Matharu, RK;
Porwal, H;
Chen, B;
Ciric, L;
Edirisinghe, M;
(2020)
Viral Filtration Using Carbon-Based Materials.
Medical Devices & Sensors
, 3
(4)
, Article e10107. 10.1002/mds3.10107.
Preview |
Text
Edirisinghe_mds3.10107.pdf - Published Version Download (576kB) | Preview |
Abstract
Viral infections alone are a significant cause of morbidity and mortality worldwide and have a detrimental impact on global healthcare and socioeconomic development. The discovery of novel antiviral treatments has gained tremendous attention and support with the rising number of viral outbreaks. In this work, carbonaceous materials, including graphene nanoplatelets and graphene oxide nanosheets, were investigated for antiviral properties. The materials were characterised using scanning electron microscopy and transmission electron microscopy. Analysis showed the materials to be two-dimensional with lateral dimensions ranging between 1 - 4 µm for graphene oxide, 110 ± 0.11nm for graphene nanoplatelets. Antiviral properties were assessed against a DNA virus model microorganism at concentrations of 0.5, 1.0 and 2.0 wt/v%. Both carbonaceous nanomaterials exhibited potent antiviral properties and gave rise to a viral reduction of 100% across all concentrations tested. Graphene oxide nanosheets were then incorporated into polymeric fibres and their antiviral behaviour was examined after 3 and 24 hours. A viral reduction of ~39% was observed after 24 hours of exposure. The research presented here showcases, for the first time, the antiviral potential of several carbonaceous nanomaterials, also included in a carrier polymer. These outcomes can be translated and implemented in many fields and devices to prevent viral spread and infection.
Type: | Article |
---|---|
Title: | Viral Filtration Using Carbon-Based Materials |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1002/mds3.10107 |
Publisher version: | http://dx.doi.org/10.1002/mds3.10107 |
Language: | English |
Additional information: | © 2020 The Authors. Medical Devices & Sensors published by Wiley Periodicals LLC This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
Keywords: | Antiviral, Graphene, Graphene Nanoplatelets, Graphene Oxide, Nanomaterials, Nanosheets |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Civil, Environ and Geomatic Eng UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Mechanical Engineering |
URI: | https://discovery.ucl.ac.uk/id/eprint/10108900 |
Archive Staff Only
View Item |