunnel-ionises (momentum p1

y,t0); (b1)-(b4) at the time just before the time of recolli-
sion (momentum p1

y,tr ).The distributions of the y-component of the electron 1 position are
plotted (c1)-(c4) at the time just before the time of recollision (position r1

y,tr ). PDI
1,asym(φ) is

plotted in panels (d1)-(d4) for better comparison of its features with the features of P (p1
y,tr).

Panels (d1), (d3) and (d4) use the data shown in Fig. 7.1(b) but have been plotted separately
for clarity.
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Figure 7.5 | Momentum distributions for electrons (a) 1 and (b) 2 in the z-direction calcu-
lated at the time electron 1 tunnel-ionises. The black (orange) line shows P (piz,t0) with the
magnetic field switched-on (off) at an intensity of 2×1015 W cm−2.
†Intensity in units of 1015 W cm−2.

This asymmetry in P (p1
y,t0

) persists even at a higher intensity of 3.8×1015

W cm−2 for linearly polarised light (Fig. 7.4(a4)) and at 2×1015 W cm−2 for a laser

pulse with a small ellipticity of χ = 0.05 (Fig. 7.4(a3)). In contrast, for all the

above cases, the initially bound electron has a symmetric distribution P (p2
y,t0

) at the

time electron 1 tunnel-ionises and just before the time of recollision. In this work,

the recollision time is identified for each double ionising trajectory as the time that

the electron-electron potential energy 1/|r1− r2| as a function of time is maximum.

Moreover, in single ionisation the escaping electron has a symmetric distribution

P (py,t0) at the time this electron tunnel-ionises.

7.3.3 Asymmetric Transverse Recollision Momentum

In single ionisation, the features of P SI
asym(φ) can be understood largely based on

the distribution P (p1
y,t0

) at the time electron 1 tunnel-ionises alone. This was dis-

cussed in the previous chapter (chapter 6, sec. 6.3.2). To recap, the y-component

of the escaping electron’s momentum was computed both with all Coulomb forces

switched-off and with all Coulomb forces accounted for. In both cases it was shown

that the average y-component of the electron 1 momentum is roughly the same. At

the time electron 1 tunnel-ionises, the y-component of the transverse momentum

of electron 1 is roughly symmetric around zero. This initial momentum distribu-

tion, combined with the FB force, gives rise to the electron ionising mostly with φ
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slightly less than 90◦, which in turn leads to a sharply peaked distribution P SI
asym(φ)

(Fig. 7.1(f)).

In double ionisation, to understand the features of PDI
1,asym(φ), first, the distri-

bution P (p1
y,tr) of the y-component of the electron 1 momentum shortly before the

time of recollision must be obtained. Then, the effect of the recollision itself on the

distribution P (p1
y,tr) must be investigated. This was discussed previously in chapter

6, sec. 6.3.4. In summary, the y-component of the momentum of electrons 1 and

2 were propagated from the time electron 1 tunnel-ionises up to the time of recolli-

sion. This was computed using the full 3D-SMND model with all Coulomb forces

accounted for. Next, using the momenta of electrons 1 and 2 shortly after the time

of recollision as initial conditions, the equations of motion were propagated from

the time of recollision onwards with all Coulomb forces and the magnetic field

switched-off. The final average y-component of the momentum of electron 1 is

roughly equal in both cases. That is, comparing 〈p1
y〉 obtained via full propagation,

with all forces accounted for, against 〈p1
y〉 obtained using the modified propaga-

tion discussed above (see Table 6.2). The same comparison holds for electron 2.

Therefore, the decisive time in double ionisation is the time of recollision.

Given the above, P (p1
y,tr) is computed just before the time of recollision. This

is done by extracting, from the full 3D-SMND model, the distribution of the y-

component of the electron 1 momentum at a time just before the recollision, for

instance at tbef = tr − 1/50T . tbef was selected such as to avoid the sharp change of

the momenta which occurs at tr, e.g., see Fig. 6.7(a4,b4,c4). At all intensities con-

sidered here a positive rather than negative y-component of electron 1 momentum

is favoured, shortly before the time of recollision. This is shown at intensities of

2×1015 W cm−2 and 3.8×1015 W cm−2 for linearly polarised light in Fig. 7.4(b1)

and (b4), respectively, and at 2×1015 W cm−2 for elliptically polarised light with

χ = 0.05 in Fig. 7.4(b3). In contrast, when the magnetic field is switched-off the

distribution P (p1
y,tr) is symmetric with respect to zero as illustrated for an intensity

of 2×1015 W cm−2 in Fig. 7.4(b2). Therefore, it is now established that the shift

towards negative momenta of P (p1
y,t0

) at the time electron 1 tunnel-ionises maps to
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a shift towards positive momenta of P (p1
y,tr) just before the time of recollision.

The width is another interesting feature of the distribution P (p1
y,t0

) and, by

extension, of the distribution P (p1
y,tr). From Fig. 7.4(b1)-(b4), it is found that the

width of P (p1
y,tr) at 2×1015 W cm−2 with linearly polarised light is the largest one,

while the width of P (p1
y,tr) at 2×1015 W cm−2 with χ = 0.05 is the smallest one.

Moreover, the width of P (p1
y,t0

) is comparable with the width of P (p1
y,tr) for both

the linear and the elliptical laser field at 2×1015 W cm−2. However, the width of

P (p1
y,t0

) is larger than the width of P (p1
y,tr) at an intensity of 3.8×1015 W cm−2.

The widths of P (p1
y,t0

) and P (p1
y,tr) are consistent with Coulomb focusing

which mainly refers to multiple returns of electron 1 to the core (Brabec et al., 1996;

Comtois et al., 2005). In addition, for the higher intensity of 3.8×1015 W cm−2, the

widths are also consistent with a larger effect of the Coulomb potential of the ion on

electron 1. The latter effect is not due to multiple returns of electron 1 to the core but

rather due to electron 1 tunnel-ionising closer to the nucleus at higher intensities.

Table 7.1 | Number of returns to the core of electron 1 for doubly-ionised events.

2.0† 2.0† 2.0† 3.8†

(χ = 0) (χ = 0 M.F. off) (χ = 0.05) (χ = 0)

1 Return 27% 24% 53% 57%

2 Returns 24% 24% 10% 16%

3 Returns 27% 27% 19% 14%

>3 Returns 21% 25% 18% 12%

† Intensity in units of ×1015 W cm−2

Table 7.1 details the number of returns electron 1 makes to the core, before

it finally escapes. It is shown that electron 1 returns more times to the core at

2×1015 W cm−2. In fact, electron 1 escapes with only one return to the core in

27% of doubly-ionised events, implying that most DI events are the result of two

or more returns. Also, at 2×1015 W cm−2 with χ = 0.05 and at 3.8×1015 W cm−2

the number of returns is roughly the same. In these two latter cases, electron 1

escapes with only one return to the core in more than 50% of doubly-ionised events.

It is also found that the width of the distributions P (p1
y,t0

) and P (p1
y,tr) increases
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with increasing number of returns to the core for all laser fields considered, which

is shown in Figures 7.6(a) and (b), respectively, for the field intensity of 2×1015

W cm−2 with the magnetic field switched-on. The above features are consistent with

Coulomb focusing. Thus, Coulomb focusing explains why the width of P (p1
y,t0

)

at 2×1015 W cm−2 is larger than the width of P (p1
y,t0

) at 2×1015 W cm−2 with

χ = 0.05.

Figure 7.6 | Momentum distributions (a) P (p1
y,t0) and (b) P (p1

y,tr) for the field intensity
2×1015 W cm−2 with the magnetic field switched-on, plotted for different numbers of re-
turns.

Moreover, at the larger intensity of 3.8×1015 W cm−2 electron 1 exits the

field-lowered Coulomb barrier closer to the nucleus. Indeed, the average distance

of electron 1 from the nucleus at the time electron 1 tunnel-ionises is 2.4 a.u. at

3.8×1015 W cm−2 compared to roughly 3.5 a.u. at 2×1015 W cm−2 with χ = 0

and χ = 0.05, see Table 7.2. This is consistent with the width of P (p1
y,tr) being

significantly smaller than the width of P (p1
y,t0

) at 3.8×1015 W cm−2. That is, the

Coulomb potential of the ion has a large effect on electron 1 from the time electron

1 tunnel-ionises onwards. This is not the case for the smaller intensities of 2×1015

W cm−2 with χ = 0 and χ = 0.05 where the widths of the distributions P (p1
y,t0

)

and P (p1
y,tr) are similar.

7.3.4 Glancing Angles in Recollisions

It is shown in the previous section that effectively the only force that could result in

a change of the momenta of the two electrons between the final time and the time

shortly after recollision is due to the electric field. Between the time shortly after
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Table 7.2 | Average distance from the nucleus of electron 1 at the time electron 1 tunnel-
ionises,

〈
r1
t0

〉
.

2.0† 2.0† 2.0† 3.8†

(χ = 0) (χ = 0 M.F. off) (χ = 0.05) (χ = 0)〈
r1
t0

〉
(a.u.) 3.5 3.5 3.7 2.4

† Intensity in units of ×1015 W cm−2

recollision takes place and the asymptotic time, the electric field mainly affects the

x-component and not the y-component of the momentum of electron 1. Moreover,

at the smaller intensities considered, in the time interval following recollision, the

electric field does not significantly affect the magnitude of the x-component of the

electron 1 momentum – this component is mainly determined by the vector potential

at the recollision time. Given the above, it is enough to find how the momentum of

electron 1 (roughly equal to the x-component) and its y-component change from

just before to just after the time of recollision due to the recollision itself. This will

therefore provide an understanding of the features seen in the distribution PDI
1,asym(φ)

(Fig. 7.1).

A measure of the strength of a recollision is the collision angle θ, defined as

cos θ =
p1,bef · p1,aft

(|p1,bef||p1,aft|)
. (7.4)

That is, θ, is the angle between the momentum of electron 1 just before and just

after the time of recollision. The momentum just before the time of recollision is

roughly along the x-axis (polarisation axis). Thus, θ is the angle of the momentum

of electron 1 after the time of recollision with respect to the x-axis. θ = 180◦ cor-

responds to a “head on” collision and complete backscattering. θ = 0◦ corresponds

to forward scattering and thus to almost no change due to the recollision.

Fig. 7.7 shows the probability for electron 1 to escape with a final angle, φ,

and a scattering angle, θ, for each laser field considered in this work. It is shown

that very strong recollisions, i.e., θ = 180◦, take place only when electron 1 escapes

with a momentum that has a very small y-component, i.e., φ is around 90◦. How-
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Figure 7.7 | Double differential probability of electron 1 to have a scattering angle θ and a
final angle φ at (a) 2×1015 W cm−2, (b) 2×1015 W cm−2 with the magnetic field switched-
off, (c) 2×1015 W cm−2 with χ = 0.05 and (d) 3.8×1015 W cm−2.

ever, even when electron 1 escapes with φ around 90◦, it is more likely that a weak

recollision takes place, i.e., θ = 0◦, rather than a strong one with θ = 180◦. More-

over, when electron 1 ionises with momenta that have larger y-components with

φ ∈ [45◦, 90◦] and φ ∈ [90◦, 135◦] the scattering angles θ are on average smaller

than 90◦. That is, in most cases, electron 1 ionises at glancing angles θ following

recollision. Moreover, a comparison of the values of θ at 2×1015 W cm−2 and at

3.8×1015 W cm−2, see Fig. 7.7(a) and (d), clearly shows that overall the recollision

is stronger at the smaller intensity. In addition, a comparison of the values of θ at

2×1015 W cm−2 and at 2×1015 W cm−2 with χ = 0.05, see Fig. 7.7(a) and (c),

clearly shows that overall the recollision is stronger when χ = 0. Thus, electron 1

escapes at glancing angles following recollision.



7.3. Results 152

7.3.5 Asymmetric Transverse Recollision Position

To explain how the y-component of the momentum of electron 1 changes from just

before to just after the time of recollision, due to the recollision itself, the case

where the magnetic field is switched-off at 2×1015 W cm−2 will be considered first.

It is found that doubly-ionised events are equally likely to have positive or negative

y-component of the momentum and of the position of electron 1 just before the time

of recollision, see Fig. 7.4(b2) an (c2). Moreover, the y-component of the final mo-

mentum of electron 1 is positive (negative) depending on whether the y-component

of the position of electron 1 is negative (positive) just before the time of recolli-

sion. The reason is that electron 1 ionises at glancing angles. The direction of the

Coulomb attraction of electron 1 from the nucleus just before the time of recollision

determines whether just after the time of recollision, as well as at asymptotically

large times, the y-component of the momentum of electron 1 is positive or negative.

Indeed, looking at the distance in the y-direction of electron 1 from the nucleus, at

the time just before the recollision, r1
y,tr , it can be seen that doubly-ionised events

with r1
y,tr > 0 give rise to negative values of PDI

1,asym, while doubly-ionised events

with r1
y,tr < 0 give rise to positive values of PDI

1,asym and cancel each other out.

However, when the magnetic field is switched-on at 2×1015 W cm−2, most

(59%) doubly-ionised events have r1
y,tr < 0 just before the time of recollision. This

is due to non-dipole recollision gated ionisation, since out of these latter events 61%

have both p1
y,tr > 0 just before the time of recollision and p1

y,t0
< 0 at the initial

time that electron 1 tunnel-ionises. The shift towards negative values in the trans-

verse y-component of the position of electron 1 just before the time of recollision is

shown in Fig. 7.4(c1), (c3) at 2×1015 W cm−2 with χ = 0 and χ = 0.05, respec-

tively, and in (c4) at 3.8×1015 W cm−2. As for the case when the magnetic field is

switched-off, when the magnetic field is switched-on electron 1 ionises at glancing

angles. Therefore, doubly-ionised events with r1
y,tr > 0 give rise to negative values

of PDI
1,asym and doubly-ionised events with r1

y,tr < 0 give rise to positive values of

PDI
1,asym. However, the latter events are 59% of all doubly-ionised events and thus

overall PDI
1,asym has positive values.
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From the above it also follows that a small width of P (p1
y,tr) affects only

doubly-ionised events with small y-components of the electron 1 final momenta. On

the other hand, a large width of P (p1
y,tr) just before the time of recollision affects

doubly-ionised events with y-components of the electron 1 final momenta ranging

from small to large. However, doubly-ionised events with large y-components of

the electron 1 momenta correspond to smaller φ in PDI
1,asym. Indeed, this is clear in

Fig. 7.8 when comparing the distribution of the y-component of the final momen-

tum of electron 1 in the smaller φ of 27◦ with the one in the larger φ of 81◦. The

large y-components of the momenta of electron 1 are a result of the recollision. This

is the case since for each intensity, P (p1
y,tr) are similar for all φ bins, see Fig. 7.8.

P (p1
y,tr) is depicted in Fig. 7.4(b1), (b3) and (b4) for three different laser fields.

Figure 7.8 |Double differential probability of the tunnelling electron to have a y-component
of the momentum equal to p1

y,tr at the time of recollision and equal to p1
y at the asymptotic

time for two different φs at 2.0× 1015 W cm−2. φ is binned in intervals of 18◦.

Most doubly-ionised events have a positive y-component of the momentum

of electron 1 just before the time of recollision, when magnetic effects are in-

cluded. Thus, the width of P (p1
y,tr) is also a measure of the shift towards positive

y-components of the final momenta of electron 1.

Finally, the probability density of the distributions for the x-component of the

momentum of electron 1 are compared at intensities where strong recollisions pre-

vail with intensities where softer collisions occur. The probability density is double-

peaked; just before (Fig. 7.9(a)) and just after (Fig. 7.9(b)) the time of recollision,

as well as at asymptotically large times (Fig. 7.9(c)) for intensities where stronger
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recollisions prevail i.e., near 2.0 × 1015 W cm−2. Whereas, at the higher intensity

of 3.8 × 1015 W cm−2, where softer recollisions occur, the probability density is

less peaked. Indeed, for strong recollisions, the x-component of the momentum of

electron 1 is determined mainly by the vector potential at the time of recollision.

However, for soft recollisions this is not quite the case since electron 1 only trans-

fers a small amount of its kinetic energy to electron 2, compared to Up (Fig. 6.7(a3,

b3 and c3)). In addition, for soft recollisions, the time of recollision has a much

broader range of values, see Fig. 6.7(a2, b2 and c2).

Figure 7.9 |Momentum distributions in the x-direction for electron 1 at a time (a) just be-
fore the recollision, P (p1

x,tr,before
), (b) just after the recollision, P (p1

x,tr,after
) and (c) asymp-

totically large, P (p1
x). Plotted for the three different intensities with the magnetic field

switched-on i.e., 1.3×1015 W cm−2, 2×1015 W cm−2 and 3.8×1015 W cm−2.
†Intensity in units of 1015 W cm−2.

Combining the width of the asymmetry of P (p1
y) with the width of the dis-

tribution of the x-component of the momentum of electron 1. It then follows that

PDI
1,asym(φ) should have higher values over a larger range of φ at 2×1015 W cm−2

(stronger recollision) and smaller values at 2×1015 W cm−2 with χ = 0.05 (softer

recollision). Indeed, this is the case as shown in Fig. 7.4(d1)-(d4).

7.3.6 Average Sum Electron Momenta in DI

Previously in chapter 6, it was shown that in DI the ratio
〈
p1
y + p2

y

〉
DI
/2 〈py〉SI is

maximum and roughly equal to eight at intensities 1.3×1015 W cm−2 and 2×1015

W cm−2, see Fig. 7.10.
〈
p1
y + p2

y

〉
is the average sum of the two electron mo-

menta along the propagation direction of the laser field, while 〈py〉SI is the cor-

responding average electron momentum in single ionisation. In Fig. 7.10(a),
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p1
y + p2

y

〉
DI
/2 〈py〉SI is shown to decrease with increasing intensity, for the inten-

sities considered. Moreover, in Fig. 7.10(b), it is shown that it is
〈
p1
y

〉
DI

of the

tunnelling electron that contributes the most to
〈
p1
y + p2

y

〉
DI

for the intensities con-

sidered. The ratio
〈
p1
y

〉
DI
/ 〈py〉SI has surprisingly large values at intensities smaller

than the intensities satisfying the criterion for the onset of magnetic-field effects

β0 ≈1 a.u. (Reiss, 2008, 2014). In contrast, 〈py〉SI increases from 0.0035 a.u. at

0.7×1015 W cm−2 to 0.028 a.u. at 4.8×1015 W cm−2, see Fig. 7.10(a). The small

values of the average electron momentum in single ionisation and the increase of

this average with intensity are in accord with the effect of the FB force. The latter

increases with intensity, since the magnetic field increases. The increase of 〈py〉SI

with intensity has been addressed in several experimental and theoretical studies

(Smeenk et al., 2011; Chelkowski et al., 2014, 2015; Titi and Drake, 2012; Ivanov,

2015).

Figure 7.10 | (a) The average sum of the two electron momenta
〈
p1
y + p2

y

〉
DI in DI (black

dot-dashed line with open circles), twice the average electron momentum 〈py〉SI in single
ionisation (black solid line with circles) and the ratio

〈
p1
y + p2

y

〉
DI / 〈py〉SI (red dotted line

with triangles) as a function of the intensity of the laser field. (b) The average momentum
of the tunnelling electron

〈
p1
y

〉
DI (grey dot-dashed line with open circles) and the bound

electron
〈
p2
y

〉
DI (black dot-dashed line with circles) in DI and the ratio

〈
p1
y

〉
DI / 〈py〉SI (red

dotted line with squares) as a function of the intensity of the laser field.

In the following, it will be demonstrated that non dipole recollision gated ioni-

sation accounts for the large values of
〈
p1
y

〉
DI
/ 〈py〉SI and thus for the large average

sum of the two electron momenta along the propagation direction of the laser field
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at smaller intensities of 1.3-2×1015 W cm−2. To do so,
〈
piy
〉

DI
is expressed as

〈
piy
〉

DI
=

∫ 180◦

0◦

〈
piy(φ)

〉
DI
PDI
i (φ)dφ, (7.5)

with i = 1, 2 for electrons 1 and 2 in double ionisation – a similar expression holds

in single ionisation. It has already been shown that non-dipole recollision gated

ionisation accounts for the asymmetry in PDI
1 (φ). So now the influence of the mag-

netic field on
〈
piy(φ)

〉
DI

is investigated. To do so,
〈
p1
y(φ)

〉
DI

of the tunnel electron,〈
p2
y(φ)

〉
DI

of the bound electron and 〈py(φ)〉SI are plotted in Fig. 7.11(a), (b) and (c),

respectively, at 2×1015 W cm−2 with linearly polarised light and with the magnetic

field switched-on and off. It is shown that the magnitude of the average electron

momentum increases as a function of φ, both in double and in single ionisation.

This is evident mostly for φ around 0◦ and 180◦. Moreover, it is clearly seen that

the magnetic field has no influence on any of the average electron momenta con-

sidered and that
〈
piy(φ)

〉
DI

=
〈
piy(180◦ − φ)

〉
DI

and 〈py(φ)〉SI = 〈py(180◦ − φ)〉SI.

This is expected when the magnetic field is switched-off, since there is no preferred

direction of electron escape on the plane that is perpendicular to the polarisation

direction (x-axis) of the laser field. Similar results hold at 1.3×1015 W cm−2 and at

3.8×1015 W cm−2.

Figure 7.11 | (a)
〈
p1
y

〉
DI of the tunnelling electron, (b)

〈
p2
y

〉
DI of the initially bound electron

and (c) 〈py〉SI in single ionisation are plotted as a function of φ at 2×1015 W cm−2 with the
magnetic field switched-on and off. φ is binned in intervals of 18◦.
†Intensity in units of 1015 W cm−2.

It is also found that the effect of the magnetic field on
〈
p1
y(φ)

〉
DI

is very small
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even at a more differential level. Specifically, the dependence of
〈
p1
y(t)
〉

DI
on time,

for a given angle φ, is very similar both with the magnetic field switched-on and off,

as shown in Fig. 7.12. The only difference is a small oscillation due to the magnetic

field. It is noted that
〈
p1
y(φ, t→∞)

〉
DI

=
〈
p1
y(φ)

〉
DI

. Similar results hold for the

bound electron.

Figure 7.12 | Average momentum of electron 1 in the y-direction,
〈
p1
y(t)

〉
DI, as a function

of the time. Time zero is is chosen to as the recollision time of each double ionising event.
Each panel represents DI events with an angle φ that falls into a given bin of width ∆φ =
18◦, e.g., φ = 81◦ corresponds to events that had an angle 72◦ < φ < 90◦.
†Intensity in units of 1015 W cm−2.

Using equation 7.5, it is now possible to explain why
〈
p1
y

〉
DI

is much larger than

〈py〉SI at intensities around 2×1015 W cm−2. When the magnetic field is switched-

on,
〈
p1
y(φ)

〉
DI

does not change but PDI
1,asym(φ) does. PDI

1,asym(φ) is much wider than

P SI
asym(φ) and PDI

2,asym(φ) and has higher values at 2×1015 W cm−2 rather than at

3.8×1015 W cm−2. The higher values of PDI
1,asym(φ) over a wider range of φ com-

pared to P SI
asym(φ) and PDI

2,asym(φ) result in smaller φ, and thus larger
〈
p1
y(φ)

〉
DI

(Fig.

7.11), having a significant weight in equation 7.5.

7.4 Conclusion
By fully accounting for non-dipole effects in double ionisation, it is shown that the

recollision and the magnetic field act together as a gate. This gate selects a distri-
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bution of the y-component of the tunnelling electron’s initial momentum, P (p1
y,t0

),

which is shifted towards negative values; negative values in the y-axis are opposite

to the propagation direction of the laser field. The term non-dipole recollision-gated

ionisation was adopted to describe this effect. The asymmetry in P (p1
y,t0

), caused

by non-dipole recollision-gating, maps in time to an asymmetry of the transverse

electron 1 momentum just before the time of recollision, i.e., to an asymmetry in

P (p1
y,tr). That is, the y-component of the momentum of the tunnelling electron,

P (p1
y,tr), is shifted towards positive values just before the time of recollision. In

addition, the asymmetry in P (p1
y,t0

) maps in time to an asymmetry of the y-position

of electron 1 just before the time of recollision P (r1
y,tr), where P (r1

y,tr) is shifted

towards negative values just before the time of recollision. The above asymme-

tries combined with the tunnelling electron escaping at glancing angles following

a recollision give rise to an asymmetry in PDI
1 (φ) with respect to φ = 90◦ – the

probability distribution of electron 1 to escape with an angle φ.

The asymmetry in PDI
1 (φ) is more significant, i.e., higher values of PDI

1,asym(φ)

over a wider range of φ, in double ionisation compared to single ionisation. More-

over, higher values of PDI
1,asym(φ) over a wider range of φ result from larger widths of

P (p1
y,tr) just before the time of recollision. The latter width depends on the intensity

and the ellipticity of the laser pulse and this is related to Coulomb focusing. Also, it

is the asymmetry in PDI
1 (φ) over a wide range of φ that accounts for the large values

of the average transverse electron 1 momentum and thus of the large average sum

of the two electron momenta at smaller intensities. Even though not as pronounced,

these features of the probability distribution PDI
1 (φ) of the tunnelling electron are

also present in an experimentally accessible observable. Namely, the probability

distribution for electron 1 or 2 to escape with an angle φ. This observable effect of

the non-dipole recollision-gated ionisation can be measured by future experiments.

Finally, this work shows that magnetic field effects cause an offset of the trans-

verse momentum and position of the recolliding electron just before recollision

takes place and that these asymmetries lead to asymmetries in observables that are

experimentally accessible. It is conjectured that this is a general phenomenon not
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restricted to magnetic field effects. That is, these observable asymmetries will be

present in any process that has two delayed steps and allows an electron to gain an

offset before recollision takes place. For example, in a pump-probe experiment the

delay of the probe relative to the pump could have such an effect. Similarly, two-

colour laser fields with different polarisation axes could be an interesting platform

to study non-linear gating effects. The difficulty is finding an observable that is not

already dominated by a lower order effect. For example, for the linearly-polarised

laser fields discussed in this chapter, the electric field acts in the x-direction. The

force due to the electric field overshadows any effects caused by the magnetic com-

ponent of the Lorentz force in the same direction. However, in the y-direction there

is no such contribution from the electric field and therefore the effect of the mag-

netic field can be observed.



Chapter 8

Conclusion

This thesis has explored the broad topic of electron collisions with atoms and

molecules, that occur in either field-free or strongly-driven environments. In the

context of this work the two different regimes corresponded, approximately, to scat-

tering at either low or high energies. Part I focussed on electron-molecule collisions

at low to intermediate energies, in the absence of external fields. Whereas, part II

investigated electron-atom collisions, in the context of non-sequential double ioni-

sation which occurs in strongly-driven systems.

Two contrasting approaches were employed. Firstly, a fully-quantum ab initio

R-matrix method for low to intermediate energy scattering and secondly, a semiclas-

sical Monte-Carlo trajectory method for high energy scattering. In each case, the

theory was chosen to optimise its tractability, accuracy and predictive power for the

system under study. As mentioned in chapter 1, there is often a trade-off between

the physical insight afforded by semiclassical techniques and the brute-force accu-

racy of fully-quantum ab initio methods. Personally, I believe that the ideal scenario

is to use both approaches in tandem, building on each others strengths. That is the

accuracy of a calculation can be targeted using high-level quantum calculations and

the theory can be elucidated by classical arguments. For example, Maxwell et al.

(2017) use a theory that combines quantum mechanics with classical trajectories.

In doing so, they are able to understand which types of classical orbits contribute

to the different quantum interference patterns they obtain. Similarly, Bauer (2005)

directly compares a fully numerical solution of the TDSE with classical trajectories
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in order to understand the contribution of different pathways to the photoelectron

spectra.

In chapter 3, benchmark cross-section data were produced for electron impact

electronic excitation of molecular hydrogen, using one of the largest molecular R-

matrix calculations to date. The calculations used an R-matrix radius of 100 a0

and an asymptotic boundary of 300 a0. Furthermore, this was the first calcula-

tion to utilise a B-spline only continuum which consisted of 75 BTOs per angular

symmetry and a triply-augmented basis set (tAVTZ) that was capable of accurately

describing the first ten electronic excited states (see Fig. 3.2). These technical

advances were made possible by the recently developed UKRMol+ codes (Mašı́n

et al., 2020) which significantly improved the representation of the continuum for

larger R-matrix radii calculations. Based on the findings of this work, suggestions

were put forward to revise the previously recommended data, to bring them in line

with the theoretical calculations.

The work presented in chapter 3 only considered excitation from the ground

electronic state. However, excitations from intermediate or metastable states are

also of interest to the scientific community e.g., see work carried out by Sartori

et al. (1998), Celiberto et al. (2001) and Laricchiuta et al. (2004). Moreover, the

UKRMol+ codes are already setup to calculate superelastic cross-sections. There-

fore, it is hoped that future work can extend the calculations presented in this thesis

to provide accurate superelastic collisions.

In chapter 4, the mixed Rydberg-like and valence states of nitric oxide were

investigated. The RMPS method was employed to substantially improve the target

PECs compared to standard CASCI approaches. By using MOs optimised from the

previous geometry and a suitable set of PCOs, the C 2Π and D 2Σ+ states regained

their Rydberg-like character at small bond lengths. However, the vertical excitation

energies are still roughly 2 eV too high compared to the reference data of Gilmore

(1965). Nevertheless, it is hoped that this work can still serve as a starting point for

more in-depth studies of NO and mixed Rydberg-like and valence state molecules

in general. It would be interesting to see how the target model developed in this
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thesis would affect future scattering calculations.

At the end of chapters 3 and 4, various ways to improve the R-matrix calcula-

tions were discussed. Comparing the two projects, it would appear that the biggest

improvement stands to be gained by increasing the efficiency of the calculations.

This requires further optimisation of the UKRMol+ code in general, as well as

more specific changes to the memory and CPU-usage of the integrals code. Both

for H2 and NO the computational cost was a large factor in determining the accuracy

and scale of calculation achievable. For example, it was not possible to carry out

RMPS calculations for H2, using the accurate target model described earlier, due to

the memory consumption of the integrals code. The full calculation without RMPS

used 1.5 Tb of RAM which was the maximum amount available for the hardware

used in this project. The situation is worse for NO, where a much simpler target

model would be required in order to run a full scattering calculation.

In addition to this, it is beneficial to discuss a more general point about the

future of R-matrix calculations for electron-molecule collisions. Calculations are

becoming more demanding than ever, and the need for accurate scattering data is

continuing to increase. The RMPS method presents the most realistic opportunity of

providing accurate data for electron-molecule collisions where either convergence

or intermediate scattering energies are required. However, RMPS alone is not a

viable option for larger molecules as they suffer from unfavourable scaling laws.

Therefore, a combined approach using the partitioned R-matrix approach should be

sought in future. To date, only a handful of electron-molecule studies have con-

sidered the partitioned R-matrix approach (Tennyson, 2004; Halmová et al., 2008;

Dora et al., 2009) and of these studies only Halmová et al. (2008) also used it in

combination with the RMPS method. Given recent software and hardware develop-

ments, it would be desirable to create a generalised approach, insofar as possible,

that is capable of applying RMPS and the partitioned R-matrix method to poly-

atomic molecules.

In chapters 6 and 7, electron collisions with atoms were studied in the context

of non-sequential double ionisation, namely, He and Xe. NSDI occurs in strongly-
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driven systems and it can be accurately described by the intuitive three-step model

(Corkum, 1993). For this work a semiclassical Monte-Carlo technique was em-

ployed to investigate the effect of the magnetic field on single and double ionisation

observables. Historically, most theoretical studies were carried out in the dipole ap-

proximation because magnetic-field effects were thought to be negligible. However,

in chapter 6, by accounting for the full potential of the laser field, it was found that

the magnetic-field had a non-negligible impact on the ionisation observables. For

instance, the average sum of the electron momenta along the propagation direction

of the laser field,
〈
p1
y + p2

y

〉
DI

, had much larger values than expected due to the in-

teraction of the electrons with the magnetic field. Furthermore, this behaviour was

observed at intensities significantly lower than those previously accepted to mark

the onset of magnetic-field effects. It was found that the effect was largest for NSDI

originating from strong recollisions.

In the following chapter, chapter 7, the investigation was extended to uncover

the mechanism behind the unexpected increase in
〈
p1
y + p2

y

〉
DI

. It was shown that the

magnetic field and the recollision act as a gate. NSDI is a non-linear process and it

is extremely dependent on the initial conditions. The magnetic field imposes a small

bias on the initial conditions that lead to double ionisation and through a series of

knock-on effects this bias is amplified. By the time the recollision takes place there

is a strong asymmetry in the spatial distribution of the initially tunnelling electron.

Due to the combined interaction of the Coulomb potential and laser field, this asym-

metry manifests as an asymmetry in the transverse asymptotic y-momentum. This

could be observed experimentally by measuring the double ionisation asymmetry,

PDI
asym.

It was found that the biggest contribution to the asymmetry, PDI
asym, came from

the asymmetry of the initially tunnelling electron, PDI
1,asym. Moreover, that the lead-

ing contribution to the asymmetry is a result of the specific combination of glancing

angle collisions with small asymmetries caused by the magnetic field at the time

of recollision. This effect was studied across a range of targets, intensities and

with different values of ellipticity. It is conjectured that this gating mechanism is
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a general phenomenon and that it is not restricted to magnetic fields. In fact, these

observable asymmetries should be present in any process that has two delayed steps

and allows an electron to gain an offset before recollision takes place.

For future studies, there are a couple of directions that could be of interest.

The 3D-SMND code is one of the first codes that is capable of fully accounting

for magnetic-field effects, the Coulomb potential and two active electrons in three

dimensions. There could be many unexplored and, as yet, unexplained phenomena

waiting to be discovered. Furthermore, without too much software development,

this code could readily be extended to explore more exotic laser fields such as; two

colour lasers, counter-propagating beams and pump-probe pulses (Hartung et al.,

2019; Kerbstadt et al., 2019). Again, here there is potential for a vast array of

unexplored phenomena and even perhaps the opportunity to observe effects similar

to the recollision gating observed in this work. In fact, even without moving to

more exotic laser fields there is still much more work to carry out using standard

laser fields, such as the effects of a carrier-envelope phase on shorter pulses.

Secondly, whilst molecules typically stretch the limits of validity for semiclas-

sical methods, a variant of the 3D-SMD model has been used successfully used

to describe molecules (Emmanouilidou et al., 2012; Chen et al., 2016; Vilà et al.,

2019). However, magnetic field effects have not yet been studied for such systems.

Therefore this would be an interesting direction for future work.

In the work presented in chapters 6 and 7 it was not possible to carry out a

detailed investigation into the effects of intensity averaging over the focal volume.

Whilst it is not expected that focal averaging would change the observed behaviour,

it is expected to change the intensity at which it occurs. Therefore, for accurate

comparison to experiment this effect should be studied in future work.

On a final note, from the work presented in this thesis it is clear that no one

theoretical approach is capable of describing the vast array of physics that encom-

pass electron collisions with atoms and molecules, or indeed any area of physics.

This is an unsurprising result but nevertheless it is important to acknowledge the

strengths and weaknesses of different theoretical techniques and the ranges of va-
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lidity in which they are applied. That is, it is important to understand how different

theoretical approaches complement one another, rather than deciding which one is

ultimate. In this work two vastly different approaches have been used to solve a sim-

ilar problem but at completely different ends of the energy spectrum. Interestingly,

the scientific community is often divided on which approach is best, if any. Theo-

ries are sometimes split into arbitrary categories based on; whether they are analytic

or numerical; or whether they are classical, semiclassical or fully ab initio etc. Per-

sonally, I find that this often overlooks the merits of a given model in favour of its

technical prowess. In my opinion the most important feature of a theory should be

its range of validity. Assuming that the model is valid for the system under study,

then it becomes an matter of deciding what question needs to be answered. If it

is only the answer that is required, and perhaps it is required to a given degree of

accuracy then numerical, fully-quantum methods can be most suitable. However, if

it is a question of understanding the underlying process and/or mechanisms behind

a given observable then more classical approaches can be beneficial. Ultimately, the

community is also governed by what is achievable. Perhaps the experimental con-

ditions fall outside of the semiclassical domain e.g., at very low scattering energies,

or perhaps a full numerical solution of the TDSE is not computationally possible.

Quantum mechanics has brought forward some of the most accurate predic-

tions ever made but humans are innately driven to make classical models in order to

develop understanding. Therefore, I believe a pragmatic approach is required that

combines as many appropriate theories as possible, meaning that for an ideal case

the problem would be solved by a range of complementary theories.
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A. Dora, and J. Tennyson. Low Energy Inelastic Electron Scattering from Carbon

Monoxide: I. Excitation of the a 3Π, a’ 3Σ+ and A 1Π Electronic States. J. Phys.

B: At. Mol. Opt. Phys., 53:165201, 2020. doi:10.1088/1361-6455/ab95ef.

https://doi.org/10.1063/1.2838023
https://doi.org/10.1103/PhysRevA.63.033404
https://doi.org/10.1103/PhysRevA.90.022711
https://doi.org/10.1088/1361-6455/aa6e74
https://doi.org/10.1088/1361-6455/aa6e74
https://doi.org/10.1103/PhysRevA.95.022708
https://doi.org/10.1103/PhysRevA.74.052708
https://doi.org/10.1103/PhysRevA.98.062704
https://doi.org/10.1088/1361-6455/ab95ef


BIBLIOGRAPHY 191

R. Zhang, A. Faure, and J. Tennyson. Electron and positron collisions with polar

molecules: studies with the benchmark water molecule. Phys. Scr., 80:015301,

2009.

R. Zhang, K. L. Baluja, J. Franz, and J. Tennyson. Positron collisions with molec-

ular hydrogen: cross sections and annihilation parameters calculated using the

R-matrix with pseudo-states method. J. Phys. B At. Mol. Opt. Phys., 44:035203,

2011a. doi:10.1088/0953-4075/44/3/035203.

R. Zhang, P. G. Galiatsatos, and J. Tennyson. Positron collisions with acetylene

calculated using the R-matrix with pseudo-states method. J. Phys. B At. Mol.

Opt. Phys., 44:195203, 2011b. doi:10.1088/0953-4075/44/19/195203.

https://doi.org/10.1088/0953-4075/44/3/035203
https://doi.org/10.1088/0953-4075/44/19/195203

	Introduction
	Overview
	Low Energy Scattering
	Intermediate Energy Scattering
	High Energy Scattering
	Outline of the Thesis

	I Low to Intermediate Energy Electron Collisions with Molecules
	R-matrix Theory
	Fixed Nuclei Approximation
	Outer Region
	Inner Region
	Asymptotic Region

	Adiabatic Nuclei Approximation
	Scattering Models
	UKRMol+ Code
	UKRMol+ Inner
	UKRMol+ Outer


	Benchmark Calculations of Electron Impact Electronic Excitation of the Hydrogen Molecule
	Introduction
	Method
	R-Matrix
	Molecular convergent close-coupling

	Results
	Fixed-Nuclei Cross-Sections
	Adiabatic-Nuclei Cross-Sections
	Including Higher Partial Waves

	Conclusion

	Intermediate Energy Collisions
	Introduction
	Method
	R-matrix with Pseudostates
	Mixed Rydberg and valence states

	Results
	Conclusion and Further Work


	II High Energy Electron Collisions with Atoms in Strong Laser Fields
	Strong-Field Theory
	Three Step Model
	Initial Conditions
	Tunnel Exit
	Tunnelling Rate
	Microcanonical Distribution
	Importance Sampling

	Non-Dipole Effects
	Equations of Motion

	Magnetic-Field Effects
	Introduction
	Method
	Results
	Momentum Offset for SI of Xe and H
	Average Momentum for SI of He and Xe
	Average Momentum for DI of He and Xe
	Recollision Probing Magnetic Field Effects

	Conclusion

	Recollision Gating
	Introduction
	Method
	Results
	Asymmetry Due to the Magnetic Field
	Asymmetric Transverse Initial Momentum
	Asymmetric Transverse Recollision Momentum
	Glancing Angles in Recollisions
	Asymmetric Transverse Recollision Position
	Average Sum Electron Momenta in DI

	Conclusion

	Conclusion
	Bibliography


