The Aryl Hydrocarbon Receptor
Plays a Key Role in the Transcriptional

Programme of Regulatory B cells

by Christopher James Michael Piper

Supervisors
Prof. Claudia Mauri
Prof. David Isenberg

Dr. Paul Blair

UCL Centre for Rheumatology
The Rayne Institute
5 University Street
London, WC1E 6JF

UCL

Immunology

Submitted for the degree of Doctor of Philosophy

May 2020



Declaration

|, Christopher Piper, confirm that the work presented in this thesis is my own.
Where information has been derived from other sources, | confirm that this has
been indicated in the thesis.

Christopher Piper
May 2020



Acknowledgements

| would like to express my sincere gratitude to my supervisor Professor Claudia
Mauri for all her support, encouragement and mentoring over the years. | feel
exceedingly fortunate to have worked in your lab and | have learned so much over
the years through your guidance. | would like to thank the Rosetrees Trust for
funding my PhD and, in tandem with the Wellcome Trust for making this research

possible.

| would like to thank members of the Mauri Lab, both past and present, for their
support, advice and friendship and for our philosophical late night chats about
science, politics and just general life. To Lizzy - for all your support, career advice
and for listening to me moan about RNA-seq and ATAC-seq. It's been a
rollercoaster 1.5 years, but we made it! To Merry, with whom | worked closely
during the ‘JDM years,’ | thank you for your all your support and for your positivity.
It was a pleasure working with you during this time. To Kiran - for all that you have
taught me in the lab and for giving me the necessary tools to succeed in science.
In particular, | would like to thank Kristine for all the wonderful memories and
friendship over the years, particularly our time ‘skiing’, and also our time in Davos
and Japan. | couldn’t have done it without you. Also for giving me the nicknames,
ChrisP, PerCP and Crispr; thankfully the latter two haven’t caught on! To all my
colleagues - Kristine, Amanda, Lizzy, Paul, Diego, Diana and Hannah; you are all
amazingly talented individuals and | feel extremely fortunate to have worked with

you throughout my time here.

| would also like to thank all of my friends, especially my TA friends Mathu and
Harry (London), Roland (Switzerland), Johan (Denmark) and Imtiyaaz (South
Africa) for all the good times, general chats and for the daily laughs. It was good to
chat to you after many a late night in the lab.

To my family - Mum and Dad and my two sisters Caroline and Victoria. | feel
extremely blessed to have you as my family and this journey would not have been
possible, if not for your unending love and support over the years. Thanks for all
your encouragement and for helping me to realise my potential. | love you all more
than you know. This thesis is dedicated to you all.



Abstract

Regulatory B cells (Bregs) play a critical role in the control of autoimmunity and
inflammation. IL-10 production is the hallmark for the identification of Bregs.
However, the molecular determinants that regulate the transcription of IL-10 and
control the Breg developmental program remain unknown. The aryl hydrocarbon
receptor (AHR) is an environmental sensor that binds to a variety of ligands,
including physiological compounds derived from the digestion of dietary
components by commensal microbiota. Here, we demonstrate that AHR regulates
the differentiation and function of IL-10-producing CD19*CD21"CD24" Bregs and
limits their differentiation into B cells that contribute to inflammation. Chromatin
profiling and transcriptome analyses show that loss of AHR in B cells reduces
expression of IL-10 by skewing the differentiation of CD19*CD21MCD24" B cells
into a pro-inflammatory program, under Breg-inducing conditions. B cell AHR-
deficient mice develop exacerbated arthritis, show significant reductions in IL-10-
producing Bregs and regulatory T cells (Tregs), and show an increase in T helper
(Th) 1 and Th17 cells compared with B cell AHR-sufficient mice.

The most abundant source of AHR ligands are derived from the diet and the
metabolism of dietary tryptophan. We have previously established a link between
microbiota-driven signals in the gut and the differentiation of Bregs. Of the gut
microbiota-derived metabolites, the short-chain fatty acids (SCFAs) are the most
well characterised. More recently, the SCFA butyrate has been demonstrated to
act as an AHR ligand in an intestinal epithelial cell line. Given the association of
butyrate with AHR activation and the supporting findings showing that butyrate
promotes Treg function, these data led us to hypothesise that butyrate acts via
AHR to enhance Breg suppression. Here, we demonstrate that mice supplemented
with butyrate reduces arthritis severity by inhibiting the differentiation of GC B cells
and plasma cells, whilst maintaining Breg numbers and promoting the suppressive
function of Bregs. We show that supplementation of mice with butyrate, changes
the composition of the microbiota to favour species which metabolise tryptophan;
a major source of AHR ligands. Therefore, we hypothesised that butyrate controls
the balance between pro-arthritogenic and regulatory B cell differentiation, through
the generation of microbiota derived AHR ligands. To date, the AHR ligands which
direct Breg function are unknown. We rule out that butyrate acts as a direct ligand

of AHR and establish that supplementation with butyrate increases the availability
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of 5-Hydroxyindole-3-acetic acid (5-HIAA), a downstream metabolite of serotonin,
which we identify as a novel ligand of AHR in B cells. Mice supplemented with 5-
HIAA promote Breg function and suppress arthritis severity, only in mice with AHR-
sufficient B cells. Thus, we identify AHR as a relevant contributor to the
transcriptional regulation of Breg differentiation and show that microbiota in the gut
influence Breg differentiation by increasing the availability of AHR ligands.



Impact statement

Regulatory B cells (Bregs) are a potent modulator of immune responses, which
prevent excessive inflammation and maintain immune homeostasis after infection
or tissue-injury. Abnormalities in Breg number and function are often prevalent in
immune-related pathologies such as autoimmune disease, chronic infections,
cancer and in the rejection of transplants. Thus, it is of utmost clinical importance
to understand the ontogeny of these populations, to phenotypically characterise
Breg populations and to understand the cellular signals and the molecular cues
which drive Breg differentiation. By better characterising Breg populations and the
processes leading to their differentiation, we can potentially identify target
molecules/pathways for therapeutic interventions in immune-related pathologies.
To address these knowledge gaps in the field of regulatory B cell research, our aim
was to identify a unique molecular signature that distinguishes Bregs from effector
B cells, as well as identify the molecular signals that drive Breg differentiation. The
data presented here identifies the aryl hydrocarbon receptor (AHR) as a key
transcription factor involved in defining Breg identity and controlling Breg function.
Our data suggests that we can expand or contract Breg numbers through
modulating AHR signalling, which could have therapeutic potential in a variety of

autoimmune diseases and in cancer.

In recent years, we have started to build a clearer picture of the signals required
for Breg differentiation and have previously shown that the microbiota facilitates
this process. Here we link microbiota derived signals and AHR-driven Breg
differentiation. We show that the short chain fatty acid butyrate, a microbial-derived
end product of complex carbohydrate metabolism, changes the composition of the
microbiota. This shift promotes the growth of bacterial genera which metabolise
tryptophan to generate the metabolite 5 Hydroxyindole-3-acetic acid (5-HIAA),
which we show for the first time is a novel AHR ligand. Moreover, we show that the
metabolites of tryptophan can influence Breg differentiation in a metabolite-specific
manner. Collectively, these data highlight that microbiota and dietary metabolites
control the balance between effector and regulatory B cell differentiation and show
this process is driven through AHR. Thus, data from these studies implicate an
important role of dietary and microbial-derived metabolites in the generation of
regulatory B cells and could provide a therapeutic target in the treatment of



autoimmunity, either through manipulation of microbial end-products or through
supplementation of AHR ligands.
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PER - periodic circadian protein

PI3K - phosphoinositide 3-kinase

PLCy2 - phospholipase Cy2

PMA - phorbol 12-myristate 13-acetate

pMHC - peptide MHC

PP - Peyer’s patches

Prdm1 - positive-regulatory-domain containing 1
PRR - pattern recognition receptor

PtC - phosphatidylcholine

P-TEFb - positive transcription elongation factor
RA - rheumatoid arthritis

RAG-1/-2 - recombination activating genes-1/-2
RARA - retinoic acid receptor alpha

RB - retinoblastoma protein

RBC - Red blood cells

RBP - RNA binding proteins

RBP - Jk recombination signal binding protein for Igk J region
RSS - recombination signal sequences

RUNX - runt-related transcription factor

S1P - sphingosine 1-phosphate

S1P+1 - sphingosine 1-phosphate receptor 1
SCFA - Short chain fatty acid
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SHM - somatic hypermutation

SHP1 - SH2-domain-containing PTP 1

SIM - single-minded protein

SLAM - signalling lymphocyte activation molecule
SLC - surrogate light chain

SLC5AS8 - sodium-coupled monocarboxylate transporter 1
SLE - systemic lupus erythematosus

SLPC - short-lived plasma cell

SP1 - specificity protein 1

SPF - specific pathogen free

SREBF1 - sterol regulatory element-binding protein 1
STAT - signal transducer and activator of transcription
STIM - stromal interaction molecules

SWI/SNF - switching defective/sucrose non-fermenting
T1/T2/T3 — transitional 1/2/3

T2-FP - Transitional 2 follicular precursor

T2-MZP - transitional 2-marginal zone precursor

TACI - transmembrane activator and calcium modulator and cyclophilin-ligand
interactor

TCDD - 2,3,7,8-tetrachlorodibenzo-p-dioxin

TCR - T cell receptor

TD - T-dependent

TdT - terminal deoxynucleotidyl transferase

TFIIB - transcription factor IIB

Tfth - T follicular helper

Tfr - T follicular regulatory cells

TGF-B1 - transforming growth factor-f31

Th - T helper

Tl - T-independent

TIM - T cell |g and mucin domain

TLR - Toll-like receptor

TNFa - tumour necrosis factor o

Treg - regulatory T cells

TSS - transcription start site

URE - Uridine-rich elements
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UTR - untranslated regions

V - variable in reference to gene rearrangement
WT - wild-type

XBP1 - X-box binding protein 1

Xid - X-linked immunodeficiency

XLA - X-linked agammaglobulinemia

XRE - xenobiotic response element
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CHAPTER I: Introduction

1.1 B cells

B cells are lymphocytes, which express a unique antigen receptor, which
recognises specific antigenic epitopes, and undergo clonal selection and
expansion in response to their cognate antigen. Whilst both B and T cells undergo
somatic gene rearrangement for their antigen receptors, both receptors differ in a
number of key areas. In terms of antigen processing and presentation, the antigen
receptor on B cells can recognise protein, lipid or carbohydrate antigens in their
native conformation and this process is not major histocompatibility complex
(MHC) restricted. This is in contrast to the antigen receptor on T cells, which only
recognises MHC-restricted processed peptide antigen, or lipid antigens presented
by cluster of differentiation (CD) 1 molecules™ 2. One of the key roles of B cells is
to provide protective humoral responses through the production of antibodies.
However, B cells also coordinate immune responses through antigen presentation
and through the production of cytokines and chemokines'. In order to understand
how B cells modulate and coordinate immune responses, it is important to
understand the developmental pathways of B cells and the phenotypical and
functional diversity of B cells.

1.1.1 B cell development in the bone marrow

1.1.1.1 Commitment to the B cell lineage

During embryogenesis, haematopoiesis first occurs in the yolk sac® and at a later
developmental stage in the foetal liver, which is seeded by circulating
haematopoietic cells*. At birth, haematopoietic stem cells (HSCs) colonise the
bone marrow, whilst in the postnatal stages of life the HSC pool is maintained in
the bone marrow by HSC self-renewal and differentiation®. Indeed, in contrast to
the proliferative nature of foetal HSCs, most postnatal HSCs are quiescent and
divide only to replenish the pool of HSCs or to regulate the number of differentiated

blood cells® 7.

For the commitment to the B cell lineage, HSCs first differentiate into lymphoid-
primed multipotent precursors (LMPPs)® and then into the common lymphoid
precursors (CLPs). As HSCs differentiate into CLPs, the expression of Fms-like

tyrosine kinase 3 (FLT3) and Interleukin (IL)-7Ra., key factors for the survival and
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expansion of both LMPPs® and CLPs'%, are increased. LMPPs and CLPs can
undergo a differentiation programme to become T or B cells, but also retain myeloid
differentiation potential.

T and B cells share a number of developmental commonalities, namely their ability
to carry out somatic gene rearrangement of genes for their respective antigen
receptor through the recombination activating genes 1 and 2 (RAG1/RAG2)-
mediated programme, which results in a large variety of antigen specificities in
these receptors, allowing for the recognition of a wide range of antigens. However,
these cell populations also share a number of other developmental programmes
including cell cycle arrest phases, required for gene rearrangement and the use of
positive and negative checkpoints to ensure a fully functional antigen receptor
repertoire with limited self-reactivity!'. The divergence of the T cell-like and B cell-
like programmes dates back more than 500 million years'?. Distinct transcriptional
regulatory modules are required for the development of T and B cell precursor

subsets.

Differentiation to the CLP stage is dependent on a series of transcription factors,
including IKAROS'3, PU.1'4, E2A"S and B cell lymphomal/leukaemia (BCL)11A"S,
In addition, a second group of transcription factors, including growth factor
independence 1 (GFI1)'", signal transducer and activator of transcription
(STAT)5A/STAT5B"8, MYB'® and runt-related transcription factor (RUNX) family
members and binding partner core-binding factor subunit § (CBFB)?° are required
for the differentiation of CLPs, as well as being indispensable for other
haematopoietic programmes. Commitment towards the B cell fate is also partly
dependent on increased RAG1 expression, the downregulation of KIT and the
expression of a A5 transgene?’ 22, However, the two fundamental transcription
factors needed for commitment to a B cell fate are early B cell factor 1 (EBF1) and
paired box 5 (PAX5)%3, as will be discussed below.

1.1.1.2 Early B cell development

The early B cell precursors can be split into 4 fractions, consisting of pre-pro B
cells, pro-B cells, large pre-B cells and small pre-B cells. Development of B cells
in the bone marrow is characterised by the sequential rearrangement of the B cell
receptor heavy and light chain genes?*. The transition from the uncommitted pre-
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pro B cells to pro-B cells is marked by the upregulation of PAX52% 26, EBF1 in
tandem with E2A, creates a distinguishable gene expression profile specific to the
B cell lineage. PAXS5 is required for the stabilization of this profile, and in addition,
plays a key role in the rearrangement of the Ig heavy chain regions, by changing
the accessibility of these regions. Both EBF1 and PAXS interact, and work in
tandem, with many other transcription factors important for the pan-haematopoietic
lineage, including MYB and IKAROS, which are responsible for contributing to the
expression of a large proportion of the B cell lineage specific genes. PAX5 and
EBF1 remain expressed throughout the differentiation stages of a B cell, and only
in the terminal differentiation stage are these genes silenced?” 2. As well as
positively directing the B cell lineage transcriptional programme, PAX5 alongside
EBF1 has a negative role in reducing the T cell developmental potential. Ectopic
expression of PAX5 in HSCs and progenitors favoured B cell development over T
cell lymphopoiesis, specifically through its role in inhibiting the expression of
Notch 129 30,

Pro-B cells are identified by the rearrangement of the Igh gene locus, with
recombination of one of the large arrays of variable (V), diversity (D) and joining
(J) gene segments. V(D)J recombination is mediated through recombinase
complex containing RAG1/RAG2 and other DNA repair enzymes. The RAG
complex has endonuclease activity and introduces double-stranded breaks in the
Igh locus at recombination signal sequences (RSSs), that flank each gene
segment. Non-homologous end-joining factors (NHEJ) join the V, D and J
segments together®'. In pro-B cells, recombination of the D and J gene segments
occurs first and is followed by the recombination of the DJy segment to one Vu
gene segment and then splicing onto one of the adjacent constant u (Cp) exons to
form a complete Igu heavy chain gene?*. During the recombination stage,
diversification of the BCR repertoire can be achieved by the actions of the terminal
deoxynucleotidyl transferase (TDT) enzyme, which adds non-templated
nucleotides to the V-D and D-J junctions of the Ig heavy chain, increasing diversity
at the complementarity determining region 3 (CDR3) of the Ig heavy chain32. Many
B cells which undergo somatic recombination produce out-of-frame
rearrangements and subsequently initiate apoptosis. Only one of three B cells
which undergo recombination of the V(D)J regions occur ‘in frame’33 34,
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Entry into the pre-B cell stage is marked by the expression of the pre-BCR, which
involves the pairing of a complete Igu heavy chain with the invariant surrogate light
chain (SLC) proteins A5 and VpreB3> 3¢, In addition, Iga. and IgB, both of which
contain immunoreceptor tyrosine-based activation motifs (ITAMs), are expressed
and mediate downstream signals after activation of the pre-BCR complex. Signals
through the pre-BCR are an important step in the differentiation of pre-B cells.
However, it is not currently known if this occurs in a ligand-dependent or
independent manner?®’. Signals through the pre-BCR promotes the proliferation
and expansion of B cells, thus giving rise to the developmental stage known as
‘large pre-B cells’; the end result being an expansion of B cells with the same ‘in
frame’ heavy chain. Signals through the pre-BCR halts further Vy to DJn
rearrangements of the Igh locus, in part by a process known as allelic exclusion.
This process stops the second allele undergoing Vx to DJn recombination, thus
ensuring monospecificity of B cells, which is required for efficient antigen-specific
antibody responses®. Lastly, pre-BCR signals also induce the re-expression of
RAG1/RAG2, which leads to the recombination of the V. to J. gene segments of
the immunoglobulin light chain (firstly the Igxloci, then the IgA loci if unsuccessful),
which marks the entry into small pre-B cell stage. The developing B cell has two
attempts at rearranging the Igh locus and 4 attempts at the Ig light chain
rearrangement (both paternal and maternal Igx loci and IgZ loci). If successful, a
fully functional BCR is synthesized and expressed on the surface of the B cell,
marking the IgM*IgD- immature B cell stage of development®® 4°, The different
stages of B cell development in the bone marrow are shown in Figure 1.1.
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Figure 1.1. B cell development in the bone marrow. Cells commit to the B cell lineage
at the Pro-B cell stage, upon which PAXS5 directs the transcriptional programme leading to
the silencing of other lineage specific transcription networks. The B cell transcriptional
programme is strengthened by expression of E2A and EBF1. At the Pro-B cell stage gene
arrangement of the Igh chain locus occurs. Upon successful Vu-Du-Ju gene
rearrangement, the pre-BCR is expressed upon the cell with the surrogate light chain. After
signals through the pre-BCR and rounds of proliferation, small pre-B cells re-upregulate
RAG1/2 and rearrange the light chain. Successful rearrangement of both heavy and light
chains leads to the expression of a fully functional BCR on immature B cells.
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1.1.1.3 Central B cell tolerance

During various stages of a B cells developmental cycle, tolerance checkpoints are
used to decrease the numbers of autoreactive B cells from entering the periphery.
Central B cell tolerance is the process in the bone marrow by which emerging
immature B cells are rendered tolerant to self-antigens and any strongly
autoreactive B cells are removed from the pool*!. Historically, it was thought that
any lymphocyte clone that reacted to self-antigen would be eliminated by apoptosis
to prevent immune activation to ‘self’; a process called clonal deletion*'. This theory
was later examined by using transgenic mice expressing antibodies against H2-k
or against hen egg lysozyme (HEL). Results from these studies demonstrated that
immature B cells that bound to these antigens with high avidity, failed to
differentiate further and entered apoptosis within 1-3 days of ligation42 43. 44,
However, it is now thought that only a small fraction of self-reactive B cells
undergoes clonal deletion. Indeed, central tolerance primarily takes place through
receptor editing and induction of anergy, with clonal deletion occurring only when
receptor editing fails*>. Approximately 50-75% of immature B cells express BCRs
that are specific for self-antigens, compared to only 20-40% of transitional and
naive mature B cells*® 47. A proportion of autoreactive immature B cells do evade

central tolerance, enter the periphery and differentiate into mature B cells* 48,

Engagement of the BCR on immature B cells by self-antigen, leads to the
downregulation of the BCR and the upregulation of forkhead box O1 (FOXO1),
which promotes RAG1/2 expression and receptor editing*® 5°. Receptor editing is
the process by which there is secondary rearrangement of the VJ gene segments
of the Ig light chain. Although uncommon, some B cells can undergo receptor
editing on the heavy chain®'. The exact frequency of B cells which undergo
receptor editing is difficult to determine*. One study has reported that
approximately 20% of immature B cells are actively carrying out receptor editing®2.
The process of receptor editing is directional and starts at the k L-chain loci, before
proceeding to the A L-chain. Receptor editing that results in a kappa-lambda edit
rather than a kappa-kappa edit has been suggested to be more effective in
silencing natural autoreactive B cells®s. If receptor editing fails to quench
autoreactivity, then self-reactive B cells undergo apoptosis, a process termed

clonal deletion.
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If an autoreactive lymphocyte bypasses central tolerance and escapes to the
periphery, then the cell will be subject to peripheral tolerance mechanisms such as
anergy. Anergic B cells in the periphery have a markedly reduced half-life
(averaging 3-5 days), when compared to non-autoreactive B cells (averaging 7-8
weeks), and are marked by reduced expression of IgM and increased recruitment
of negative regulators of BCR signalling to the BCR54 55 56.57 \When an immature
B cell successfully expresses a non-autoreactive BCR, the B cell enters the
transitional 1 (T1) B cell stage and can leave the bone marrow and recirculate to
the periphery. Transitional B cells are no longer able to carry out RAG mediated
V(D)J or VJ recombination of the heavy and light chains respectively*.

1.1.2 B cell development in the spleen

1.1.2.1 BCR tonic signalling

Signals through the pre-BCR and mature BCR are essential for the development
of B cells in the bone marrow and, in addition, are required for B cells to enter the
periphery. Indeed, if a newly developed immature B cell lacks a functional mature
BCR these cells do not differentiate any further or egress from the bone marrow®®
%9 In order for B cells to survive in the periphery, tonic BCR signalling is required.
Tonic BCR signalling is the process in which you have functional downstream
signalling of the BCR, independent of antigen activation. Tonic BCR signalling
differs from that of antigenic activation in that it does not lead to the full activation
of B cells, but rather promotes B cell survival and maturation. In the absence of
constitutive BCR signalling in immature B cells, light chain rearrangement is
reinitiated and immature B cells upregulate a gene expression profile consistent to
that of Pro-B cells®°.

Activation of the BCR through tonic signalling or through interaction with antigen,
induces the activation of the Iga and Igf subunits of the BCR complex and leads
to the Lyn-mediated phosphorylation of the tyrosine amino acids in their ITAM
motifs®! 62, BCR activation is finely tuned by a series of co-activatory or inhibitory
molecules which modulate BCR signalling. Positive regulators of BCR signalling
include CD19%% and CD45; the latter is a phosphatase which targets an inhibitory
tyrosine residue on the SRC-family protein tyrosine kinases for
dephosphorylation®4. BCR signalling is inhibited by the negative co-receptors CD5,
CD22 and CD72 and activation of their immunoreceptor tyrosine-based inhibitory

29



motifs (ITIMs) recruits the protein tyrosine phosphatase SH2-domain-containing
PTP 1 (SHP1). SHP1 attenuates BCR signalling by competing with the activatory
protein tyrosine kinases like LYN®5. Activation of the BCR complex induces a
complex network of downstream activators including the mitogen-activated protein
kinase (MAPK), nuclear factor of activated T cells (NFAT), nuclear factor kB (NF-
kB) and phosphoinositide 3-kinase (PI3K) pathways. Inducible deletion of the BCR
leads to the loss of mature B cells with the average half-life spanning 3-6 days.
Only constitutive PI3K, but not MAPK/extracellular signal-related kinase (ERK),
NF-kB or BCL2 (by itself), signalling rescues the survival of mature B cells®® &7, In
contrast, antigen engagement of the BCR, fails to induce T1 B cells to proliferate
and they undergo apoptosis. These findings demonstrate that a certain threshold
of BCR signalling strength is needed for survival of the early transitional B cells,
and that as a B cell matures they acquire the ability to respond to antigenic BCR

activation®s,

1.1.2.2 The role of BAFF in B cell maturation

B lymphocyte activating factor (BAFF), a member of the tumour necrosis factor
(TNF) family, is a trimeric cytokine which can be found in membrane-bound or
soluble forms. The primary source of BAFF expression is mainly from innate
immune cells including, but not limited to, neutrophils, macrophages, dendritic
cells, monocytes, but can also be produced by bone marrow stromal cells and B
cells®® 70, BAFF signals through one of three receptors including the B cell
activating factor of the TNF-family receptor (BAFFR), the transmembrane activator
and calcium modulator and cyclophilin ligand activator (TACI) and through B cell
maturation antigen (BCMA)"". Activation of the BAFFR promotes survival of B cells

through activation of the non-canonical NF-xB2 pathway’? 73.

For B cells to mature beyond the T1 stage, activation of B cells by BAFF is required
in tandem with tonic BCR signalling. Indeed, in BAFF knockout mice there is almost
a complete loss of marginal zone (MZ) and follicular (FO) B cells’ 75, It is at the
early transitional stages, that B cells start to express the BAFFR, at which point
they start to receive pro-survival signals. The expression of these receptors varies
according to the developmental stage, with the BAFFR being predominantly
important for T1 and T2 development, whilst expression of TACI and BCMA is

important for mature B cell function and survival™® 77 78 79 BAFFR expression
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directly correlates with the levels of surface IgM. Interestingly, the expression of
BAFFR is decreased in autoreactive B cells, suggesting an important role in
selectively promoting the survival of non-autoreactive B cells®. Highlighting the
essential role of BAFF in B cell maturation and survival, BAFF-Tg mice have
enlarged T2 and marginal zone (MZ) B cell compartments in the spleen®’. As well
as having an important pro-survival function for B cells at the transitional B cell
stages and beyond, signals through TACI and the BAFFR on B cells have been
shown to have a role in other B cell functions such as isotype switching, as will be

discussed later on®2.

1.1.2.3 B-1 cells

B-1 cells are a subpopulation of B cells which have the capacity to self-renew and
are functionally and phenotypically distinct from B-2 cells. The finding that CD5
(also known as Ly-1 in mice and Leu-1 in humans) expression was highly
expressed both on many B cell chronic lymphocytic leukaemia cells and in B cell
tumours prompted researchers to identify the steady state CDS5-expressing B
cells® 84 8  This population was first identified in mice by Hayakawa and
colleagues in 1983 and were defined by the expression of CD5%. It soon became
evident that B-1 cells could be subdivided into two distinct subpopulations; B-1a
cells which express CD5 and B-1b cells which are CD5 negative®”: 8, Each
population has distinctimmunological functions and developmental pathways, with
B-1b cells developing in tandem with B-2 cells®®.

B-1 cells are functionally distinct from B-2 cells and are characterised by their ability
to self-renew and to spontaneously produce IgM antibodies. Furthermore, unlike
B-2 cells, B-1 cells are mainly found in the peritoneal and pleural cavities (defined
as IgMPigD'°CD23-CD11b*CD43*CD5*)%, with a small population found in the
spleen (IgM*IgD'°CD23-CD11b"CD43*CD5*-)%". 92, B-1 cells are abundant in young
mice and the frequencies of this population decrease into adulthood®. In particular,
B-1a cells, can produce natural polyreactive IgM antibodies, which tend to have an
autoreactive repertoire with reduced junctional diversity, decreased levels of
somatic hypermutation and tend to favour V412 usage®:. Around 10% of peritoneal
B-1 cells were found to bind phosphatidylcholine (PtC), which is expressed on
senescent red blood cells (RBCs)*. B-1 cells also recognise a carbohydrate

epitope on the thymocyte glycoprotein Thy-1, thereby illustrating the broad self-
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reactive BCR repertoire of B-1 cells®. Intriguingly, B-1a cells acquire their self-
reactive phenotype by bypassing the pre-BCR stage®. The SLC is redundant in B-
1a cell development as the frequency of this population is unaffected by the
absence of the SLC%: %7 Indeed, the SLC has a reduced efficiency in binding with
autoreactive heavy chains and as such its absence may allow the expression of
the autoreactive BCRs that characterise B-1a cells®® %, Natural antibodies
produced by B-1 cells can also bind to the phosphocholine epitope on the cell wall
polysaccharide of Streptococcus pneumoniae, leading to their opsonisation and
clearance'® 19 Thus B-1 cells are an important source of natural antibodies for
clearance of apoptotic cells and in the first line defence against pathogens such as
S. pneumoniae® and Salmonella typhi'®2, amongst others'%® 1% and participate in
T cell independent responses (Tl), as opposed to B-2 cells which participate in both
T cell dependent (TD) and Tl responses’®.

In addition to their role in natural antibody production, B-1 cells are an important
source of the anti-inflammatory cytokine IL-10'% and have been implicated in
attenuated responses to Leishmania™”- %8 |n contrast to murine B-1 cells, the
existence and phenotype of human B-1 cell orthologues remain inconclusive.

1.1.3 B2 B cells

1.1.3.1 Transitional B cells

T1 B cells migrate out of the central sinus of the bone marrow and enter the
periphery via the blood stream. Migration to the spleen occurs through the central
arterioles and T1 B cells subsequently migrate to the periarteriolar lymphoid
sheaths (PALS)'%°. The migration of T1 B cells directly to the spleen and not to
other lymphoid tissue is mediated by their lack of CD62L expression, which is
important for entry into other secondary lymphoid tissues''°. Entry into the T2 stage
is marked by the upregulation of IgD and the complement receptor CD21. In
addition to the expression of IgM, IgD and CD21, transitional B cell subsets in the
murine spleen can be distinguished by the expression of AA4.1, CD23 and heat
stable antigen (HSA; also known as CD24)""".

Loder, Carsetti and their colleagues first proposed that B cell development in the
spleen was marked by a series of steps based on signals received through the
BCR and identified the phenotype of transitional B cells''?2. This phenotypical
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characterisation was further refined in a later study by showing that transitional B
cells, rather than being a homogenous population, consisted of two distinct
subpopulations defined by their response to BCR engagement and by the levels of
expression of CD21, CD23, CD24, IgD and IgM. Importantly, the results from this
study, established a timeline of B cell development from immature B cells from the
bone marrow to mature B cells in the spleen and reported two key findings. Firstly,
T1 B cells (CD21'°CD24"IgD"°IgM") were established as the progenitors of T2 B
cells (CD21"NCD24MgDMIgM™) and maturation along this pathway was
contingent upon positive selection through the BCR''°. Secondly, as demonstrated
through adoptive transfer experiments of T2 B cells into Rag2” mice, T2 B cells
were demonstrated to develop into mature B cells in the spleen°.

Allman and colleagues proposed an alternative model that defines the different
transitional B cell subpopulations, according to the expression of IgM, CD23 and
AA4.188. Two important distinctions arose between the two proposed models. In
contrastto T1 and T2 in Loder and Carsetti’'s model, Allman’s model proposed that
transitional B cells could be split into three subpopulations; T1 (AA4*IgM"ehCD23-
), T2 (AA4*IgM"9hCD23*) and T3 (AA4*IgM'°*CD23*). Importantly, the functional
characteristics of T2 B cells also differ. In Allman’s model, T1, T2 and T3 B cells
are unable to proliferate in response to BCR crosslinking in vitro, or in vivo.
Moreover, they suggested that it is the T3 population, instead of the T2 population,
that gives rise to mature B cells. In contrast, in Loder and Carsetti’'s model, T2 B
cells are able to proliferate in response to BCR engagement; a finding which was

subsequently confirmed by the Rawlings and Khan groups''3 114,

More recent studies have called into question the idea that T3 B cells differentiate
into mature B cells''®. Instead, it has been proposed that T3 B cells more resemble
anergic B cells, are not part of the typical transitional B cell differentiation pathway
and are hyporesponsive to activation through the BCR''®. This hypothesis was
elegantly supported by the finding that in the absence of HEL expression, mice that
express a high affinity anti-HEL IgM have very few T3 B cells. In contrast, when
HEL was present the T3 population comprised the vast majority of the transitional
B cells''®. Despite the lack of consensus regarding the stages of transitional B cell
development, it is generally accepted that transitional B cells can differentiate into
mature naive MZ and FO B cells, dependent on the environmental signals they
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receive''”. The current consensus is that the T2 population described by Loder et
al is a heterogenous population that contains T2 marginal zone precursor (T2-
MZP) and T2- follicular precursor (T2-FP) populations. Whilst T2-FP B cells can be
found in all secondary lymphoid organs, T2-MZP B cells are only resident in the
spleen'®. The phenotype of T2-MZP B cells based on the expression of CD21,
CD23 and CD24, as described by Loder and Pillai, will be used throughout this
thesis.

1.1.3.2 Anatomical features of the spleen

The spleen functions as a filter for both blood-borne pathogens and antigens, as
well as having pivotal roles in iron metabolism and the removal of old and faulty
erythrocytes from the blood'"®. Broadly speaking, the spleen is structurally
organised into two distinct compartments; the red pulp and the white pulp. The red
pulp consists of a mesh of fibroblasts and reticular fibores and red pulp
macrophages; the latter have a major role in the clearance of RBCs. The spleen
has no afferent lymph vessels and, as such, leukocytes can only enter the spleen
through the arterial vessels. Arterial blood traverses the cords of Billroth, which are
enriched in macrophages, and then moves into the venous sinuses of the spleens.
Due to the arrangement of the endothelial cells on the venous sinuses and the
connecting stress fibres, aging RBCs are unable to cross into the sinuses due to
the rigidity of their membranes. Consequently, the aging RBCs are stuck in the

cords of the red pulp and phagocytosed by the red pulp macrophages'?.

The white pulp of the spleen encompasses distinct anatomical compartments
which include the periarteriolar lymphocyte sheath (PALS), where there is a
predominance of T cells, and the follicle and marginal zone areas, where B cells
are located. The marginal zone surrounds both the PALS and B cell follicles'?". In
addition, the marginal zone also contains dendritic cells, marginal zone
macrophages (defined as SIGN-RI"MARCO") and metallophilic macrophages''®
122 Marginal zone macrophages have defined roles in pathogen clearance and
importantly liver X receptor alpha signalling in MZ macrophages is required for the
retention of MZ B cells in the marginal zone'?2,
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1.1.3.3 Functional characteristics of mature B-2 B cells

After leaving the bone marrow, transitional B cells migrate to the spleen. Whilst
residing in the spleen, T2 precursor populations can give rise to both FO and MZ
B cells. The maturation of T2 B cells into FO B cells mainly takes place in the
spleen, however T2 B cells can also develop into FO B cells in the bone marrow.
This was demonstrated by the presence of in situ maturation of B cells in the bone
marrow of splenectomised lymphotoxin (LT) o deficient mice, which also lack

secondary lymph nodes and Peyer’s Patches (PP)123 124,

FO B cells home to the follicles on a gradient of C-X-C motif chemokine ligand
(CXCL)13 and require the expression of C-X-C motif chemokine receptor (CXCR)5
to access and to be retained in the B cell follicles'?. The close positioning of FO B
cells to the T cell zone means these cells are ideally suited for T cell dependent
(TD) antibody responses. When a FO B cell encounters an antigen and receives T
cell help, it can either differentiate into a short lived plasma cell or can enter into
the GC reaction, in which the FO B cell can either become a germinal centre (GC)
B cell, long-lived plasma cell or memory B cell'?6. FO B cells are able to migrate to
the MZ, but are unable to reside there due to a lack of integrin-mediated adhesion
and, therefore, migrate into the red pulp'?’. Why FO B cells migrate to the MZ is
not known, but one plausible explanation is that this route is one possible way that
FO B cells can exit from the B cell follicles and circulate between the blood, spleen

and peripheral lymph nodes.

T2-MZP B cells migrate to the marginal zone of the spleen and differentiate into
MZ B cells, where they are retained and acquire the ability to self-renew'?6. The
retention of MZ B cells into the MZ is dependent on signals through the sphingosine
1-phosphate receptor 1 (S1P1) and the presence of the ligand sphingosine 1-
phosphate (S1P) in the blood. Signals through S1P4 prevent CXCL13-mediated
recruitment of MZ B cells to the follicle area of the spleen'?. The main source of
S1P in adults is RBCs and both the vascular and lymphatic endothelial cells, with
RBC’s accounting for the production of approximately 75% of plasma S1P in
mice129 130. 131,132 |mportantly, activation of MZ B cells via the BCR or by
lipopolysaccharide (LPS) leads to downregulation of S1P+1 and their movement of
MZ B cells out of the MZ'%2. In the MZ, retention signals are required to stop the
egress of MZ B cells. Integrins play a key role in this process, as combined
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inhibition of both a4p1 and lymphocyte function associated antigen 1 (LFA-1) leads
to the migration of MZ B cells out of the MZ'33, It is important to note the role that
mucosal vascular addressin cell adhesion molecule 1 (MADCAM1*) endothelial
cells play in the anatomical structure of the spleen and in MZ B cell function. In the
absence of S1P3, the single cell endothelial layer that lines the marginal sinus is
disrupted and the endothelial cells are dispersed’*. This loss of barrier function
has two main consequences. Firstly, MZ B cell numbers are increased and these
cells are more rapidly able to migrate to the B cell follicles. Secondly, MZ B cells in

this setting display less effective T cell independent antigen responses™34.

The location of MZ B cells, means that these cells are uniquely adapted to respond
to blood-borne antigens and pathogens, such as the encapsulated bacteria. The
position of MZ B cells allows for the first wave of humoral immunity against
pathogens and they can produce antigen-specific antibodies in a T cell
independent (TI) manner and a TD manner (at least in human MZ B cells). Tl
responses tend to be elicited against polysaccharides on the cell walls of
encapsulated bacteria’. In addition, MZ B cells are able to rapidly deliver
opsonised antigens from the blood, via capture by the complement receptor CD21,
and shuttle the antigen between the MZ and the follicles. Whilst in the follicles, MZ
B cells can transfer the antigens to follicular dendritic cells (FDCs), promoting T
cell dependent FO B cell responses’®. Indeed, around 20% of MZ B cells transit
between the compartments every hour. Moreover, owing to the high expression of
CD1d, MZ B cells can orchestrate immune responses via presentation of lipid
antigen to invariant natural killer T cells (iNKT). MZ B cells are also a key source
of lipid antigen specific antibodies™".

The functional characteristics of the humoral response vary between MZ and FO
B cells. In contrast to FO B cells, MZ B cells can produce natural antibody in the
absence of infection and are more likely to recognise self-antigen than FO B
cells'38, In addition, antibodies produced by MZ B cells tend to be of low affinity,
have a broader specificity and mostly belong to the IgM class'°. After interacting
with antigen, MZ B cells can rapidly differentiate into plasmablasts either in the
follicles or in extrafollicular foci and produce large quantities of IgM within the first
3 days of a primary response’? 141 Alternatively, MZ B cells can also produce IgA
and IgG after class switch recombination (CSR), which will be discussed later'42.
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Whilst FO B cells between mice and humans are functionally very similar, a number
of differences exist in MZ B cell phenotype and function between species. One
intriguing feature is that in humans, MZ B cells are also found outside of the spleen,
suggesting that, unlike in mice where they are sessile, in humans they can
recirculate'®. In particular, in humans, MZ B cells can be found in the subepithelial
dome of the Peyer's Patches'4, the epithelium of tonsillar crypts'® or in the
subcapsular sinus of lymph nodes'®. Interestingly, MZ B cells in humans (defined
as IgM"lgD'**CD1¢c*CD21MCD23-CD27*) are phenotypically similar to memory B
cells, in that both populations express CD27 and contain mutated V(D)J genes.
Indeed, a proportion of these cells retain a molecular programme that indicates
that these cells have previously been in a germinal centre reaction, which suggests
they have exited the GC reaction before CSR'#": 148 However, this population is
distinct from memory B cells as they have fewer IgV mutations and fewer past cell
divisions than memory B cells, and also express IgD'4°. Mouse MZ B cells express
non-mutated IgV mutations, a proportion of which encode for a polyreactive BCR.
On the other hand, approximately 90-95% of human MZ B cells have mutated IgV
regions'® 148 However, the processes governing MZ B cell development in

humans remain poorly understood.

1.1.3.4 MZ vs FO B cell fate decisions

The differentiation of a T2 B cell into a MZ or FO B cell is a complex process, which
involves the integration of signals though the BCR, BAFFR, NOTCH2, the
canonical NF-kB pathway and regulation of these pathways through the
expression of microRNA’s and RNA-binding proteins (RBPs). The strength of BCR
signalling is a crucial component in what determines the differentiation into either
aMZ or FO B cell. It is well established that weak BCR signalling favours MZ B cell
differentiation, whilst strong BCR signalling favours FO B cells'?. Absence of
functional positive or negative regulators of BCR signalling lead to defects in either
MZ or FO B cell development. Bruton’s tyrosine kinase (BTK) is a crucial
component of the BCR signalling cascade, which promotes activation of the NFAT
and NF-«xB pathways. Absence of the BTK protein in humans leads to the primary
immunodeficiency X-linked agammaglobulinemia (XLA), in which there is a severe
block in B cell differentiation in the bone marrow'®°. However, mice with a loss of

function mutation in the Btk gene present with a milder phenotype, with only an
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impairment of mature B cells in the periphery'™'" 152 Activation of BTK
phosphorylates and activates phospholipase Cy2 (PLCy2)'®3. Loss of function
mutations in PLCy2 also result in a reduction of FO B cells'®* 155, This phenotype
is also observed in mice lacking CD45 (a positive regulator of BCR signalling),
which can be reversed upon reciprocal deletion of the negative regulator SHP1"%6.
In contrast, deficiency of both AIOLOS and CD22 (two negative regulators of BCR
signalling) lead to a reduction in MZ B cells'®": 58159 |n both cases BCR signalling
was increased, supporting the notion that strong BCR signals favour FO B cell
development over MZ B cells. In support of these findings, mice lacking sialic acid
esterase (SIAE) and CMP N-acetyl hydroxylase (CMAH), two enzymes which
promote the generation of sialic acid ligands for CD22, have increased BCR
signalling and reduced numbers of T2-MZP B cells and MZ B cells'®°,

Although signals through the BCR are a pre-requisite for survival and for the
maturation of B cells, other signals feed into regulating the differentiation potential
of a T2 B cell into a MZ or FO B cell. Both tonic BCR signalling and BAFFR
signalling promote the survival of B cells up until the FO B cell stage through the
non-canonical NF-kB pathway. This process is mediated by increasing the levels
of the NF-«B precursor p100 and by promoting the cleavage of p100 to p52 by the
lxB kinase o (IKKa)'®! 162, Although BAFFR mainly signals through the non-
canonical NF-xB pathway in transitional B cells, signals through this receptor can
also activate the canonical pathway'?6. Mice lacking p50 have a defect in MZ B cell
development. This is also true, but to a lesser extent, in the absence of C-REL or
RELA, suggesting that the NF-xB complexes are partially involved in marginal zone

B cell development®3.

Unlike in FO B cells, NOTCHZ2 signalling is required for the differentiation of MZ B
cells'64.165 Both T2-MZP and MZ B cells are absent in mice with a B cell deficiency
of NOTCH2, the receptor for delta like-1 (DL1), indicating the importance of this
pathway for inducing the differentiation of T1 B cells into T2-MZP and then MZ B
cells'®. Transitional B cells are rendered responsive to NOTCH?2 signalling by the
BCR-dependent upregulation of ADAM10, which cleaves NOTCH2 and releases
the intracellular domain (NICD) to activate downstream gene targets in tandem
with other signalling components'®. Mice lacking NOTCH2, the signalling
components of the NOTCH pathway RBP-Jkx and Mastermind-like 1 or the Notch
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ligand DL1 have reduced numbers of MZ B cells in the spleen'®* 167. 168,169 The
exact transcriptional programme initiated by NOTCH2 signalling in MZ B cells is
not clear, but is thought to involve the E2A and the 1D2/ID3 proteins; the latter

promoting MZ B cell differentiation”°.

Recent evidence also points to an increasingly important role of microRNA’s and
RBPs in the post-transcriptional regulation of gene networks regulating B cell
development. The RNA-binding protein ZFP36L1 promotes the maintenance of the
MZ B cell compartment by actively limiting the expression of the transcription
factors interferon regulatory factor (IRF)8 and Kruppel like factor (KLF)2; two
factors known to implement the FO B cell transcriptional programme'”": 172, |In the
absence of KLF2, the marginal zone B cell population is expanded’”3 174, This is in
direct contrast to KLF3, which promotes MZ B cell development'’®. Direct binding
of microRNA’s (miRs) to the 3’ complementary untranslated regions (UTR) of target
messenger RNA (mMRNA'’s) regulates B cell development. Both miR-146a and miR-
142, respectively promote or repress the generation of MZ B cells'® 177 Absence
of the endonuclease DICER, the enzyme responsible for the generation of small
interfering RNA’s and miRNA’s, also promotes MZ B cell development, suggesting
an important role of post-transcriptional regulation in governing mature B cell
differentiation'’8. Interestingly, miR-146a is upregulated by NF-«B signalling and

targets components of the NOTCH pathway'"6: 179,

1.1.3.5 Initiation of the Germinal Centre Response

The GC is the location in which mature B cells undergo affinity maturation and
isotype switching. Throughout the maturation process of a B cell, affinity to an
antigen, be it ‘self’ or non-self, and the strength of BCR signalling decides the fate
of the B cell, through both negative and positive selection. One of the defining
features of a mature B cell and the humoral immune response is the incremental
increase in antibody affinity over time through somatic hyper-mutation (SHM),
driven by the enzyme activation-induced cytidine deaminase (AID)'® 81, This
process occurs in the primary response with an antigen and upon secondary
challenge to an antigen'®. These B cell clones are then negatively and positively
selected within the GC and compete for signals in an affinity dependent manner.
Successful B cell clones then undergo an intense burst of proliferation and
maturation either into antibody secreting plasma cells or into memory B cells.
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The germinal centre can be split into two distinct anatomical compartments. The
region which is closest to the T cell zone and mainly absent of FDCs is the dark
zone (DZ). The region which is closest to the MZ in the spleen, which is rich in
FDCs and is distal to the T cell zone, is known as the light zone (LZ)'8. Within the
DZ reside the highly proliferative B cells, also known as centroblasts, which
express high levels of the chemokine receptor CXCR4'84, The centroblasts are
retained in the DZ by CXCL12-expressing reticular cells'. The DZ is considered
to be the site of SHM, as the DZ B cells have high expression of AID. In contrast,
the LZ contains centrocytes (GC B cells found in the LZ, which are not actively
proliferating), and many more FDCs, infiltrating naive B cells and T follicular helper
cells (Tfh) than the DZ'%6.

The entire GC process is contingent upon exposure of an antigen-reactive B cell
to their cognate antigen in its native conformation'®. Recognition of antigen
primarily takes place in secondary lymphoid organs, where these organs are
specialised in filtering blood and lymph. There is also a continual migration of cells
to and from these organs. Both these factors combined increase the chances of a
B cell to encounter its cognate antigen. The initial capture of antigen is mediated
by different cell types, according to the secondary lymphoid organ. In the case of
the lymph nodes, antigen capture is carried out by specialised macrophages in the
subcapsular region'®. In the follicular regions in the spleen, FDC’s capture and
display opsonised antigens on the dendritic processes. These tail processes are
in contact with the follicular B cells'®. Indeed, in B cell follicles which lack GCs,
FDCs play a crucial role in organising the B cells into compact clusters'. In the
GCs of both spleens and lymph nodes, FDCs are key for the survival of GC B cells.
In the absence of toll like receptor (TLR)4 signalling in FDCs, both the GC size is
reduced and there is a reduction in the affinity of the BCRs, due to impaired SHM.
FDC TLR4 responses are driven in vivo by endogenous oxidised phospholipids®.
In addition, FDCs can retain antigen for several weeks. This process is important
for testing the affinity of the BCRs on B cells that have undergone SHM'88 191,

The retention of antigen is critical, as B cells which migrate into the follicles survey
the antigen presented by FDCs and subcapsular macrophages. Migration to the

follicles is guided by FDC and stromal cell derived CXCL13 and oxysterol 7a.25-
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hydroxycholesterol production. Production of these two chemoattractants recruit
antigen naive B cells to the outer follicle, through binding to the CXCR5 and
Epstein Barr virus induced gene 2 (EBI2) receptors respectively. It is important to
note that in GCs EBI2 is strongly downregulated, which prevents migration of GC
B cells to the outer follicle'9? 193. 194 Retention of GC B cells in the centre of the
follicle is also maintained by expression of S1P2, which inhibits the migration of GC
B cells in response to follicular chemoattractants’®. Antigen activation induces the
upregulation of C-C motif chemokine receptor (CCR)7 and EBI2, which trigger the
migration of B cells to the T cell-B cell border, where they receive co-stimulatory
signals from CD4* T cells'. Importantly, antigen activation of the BCR leads to
the internalisation of the receptor and, ultimately, transfer of the antigen to the
lysosomes for proteolytic processing ready for loading to MHC class || molecules.
MHC molecules then present the cognate antigen to CD4* T helper (Th) cells'®. If
a B cell is unsuccessful in encountering an antigen, it will exit the lymphoid tissue

in response to S1P, via expression of S1P1'%,

B cell activation by CD4* T helper cells is a multistep process. Firstly, naive CD4*
T cells are primed by dendritic cells that present antigen in the context of MHC
class IlI, and express CD80/CD86. The integration of these signals with IL-6,
inducible T cell co-stimulator ligand (ICOSL) and IL-2 are required for the initiation
of the Tfh cell differentiation programme (pre-Tfh cells)'% 2%, Key to this process
is the upregulation of BCL6 and CXCRS, which allows for the migration of the
activated T cells to the T-B cell border' 200, B cells receiving T cell help will either
initiate the GC response or differentiate into short-lived plasma cells or GC-
independent memory B cells based on the strength of BCR activation?! 202,
Extrafollicular plasma cells are an important early source of antibodies in the fight
against infection, whilst the GC response is being initiated'®’.

Cell fate decisions promoting GC B cell differentiation incorporate many cell signals
derived from Tfh cells. LFA1 on Tfh cells binds intracellular adhesion molecule
(ICAM)1 and ICAM2 on B cells to form long-lasting cognate interactions, which
promote B cell clonal expansion and GC seeding?®®. Optimal B-T cell interactions
depend on the co-stimulatory molecules CD86:CD28, ICOS:ICOSL and also on
homotypic interactions between members of the signalling lymphocyte activation
molecule (SLAM) family (namely SLAM, Ly108 and CD84)'%7-204_ SLAM pathway
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interactions are important for IL-4 production by Tfh cells, which in turn influence B
cell proliferation®®. IL-4 in tandem with IL-21 produced by Tfh are crucial for
promoting B cell proliferation, CSR and ultimately differentiation to memory B cells
or plasma cells'®. Notably, IL-21 signalling seems to be more important for the
transition of pre-GC B cells to the intrafollicular GC B cell stage?°®. However, both
cytokines are key for the induction of Bcl6 and Aicda, which are both crucial in the
GC response?%: 207 |n addition, CD40-CD40L interactions co-operate with IL-4
signalling to induce Aicda in B cells?%®. Moreover, activation of CD40 by Tfh CD40L
expression can induce ICOSL expression in mouse GC B cells, leading to a
positive feedback loop in B-T cell interactions?®. It is important to note that
expression of PDL1 and PDL2 on B cells can negatively regulate the GC response,
by inhibiting Tfh recruitment into the follicle?®®. Once B-T cell help interactions are
concluded, B cells will migrate to the centre of the follicle and initiate the GC

response.

In recent years, a new population of regulatory T cells (Treg) called T follicular
regulatory cells (Tfr), which express the bona fide Treg transcription factor FOXP3,
have been shown to display regulatory properties within the GC response?'® 21",
Tfr cells play an important role throughout the GC process from the initiation of the
GC response to the resolution of a GC and also contribute to the inhibition of
autoantibody production?'?. The exact mechanism of Tfr cell regulation of the GC
response is still being elucidated, however it is believed to involve expression of
the co-inhibitory receptor cytotoxic T-lymphocyte associated protein 4 (CTLA-4)

and to halt the expansion of both Tfh cells and GC B cells?'3 214,

1.1.3.6 Positive and negative selection of clones within the GC

Following the migration of activated B cells to the dark zone, centroblasts undergo
SHM. SHM is the process by which stepwise point mutations are introduced into
the Ig V genes. Both SHM and CSR is driven by the expression of AID, which
deaminates cytidine residues in the Ig gene?'s. Due to the high rate of mutation
and the fact that AID targets single stranded DNA at transcriptionally inactive sites,
AID can damage the genome and lead to chromosomal translocations, thereby
leading to GC lymphomas?'¢. The high mutation rate generates successive BCR
clones which change the affinity of the BCR, in a process known as affinity

maturation.
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After activation, B cells can change the isotype of their BCR through CSR from IgM
and IgD to IgA, IgE or IgG, with each Ig isotype having distinct immunological
functions. As with SHM, CSR requires the expression of AlD. Recent studies have
also implicated a role of the aryl hydrocarbon receptor (AHR) in the regulation of
CSR, due to its direct binding and negative regulation of the Aicda gene?'”. Due to
the excision of DNA regions during CSR, a stepwise approach to the induction of
different Ig isotypes is maintained such that an IgG™ B cell can switch to IgE*, but
not vice versa'¥’. Selection of the relevant isotype is driven by T cell help?8 219,
Until recently, GCs have been considered to be the main site where CSR takes
place??. Using immunisation models and examining first germline transcripts
(GLTs), a marker of CSR, Vinuesa and colleagues have recently shown that CSR
takes place before GC or extrafollicular B cell differentiation stages at the B-T cell
border. The authors suggest that this mechanism occurs as a way to restrict and
prevent the long-term survival of B cell clones with pathogenic double-strand
breaks??'.

Typically, proliferation and hypermutation of GC B cells occurs in the DZ. The B
cell clones are then tested for affinity in the LZ, in a competitive manner, for antigen
presented by FDCs'®. Dependent on the mutations generated, B cell clones will
undergo positive and negative selection events within the germinal centre. The
germinal centre reaction is a dynamic process with a constant migration of GC B
cells between the LZ and DZ compartments. All the meanwhile, GC B cells undergo
successive cycles of SHM and proliferation and are prone to selective pressures
within the GC. This holds true for clonal populations of cells, which will undergo
contraction or expansion based on the relative fitness of the population'®. The
process of migration between the LZ to the DZ is known as cyclic re-entry and is
required for a greater degree of affinity against an antigen®?2. Subsequent studies
have provided experimental evidence for this process, using in vivo imaging to
illustrate the bi-directional nature of GC B cells??3. The transition into the LZ is
contingent upon GC B cells undergoing a set number of cell divisions, and the
downregulation of CXCR4 alone is not enough for migration to the LZ'8: 224, |t is
estimated that 10-30% of B cells in the LZ re-enter the DZ after positive selection
in the LZ?25.
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In recent years, the mechanism of positive selection has been elucidated and
confirmed by a number of in vivo studies. Antigen presented by FDCs in the LZ is
retrieved by BCRs expressed by GC B cells in an affinity-dependent manner. GC
B cells with a higher affinity BCR are more likely to retrieve the antigen than a GC
B cell with a lower affinity BCR?%%. Antigen retrieved in this manner is presented to
Tth cells. By limiting the number of Tfh cells present in the LZ, GC B cell clones
undergo selective pressure and compete for T cell help. The number of antigen
loaded MHC class Il molecules vary between different GC B cell clones, with GC
B cells with high affinity BCRs taking up and processing more antigen on MHC
class Il molecules. A competitive advantage exists for GC B cells with increasing
amounts of peptide MHC (pMHC) concentrations on their surface and it is these
cells that have strong interactions with Tfh cells and receive signals for cyclic re-
entry??’. Contact duration of GC B cells with Tfh cells is increased in those cells
with higher levels of pMHC?28. This mechanism allows for an indirect sensing by
Tfh of BCR affinity and shows that T cell help is required for the cyclic re-entry of
GC B cells to the DZ?# 22°_ |t is important to note, that the strength of T cell help
will determine the number of cell divisions a GC B cell will undergo in the DZ and
promotes the survival of a clonal population based on their ‘fitness’, by
accumulating increased numbers of the same B cell clone??°. Tfh production of IL-
4, IL-21, BAFF and expression of CD40L are all key essential survival signals for
GC B cells, with GC B cells exposed to increasing amounts of these signals based
on the levels of surface pMHC?%8. 230,

Re-entry into the DZ leads to the downregulation of pMHC on GC B cells, thus
ensuring that any newly generated BCR can undergo successive cycles of
selection and prevent any autoreactivity to self-antigen?3'. In addition, it has
recently been discovered that soluble antibodies can compete with newly
generated B cell clones for antigen expressed on FDCs, thus ensuring the survival
of the clone with the highest affinity and preventing BCRs with overlapping
specificities?®2.

Due to the random nature of SHM, deleterious effects of hypermutation may also
occur in the IgV gene leading to the recognition of ‘self’. A number of checkpoints
exist to regulate and eliminate any self-reactive B cell clones. An elegant study by
Chan et al showed that self-reactive GC B cells are only eliminated if the self-

44



antigen is present in the GC microenvironment. GC B cells which recognise other
tissue specific antigens were not subject to negative selection?®3. Complementing
the elimination of self-reactive GC B cells, under certain conditions, anergic self-
reactive IgM°lgD* GC B cells could re-enter the DZ to undergo SHM thereby

eliminating autoreactivity in these clones?**.

It was previously thought that only a few clones could inhabit a single GC2%.
However, in recent years this view has been challenged. The number of clones
inhabiting a single GC in the early stages of GC formation vary greatly, but can
exceed more than 100. GCs can lose clonal diversity at varying rates dependent
on a host of factors, including the strength of T cell help and based on the antigen-
related properties. However, clonal bursts (rapid proliferation) of high affinity SHM
variants can lead to loss of clonal diversity?*. GC lifespan varies greatly,
dependent on the type of immune stimulus. Certain vaccines or chronic viral
infections, or indeed inflammation in autoimmune disease, can lead to GCs which
remain active for long periods of time?*’. However, the requirements needed for

long-term GC maintenance are not very well defined.

1.1.3.7 Mature B cell fate decisions

The cell fate decision for a mature B cell to either differentiate into a memory B cell
or plasma cell occurs at two distinct stages, either at the T-B cell border when the
mature B cell receives T cell help or after positive selection in the LZ'%. B cells that
are differentiating towards plasma cells are called plasmablasts and are defined
by their continued proliferation, which ceases when a cell terminally differentiates
to a plasma cell?®®. What determines this cell fate decision is still under intense
study. Two key determinants in this response are the affinity and isotype of the
BCR. As is the case for both at the B-T cell border and after positive selection in
the GC, B cells with a higher affinity for antigen will preferentially differentiate into
plasma cells. Antigen receptor signals are required for the initiation of this process,
but T cell help is essential for the completion of differentiation?3®. Depending on the
stage of activation of B cells in the GC process by their cognate antigen, these
cells can either differentiate into short-lived or long-lived plasma cells (SLPCs or
LLPCs). B cells which differentiate at the B-T cell border tend to be short-lived and
remain in the peripheral lymphoid tissue. In contrast, GC B cells in the LZ can give

rise to LLPCs and live for several months?®®. The isotype of the BCR also
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influences plasma cell differentiation. Intriguingly, B cells with the IgE subclass
favour differentiation into non-GC derived SLPC, and not MBCs or LLPCs?4°.

The differentiation into plasma cells requires the induction of a transcriptional
programme that enables the plasma cell to secrete large amounts of
immunoglobulin, to relocate to different niches and to support the long-term
survival of the cell. This programme is primarily driven by the expression of B
lymphocyte-induced maturation protein 1 (BLIMP-1), encoded by PR domain zinc
finger protein 1 (Prdm1), X-box binding protein 1 (XBP1) and IRF4 and through the
silencing of the B cell transcriptional programme?®. Due to the high
immunoglobulin turnover, PCs are prone to ER stress from the accumulation of
unfolded proteins. XBP1 is induced by endoplasmic reticulum (ER) stress and
plays a particularly vital role in regulating the rate of immunoglobulin secretion,
processing of /lgh mRNA and in promoting an organised ER morphology in plasma

cells1: 242,

BLIMP-1 is essential for the differentiation programme of a mature B cell into a
plasma cell. Rapidly dividing plasmablasts can be distinguished from PCs by their
intermediate expression of BLIMP-1, in contrast to the high expression in plasma
cells?®*3. Although essential for the formation of mature plasma cells, BLIMP-1 is
not required for the initiation of plasma cell differentiation, as shown by the
generation of a pre-plasmablast population in its absence?**. BLIMP-1 is primarily
thought to suppress key regulators of the B cell programme. However, it has since
been shown to have a multifactorial role in regulating the developmental
programme of plasma cells®*5. As well as suppressing both Aicda and other B cell
programme specific transcription factors, BLIMP-1 induces the transcription of the
immunoglobulin genes, regulates the post-translational switch mechanism
responsible for the production of a secretory form of immunoglobulin and recruits
chromatin remodelling complexes to its target genes. BLIMP-1 is required for the
induction of IRF4, another key transcription factor involved in the plasma cell
differentiation programme, thus illustrating the essential role of BLIMP-1 in
orchestrating an interconnected transcriptional programme?*. IRF4 itself is
important in the induction of Prdm1 and is essential for the differentiation of plasma
cells and for promoting their survival?*é. In the absence of IRF4, plasma cells fail
to survive?*’- 248 Despite the notable functional and phenotypical differences
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between SLPCs and LLPCs, the transcriptional programme governing the fate
decision between these two populations remains largely unknown. A recent study
has illustrated the role of the zinc finger protein ZBTB20 in establishing a pool of

LLPCs in response to some immunisations, but not others?4°.

Once a cell differentiates into a plasma cell, it migrates from the GC and homes
primarily to the bone marrow niche. However, other tissue-specific niches have
been described within the spleen and lymph nodes?%°. Exit from the lymphoid tissue
requires the upregulation of S1P1'%7. Plasma cells upregulate different chemokine
receptors required for homing to their respective niches. For migration to the bone
marrow CXCR4 expression is required, whilst homing to the gut requires
expression of CCR9 and CCR10". Whilst in their respective niches LLPCs
receive survival signals that promotes their survival. The extent to which their
longevity is down to survival signals in the niches versus the intrinsic features of
the LLPCs is not clear'¥".

In contrast to plasma cells, the cell derived signals and transcription factors
controlling memory B cell (MBC) differentiation are much less well characterised.
Much like in plasma cells, MBC differentiation is influenced by the BCR isotype, as
well as by signals through CD40 and cytokines. IL-9, for instance, promotes the
generation of memory B cells?®'. Unlike the defined transcriptional programme of
plasma cells, no unique transcription factor of MBC differentiation has been
identified. However, GC B cells which express higher levels of BACH2 have the

propensity to seed the MBC pool®%2.

Historically, it was thought that all MBCs had undergone CSR and were derived
from GC B cells. Later this notion was revised, as BCL6 deficient B cells, which
can’'t form GC, differentiated into IgM and IgG1 MBCs in the spleen, suggesting
that not all MBCs go through the GC reaction?®3. However, GC B cells still give rise
to a large proportion of the MBC pool?®4. For the most part MBCs are a recirculating
population of cells, but they can also be tissue resident?>®>. MBCs found in the
lymph nodes, are located in the subcapsular niche, which predisposes MBCs to
rapid exposure to antigen?®. Shlomchik and colleagues showed that the MBC pool
in mice can be divided into 5 populations based on their expression of PD-L2,
CD80 and CD73, with these populations differing in their ontogeny and
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selection?®’. It has since been shown that CD80-PD-L2- MBCs mainly seed the
GCs, whilst CD80*PD-L2* MBCs rapidly differentiate into plasma cells, upon
rechallenge with a TD antigen?%8,

Upon re-exposure to antigen, MBCs can migrate to the bone marrow and rapidly
differentiate into LLPCs?%*. The predisposition of MBCs to differentiate into LLPCs
upon antigen exposure, seems partially dependent on the downregulation of
BACH22%2, The notion that MBCs, in a secondary response to antigen, are the main
source of B cells to enter the GC has recently been challenged. Instead, naive B
cells without prior GC exposure appear to be the main source of cells which
repopulate the GCs (over 90%) in a secondary response to an antigen®®. B cell
maturation in the spleen and the signals and transcription factors which define

these processes are summarised in Figure 1.2.
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Figure 1.2. B cell differentiation in the spleen. Transitional 1 B cells in the periphery
migrate to the spleen, upon where they differentiate into T2 precursors seeding both the
MZ and FO B cell pools. FO B cells, upon encounter with antigen, can directly differentiate
into SLPC, memory B cells or GC B cells. GC B cells can either reseed the GC, give rise
to LLPCs or memory B cells, dependent on the strength of BCR signalling and on the

isotype of the BCR.

49



1.1.4 B cells as orchestrators of the immune response

Although B cells are primarily recognised for their role in producing antibodies, B
cells can also co-ordinate immune responses through antigen presentation and
through co-stimulatory signals’. One of the features of B cells is their ability to act
as an antigen presenting cells (APC). Native antigen captured by the BCR can be
endocytosed, loaded onto MHCII molecules and presented to CD4 and CD8 T
cells. Alternative means of access to antigen for presentation by MHC molecules
include fluid phase pinocytosis and macroautophagy?®°. However, BCR mediated
presentation is by far the most efficient mechanism of antigen presentation®®’.
Multiple factors contribute to the efficiency of BCR-mediated antigen presentation.
Firstly, the high affinity of the BCR allows for the efficient capture of antigens, even
at very low concentrations. Secondly, B cells can retain their antigen-BCR
complexes for extended periods of time allowing time for the cognate recognition
of the antigen by T cells?%2. The locale of mature B cells and their ability to survey
the secondary lymphoid tissue makes encounter with their specific antigen much
more likely. Lastly, antigen-specific MHCII activate their cognate T cell and leads
to the upregulation of co-stimulatory molecules on both B and T cells. Antigen
activation of the BCR leads to the upregulation of CD80 and CD86, alongside MHC
class I, which interact with CD28 and the T cell receptor (TCR) on T cells
respectively?®°. B cells are also important for the presentation of lipid antigens to
iINKT cells, leading to INKT activation and suppression of excessive

inflammation263. 264,

Cytokine production by B cells is important for shaping the immune response and
the development of lymphoid tissue, both positively and negatively regulating
immune cell activation?®. Harris et al showed that cytokine secreting B cells could
be divided into two distinct effector populations, B effector 1 (Be1) and Be2, based
on the microenvironmental cues that the B cells receive. Be1 cells produce
interferon-y (IFNy) and TNFa, whilst Be2 produce IL-4, IL-6 and IL-13 in vitro, which
could subsequently influence the differentiation of naive CD4* T cells into Th1 or
Th2 cells respectively. In addition, the authors identified that Be1 were increased
in Toxoplasma gondii infected mice, whilst Be2 cells were the predominant
cytokine producing B cells in Heligomosomoides polygyrus infected mice; two
microorganisms known to induce Th1 and Th2 type responses respectively?®.
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Since this seminal study, the reported list of cytokines produced by B cells have
grown, with demonstrated roles in shaping T helper cell and innate immune
responses. EBV transformed mouse B cells produce IL-5, which promotes the
proliferation of eosinophil precursors?®’. Moreover, B cell expression of
lymphotoxin and tumour necrosis factor a (TNFa) are required for the formation of

B cell follicles in the spleen and in the development of follicular dendritic cells?%®
269, 270

Cytokines produced by B cells can also shape T helper cell differentiation into Th1,
Th2, Th17 or Tfth cells. B cells produce IL-2 in response to H polygyrus and T
gondii. In turn, IL-2 produced by B cells promotes the polarisation of naive CD4* T
cells to Th2 cells and the formation of memory T cells?’!. The cytokine granulocyte-
macrophage colony-stimulating factor (GM-CSF) activates DCs that promote Th1
differentiation?’2. GM-CSF production by B-1a cells is important for the survival of
mice from Escherichia coli and Streptococcus pneumoniae. GM-CSF produced by
these cells acts in an autocrine manner and promotes the rapid production of
natural  polyclonal  IgM?3.  Furthermore, @ GM-CSF  production by
CD138MgMMB220*CD21-CD23-CD43"VLA4" plasma cells expands the numbers
of classical dendritic cells that promote Th1 responses and increases inflammation
in atherosclerosis?’4. Another important cytokine produced by B cells with
pleiotropic functions is IL-6. Production of IL-6 leads to the expression of IL-21 in
CD4* T cells and influences Tfh differentiation?”5. Furthermore, IL-6 activates both
Th1 and Th17 cells in experimental autoimmune encephalomyelitis (EAE)?76: 277,
Lastly, B cells are also able to secrete IL-17A and IL-17F. Modification of CD45 by
T. cruzi trans-sialidase leads to the induction of IL-17 in mouse extrafollicular IgM"

plasmablasts and in human B cells?’8,

B cells are also known to produce chemokines including CCL3, CCL4, CCL17 and
CCL22, which are important for the recruitment of immune cells in infection and
play a role in the pathogenesis of autoimmune diseases. CCL3 is a
chemoattractant that binds to the chemokine receptors CCR1, CCR3 and CCR5
on a wide variety of cell types, including T cells?’®. B cell derived CCL3 in T. gondii
infection recruits CD4* T cells and enhances CD4* T cell IFN-y production?®. On
the other hand, recruitment of Tregs to B cells or other APCs is facilitated by the
expression of CCL4%8'. Both the closely related chemokines CCL17 and CCL22
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are expressed by B cells and are important in the recruitment of activated T cells,
primarily Th2 cells and CD4*CD25* Tregs?82 283 284, 285,

B cells are also a crucial source of anti-inflammatory cytokine mediators important
for the resolution of inflammation. Dependent on the inflammatory context, B cells
can produce IL-35, transforming growth factor beta (TGF-$1) and IL-10, which will

be discussed in depth in the next section.
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1.2 Regulatory B cells

1.2.1 Introduction to the field

Regulatory B cells (Bregs) is a collective term given to B cells that suppress or
regulate inflammation and promote tolerance through a variety of mechanisms.
Historically, Breg function has been identified by their role in regulating pathogenic
T cell responses, but this has been expanded to show that Bregs can influence a
wide variety of other cell types, including conventional dendritic cells (DCs), INKT

cells and monocytes, amongst others?8.

The suppressive function of B cells was first proposed in the 1970’s in studies
examining delayed type hypersensitivity (DTH) reactions using either 2,4
dinitrofluorobenzene (DNFB) or ovalbumin (OVA) in incomplete Freud’s adjuvant
(IFA) or paraeminobenzoic acid-Hen egg albumin conjugate (PABA-HEA) in
guinea pigs. Increased intensity and prolonged DTH reactions were observed in B
cell depleted DNFB sensitised guinea pigs?®’. Later studies showed that adoptive
transfer of lymphocytes or total splenocytes suppressed the intensity of the DTH
response®® 289 These cells were dubbed “suppressor B cells”. However, the
mechanisms behind the suppressive response were never investigated and the
study of B cell regulation was not renewed until the 1990’s, when it was observed
that B cell deficient mice developed an exacerbated form of EAE?®. After these
initial observations, three key studies identified that B cell mediated suppression
was dependent on the expression of IL-10 in mouse models of colitis, EAE and
collagen induced arthritis (CIA), as will be discussed throughout this section?®': 292
293 |L-10-expressing B cells were coined as regulatory B cells; a term which now

encompasses a wide variety of subsets and mechanisms of suppression.

1.2.2 Signals required for Breg differentiation

Evidence in the literature shows that Bregs increase in response to inflammatory
signals. Although far away from having identified all the signals that induce their
differentiation, it appears that Bregs differentiate in response to a combination of
pro-inflammatory cytokines and in response to activated T cells and plasmacytoid
dendritic cells (pDCs). The current extent of our knowledge is hampered by the
lack of a transcription factor unique to Bregs, and the reliance on looking at IL-10
expression and suppressive capacity to define and identify Bregs. In the context of
this thesis, | define Breg differentiation as the ability of a precursor population to
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acquire the ability to start producing IL-10 and to become suppressive. The stimuli
known to be involved in the differentiation of murine Bregs are summarised in

Figure 1.3.

1.2.2.1 BCR and antigen specificity

Although the role of antigen specificity in the function of Bregs remains to be fully
elucidated, there are several lines of evidence suggesting that antigen specificity
plays a role in the differentiation of Bregs. EAE is the most commonly used
experimental model to examine autoimmune inflammatory disease of the central
nervous system and shares some of the clinical features associated with multiple
sclerosis in humans. To induce EAE, mice are immunised with the myelin
oligodendrocyte glycoprotein (MOG) antigen in complete Freund's adjuvant
(CFA)?*4, Chimeric mice reconstituted with MD4 B cells that carry the IghelMD4
transgene and therefore specifically recognise the HEL antigen?%®, developed a
more severe course of EAE disease, compared to mice reconstituted with wild type
(WT) B6 B cells?®2. These results suggest that in EAE, B cells require activation
through the BCR by the MOG antigen to elicit suppressive function. Supporting this
data, MD4 mice have reduced frequencies of splenic IL-10-producing CD1d*CD5"*
B cells (B10); a population previously ascribed with regulatory capacity?®. In CIA,
type Il collagen (Cll) antigen activation of the BCR enhances CD40-induced IL-10
production in total B cells and in T2-MZP B cells?%3 2%, Moreover, adoptive transfer
of T2-MZP B cells isolated from mice immunised with MOG in CFA, failed to
suppress the development of arthritis (unpublished data). It is important to note
that in this experiment mice were immunised with CIl in CFA following the adoptive
transfer of T2-MZP B cells. A role of self-antigen in the differentiation of Bregs has
also been proposed. TgVnu3B4 mice which have polyreactive natural antibodies
against self-antigens such as actin and keratin, have increased numbers of B10
cells. Indeed, immunisation with actin increased the numbers of B10 cells in these
mice, suggesting that positive selection of B10 cells occurs through self-antigen
activation of the BCR?%,

Both the strength of BCR activation and activation of its downstream signals are
involved in the induction of IL-10. Mice with a loss-of-function point mutation in
p1108, a PI3K subunit downstream of the BCR, develop spontaneous inflammatory

bowel disease (IBD), implicating that BCR activation plays an important part in the
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differentiation of Bregs2®®. Although no link was made in this study, it could be that
BCR driven IL-10 production was reduced in these mice, as //70”- mice develop a
similar spontaneous form of colitis®®. B cell expression of stromal interaction
molecules (STIM) 1/2 is required for BCR driven IL-10 production in B10 cells®°".
BCR activation triggers store-operated Ca?* influx and this process requires the
endoplasmic reticulum calcium sensors STIM1/23%2, B10 cells from mice lacking
expression of STIM1/2 exclusively on B cells (Stim17Stim?Mb1¢®*) have a
marked reduction of secreted IL-10, following stimulation with LPS+anti-IgM
compared to B10 cells from Mb1°* controls, due to decreased activation of NFAT.
As a result of the reduced IL-10 production by B cells, these mice developed a
more severe EAE compared to WT mice. Adoptive transfer of IL-10-IRES-GFP
transduced Stim17Stim?”Mb1°¢* B cells into uMT recipient mice, reduced the
severity of EAE, corroborating the role of the BCR in the suppressive function of
Bregs3?'.

The BCR co-receptors are also involved in the differentiation of Bregs. Mice lacking
the co-receptor CD19, develop exacerbated inflammation in a number of models
of inflammation including contact hypersensitivity (CHS), spontaneous models of
lupus and dextran sulfate sodium (DSS) induced colitis, whilst overexpression of

CD19 increases Breg number and reduces inflammation in CHS303, 304, 305, 306

1.2.2.2 CD40 and other cognate interactions with T cells

CD40 is a co-stimulatory transmembrane receptor, expressed on B cells, DCs,
macrophages, monocytes and in some non-haematopoietic cells such as
endothelial cells. Expression of CD40 is required for a wide range of B cell
functions including, but not limited to, formation of GCs, CSR, induction of
cytokines, lowering the threshold required for BCR signalling and for upregulating
the expression of MHCII and other co-stimulatory receptors3?’. CD40 activation is
a key inducer of cytokines in B cells, with known roles in promoting the expression
of IL-6, IL-10, IL-12, LTa, TGF-B and TNFa3%.

Ever since the first studies identifying and characterising Bregs, CD40 has been
linked to the differentiation of Bregs. Mizoguchi and colleagues were the first to
identify a role of CD40, CD80 and CD86 in B cell mediated suppression, using

adoptive transfer of B cells into Tcra”uMT mice. Tcra’~ mice develop a
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spontaneous form of chronic colitis resembling ulcerative colitis in humans. Unlike
untreated B cells, B cells treated with blocking anti-CD40, anti-CD80 or anti-CD86
antibodies before adoptive transfer to o™ mice were unable to limit the pathogenic
function of ap'¥ T cells in colitis3®. A regulatory role of B cell CD40 was further
demonstrated in EAE and CIA models. Activation with antigen (either MOG 35-55
or CIlI respectively), in combination with agonistic anti-CD40 increased IL-10
expression in B cells?®2. Chimeric mice lacking CD40 on B cells developed a severe
course of EAE?2, Similarly, in CIA, adoptive transfer of collagen and agonistic anti-
CD40 stimulated B cells suppressed induction of disease?®.

MRL/Ipr mice develop a spontaneous form of autoimmune disease characterised
by anti-double stranded DNA antibodies and immune complex-associated disease
of the kidney and is one of the experimental models used to determine the
aetiology of systemic lupus erythematosus (SLE)*'°. Disease progression in
MRL/Ipr mice is characterised by a marked decrease in T2-MZP B cell numbers.
Moreover, adoptive transfer of T2-MZP B cells from MRL/Ipr mice, unlike control
T2-MZP B cells as described above, failed to improve the mortality rate of recipient
MRL/Ipr mice®'". Suppressive capacity was restored to MRL/Ipr T2-MZP B cells
after activation with an agonistic anti-CD40%'". The requirement for CD40 is not
limited to T2-MZP derived Bregs, as adoptive transfer of B10 cells from Cd40”
mice fail to confer protection from EAE in WT recipient mice3'2.

CD80 and CD86 (historically known as B7.1 and B7.2) are two co-stimulatory
molecules which are expressed on B cells, bind to CD28 or CTLA-4 on T cells and
regulate T cell activation®'®. As mentioned earlier, CD80/86 are key for B cell
suppression of colitis®®®. Furthermore, in EAE, mice lacking CD80/86 on B cells
failed to enter the remission phase of disease, suggesting that B cell expression of
CD80/86 is required for the resolution of EAE3'4,

1.2.2.3 Toll like receptors

TLRs are pattern recognition receptors (PRRs), which respond to signals from
infection and cellular/tissue damage, via the recognition of pathogen-associated
molecular patterns and damage-associated molecular patterns respectively. TLRs
are one class of a bigger family of PRR receptors, including retinoic acid inducible
gene 1-like receptors, nucleotide oligomerization domain-like receptors and C-type
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lectin receptors. Following engagement of TLRs, downstream signals are mediated
either by myeloid differentiation primary-response protein 88 (MYD88) or TIR
domain-containing adaptor protein inducing IFNB (TRIF). Activation of TLRs
initiates signalling cascades that leads to downstream activation of NF-kB, IRFs
and the MAP kinases. TLR activation promotes B cell differentiation and initiation
of cytokine production3's. Murine B cells express varying levels of TLR1-9, and
even between B cell subsets there are marked differences in expression patterns
of TLRs. B cells are particularly responsive to TLR2, TLR4, TLR7 and TLR9
agonists, with selective agonists preferentially inducing more IL-10, IL-6 or IL-
12p40. Of note, TLR2 agonist peptidoglycan, TLR4 agonist lipopolysaccharide
(LPS) and TLR9 agonist CpG-B induces the most IL-10 production by B cells'¢. B
cells can upregulate IL-10 in a TLR2-dependent manner, upon administration of
tumour cell-released autophagosomes or upon activation with Helicobacter pylori

sonicate317 318,

The role of TLR4 in Breg function has been extensively studied in multiple Breg
subsets. LPS activation of B cells increases the expression of IL-10, TGF-31 and
FASL, which promotes Breg-mediated suppression of pro-diabetogenic Th1
responses in NOD mice®'. In addition, TGF-B1 expression by B cells can induce
anergy in CD8* T cells®®. Subsequent reports have extended these findings to
show that TLR4 promotes Breg function in autoimmunity and infection models.
Intraperitoneal injection of LPS delays the onset of EAE3?'. Although the authors
never addressed the mechanism of action, considering the wealth of evidence
linking TLR4 activation to B cell IL-10 production, it is tempting to speculate that
the delayed onset could be due to the initial burst of IL-10 production by B cells3?'.
Indeed, supporting this idea, LPS administration to mice before the induction of
cerebral ischemia, reduced infarct volumes and protected mice from neuronal
apoptosis. LPS pre-conditioned mice had elevated levels of IL-10 in the brain and
increased numbers of IL-10*CD19" cells in the spleen®?2. LPS, either alone or in
combination with other inflammatory signals, supports the differentiation of T2-

MZP, B10, CD138* plasma cells and LAG3*CD138" plasma cell Breg subsets%®
323

Central to both TLR2 and TLR4 is the signalling through the adaptor protein
MYD88. Deletion of MYD88 in B cells lead to the prolonged survival of mice
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infected with S. typhimurium, and this was associated with a reduction in IL-10
production by CD138* plasmablast cells®?*. Moreover, chimeric mice lacking
MYD88 in B cells developed an exacerbated EAE, compared to WT mice3%.
Furthermore, in WT mice infected with Leishmania donavani, signals through
MYD88 are important for differentiation of Bregs. MZ B cells from infected mice
suppressed CD4" and CD8" T cell responses through expression of IL-10 and
suppressed the protective T cell responses during L. donavani infection3?8. Thus,

these studies show a central role of MYD88 in TLR mediated Breg differentiation.

Although much less characterised, signals through TLR7 have also been
implicated in the generation of Bregs. Both in vivo and in vitro activation of B cells
with the TLR7 agonists imiquimod or R848 induce the expression of IL-10 in B
cells, with the highest proportion of IL-10 being expressed by CD19*CD1d" B cells.
Adoptive transfer of CD19*CD1d" B cells protects recipient mice from developing
allergic lung inflammation by promoting the differentiation of naive CD4* T cells
into Tregs in an IL-10 dependent manner®?’. Several studies have also shown that
R848 induces IL-10 production in human mature (CD19*CD27%) and immature
(CD19*CD27") B cells, suggesting a role of TLR7 in the differentiation of both

human and murine Bregs32”: 328,329,

Disentangling the role of TLR9 in Breg differentiation has been harder to establish.
Although, TLR9 activation is a potent inducer of IL-10 in both mouse and human B
cells, there have been conflicting reports as to the role of TLR9 in Breg induction
in vivo318:330.331  Chimeric mice reconstituted with T/r9”- B cells did not develop a
worse course of EAE compared to B-WT controls, implicating a functional
redundancy of the TLR9 pathway in Breg mediated suppression, at least in the
context of EAE3?. In contrast, several studies have shown that TLR9 activated
Bregs limit inflammation in models of autoimmunity and sepsis. TLR9 activated
CD5*CD23" B cells inhibited pro-inflammatory cytokine production by pDCs and
conventional DCs in vitro, through the production of IL-10. Moreover, mice given
CpG-B are protected from D-galactosamine induced endotoxic shock; a process
driven through TLR9-induced IL-10 production by CD5*CD23" B cells. In support
of this data, adoptive transfer of TIr9” B cells failed to promote the survival of //10-
 recipient mice, unlike in //70” mice receiving WT B cells, which prevented
endotoxic shock®¥2. TLR9 activation also induces IL-10 expression in neonatal
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CD5* B cells, which in turn inhibits DC driven Th1 priming333. Lastly, two studies
by Gray and colleagues showed that apoptotic cells (ACs), through activation of
TLR9, increased IL-10 production by MZ B cells and B-1a cells. Mice receiving AC
stimulated B cells reduced CIA and EAE disease severity33? 334 Thus, the role of
TLR9 in Breg differentiation and function seems to be disease and cell type
specific.

1.2.2.4 Cytokines as inducers of Breg differentiation

It is now well established that inflammatory signals can promote the differentiation
of Bregs. To date, numerous cytokines from different cellular sources have been
shown to facilitate the induction and expansion of Breg populations in a variety of
models of autoimmunity, infection and transplantation. Of particular note, it has
been shown that the composition of the microbiota can provide signals for the
differentiation of Bregs®?®. Adoptive transfer of T2-MZP B cells from antibiotic
(ABX) treated mice to recipient WT mice, failed to alleviate antigen induced arthritis
(AIA) in recipient mice, due to a reduction in T2-MZP B cell IL-10 production®?3. In
addition, T2-MZP B cells isolated from specific-pathogen free (SPF) housed mice,
present with a marked reduction in IL-10"Bregs compared to conventionally
housed mice, implicating that microbiota is required for the induction of IL-
10"Bregs. Of note, both in ABX treated mice and in SPF housed mice, there was
a significant reduction of the frequency and numbers of splenic IL-1$ and IL-6
producing macrophages (CD11b*CD11c"). Stimulation of T2-MZP B cells with a
combination of these two cytokines and agonistic anti-CD40 increased the
frequencies of IL-10"Bregs (T2-MZP, B10 and TIM-1* subsets). Chimeric mice
lacking the IL-1R1 or IL-6R specifically on B cells (B-/1r17 or B-lI-6r’") developed
an exacerbated arthritis, further linking these two inflammatory cytokines to Breg
differentiation and function. Importantly, 70% of splenic T2-MZP B cells expressed
the integrin a4p7; a marker which indicates that lymphocytes have previously
recirculated via the gut®®. The o4p7* T2-MZP B cells displayed enhanced
suppressive capacity, compared to a4p7- T2-MZP B cells®?3. Collectively, this data
suggests that the precursors of Bregs may be primed initially in the gut and upon
exposure to inflammatory stimuli in the spleen, then differentiate into IL-
10*Bregs®?.
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IL-21 is a versatile cytokine with broad functions in the innate and adaptive immune
response and is mainly produced by Tfh, Th17, CD8" and NKT cells. In B cells, IL-
21 has arole in plasma cell differentiation, IgG1 production and more recently has
been identified to be important in Breg differentiation33¢. B10 cell differentiation
requires both IL-21 and CD40:CD40L interactions with T cells®'2. Adoptive transfer
of B10 B cells from /121", Cd40”- and Mhc-II”- mice failed to alleviate EAE in
recipient mice, unlike their WT counterparts, further suggesting a role of IL-21 in
the differentiation and function of B10 cells®'2. Moreover, addition of IL-21 to anti-
IgM and anti-TIM-1 cultured B cells further increased IL-10 production in TIM-
1*Bregs®¥. These findings have been translated to human Breg populations, with
IL-21 in combination with signals through the BCR or with TLR9 and CDA40,
inducing IL-10 and/or Granzyme B expression in B cells, depending on the co-

stimuli used?338 339,

Interestingly, both BAFF and APRIL, two key cytokines involved in B cell
maturation and survival, are important inducers of IL-10 production in both mouse
and human B cells’®. Administration of BAFF in vivo and in vitro, induced IL-10 in
MZ B cells®. In addition, BAFF increased IL-35 expression, another
immunoregulatory cytokine expressed by Bregs, mainly in a population exhibiting
a MZ B cell phenotype in MRL/Ipr mice®*!. Likewise, addition of BAFF to CpG-B
stimulated B cells also induced human Breg differentiation in healthy controls (HC)
and in chronic lymphocytic leukaemia (CLL) patients. Importantly though, this
seems to be in part, an indirect effect of the pro-survival function of BAFF on these

cells342,

APRIL can also confer immunosuppressive function to B cells, primarily through
inducing IL-10 expression in B-1a cells. Mice overexpressing APRIL (APRIL-tg)
are protected from EAE and oxalazone induced CHS reactions343. APRIL-tg mice
depleted of peritoneal B-1a cells negated the protective effect of APRIL in EAE3#4.
Similarly, APRIL can increase IL-10 expression in both HC and rheumatoid arthritis
(RA) B cells**? and induces naive human B cells to differentiate into IL-10-secreting
IgA*PD-L1* Bregs3#4.

A number of cytokines share the ability to promote both Treg and Breg
differentiation in mice. IL-33 for instance, induces a novel form of Breg defined as
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CD19*CD25*CD1d"IgM"CD5-CD23 TIM1- (subsequently coined Breg-IL-33).
Injection of IL-33 into WT mice increases the frequencies of IL-10"Bregs found in
the blood. Adoptive transfer of the Breg-IL-33 precursor population (CD19*CD23"
B cells) from IL-33 treated mice into //707 mice, markedly delayed onset of IBD in
these mice and reduced gut histopathological signs associated with IBD.
Moreover, adoptive transfer of CD19*CD23B cells from IL-33 treated //70” mice
failed to confer protection from IBD, suggesting that IL-33 primes Breg function by
increasing the expression of IL-104%. These findings were confirmed in DSS colitis,
where IL-33 induced IL-10*Breg differentiation in the mesenteric lymph nodes
(MLNs) of mice*¢. In addition, IL-35 expands an IL-10*IL-35'Breg population in
both mice and humans, as will be discussed later®¥. Lastly, IL-5 has been shown
to promote the function of killer B cells; a population which mediates cell death
through the expression of FASL34. |L-5 in tandem with CD40L signalling, induces
IL-10 expression in B cells and promotes the antigen-specific killing of CD4* T

cells349,

Whilst no study to date has implicated a role of IFNa in driving Breg IL-10 in mice,
pDC driven IFNa. expression expands human IL-10*CD24MCD38" Bregs in healthy
controls, in a dose dependent response. In healthy controls, low levels of IFNa
expands IL-10*CD24MCD38" Breg numbers, and Bregs in turn suppress pDC
driven IFNa production. In contrast, high levels of IFNo produced by pDCs in SLE
patients induces the differentiation of plasmablasts and fails to expand Breg
numbers, suggesting that the strength and dose of inflammatory stimuli is
important for determining regulatory versus effector B cell fate decisions3%°.
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Figure 1.3. Stimuli that induce murine Breg differentiation. The expanding list of
inflammatory stimuli which induce Breg differentiation includes signals through the BCR,
TLR and CD40 ligation and activation through various cytokine receptors. Activation of
Bregs induces the expression of IL-10, IL-35 and TGF-31.
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1.2.3 Regulatory B cell Phenotype and Mechanisms of suppression

Bregs are defined by the ability to suppress inflammation primarily through the
production of IL-10, but also through alternative means of suppression such as
TGF-B1 or IL-35 and by contact-dependent mechanisms. The ontogeny of Bregs
and their relation to conventional B cell development remains elusive. However, it
is becoming increasingly clear that Bregs can arise at various stages of B cell
development and that the common denominator in Breg differentiation at different
stages, as described above, is the presence of inflammatory signals. Murine Breg
subsets and mechanisms of immune suppression are summarised in Figure 1.4.
In disease settings, Breg numbers and their function can be perturbed. In the case
of autoimmunity, the numbers and function of Bregs are often diminished3®', whilst
Breg IL-10 often promotes cancer progression3%2. What pre-determines the Breg
vs Beffector cell fate decision is unknown and remains an important relevant

question to address in the clinical setting.

1.2.3.1 Transitional-2 Marginal Zone Precursor Cells

Building on previous findings showing that anti-CD40 stimulated B cells
suppressed CIA through the provision of IL-102%3, further characterisation of Bregs
revealed that T2-MZP B cells (defined as
CD19*CD21MCD23MCD24"IgMMIgD"CD1d"AA4*) were the main producers of IL-
10 in CIA?%. Importantly, the frequency of IL-10*T2-MZP B cells were increased in
the remission phase of CIA and displayed greater suppressive capacity upon
adoptive transfer than their antigen naive counterparts, suggesting inflammatory
signals were needed for Breg differentiation. No suppression was observed after
the adoptive transfer of MZ and FO B cells?®’. T2-MZP reduced disease severity
by decreasing the levels of Cll specific |lgG2a antibodies in the serum and by
inhibiting CD4*IFNy production. Importantly, only IL-10-sufficient T2-MZP B cells
could suppress CIA, upon adoptive transfer highlighting Breg suppressive function
was contingent upon IL-10 expression?®’. The importance of T2-MZP Bregs in
autoimmunity, was also confirmed in MLR/Ipr mice, which develop a spontaneous
severe systemic lupus-like autoimmune disease3'", as described in section 1.2.2.2.

Further mechanistic insight into IL-10"T2-MZP Breg function was elucidated in AlA,
a T-cell driven DTH model which mimics some of the pathological characteristics
seen in RA33. |L-10"Bregs were shown to be important for the induction of
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forkhead box P3 (FOXP3) Tregs and Tr1 cells®®4. Indeed, /107 B cell chimeric
mice had reduced numbers of FOXP3 Tregs in the inguinal draining lymph nodes
(dLN) and in the synovia of the joint, mirrored by an increased frequency of IFN-y*
and IL-17* CD4"* T cells, implicating IL-10*Bregs in the differentiation fates of naive
CD4* T cells in this model. //10”- B cells displayed reduced contact times with WT
CD4* T cells, in comparison to WT B cells, suggesting that, in addition to IL-10,
Bregs can regulate immune responses by cell-contact dependent mechanisms.
Suppressive function of T2-MZP Bregs or T2-like Bregs has also been shown to
be important in infection, cancer and transplantation models and in allergic
hypersensitivity reactions. In the latter, infection of WT mice with Schistosoma
mansoni conferred protection from anaphylaxis reactions and chronic airway

hyperresponsiveness, due to parasite driven upregulation of IL-10 by B cells3%5: 3%
357

Whilst IL-10 production is still considered a hallmark of Breg identity and function,
IL-10 independent mechanisms are also a big part of the Breg ‘arsenal’ in
restraining inflammation in a variety of settings and diseases. CD1d is an MHC
class I-like antigen presenting molecule, which presents glycosphingolipid and
phospholipid antigens to iNKT cells. Within the B cell populations, CD1d is highly
expressed on MZ and T2-MZP B cells®*®. High expression of CD1d is commonly
expressed by different Breg subsets?3®. T2-MZP Bregs have been shown to confer
immunosuppressive function to iINKT cells, in an IL-10 independent manner,
through the expression of CD1d?%4. Chimeric mice lacking CD1d on B cells develop
an exacerbated arthritis compared to WT mice. Moreover, whereas adoptive
transfer of WT T2-MZP B cells was able to ameliorate arthritis in recipient mice,
adoptive transfer of Cd7d” T2-MZP B cells failed to suppress AlA. T2-MZP B cells
from a-galactosylceramide (a-GalCer) treated WT mice, presented a-GalCer on
CD1d and enhanced iNKT suppression of CD4" IFN-y and IL-17 production,
implicating a crucial role of B cell CD1d expression in the amelioration of arthritis
in this setting. It is important to note that even though MZ B cells express the
highest level of CD1d amongst the B cell subpopulations, MZ B cell depletion did

not impact a-GalCer mediated suppression in this study?%4.
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1.2.3.2 MZ B cells

MZ B cells can also produce IL-10 in response to a wide range of TLR agonists,
including LPS and CpG?'8. Injection of mice with ACs ameliorates CIA disease,
through the production of B cell IL-10. In this setting, MZ B cells secreted the most
IL-10 in response to AC driven TLR9 activation. Although not directly demonstrated
experimentally in this study, the authors reasoned that MZ B cells were the subset
responsible for AC-induced protection from CIA334. Subsequent research by the
Gray group has later shown that B-1a cells are the main cells which carry out
immune tolerance to apoptotic cells®>°. MZ B cells have also been shown to be
detrimental to survival of mice with Listeria monocytogenes, due to their production
of IL-10. Adoptive transfer of MZ B cells into //707- mice increased bacterial load in
the spleen of recipient mice. Importantly, MZ B cell deficient mice (Rbpj conditional
KO) developed resistance to L. monocytogenes infection and prolonged the

survival of infected mice3°.

In addition to IL-10, a subset of MZ B cells can also produce TGF-1. Adoptive
transfer of activated B cells producing TGF-p1 have been shown to suppress
diabetes incidence, through reducing T cell IFN-y expression in pre-diabetic NOD
mice and leading to the apoptosis of diabetogenic T cells. Although not directly
attributed to MZ B cells, increased levels of apoptosis were seen in the MZ area of
the spleen of mice adoptively transferred with activated B cells, suggesting these
cells were the likely source of TGF-B13'°. TGF-B1 expressing B cells have since
been shown to control Treg induction and to promote immune tolerance. Whilst the
exact phenotype of TGF-1 expressing B cells remains to be elucidated, it is not
thought to be included in the T2-MZP, B10 or CD138* plasma cell Bregs®6".

1.2.3.3 B10 cells
Shortly after the discovery that T2-MZP B cells were a source of IL-10*Bregs, a
new subset of Bregs defined as CD1d"CD5*, known as B10 cells were identified
to have regulatory capacity in an oxazolone-driven model of CHS3%3, B10 cells
were identified based on their expression of IL-10 after Sh stimulation with phorbol
12-myristate 13-acetate (PMA) and ionomycin. Mice expressing the human CD19
transgene (hCD19tg) were more resistant to CHS than WT mice, due to increased
numbers of B10 cells. Conversely, Cd7197 mice developed an exacerbated CHS
reaction, suggesting B10 cell generation is dependent on the BCR signalling®°3.
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Adoptive transfer of //70-CD1d"CD5* B cells failed to suppress CHS in recipient
mice, showing that B10 cells suppress via the provision of IL-10. Importantly, only
antigen-specific B10 cells were able to suppress disease, as evidenced by the fact
that adoptive transfer of CD1d"CD5* B cells from mice sensitized to a different
antigen (DFNB), failed to resolve CHS in Cd719” recipient mice3%.

It is important to note that the B10 cells are defined as CD19"CD24"CD21*CD23"
IgMPCD1d"CD5* and therefore share overlapping markers with that of CD5*B-1a
cells, MZ and T2-MZP B cells, but do not exclusively fit into one population of cells.
Nevertheless, there are many degrees of similarity between T2-MZP B cells and
CD1d"CD5*-derived Bregs. Both populations need ‘priming’ through inflammation
before suppressive capacity is seen. Antigen naive T2-MZP B cells and B10 cells
fail to ameliorate disease severity in AIA and CHS respectively. This feature could
be due to the kinetics of Breg differentiation in both models, requiring several days
for Breg differentiation in vivo. Both B10 cells and T2-MZP B cells require T-cell
help to become fully functional Bregs, with both CD40L expression on T cells and
MHC class Il expression on B cells being important for the generation of Bregs®'".
Interestingly, B10 cells retain the ability to differentiate into plasma cells and induce
the expression of Blimp-1 and Irf4. Moreover, B10 cells are able to produce
antigen-specific IgG in response to immunizations and also polyreactive IgM which
recognises both self and foreign antigens¢2. Data from these studies supports the
notion that B10 cells are derived from multiple subpopulations and do not define a

distinct B cell lineage.

Since their initial characterisation in CHS reactions, B10 cells have also been
reported to have functional roles in a number of models of autoimmunity and
infection. Adoptive transfer of B10 cells reduced the severity of EAE in WT recipient
mice and suppressed CD4" T cell IFN-y expression, in an IL-10 dependent
manner305 363 Adoptive transfer of B10 cells also ameliorated the symptoms of
lupus in NZB/W mice and reduced intestinal inflammation in DSS induced colitis3%4
306 In the context of infection, B10 cells play a deleterious role in the survival of
mice infected with Leishmaniasis major and Listeria monocytogenes3®* 365, Mice
infected with L. monocytogenes have increased numbers of B10 cells in vivo, which

suppress macrophage TNFa, IFN-y and nitric oxide production. Additionally, B10
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cells impaired the ability of macrophages to phagocytose the pathogen, leading to
increased bacterial load3%°.

1.2.3.4 B-1 cells

B-1a cells with suppressive capacity have been described in autoimmune and
infection models and in recognition to self-antigens found on ACs3%. B-1a cells are
a major source of natural polyreactive IgM which is important for the clearance of
ACs and play a key role in the first line defence against pathogens'®. In addition
B-1a cells are a potent source of IL-10"%,

TLR9 engagement with DNA complexes from ACs drives the expression of IL-10
in MZ and B-1a cells. Indeed, TIr9” peritoneal cavity B-1a B cells are unable to
increase IL-10 upon stimulation with ACs, unlike their WT counterparts3. IL-10
secretion by B-1a cells can dampen macrophage phagocytosis and reduce

secreted levels of nitric oxide and hydrogen peroxide%®.

Numerous other studies have implicated an important role of IL-10"B-1a cells in
models of infection and autoimmunity. IL-10 expression by B-1a cells can be
induced by lacto-N-fucopentaose lll, a sugar found on Schistosoma mansoni eggs.
Infection with S. mansoni increased numbers of B-1a cells within 2-4 weeks of
infection in multiple strains of mice, namely in the CBA/J, C3H/HeJ and BALB/c,
but not in C57BL/6 and BALB/c.Xid mice, which could account for the differing
degrees of pathology reported between the strains®¢”. Interestingly, BALB/c.Xid
mice which have reduced numbers of CD5" B-1a cells are more susceptible to
Litomosoides sigmodontis infection, due to the relative paucity of natural IgM and
IL-10 secreted in these mice3¥’. Alongside IL-10 production, B-1a cells upon
infection with S. mansoni, upregulate FASL and have increased capacity to induce
the apoptosis of CD4* T cells. These cells were later termed ‘Killer B cells’3%.

In CHS, suppression of disease is dependent on IL-10*CD22-expressing B-1a
cells®®®, CD22 is a transmembrane receptor which binds to sialic acids and
negatively regulates signals through the BCR3*°. Cd227 mice develop a more
severe CHS reaction. Adoptive transfer of peritoneal B-1a, and not B-1b cells,
reduced the severity of the CHS reaction. Although no differences were observed

in the amount of IL-10 produced by splenic or peritoneal B-1a B cells between WT
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and Cd22” mice, adoptive transfer of peritoneal B-1a cells from both mice into
recipient WT mice revealed distinct migratory patterns. Cd22” B-1a cells migrated
less to the spleen and LN’s in the CHS reaction and therefore were less able to
suppress disease in an IL-10-dependent manner3°. Similarly to T2-MZP B cells
and B10 cells, adoptive transfer of B-1a cells also conferred protection in EAE3%°.
B-1a B cells can also exert tolerogenic function in an IL-10 independent fashion. In
colitis, Tcra”- mice which were housed in a SPF environment developed a more
severe form of colitis than conventionally housed mice. Colitis severity correlated
to the amount of B-1a derived natural IgM. Indeed, when mice which lacked B cells
and the TCRoa chain (op double knockout mice [DKO]) were conventionally
housed, they developed a worse course of disease than SPF housed Tcra” mice,
implicating that B-1a B cells play a key role in suppression of disease; a finding
which was confirmed by suppression of colitis upon adoptive transfer of peritoneal
of B-1a cells into au DKO mice®'. The mechanism as to how natural IgM

suppressed colitis induction was not addressed in this study.

1.2.3.5 Plasmablasts and plasma cells

The first indication Breg subsets could be contained within plasma cells and
plasmablasts came from examining the transcription of //10 in vivo, by using an
I110eGFP transcriptional reporter strain (known as Vert-X mice)®2. After
challenging these mice with LPS, CpG, goat anti-lgD or murine cytomegalovirus, it
was identified that CD19* B cells comprised the biggest population within the IL-
10*GFP* population. Remarkably, CD19*CD138" plasmablasts after anti-IgD or
murine cytomegalovirus (MCMV) challenge made up around 60% and 30% of the
GFP* leukocytes in the dLNs respectively. However, the relative frequencies of
splenic B cell subpopulations constituting the GFP* population in the spleen was
not reported®”2. IL-10 producing CD19*CD138" plasmablasts were also shown to
be increased in vivo, after 1 day of infection with Salmonella typhimurium3?*. IL-10
secretion by CD19*CD138" cells had a detrimental effect in the survival of mice
infected with Salmonella. Indeed, B-//10"- chimeric mice were protected from S.
typhimurium infection due to increased numbers of IFN-y secreting natural kKiller
(NK) and CD4* T cells and TNFa producing neutrophils; two key cell types in

protective immunity against Salmonella infection324 373,374,
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A protective effect of plasmablast derived Bregs have also been demonstrated in
EAE, where IL-10" plasmablasts (defined here as CD138*CD44") are important for
the suppression of disease®”®. Importantly, suppression of EAE is dependent on
the homing of IL-10* plasmablasts to the lymph nodes; a process which is mediated
by the expression of CD62L (aka as SELL)%"8. Adoptive transfer of Sell”- B cells to
B cell deficient recipients (uMT) failed to suppress disease, unlike adoptive transfer
of WT B cells. Interestingly, the generation of CD138*CD44" Bregs is independent
of the GC reaction, as mice lacking functional copies of BCL6 still had comparable

numbers of plasmablasts compared to the WT controls®7.

The role of plasma cell derived Bregs has also recently been demonstrated in
restricting tumour-directed cytotoxic T cell functions. IgA*PD-L1*IL-10-expressing
plasma cells inhibit cytotoxic T cell function after oxaliplatin treatment; an
immunogenic cytotoxic chemotherapeutic agent®’’. More recently, a subset of
natural regulatory plasma cells has been identified, which suppress immune
responses via the production of IL-10%8. These cells express lymphocyte
activation gene 3 (LAG3), which is an important receptor for enhancing Treg
mediated suppression®®. This population was shown to be mainly IgM* and are
present in naive mice, suggesting these cells do not go through the GC reaction.
LAG3" plasma cells differentiate into IL-10*Bregs upon activation with LPS or
LPS+anti-IlgM or upon infection of mice with S. typhimurium378,

In addition to regulation of IL-10, plasma cells also produce IL-35, which is a
heterodimeric cytokine consisting of the IL-12 family members p35 and EBI33¢°. |L-
35 has previously been shown to contribute to Treg function in IBD and in CIA%%"
382 Chimeric mice with B cells lacking either p35 or EBI3 develop a more severe
course of EAE, due to enhanced effector T cell IFN-y and IL-17 production.
Reciprocally, the lack of B cell p35 or EBI3 in S. typhimurium infection prolonged
survival of these mice by expanding the numbers of mononuclear phagocytes and
increasing CD4* IFN-y production. The main source of IL-35-expressing B cells
during S. typhimurium infection were CD138" plasma cells. It is important to note
that CD138" plasma cells are also able to co-express IL-10%°. |IL-35 can also act
in an autocrine manner to promote the expansion of IL-10*IL-35*Bregs. Moreover,
treatment of mice with IL-35 protected mice from experimental autoimmune uveitis

347 Whether plasmablast and plasma cell derived Bregs functionally mature from
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Bregs that arise from previous stages of B cell maturation, or whether they

represent a de novo form of Bregs remains unclear.

1.2.3.6 Other Breg subsets

A growing number of Breg subsets are identified based on their differing phenotype
and function. These subsets share expression of core B cell markers, but also
express distinct markers from the subsets discussed above. Amongst these, GM-
CSF and IL-15 fusokine (GIFT15) generated Bregs appear phenotypically similar
to T2-MZP Bregs as they also express CD21, CD23, CD24, CD1d, IgD and IgM.
However, in contrast to T2-MZP Bregs, GIFT15 Bregs express very lows levels of
CD19 and high levels of CD138; a phenotype reminiscent of plasma cells.
Intravenous injection of GIFT15 Bregs ameliorates EAE disease, through the
upregulation of IL-10 and MHC class Il on B cells383.

Another well described Breg subset is defined by the expression of T-cell Ig
domain-1 (TIM-1); a marker which is associated with immune regulation3®*. In T
cells, activation with a low affinity anti-TIM-1 antibody (RMT1-10) inhibits EAE and
can promote long-term allograft acceptance by promoting skewing towards Th2
and Tregs3® 386 TIM-1 expression is widely reported to be expressed across a
majority of IL-10"Breg subsets, including B10 cells, CD138*IgA* plasma cells and
CD138* plasmablasts®”: 380. 387 The role of TIM-1*Bregs has been well

characterised in transplantation studies and in models of autoimmunity.

The expression of TIM-1 on B cells was first identified by work from the Rothstein
group®’. Data from this study showed that upon allogeneic islet transplantation, B
cells in the spleen upregulated the expression of TIM-1. Importantly, in chemically-
induced diabetic BALB/c mice receiving a transplantation of B6 islets, treatment
with RMT1-10 promoted tolerance to the allograft and survival of these mice,
through upregulation of B cell IL-4 and IL-10 expression3®”. Furthermore,
generation of mice which lack the mucin domain of TIM-1 (TIM-12MUCIN) " showed
decreased binding to phosphatidylserine on ACs and were unable to induce IL-10
upon activation with ACs. Activation of TIM-1 by RMT1-10 in TIM-12MUCIN mice
failed to promote survival in these mice3®. TIM-12MUCIN mjce also developed
spontaneous autoimmunity with increased production of IFN-y by CD4* T cells and
had elevated serum levels of IgG and dsDNA IgG3®. The loss of B cell TIM-1
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expression also promotes age-related tissue inflammation and splenomegaly.
Moreover, Tim17 B cells produced less IL-10 and more pro-inflammatory IL-12 and
IL-6 upon BCR ligation. Indeed, the severity of EAE disease is worse in Tim1”

mice and can be ameliorated by the adoptive transfer of WT TIM-1* B cells3?’.

Recently, a novel subset of Breg defined as CD39*CD73" have been shown to
exert immunosuppressive function by the production of adenosine. CD39
expression is common on B cells, but CD73 expression is limited to certain
populations. Roughly 30-50% of B-1 cells and IL-10 expressing B10 cells are
CD73". Specifically, CD73*B-1 cells can produce adenosine in the presence of 5’-
adenosine monophosphate (AMP). Cd73” mice develop a more severe course of
DSS colitis compared to WT mice, which can be partially resolved upon adoptive
transfer of CD73*B-1 cells. Interestingly, //710” B-1 cells produce less adenosine
and express less CD73, suggesting a proportion of these cells have dual functions
producing adenosine and IL-103%.
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Figure 1.4. Breg subsets and mechanisms of suppression in mouse. Breg subsets in
mouse arise from multiple stages of B cell differentiation. Mechanisms of suppression
include secreted cytokines (IL-10, IL-35 and TGF-31), cell-contact dependent mechanisms
(CD1d, MHCII, CD80/86, CD40, FASL and TIM-1) and modulation of metabolic processes

(i.e adenosine production by CD39 and CD73).
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1.2.4 Human Breg populations

Due to the comparative lack of tools and technologies in the isolation and tracking
of IL-10* cells in human B cells, less is known about Breg ontogeny and their role
in vivo. As is the case with mouse Bregs, human Bregs are defined by the
expression of IL-10, or indeed by expression of other markers that exert
suppressive functions. Although there are numerous phenotypical differences
between mouse and human Breg subsets, the mechanisms of suppression are
largely conserved between species. Bregs are known to be functionally impaired
or have reduced numbers in multiple autoimmune diseases, including, but not
limited to, SLE3%%: 391 systemic sclerosis®®?, RA3%3, ANCA-associated vasculitis®%
and multiple sclerosis3®. Moreover, the function and phenotypes of human Bregs

in infection, transplantation, allergy and cancer are starting to be unraveled.

Breg identification and function in humans was first attributed to
CD19"CD24MCD38" transitional (or immature) B cells in the blood, with the
CD19*CD24MCD38" transitional B cell population identified as the main IL-10-
expressing B cell population. Analogous to murine Bregs®'!, the IL-10"Breg
population could be expanded upon ligation of CD40 on B cells and suppressed
CD4* T cell IFN-y and TNFa expression3®'. Similar to T2-MZP B cells in MRL/lpr
mice, CD19*CD24"NCD38" B cells from SLE patients produce less IL-10 after
stimulation with CD40 and fail to suppress T cell IFN-y and TNFa3®'. Moreover,
CD19"CD24MCD38" B cells from SLE patients are also defective in maintaining

iINKT cell homeostasis, due to a defect of CD1d recycling in this population?63.

Similarly to T2-MZP Bregs in mouse, in addition to inhibiting Th1 and Th17
differentiation, human CD19*CD24"CD38" Bregs also promote the generation of
FOXP3* Tregs. In RA, CD19*CD24"CD38"" Bregs are unable to convert naive
CD4*CD25 T cells into Tregs, or to suppress the differentiation into Th17 cells, but
maintain the ability to suppress Th1 differentiation3®. Since these initial findings,
there have been many reports showing reduced Breg function or numbers in
autoimmune diseases®'. These findings have recently been extended to studies
of Breg function in cancer. |In gastric cancer, intratumoural
CD19*CD24MCD38MNCD1d"CD5* B cells produce more IL-10 than B cells from the

blood or B cells from the peritumoural area. Bregs in gastric cancer promote the
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differentiation of CD4*FOXP3* Tregs and reduce the frequencies of CD4*IFN-y* T

cells in the blood. Thus, in this setting, Bregs promote tumour evasion3%.

Although the phenotypical markers vary between mouse and human Breg
populations, a number of other human Breg subsets share functional similarities
to, and are derived from the same precursor populations as, their mouse
counterparts. B10 cells have also been identified in the peripheral blood of HCs,
and are readily available to produce IL-10 after activation with LPS, PMA and
lonomycin3¥. Interestingly B10 cells share a cell surface phenotype resembling
that of memory B cells, with a reported phenotype of
CD24MCD27+*CD38'°CD48"CD148". B10 cells were reported to suppress
monocyte-derived TNFa production®¥. In addition, a human orthologue of the
mouse plasmablast Breg population (IL-10*CD138*CD44") has been identified in
the peripheral blood, defined as IL-10*CD27"CD38". Lastly, both adenosine
triphosphate-hydrolysing  (CD39*CD73*CD25*) and Granzyme-B* Breg
populations have been identified in human blood. Both Breg populations suppress
the proliferation of CD4* T cells, whilst Granzyme-B* Bregs additionally induce
CD4* T cell apoptosis338 398,399,

The only human Breg subset so far discovered with no mouse analogue are BR1
cells, which are enriched after allergen immunotherapy. Uniquely these cells
produce IgG4, which is not expressed by murine B cells*®. Bee keepers tolerised
to bee venom allergen phospholipase Az, have increased frequencies of IL-
10*1gG4*CD25"CD71"CD73" Bregs compared to HCs. Remarkably, allergic
patients have increased numbers of BR1 cells after receiving specific
immunotherapy, thus linking BR1 cells to the maintenance of tolerance against bee

venom allergens*%'.
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1.3 AlA as a model to study Breg function

AlAis a T cell driven DTH reaction driven by the injection of antigen into the knee
joint of a pre-immunised animal3%3. AIA was first described in the 1960s, where AIA
was induced in rabbits*%?2. AIA can be induced by a variety of antigens, including
fibrin, ovalbumin and methylated bovine serum albumin (mBSA). In mice, however,
cationic antigens must be used for the retention of the antigen in the anionic
cartilage of the joints of the animals33. Our work is based on the mBSA induced

AlA model, which was first described in 1977403,

The pathogenesis of AlA is thought to be mediated primarily by CD4* T cells. Initial
experiments in this model, showed that transfer of splenocytes enriched in CD4* T
cells exacerbated the severity of disease in recipient mice*%*. Depletion of B cells
further accentuated the clinical severity of the disease, implicating a role of B cells
in the immunoregulation of the disease*%*. Determination that it was CD4* and not
CD8* T cells which were pathogenic was delineated by Petrow et al, who showed
that the depletion of CD4", and not CD8", T cells before transfer prevented the
development of arthritis in SCID recipient mice*®. Flare mediated destruction of
the joint is T cell driven and antigen specific?®®: 407 408 Moreover, CD4 depletion
ameliorates disease by reducing inflammatory macrophage production of IL-1
and IL-6 in the joints of AIA mice*®. IL-1B drives joint pathology by promoting joint

inflammation and cartilage degradation*'°.

A number of features of the AIA model make it ideal to study the function of Bregs.
Firstly, the disease course is well defined; that is to say peak swelling is achieved
at days 1-3, and remission from disease occurs at days 5-7. This allows for study
of Bregs and their differentiation during both the inflammatory and resolution
stages of disease. Secondly, arthritis is restricted to one joint, so we can determine
disease swelling relative to the unaffected joint and examine the degree of severity
of swelling in conditional and global knockout mice. Lastly, the incidence rate of
AlA is 100%, with no sex bias3%3.
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1.4 The transcriptional regulation of IL-10

IL-10 is an anti-inflammatory cytokine which targets both innate and adaptive
immune responses. It exerts its immunosuppressive function and reduces tissue
damage by curbing excessive inflammation caused by effector cells during the
resolution phase of infection and inflammation*''. Although originally associated
as a Th2-associated cytokine*'?, IL-10 has since been shown to be a critical
regulator of anti-inflammatory responses, initiated in cell types of both the adaptive
and innate immune system*'3. IL-10 transcriptional regulation is a complex
process, often dictated by the type of stimuli inducing IL-10, and is regulated in a
cell-context dependent manner by several transcription factors and by epigenetic
regulation. In macrophages, IL-10 is regulated by c-MAF#', cyclic adenosine 3,5-
monophosphate response element-binding protein (CREB)*'S, NF-kB*'6,
specificity protein 1 (SP1)*'7 and several others*'®. In Th2, GATA binding protein
3 (GATA3)*'9 and c-JUN*?? are important for induction of IL-10. In Treg, IRF1 and
basic leucine zipper transcriptional factor ATF-like (BATF) are critical in acting as
pioneering transcription factors for opening the //70 locus and initiating the
transcription of IL-1042', allowing c-MAF and AHR to bind and regulate IL-104%2.

1.4.1 Transcriptional control of 1110 in B cells

The transcription factors which regulate //170 expression in macrophages, DCs,
CD4* T cells and other cell types have been well described*'®. However, unlike in
other immune cells the molecular determinants that regulate the transcription of IL-
10 in B cells remains relatively unknown. B cell expression of IL-10 is indispensable
for regulatory function and its expression is tightly regulated. Recently, hypoxia-
inducible factor 1o (HIF1a) has been linked to IL-10 expression in B cells*?3,
HIF 1o responds to hypoxia and initiates the metabolic rewiring of a cell, by altering
the gene expression profile to help the cell adapt to hypoxic conditions*?*. Hif1a
expression is increased in B cells upon activation with LPS or anti-IgM stimulation.
In B cell conditional knockout mice (Hif1a”Mb1°¢®), both the frequencies of B-1a
cells in the peritoneal cavity and IL-10"B-1a cells in the spleen are reduced
compared to WT controls, suggesting an important role of HIF1a in the generation
of IL-10"Bregs*?3. This seems to be, in part, due to the role of HIF1a in regulating
glycolysis. Splenic B cells cultured in hypoxic conditions make more //70 and this

is dependent on HIF1a and STAT3 co-operatively transactivating the //70 locus.
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Hif1a”Mb1° mice develop exacerbated courses of CIA and EAE compared to WT
controls, due to the skewing of T cells towards a Th1 and Th17 phenotype*?3.

C-MAF is a member of the activator protein 1 (AP1) transcription factor family,
which has previously been shown to increase the expression of IL-10 in Tr1 cells
and in macrophages*'®. More recently, the expression of c-MAF has also been
associated with IL-10 production by B cells*?®. LPS activated B cells upregulate the
expression of IL-10 and cMAF. Total splenic B cells have reduced levels of IL-10,
after C-MAF is silenced by short hairpin RNA, thereby implicating this transcription
factor in the regulation of IL-10. Whether c-MAF binds to the //10 locus has not
been determined in B cells*?®. However, it is feasible that c-MAF binds to the /170

locus in B cells, as this has been demonstrated in Tr1 cells*Z2.

As discussed earlier, NFATc1 is a component of the BCR signalling pathway and
is important in regulating the expression of IL-10 in B cells. However, there have
been conflicting reports as to whether NFATc1 acts as a positive or negative
regulator of IL-10 expression in B cells. Mice with B cell specific deficiency of
NFATc1 developed a significantly ameliorated course of EAE*?¢. Nfatc1”"Mb1cre
developed an attenuated psoriasis, due to the increased numbers of IL-
10*CD1d"CD5"* and IL-10*CD138* B cells, compared to WT mice*?’. In contrast,
Matsumoto et al report that the calcium sensors STIM1/2 and NFATc1 are required
for BCR driven IL-10 production3°'.

More recently, BLIMP-1 and IRF4 have been linked to the transcription of //70 by
plasmablasts, with IRF4 directly binding to the conserved non-coding sequence
(CNS)9 region of the //10 locus in BLIMP-1* B cells®”®. Of interest, IRF1 and BATF
bind to the same region in Tregs*?'. After TLR and BCR activation, B cells deficient
in IRF4 secreted less IL-10. B cell IRF4 deficient mice developed an exacerbated
EAE disease compared to their WT counterparts®”5. Moreover, ectopic expression
of IRF4 in a B cell lymphoma line enhanced IL-10 secretion, thus suggesting a
direct role of IRF4 in the regulation of IL-10 in B cells*?8.

In human B cells, very little is known regarding the transcription of //70. Using a
luciferase reporter downstream of the //70 locus in human B cell lines, Ziegler-
Heitbrock et al showed that STAT3 was required for the induction of IL-10. Mutated
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STAT3, but not IRF1, binding sites prevented the transcription of //70*%°. Less
phosphorylation of STAT3 was also associated to reduced IL-10 in
CD19*CD24MCD38" B cells from SLE patients3®'. Moreover, inhibition of ERK1/2
or STAT3 with inhibitory peptides abrogated IL-10 production from TLR7/8 and
TLR9 stimulated human B cells, suggesting a role of these pathways in the
regulation of B cell IL-10%%. It should be noted, that although individually these
transcription factors are important for the induction of IL-10, it is far more likely that
these transcription factors interact and act in tandem with each other as part of a
transcriptional complex for the induction of IL-10.

1.4.2 The post-translational and epigenetic regulation of 1110 expression in B
cells

The expression of cytokines needs to be tightly regulated to prevent hypo-/hyper-
activation of the immune system. In the absence of IL-10, mice develop chronic
transmural enterocolitis, a condition which bears a resemblance to Crohn’s disease
in humans*¥. Equally, excess IL-10 can have pro-tumourigenic effects. Indeed, it
has been shown that IL-10 promotes an escape mechanism for cancerous cells to
avoid immune surveillance*3' 432, However, this remains a highly debatable topic,
with evidence both supporting and contradicting this hypothesis. It is likely to be a
context-specific phenomenon, where multiple factors such as the hosts genetics,
the inflammatory milieu and the type of cancer interplay.

To prevent dysregulation of immune responses, as well as being regulated at the
transcriptional level, cytokines can be controlled through post-translational
modifications. Cytokine mRNAs are often unstable and are subjected to rapid
degradation after their synthesis, due to the presence of adenosine- and uridine-
rich elements (ARE/URE) in the 3'UTR*'8, Several pro-inflammatory and anti-
inflammatory cytokines/chemokines have ARE elements, including IL-10%%3, IL-
27434, GM-CSF*% (the first cytokine identified to contain ARE) and TNF4%6, IL-10
contains 6 AUUUA pentamers, which facilitates the binding of the tristetraprolin
(also known as ZFP36)*%. ZFP36 belongs to a family of RNA-binding proteins,
which targets mRNA by binding to AREs on mRNA and recruiting deadenylation
and degradation factors*¥”. Although no study to date has defined the role of ZFP36
in IL-10 expression in B cells, itis highly likely to play a role in regulating the amount

of IL-10 produced. Recent evidence has pointed towards a role of other ZFP36
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family member’s in the regulation of B cell differentiation. ZFP36L1 maintains MZ
B cell identity by promoting the degradation of KLF2 and IRF8; two transcription
factors known to enforce a FO B cell phenotype'”".

In addition to RBPs, miRNAs play a crucial role in the post-translational regulation
of mMRNA expression in B cells. MiRNAs are small endogenous RNAs of 21-25
nucleotides in length and direct their target mMRNAs for degradation*3®. Of the
known miRNAs, both miR-15/16-1 and miR-21 play a direct inhibitory role in the
regulation of IL-10 in B cells. Intriguingly, both CD1d"CD5* and TIM-1*B cells
express lower levels of miR-21 than their CD1d"CD5" and TIM-1- counterparts.
Blocking miR-21 with a specific antagomir, in LPS and CD40 stimulated B cells
increased IL-10 production by B cells. In addition, mimics of miR-21 also inhibit IL-
10 production. Treatment of mice with the antagomir of miR-21 (antagomir-21) or
adoptive transfer of antagomir-21 treated B cells partially ameliorated EAE
severity, suggesting a contributing role for post-translational regulation of IL-10 in
B cells in vivo**®. In addition, aged (15-18 month old) miR-15a/16-1 KO mice have
increased IL-10*B cells compared to age-matched WT controls*4°. However, this
is not the case in young adult mice (8-12 weeks). The reason for the increased IL-
10, specifically in the aged miR-15a/16-1 KO mice, was due to increased tumour
burden and the corresponding increase in TIM-1*B cells in the aged miR-15a/16-1
KO mice. These data suggest that, in addition to inhibiting IL-10 production, miR-
15a/16-1 also are important in suppressing the development of TIM-1* B cells*4°.

Unlike other MiRs, miR-155 and its mimics increase IL-10 expression in human B
cells, by increasing the phosphorylated levels of STAT3. MiR-155 acts indirectly
on IL-10, by downregulating the expression of JARIDZ2; the epigenetic negative
regulator of IL-10*'. JARID2 silences gene expression by recruiting polycomb
repressive complex 2 to target sites, which leads to histone 3 lysine 27 (H3K27)

trimethylation442,

Epigenetic modulation and chromatin remodelling of loci represent an important
step in the initiation, maintenance and cessation of transcription. Epigenetic
imprinting and chromatin accessibility of any given locus, varies according to the
cell type, activation status of a cell and on the type of external stimuli a cell
receives. Broadly speaking, DNA methylation inhibits gene expression, whilst
acetylation promotes gene transcription, by making the chromatin more
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accessible*'®. In mouse splenic B cells, and human peripheral blood B cells, the
methylation status of the //70 locus differs between IL-10" and IL-10" subsets.
Specifically, within the CNS -9, -4.5kb and +1.6kb regions on the mouse //70 locus,
IL-10* B cells have less CpG island methylation, indicating these sites are more
accessible in cells actively producing IL-10.

The human //10 locus also has less methylation in IL-10* B cells, when compared
to IL-10" B cells specifically at the CNS -12.5kb region (which corresponds to the
CNS -9kb region in mice). These data indicate that there is species specific
epigenetic regulation of the //70 locus. CLL cells, which produce more IL-10 than
healthy B cells, also have a lower degree of methylation at the -12.5kb region*43.
Of interest both IRF1 and BATF, two pioneering transcription factors, involved in
opening the //70 locus in Tr1 cells bind to CNS -9 region#?'. In Tr1 cells opening of
the chromatin facilitates the binding of c-MAF and AHR to MAF recognition element
and xenobiotic response element (XRE) sites on the //70 locus, closer to the
transcription start site (TSS)*?2. Determining the pioneering transcription factors
which bind to these sites in B cells remains to be determined.
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1.5 The AHR pathway

1.5.1 General introduction

The aryl hydrocarbon receptor is an evolutionary conserved transcription factor,*+4
belonging to the basic helix-loop-helix (bHLH) periodic circadian protein (PER)-
AHR nuclear translocator (ARNT)-single-minded protein (SIM) superfamily of
transcription factors. Typically, these transcription factors are involved in sensing
changes in the environment, such as oxygen gradients or circadian rhythms.
Recognition of endogenous factors by AHR is achieved through the PER-ARNT-
SIM (PAS) domains*#5. In addition, AHR contains an (N-)terminal bHLH domain
required for DNA binding**® and a Q-rich carboxy (C-)terminal transcriptional
activation domain. Like other members of the large bHLH family, the bHLH
domains in AHR can homodimerise in the absence, or heterodimerise, in the
presence of its binding partner ARNT#6. The heterodimeric bHLH domains of
AHR:ARNT bind to the AHR-specific consensus sequence (5-NGCGTG-3’) known
as the xenobiotic or dioxin response element (XRE/DRE)*#": 448 and initiates gene
transcription of AHR target genes*4°, with AHR and ARNT binding the T(N)GC (5'-
half sites) and GTG (3’-half sites) sequences respectively*’. PAS domains of AHR
are linked to the binding of the bHLH regions to DNA, as proteins lacking the PAS
domains fail to show XRE binding activity, suggesting a role of the PAS domains
in regulating the conformational activity of the bHLH domains*46.

In the absence of ligands, AHR is maintained in an inactive state in the cytoplasm
of the cell, bound to actin filaments** as part of a chaperone complex with AHR-
interacting protein (AIP; also known as XAP2)%1.452 g dimer of heat shock protein
(HSP)904%3, the SRC protein kinase*%* 4% and p234%:457_ The chaperone complex
serves to regulate AHR activity and signalling in multiple ways. One HSP90
molecule binds to the bHLH region of AHR, whilst the second binds to both the
bHLH region and the ligand binding region contained within the PAS-B domain of
AHR?%8. 459 " which prevents constitutive AHR binding to DNA and maintains AHR
in a conformational shape suited for high ligand-binding affinity*¢°. The chaperone
AIP and co-chaperone p23 are important for maintaining the cytoplasmic
localisation of AHR before ligand binding*®'- 462 and, in addition, prevents the
ubiquitination and subsequent degradation of AHR#63. 464,
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Binding of a ligand to AHR causes the dissociation of AIP from the complex*%®, but
not HSP90, which leads to a conformational change exposing a nuclear
localisation signal in the bHLH region of AHR, allowing the translocation of AHR to
the nucleus through interaction of the AHR complex with B-importin*61. 466. 467,
Interaction of AHR with ARNT in the nucleus leads to the dissociation of the
chaperone machinery*’, and subsequent recruitment of the AHR-ARNT complex

to the XRE regions*®® to regulate gene expression, as shown in Figure 1.5.
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Figure 1.5. AHR signalling pathway. AHR ligands from the diet, microbiota, host
metabolism or the environment activate AHR, inducing a conformational change in AHR,
allowing for the nuclear translocation of the ligand-AHR complex. Whilst in the nucleus,
AHR binds to ARNT and the complex binds to XRE/DRE sites on DNA and initiates gene
transcription. Two direct gene targets include Ahrr and Cyp7a1 which act to curtail AHR
signalling through displacement of AHR from ARNT, or through AHR ligand metabolism.
AHR activation can also trigger phosphorylation cascades, through the release of SRC.
Target proteins can also be directed for proteosomal degradation through the E3 ubiquitin
ligase activity of AHR. Lastly, AHR can also regulate gene transcription, by binding to
different transcription factor response elements through interaction with other transcription
factors.
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1.5.2 Other mechanisms of gene regulation by AHR

In addition to the role of AHR in regulating its target genes, through binding to XRE
regions, AHR can also regulate gene expression by other direct and indirect
mechanisms. AHR can directly interact with the transcription machinery including
transcription factor 1B (TFIIB)*®° and the mediator complex*’°, enhancing the
transcription of its target genes. In particular, AHR has been shown to interact with
the positive transcription elongation factor (P-TEFb)*"'; a cyclin-dependent kinase

controlling elongation by RNA polymerase 11472,

One emerging role of AHR is its ability to regulate the local chromatin architecture.
Of note, AHR interacts with Brahma/SWI2-related gene 1 (BRG1), part of the
switching defective/sucrose non-fermenting (SWI/SNF) chromatin-remodelling
complex, and direct interaction with this complex regulates AHR target gene
expression*”®. AHR can positively regulate the epigenetic landscape by modifying
histone acetylation and methylation, through displacement of histone deacetylase
(HDAC) complexes by AHR*7:475_|n addition, AHR can recruit the steroid receptor
coactivator-1 complex, which has histone acetyltransferase (HAT) activity*’6.

In addition to the regulation of gene expression by the classical canonical pathway,
AHR can also crosstalk with other pathways by binding to other DNA-responsive
elements in combination with other transcription factors to modulate their
downstream gene targets*4> 477. AHR has been shown to interact with members of
the NF-xB pathway, most notably RELA and RELB. AHR/RELB complexes bind
NF-xB response elements in the /L8%8 BAFF, CCL1, CXCL13 and IRF3
promoters*’® in human macrophages. Similarly, AHR binding to RELA has been
shown to regulate CMYC in human mammary cells*®® and /L6 in human lung
adenocarcinoma cells*8'. AHR can interact with STAT1, downregulating murine
macrophage IL-6 expression, highlighting a central role of the crosstalk between
these pathways in the regulation of immune responses*®2. AHR can be recruited
to different transcription factor binding sites through interactions with KLF643,
retinoic acid receptor alpha (RARA), retinoblastoma protein (RB)**, oestrogen
receptor (ESR)*®, sterol regulatory element-binding protein 1 (SREBF1)# and
nuclear factor erythroid 2-related factor (NRF2)*7, amongst others*. Given AHR

primarily functions as an environmental sensor, the fact that it can bind to and

84



regulate other transcription factor responses suggests a crucial role of AHR as a

molecular rheostat in the fine-tuning of cellular responses.

AHR can also negatively regulate the activity of these transcription factors by
reducing their half-life by functioning as an E3 ubiquitin ligase, targeting these
proteins for proteosomal degradation. One well characterised example is the ESR,
where AHR forms a part of the cullin 4B ubiquitin ligase complex (CUL4B) which
targets the ESR for degradation*®®. Formation of the CUL4BA"R complex is
dependent on the presence of an AHR ligand and on the readily available levels of
ARNT. ARNT competes with CUL4B to bind to AHR, with low levels of ARNT
leading to increased E3 ubiquitin ligase activity by AHR*?0. Similar processes also
dictate the degradation of other transcription factors by AHR including HIF1a,
MYC, FOS, octamer-binding protein (OCT4)*" 492 RELA*% and B-catenin; the

latter of which is implicated in the suppression of intestinal carcinogenesis*®*.

1.5.3. AHR Ligands

AHR acts as an environmental sensor, linking external environmental signals to
internal cellular processes, therefore its primary function is to sense both
exogenous and endogenous chemical mediators and modulate downstream target
genes. Broadly speaking, AHR agonists can be split into two main categories with
those that are synthetic (exogenous) in nature (i.e formed from municipal waste
products or other anthropogenic activity) and endogenous ligands which are
naturally occurring in nature and which can be further subdivided into many
different categories. Due to the large number of AHR ligands described in the
literature, these have been summarised in Table 1.1.

1.5.3.1 Exogenous ligands
Extensive research has been conducted on exogenous AHR ligands, in particular
on the environmental contaminants such as the halogenated aromatic
hydrocarbons (HAH) and the non-halogenated polycyclic aromatic hydrocarbons
(PAH)*®5. The HAH’s are more metabolically stable and have a higher binding
affinity to AHR (pM to nM range), compared to the PAH'’s (in the nM to uM range).
The HAH’s include the polyhalogenated dibenzo-p-dioxins, biphenyls and
dibenzofurans*®. The most well characterised and potent HAH in terms of its
binding affinity is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which is a by-
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product of industrial organic synthesis of herbicides. TCDD exposure leads to
chloracne outbreaks, in addition to more life-threatening clinical symptoms
including emphysema, progressive liver and renal failure and myocardial
degeneration**®. Due to its acute toxicity and spate of accidental exposures,
primarily the Seveso accident north of Milan in 1976497, early studies examined the
mechanism of toxicity behind TCDD, which eventually led to the discovery of the
receptor which bound TCDD in 1976%%. Even today, activation of AHR through
TCDD remains well studied in multiple fields of biology including toxicology and

immunology.

In contrast, the PAHs are generated through incomplete combustion of fossil fuels,
or other anthropogenic activity such as petroleum refining, coke and asphalt
production and wood treatment*®®. The most well studied PAH AHR agonists
include the benzoflavones, 3-methylchoanthrene (3-MC) and benzo(a)pyrene. In
addition, a number of ‘non-classical’ synthetic AHR ligands exist, which are
structurally diverse and whose physiochemical properties are very different from
the classical synthetic AHR agonists, highlighting the structural diversity of AHR
ligands.

1.5.3.2 Endogenous AHR ligands

Since the generation of synthetic AHR ligands is dependent on anthropogenic
activity, the evolutionary pressure of synthetic ligands on the function of AHR in
vertebrate systems is a relatively new event. Instead, the exposure to endogenous
AHR ligands are more likely to have driven the evolution of AHR structure and
function. The vast majority of AHR ligands are provided through the diet, either
through naturally occurring dietary ligands, such as the indoles and flavonoids or
through the metabolism of tryptophan®®. One of the prototypic endogenous AHR
ligands is indole-3-carbinol (I3C), a metabolite of glucobrassicin, which is naturally
present in cruciferous vegetables including broccoli and Brussels sprouts®'. Under
acidic conditions in the stomach, I13C is further enzymatically degraded to the
higher affinity AHR ligands 3,3’-diindolylmethane (DIM) and indolo-[3,2-b]-
carbazole (ICZ)%%2. Another abundant source of dietary AHR ligands is flavonoids,
which are ubiquitously found in fruits and vegetables and represent the most
abundant class of plant polyphenols. Activators of AHR have been identified in
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three of the six major subgroups of flavonoids including flavonols, isoflavones and

flavones®%3,

The most likely source of endogenous agonists of AHR are the derivatives of
tryptophan metabolism, due to the aromaticity of tryptophan. Dietary tryptophan is
metabolised through four main pathways: through hydroxylation (serotonin and
melatonin), transamination (indolepyruvic acid [IPA]), decarboxylation (tryptamine)
and lastly through the kynurenine pathway, which accounts for 95% of all dietary
tryptophan metabolism®%4. However, AHR ligands can arise from all 4 pathways of
tryptophan metabolism. Indeed, IPA can activate AHR and suppress experimental
colitis in mice®® and tryptamine is a pro-ligand for AHR%%. The downstream
metabolite of tryptamine which activates AHR has so far evaded discovery. Other
groups have shown that serotonin (5-hydroxytryptamine; 5-HT) is an endogenous
activator of AHR in intestinal epithelial cells®®” and we demonstrate here that one
of serotonin’s downstream metabolites, 5-hydroxyindoleacetic acid (5-HIAA), can
induce Cyp7a1 and /I10 expression in murine B cells. Kynurenine has been
suggested to be an AHR ligand, but its physiological relevance as an AHR ligand
has cast doubt due to the comparative concentration needed to elicit reporter
activity in a hepatoma cell line, in comparison to the well-established AHR ligand
6-formylindolo[3,2-b]carbazole (FICZ)5%. Instead, it is more likely that kynurenine,
like tryptamine, serves as a pro-ligand for AHR. In support of this, downstream
metabolites of kynurenine such as cinnabarinic acid have been shown to be more

potent AHR agonists®°.

Amongst non-haematopoietic tissues, AHR expression is highest in liver, kidney,
lung, skin and in the gut; all of which are exposed to high concentrations of
endogenous AHR ligands®'0. Although the majority of AHR ligands are derived
from the diet, site specific ligands can exist in high concentrations in other organs.
FICZ is present in the skin and can activate AHR at picomolar concentrations®'
and is formed through the photolysis of L-tryptophan by ultraviolet light>'2. It is
perhaps unsurprising that AHR expression is ubiquitously expressed in all cell
types in the dermal®'® and epidermal®'# %15 layers of the skin, as a mechanism to
respond to oxidative stress caused by UV light and to prevent excessive
inflammation in response to the build-up of oxygen reactive species®'®. Given the
ubiquitous expression of AHR in the body, especially at barrier sites, ligand
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promiscuity is crucial to AHR'’s role as an environmental sensor and allows for
detection of diverse metabolites present at different barrier sites in the body and
the regulation of cellular responses at these sites.
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Compound Type of metabolite or Source
compound
Exogenous ligands
2,3,7,8-Tetrachloro-p-dioxin Polycyclic/halogenated Industrial
(TCDD)*9# aromatic hydrocarbons pollutants
2,3,7,8- Polycyclic/halogenated
Tetrachlorodibenzofuran®'” aromatic hydrocarbons
3,4,3,4- Polycyclic/halogenated
Tetrachloroazoxybenzene®'® | aromatic hydrocarbon
3,4,3,4'- Polycyclic/halogenated
Tetrachloroazobenzene®'® aromatic hydrocarbon
2,3,6,7- Polycyclic/halogenated
Tetrachloronaphthalene®'? aromatic hydrocarbon
3-Methylcholanthrene Polycyclic/halogenated
(3-MC)520 aromatic hydrocarbon
3,3,4,4’,5- Polycyclic/halogenated
pentachlorobipheny!%?! aromatic hydrocarbon
Benzo[a]pyrene®?? Polycyclic/halogenated
aromatic hydrocarbon
7,12-dimethylbenz Polycyclic/halogenated
[a]anthracene®? aromatic hydrocarbon
B-naphthoflavone®?* Polycyclic/halogenated
aromatic hydrocarbon
Omeprazole®* Benzimidazole Synthetic

VAF3475%
4-hydroxy-tamoxifen
(40OHT)5%6
6-Methyl-1,3,8-
trichlorodibenzofuran (6-
MCDF)%%7

Laquinimod>5%®
IMA-062015%°
IMA-084015%°
10-chloro-7H-
benzimidazo[2,1-
a]benzo[de]lso-quinolin-7-one
(10-CI-BBQ)%*"
Leflunomide®®?
(2'2,3'E)-6-Bromo-1-
methylindirubin-3'-oxime
(MeBIO)33

Pifithrin-o. hydrobromide534
Endogenous ligands
Malassezin®3®
Trypthantrin®36

Bilirubin®%7

Biliverdin®%’

Lipoxin A4538

Prostaglandin G2 (PGG2)5%°

Pyrimidinylphenylamine
Triphenylethylene

Alkyl polychlorinated
dibenzofuran

Carboxamide
N.D

Benzimidazoisoquinoline

N.D

Indole alkaloid
Alkaloid tryptophan
derivative

Haem metabolites

Arachidonic acid
metabolites

Host metabolism

Host metabolism

Yeast and/or fungi
Yeast and Plants
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Leukotriene A45%40
Hydroxyeicosatraenoic acid
([12(R)-HETE])*!

Indirubin®42 Phytochemicals
Indigo®*?

Indirubin-3’oxime?33

Gallic acid®*3 Phenolic acid
Norisolboldine®** Alkaloid

Indole®* Indole metabolites

2-1(1'H-indole-3’-carbonyl)-
thiazole-4-carboxylic acid
methyl ester (ITE)%*®
Indolo[3,2-b]carbazole
(|CZ)547
2-(indol-3-ylmethyl)-3,3’-
diindolylmethane (Ltr-1)54"
3,3’-diindolylmethane
(D|M)547
Indole-3-acetonitrile>*’
Indole-3-carbinol (13C)%*7
Curcumin®48

Diosmin®4

Flavipin®%®

Chrysin®®'

Galangin®®

Genistein®

Baicalein®%

Daidzein%%3

Apigenin®%?

Kynurenine®°®

Kynurenic acid>%
Xanthurenic acid®**
Cinnabarinic acid (CA)%%°
6-formylindolo[3,2-
b]carbazole (FICZ)5'?
5-Hydroxy-tryptophan (5-
HT)555
5-Hydroxyindole-3-acetic acid
(5-HIAA)*™

Tryptamine5%®
Indole-3-acetic acid (IAA)%*
3-methylindole (Skatole)®*’
Indole-3-carboxaldehyde
(13A)558

3-indoxyl sulfate (13S)%%°
Tapinarof®®°

Butyrate®®'

Propionate®’
Iso-valerate®®'

Polyphenol
Flavonoids

Tryptophan metabolites

Tryptophan metabolites

Stilbenoid
Short chain fatty acids

Plants

Dietary metabolite
and microbiota
metabolism
Endogenous/chemi
cal process

Dietary metabolite

Fungi
Plants

Microbiome and/or
host metabolism

Microbiome and/or
host metabolism

Bacterial derived
Microbiome
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AHR antagonists

Kaempfero|®6? Flavonoids Plants
Quercertin®62

Myricetin®53

Leuteolin®%3

Resveratro|®%3 Stilbenoid polyphenol

CH-223191564 N.D. Synthetic
Stemregenin 1 (SR1)%° Purine derivative

GNF 351566

3’-methoxy-4’-nitroflavone Flavonoids

(MNF)567

3’,4’-Dimethoxyflavone

(DMF)568

Table 1.1. List of known endogenous and exogenous AHR agonists and
antagonists. All agonists listed are defined by their ability to induce the expression
of Cyp1a1 or their ability to induce AHR driven XRE luciferase reporter activity in
transfected cell lines. N.D. Not determined. **Novel AHR agonist in B cells
identified by this group. Kynurenine is controversially listed as a ligand, as the
concentration needed to elicit XRE driven luciferase reporter activity is higher than
the physiological concentration in the body.
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1.5.4 Regulatory feedback loops

Unabated AHR signalling often leads to pathological responses®®, so AHR
expression and activity need to be tightly regulated. Central to this process are
several autoregulatory feedback loops, for example those involving the expression
of the cytochrome P (CYP)450 group of enzymes. The CYP450 family are drug
metabolising enzymes, expressed in many different cell types, which play a critical
role in the oxidative metabolism of lipophilic compounds®’°. One of these enzymes,
CYP1A1, is expressed as a consequence of AHR binding to XRE upstream of the
Cyp1a1 gene®’'. CYP1A1 metabolises AHR ligands, thus negatively regulating
AHR signalling. Certain AHR ligands, like the dietary phytochemicals and FICZ are
more readily metabolised by CYP1A151.572.573_Qther ligands like TCDD are more
resistant to degradation and persist in the cytoplasm and nucleus (bound to AHR)
of the cell®’*. As a way to combat AHR ligands which persist and induce constitutive
signalling, AHR induces the expression of the aryl hydrocarbon receptor repressor
(AHRR). AHRR has a higher binding affinity for ARNT and can displace AHR from
ARNT®"%, Finally, AHR is degraded through the ubiquitin-proteasome pathway after

activation®76. 577,

1.5.5 The function of AHR in immunity

A link between AHR and the immune system was originally established after it was
observed that TCDD given at increasing dosages in rodents, induced thymic
involution and reduced lymphocyte counts**®. Reduced frequencies of circulating
lymphocytes were also noted in humans accidently exposed to TCDD and related
chemicals®®. AHR is expressed in most cells of the immune system, including, but
not limited to, monocytes, DCs, mast cells, y5 T cells, innate-like lymphoid cells
(ILCs), NK cells, Th17 cells, FOXP3* Tregs, Tr1 cells and B cells®”°. Furthermore,
DREs are found in a multitude of genes important in orchestrating immune
responses, highlighting the importance of AHR in regulating cellular and humoral

mediated immune responses®&.

1.5.5.1 The role of AHR in T cell differentiation and function

Within the T cell subsets, AHR is highly expressed within the Th17 and Treg
populations (both FOXP3* Tregs and Tr1 cells). In Th1 and Th2 cells, AHR
expression is restricted*4S. AHR is known to promote the generation of Th17 cells

and expression of IL-17 and IL-22581. %82 Administration of FICZ to mice leads to a

92



more severe course of EAE, with a reduction in FOXP3* Tregs and an increase in
Th17 cells®®. In fact, FICZ and other natural agonists of AHR found in culture
medium promote the differentiation of Th17 cells. Furthermore, blocking AHR
inhibits Th17 differentiation%®. Similarly, FICZ activation of AHR supports the
generation of Th17 and Th22 cells in humans®8 %85, AHR expression in Th17 cells
is driven through IL-6 and IL-21 induced STAT3 expression®®. AHR can then bind
to the //1177 and 1I122 loci and co-ordinate IL-22 expression by facilitating the
recruitment of RORyt to the /122 promoter in IL-21 stimulated CD4* T cells*5: 587 |t
is worth noting that although Th17 cells are thought to be pathogenic in a variety
of autoimmune diseases®®, Th17 differentiation induced in response to TGFp and
IL-6 can be anti-inflammatory in certain contexts®®. This is in direct contrast to
Th17 cells generated in the presence of IL-23, or in the presence of IL-1p, IL-6 and

IL-23, which promote pathogenicity®%% 591,

As well as promoting Th17 differentiation, AHR can contribute to the
transdifferentiation of T cells by skewing Th17 cells towards the anti-inflammatory
Tr1 cells; a process driven by TGF-f and SMAD3 signalling. Upon secondary
infection with helminths, the number of Tr1 ex-Th17 cells are significantly
increased. Tr1 ex-Th17 cells were also enriched in antigen specific MOG*CD4* T
cells, compared to MOGCD4" T cells in EAE. Intriguingly, in Tr1 ex-Th17, addition
of FICZ increased IL-10%2. The AHR agonist bilirubin also promotes
immunosuppression by upregulating CD39 expression on Th17 cells and leads to
the downregulation of IL-17 and upregulation of IL-10 in both mouse and human
Th17 cells. Mice treated with bilirubin develop a less severe form of DSS colitis®®.
Collectively, these findings suggest that AHR contributes to the differentiation of
Th17 cells, however does not determine whether the Th17 cell exerts pathogenic
or suppressive function. Dependent on the cytokine mileau e.g. TGFf or IL-23,
AHR plays a supportive role in the function of Th17 cells. The role of AHR in the
transdifferentiation of Th17 to Tr1 cells, would seem to support the notion that AHR
primarily acts as an immunosuppressive agent. However, how AHR dictates this
process is unknown and it is likely that the dose of AHR ligands, the chronicity of

AHR ligation and co-stimuli all play a part in this process.

The role of AHR in regulating IL-10 production by T cells is well defined. Initial
studies demonstrated that AHR activation by TCDD could mediate suppression of
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T cell responses®*. Recently, it has been reported that TCDD induces functional
Tregs, which suppresses acute graft-versus-host disease®® and EAE®®'. In
addition, the AHR ligand norisoboldine (NOR) expanded CD4*CD25*FOXP3*
Tregs under hypoxic conditions, by inhibiting glycolysis in an AHR-dependent
manner. NOR treatment of mice, much like TCDD, alleviated colitis®®. Culture of
naive CD4*CD25 T cells with kynurenine can also increase the frequencies of
CD4*CD25*FOXP3* Tregs®®.

Upregulation of AHR in Tr1 occurs through IL-27 signalling. Mechanistically, AHR
forms part of a transcriptional complex with c-MAF and transactivates both the /170
and //121 promoters in Tr1 cells. Interestingly, in this study, both FICZ and TCDD
led to the upregulation of IL-10. Optimal IL-10 and IL-21 production was achieved
by culturing naive T cells with TGFB, IL-27 and FICZ. MOG (35-55) peptide and IL-
27 activated CD4" T cells, were able to suppress EAE disease upon adoptive
transfer into recipient mice. However, this was not the case in mice receiving MOG
(35-55) peptide and IL-27 activated donor Ahr®® (non-responsive allele) CD4* T
cells, suggesting Tr1 cell mediated suppression was dependent on the expression
of functional AHR?*?2, Concordantly, in human CD4* T cells, activation of AHR
through TCDD, drove the differentiation of CD4*FOXP3- Tr1 cells and the
upregulation of IL-10. Granzyme B was also upregulated and required for
CD4*FOXP3" Tr1 cells to suppress effector T cells. Addition of TGF-$1 and TCDD
to naive CD4* T cells induced FOXP3* Tregs, which suppressed effector T cells
through expression of CD39%7. More recently, it has been shown that the cytokine
Activin-A induces the differentiation of human Tr1 cells. Activin-A signalling
induced the expression of AHR, IRF4 and MAF. These transcription factors co-
operated as a part of a transcriptional complex which bound to the //70 locus and

upregulated the expression of IL-105%.

In addition to enhancing IL-10 production by FOXP3* Tregs and Tr1 cells, AHR
also maintains Tr1 function by metabolic reprogramming. HIF1a controls the early
metabolic programming of Tr1 cells and is required for the initial production of IL-
10. However, long term production of IL-10 is dependent on AHR signalling and
the role of AHR in supporting the degradation of HIF1a%¢. AHR also controls
cellular processes of Tregs by modulating the chromatin remodelling of these cells.
In CD4* T cells stimulated with anti-CD3 and anti-CD28, addition of TCDD reduced
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the methylation of the Foxp3 locus, whilst simultaneously increasing the
methylation of the //17 locus®®. The Foxp3 gene needs to be in its unmethylated
state to be transcribed®?. Whether AHR causes displacement of HDACs, or

recruits chromatin remodelling complexes to the Foxp3 locus is not known.

1.5.5.2 AHR in the regulation of B cell responses

In contrast to the wealth of knowledge available in the literature describing the role
of AHR in T cells, the function of AHR in B cell biology is less well characterised®'.
Through work on the prototypical ligand TCDD, initial studies identified three key
roles of AHR on B cells, which laid down foundations for further study
characterising these processes. AHR influences the activation and proliferation of
B cells, B cell development and antibody production*4. Although TCDD has been
instrumental in determining much of the knowledge we know regarding the role of
AHR in B cells, it is a persistent activator of AHR and is resistant to degradation,
so does not reflect the physiological role of AHR activity in B cells. Equally, different
ligands can induce tissue specific and cell specific outcomes in a context
dependent manner. As such, it is important to identify the role of endogenous
ligands in AHR-driven regulation of B cell responses. Both the endogenous ligands
of AHR in B cells and their role in shaping B cell responses remain very poorly
characterised. Nevertheless, the role of TCDD and other HAH and PAH ligands in
shaping these processes will be summarised below.

Initial work characterising the antibody response after TCDD treatment, revealed
that guinea pigs receiving tetanus toxoid reduced the serum levels of anti-tetanus
toxin antibodies in a dose dependent response to TCDD treatment>%. Later studies
confirmed these findings by showing TCDD treated mice had reduced numbers of
antibody secreting cells to both a series of TD and TI antigens®02 693.604 Treatment
of mice with TCDD and sensitisation of mice in vivo to TD antigens (sheep RBC’s),
Tl antigens (dinitrophenyl-ficoll, trinitrophenyl-lipopolysaccharide) or polyclonal
activators of B cells (anti-lg or LPS) revealed equivalent suppression of the IgM
response regardless of the type of antigen used. More importantly, the addition of
TCDD to LPS activated B cells in vitro, suppressed the IgM response,
demonstrating a direct effect of TCDD on B cells®% 8%_Morris et al showed that it
was the highly proliferative B cells in the G1 phase of the cell cycle that were more

susceptible to the refractory effects of TCDD®’”. The immunotoxic role of TCDD
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was first directly demonstrated by direct binding of TCDD-bound AHR to the XRE
regions of the 3’IgH transcriptional regulatory region (3'IgHRR) in the mouse B cell
lymphoma derived cell line CH12.LX and purified mouse splenic B cells, which led
to the downregulation of secreted IgM®% 6% The 3’IgHRR region is a 40k region
upstream of the constant a region, and contains four enhancers called DNasel
hypersensitive sites (hs) 3, hs1,2, hs3b and hs4%'°. In tandem, TCDD treatment of
LPS activated CH12.LX B cells, also led to downregulation of Igk, the J chain and
XBP16", Importantly, deletion of this regulatory region leads to the cessation of Ig
heavy chain production®'?. This region also plays a crucial role as deletion of the
two 3’ enhancers hs3b and hs4, impairs class switching®'3.

The addition of TCDD and its timing, either prior to or post-antigen sensitisation is
also important. Adding TCDD prior to, or at the time of, antigen sensitisation marks
a large suppression of the IgM response. TCDD added post antigen sensitisation
(1-5 days) saw a marked decrease in the strength of this response®%* 6%, Data
from these studies suggested that AHR affected B cell development, as TCDD only
inhibited the IgM response during a narrow time frame around antigen activation.

Data from these studies prompted research into the role of TCDD-driven AHR

activation on B cell development.

Activation of AHR occurs throughout the B cell maturation process, occurring from
the HSC stage right through to the terminal differentiation of B cells. As such the
expression of AHR is tightly regulated throughout the maturation process and is
highly expressed at certain stages to exert its function as an environmental sensor.
We know for instance that AHR is highly expressed in MZ B cells, peritoneal B-1
cells and in Peyer’'s patches B cells; all sites at which these cells carry out
immunosurveillance for pathogens and their associated antigens. Indeed, BCR
signals are key for driving the induction of AHR expression, which could explain
why both pro- and pre-B cells express very low levels of AHR®'4 615 Since
developing B cells in the bone marrow are more susceptible to environmental
stressors and to clonal deletion by the binding of self-antigen, it was hypothesised
that bone marrow B cells would be more susceptible to signals through AHR8'4,
Indirect activation of AHR in bone marrow cultures with the AHR agonist 7,12-
dimethylbenz [a]anthracene rapidly induced apoptosis in pre-B cells at very low

doses (10nM)8'6. Activation of AHR in bone marrow stromal cells was responsible

96



for the apoptosis of pro- and pre-B cells, as co-culture of Ahr”~ stromal cells with a
bone marrow-derived preB cell line (BU-11) in the presence of PAHs, failed to
induce apoptosis of preB cells. Conversely, co-culture of Ahr** stromal cells with
preB cells was able to induce apoptosis®!’. These data suggested that AHR could
influence early B cell development, indirectly through altering the bone marrow
milieu. Very little is known regarding AHR function from the transitional B cell to
mature B cell stages.

In contrast, the role of AHR in terminal differentiation has been extensively studied.
AHR is important for inhibiting the terminal differentiation of B cells. In humans, in
vitro CD40L-induced differentiation of B cells into plasma cells is inhibited by the
addition of the PAH benzo[a]pyrene®'®. In addition to its role in regulating Ig
production, follow-up studies in mice have shown that AHR acts as a critical
overseer in managing the transcriptional network governing mature B cell
differentiation and function (summarised in Figure 1.6). As eluded to earlier,
BLIMP-1 is essential in driving the differentiation of mature FO B cells to
plasmablasts and then plasma cells. BLIMP-1 suppresses the induction of Aicda
and promotes the expression of Irf4, two key events in the terminal differentiation
of B cells®*>. Of note, AHR inhibits the expression of BLIMP-1 through
transrepression of the Prdm1 gene. This involves two separate processes; 1) AHR
suppression of AP1 and 2) AHR induction of Bach2 expression. TCDD activated
AHR inhibits AP-1 expression and reduced AP-1 binding to the Prdm1 promoter,
thereby inhibiting BLIMP-1 expression®'9. Suppression of BLIMP-1 also occurs
through AHR-mediated upregulation of BACHZ2, a transcription factor important in
memory B cell development and for the repression of BLIMP-1620621_ Activation of
B cells with TCDD, leads to AHR binding to the first intron of the BachZ2 gene,
thereby facilitating its expression and indirectly repressing BLIMP-1 by BACH2

mediated binding of the Prdm1 gene52°.

Furthermore, TCDD activation of AHR led to a reduction in BLIMP-1 binding of the
Pax5 promoter®'®. In normal B cell development, BLIMP-1 expression and the loss
of PAX5 expression is required for plasma cell differentiation®?2. It is important to
note that no direct binding of AHR to the Prdm1 gene in B cells has been reported.
Further highlighting the ligand and cell-context specific role of AHR activation,
methylcolanthrene bound AHR, either directly or indirectly, increases BLIMP-1
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expression in epidermal keratinocytes®?3. Using mathematical modelling, Zhang et
al showed that TCDD mediated repression of terminal B cell differentiation
occurred in a binary fashion. That is to say that TCDD reduced the number of IgM-
secreting cells in a dose-dependent manner, rather than proportionally reducing
the individual plasma cell amount of secreted IgM. The authors hypothesised that
TCDD might delay B cell differentiation and increase the chances of class
switching®4. In fact, the converse is true, as we now know that AHR plays a crucial
role in CSR?'”. TCDD treated mice infected with influenza have a reduction in the
virus-specific 19G, compared to the vehicle control group®?>. More recently,
Vaidyanathan et al show that AHR can negatively regulate CSR in the absence of
any infection, through binding of AHR to the Aicda gene and negatively regulating
its expression. Moreover, addition of TCDD to B cells cultured with LPS and anti-
IgD dextran reduced the frequencies of IgG3* and IgA* B cells. Mixed bone marrow
chimeras containing WT CD45.1 and Ahr’- CD45.2 B cells revealed that in mice
immunised with 4-Hydroxy-3-nitrophenylacetyl-chicken gamma globulin (NP-
CGG), a TD antigen, Ahr” mice contributed to a greater proportion of the NP-
specific IgG1*B cell pool. Moreover, chimeric mice infected with the PR8 strain of
influenza, revealed that no differences in the frequencies of GC B cells were
observed between the WT B cells and Ahr” B cells. However, within the
B220*GL7*IgG1* GC B cell population, Ahr”~ B cells accounted for over 80% of the
haemagglutinin antigen specific B cells. In parallel, more B220'°CD138* plasma
cells were also derived from Ahr” B cells, thus highlighting the critical role of B cell
AHR expression in restraining both CSR and terminal differentiation of B cells?'’.

In addition to regulating B cell maturation, AHR also controls the activation and
proliferation of B cells. Stimulation of B cells with IL-4, LPS or activation through
the BCR can all induce the expression of AHR in B cells and can act in synergy to
further increase AHR expression?'”-615.626 |n human B cells, both TLR9 activation
through CpG-B and CD40 activation can induce AHR expression®?’. Unlike STAT3
in T cells, the transcription factors which upregulate AHR in B cells remains
unknown, although the NF-xB pathway has been ruled out®'®. Resting B cells
express low levels of AHR, which is then increased upon activation®'. This is in
direct contrast to naive T cells, who per se do not induce AHR expression upon
activation#5. It is tempting to speculate that B cells, after activation, upregulate
AHR to respond to environmental cues and regulate their responses in a ligand
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dose-dependent manner. Recently, Villa and colleagues have shown that AHR
deficiency in B cells, impairs their ability to proliferate in response to anti-IgM.
Moreover, the proliferation of antigen specific B cells are impaired in AHR deficient
B cells. AHR increased the proliferative capacity of splenic B cells after BCR
ligation, through interaction with the cell cycle regulator cyclin O85.

In conclusion, whilst TCDD has given researchers an insight into the role of AHR
in directing B cell responses, these processes in vivo are likely to be more transient
and much more complex, due to rapid turnover and metabolism of endogenous
ligands. Thus, to obtain a more physiological readout of AHR in B cell function, we
opted to use the potent endogenous AHR activator FICZ and also to utilise both
global and B cell specific AHR knockout mice. We report a role of AHR in the
differentiation and maintenance of IL-10*Bregs and identify a novel AHR ligand 5-
HIAA, which promotes Breg function.
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Figure 1.6. AHR regulates the transcriptional network governing terminal B cell
differentiation. AHR inhibits the differentiation of activated B cells into plasma cells via
transrepression of Prdm1, through the upregulation of Bach2. XRE sites have been
reported in the Xbp7 locus, but no direct regulation has been observed.
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1.6 The role of short chain fatty acids in the immune system

Short chain fatty acids (SCFAs) are a metabolic by-product produced by the
fermentation of dietary fibre by anaerobic bacteria®?® 62°, Whilst SCFAs can be
produced naturally by host metabolism in the liver, the major site of production is
in the colon, where anaerobic bacteria thrive®°. Acetate, propionate and butyrate
are the main SCFAs produced and the concentrations of these metabolites vary
according to the diet, host genetics and importantly, the composition of the
microbiota. Members of the Bacteroidetes phylum are primary producers of acetate
and propionate, whilst the Firmicutes phylum are the predominant source of
butyrate®®'. SCFAs can activate at least 4 known G-protein-coupled receptors
(GPCRs); the free fatty acid receptors (FFAR)2 and FFAR3 (also known as GPR43
and GPR41), the olfactory receptor-78 and the niacin/butyrate receptor
GPR109a%2. Although GPR43 and GPR41 can bind to propionate, acetate,
butyrate and other SCFAs, both receptors primarily bind to acetate and
propionate®?8.633_|n contrast, GPR109a selectively binds to butyrate and niacin®34.
Additionally, SCFAs can enter a cell through the sodium-coupled monocarboxylate
transporter 1 (SLC5A8) and can exert their epigenetic modulatory function once

inside a cell53%,

SCFAs can exert distinct functions on colonocytes and on immune cells through
several distinct mechanisms, which include their direct role as histone deacetylase
inhibitors (HDACI), activation of histone acetyltransferase, stabilisation of hypoxia
inducible factors or signalling by the GPCRs,636. 637. 638,639 More recently, butyrate
has been shown to enhance histone crotonylation which, like acetylation, occurs
at the lysine residues®?. The effects of histone crotonylation on gene expression
are unclear, as this epigenetic modification can both activate and inhibit gene
expression®0 641 | astly, butyrate has been shown to induce other epigenetic
modifications including histone methylation, inhibition of histone phosphorylation,
DNA methylation and hyperacetylation of non-histone proteins®2 643.644.645 Thege
data highlight the diverse functions of SCFAs in the epigenetic regulation of gene

expression.

SCFAs can induce a pro-inflammatory or tolerogenic profile in immune cells,
depending on the cell type, type of stimulation, the environment and on the type of
SCFA. Of the SCFAs, butyrate has been shown to have an anti-inflammatory role
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in multiple cell types®32. Butyrate suppresses the production of nitric oxide, IL-6 and
IL-12p40 by murine bone marrow derived macrophages and colonic lamina propria
macrophages upon culture with LPS. However, no suppression was seen with
acetate and propionate, suggesting SCFA specific effects on the regulation of
immune responses. Suppression of pro-inflammatory cytokine expression in these
cells is mediated by butyrate’s role as a HDACI, and the resulting increase in
histone 3 lysine 9 acetylation at the promoter regions of //12, I112b and Nos2
genes®®. Indeed, through its role as a HDACI, butyrate drives monocyte to
macrophage differentiation and increases macrophage antimicrobial activity. Mice
given butyrate have increased resistance to enteropathogens®*’.

The role of SCFA’s in T cell differentiation and function have been well
characterised. SCFAs regulate T cell differentiation, both through direct activation
of T cells or indirectly by modulating DC function®2°. Mice lacking the SCFA
transporter SLC5A8, do not induce the expression of indoleamine 2,3-dioxygenase
(IDO)1 or aldehyde dehydrogenase (ALDH)1A2 upon exposure to butyrate. Unlike
the WT counterparts, S/lc5a8”- DCs are unable to convert naive Tregs to FOXP3*
Tregs and do not inhibit the generation of IFN-y expressing T cells in a model of
colitis®®. In addition, butyrate can promote tolerogenic macrophage and DC
generation through activation of the butyrate receptor GPR109A, which induces
the expression of IL-10 and ALDH1A1 in colonic DCs and macrophages from WT
mice. GPR109A-activated DCs promote the differentiation of naive CD4" T cells to
FOXP3* Tregs and provide protection against DSS colitis®4°.

Butyrate can also act directly on CD4* T cells through increasing the acetylation of
the non-coding sequence regions of the Foxp3 locus, thereby promoting the
differentiation of naive CD4* T cells to FOXP3* Tregs®® 85", SCFAs can also
impact the differentiation of other T helper cell subsets. Mice treated with
propionate are protected from allergic airway inflammation, due to an impairment
in DCs to induce Th2 differentiation®2. Similarly, acetate influences the generation
of Th17 and IL-10" T cells, through increasing the acetylation of p70 S6 kinase; a
downstream target of the mammalian target of rapamycin (mTOR) pathway®%3. The
mTOR pathway is required for the generation of effector and regulatory cytokine
production by T cells, including IFN-y, IL-10 and 1L-175%

102



1.6.1 The regulation of B cell responses by SCFAs - a proposed role for AHR?
To date, elucidating the role of SCFAs on B cell responses have been limited to
the effects of SCFAs on the humoral response. Initial studies revealed that mice
fed a high fibre diet had increased numbers of IgA* plasma cells in the lamina
propria and IgA* GC B cells in the Peyer’s patches (PP), which was attributed to
the effect of propionate. Mice fed a high fibre diet or a low fibre diet supplemented
with propionate increased the expression of Aicda in PP B cells and class switching
towards IgA* expressing cells. Importantly, both the CNS regions and the class
switch regions of the Aicda and Igha loci respectively, had increased acetylation,
suggesting that SCFAs regulated this response through its role as an HDACI®%5.
The increase in intestinal IgA was later suggested to be driven by SCFA sensing
by the GPRA43 receptor, as GPR43 KO mice had reduced levels of faecal IgA* and
reduced frequencies of IgA* expressing B cells in the lamina propria. Furthermore,
unlike in control WT mice, treatment of Gpr437 mice with acetate failed to increase
faecal IgA levels. Acetate driven IgA production was shown to be partially
dependent on GPR43-induced retinoic acid production by DCs. It is important to
note that butyrate did not increase IgA levels in this study, thus reinforcing the idea
that each SCFA can exert different functional roles in the regulation of B cell

responses®.

In direct contrast to the previous studies, Sanchez et al reported that administration
of butyrate and propionate together reduced the levels of IgM, IgG and IgA-
expressing B cells in the lamina propria, PPs and MLNSs. After challenge with both
TD (NP-CGG) and Tl antigens (NP-LPS), mice receiving butyrate and propionate
had reduced serum levels of IgM, IgG1 and IgA. Importantly, administration of
SCFAs to WT mice decreased CSR, by reducing the expression of Aicda and also
reduced terminal differentiation of B cells to plasma cells by inhibiting Prdm1.
These effects were attributed to the role of butyrate and propionate as HDAC
inhibitors, as the selective GPR43 antagonist GLPG0974 did not affect the
suppression of Aicda or Prdm1 by butyrate or propionate®’. Whilst the reasons for
contrasting results between the studies are not entirely explained, it is likely that
the type and dose of SCFA affect the outcome of SCFAs on CSR and terminal
differentiation.
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As detailed in the previous sections, there are notable functional similarities
between the role of AHR and SCFAs in the regulation of B cell responses. Notably,
both AHR and SCFAs reduce CSR by inhibiting Aicda expression, halt the terminal
differentiation of B cells and reduce the levels of secreted immunoglobulin. Indeed,
several lines of evidence link the effects of SCFAs to AHR activation. Butyrate has
been shown to be a direct AHR ligand in an intestinal epithelial cell line%'. In
addition, butyrate can also enhance TCDD-driven AHR activation in mouse
colonocytes®8. These data combined led us to hypothesise that SCFAs regulate
B cell responses in an AHR-dependent manner.
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CHAPTER II: Materials and Methods

2.1. Mice

2.1.1 Mouse strains

All mice were generated on a C57BL/6 background. C57BL/6 WT mice were
purchased from Envigo, UK; B6.129S2-Ighm'™'¢9"/J (uMT) mice were purchased
from Jackson, USA. IL-10eGFP mice were as described®®, courtesy of Prof Karp;
129(B6)-1110™m7C9"/J (11107") mice were kindly given courtesy of Professor Fiona
Powrie (Kennedy Institute of Rheumatology Oxford University); B6.SJL-Ptprc?
Pepc®/BoyJ (CD45.1) mice were kindly given courtesy of Professor Derek Gilroy
(University College London). Ahr”, Ahr*-, Mb1¢cre, Ahr"R26R" (courtesy of Prof
Reth) and Ahr”Mb1¢® mice were kindly provided by Prof. Brigitta Stockinger.
Ahr"Mb1¢¢* were generated by crossing male Ahr"Mb1ceee with female
Ahr”"R26R"" mice. Mice were used at 6—-12 weeks of age and were age- and sex-
matched. All mice were bred and maintained at the animal facility, University
College London. All experiments were approved by the Animal Welfare and Ethical
Review Body of University College London and authorized by the United Kingdom
Home Office.

2.1.2 Genotyping of mouse strains

Ear clips were taken from mice and processed using a KAPA HotStart mouse
genotyping kit (Sigma-Aldrich), according to manufacturer’s instructions. Briefly,
ear clips ~2mm in diameter were incubated in 100ul lysis buffer containing 88ul
H20, 10ul 10x KAPA express extract buffer and 2ul KAPA express extract enzyme
(20,000 U/ml). Ear tissue was incubated at 75°C for 10 mins, followed by 95°C for
5 minutes. Extracts were diluted 10-fold in Tris-HCL (pH 8.0-8.5).

PCR was carried out on the diluted DNA extracts in a volume of 25ul, consisting of
1ul of DNA extract or H2O (no template control), 12.5ul of 2x KAPA2G Fast
(Hotstart) genotyping mix with dye, 1.25ul of each primer and topped up with H20
to 25ul. Primers were used at a final concentration of 0.5uM. Primer sequences
against genomic DNA were custom designed using Primer-BLAST or using the
previously described sequences on the Jax website. Primers for Mb1 were
designed to span exons 2+3; the deleted segments in Mb7cre mice. The following
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primer sequences were used for genotyping: Ahr common forward (5'-
AACTAGGTAAGTCACTCAGCATTACA-3), Ahr  wild type reverse

(5’CCCCTCTACTATACTGCTACCCAAC-3), Ahr mutant reverse
(5'CTAAAGCGCATGCTCCAGAC-3), Mb1 forward (5-
GTACGGCTCCACTCCTGATG-3’), Mb1 reverse (5-

GGAAGAAAGAGGGAGCAGGG-3’). PCR reactions were run with using the
following cycling parameters in Table 2.1, using a TGradient (Biometra)

thermocycler.

Step Number [Temp (°C) [Time Notes

1 94 2 mins

2 94 20 sec

3 65 15 sec 0.5°C decrease per cycle

4 68 10 sec

5 Various  |Various (ﬁ%%iitdosvtvigs 2-4 for 10 cycles

6 94 15 sec

7 60 15 sec

8 72 10 sec
Repeat steps 6-8 for 28 cycles for

9 Various  |Various genotyping Ahr and 25 cycles for
Mb1.

10 72 2 mins

Table 2.1. PCR cycling parameters used for genotyping.

Amplicon lengths were assessed by using a 1% w/v agarose gel (1% agarose, 1x
Tris-Acetate-EDTA; Sigma-Aldrich). SYBR™ Safe DNA stain (ThermoFisher
Scientific) was included in the gel mix at a 1/10,000 dilution. 15ul of the PCR
product (dye already intercalated) or 5ul of Hyperladder™ 1kb (Bioline) DNA ladder
were loaded into a well and the gel was run at 90v for 40 minutes. The gel was
assessed by UV light for DNA bands, using the ChemiDoc™ XRS imager and
Quantity One software (BioRad).

2.2 Induction of antigen-induced arthritis (AlA)

AIA was induced by injecting mice subcutaneously at the tail base with 200ug of
methylated BSA (mBSA; Sigma-Aldrich) emulsified in 100ul Complete Freund’s
Adjuvant (CFA). CFA was made by mixing 3mg/ml of Mycobacterium tuberculosis

(Difco) in Incomplete Freund’s Adjuvant (IFA; Sigma-Aldrich). After 7 days, mice
106



received an intra-articular (lA) injection of 10ul of PBS containing 200ng mBSA in
the right knee and 10ul PBS alone in the left knee as a control. Joint size was
measured using callipers (POCO 2T; Kroeplin GmbH) at daily intervals and
swelling was calculated as a percentage increase in size between the inflamed and
control knee. All experiments, unless stated otherwise, were carried out at day 7
post-1A injection.

2.3. Short-chain fatty acid supplementation

1 week prior to the induction of arthritis the drinking water of mice was
supplemented with sodium acetate, sodium propionate or sodium butyrate (all
150mM; Sigma-Aldrich) and changed every 3 days as previously described®?®. The
control group received sodium chloride. Mice were maintained on SCFAs
throughout the duration of the experiment. For RNA-seq and ATAC-seq analysis,
mice were gavaged daily with 500mg/kg of sodium butyrate to reduce variation
caused by individual differences in daily water intake. Control mice received a
gavage of 500mg/kg of sodium chloride. For antibiotic-treated experiments, one
week prior to induction of arthritis, vancomycin (500mg/L; Sigma-Aldrich),
Neomycin (1g/L; Sigma-Aldrich), and Metronidazole (1g/L; Sigma-Aldrich) were
added to drinking water as previously described3?. Untreated and treated mice
were then gavaged daily with 500mg/kg of sodium butyrate or sodium chloride as
a control. Mice were maintained on antibiotics throughout the duration of the
experiment. For L-para-chlorophenylalanine (PCPA) experiments, mice were
supplemented with butyrate as described above and gavaged daily with PCPA
(4mg per mouse) in a suspension of 0.5% methyl cellulose and 0.01% Tween 80.

Control mice received vehicle alone.

2.4 Gavage with 5-hydroxyindole-3-acetic acid and kynurenic Acid

Mice were gavaged daily from 1 week prior to the induction of arthritis and
throughout the experiment with either 5-Hydroxyindole-3-acetic acid (5-HIAA,
0.5mg per mouse) or kynurenic acid (KYNA, 0.125mg per mouse) dissolved in oil.

Control mice received vehicle alone.

2.5 Histology

Affected joints from Ahr"Mb1¢®* and Mb1¢®* mice were removed post-mortem,

fixed in 5% (w/v) buffered formalin, and decalcified in 5% EDTA. The joints were
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subsequently embedded in paraffin, sectioned, and stained with hematoxylin and
eosin Y (H&E). Briefly, the sections were rehydrated in PBS, stained with
hematoxylin, washed, counterstained with eosin Y, then washed and dehydrated
in sequentially higher concentrations of ethanol from 75% to 100%. The sections
were scanned using the NDP NanoZoomer (Hamamatsu) at 20x magnification and
analyzed with the NDP view software.

2.6 Generation of chimeric mice

Recipient WT mice received 800cGy gamma-irradiation via a caesium source. 5 h
following irradiation, recipients received 10x10° donor bone marrow cells. To
generate CD45.2*Ahr”CD45.1* congenic chimeric mice, WT mice were
reconstituted with 10x108 donor bone marrow cells containing 50% from CD45.1*
WT mice and 50% from CD45.2* Ahr” mice. To generate mice in which the
absence of IL-10 was exclusively restricted to B cells, WT mice were reconstituted
with mixture of bone marrow consisting of 80% from uMT (B cell deficient) with
20% from /1107 mice. Control mice received 80% from uMT and 20% bone marrow
from WT mice (to give a normal B cell compartment). Chimeras were left to fully

reconstitute at least 8 weeks before use in AlA experiments.

2.7 Murine cell isolation and preparation of single cell suspensions

To make complete RPMI-1640, media was supplemented with 10% fetal calf
serum, 1% penicillin/streptomycin  (P/S; 100U/ml Penicillin + 100ug/ml
streptomycin; Sigma-Aldrich). In addition, 50uM 2-mercaptoethanol (ThermoFisher
Scientific) was added to the media. All FCS was heat inactivated before use in
culture. All wash steps were carried out by adding 30ml complete RPMI media to
the cell suspension and included a centrifugation step at 500xg for 10 minutes,
unless otherwise stated.

2.7.1 Preparation of cell suspensions from lymphoid organs

Spleens, draining lymph nodes (DLNs) and MLNs were dissected post-mortem
from mice and collected in complete RPMI, on ice. For splenocyte and lymph node
cell preparation, organs were mashed through a 70uM cell strainer (BD
Biosciences) into a 50ml centrifuge tube, using the plunger of a sterile 5ml syringe.
Collected splenic cell pellets were lysed using 1ml of Red Cell Lysis Buffer (Sigma-

Aldrich) per spleen. The cell pellet was resuspended with 1ml RBC lysis buffer and
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left for 1 min at room temperature. The cell suspension was then washed and

resuspended in 10ml complete RPMI for cell counting.

2.7.2 Isolation of lymphocytes from bone marrow

Femur bones from mice were collected post-mortem and stored in complete RPMI
on ice. The bone marrow cells were flushed from the femur bones with 1x PBS
(Sigma-Aldrich), using a 0.5ml syringe (29G). The resulting tissue was mashed
through a 70uM cell strainer and the cells were washed with complete RPMI,

before counting.

2.8 Isolation of murine B cell subsets

2.8.1 Isolation of murine CD43" B cells using magnetic beads

Total splenocytes or cells isolated from lymph nodes were resuspended in MACS
buffer (2% FCS, 2mM EDTA), before labelling cells with beads targeting CD43. A
column based negative selection kit for the isolation of CD43- cells (Miltenyi Biotec)
was used for the isolation of untouched resting B cells, as per manufacturer

instructions. B cell purity was routinely >90% (Figure 2.1).
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Figure 2.1. Splenic B cell purity plots. Representative flow cytometry plots showing the
frequency of CD19* B cells from Mb1°®* and Ahr"Mb1°®* mice, following negative
selection.

2.8.2 Isolation of murine lymphocyte subsets by FACS sorting

For isolation of murine B cell subsets from the spleen, total B cells were initially
isolated by CD43-based negative selection and then were washed twice with
MACS buffer, prior to staining. Cells were stained at 50M/ml for 30 minutes at 4°C
with the following antibodies: CD19 BV785 (6D5), CD21 APC (7E9), CD23 FITC
(B3B4) and CD24 PE-Cy7 (M1/69). B cell subsets were sorted using a cell sorter
(FACSAria; BD Pharmingen). Dead cells were excluded by the use of 4,6-

diamidino-2-phenylindole at 0.5pg/ml (DAPI; Sigma). For RNA-seq, ATAC-seq and
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microarray data sets the addition of BV605 dump channel antibodies against CD3
(17A2), CD4 (RM4-5), CD8a (53-6.7), CD11b (M1/70), CD11c (N418), F4/80
(BM8), LY6C/G (RB6-8C5), erythroid cells (TER-119) and TCRp (H57-597) were
incorporated (Biolegend). For isolation of T cell subpopulations, cells were stained
with CD3 BV605 (17A2), CD4 BV711 (RM4-5) and CD25 APC (PC61).

For both murine B cell subpopulations, sort purity of B cell subpopulations was
routinely >90% (Figure 2.2). Cells were collected into 1xPBS (50% FCS) in
polypropylene FACS tubes and washed with complete RPMI media.
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Figure 2.2. Gating strategy and purity plots for CD19*CD21"CD24" B cells.
Representative flow cytometry plots showing CD19*CD21"CD24" B cells from Mb1°®*
(left plots) and Ahr”Mb1°®* (right plots) mice prior to sorting (top plots) and purity of
CD19*CD21"CD24" B cells after sorting (bottom plots).

2.9 Adoptive transfer of CD19*CD21"CD24" B cells from Ahr"-Mb1°** and
control Mb1¢™* mice

CD19*CD21MCD24" B cells were FACS-sorted from spleens of Ahr"-Mb1°¢* and
control Mb1°¢* mice after remission from AIA and 5x10° were transferred into
recipient wild-type mice on the day of intra-articular injection. The control group (no
transfer) received a PBS injection.
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2.10 Congenic adoptive transfer of CD19*CD21"CD24" B cells from Ahr?-
Mb1¢**and control Mb1¢®* mice

CD45.2*CD19*CD21MMCD24" B cells (0.75x108) were isolated from control and
butyrate supplemented WT and Ahr” mice seven days’ post-disease onset and
adoptively transferred into recipient CD45.1" mice on the day of intra-articular

injection.

2.11 Adoptive transfer of IL-10eGFP*CD19*CD21"CD24"Bregs

IL-10eGFP*CD19*CD21"CD24"" Bregs (2.3x10°) were isolated from control or
butyrate treated IL-10eGFP (Vert-X) reporter mice seven days’ post-disease onset
and adoptively transferred intravenously into recipient WT mice on the day of intra-

articular injection.

2.12 Adoptive transfer of Tregs

CD3*CD4*CD25" Tregs were isolated from butyrate-supplemented and control
Mb1ce* and Ahr”Mb1°®* mice seven days’ post-disease onset and
CD3*CD4*CD25" Tregs (2x10°) were transferred intravenously into recipient WT
mice on the day of intra-articular injection. The control group (no transfer) received
a PBS injection.

2.13 Cell culture

Cells were cultured at 37°C with 5% CO:2 with either RPMI-1640 (Sigma-Aldrich)
containing L-glutamine and NAHCO3 or Iscove’s Modified Dulbecco’s Medium
(IMDM; Pan Biotech; murine cultures only), enriched in AHR agonists®?,
supplemented with L-Glutamine and 25mM HEPES. Both media were
supplemented with 10% fetal calf serum (LabTech), 1% penicillin/streptomycin
(100U/ml  Penicillin+100ug/ml  streptomycin; Sigma-Aldrich) and, for murine
culture, 50uM 2-Mercaptoethanol (ThermoFisher Scientific) was added. Cells were
cultured at 2.5x108/ml in a 96 well round-bottom plate. For intracellular cytokine
staining, phorbal 12-myristate 13-acetate (PMA; 50ng/ml; Sigma-Aldrich),
lonomycin (250ng/ml; Sigma-Aldrich) and Brefeldin A (5ug/ml; Sigma-Aldrich)

were added to culture 4.5h before flow cytometry staining.

Total lymphocytes, B cells and B cell subsets were cultured for 48h with CpGb
ODN1826 (1uM; Invivogen), LPS (1ug/ml; Sigma-Aldrich) + anti-mouse IgM
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(10ug/ml; Jackson ImmunoResearch) or anti-CD40 (10ug/ml; BioXcell) + mBSA
(10ug/ml; Sigma-Aldrich). In addition, the AHR agonists FICZ (100nM; Enzo
LifeSciences), 5-HIAA (10uM; Sigma-Aldrich), KYNA (50uM; Sigma-Aldrich) or the
AHR antagonist CH-223191 (3uM; Sigma-Aldrich) were added to culture. For 48h
culture, anti-lgM £ AHR agonists/antagonist were added 24h into culture. For PCR
(6 and 24h cultures), AHR agonists/antagonist were added at the start of culture.

2.14 Detection of cytokine and antibody concentrations by ELISA

Supernatants were collected from cell cultures, prior to the addition of PMA,
lonomycin and Brefeldin A to the culture. Cytokine concentrations were calculated
using a polynomial (4" order) standard curve. For B cells and B cell
subpopulations, cells were cultured at a concentration of 2.5M/ml. For the detection
of IL-2, IL-6, IL-10, IL-17 and TNF-a duoset ELISA kits from R&D were used,
according to manufacturer’s instructions. Serum was collected from Mb1°®* and
Ahr”-Mb1°¢* day 7 post AIA and was analyzed for total IgA, IgG and IgM

(ThermoFisher Scientific).

2.15 Flow cytometry

Anti-rat and anti-hamster Igk compensation particles kits (BD Biosciences) were
used for singles for flow cytometry, according to manufacturer’s instructions.
LIVE/DEAD singles were made using ArC™ Amine Reactive Compensation Bead
Kit (ThermoFisher Scientific), according to manufacturer’s instructions. Flow
cytometric data were collected on an LSRII or LSR Fortessa (BD Pharmingen)
using FACS Diva software. Data were analyzed using Flowjo (Tree Star).

2.15.1 Surface staining and analysis of reporter expression

For multi-color flow cytometric surface staining, 1x10° mouse cells were first
centrifuged at 800xg for 3 minutes. All wash steps included a centrifugation step at
800xg for 3 minutes. Cells were washed once with 200ul of 1xPBS. Cells were
stained with LIVE/DEAD™ Fixable Blue Dead cell stain (ThermoFisher Scientific)
at a final concentration of 1/500, diluted in 1xPBS for 20 minutes at room
temperature, in the dark. Cells were then topped up to 200ul with FACS buffer
(1xPBS, 1%FCS, 0.005% Sodium azide) and washed once more with FACS buffer.
Antibodies targeting cell surface antigens were diluted in FACS buffer or Brilliant
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stain buffer (if two or more antibodies contained Brilliant violet conjugates; BD
Biosciences) at the optimised concentration (Table 2.2) and added to cells in a
50ul staining volume and were left to incubate at 4°C for 25 minutes in the dark.
Cells were washed twice with FACS buffer and then resuspended with 100ul 2%
paraformaldehyde and left to incubate at 4°C for 20 minutes in the dark. Cells were
then washed twice with FACS buffer and then resuspended in 220ul FACS buffer,
prior to acquisition. For the detection of eGFP and FP635 reporter expression, cells
were stained as described above, but without the fixation step. Cells were run live,
within 2h of staining. To calculate absolute numbers, the total cell count was
multiplied by the fraction of lymphocytes in the live gate.
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Antigen [Fluorochrome |Clone |[lsotype |Concentration |Company
Rat .

CD1d PerCP/Cy5.5 |1B1 IgG2b, x 1Tug/ml Biolegend
Rat .

CD3 BV605 17A2 IgG2b, x 1Tug/ml Biolegend
Rat .

CDh4 BV605 RM4-5 IgG2a, « 1Tug/ml Biolegend
Rat .

CD4 FITC RM4-5 IgG2a, x 2.5ug/mi Biolegend
Rat .

CD5 AFG47 53-7.3 I9G2a, « 2.5ug/ml Biolegend
Rat .

CD8a BV605 53-6.7 IgG2a, x 1Tug/ml Biolegend
Rat .

CD8a PE 53-6.7 IgG2a, x 1Tug/ml Biolegend
Rat .

CD9 AF647 MZ3 IgG2a, « 2.5ug/mi Biolegend
Rat Thermo

CD11b |APC M1/70 19G2b 1ug/ml Fisher
geb, ¥ Scientific
Rat .

CD11b |[BV605 M1/70 1gG2b, « 1ug/ml Biolegend
Armenian

CD11c |BV605 N418 |Hamster |1ug/ml Biolegend
1gG
Armenian

CD11c [|FITC N418 |Hamster [2.5ug/ml Biolegend
lgG
Armenian BD

CD11c [PE HL3 Hamster [1ug/ml Biosci

iosciences

lgG2

cD19  |BV785 6D5 | A 1ug/ml Biolegend
IgG2a, « |'M9 9

cD21  |APC 7Ee [0 1992 g/m Biolegend

cD21  [Bv421 7E9 Eat 196221, g/mi Biolegend

cD21  [FITC 7E9 Eat 19G2a}, 5,,g/m Biolegend
Rat 1gG2a, BD

CD23 BV711 B3B4 » 1ug/ml Biosciences

CD23  [FITC B3B4 Eat 196225 5,,g/ml Biolegend

CD23  |PE/Cy7 B3B4 Eat 196221, g/l Biolegend

cD24  |APC M1/69 Eat 19G2by i Biolegend
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CD24  [Bv421 M1/69 Eat 19G2by i Biolegend

CD24  |PE/Cy7 M1/69 Eat 19G2by i Biolegend

CD25 PE PC61 |[RatlIgG1, A1ug/ml Biolegend

CD38  |PE/Cy7 90 Eat 9G2a g/l Biolegend

CD39  |PE Duhasg |t 19521 g/mi Biolegend
Rat 1gG2a, BD

CD43  |PE-Cy7 S7 - 1ug/mi Bioscionces
Mouse BD

CD45.2 |BUV737 104 | Gom i [Tugiml Bioscionces

CD45R RA3- |Rat IgG2a, BD

(8220) [BUV39S 6B2 | Tug/ml Biosciences

CD73  |APC TY/11.8 |Rat IgG1, «1ug/mi Biolegend

CD93  |PE/CY7 Ang.g R3804 g Biolegend
Hamster BD

CD95 PE/Cy7 o2 1gG2, A2 Tug/ml Biosciences
Armenian

CD103 |BVv421 2E7 Hamster [1ug/ml Biolegend
1gG

CD138 |BV711 281-2 Eat 19G2a g/l Biolegend

CD138  |BV605 081-2 Eat 19G2a; | 3/mi Biolegend

CD184 Rat 1gG2b, .

(CXCR4) [APC L276F 12| 1ug/mi Biolegend

CD185 Rat 1gG2b, .

(CXCRS5) PerCP/Cy5.5 ([L138D7 " 1ug/ml Biolegend
Armenian

CD196 BV605 29-2L17 [Hamster  [1ug/mi Biolegend

(CCRS) 00

CD199 Mouse .

(CCRO) PE/Cy7 CW-1.2 1gG2a, x 1Tug/ml Biolegend
Mouse BD

CD249 PE BP-1 1gG2a, Tug/mi Biosciences

CD273 Rat 1gG2a, .

(PD-L2) PE TY25 » 1Tug/ml Biolegend

CD317 Rat 1gG2b, .

(PDCA-1)PE 129C1 » 1Tug/ml Biolegend

CD326 Rat 1gG2a, .

(EpCAM) FITC G8.8 » 2.5ug/mi Biolegend

CD365 Rat 1gG2b, .

(TIM-1) PE RMT1-4 » 1pg/ml Biolegend

F4/80  |[BV605 BMS8 Eat 9G2a gimi Biolegend
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GL7 PerCP/Cy5.5 |GL7 Rat IgM, « [2ug/ml Biolegend
11- Rat 1gG2a, .
gD PerCP/Cy5.5 b6c.2a | 2ug/mi Biolegend
IgM APC/Cy7 RMM-1 Eat 19G2a; | 3/mi Biolegend
RB6- |Rat IgG2b, .
Ly6C/G |BV605 8C5 » 1Tug/ml Biolegend
TER-119
(Erythroid[BV605 TER-1195at 19G2by i Biolegend
)
Armenian
TCRp BV605 H57-597 [Hamster  |1ug/ml Biolegend
lgG

Table 2.2. Mouse flow cytometry antibodies for extracellular antigens.

2.15.2 Intracellular staining for the detection of murine cytokines and nuclear
transcription factors

For the detection of intracellular cytokines and intra-nuclear transcription factors,
cells were stained as above in 2.15.1, up until the fixation step. Cells were then
washed twice with 200ul FACS buffer and then fixed with either 100pl intracellular
fixation buffer or 100ul FOXP3/Transcription factor staining kit, for cytokines and
transcription factors respectively (ThermoFisher Scientific). Cells were fixed at 4°C,
for 25 minutes in the dark. Cells were washed twice with 1x Permeabilisation buffer
(10x Permeabilisation buffer diluted in FACS buffer; ThermoFisher Scientific).
Antibodies targeting intracellular/nuclear antigens were diluted in 1x
permeabilisation buffer at the optimised concentration (Table 2.3) and added to
cells in a 50ul staining volume and were left to incubate at 4°C for 40 minutes in
the dark. Cells were washed twice with 1x permeabilisation buffer, followed by one
wash with FACS buffer. Cells were then resuspended in 220ul FACS buffer, prior

to acquisition.
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Antigen [Fluorochrome |Clone Isotype [Concentration [Company
BLIMP- Rat ,
1 AF647 S5E7 9G24, 2ug/mi Biolegend
Rat Thermo
FOXP3 |APC FJK-16s 1aG23 2ug/ml Fisher
gbea, x Scientific
Rat BD
IFN-y [PE XMG1.2 IgG1, x 2ug/ml Biosciences
MP5- Rat BD
-6 AF488 P0F3 19G1 ug/ml Biosciences
MP5- Rat BD
-6 V450 P0F3 19G1 2ug/ml Biosciences
JES5- Rat _
IL-10 |PE 16E3 19G2b, « 4ug/mi Biolegend
Rat Thermo
IL-17A |eFluor 450 eBio17B7 1aG23 2ug/mi Fisher
gbea, x Scientific
Rat Thermo
IL-17A |PE eBio17B7 1aG23 2ug/mi Fisher
gbea, x Scientific
. Rat .
Ki-67 [BV421 16A8 I9G2a, « 1Tug/ml Biolegend
MPG6- Rat ,
TNFa [BV510 T 22 19G1, « 2ug/ml Biolegend

Table 2.3 Mouse flow cytometry antibodies for intracellular antigens.

2.16 Immunofluorescence

Spleens were dissected and embedded into optimal cutting temperature
compound (OCT, Tissue-Tek) and snap-frozen for cryo-sectioning (6um). Slides
were incubated in 100% ethanol to fix for 5-10min (4°C), followed by rehydration
in PBS for 5min (4°C). The sections were blocked with 10% normal goat serum
and 0.3% TX-100 (20 min at RT) and then incubated with primary antibodies for
2hr at RT. Primary antibodies: rat anti-mouse GL7 (Thermo Fisher), B220-PE (BD).
Secondary antibody: AF647 — conjugated anti-rat IgM (1hr at RT). The slides were
mounted in Vectashield with DAPI (Vector Labs). Whole slide fluorescent images
(20x) were taken on a Zeiss Axio Scan Z1 microscope using the 365 nm LED to
detect DAPI staining in the nuclei, the 470 nm LED for GFP detection (IL-10), the
555 nm LED for PE detection (B220) and the 625 nm LED for the detection of Alexa

fluor 647 (GL7). Scans were analyzed using Leica Software and Fiji (ImageJ).
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2.17 In vitro suppression assay

Splenic B cell subsets from Ahr’”-and Ahr*”- mice were FACS sorted at day 7 post
|A injection and stimulated with CpG-B (ODN2006) for 6 hours. Cells were washed
and then co-cultured with 0.5ug/ml plate-bound anti-CD3 (145-2C11, BD
Biosciences) for 72 hours with CD4*CD25- FACS sorted T cells from Ahr*- mice.
Following stimulation, cells were analyzed for CD4* IFN-y expression. The
percentage suppression of IFN-y was calculated as a percentage reduction in IFN-
v from CD4" cells cultured alone, compared to when B cell subsets were added to

culture.

2.18 Gene expression analysis

2.18.1 Column-based RNA extraction

Total murine B cells or B cell subsets (0.2-1.5 x10° cells) from either ex-vivo or
after culture were transferred to a 15ml centrifuge tube, washed with MACS buffer
and centrifuged at 500xg for 10 minutes. All centrifugation steps were at 4°C. Cells
were resuspended in 1ml MACS buffer and transferred to a 1.5ml Eppendorf and
centrifuged at 1000xg for 10 minutes. The supernatant was aspirated and cells
were resuspended in 100ul of the extraction buffer and mixed thoroughly. The cell
extract was incubated at 42°C for 30 minutes on a heat block and stored at -80°C,
until further use. RNA from isolated B cells/subsets was extracted using Arcturus
Picopure RNA isolation kit (ThermoFisher Scientific), according to manufacturer’s
instructions. Briefly, columns were washed for 5 minutes with 250l conditioning
buffer and centrifuged at 16,000xg for 1 minute. The cell extract was diluted 1:1
with 70% ethanol and mixed thoroughly. The mixture was transferred to the column
and centrifuged for 2 minutes at 100xg, to allow the RNA to bind to the column.
The column was then centrifuged for 30 seconds at 16,000xg, to remove flow-
through. Columns were washed once with wash buffer 1 (WB1) and centrifuged at
8000xg for 1 minute. 40pl of DNase, diluted in RDD buffer, (350 Kunitz/ml; Qiagen)
was added to the column and left to incubate for 20 minutes at room temperature.
The column was washed 1x WB1 and twice with WB2, before a final centrifugation
step of 16,000xg for 2 minutes. RNA was eluted in 16ul elution buffer at 1000xg
for one minute, followed by 16,000xg for one minute into a 0.5ml Eppendorf. RNA
concentration was analysed by Nanodrop-1000 (ThermoFisher Scientific).
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2.18.2 cDNA synthesis

Depending on cell number, either 500ng or 1ug of RNA template was used to
generate cDNA. The amount of RNA template was standardised between samples
and experiments. RNA was reverse transcribed using an iScript cDNA synthesis
kit (Bio-Rad), according to manufacturer’s instructions. Briefly, 15ul of RNA/H20
solution was mixed with 4ul of 5x reverse-transcription mix and 1ul reverse
transcriptase (RT), to make a final volume of 20ul. The solution was left at room
temperature for 5 minutes, before transferring to a heat block for 20 minutes at
46°C. The mixture was incubated for 1 minute at 95°C, for reverse transcriptase

inactivation. Samples were topped up to 100ul with molecular biology grade H20.

2.18.3 Quantitative polymerase chain reaction (QPCR)

gPCR was carried out on the cDNA samples using iQ™ SYBR® Green Supermix
(Bio-Rad), according to manufacturer’s instructions. All PCR reactions were carried
out in a volume of 20ul, consisting of Sul of cDNA or H20 (no template control),
10ul of 2x iQ SYBR® Green, 1ul each of forward and reverse primers (or 2ul of
Quantitect primer mix) and 3ul H20. Primers were used at a concentration of 10uM,
with a final concentration in the reaction of 0.5uM. Primer sequences were custom
designed using Primer-BLAST or taken from the literature. Primers were designed
with an amplicon length of <200bp. The primers are summarised in Table 2.4.
Quantitect primers for murine Arnt, Ahrr and Cyp1a1 were purchased from Qiagen.
All primers were initially assessed by agarose gel electrophoresis to check
amplicon length.

All gPCR reactions were performed on the OPTICON™ instrument (BioRad). The
following cycling parameters were used: an initial denaturation step of 3 minutes
at 95°C, followed by 41 three-step cycles of 95°C, 60°C and 72°C, for 30 seconds
each. Melt curve analysis was incorporated at the end of the cycles, starting at
55°C, with reads every 0.2°C (held for 1 second between reads) up till 95°C. PCR
products were tested for amplicon lengths by an agarose gel (1% w/v), to check
the specificity of primer pairs. gPCR data were calculated as the ratio of gene to -
Actin expression by the relative quantification method (AAC:; meansts.e.m. of

triplicate determination).
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Target

Forward primer Reverse primer

gene

Ahr o- 5'-CTCCAGCGACTGTGTTTTGC-
AGGATCGGGGTACCAGTTCA-3'|3’
5’-

p-actin JAGATGACCCAGATCATGTTTGA |5 -AGGTCCAGACGCAGGATG-3’
G-3’
5'- 5'-

Ccl3%6" [TGAGAGTCTTGGAGGCAGCGA[TGTGGGTACTTGGCAGCAAACA-
-3’ 3’

Ccl22662/5-CAGGCAGGTCTGGGTGAA-3'[5-TAAAGGTGGCGTCGTTGG-3’
Epigo [0-CGGTGCCCTACATGCTAAAT-5.
3’ GCGGAGTCGGTACTTGAGAG-3’

116 5 5 TGCCATTGCACAACTCTTTTC-
GCCTTCTTGGGACTGATGCT-3' |3

1102% P 5-ACCTGCTCCACTGCCTTGCT-
GGTTGCCAAGCCTTATCGGA-3' |3’

3530 0’ 5-CAGATAGCCCATCACCCTGT-
CATCGATGAGCTGATGCAGT-3' |3’
5'- ,

Tnf®  |AATGGCCTCCCTCTCATCAGT |3, CCACTTGETGGTTTGCTACGA-

-3 3

Table 2.4. Murine qRT-PCR primers.

2.19 Chromatin Immunoprecipitation

Total Vert-X splenic B cells were bead cell sorted and cultured for 24h with LPS,
followed by addition of anti-IgM (10ug/ml) and FICZ (100nM) at 24h into culture.
After 48h, total B cells were FACS sorted based on eGFP for IL-10" and IL-10"
populations. Cells were fixed for 10 minutes with 1% (vol/vol) formaldehyde and
quenched with 400mM Tris. Fixed cells were lysed with 120ul lysis buffer (1%
(wt/vol) SDS, 10mM EDTA and 50mM Tris-HCI, pH 8.1, 1 x protease inhibitor
‘cocktail’ (Roche), 1mM PMSF) per 5x10° cells. Chromatin was sheared to 200-
500bp fragments and 10% of the initial chromatin material was kept as input. The
chromatin was diluted 5-fold in Dilution Buffer (1% (vol/vol) Triton X-100, 2mM
EDTA, 150mM NaCl and 20mM Tris-HCI, pH 8.1) and incubated overnight, after
preclearing, with 1ug/10® cells of a polyclonal AHR-specific antibody (BML-
SA210; Enzo Life Sciences). Immunoprecipitation took place by incubation with
protein G Dynal magnetic beads (Invitrogen), held for at least 3 hours at 4°C.
Immunoprecipitated chromatin complexes were washed with High Salt Wash
Buffer (2x), Low Salt Wash Buffer (2x), LiCl Wash Buffer (2x) and TE Buffer (2x).
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Immunoprecipitated chromatin was eluted from the magnetic beads with
Proteinase K Digestion Buffer and heated at 65°C for at least 6h for reverse
crosslinking. DNA fragments were purified with NucleoMag beads kit (MN) and
were analyzed by SYBR Green Quantitative Real-time PCR. The primers used for
the ChIP gPCR are summarised in Table 2.5.

Target Forward primer Reverse primer

region

Cypiat o' 5

36kb GCTCTTTCTCTGCCAGGTTG [GGCTAAGGGTCACAATGGAA
-3’ -3’

Cypiat o’ o'

Promoter  IMAGCATCACCCTTTGTAGCC [CAGGCAACACAGAGAAGTCG
-3’ -3’

Gapdh o' 5

Promoter |GCGCGAAAGTAAAGAAAGA |AGCGGCCCGGAGTCTTAAGT
AGCCC-3’ ATTAG-3’
- 5’_

l110-3.5kb  |AGGGCTTGATAACGTGTGA [TGAACTTCACACCCAGCTTG
GT-3’ AG-3’
5- 5-

lI10-2kb  ITAAGAGGTGCTGCTTCTCCT [TGGCACTGGACAGTTCTATG
G-3’ A-3’
5'- 5'-

lI10-0.5kb  I\GGGAGGAGGAGCCTGAAT |CCTGTTCTTGGTCCCCCTTTT
AA-3’ -3’
5'- 5'-

lI10 +2kb  |GCCACATGCATCCAGAGAC |GTGCCTCAAAGTCACTCCCA
AC-3’ C-3’

Table 2.5. ChIP qPCR primers.

2.20 Western Blot

5x108 cells CD19*CD21"CD24" and FO B cells were FACS sorted from arthritic
WT mice and lysed for 15 minutes at 4°C with cell lysis buffer (Cell signaling
technology) for extraction of whole cell lysate. Additionally, total B cells (10x106)
cells were negatively purified from WT mice and cultured for 18 h with 500uM of
butyrate (Sigma-Aldrich) or in the presence of a vehicle control. B cells were lysed
and protein was resolved by SDS-PAGE, transferred to polyvinylidene fluoride
(PVDF) membranes (Amersham; for detection of total H3K27 and H3K27ac) or
nitrocellulose membranes (for detection of AHR and B-ACTIN), and blotted using
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anti-H3K27ac (1/1000; Abcam) and anti-pan-H3 (1/1000; Abcam) or anti-AHR
(1/1000; Enzo Life sciences) and anti-B-ACTIN (1/1000; Cell Signaling
Technology). Bound antibodies were revealed with HRP-conjugated species-

specific secondary antibodies using ECL substrate (Amersham).

2.21 High performance liquid chromatography

2.21.1 Extraction and derivation of short-chain fatty acids from mouse stool
pellets

Individual stool pellets were weighed into clean Eppendorf tubes and homogenised
in 1ml of 50% methanol. After centrifugation at 13,000xg for 5mins to remove
particulate matter, 200ul of the clear supernatants were derivatized as previously
reported %63, Briefly, the clear supernatants were spiked with 2-ethylbutyric acid as
an internal standard and the mixture incubated with 2-Nitrophenylhydrazine
hydrochloride (NPH) at 60°C for 20mins, with 1-Ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC) in pyridine as catalysts. The reaction was then terminated and
colour allowed to develop by the addition of potassium hydroxide in methanol,
followed by incubation at 60°C for a further 20mins. After cooling, the mixture was
acidified by the addition of phosphoric acid and the derivatized fatty acids extracted
into diethyl ether. After drying down the ether extracts under a gentle stream of
nitrogen gas, the resulting fatty acid hydrazides were dissolved in methanol for
high performance liquid chromatography (HPLC) analysis.

2.21.2 Analysis of short-chain fatty acid hydrazides by high performance
liquid chromatography

Separation of short-chain fatty acid (SCFA) hydrazides was performed by injecting
25ul onto a C8 Hypersil MOS2 column (250 x 4.6mm, Sum particle size) and eluting
using a linear gradient of 20-90% acetonitrile against water over 17min at a flow
rate of 1.5ml/min. Compounds eluting from the column were monitored by UV/Vis
absorption using a measurement wavelength of 400nm, and quantitated by
integration of peak area. Standard curves (20.0-0.1uM) were constructed using
pure compounds as follows: Succinic acid (Rt 3.92 min), Lactic acid (Rt 4.72 min),
Acetic acid (Rt 5.067 min), propionic acid (Rt 6.173 min), iso-butyric acid (Rt 7.387
min), butyric acid (Rt 7.587 min), 2-methylbutyric acid (Rt 8.733 min), isovaleric
acid (Rt 8.947 min), n-valeric acid (Rt9.24 min), hexonoic acid (Rt 10.707 min), 2-
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ethylbutyric acid (Rt 9.88 min) hexanoic acid (Rt 10.707 min), Pyruvic acid (Rt
12.773).

2.21.3 Extraction of indoles, kynurenine and kynurenic acid from mouse
faecal pellets

Individual faecal pellets were weighed into clean Eppendorf tubes and
homogenized in 200uL of methanol. After centrifuging at 13,000xg for Smin to
remove particulate matter, the clear supernatants were diluted 1 in 10 in methanol

and subject to high performance liquid chromatography (HPLC) analysis.

2.21.4 Analysis of indoles

Separation of indoles was performed by injecting 20uL onto on an ODS Hypersil
column (150 x 4.6mm, 3um particle size) and eluting using a linear gradient of 5%—
100% acetonitrile in 10mM ammonium formate buffer, pH 3.5 over 20min at a flow
rate of 0.8ml/min. Compounds eluting from the column were monitored by both
fluorescence detection (Aex: 275nm, Aem: 352nm) as well as by UV/Vis absorption
using an online PDA detector (scanning 200-650nm), and quantitated by
integration of peak area. Standard curves (20.0 - 0.1uM) were constructed using
pure compounds as follows: tryptophan (Rt 6.97 min), tryptamine (Rt 13.04 min),
indole (Rt 14.41 min), indole-3-acetic acid (Rt 11.42 min), indole-3-propionic acid
(Rt 13.7), 3-methylindole (Rt 15.87 min), indole 3-carboxaldehyde (Rt 10.96 min),
5-Hydroxyindole-3-acetic acid (Rt 8.09 min).

2.21.5 Analysis of L-kynurenine and kynurenic acid

Separation of L-Kynurenine and Kynurenic Acid was performed by injecting 25uL
onto on an ODS Hypersil column (150 x 4.6mm, 3 um particle size) and eluting
using a linear gradient of 1%—10% acetonitrile in 10mM ammonium formate buffer,
pH 3.5 over 17min at a flow rate of 0.8ml/min. Compounds eluting from the column
were monitored by both fluorescence detection (Aem: 364nm, Aem: 480nm for 7.5
min followed by Aem: 330nm, Aem: 390nm for the remainder of the run) as well as
by UV/Vis absorption using an online PDA detector (scanning 200-650nm), and
quantitated by integration of peak area. Standard curves were constructed using
pure compounds as follows: L-Kynurenine (Rt 5.97 min) and Kynurenic Acid (Rt
10.6 min).
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2.22 16s rDNA sequencing

20-50mg of faecal material was extracted using the QIAmp DNA mini kit (Qiagen).
Extraction was carried out as per the manufacturer's protocol with an additional cell
disruption step by bead beating using lysing matrix E (MP Biolmedicals) at 50 Hz
for 1min (Tissuelyser LT, Qiagen). Two negative extraction controls were included.
Barcoded primers spanning the V3-V4 region of the 16S rRNA gene were designed
as described previously®% to include an lllumina adapter, an 8 nucleotide barcode
sequence, a 10 nucleotide pad sequence, a 2 nucleotide linker, and a gene-specific
primer: 341F-CCTACGGGNGGCWGCAG or 805R-
GACTACHVGGGTATCTAATCC. (Sigma-Aldrich, Dorset, UK). Extracted DNA
samples were amplified with different barcode combinations using the Taq Core
PCR kit (Qiagen) as per manufacturer’'s instructions with forward and reverse
primers at 0.5uM each. A Microbial Community Standard (Zymo Research) of
known bacterial composition was also amplified to assess any bias and error rates.
The PCR cycling conditions were as follows: initial denaturation at 95°C for 3min,
30 cycles of 95°C for 30sec, 54°C for 30sec, 72°C for 10min and a final extension
at 72°C for 10min. PCR products were purified with AMPure beads (0.7x, Beckman
Coulter) and quantified using the Qubit dsDNA High Sensitivity Assay Kit
(ThermoFisher). Samples were then pooled to create libraries with approximately
equal concentrations of 16S rRNA amplicons from each sample. The pooled library
was quality and quantity checked using the High Sensitivity D1000 ScreenTape
assay (Agilent Technologies) and a NEBNEXT library quantification kit (New
England Biolabs). The pooled library was spiked with 10% PhiX (lllumina) and
sequenced on an lllumina MiSeq using the Reagent Kit V2 with 500 cycles
(lllumina) and custom primers as previously described®4. The open-source
software Mothur V1.35.13 was used for initial bioinformatic analysis of the
sequencing data®*. Raw sequencing data was demultiplexed and processed
according to the online Mothur SOP%%%, Sequences were trimmed and those with
ambiguous bases were discarded. Suspected chimeric sequences were identified
using VSEARCH?®%6 and removed. Phylogenetic identification of each OTU was
achieved by aligning sequences to the SILVA 16S alignment database (v128)5¢".
Sequences that did not meet a 97% similarity threshold were discarded of. Sample
reads were rarefied to 50,000 reads prior to further analysis. OTU values generated
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by Mothur were further analyzed using R-studio (phyloseq) or GraphPad Prism (la
Jolla, USA) v. 400 Software for Apple Mac.

2.23 Microarray

Splenic murine B cell subsets were sorted and RNA extracted using columns
(Picopure, Life Technologies) and hybridised to murine mogene 2.0 ST arrays
(Affymetrix). Raw CEL files were processed using the online GeneProfiler tool
(accessible at www.beringresearch.com). The GeneProfiler pipeline consists of

present/absent call detection,®®® Robust Microarray Average (RMA) normalization,
and outlier detection®®. Differential expression analysis was performed using the
limma package®’°. Heatmaps generated from the microarray data show z scores,
based on normalised GeneChip Robust Multiarray Averaging (GC-RMA) values. z

scores were generated using the following equation.

zjis the zeta score of a given sample; x is the GC-RMA value of a given sample; u
is the sample mean of all GC-RMA for a given gene and cis the standard deviation

of all samples.

2.24 RNA sequencing

2.24.1 Sample preparation and sequencing of the transcriptome

Splenic CD19*CD21MCD24" B cells were isolated from butyrate supplemented
and control Mb7¢® and Ahr-Mb1°® mice in the remission phase of arthritis, at day
7 post-lA injection. Sorted cells were either left untouched (ex-vivo) or stimulated
with LPS+anti-IgM for 6h in IMDM media (CD19*CD21"CD24" B cells only). Dead
cells were excluded using DAPI. Total RNA was isolated from these populations
using the Picopure RNA isolation kit (ThermoFisher Scientific), according to
manufacturer’s instructions. 60bp single reads were sequenced on 3 lanes of an
lllumina hiseq. 130-500ng of total RNA was fragmented followed by reverse
transcription and second strand cDNA synthesis. The double strand cDNA was
subjected to end repair, A base addition, adapter ligation and PCR amplification to
create libraries. Libraries were evaluated by Qubit and TapeStation. Sequencing
libraries were constructed with barcodes to allow multiplexing of samples in 3
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lanes. The libraries were sequenced at the Weizmann Institute of Science on an
lllumina HiSeq 2500 V4 instrument. Around 23-43 million single-end 60-bp reads
were sequenced per sample. Poly-A/T stretches and lllumina adapters were
trimmed from the reads using cutadapt. Resulting reads <30bp were discarded.
Reads were mapped to the Mus Musculus GRCm38 reference genome using
STAR®”'. Gene annotations were applied from Ensembl (EndToEnd option and
outFilterMismatchNoverLmax was set to 0.04). Gene expression levels were
quantified using htseqg-count (“HTSeq,” n.d.)¥”2, using the gtf above. Transcripts
per million (TPM) values were estimated independently using Kallisto®73.

2.24.2 Bioinformatic analysis of RNA-seq data

Differential expression analysis was carried out using the default settings of the
edgeR algorithm®74, p-values reflect two-sided p-values obtained using the exact
test proposed by Robinson and Smyth®”> for a difference in means, between two
groups of negative binomial random variables (implemented in edgeR package).
Signalling Pathway Impact Analysis (SPIA)®76 was used to detect significantly over-
represented pathways, with the Kyoto Encyclopedia of Genes and Genomes
(KEGG) Pathways database®”” employed as a reference. The full mouse genome
was used as background for enrichment. For gene network analysis mouse
protein-protein interactions were obtained from the STRING
database (PMID: 25352553). An undirected graph representation was used to
visualise all interacting protein pairs, whereby each node in a graph corresponds
to a protein, whilst each edge corresponds to an interaction (STRING confidence
score > 0.5). Differentially expressed subnetworks were extracted by overlying all
significantly expressed genes with their corresponding protein names in the
network. Heatmaps generated from the RNA-seq data show z scores using the
same equation in 2.20, but instead using normalised logged counts per million
(CPM).

2.25 Assay for transposable accessible chromatin with high-throughput
sequencing (ATAC-seq)

2.25.1 Sample preparation and sequencing

Splenic CD19*CD21MCD24" B cells were isolated as above for RNA-seq from
Mb1¢e* and Ahr"Mb1¢¢* mice. Cells were either left untouched (ex-vivo) or
stimulated with LPS+anti-IgM for 6h in IMDM media (splenic CD19*CD21"CD24"
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B cells only). After sorting, 40,000 cells were washed with 1xPBS (10% FCS). The
cell pellet was prepped for sequencing by using the Nextera DNA library
preparation kit (lllumina). Briefly, 10.5ul nuclease free water, 12.5ul 2x
Transposase buffer, 2ul transposase and 0.25ul digitonin (0.05%) per reaction
were added to the cell pellets. Cells were incubated at 37°C for 30 minutes. DNA
was then purified using a MinElute PCR purification kit (Qiagen), according to
manufacturer’s instructions. Following DNA purification, 1ul of eluted DNA was
used in a gPCR reaction to estimate the optimum number of amplification cycles.
Library amplification was followed by solid phase reversible immobilization (SPRI)
size selection to exclude fragments larger than 1,200bp. DNA concentration was
measured with a Qubit fluorometer (Life Technologies). Library amplification was
performed using custom Nextera primers. The libraries were sequenced by the
Biomedical Sequencing Facility at CeMM using the lllumina HiSeq4000 platform
and the 50bp single-end configuration.

2.25.2 Bioinformatic analysis of ATAC-seq data

Bioinformatic analysis was carried out as previously described®’®. Briefly, lllumina
Casava1.7 software was used for basecalling. Sequenced reads were trimmed for
adaptor and Nextera sequences and reads were mapped to mm10 reference
genome using bowtie2 v2.2.4 with the “—very-sensitive” parameter. Duplicate reads
were marked and removed with picard tools version 1.118. Reads were extended
to the average fragment size and bigWig files containing counts of reads per
basepair created. Peaks for ATAC-seq samples were called with MACS2 version
2.1.1.20160309 using the “—nomodel” and “—extsize 147" parameters. Peaks were
assigned to genes by proximity. If a peak overlapped the gene body or promoter +
2500bp of the transcription start site (TSS) the peak was assigned to that gene. If
a peak did not fall into these criteria, the peak was assigned to the closest TSS. If
the nearest TSS to the peak was further than 100kb away, no gene was assigned.
DESeq2 was used to compare either the effect of genotype or butyrate treatment
on the chromatin landscape, and for visualization we created a normalized
chromatin accessibility matrix by normalizing for the regulatory elements’ length
and GC content using the R package cgn. To assess transcription factor activity,
we employed ChromVar by fixing a 500bp window on the center of the regulatory
elements and using the JASPAR2016 database, computing deviations and their

scores, followed by differential variability for genotype and treatment with default
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parameters. For visualisation of representative tracks, track heights between
samples were normalised through group autoscaling.

2.26. Data and code availability

The microarray, RNA-seq and ATAC-seq datasets generated during this study are
available at ArrayExpress: E-MTAB-7345,E-MTAB-7375, E-MTAB-7525 and E-
MTAB-8393. The 16S datasets generated during this study are available at NCBI
Sequence Read Archive (accession number PRINA603680).

2.27 Statistical analysis

Heatmap analyses for microarray, RNA-seq and ATAC-seq datasets were carried
out using Multiple Experiment Viewer (MeV_4 8) software®”®. Hierarchical
clustering was applied to genes using average linking clustering with the Euclidean
distance metric. Venn diagrams were generated using Venny 2.1. All data are
expressed as meants.e.m, unless stated otherwise. For in vivo studies, power
calculations were performed on data showing mean maximum wild-type arthritic
knee swelling of 2 mm with a s.d. of 0.39 mm, and an expected test group
(transferred T2-MZPs) arthritic knee swelling of 1.4 mm. Group sizes of three mice
or above were sufficient to reach a statistical power of at least 80%
(http://www.statisticalsolutions.net/pss_calc.php). Mice were assigned at random
to treatment groups for all mouse studies and, where possible, mixed among
cages. Clinical scoring was performed in a blinded fashion. Mice that developed
adverse reactions to protocols were excluded from data sets. Statistical
significance was determined using unpaired t tests (comparison of two groups),
Mann-Whitney tests (comparison of two groups, non-parametric data), Spearmans
correlation, one-way ANOVA (comparison of three or more groups) or two-way
ANOVA (comparison of two or more groups with 2 independent variables). All data
met the assumption of statistical tests and had a normal distribution and variance
was similar between groups that were statistically compared. Results were
considered significant at p<0.05. Statistical tests were carried out using GraphPad
Prism (La Jolla, CA, USA) v.6, Software for Apple Mac.
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Chapter lll: Results |

Although there is some consensus regarding the effector function of Bregs, there
is no unified view of Breg phenotype, with an ever-growing list of Breg subsets
being reported in almost all stages of B cell differentiation. Bregs are characterised
by their expression of IL-10, in addition to in vivo or in vitro assays assessing their
suppressive capacity. However, a conserved transcription factor which controls
Breg function that is expressed by all Breg subsets, has so far evaded discovery.
Unlike in murine T cells, where it is well established that IL-10 expression is
controlled by several transcription factors, including CMAF, AHR, BATF and IRF1,
there is limited knowledge of the transcriptional control of IL-10 production by
Bregs. Studies of the molecular control of murine B cell IL-10 production have been
limited to the examination of NFATC1, IRF4, CMAF and HIF1¢375 423,425, 426  Of
these transcription factors, only IRF4 has been demonstrated to directly bind to the
1110 locus in B cells. Moreover, binding to the //70 locus was only demonstrated in
BLIMP-1-GFP* plasmablasts and not in other B cell populations®”. Thus, the aim
of this work was to compare the gene expression profiles between Bregs and non-
Bregs and identify a transcription factor which is uniquely expressed by IL-
10*CD19*CD21"CD24" Bregs (a population of cells which contain virtually all

splenic IL-10* B cells2%6: 297, 319, 680)

In this chapter, | compare gene expression profiles between IL-10" Bregs (IL-
10*CD19*CD21MCD24") and IL-10" B cell subsets (IL-10-CD19*CD21"CD24" and
IL-10" FO B cells) and show that IL-10* Bregs have a unique transcriptional profile
with limited cytokine and chemokine expression, when compared to the IL-10" B
cell counterparts. We identify AHR as being highly expressed in IL-10* Bregs, with
CD19*CD21MCD24" B cells poised to become high AHR-expressing B cells.
Activation of CD19*CD21MCD24" B cells with LPS+anti-lgM induced both the
expression of AHR and IL-10. Based on three key findings, we identify that the
induction of IL-10 in B cells is AHR-dependent. Firstly, we demonstrate that Ahr”
CD19*CD21MCD24" B cells secrete less IL-10 in response to activation with
LPS+anti-IgM and fail to inhibit IFN-y production by CD4* T cells in vitro. Secondly,
we show that the addition of AHR agonists augment IL-10 production by
CD19"CD21MCD24" B cells. Lastly, we show that AHR directly binds to the //70

locus in IL-10* Bregs.
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The bioinformatics analysis for the microarray (which involved the count matrix
generation, normalisation and differential gene expression analysis) was
performed by Ignat Drozdov (Bering Ltd). Similarly, the ATAC-seq bioinformatics
analysis (quality control, read trimming, mapping to the genome and peak calling)
was carried out by Andre Rendeiro and Thomas Krausgruber (CeMM, Austria).
The ChIP gqPCR was performed in collaboration with Aggelos Banos (BRFAA,
Greece). Where data analysis or experiments were carried out in collaboration, the

respective authors are listed in the figure legends.
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3.1 IL-10* Bregs present a restricted cytokine and chemokine gene
expression profile

To identify candidate genes that regulate the transcription of //70 in Bregs, arthritis
was induced in IL-10eGFP reporter mice (Vert-X)®°. We sorted splenic IL-
10eGFP*CD19*CD21"MCD24" Bregs, IL-10eGFP-CD19*CD21"CD24" B cells and
IL-10eGFP- FO B cells (the two GFP- populations are hereafter referred to as IL-
10eGFP- B cell subsets) and profiled these cells by gene expression microarray
(Figures 3.1A-B). This sorting strategy was chosen to capture the majority of
described Breg subsets, including IL-10"T2-MZP, IL-10*"MZ, and IL-
10*CD1d"MCD5" B cells, which have been shown to exert suppressive capacity via
IL-10 in this model of arthritis, and in other models of autoimmunity?96: 297, 319, 680,
Of note, very few IL-10-producing Bregs were present in the joints or DLNs of
arthritic mice (Figure 3.1C). Virtually no IL-10-expressing plasma cells or
plasmablasts (LAG3* plasma cells®’8, and CD138*CD44"* plasmablasts®’®) were
detected in the spleen or DLNs following the induction of arthritis (Figures 3.1D-
J).

The purity of sorted IL-10eGFP* and IL-10eGFP- subsets isolated for the
microarray was over 98% (Figure 3.2A). Principal component analysis (PCA)
revealed 3 distinct groups along the first dimension, with the IL-
10eGFP*CD19*CD21MCD24" Breg population clustered separately away from
both IL-10eGFP- B cell subsets (Figure 3.2B). Analysis of gene expression
revealed 1073 differentially expressed genes between IL-
10eGFP*CD19*CD21MCD24" Bregs and IL-10eGFP-CD19*CD21"CD24" B cells,
and 1267 genes that were differentially expressed between IL-
10eGFP*CD19*CD21MCD24" Bregs and IL-10eGFP- FO B cells (fold change >1.5
and adjusted p-value <0.05) (Figure 3.2C-D).

In the context of arthritis, splenic Bregs have been shown to mainly produce IL-
1028, Of the cytokine genes upregulated in IL-10eGFP*CD19*CD21MCD24M
Bregs, only //70 and Ebi3 reached an adjusted p value of <0.05, compared to both
IL-10eGFP- B cell subsets. However, since //12a was not found to be upregulated
in IL-10eGFP*CD19*CD21"CD24" Bregs, we excluded a role of IL-35 in these
cells. Although a trend in the increase of transcripts for pro-inflammatory genes
such as ll1a, 1112b, 1115 and /118 was noted, the expression of these genes was not
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significantly different from the IL-10eGFP- B cell subsets (Figure 3.3A). IL-10eGFP-
FO B cells, which unlike CD19*CD21"CD24" B cells do not suppress inflammation
on adoptive transfer?”’, express a different transcriptional profile, characterized by
a higher expression of cytokines and cytokine receptors known to mediate
inflammatory responses, compared to IL-10eGFP*CD19*CD21MCD24" Bregs
(Figures 3.3A-B). The transcripts that were significantly differentially expressed in
IL-10eGFP*CD19*CD21MMCD24" Bregs versus IL-10eGFP- B cell subsets are
summarised in (Figure 3.3C). In keeping with the anti-inflammatory role of Bregs,
we found that the Th2 attracting chemokines Ccl17 and Ccl22%85 681 and the
chemokine receptor Cxcr3, important for the trafficking of lymphocytes to the
synovium in arthritis®®?, were upregulated in IL-10eGFP*CD19*CD21MCD24"
Bregs compared to IL-10eGFP- B cell subsets (Figures 3.3A-C). These results
showed that in the context of arthritis, splenic Bregs displayed a distinct anti-
inflammatory transcriptional profile compared to IL-10eGFP- B cell subsets.
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Figure 3.1. IL-10* Bregs are predominantly found in the CD19*CD21"CD24" B cell
population in the spleen in AlA. Antigen-induced arthritis (AlA) was induced in IL-
10eGFP reporter (Vert-X) mice. (A) Representative flow cytometry plots showing the
frequency of CD19*CD21"CD24" and CD19*CD21™CD24™ (FO) B cells. (B)
Representative flow cytometry plots showing the frequency of IL-10eGFP*
CD19*CD21"CD24" and IL-10eGFP* FO B cell subsets. (C) Bar chart showing the
frequencies of IL-10"CD19" B cells in the joint, draining LNs and spleens of Vert-X mice
(n=3). D-G, Representative flow cytometry plots showing respectively the frequencies of
(D) CD138"LAG3" plasma cells, (E) IL-10*CD138"LAG3"* plasma cells, (F) CD138*CD44"
plasmablasts and (G) IL-10*CD138"CD44" plasmablasts in the spleen. (H) Bar chart
showing the percentages of CD19°CD138°, CD19°CD138'LAG3" and
CD19*CD138*CD44" plasmablasts in the spleens of Vert-X mice, as shown gated in D+F
(n=5). (1) Representative flow cytometry plots showing respectively the frequencies of (left)
CD138*LAG3" and (right) CD138*CD44" plasmablasts in the DLNs of Vert-X mice. (J) Bar
chart showing the percentages of CD19°CD138", CD19'CD138'LAG3" and
CD19"CD138*CD44" plasmablasts/plasma cells in the DLNs of in Vert-X mice, as shown
gated in | (n=5). All experiments were carried out at day 7 post |A-injection. Figures A-B,
data are representative of at least 5 independent experiments. For figures D-J, data
representative of 2 independent experiments. Figures C, H and J, data are expressed as
meanzsem. *p<0.05, **p<0.01. C, H and J, one-way ANOVA. Figure C was generated by
Elizabeth Rosser.
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Figure 3.2.IL-10" Bregs have a unique transcriptional profile. Antigen-induced arthritis
(AlIA) was induced in IL-10e GFP reporter (Vert-X) mice. (A) Representative flow cytometry
plots showing purity of IL-10eGFP*CD19*CD21"CD24" and IL-10eGFP"
CD19"CD21"CD24" B cells. (B) Principal Component Analysis of transcripts in IL-
10eGFP*CD19*CD21"CD24" , IL-10e GFP"CD19*CD21"CD24" and IL-10eGFP-FO B cell
subsets (n=3). (C) Heat map showing the expression of genes by IL-
10eGFP*CD19*CD21"CD24", IL-10eGFP-CD19*CD21"CD24" and IL-10eGFP- FO B
cells. Blue dashed line represents a standard deviation of 0. (D) Total number of
differentially expressed genes between IL-10eGFP*CD19*CD21"CD24" and IL-10eGFP"
subsets (>1.5 fold change, adjusted p value <0.05). For figure C, heat map shows z scores
based on normalized GC-RMA values. All experiments were performed at day 7 post I1A-
injection. For figures B-C, analysis was performed in collaboration with Ignat Drozdov.
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Figure 3.3. Bregs have a restricted cytokine and chemokine transcriptional profile.
Antigen-induced arthritis (AIA) was induced in IL-10eGFP reporter (Vert-X) mice. (A) Heat
maps showing the expression of cytokine (left) and chemokine (right) genes, in the
respective subsets. (B) Heat maps of cytokine receptor (left) and chemokine receptor
(right) expression profiles, in the respective subsets (n=3). (C) Log> fold changes of all
significant genes identified in A-B for the GFP™ (left graph) and GFP- signatures (right
graph). Log. fold changes are highlighted for GFP* vs both GFP- populations. All
experiments were performed at day 7 post |A-injection. For figures A-B, heat maps show
z scores based on normalized GC-RMA values. Listed genes highlighted in red are
upregulated in the IL-10eGFP*CD19*CD21"CD24" population compared to both IL-
10eGFP" populations (adjusted p value <0.05).
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3.2 AHR is highly expressed in IL-10-producing Bregs

To screen for molecules involved in IL-10 transcription and Breg function, genes
concordant for comparisons 1 (between IL-10eGFP*CD19*CD21"CD24" Bregs
and IL-10eGFP- FO B cells) and comparison 2 (between IL-
10eGFP*CD19*CD21MCD24" Bregs and IL-10eGFP-CD19*CD21MCD24" B cells)
(Figure 3.4A) were filtered based on the transcription factor gene ontology term,
resulting in 23 candidates (Figure 3.4B and Appendix |). Pathway analyses showed
that AHR represented a central network hub (Figure 3.4C) and was the most
significantly enriched candidate in IL-10eGFP*CD19*CD21"CD24" Bregs
(adjusted p value <3.34x107°; Figure 3.4D). Analysis of transcription factors
previously shown to be associated with the transcriptional regulation of //70 in other
lymphocyte subsets, including Tregs*'®, revealed that AHR was the most
significantly  upregulated IL-10-related  transcription  factor in IL-
10eGFP*CD19*CD21"CD24" Bregs, in comparison to IL-10eGFP- B cell subsets
(Figure 3.4E). Microarray signal intensities for //70 and Ahr were higher in IL-
10eGFP*CD19*CD21"CD24" Bregs compared to IL-10eGFP- B cell subsets
(Figure 3.4F). gPCR analysis confirmed that //70 and Ahr mRNA expression was
higher in IL-10eGFP*CD19*CD21MCD24" Bregs, than in both IL-10eGFP- B cell
subsets (Figures 3.4G-H). Corroborating the results in Figures 3.4G-H, assay for
Transposase-Accessible Chromatin using sequencing (ATAC-seq), showed
increased accessibility in both the [/[10 and Ahr loci in IL-
10eGFP*CD19*CD21"CD24" Bregs, in comparison to both IL-10eGFP- B cell
subsets (Figure 3.5). These data demonstrate that, amongst the previously
described IL-10 associated transcription factors, only AHR is significantly
upregulated in IL-10eGFP*CD19*CD21"CD24" Bregs compared to both IL-
10eGFP- B cell subsets.
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Figure 3.4. Identification of AHR as a key IL-10-associated transcription factor in
Bregs. Antigen-induced arthritis (AlA) was induced in IL-10eGFP reporter mice. (A)
Scatter plot showing fold changes of differentially expressed genes from the two
comparisons (n=660). Concordant changes for both comparisons are shown in red, and
discordant changes in grey. (B) Heat map showing z scores of significantly differentially
expressed genes (n=23, adj. p value p<0.05) based on normalized GC-RMA values,
filtered on the transcription factor activity gene ontology term in sorted IL-
10eGFP*CD19*CD21"CD24", IL-10eGFP"CD19*CD21"CD24" and IL-10eGFPFO B
cells. (C) Ingenuity pathway network analysis identifies a cluster of genes with AHR as
central hub. The lines between genes represent known interactions (solid lines represent
direct interactions; dashed lines represent indirect interactions). (D) Volcano plot analysis
showing log, fold changes between IL-10eGFP*CD19*CD21"CD24" Bregs versus IL-
10eGFP"CD19*CD21"CD24" B cells, plotted against -logio adjusted p value. Ahr is
highlighted in red (adjusted p value of 3.4E-05). (E) Heat map of z scores of transcription
factors regulating IL-10, expressed by IL-10eGFP*CD19*CD21"CD24", IL-10eGFP-
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CD19'CD21"CD24" and IL-10eGFPFO B cells. Genes highlighted in red are upregulated
in the IL-10eGFP*CD19*CD21"CD24" population compared to IL-10eGFP- populations.
Black asterisks - p-adjusted values <0.05 for the IL-10*CD19*CD21"CD24" Breg vs IL-
10eGFP- FO B cell comparison. Red asterisks - p- adjusted values <0.05 for the IL-
10eGFP*CD19*CD21"CD24" Breg vs IL-10e GFP"CD19*CD21"CD24" B cell comparison.
(F) Microarray signal intensities of /110 and Ahr (n=3). Validation of (G) //10 and (H) Ahr
mMRNA expression in the indicated B cell subsets by qPCR (n=3). For qPCR, gene
expression was calculated normalizing to f-Actin. All experiments were performed at day
7 post IA-injection. Figures F-H, data are expressed as meantsem. Figures F-H, data
representative of 3 independent experiments with biological replicates. *p<0.05, **p<0.01,
***p<0.001. F, two-way ANOVA; G-H, one-way ANOVA. For figures A-C, analysis was
performed in collaboration with Ignat Drozdov.
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Figure 3.5. The /110 and Ahr loci are more accessible in IL-10*CD19*CD21"CD24"
Bregs. Representative ATAC-seq tracks for the //70 (top) and Ahr (bottom) loci in IL-
10eGFP*CD19*CD21"CD24" Bregs, IL-10e GFP-CD19*CD21"CD24" and IL-10e GFP" FO
B cells (n=3). Track heights between samples are normalised through group autoscaling.
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3.3 AHR upregulation promotes the generation of IL-10*CD19*CD21"CD24"
Bregs

We and others have recently shown that BCR signals combined with TLR
stimulation induce a substantial upregulation of AHR in B cells?'” 65, As BCR
signals together with TLR engagement are known to be pivotal in the generation
of Bregs?®, next we investigated whether the differentiation of Bregs, ‘marked’ by
the induction of IL-10 expression by these stimuli, was AHR-dependent. For this
purpose, CD19*CD21"CD24" B cells were sorted from the spleens of arthritic mice
and stimulated with LPS+anti-IgM. An 11-fold increase in the frequency of IL-
10*CD19*CD21MCD24" Bregs and a 200-fold increase in the production of IL-10
by CD19*CD21MCD24" Bregs, was observed upon LPS+anti-IgM stimulation
compared to unstimulated (Figures 3.6A-C). We established the kinetics of AHR
and AHR pathway associated gene expression in relation to //10 transcription, after
activation with Breg-polarizing stimuli. We observed a peak in the expression of
Ahrand Cyp17a1 (the gene encoding the AHR-dependent cytochrome P4501A1) at
6hrs post stimulation with LPS+anti-lgM, followed by an upregulation of the AHR
repressor (Ahrr) and /10 at 24hr. No significant changes in the expression of the
AHR binding partner, the aryl hydrocarbon receptor nuclear translocator (Arnt)
were observed (Figures 3.6D-H). After activation with LPS+anti-IgM, increased
levels of AHR expression were observed in IL-10*CD19*CD21"CD24"" Bregs
compared to IL-10" FO and IL-10-CD19*CD21"CD24" B cells (Figure 3.7). Of note,
ex vivo CD19*CD21"CD24" B cells display higher expression of Ahr (confirmed at
protein level by flow cytometry and western blotting), //10, Cyp1a1, Ahrr and Arnt
compared to FO B cells (Figures 3.8A-H). Together these data show that IL-
10*CD19*CD21"CD24" Bregs express the highest levels of AHR compared to the
IL-10-CD19*CD21MCD24" and IL-10- FO B cells and that in CD19*CD21MCD24"
B cells, AHR upregulation precedes the production of IL-10.

To understand the role of AHR in the regulation and function of IL-10 expression
in CD19*CD21"CD24" Bregs, we isolated CD19*CD21MCD24" B cells and FO B
cells from Ahr*- and Ahr” mice and stimulated them in vitro with LPS+anti-IgM.
The absence of AHR significantly reduced the ability of CD19*CD21MCD24" B cells
to differentiate into IL-10-producing CD19*CD21"CD24" Bregs compared to AHR
competent CD19*CD21"CD24" B cells (Figure 3.9A). In addition, Ahr”
CD19*CD21MCD24" B cells presented a reduced capacity to inhibit IFN-y
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production by CD4* T cells in vitro compared to Ahr”- CD19*CD21"CD24" B cells
(Figures 3.9B-C). FO B cells failed to produce IL-10 and to suppress IFN-y
production by CD4* T cells, irrespective of AHR expression (Figures 3.9B-C).

To assess if activation of AHR with endogenous ligands directly promotes the
differentiation of CD19*CD21MCD24" B cells into IL-10*CD19*CD21"CD24"
Bregs, we stimulated sorted CD19*CD21"CD24" B cells or FO B cells with the
AHR ligand 6-formylindolo(3,2-b) carbazole (FICZ). AHR activation significantly
upregulated the expression of Cyp7a? and //10 in the CD19*CD21"CD24" B cell
subset but not in FO B cells, compared to the vehicle control (Figures 3.10A-B).
Secretion of IL-10 was further enhanced by the addition of FICZ to LPS+anti-IgM
stimulated CD19*CD21MCD24" B cells, compared to LPS+anti-lgM alone (Figure
3.10C). An increase in Breg IL-10 expression was observed when
CD19*CD21MCD24" B cells were cultured in Iscove’s Modified Dulbecco’s Medium
(IMDM; enriched in aromatic amino acids which give rise to AHR ligands583: 683),
compared to RPMI media (Figure 3.10D).

We next investigated whether AHR regulates IL-10 expression in IL-
10eGFP*CD19*CD21MCD24" Bregs by directly binding to the /70 locus. To
address this, we took advantage of the JASPAR tool®®* and identified putative AHR
binding sites in 500bp regions up to -5kb upstream and +5kb downstream of the
110 transcription start site (TSS), and designed primer probes to span these
regions (Figure 3.11A). We sorted IL-10eGFP* and IL-10eGFP- B cells, after
stimulation with LPS+anti-IgM+FICZ (the combination of stimuli was used to
maximise AHR activation and translocation to the nucleus) and performed
chromatin immunoprecipitation (ChlP) gPCR on AHR bound DNA (Figure 3.11B).
Significantly enriched AHR binding was observed at -3.5kb upstream of the //70
transcription start site in the IL-10eGFP* population. Minimal binding of AHR was
observed in other regions of the //70 locus. As a positive control, we confirmed that,
under these experimental conditions, there was an enriched binding of AHR to the
promoter of Cyp71a1, but no binding to Gapdh; an AHR-independent housekeeping
gene (Figure 3.11C). These results demonstrate that AHR can directly regulate IL-
10 expression in Bregs by binding to the //70 locus.
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Figure 3.6. LPS+anti-lgM induce Ahr and /110 expression in CD19*CD21"CD24" B
cells. Antigen-induced arthritis (AlA) was induced in IL-10eGFP reporter or C57BL/6 mice.
A-B, (A) Representative flow cytometry plots and (B) bar chart showing the percentage of
IL-10 expression in CD19'CD21"CD24" B cells (n=5). In these experiments
CD19*CD21"CD24" B cells were stimulated for 24h with LPS followed by an additional
24h with anti-IgM. (C) IL-10 production, as measured by ELISA (n=7). D-H,
CD19*CD21"CD24" B cells were isolated from WT C57BL/6 mice and stimulated for 6h
or 24h with LPS+anti-IgM. The mRNA levels of (D) Ahr, (E) Cyp1at, (F) Ahrr, (G) Arnt and
(H) 1110 were analyzed ex-vivo and after stimulation (n=3). For gPCR, gene expression
was calculated normalizing to f-Actin. All experiments were performed at day 7 post IA-
injection. Data representative of at least 3 independent experiments with biological
replicates. Figures B-H, data are expressed as meantsem. *p<0.05, **p<0.01, ***p<0.001.
B-H, one-way ANOVA.
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Figure 3.7. AHR is most highly expressed in IL-10*CD19*CD21"CD24" B cells after
stimulation with LPS+anti-lgM. Representative histogram and bar chart showing the MFI
of AHR expression in IL-10*CD19*CD21"CD24", IL-100CD19*CD21"CD24" and IL-10" FO
B cells after 48h stimulation with LPS+anti-IgM (n=4). All experiments were carried out at
day 7 post IA-injection. Data representative of at least 2 independent experiments with
biological replicates. Data are expressed as meantsem. ***p<0.001, one-way ANOVA.
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Figure 3.8. Increased levels of Ahr and downstream pathway in ex vivo
CD19*CD21"CD24" B cells compared to FO B cells. CD19*CD21"CD24" and FO B
cells were isolated from WT mice and the mRNA levels of (A) Ahr, (B) 1110, (C) Cyp1a1,
(D) Ahrr and (E) Arnt were analysed ex-vivo (n=3). (F) Representative histogram and (G)
bar chart showing the median fluorescent intensity (MFI) of AHR expression in
CD19*CD21"CD24" and FO B cells ex vivo (n=4). (H) Western blot showing the
expression of AHR in CD19"CD21"CD24" and FO B cells isolated from arthritic WT mice.
B-ACTIN was used as a loading control. The numbers indicate the size of the protein bands
in KDA. For gPCR, gene expression was calculated normalizing to f-Actin. All experiments
were carried out at day 7 post |A-injection. Data representative of at least 2 independent
experiments with biological replicates. Figures A-E and G, data are expressed as
meanzsem. *p<0.05. A-E and G, Student’s t test.
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Figure 3.9. AHR controls the differentiation of CD19*CD21"CD24" B cells into Bregs.
Antigen-induced arthritis (AIA) was induced in Ahr”- and Ahr” mice (A) IL-10 production
measured by ELISA in LPS+anti-IlgM stimulated CD19*CD21"CD24" B cells and FO B
cells from Ahr”~ and Ahr” mice (n=4 per group). (B) CpG-B-stimulated
CD19*CD21"CD24" and FO B cells from Ahr*” and Ahr” mice co-cultured for 72 hours
with anti-CD3 stimulated autologous CD4* T cells from Ahr*” mice. Representative flow
cytometry plots showing the frequency of IFN-y"CD4" T cells. (C) Bar chart showing
percentage suppression of IFN-y*CD4* T cells by splenic CD19*CD21"CD24" B cells or
FO B cells, following stimulation with anti-CD3 (n=3). All experiments were performed at
day 7 post IA-injection. Data representative of at least 3 independent experiments with
biological replicates. Figures A and C, data are expressed as meantsem. **p<0.01,
***p<0.001. A and C, two-way ANOVA.
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Figure 3.10. AHR agonists induce IL-10 in CD19*CD21"CD24" B cells. Antigen-
induced arthritis (AIA) was induced in WT C57BL/6 mice. CD19*CD21"CD24" and FO B
cells were stimulated for 6h with either vehicle alone (DMSO) or with the AHR agonist
FICZ and the expression of (A) Cyp7a1 and (B) //70 was measured by gPCR (n=3). (C)
CD19*CD21"CD24" B cells were cultured in RPMI media for 48h with LPS+anti-lgM+FICZ
and IL-10 was measured in the supernatant (n=4). (D) CD19*CD21"CD24" B cells were
cultured in LPS+anti-IgM for 48h in RPMI or IMDM media and IL-10 was measured in the
supernatant (n=5). For gPCR, gene expression was calculated normalizing to fActin. All
experiments were performed at day 7 post |IA-injection. Data representative of at least 3
independent experiments with biological replicates. Figures A-D, data are expressed as
meanzsem. **p<0.01, ***p<0.001. A, B and D, two-way ANOVA; C, one-way ANOVA.
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Figure 3.11. AHR binds to the //10 locus in IL-10* Bregs. Antigen-induced arthritis (AlA)
was induced in IL-10eGFP reporter or C57BL/6 mice. (A) Jaspar binding motif analysis of
putative AHR binding sites (XRE sites) in 500bp regions of DNA, upstream of the //70
transcription start site (TSS). (B) Schematic representing the experimental design for the
ChIP-gPCR assay. Briefly, we isolated splenic B cells from IL-10eGFP reporter mice,
stimulated them for 24h with LPS followed by 24h with anti-IgM+FICZ. (C) ChIP analysis
of AHR binding to the /70 locus was performed in IL-10eGFP*CD19" and IL-10eGFP"
CD19" B cells. Bar chart showing the relative enrichment of AHR binding to regions
upstream/downstream, or in the promoters (labeled as P), of the /110, Cyp1a1 and Gapdh
loci (n=3). All experiments were performed at day 7 post IA-injection. Data representative
of at least 3 independent experiments with biological replicates. Figure C, data are
expressed as meantsem. *p<0.05. C, multiple unpaired t tests. For Figure C, experiment
was performed in collaboration with Aggelos Banos (ChIP assay post-fixation of cells).

o
QO

147



Chapter IV: Results Il
We have so far identified that AHR was highly expressed in IL-10* Bregs and that

AHR controlled IL-10 production in these cells via direct binding to the //710 locus.
Furthermore, we demonstrated that Bregs have a tightly restricted gene expression
profile with limited expression of cytokines, chemokines and their related receptors,
compared to effector B cells. AHR has previously been shown to downregulate
pro-inflammatory cytokines such as IFN-y, IL-1B, IL-6, IL-17, IL-23a and TNFa in a
variety of immune cells*82 685 68 \Ne hypothesised that AHR, in addition to
regulating IL-10 expression, also limited inflammatory gene expression in Bregs.

Using a combination of chromatin profiling and transcriptome analyses we show
that loss of AHR in B cells reduces the expression of IL-10 by skewing the
differentiation of CD19*CD21"CD24" B cells into a pro-inflammatory programme,
even under Breg-polarising conditions. We go on to show that inhibition of AHR
increases 116, Tnf and /2 transcription in CD19*CD21"CD24" B cells and rule out
that these cytokines are increased in Ahr"Mb1°¢* CD19*CD21MCD24" B cells, as
a consequence of reduced IL-10 signalling. This data suggests that these genes
are direct targets of AHR. Thus, we highlight an important role of AHR in defining
the identity of IL-10* Bregs. The combined results in chapter Ill and this chapter,
show that AHR acts as a transcriptional regulator of Breg differentiation by
implementing a molecular programme that controls B cell IL-10 production and

represses pro-inflammatory cytokine production.

The bioinformatic pipeline analysis for the RNA-seq (mapping to the mouse
genome, normalisation and differential gene expression analysis) was carried out
by Ignat Drozdov (Bering Ltd). Likewise, the bioinformatic pipeline for the ATAC-
seq (read trimming, mapping to genome and peak calling) was carried out by Andre
Rendeiro and Thomas Krausgruber (CeMM, Austria). Where data analysis was

carried out in collaboration, the respective authors are listed in the figure legends.
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4.1 AHR controls the Breg transcriptional programme by suppressing pro-
inflammatory gene expression

To examine the role of AHR in controlling the differentiation of CD19*CD21MCD24"
B cells into Bregs, and to ascertain the relative contribution of AHR in establishing
the restricted Breg phenotype identified in the microarray (Figure 3.3), in addition
to its role in regulating IL-10 production, we took advantage of mice with a B cell-
specific deficiency of AHR (AhrMb1°¢+*)815 (Figures 4.1A-C). The use of these
mice avoids any cell extrinsic effects of AHR that could indirectly influence Breg
differentiation#4% 477, CD19*CD21"CD24" B cells were sorted from immunised
Mb1ce* and Ahr”"Mb1°¢*mice and the transcriptional profile of sorted
CD19*CD21"MCD24" B cells was compared before and after stimulation under Breg
polarising conditions (LPS+anti-IgM). Both the normalized counts for Ahr and the
accessibility of the Ahr locus, measured by ATAC-seq increased in LPS+anti-IgM
stimulated Mb7¢®* CD19*CD21"MCD24" B cells, compared to ex-vivo Mb1°e*
CD19"CD21MCD24" B cells (Figures 4.2A-B). Signaling pathway impact analysis
(SPIA) of differentially expressed genes (DEG) revealed overrepresented
pathways relating to cytokine-cytokine receptor interactions and chemokine
signalling, in stimulated Mb71°®* CD19*CD21"CD24" B cells versus ex vivo
Mb1¢e* CD19*CD21MCD24" B cells (Figure 4.3A). Analysis of the genes
differentially expressed within this pathway, confirmed that under Breg polarising
conditions, several genes identified in the IL-10eGFP* signature (as shown in
Figure 3.3C) including /10, Ccl22 and /l2ra were upregulated, whilst those
associated to the IL-10eGFP- signature including //12a, l[10ra and Ltb were

downregulated, under Breg-polarising conditions (Figure 4.3B-C).

A signature of genes related to cytokine-cytokine receptor interaction was
upregulated in Ahr"Mb1¢¢* CD19*CD21MCD24" B cells under LPS+anti-IlgM
stimulation compared to Mb71¢¢* CD19*CD21"MCD24" B cells (Figure 4.4A). 44 of
102 genes in this pathway were significantly differentially expressed between Ahr-
Mb1¢¢* and Mb1¢¢* CD19*CD21"CD24M B cells (Figures 4.4B). Of the genes that
were differentially expressed under Breg polarising conditions (Figure 4.3B), pro-
inflammatory cytokines including //6, Tnf, 112, and chemokines such as Ccl3, Ccl5
and Cxcl16, known to recruit lymphocytes to the inflamed synovia in models of
arthritigb87. 688. 689,690 'were upregulated in the absence of AHR (Figure 4.4B). The

absence of AHR expression, led to the downregulation of the //5ra gene, previously
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associated with Breg function34°, and Ccl22 and /118, which we have identified as
Breg-associated genes in the microarray. Testing key arthritogenic pro-
inflammatory transcripts8%'!: 692. 693 by qPCR confirmed that //2, 1/6 and Tnf were
increased in Ahr-Mb1°®* CD19*CD21MCD24" B cells, and the Breg-associated
transcripts Ccl22 and [ll5ra were decreased, compared to Mb7¢e*
CD19"CD21MCD24"B cells. The increase in pro-inflammatory cytokines in Ahr"”
Mb1¢e* CD19*CD21"CD24" B cells was confirmed by ELISA (Figures 4.4C-D).
To confirm that AHR suppresses pro-inflammatory gene expression during the
development of Bregs, we blocked AHR signaling in vitro with CH-223191.
Concordant to the results identified with the RNA-seq, blocking AHR signaling
resulted in the upregulation of //6 and Tnf, and the downregulation of //70 and Cc/22
mRNA (Figure 4.5).

Our data suggests that AHR contributes to the Breg transcriptional programme by
suppressing pro-inflammatory gene expression. To rule out whether this effect is
secondary to the decrease of IL-10, we cultured WT and [//10r"-
CD19*CD21MCD24" B cells with LPS+anti-IlgM in the presence or absence of the
selective AHR antagonist CH-223191. The expression of /6 and Tnf was
significantly increased in both WT and //70r-CD19*CD21"CD24" B cells cultured
with the AHR antagonist, suggesting a direct effect of AHR in the suppression of
pro-inflammatory gene expression (Figure 4.6). Collectively, these data show that
under Breg-polarizing conditions, AHR acts as a molecular switch that ‘turns off’ a
number of pro-inflammatory cytokines and chemokines in CD19*CD21MCD24" B
cells, whilst promoting the expression of IL-10*CD19*CD21"CD24" Breg-

associated cytokines and receptors.
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Figure 4.1. Validation of B cell AHR deficient (Ahr”Mb1°®*) mice. (A) Schematic
showing breeding strategy for the generation of Ahr”-Mb1°®* mice. Ahr""Mb1°®* mice lack
AHR in MB1-expressing cells and report Cre activity via FP635 expression. (B)
Representative flow cytometry plots of FP635 expression in the parental Ahr""R26R
FP635™ strain, Mb1°®* control mice and Ahr”Mb1°®* mice. (C) Splenocytes from Ahr"
Mb1°®* mice and Mb1¢®** controls were sorted into CD19'B220* and CD19'B220" fractions
and the levels of Ahr mRNA were analysed ex vivo (n=3). For qPCR, gene expression was
calculated normalizing to g-Actin. All experiments were carried out at day 7 post IA-
injection. Data representative of at least 2 independent experiments with biological
replicates. Figure C, data are expressed as meantsem. **p<0.01. C, unpaired t test.
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Figure 4.2. Activation of CD19'CD21"CD24" B cells under Breg polarising
conditions increases Ahr expression and the accessibility of the Ahr locus. (A)
Normalised counts (CPM) of Ahr expression in Mb1“®* mice ex vivo and after activation
for 6h with LPS+anti-IgM. (B) Representative tracks of the Ahr locus before and after
stimulation with LPS+anti-igM in Mb1°®* CD19*CD21"CD24" B cells. Red box indicates
one significantly differentially accessible region. All experiments were carried out at day 7
post IA-injection. For RNA-seq data, n=3 per condition and genotype. For ATAC-seq data,
n=3 for Mb1°®¥* mice and n=2 for Ahr""Mb1°®* mice. Figure A, data expressed as
meantsem.
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Figure 4.3. AHR increases Breg associated gene expression upon activation with
LPS+anti-IlgM. AIA was induced in Mb1¢®* and Ahr”"Mb1°"** mice. (A) Signalling pathway
impact analysis (SPIA) showing the top significant (p<0.05) over-represented and under-
represented pathways in LPS+anti-IgM stimulated compared to ex vivo
CD19'CD21"CD24" B cells from Mb1“** mice. The total perturbation accumulation of
these pathways (tA) score is represented on the x-axis. (B) Volcano plot of RNA-seq
analysis showing log. fold changes between LPS+anti-IgM stimulated compared to ex vivo
CD19*CD21"CD24" B cells from Mb1°®* mice, plotted against —logio p value for the
cytokine-cytokine receptor interaction pathway. Red dots represent significantly
differentially expressed genes with the red line denoting a cut-off p value of <0.05. (C)
Log: fold changes for core GFP* and GFP- gene signatures (identified from Figure 3.3C)
comparing 6h LPS+anti-lgM vs ex vivo Mb1°®* CD19*CD21"CD24" B cells. All
experiments were performed at day 7 post IA-injection. For RNA-seq data, n=3 per
condition and genotype.
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Figure 4.4. AHR suppresses pro-inflammatory gene expression during the
differentiation of Bregs. AIA was induced in Mb1°¥* and Ahr"Mb1°®* mice. (A)
Signalling pathway impact analysis (SPIA) showing the top significant (p<0.05) over-
represented and under-represented pathways in 6h LPS+anti-IgM stimulated
CD19*CD21"CD24" B cells from Ahr”Mb1°** mice compared to Mb1°®* mice. (B)
Volcano plot of RNA-seq analysis showing log> fold changes between LPS+anti-IgM
stimulated CD19*CD21"CD24" B cells from Ahr”Mb1¢* vs Mb1°"** mice, plotted against
—logioc p value for the cytokine-cytokine receptor interaction pathway. (C)
CD19*CD21"CD24" B cells were isolated from Mb1°®* mice and Ahr""Mb1°®* mice,
stimulated for 6h with LPS+anti-lgM and assessed for mRNA levels of 112, II6, Tnf, Ccl22
and /l5ra (n=4). (D) IL-2, IL-6 and TNFa concentrations from 48h LPS+anti-IlgM stimulated
CD19*CD21"CD24" B cells from Mb1°®* mice and Ahr"”Mb1°®* mice (n=4). For qPCR,
gene expression was calculated normalizing to fActin. All experiments were performed
at day 7 post |A-injection. For RNA-seq data, n=3 per condition and genotype. For ATAC-
seq data, n=3 for Mb1“** mice and n=2 for Ahr”Mb1°®* mice. For figures C-D, data
representative of 2 independent experiments with biological replicates and data are
expressed as meantsem. *p<0.05. C-D, Mann-Whitney test.
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Figure 4.5. Blocking AHR affects the cytokine and chemokine gene expression of
LPS+anti-IgM stimulated CD19*CD21"CD24" B cells. CD19*CD21"CD24" B cells were
isolated from WT mice and stimulated for 24h with LPS+anti-IgM in the presence of the
AHR antagonist CH-223191 or a vehicle control and /170, Ccl22, 116 and Tnf mRNA levels
were analyzed (n=5). For qPCR, gene expression was calculated normalizing to fActin.
All experiments were carried out at day 7 post IA-injection. Data representative of two
independent experiments with biological replicates. Data expressed as meantsem.
*p<0.05, **p<0.01, Mann-whitney test.
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Figure 4.6. /I6 and Tnf are direct targets of AHR and are not affected in the absence
of IL-10 signalling. WT or //10r"” CD19*CD21"CD24" B cells were cultured with LPS+anti-
IgM+CH-223191 for 24h and //6 and Tnf mRNA levels were analyzed (n=5). For qPCR,
gene expression was calculated normalizing to f-Actin. All experiments were carried out
at day 7 post IA-injection. Data representative of two independent experiments with
biological replicates. Data expressed as meantsem. *p<0.05, **p<0.01, two-way ANOVA.
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4.2 AHR regulates chromatin accessibility of cytokine and chemokine gene
loci In B cells

Xenobiotic response elements (XRE), which are specific sites for AHR binding,
have been reported in many genes involved in immune function8. Comparison of
the genome-wide footprint density of up- and down-stream XRE sites, using a
previously reported XRE consensus sequence in B cells®®*, revealed increased
chromatin accessibility of these regions in Mb71¢¢*CD19*CD21"CD24" B cells
after activation of with LPS+anti-IgM (Figure 4.7A). No increase was seen in Ahr"”
Mb1¢e* CD19*CD21"CD24" B cells after activation with LPS+anti-IgM. Specific
interrogation of differentially accessible regions (DAR) in loci encoding genes from
the cytokine-cytokine receptor interaction pathway, revealed an overall decrease
in chromatin accessibility in these genes in Ahr"Mb1¢®* CD19*CD21MCD24" B
cells. 78 DARs (p value <0.05) were identified amongst the genes regulated by
AHR at the transcriptional level, including /12, 116, Ccl3, Ccl5, ll5ra, Ccl22 and /110
between LPS+anti-IgM polarised Ahr-"Mb1¢®* and Mb1°®* CD19*CD21MCD24"
B cells (Figure 4.7B). These data indicate that AHR binds to the XRE regions and
regulates the chromatin accessibility of a number of genes within the cytokine-
cytokine receptor interaction pathway.
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Figure 4.7. AHR increases chromatin accessibility of CD19*CD21"CD24" B cells
under Breg polarising conditions. AIA was induced in Mb1¢®* and Ahr""Mb1°* mice.
(A) Bar chart showing the ratio of mean normalized accessibility in all AHR binding sites
(XRE regions) over the normalized mean accessibility of other regulatory elements
(meanx95% confidence intervals). (B) Volcano plot of ATAC-seq DARs in genes taken
from the cytokine-cytokine receptor interaction pathway, comparing chromatin
accessibility at these sites between Ahr”Mb1°®* and Mb1°® CD19*CD21"CD24" B cells
after 6h LPS+anti-IgM. All experiments were performed at day 7 post IA-injection. For
ATAC-seq data, n=3 for Mb1°®* mice and n=2 for Ahr"Mb1°®"* mice.
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Chapter V: Results il

The results in chapters Ill and IV show that AHR is a key transcription factor in the
differentiation of CD19*CD21"CD24" B cells into IL-10*Bregs, and maintains Breg
identity by suppressing pro-inflammatory cytokines otherwise seen in effector B
cell populations. In this chapter, we show that AHR is required for Breg suppressive

function in vivo in a model of arthritis.

We show that B cell-specific AHR deficient mice (Ahr-Mb1°®*) develop a worse
disease course of AIA compared to control Mb7¢®* mice, with increased numbers
of pathogenic IL-17 and IFN-y expressing CD4" T cells. As highlighted in the
introduction, Breg-derived IL-10 is important for inhibiting the expression of IL-17
and IFN-y by CD4* T cells®*. Unlike the adoptive transfer of control Mb7¢e*
CD19*CD21MCD24" B cells, transfer of Ahr”Mb1°* CD19*CD21"CD24" B cells
failed to suppress AlA disease and inhibit pathogenic CD4* T cell responses. This
is due to a marked reduction of IL-10 production by CD19*CD21"CD24" B cells in
Ahr-Mb1¢¢* mice. Importantly, using a series of in vivo experiments, we show that
the impairment in Breg differentiation in AHR deficient CD19*CD21"CD24" B cells
is a cell intrinsic defect and not a consequence of impaired survival or proliferation
of these cells. Moreover, we demonstrate that in the same inflammatory
environment, using a mixed bone marrow chimera, only AHR-sufficient
CD19*CD21MCD24" B cells differentiate in IL-10* Bregs.

Where experiments were carried out in collaboration, the respective authors are

listed in the figure legends.
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5.1 B cell specific AHR deficiency causes exacerbated arthritis and increased
T cell-driven arthritogenic responses

Having confirmed the contribution of AHR in the programming of the IL-
10*CD19*CD21"CD24" Breg transcriptional profile, we explored the impact of
AHR deficiency specifically in B cells on the immune response associated with
arthritis. Ahr-Mb1°®* mice developed exacerbated arthritis compared to control
Mb1¢¢* mice (Figure 5.1A). Histological analysis of joint tissue showed an increase
in immune cell infiltration in the synovia and hyper-vascularization in Ahr-Mb1¢¢’*
compared to control Mb71¢¢* mice (Figure 5.1B). The enhanced inflammation was
associated with a significant increase in the frequency and number of IFN-y and
IL-17-expressing CD4* T cells in the spleen and DLN in Ahr”-Mb1¢®* mice (Figures
5.2A-D). Increased levels of IL-17 were also observed in the synovium of inflamed
joints of Ahr”Mb1°®* compared to control group, whereas IFN-y levels were
undetectable (Figure 5.2E). Ahr""Mb1°®* mice had an increased frequency and
number of IL-17*CD4* T cells and a reduction in the frequency and total number of
FOXP3* Tregs in the inguinal DLN, compared to the control mice (Figures 5.2C-D
and Figures 5.3A-B).

Adoptive transfer of Mb1°®* or Ahr”-Mb1¢** CD19*CD21"CD24" B cells into
syngeneic mice showed that only CD19*CD21"MCD24" B cells from Mb1°*, but
not from Ahr”“Mb1°®* mice, significantly inhibited disease and Th1/Th17
differentiation in the recipient mice (Figures 5.4A-C), confirming that
CD19*CD21MCD24" B cells were less effective at suppressing inflammation in the
absence of AHR.
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Figure 5.1. B cell AHR deficiency exacerbates antigen induced arthritis. (A) Mean
clinical score of Mb1¢®* and Ahr"”Mb1°"** mice following induction of arthritis; y axis shows
percentage swelling in antigen-injected knee compared to control knee (n=12 per group).
(B) Representative H&E staining of arthritic joints from Mb1°®* and Ahr"”Mb1°®* mice
(n=3; original magnification of 20x). Arrows indicate hyper-vascularisation. Scale bar =
100 uM. All experiments were performed at day 7 post |A-injection. Data representative of
at least 3 independent experiments with biological replicates. For figure A, data are
expressed as meantsem. **p<0.01, ***p<0.001, two-way ANOVA.
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Figure 5.2. Ahr”Mb1°* mice have increased IFN-y and IL-17 expressing CD4* T
cells. A-D, Representative flow cytometry plots and bar charts showing respectively the
percentage and number of (A,B) IFN-y"CD4" T cells and (C,D) IL-17°CD4" T cells in the
spleens and DLNs of Mb1°®* and Ahr"Mb1°®* mice (n=7). (E) IL-17 concentration as
measured in the synovial fluid of Mb1°®¥* and Ahr""Mb1°®* mice (n=6). All experiments
were performed at day 7 post IA-injection. Data representative of at least 3 independent
experiments with biological replicates. Figures B and D-E, data are expressed as
meantsem. *p<0.05, **p<0.01. B and D, two-way ANOVA,; E, and Mann-Whitney test.
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Figure 5.3. Ahr”"Mb1°®* mice have reduced numbers of FOXP3* Tregs in the DLN.
(A) Representative flow cytometry plots and (B) bar charts showing respectively the
percentage and number of FOXP3*CD4" T cells in the spleens and DLNs of Mb71®* and
Ahr”Mb1°®"* mice (n=7). All experiments were performed at day 7 post IA-injection. Data
representative of at least 3 independent experiments with biological replicates. For figure
B, data are expressed as meantsem. *p<0.05. B, two-way ANOVA.
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Figure 5.4. Adoptive transfer of AHR-deficient CD19°CD21"CD24" B cells fails to
ameliorate arthritis in recipient mice. (A) Schematic showing the experimental design
of the adoptive transfer system. (B) Mean clinical score of C57BL/6 mice following
adoptive transfer of CD19"CD21"CD24" B cells purified from Mb1°®* and Ahr"Mb1°*
mice, administered on the day of disease onset. Control (no transfer) group received PBS
(n=5). (C) Bar charts showing respectively the percentage of IFN-y"CD4* T cells and IL-
17°CD4" T cells in the spleens of WT recipient mice, following an adoptive transfer of
Mb1* and Ahr”Mb1°®* CD19*CD21"CD24" B cells, or a PBS control (n=5). All
experiments were performed at day 7 post |IA-injection. Data representative of at least 3
independent experiments with biological replicates. Figures B and C, data are expressed
as meanzsem. *p<0.05, **p<0.01. B, two-way ANOVA,; C, one -way ANOVA.
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5.2 Ahr"-Mb1°** mice do not have a defect in B cell development, but present
with a reduced frequency and number of Bregs

To establish that the increase in disease severity and the impact on the T cell
compartment was due to the lack of AHR-expressing Bregs, rather than a
consequence of abnormal B cell development, we next compared the frequencies
of pro, pro-pre, pre, immature, transitional (T), early and late mature B cells in the
bone marrow or T1 or FO B cells in the spleens of Ahr"Mb1°¢* and Mb1°** mice.
We observed no differences in these populations, suggesting that the increase in
arthritis severity and in pro-inflammatory T cells was indeed due to a reduction of
CD19*CD21MCD24" Bregs, rather than a consequence of abnormal B cell
development (Figures 5.5A-B, Figures 5.6A-H). In line with previous findings
showing that AHR represses differentiation of B cells into plasma cells %, we found
increased frequencies of splenic plasma cells (Figures 5.7A-B) and increased
Prdm1 mRNA expression in Ahr-Mb1¢¢* B cells relative to Mb1°®* B cells (Figure
5.7C). Despite changes in the frequency of plasma cells in the spleens there were
no differences in the amount of secreted 1gG, IgM and IgA in the serum of arthritic
Ahr-Mb1¢¢* versus Mb1°®* mice (Figure 5.7D).

While there were no differences in the number of splenic CD19*CD21MCD24" B
cells between the two groups, Ahr"Mb1°®*CD21"CD24" B cells secreted
significantly less IL-10 than Mb71¢¢*CD19*CD21"CD24" B cells, following
stimulation with LPS+anti-lgM (Figure 5.8). IL-10 production by Ahr"Mb1ce*
CD19" B cells was significantly reduced in response to TLR9 stimulation (Figures
5.9A-C). Comparable levels of Ebi3 and //12a were present in B cells from Ahr"”
Mb1¢¢”* mice and Mb1°®* mice (Figures 5.10A-B). These results together with our
previous findings showing a redundant effect of IL-35 in Bregs in this model®®,
excluded that Bregs were non-functional because of a lack of IL-35 production, in
the absence of AHR.

The observed IL-10 reduction was not due to impaired B cell proliferation, since an
equivalent expression of Ki-67 in Mb1¢®* and Ahr-Mb1°* CD19*CD21"CD24"
B cells was observed both directly ex vivo after AIA and after stimulation with
LPS+anti-IgM (Figures 5.11A-D). No difference in genes related to the cell cycle
was observed, including Ccno, previously shown to be regulated by AHR in splenic
B cells®'®, between Mb1°¢* and Ahr-Mb1¢¢* CD19*CD21"CD24" B cells (Figure
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5.11E), suggesting that there was no impairment in BCR-driven regulation of B cell
entry into the cell cycle®®.

Mesenteric lymph nodes (MLNs) are important sites for the licensing of Breg
development, through exposure to microbiota-driven induction of the pro-
inflammatory cytokines IL-1B and IL-6323. Fewer CD19*CD21MCD24" B cells, and
a decreased amount of B cell derived IL-10 after in vitro polarisation with LPS+anti-
IgM, were observed in the MLN of Ahr“Mb1°®* mice compared to control Mb71¢*
mice (Figures 5.12A-C). Of interest, no difference in the gut-homing integrin a4p7
expression was observed in splenic or MLN-derived CD19*CD21"CD24" B cells
between Ahr”"Mb1°¢* and Mb1°®* mice, suggesting the reduction of Bregs
observed in the MLN of Ahr”Mb1°®* mice is a4p7-independent (Figures 5.13A-
C). We can exclude that the decreased frequency of Bregs was the consequence
of a reduction in monocyte-derived IL-1f3 and IL-6 produced in the spleens or in the
MLNSs, as equivalent amounts of these cytokines were produced by these cells in
both Ahr”Mb1°®* and Mb1°®* mice (Figures 5.14A-D). Thus, our results
collectively show that mice lacking AHR expression in B cells phenocopy the
results that we have previously observed in mice with /1707 B cells** and show
that AHR influences IL-10*CD19*CD21"CD24" Breg differentiation in a cell

intrinsic manner.
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Figure 5.5. B cell subset numbers are unaffected in the absence of AHR expression
in B cells. AIA was induced in Mb1°®* and Ahr""Mb1°®* mice. (A) Representative flow
cytometry plots showing percentage and (B) bar charts showing the percentages and
absolute numbers of CD19*CD21°CD24" (T1), CD19*CD21"CD24" and FO B cells in the
spleens of Mb1°* and Ahr"”Mb1* mice (n=7). All experiments were performed at day 7
post IA-injection. Data representative of at least 2 independent experiments with biological
replicates. For figure B, data are expressed as meantsem. B, Two-way ANOVA.
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Figure 5.6. AHR plays a redundant role in early B cell development in the bone
marrow. (A) Representative flow cytometry plots showing Mb7* and Ahr""Mb1°®* B cell
subsets in the bone marrow. B-H, Bar charts showing the frequencies of (B) pro, (C) pro-
pre, (D) pre, (E) immature, (F) transitional (G) early mature and (H) late mature B cells, as
a percentage of total CD19* B cells in the bone marrow for Mb1°®* and Ahr""Mb1°®* mice
(n=3 per genotype). All experiments were carried out at day 7 post |A-injection. Data
representative of at least 2 independent experiments with biological replicates. Figures B-
H, data are expressed as meantsem. B-H, Mann-Whitney test.
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Figure 5.7. AHR represses plasma cell differentiation. (A) Representative flow
cytometry plots and (B) bar chart showing the percentage of splenic BLIMP-1* B cells from
Mb1* and Ahr”Mb1°®* mice (n=3). (C) Total splenic B cells were isolated from Mb1*
and Ahr”Mb1°®* mice and Prdm1 mRNA levels were analysed ex-vivo (n=3). (D) Serum
concentrations of total IgG, IgM and IgA from Mb1°®* and Ahr”Mb1°®* mice were
measured by ELISA. For qPCR, gene expression was calculated normalizing to S-Actin.
All experiments were carried out at day 7 post IA-injection. Data representative of at least
2 independent experiments with biological replicates. Figures B-D, data are expressed as
meanzsem. *p<0.05, **p<0.01. B-D, Student’s t test.

169



[ mprerer
W AhrMb 1o

Sk

E 5000

=3
£4000

ati
w
o
o
o

=
c
Q

2000
1000

IL-10 concentr.

o

FO  CD21"CD24"

Figure 5.8. CD19'CD21"CD24" B cells in Ahr”Mb1°®* mice are less able to
differentiate into Bregs. AIA was induced in Mb1%** and Ahr"Mb1°* mice.
CD19"CD21"CD24" or FO B cells were sorted from Mb1°* and Ahr"Mb1°®* mice and
stimulated with LPS+anti-IgM for 48h. IL-10 production, as measured by ELISA (n=4 per
group). All experiments were performed at day 7 post |IA-injection. Data representative of
at 2 independent experiments with biological replicates. Data are expressed as
meanzsem. *p<0.05, **p<0.01, ***p<0.01, two-way ANOVA.
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Figure 5.9. AHR is required for IL-10 production by B cells in vitro. Representative
flow cytometry plots (A) and bar chart (B) showing the percentage of IL-10-expressing
CD19" B cells from Mb1°"¥* and Ahr"”Mb1°"** mice, after 48h stimulation with CpG-B (n=3).
(C) IL-10 production, as measured by ELISA (n=3). All experiments were carried out at
day 7 post IA-injection. All data representative of at least 2 independent experiments, with
biological replicates. Figures B-C, data expressed as meantsem. **p<0.01. B-C, two-way
ANOVA.
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Figure 5.10. AHR does not control IL-35 production by B cells. Splenic B cells were
isolated from Mb1°®* and Ahr"Mb1°®* mice and stimulated with LPS for the indicated
times and (A) Ebi3 and (B) p35 mRNA levels were analysed (n=3). All experiments were
carried out at day 7 post IA-injection. For gqPCR gene expression was calculated
normalising to f-Actin. All data representative of at least 2 independent experiments, with
biological replicates. Figures A-B, data expressed as meantsem. A-B, two-way ANOVA.
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Figure 5.11. AHR does not affect the proliferation of CD19*CD21"CD24" B cells in
arthritic mice. (A) Representative flow cytometry plots and (B) bar graphs summarising
Ki-67 expression in CD19*CD21"CD24" B cells from Mb1°** and Ahr"”Mb1°®* mice ex
vivo after day 7 AlA and (C-D) after 48h stimulation with LPS+anti-IgM (n=3). (E) Volcano
plot (RNA-seq analysis) showing log. fold changes between 6h LPS+anti-IgM stimulated
CD19*CD21"CD24" B cells from Ahr"”Mb1°¢* versus Mb1°®* mice, plotted against
average log counts per million (CPM; across all samples) for cell cycle related genes
(n=259). All experiments were carried out at day 7 post IA-injection. All data representative
of at least 2 independent experiments, with biological replicates. Figures B and D, data
expressed as meantsem. B and D, Mann-Whitney.
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Figure 5.12 CD19'CD21"CD24" B cells in Ahr”"Mb1°®* mice are less able to
differentiate into Bregs in the MLNs. AIA was induced in Mb1°®* and Ahr"-Mb1°** mice.
(A) Representative flow cytometry plots showing percentage and (B) bar charts showing
the percentages and absolute numbers of CD19*CD21°CD24" (T1), CD19*CD21"CD24"
and FO B cells in the MLNs of Mb1¢®* and Ahr""Mb1°®* mice (n=7). (C) CD19'B cells
were sorted from Mb1°®* and Ahr""Mb1°®* mice and stimulated with LPS+anti-IlgM for
48h. IL-10 production, as measured by ELISA (n=3). All experiments were performed at
day 7 post IA-injection. Data representative of at least 2 independent experiments with
biological replicates. Figures B-C, data are expressed as meantsem. *p<0.05. B, two-way
ANOVA; C, Mann-Whitney .
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Figure 5.13. a4p7 is not differentially expressed between Mb71°®* and Ahr"-Mb1°¢*
CD19*CD21"CD24" B cells. (A) Representative flow cytometry plots of splenic a4p7
expression in CD19*CD21"CD24" B cells from Mb1°®* and Ahr"”Mb1°®* mice. B-C, Bar
charts showing the frequencies of a4p7-expressing CD19*CD21"CD24" B cells in the (B)
spleen and (C) MLNs of Mb71°®* and Ahr”Mb1°®* mice (n=6). All experiments were
carried out at day 7 post IA-injection. All data representative of at least 2 independent
experiments, with biological replicates. Figures B-C, data expressed as meantsem. B-C,
Mann-Whitney.
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Figure 5.14. No difference in monocyte IL-18 and IL-6 expression is observed
between Mb1°®* and Ahr"-Mb1°"®* mice. Total splenocytes or MLN cells were cultured
for 6h with LPS. A-D, Representative flow cytometry plots and bar charts showing
respectively the percentage of (A,C) splenic and (B,D) MLN IL-1p and IL-6-expressing
monocytes (n=5). All data representative of at least 2 independent experiments with
biological replicates. Figures C-D, data expressed as meantsem. C-D, Mann Whitney.
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5.3 AHR deficient CD19*CD21"CD24" B cells are unable to differentiate into
Bregs in vivo

To test if there was a defect in Breg differentiation in vivo, we followed the fate of
adoptively transferred CD19*CD21"CD24" B cells from WT and Ahr’ mice into
immunized CD45.1 recipient mice. An equal frequency of donor
CD45.2*CD19*CD21MCD24" B cells from WT and Ahr” mice were identified 48
hours post-transfer. However, a significant decrease in the frequency of Ahr”
CD45.2*CD19*CD21"CD24" B cells that differentiated into IL-10* Bregs was
observed when compared to WT CD45.2*CD19*CD21MCD24" B cells, indicating
that B cell intrinsic AHR is required for the differentiation of IL-10* Bregs in vivo
(Figures 5.15A-D). One caveat of assaying B cells from Ahr” mice and then
comparing it to WT mice is that the former develops exacerbated disease, which
could influence the results due to the increase in inflammation. To demonstrate
that the reduced frequency of IL-10 producing B cells was due to the lack of AHR
and not a reflection of the pro-inflammatory environment from which the cells were
isolated, we generated mixed bone-marrow chimeric mice, where lethally irradiated
host mice were reconstituted with a 1:1 mixture of congenic CD45.1 WT and
CD45.2 Ahr~ bone marrow. We noted that CD45.2 Ahr” derived
CD19*CD21MCD24" B cells expressed significantly lower levels of IL-10 compared
to WT-derived CD19*CD21"CD24" B cells in the spleen of arthritic mice (Figures
5.15E-F). Our results demonstrate that AHR directly influences the differentiation
of CD19*CD21"CD24" B cells into IL-10* Bregs in vivo and the defect in Breg

differentiation is not a consequence of increased inflammation seen in Ahr’” mice.
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Figure 5.15. AHR is required for the differentiation of IL-10* Bregs in vivo. AlA was
induced in WT and Ahr” mice. (A) Schematic showing the experimental design of the
congenic adoptive transfer system. (B) Representative flow cytometry plots showing the
frequency of adoptively transferred CD45.2* B cells from WT and Ahr” mice into CD45.1
recipient mice. (C) Representative flow cytometry plots and bar chart showing the
frequency of CD45.2'*CD19'CD21"CD24" B cells from WT and Ahr” mice. (D)
Representative flow cytometry and bar chart showing the frequency of CD45.2°1L-10" B
cells from WT and Ahr” mice (n=4). (E) Schematic showing the experimental design of
mixed bone marrow chimera reconstitution. (F) Representative flow cytometry plots and
bar chart showing the percentages of IL-10*CD19*CD21"CD24" B cells in a mixed 50:50
bone marrow chimera of WT CD45.1 and Ahr”- CD45.2 cells (n=5). All experiments were
performed at day 7 post IA-injection. Data representative of at 2 independent experiments
with biological replicates. Figures C-D and F, data are expressed as meantsem. *p<0.05,
**p<0.01. C, D and F, Mann-Whitney. Experiments performed in collaboration with
Elizabeth Rosser.
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Chapter VI: Results IV

The results in this chapter were carried out in collaboration with Elizabeth Rosser
and form part of a manuscript, which is included here in Appendix V%7, Due to the
collaborative nature of the experiments | helped process the samples and jointly
run the flow cytometry samples. Due to my specialty in AHR, my contribution was
geared towards the experiments performed around AHR and the molecular biology
side of the project (PCR’s, western blot, RNA-seq and ATAC-seq analysis) and |
carried out the breeding and maintenance of the AHR strains. 16s rDNA
sequencing was carried out by Nigel Klein (Institute of Child Health, UCL). Michael
Orford and Simon Eaton (Institute of Child Health, UCL) performed HPLC assay
design and analysis. Where experiments were performed in collaboration, the

respective authors are indicated in the figure legends.

We have so far shown that AHR controls Breg differentiation and function by
directly regulating IL-10 expression and by suppressing a pro-inflammatory
programme in CD19*CD21MCD24" B cells, after activation with inflammatory
stimuli. The endogenous ligands of AHR in B cells remain poorly characterised.
Given the abundance of dietary AHR ligands found in the gut®®® and that we have
previously shown that inflammatory signals in the gut-associated lymphoid tissue
(GALT), promote the suppressive function and differentiation of Bregs®??, we aimed
to investigate whether signals through AHR from gut derived metabolites can drive

Breg differentiation.

As discussed in the introduction, the microbiota-derived SCFAs are a potent class
of immune-modulatory compounds with the capacity to modulate Treg, Th17 cells,
and macrophage differentiation in the gut and periphery®47 650. 69 \We show here
that supplementing mice with butyrate can suppress arthritis severity and this is
dependent on having fully functional Bregs. Moreover, we show that butyrate
inhibits the differentiation of GC B cells and plasma cells, whilst maintaining Breg

numbers and promoting the suppressive function of Bregs.

It has previously been described that butyrate acts as an AHR ligand in an intestinal
epithelial cell line%®'. Therefore, we aimed to investigate whether the suppression
of arthritis by butyrate supplementation was a consequence of signals through

AHR. We show that the suppression of arthritis by butyrate is dependent on the
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expression of AHR by B cells. Addition of butyrate to AHR-sufficient Mb7¢** mice
inhibited B cell maturation, whilst also promoting the differentiation of
CD19"CD21MCD24" B cells into IL-10*Bregs in vivo. Analysis of the transcriptional
and epigenetic profiles of Mb1¢®* and Ahr-Mb1°* CD19*CD21MCD24" B cells
revealed that butyrate downregulated the expression of several key transcription
factors required for B cell differentiation, including Bcl6 and Prdm1, in an AHR-
dependent manner. We validated these findings in vivo by congenic transfer of WT
and Ahr’- CD19*CD21MCD24" B cells into WT recipient mice. These data revealed
that CD19*CD21"CD24" B cells from butyrate treated WT mice readily
differentiated into IL-10" Bregs in vivo compared to the control-treated WT
counterparts. Butyrate did not control the differentiation of Bregs in the absence of
AHR, suggesting that AHR was needed for butyrate to enhance Breg
differentiation.

We rule out butyrate as a direct ligand of AHR, instead showing that butyrate alters
the gut microflora composition to favour the growth of bacterial genera, which
promote the metabolism of tryptophan to the serotonin metabolite 5-HIAA. Lastly,
we demonstrate that supplementation with 5-HIAA suppresses arthritis, only in B
cell AHR-sufficient Mb71°®* mice and show that 5-HIAA is a direct ligand of AHR.
Thus collectively, these results highlight that butyrate increases the availability of
the AHR ligand 5-HIAA, which in turn activates AHR and promotes Breg mediated
suppression of arthritis.
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6.1 Butyrate supplementation suppression of experimental arthritis Is Breg
dependent

We have recently shown that low-grade inflammatory signals that drive the
differentiation of immature B cells into Bregs are provided in the gut-associated
lymphoid tissue (GALT) as a result of the interaction between the gut microbiota
and the innate immune system3?3. The question of whether inflammatory signals
produced in response to the microbiota control Breg development alone or whether
microbial factors also play a direct role remains unanswered. Among different gut-
microbiota-derived metabolites, the most well-characterized are the end products
of dietary fibre fermentation, the short-chain fatty acids (SCFAs). To investigate
how the levels of butyrate change during the course of arthritis, we utilized the
antigen-induced model of arthritis (AIA) and measured stool levels of butyrate, pre-
arthritis and during the acute and remission phases of arthritis. We found that
butyrate levels were reduced during the acute and remission phases of arthritis
compared to pre-arthritic mice (Figure 6.1A). These results suggest that the
observed defect in butyrate production in arthritic mice, once established, cannot
be reversed in spite of the reduced inflammation observed during disease
remission. In line with reduced SCFAs, the bacterial families Lactobacillaceae,
Rikenellaceae, and Bacteroidaceae were reduced in the stool of arthritic mice
compared to naive mice (Figure 6.1B). Members of these bacterial families form a
common functional group of bacteria that metabolize non-digestible carbohydrates
into the immunogenic SCFA’%, Conversely, we detected an increase in
Desulfovibrionaceae, Deferribacteraceae, Sutterellaceae, and Prevotellaceae

families in the stool of arthritic versus naive mice (Figure 6.1B).

Previously published research has demonstrated that supplementation with
SCFAs, and in particular butyrate, has an immunosuppressive effect in diseases
including diabetes and colitis®® 7°'. To evaluate the contribution of butyrate in
controlling the severity of arthritis and to determine the possible role of B cells in
mediating suppression, butyrate was supplemented in the drinking water of wild-
type (WT) mice and B-cell-deficient (uMT) mice prior to disease induction. Control
mice for both genotypes received drinking water that was salt and pH balanced
(hereafter referred to as the control group). Supplementation with butyrate reduced
arthritis in WT mice compared to control mice (Figure 6.1C). Butyrate

supplementation failed to suppress disease in B-cell-deficient mice (uMT) (Figure
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6.1C), demonstrating that under these experimental conditions, B cells are key in
mediating the beneficial effects of butyrate supplementation. Furthermore, butyrate
supplementation failed to suppress disease in mixed bone marrow chimeric mice
lacking IL-10-producing B cells (Figure 6.1D), pinpointing the requirement of Bregs
in the butyrate-mediated suppression of arthritis.

To investigate the effect of butyrate supplementation on both pro-arthritogenic cells
and Bregs, we next took advantage of IL-10eGFP reporter mice, allowing the
visualization of B cells actively transcribing IL-10%72, Amelioration of disease in
butyrate-supplemented IL-10eGFP reporter mice was similar to WT mice (Figures
6.1E-F respectively showing clinical score and histological changes of the joints).

We next assessed the effect of butyrate supplementation on the differentiation of
Bregs, identified here as IL-10eGFP*CD19*CD21MCD24" B cells’%2. We found that
IL10eGFP*CD19*CD21"MCD24" Breg number and frequency were similar between
butyrate-supplemented and control mice (Figure 6.2A). There was no difference in
the frequency and/or number of splenic follicular (FO) B cells, transitional-1 (T1) B
cells, or total CD19*CD21MCD24" B cells (Figures 6.2B-E). However, there was a
significant  reduction = of CD19*CD138'BLIMP-1*  plasmablast  and
CD19"CD95*GL7* GC B cell frequency and number between butyrate-
supplemented and control mice (Figures 6.3A+C). Blinded histological analyses
further confirmed a reduction in the number of GCs per B cell follicle and in the size
of GCs in the spleens of butyrate-supplemented versus control mice (Figure 6.3E).
Thus, butyrate supplementation had increased the ratio of IL-
10eGFP*CD19*CD21"CD24" Bregs to plasmablasts and IL-
10eGFP*CD19*CD21"CD24" Bregs to GC B cells compared to control mice
(Figures 6.3B+D).

To determine whether butyrate supplementation affects the immunosuppressive
function of Bregs, an equal number of IL-10eGFP*CD19*CD21MCD24" Bregs was
isolated from butyrate-supplemented or control IL-10eGFP reporter mice and
transferred into syngeneic arthritic hosts. IL-10eGFP*CD19*CD21"CD24"" Bregs
from butyrate-supplemented mice displayed enhanced suppressive capacity upon
adoptive transfer compared to IL-10eGFP*CD19*CD21"CD24" Bregs from control
mice (Figure 6.3F). These results demonstrated that butyrate supplementation
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concurrently increases Breg suppressive capacity and limits GC B cell and
plasmablast differentiation.
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Figure 6.1. Suppression of arthritis by butyrate supplementation requires IL-10-
expressing B cells. (A) Stool butyrate levels in WT mice pre-arthritis (n=23), with acute
arthritis (n=8), and in remission from arthritis (h=18) as measured by high-performance
liquid chromatography (cumulative data are shown). (B) Volcano plot shows fold change
between bacterial families in the faeces of naive mice compared to arthritic mice at day 3
post-disease onset (n=4 per group). (C) Mean clinical score of control (cumulative n=25)
and butyrate-supplemented WT mice (cumulative n=24) (one representative experiment
of six experiments is shown) or yMT mice (control, cumulative n=7; butyrate, cumulative
n=9). (D) Mean clinical score of control (cumulative n=25) and butyrate-supplemented B-
WT chimeric mice or B-//10”"chimeric mice (n=8 per group) (one representative experiment
of two experiments is shown); y axis shows percentage swelling in antigen-injected knee
compared to control knee. (E) Mean clinical score of control (cumulative n=15) and
butyrate-supplemented IL-10eGFP reporter mice (cumulative n=13); y axis shows
percentage swelling in antigen-injected knee compared to control knee (one
representative experiment of two experiments is shown). (F) Representative H&E staining
of knee joints from control and butyrate-supplemented IL-10eGFP reporter mice (left) and
blinded histology scores (right) of joint damage. Figures A and C-F, data are expressed
as meantsem. *p<0.05, **p<0.01, ***p<0.001. A, one-way ANOVA; B-E, two-way ANOVA;
F, Student's t test.
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Figure 6.2. The number of IL-10*CD19*CD21"CD24"Bregs is maintained following
butyrate supplementation. (A) Representative flow cytometry plots (left) and bar charts
(right) showing CD19*CD21"CD24"IL-10eGFP* Breg frequency and number in control
(cumulative n=15) and butyrate-supplemented mice (cumulative n=13) (one
representative experiment of three experiments is shown). (B) Representative plots
showing the percentage of CD19"CD21™CD24™ (FO) B cells, CD19"CD21°CD24" (T1) B
cells, and CD19*CD21"CD24" B cells in the spleen at day 7 post-disease onset. Bar charts
showing the percentage and number of (C) CD19*CD21™CD24™ B cells, (D)
CD19'CD21°CD24" B cells, and (E) CD19"CD21"CD24" B cells. (Control, cumulative
n=15; Butyrate cumulative n=13; one representative experiment of three experiments is
shown. Figures A-E, data are expressed as meantsem. A-E, Student's t test.
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Figure 6.3. Butyrate suppresses the numbers of plasmablasts and GC B cells. (A)
Representative flow cytometry plots (left) and bar charts (right) showing
CD19°CD138"BLIMP-1" plasmablast frequency and number in control and butyrate-
supplemented mice (cumulative n=11 per group, one representative experiment of two
experiments is shown). (B) Bar chart showing the ratio of CD19*CD21"CD24"IL-10eGFP*
Bregs to plasmablasts in control and butyrate-supplemented mice (cumulative n=11 per
group, one representative experiment of two experiments is shown). (C) Representative
flow cytometry plots (left) and bar chart (right) shows the percentage and number of CD19*
CD95*GL7" germinal center (GC) B cells in control and butyrate-supplemented mice
(cumulative n=11 per group, one representative experiment of three experiments is
shown). (D) Bar chart shows ratio of CD19*CD21"CD24"IL-10eGFP* Bregs to GC B cells
in control and butyrate-supplemented mice (cumulative n=11, one representative
experiment of two experiments is shown). (E) Representative immunofluorescence
blinded histological analysis of the number and size of GC control and butyrate-
supplemented mice (original magnification 203, n=3). (F) Mean clinical score following
transfer of CD19*CD21"CD24"IL-10eGFP* Bregs from control (cumulative n=6) or
butyrate-supplemented mice (cumulative n=6), a control group that did not receive a
transfer; y axis shows percentage swelling in antigen-injected knee compared to control
knee (cumulative n=8) (one representative experiment of two experiments is shown). Cells
were isolated at day 7 post-disease onset. Figures A-F, data are expressed as meantsem.
*p<0.05, **p<0.01, ***p<0.001. A-E, Student's t test; F, two-way ANOVA.
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6.2 Suppression of disease by butyrate supplementation requires B cell
expression of AHR

We have demonstrated that there is higher expression of AHR in IL-
10eGFP*CD19*CD21MCD24" Bregs and that activation of AHR contributes to the
induction of a transcriptional program that controls IL-10*CD19*CD21"CD24" Breg
suppressive function. These data, taken together with our previous findings
demonstrating that butyrate suppresses arthritis by enhancing Breg function, led
us to hypothesise that butyrate required AHR for its immunomodulatory role in
arthritis. In line with this hypothesis, the expression of Cyp1a7, a prototypical
reporter gene of AHR activation, was significantly upregulated in B cells isolated
from butyrate-supplemented mice compared to control mice (Figure 6.4A). To
confirm arole for AHR in the immunomodulatory effect of butyrate supplementation
on the B cell compartment and arthritis severity, we supplemented Ahr”-Mb1°*
and Mb1°¢* mice with butyrate and assessed arthritis severity. Butyrate
supplementation suppressed arthritis severity and IL-17*CD4* T cell frequency
only in AHR-sufficient Mb1°®* mice but not in Ahr-Mb1¢¢"* mice (Figures 6.4B-C).
Confirming the results from the previous chapters, B cells from Ahr-Mb1°¢* mice
released less IL-10 compared to those isolated from Mb7¢¢* mice. Whilst butyrate
maintained IL-10 production in B cells from Mb71°¢* mice, butyrate
supplementation further decreased IL-10 production in B cells from Ahr-Mb1°*
mice (Figure 6.5A).

Butyrate supplementation did not alter CD19*CD21"MCD24" B cell frequency or
number in Mb1°®* or Ahr-Mb1°®* mice compared to control groups (Figure 6.5B).
Butyrate supplementation reduced CD19*CD138*BLIMP-1* plasmablast and
CD19"CD95*GL7* GC B cell frequency and number in Mb71¢¢* mice, but failed to
suppress CD19*CD138*BLIMP-1" plasmablast and CD19*CD95*GL7* GC B cell
frequency and number in Ahrfl/-Mb1°®* mice (Figures 6.5C-D). Although Treg
frequency and number were unaffected by butyrate supplementation (Figures
6.6A-B), CD4*CD25" Tregs isolated from butyrate-supplemented Mb71°®* mice
displayed enhanced suppressive capacity upon adoptive transfer into WT mice
(Figure 6.6C). In contrast, Tregs isolated from both control and butyrate-
supplemented Ahr”-Mb1°®* mice failed to suppress disease on adoptive transfer
(Figure 6.6C). As inflammation is a driver of Breg differentiation and function, and
because Ahr”"Mb1°®* mice develop an exacerbated arthritic inflammation
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compared to Mb7°®* mice, we next tested the effect of butyrate supplementation
in chimeric mice reconstituted with a 1:1 mix of bone marrow cells from CD45.1
WT and CD45.2 Ahr”- mice (Figure 6.7A). Under these conditions, WT and Ahr”- B
cells are exposed to identical inflammatory signals following arthritis induction. The
frequency and number of WT CD45.1*CD45.2'IL-10*CD19*CD21"MCD24" Bregs
was unaffected by butyrate supplementation, whereas Ahr CD45.1
CD45.2'*CD19*CD21"CD24" B cells failed to differentiate into IL-
10*CD19*CD21"CD24" Bregs in both control and butyrate-supplemented mice
(Figure 6.7B). In addition, butyrate supplementation reduced the frequency and
number of plasmablasts and GC B cells within CD45.1 WT-derived cells but not in
CD45.2 Ahr” derived cells (Figures 6.7C-D).
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Figure 6.4. Suppression of arthritis by butyrate supplementation depends upon
AHR expression in B cells. (A) Bar chart shows expression of Cyp7af relative to f-actin
in splenic B cells isolated from control or butyrate-supplemented mice (cumulative n=5,
one representative experiment of two experiments is shown). (B) Mean clinical score of
control and butyrate-supplemented Mb1¢®* mice or Ahr”Mb1°®* mice; y axis shows
percentage swelling in antigen-injected knee compared to control knee (cumulative n=15
per group, one representative experiment of five experiments is shown). (C) Bar chart
showing the suppression of IL-17*CD4" T cells in Mb1°®* mice or Ahr""Mb1°®* mice that
received butyrate-supplementation compared to control Mb1®* mice or Ahr"”-Mb1°®* mice
(cumulative n=6 per group, one representative experiment of two experiments is shown).
Figures A-C, data are expressed as meantsem. *p<0.05. A and C, Student's t test; B,
two-way ANOVA.
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Figure 6.5. Butyrate suppresses plasmablast and GC differentiation whilst
maintaining Bregs in an AHR dependent mechanism. (A) IL-10 production by splenic
B cells isolated from control Mb1°®* mice, butyrate-supplemented Mb71°®* mice, control
Ahr”Mb1°®* mice, and butyrate-supplemented Ahr”"Mb1°®* mice at day 7 post-disease
onset as measured by ELISA (n=3 per group). (B) Representative flow cytometry plots
and bar charts showing the frequency and number of CD19*CD21"CD24" B cells in
control Mb1®* mice (cumulative n=8), butyrate-supplemented Mb71“®* mice (cumulative
n=5), control Ahr”Mb1°®* mice (n=7), and butyrate-supplemented Ahr"”Mb1°®* mice
(cumulative n=6) at day 7 post-disease onset (cumulative data are shown). (C)
Representative flow cytometry plots and bar charts showing the frequency and number of
CD19*CD138"BLIMP-1* B cells in control Mb71°®* mice (cumulative n=8), butyrate-
supplemented Mb1°* mice (cumulative n=5), control Ahr""Mb1°®* mice (cumulative n=7),
and butyrate-supplemented Ahr”Mb1°®* mice (cumulative n=6) (cumulative data are
shown). (D) Representative flow cytometry plots and bar charts showing the frequency
and number of CD19*CD95'GL7* B cells in control Mb1°®* mice (cumulative n=8),
butyrate-supplemented Mb71°®* mice (cumulative n=5), control Ahr"Mb1%** mice
(cumulative n=7), and butyrate-supplemented Ahr”Mb1°®* mice (cumulative n=6)
(cumulative data are shown). Cells were isolated at day 7 post-disease onset. Figures A-
D, data are expressed as meantsem. *p<0.05, **p<0.01, ***p<0.001. A-D, one-way
ANOVA.
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Figure 6.6. Expression of AHR in B cells is fundamental for modulation of T cell
function after butyrate-supplementation. (A) Representative plots (B) and bar charts
showing the percentage and number of FOXP3*CD4" T cells in Mb1°®* or Ahr""Mb1°*
mice that received butyrate-supplementation (n=6 and n=7 respectively) compared to
control Mb1¢®* or Ahr""Mb1°®* mice (n=8 and n=9 respectively) cumulative data are
shown). (C) Mean clinical score following transfer of Tregs from control or butyrate
supplemented Mb1%®* and control or butyrate supplemented Ahr”Mb1°®”*, a control group
that did not receive transfer; y axis shows percentage swelling in antigen-injected knee
compared to control knee (n=3 per group). Figures B-C, data are expressed as
meantsem. B, one-way ANOVA; C, two-way ANOVA.
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Figure 6.7. Butyrate-supplementation suppresses B cell maturation through
activation of AHR. (A) Schematic showing experimental design for competitive congenic
bone marrow chimeric experiment. (B) Representative flow cytometry plots (left) and bar
charts (right) showing the frequency and number of CD45.1* IL-10*CD21"CD24" B cells
or CD45.171L-10"CD21"CD24" B cells in butyrate-supplemented or control chimeric mice
(cumulative n=4 per group). (C) Representative flow cytometry plots (left) and bar charts
showing the frequency and number of plasmablasts within CD45.1*"WT or CD45.2*Ahr”
derived cells in butyrate-supplemented or control chimeric mice (cumulative n=4 per
group). (D) Representative flow cytometry plots (left) and bar charts (right) showing the
frequency and number of GC B cells within CD45.1*"WT or CD45.2*Ahr” derived cells in
butyrate-supplemented or control chimeric mice (cumulative n=4 per group). Figures B-D,
data are expressed as meantsem. *p<0.05. B-D, one-way ANOVA.
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6.3 Butyrate supplementation supports Breg suppressive function and
controls B cell differentiation partly via an AHR-dependent transcriptional
programme

To understand how butyrate supports Breg suppressive function and suppresses
GC B cell and plasmablast differentiation, we compared the gene expression
profiles and chromatin accessibility of CD19*CD21"CD24" B cells isolated from
butyrate-supplemented and control Mb1¢®* and Ahr”Mb1°®* mice. There were
412 significant differentially expressed genes (DEGs) between control and
butyrate-supplemented Mb71¢¢* CD19*CD21"CD24" B cells (Figure 6.8A). There
were more changes (566 significant DEGs) in butyrate-supplemented versus
control Ahr”Mb1°®* CD19*CD21MCD24" B cells. This suggests that, as well as
being necessary to mediate some of butyrate’s effects on gene expression, AHR
also modulates the expression of a number of genes that would otherwise be
altered by butyrate treatment (Figure 6.8A). Signaling pathway impact analysis
(SPIA) revealed that the “protein processing in the endoplasmic reticulum”
pathway, previously associated with the differentiation of B cells into plasma
cells’®, was significantly downregulated by butyrate supplementation in Mb1°¢e*
CD19*CD21MCD24" B cells and significantly upregulated in Ahr"Mb1ce*
CD19*CD21MCD24" B cells (Figure 6.8B). Based on this observation, we
interrogated DEGs in the B cell differentiation Gene Ontology term (GO:0030183)
and compared the effect of butyrate supplementation on gene expression in both
genotypes. B cell ymphoma 6 protein (BCL6), a master regulator of GC B cell
differentiation, and the orphan G protein-coupled receptor (GPR183), important in
extrafollicular plasmablast differentiation’®?, were among the genes reduced in
CD19*CD21MCD24" B cells from Mb1°¢* mice compared to Ahr-"Mb1°®* mice
after butyrate supplementation (Figure 6.8C). Conversely, the expression of ID2, a
negative regulator of B cell maturation’®, was upregulated in CD19*CD21"MCD24"
B cells from Mb7¢¢* mice, but not from Ahr”Mb1°®* mice after butyrate
supplementation (Figure 6.8C). To investigate whether there was an AHR-
independent mechanism in the Breg-mediated regulation of arthritis by butyrate
supplementation, we performed a four-way comparison analysis among all the
groups (Figure 6.8D). This analysis also highlights the baseline transcriptional
changes between control Mb1°®* versus Ahr”-Mb1°¢* mice. We found that 71
significantly DEGs were regulated in both Mb71¢¢* versus Ahr-Mb1¢¢* mice by
butyrate supplementation (Figure 6.5D; Appendix Il). There were 195 significantly
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DEGs observed only in Mb1°®* mice but not Ahr”-Mb1°¢* mice following butyrate
supplementation after genotype confounding genes had been removed; the
majority of these genes were structural proteins (Figure 6.8D; Appendix IlI).

Similarly to the baseline transcriptional changes between Mb1¢¢* versus Ahr'
Mb1¢¢* mice observed during the transcriptome analysis, there were clear
differences in chromatin accessibility as measured by ATAC-seq between control
Mb1¢¢* mice and Ahr”"Mb1°®* mice (Figure 6.9A). However, corroborating the
results in Figure 6.8C, there was decreased accessibility in several B cell
maturation genes, including the Bcl6 and Gpr183 loci, upon butyrate
supplementation exclusively in Mb1¢®* CD19*CD21"CD24" B cells (Figure 6.9B).
ATAC-seq analysis also revealed that butyrate supplementation did not alter
accessibility of the AHR:ARNT specific binding motifs’®, but did increase
accessibility at binding motifs for transcription factors that have been identified to
function alongside the AHR:ARNT heterodimer, including ESRRA (estrogen
receptor alpha), CREB1, and RARB/RARG (Retinoic acid receptor) (Figure
6.9C)7%. We confirmed that, similarly to Tregs and monocytes®’: 659, putyrate
acted as a histone deacetylase inhibitor (HDACi) on splenic B cells in vitro,
providing a partial explanation of its effect on the transcriptional and epigenetic
landscape of CD19*CD21"CD24" B cells (Figure 6.9D).

To investigate whether changes in the epigenetic and transcriptional profile of
AHR*CD19*CD21"MCD24" B cells and AHR-CD19*CD21"MCD24" B cells following
butyrate supplementation had altered their stability and ability to differentiate into
IL-10 competent Bregs, we followed the fate of adoptively transferred
CD19*CD21MCD24" B cells isolated from butyrate-supplemented and control WT
or global Ahr” in congenic CD45.1 recipient WT mice. A higher number of donor
CD45.2*CD19*CD21"CD24" B cells were recovered post-transfer, and more
transferred cells were IL-10" when cells were isolated from butyrate-supplemented
WT mice compared to control WT mice (Figures 6.10A-E). The rate of cell recovery
was not altered by butyrate supplementation when cells were isolated from Ahr”
mice and there was a failure of CD45.2*CD19*CD21MMCD24" B cells to differentiate
into IL-10* Bregs (Figures 6.10A-E).
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Figure 6.8. Butyrate supplementation modulates the transcriptional profile of
CD19'CD21"CD24" B cells in an AHR-dependent Manner. (A) Volcano plots shows
log: fold change (FC) in gene expression between CD19*CD21"CD24" B cells isolated
from butyrate-supplemented Mb1°"¥* mice compared to control Mb1°®* mice (top plot)
and between butyrate supplemented Ahr"”"Mb1°®* compared to control Ahr"-Mb1°*
mice (bottom plot). Red dots represent significant DEG, with the red line denoting a cut
off p value of < 0.05. (B) Signaling pathway impact analysis (SPIA) ranked on significance
(pG) comparing the pathways over-represented (red) and under-represented (blue)
pathways in butyrate supplemented compared to control CD19*CD21"CD24" B cells
from Mb1°®* mice (top graph) and Ahr”Mb1°®* mice (bottom graph). The total
perturbation accumulation of these pathways (tA) score is listed for the ‘protein processing
in endoplasmic reticulum’ pathway. (C) Heat map shows the expression of B cell
differentiation genes in CD19*CD21"CD24" B cells isolated from control Mb1°®* mice,
butyrate-supplemented Mb1%®* mice, control Ahr"”Mb1°®* mice, and butyrate-
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CD19*CD21"CD24" B cells isolated from butyrate-supplemented Mb71°®* mice
compared to butyrate-supplemented Ahr”Mb1°®* mice. Samples highlighted in bold
are significantly differentially expressed between CD19*CD21"CD24" B cells isolated
from butyrate-supplemented Mb1¢®* mice compared to control Mb1°®* mice. (D) Venn
diagram indicating the number of significant (p < 0.05) DEG across all 4 comparisons and
the number of overlapping genes between each comparison. For RNA-seq data, n=3 per
group. Cells were isolated at day 7 post-disease onset.
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Figure 6.9. Butyrate supplementation modulates the epigenetic profile of
CD19'CD21"CD24" B cells in an AHR-dependent manner by increasing histone
acetylation. (A) Heatmap shows differentially regulated regions of chromatin in
CD19'CD21"CD24" B cells isolated from control Mb1°®* mice, butyrate-supplemented
Mb1°®* mice, control Ahr”Mb1°®* mice, and butyrate-supplemented Ahr"”"Mb1°®* mice
as measured by ATAC-seq. (B) Representative ATAC-seq tracks for the Bcl6 and Gpr183
loci in CD19*CD21"CD24" B cells from butyrate-supplemented or control Mb1°®* and
Ahr”Mb1°®* mice (n=3). Track heights between samples are normalized through group
autoscaling. (C) Heatmap shows inferred transcription factor activity scores based on
accessibility at transcription factor binding motifs in CD19*CD21"CD24" B cells isolated
from control Mb71°®* mice, butyrate-supplemented Mb1¢®* mice, control Ahr"”"Mb1°*
mice, and butyrate-supplemented Ahr”"Mb1°®* mice as measured by ATAC-seq. AHR co-
factors are highlighted in red. (D) Total splenic B cells were isolated from WT mice and
treated either with a vehicle control or 500uM butyrate for 18h and analysed for H3K27ac
by Western blot. Total H3 was used as a control. The numbers indicate the size of the
protein bands in KDA. One of two representative experiments shown. For ATAC-seq data,
n=3 for Mb1“®* mice and n=2 for Ahr"Mb1°®* mice. For figures A and C, experiments
performed in collaboration with Andre Rendeiro.
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Figure 6.10. CD45.2°CD19*CD21"CD24" B cells from butyrate-supplemented WT but
not Ahr’~ mice retain their phenotype and differentiate into IL-10* Bregs upon
adoptive transfer. (A-B) Representative flow cytometry plots show (A) CD45.2°CD19" B
cell and (B) CD45.2"CD19*CD21"CD24" B cell frequency in CD45.1 congenic WT mice
that had received a transfer of CD19*CD21"CD24" B cells isolated from control or
butyrate-supplemented WT or Ahr” mice. (C) Bar chart shows number of
CD45.2*CD19*CD21"CD24" B cells recovered post-transfer from CD45.1 congenic WT
mice that had received a transfer of CD19*CD21"CD24" B cells isolated from control or
butyrate-supplemented WT or Ahr” mice (cumulative n=3 per group, cumulative data are
shown). (D) Representative flow cytometry plots and bar charts show CD45.2*CD19IL-
10" B cell frequency in CD45.1 congenic WT mice that had received a transfer of
CD19"CD21"CD24" B cells isolated from control or butyrate-supplemented WT or Ahr”
mice. (E) Bar chart shows number of CD45.2*CD19°IL-10" B cells recovered post-transfer
from CD45.1 congenic WT mice that had received a transfer of control or butyrate-
supplemented WT or Ahr” mice. Cells were isolated at 48 h post-transfer (cumulative n=3
per group, cumulative data are shown). Figures C and E, data are expressed as
meantsem. **p<0.01. C and E, one-way ANOVA.
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6.4 Butyrate changes the availability of microbiota-induced AHR ligands
The microbiota is an important contributor to the pool of endogenous AHR ligands,
and we and others have previously shown that changes in the composition of the
gut microbiota alters the differentiation of CD19*CD21MCD24" B cells into
functionally suppressive Bregs®?® 797 Having excluded a direct effect for butyrate
in activating AHR, as butyrate did not upregulate the marker of AHR activation
Cyp1a1 compared to vehicle-treated B cells in vitro (Figure 6.11A), we investigated
whether the endogenous microbiota or their metabolites are important in the
butyrate-mediated suppression of arthritis and Breg maintenance. To address this,
broad-spectrum antibiotic (ABX)-treated mice were given butyrate by oral gavage;
this combination of antibiotics is known to ablate the majority of the gut
microbiota3?® 708 We found that the suppressive activity of butyrate depended
upon the presence of the endogenous gut microbiota, as butyrate supplementation
was ineffective at suppressing arthritis in ABX-treated mice (Figure 6.11B). In
support of our previously published results showing that commensal microbiota is
important in Breg differentiation, B cells isolated from ABX-treated mice expressed
less 1110 mRNA compared to untreated controls®?®, and this defect was not
recovered after butyrate supplementation (Figure 6.11C).

Having established that commensal microbes are required for butyrate to suppress
arthritis, we compared the relative abundance of bacteria phyla in the stool of
naive, control, and butyrate-supplemented arthritic mice using 16S rDNA amplicon
sequencing. Butyrate supplementation induced a shift in the stool microbiota of
arthritic mice, favoring a profile that was more similar to naive mice (Figure 6.12A).
A detailed analysis of the bacterial composition revealed an increase in the
abundance of the bacterial genera Allobaculum, Bifidobacterium, and
Rhodosprillaceae_unclassified in butyrate-supplemented versus control mice
(Figure 6.12B). Members of these bacteria genera have a previously described
role in influencing the generation of tryptophan-derived metabolites, a family of
ligands implicated in the activation of AHR%°. To understand whether changes in
bacterial composition following butyrate supplementation altered the level of
tryptophan-derived metabolites, we measured these metabolites in the stool of
butyrate-supplemented and control mice. There were no differences in the amount
of tryptophan, tryptamine, indole, and L-kynurenine in stool samples from butyrate-
supplemented compared to control mice (Figures 6.12C-D). Indole-3-acetate and
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Indole-3-propionate levels were also measured but found to be below the limit of
detection in all samples. There was, however, a significant increase in 5-HIAA, the
main metabolite of serotonin (Figure 6.12E), and a significant reduction in the level

of the kynurenine-derived metabolite kynurenic acid (KYNA) (Figure 6.12D).

To directly address how the changes in 5-HIAA and KYNA levels affect AHR-
dependent gene transcription in B cells, WT B cells were isolated from naive mice
and stimulated with 5-HIAA and KYNA in vitro. Unlike KYNA, which only induced
Cyp1a1 induction in B cells, 5-HIAA increased both Cyp7a1 and //10 expression in
B cells compared to vehicle-control-treated B cells (Figure 6.13A). Most
importantly, treatment of WT mice with these AHR ligands in vivo demonstrated
that 5-HIAA, but not KYNA, suppressed arthritis development and increased both
Cyp1a1 and //10 transcription in B cells ex vivo (Figures 6.13B-C). To examine the
role for AHR in the immunosuppressive effect of 5-HIAA, we gavaged Mb7¢¢* mice
and Ahr"-Mb1°¢* mice with 5-HIAA. 5-HIAA suppressed arthritis in Mb7°¢®* mice
but not in Ahr"Mb1¢* mice (Figure 6.13D). Finally, to explore the role of 5-HIAA
in the ability of butyrate supplementation to suppress arthritis, mice were treated
with the tryptophan hydrolase (TPH) inhibitor L-para-chlorophenylalanine (PCPA),
which is known to reduce 5-HIAA and serotonin biosynthesis”'®. In mice treated
with PCPA, butyrate supplementation lost its ability to suppress arthritis when
compared to vehicle-treated control mice (Figure 6.13E). Collectively, these data
demonstrate that butyrate supplementation increases the production of 5-HIAA, a
newly identified AHR ligand in B cells, which mediates the suppressive effect of

butyrate supplementation in vivo.
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Figure 6.11. The suppression of arthritis by butyrate is dependent on the gut
microbiota. (A) Bar chart shows relative expression of Cyp7a1 following 6 hours culture
with butyrate (cumulative n=5). (B) Mean clinical score of control and butyrate-
supplemented ABX-treated or untreated mice; y axis shows percentage swelling in
antigen-injected knee compared to control knee (cumulative n=8 per group, one
representative experiment of two experiments is shown). (C) Bar chart shows expression
of /110 relative to S-actin in splenic B cells isolated from ABX-treated WT or untreated mice
(cumulative n=3 per group). Figures A-C, data are expressed as meantsem. A, Student’s
t test; B, two-way ANOVA, C, one-way ANOVA.
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Figure 6.12. Butyrate supplementation increases the availability of AHR ligands. (A)
Bar chart shows relative abundance of bacterial phyla in the stool of naive, control arthritic,
or butyrate-supplemented arthritic mice (n=4 per group). (B) XY graph shows operational
taxonomic units (OTUs) of bacterial genera in butyrate-supplemented and control arthritic
mice (n=4 per group). (C-E) Bar charts shows levels of (C) tryptophan, tryptamine, indole,
(D) L-Kynurenine, Kynurenic Acid (KYNA) and (E) 5-HIAA in the stool of control arthritic
WT and butyrate-supplemented arthritic mice (cumulative n=5 per group). Figures C-E,
data are expressed as meantsem. *p<0.05, **p<0.01. C and E, Student’s t test. For
figures A-B, experiments performed in collaboration with Nigel Klein.
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Figure 6.13. Hydroxyindole-3-acetic acid increases //10 transcription by B cells in
vivo and in vitro by acting as a ligand for AHR. (A) Relative expression of Cyp7a7 and
1110 in total splenic B cells following 6h culture with 5-HIAA or kynurenic acid (KYNA)
compared to vehicle alone (cumulative n=3 per group). (B) Mean clinical score of control,
5-HIAA-gavaged, or KYNA-gavaged mice; y axis shows percentage swelling in antigen-
injected knee compared to control knee (cumulative n=8 per group, one representative
experiment of two experiments is shown). (C) Bar charts show expression of Cyp7a1 and
1110 relative to f-actin in splenic B cells isolated from control, 5-HIAA-gavaged, or KYNA-
gavaged mice (cumulative n=3 per group). (D) Mean clinical score of control or 5-HIAA-
gavaged Mb1°®* mice or Ahr”Mb1°* mice; y axis shows percentage swelling in antigen-
injected knee compared to control knee (cumulative n=8 per group, one representative
experiment of two experiments is shown). (E) Mean clinical score of control and butyrate-
supplemented L-para-chlorophenylalanine (PCPA)-treated (tryptophanase inhibitor, TPH)
or vehicle-treated mice; y axis shows percentage swelling in antigen-injected knee
compared to control knee (cumulative n=10 per group, one representative experiment of
two experiments is shown). Figures A-E, data are expressed as meantsem. *p<0.05,
**p<0.01. A, Student’s t test; B and D-E, two-way ANOVA; C, one-way ANOVA.
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Chapter VII: Discussion
7.1 AHR defines Breg identity

Bregs are generated in the periphery in response to a variety of “homeostatic”
inflammatory stimuli including activation through TLRs and by pro-inflammatory
cytokines?®. The transcriptional programme, which governs the differentiation and
function of IL-10*CD19*CD21"CD24" Bregs remains virtually unknown. Here, we
show that AHR contributes to the differentiation of CD19*CD21"CD24" B cells into
functionally suppressive IL-10*CD19*CD21"CD24" Bregs, by regulating their IL-
10 production and by repressing the transcription of pro-inflammatory mediators.
The importance of IL-10 in mediating the suppressive effect of Bregs is well
established and its role is corroborated by in vivo results showing that mice lacking
IL-10-producing B cells develop exacerbated autoimmunity3%*. Similarly, AHR
deficiency restricted to B cells impairs IL-10"*CD19*CD21MCD24" Breg
differentiation and function, resulting in an increase of IFN-y and IL-17-expressing

CDA4* T cells, a decrease in Tregs, and the development of an exacerbated arthritis.

AHR plays a pleiotropic role in the regulation of several immune responses**®, most
notably, in the differentiation of CD4" T cells where AHR influences both the
differentiation and activation of Th17 cells, which are known to play a major role in
the pathogenesis of several autoimmune diseases’'!, and the differentiation of
CD4* T cells into Tr1 cells*?2. Immune suppression was one of the earliest known
observations of AHR function. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an
environmental contaminant and potent AHR agonist, was found to suppress DTH
responses to tuberculin®®*. More recently, it has become apparent that AHR has a
conserved role in the regulation of IL-10 across the innate and adaptive immune
system, controlling IL-10 production in NK cells”"?, peritoneal*®? and bone marrow
derived macrophages’'® and in Tr1 cells, where AHR binding to the //70 promoter
region has been described*??. We demonstrate that in IL-10* B cells, AHR binds
upstream of the //10 transcription start site, to a different genomic region than in
Tr1 cells, suggesting that there are cell-context and cell-signal specific epigenetic
differences in the regulation of //1074.

An interesting finding in our study was the discovery that AHR controls the
differentiation of CD19*CD21MCD24" B cells into a polarized IL-
10*CD19*CD21MCD24" Breg population that produces only IL-10, by contributing
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to IL-10 induction and by suppressing the transcription of several pro-inflammatory
cytokines, such as //12, 116 and Tnf. AHR has been previously shown to inhibit pro-
inflammatory IL-17 and IFN-y cytokine production in T cells and to induce Tr1 cell
differentiation in the gut®. In addition, in the absence of AHR in macrophages,
mice are more susceptible to LPS-induced endotoxic shock and present with an
increase in pro-inflammatory IL-6 expression*®?. AHR deletion in microglial cells
led to the upregulation of Ccl2, lI1b, Nos2 and Vegfb gene expression, factors
known to be involved in inflammation and neurodegeneration®3. Our data reveals
that AHR preserves the immunosuppressive function of splenic IL-
10*CD19*CD21MCD24" Bregs by silencing a pro-inflammatory transcriptional
programme. Whether AHR complexes bind to XRE on the loci of pro-inflammatory
cytokines and directly inhibit their expression in B cells, or if AHR co-ordinates the
suppression of pro-inflammatory immune responses through interaction with other

transcription factors in B cells warrants further study.

Our adoptive transfer results suggest that the predominant effect of a lack of AHR
in B cells is the loss of IL-10. We have previously shown that adoptive transfer of
11107 B cells are unable to suppress arthritis?®”- 354, Here we show that WT mice do
not get worse disease than the PBS control injected mice upon adoptive transfer
of AHR"CD19*CD21MCD24" B cells. Equally, AHR"CD19*CD21"CD24" B cells do
not suppress disease onset in the recipient mice, unlike the transfer of control
AHR*CD19*CD21"CD24" B cells. These data therefore suggest thatthe
deleterious effects observed in AlA is the consequence of the reduced amount of
IL-10. However, we cannot rule out the possibility that, in vivo, AHR-deficient B
cells contribute to overall inflammation through the upregulation of pro-
inflammatory cytokines and chemokines or indirectly through the recruitment of
other cell types.

We have recently reported that AHR deletion rather than impairing the capacity of
B cells to proliferate compromised their ability to commence the cell cycle. Indeed,
there was reduction in Ccno mRNA expression in splenic B cells isolated from
naive Ahr”Mb1°¢* compared to Mb1¢** mice®'®. Here we show that this defect,
unlike in the steady state, is overcome during an arthritogenic response, as no
change in Ki-67 expression or in genes regulating the cell cycle, including Ccno,
were observed between Mb1¢¢* and Ahr"Mb1¢¢* CD19*CD21MCD24" B cells
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taken directly from arthritic mice. Furthermore, no difference was observed in Ki-
67 expression between Mb1¢* and Ahr”-Mb1°¢®* CD19*CD21MCD24" B cells
after restimulation with LPS+anti-IgM. Although, in the latter, we used purified
CD19*CD21MCD24" B cells instead of total splenic B cells and used different
stimuli to activate this population, which together might account for the differences
observed in this study. Therefore, these data confirmed that the phenotype
observed in the absence of AHR expression in B cells is not due to impaired B cell
proliferation, but instead is due to the reduced ability of B cells to differentiate into
Bregs and reduction in the production of IL-10.

Our results show that while the loss of B cell AHR expression reduces IL-
10*CD19*CD21"CD24" Breg frequency and leads to an expansion of plasma
cells, it does not affect the frequencies or absolute numbers of B cell populations
up to a mature naive B cell stage. Taken together with previous findings showing
that AHR is expressed by B cells from the immature B cell stage in the bone
marrow®'% 616.715 'we suggest that B cell AHR expression is important primarily for
the control of IL-10"CD19*CD21MCD24" Breg immune-regulatory transcriptional
programming and restricting plasma cell development, but is dispensable for
homeostatic early B cell development.

We report that Ahr”-Mb1°®* mice have increased frequencies of splenic plasma
cells compared to control Mb7¢®* mice and these results are in line with those
showing that both prototypic AHR agonists (polycyclic aromatic and planar
halogenated hydrocarbons) affect terminal differentiation of B cells and humoral
immune responses, by inhibiting plasma cell differentiation and reducing the
production of IgM?217. 606,619 "\We find increased levels of Prdm1 mRNA expression
in B cells lacking AHR, consistent with previous findings showing that the
suppression of terminal differentiation is mediated through AHR increasing
BACH2 expression®?°. BACH2 in turn represses the expression of BLIMP-1, a key
transcription factor that controls B cell differentiation into immunoglobulin-
producing plasma cells”'®. We have extended the significance of these results to
an inflammatory model and showed that early B cell development and maturation
of B cells is not affected by B cell AHR expression, but that AHR is required for the
differentiation of IL-10*CD19*CD21MCD24" Bregs. It is tantalizing to propose that
the increase in plasma cells observed in mice lacking AHR is due to the impaired
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function of Bregs. We have previously shown that, at least in humans, IL-10
produced by Bregs directly inhibits T helper cell differentiation which prevents
plasma cell differentiation3°°.

Here we have shown that AHR, in response to inflammatory signals, plays an
important role in the homeostatic maintenance of Breg function by acting as a
molecular brake, preventing the differentiation of Bregs into effector B cells
producing pro-inflammatory mediators. In addition to identifying that AHR regulates
IL-10 expression in Bregs, our data highlight an additional mechanism by which
AHR restrains inflammatory responses. These results add to a growing body of
evidence supporting AHR as a key modulator of immune tolerance, and therefore,

a potential therapeutic target in autoimmunity.

7.2 Establishing a link between gut microbiota and Breg differentiation
Bregs are generated in the periphery in response to bacterial-derived metabolites
and inflammatory signals. Whereas more is understood regarding how
inflammation and inflammatory cytokines drive Breg differentiation3'? 323. 717, 718,
the participation of microbiota in Breg biology is poorly understood. We have
previously shown that low-grade inflammatory signals that drive the differentiation
of immature B cells into Bregs are provided in the gut-associated lymphoid tissue,
as a result of the interaction between the gut microbiota and the innate immune
system3?3, Mice depleted of endogenous bacteria following administration of
broad-spectrum antibiotics do not develop arthritis or Bregs, suggesting an intricate
relationship between microbiota, inflammation, and Breg differentiation3?3. We
hypothesised that signals through AHR in B cells in the GALT, prime B cells to
differentiate into Bregs. Here we establish a link between the dietary SCFA
butyrate and AHR-driven differentiation of Bregs. Butyrate-supplementation
attenuates arthritis severity in mice by supporting AHR* Breg function and
suppressing mature B cell subset differentiation. We show that butyrate is not a
direct ligand of AHR in B cells, but indirectly supports Breg differentiation in an
AHR-dependent manner by increasing the levels of the newly identified AHR ligand
5-HIAA; a downstream metabolite of serotonin.

Recent literature has demonstrated that butyrate can alter the function of a wide

variety of immune cells®2. In agreement with this, we found that butyrate-
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supplementation of arthritic mice enhanced Treg suppressive function upon
adoptive transfer. Butyrate has been shown to induce FOXP3* Tregs both directly,
by acting as a histone deacetylase inhibitor (HDACI)®®, and indirectly, by
promoting anti-inflammatory properties in macrophages and DC by engaging G
protein coupled receptors GPR43 and GPR109A%48.649_Building on these findings,
we found that Tregs only displayed enhanced suppressive function when isolated
from butyrate-supplemented mice with a fully functional Breg compartment. This
supports published data demonstrating that Treg homeostasis is altered in mice
lacking IL-10 producing B cells3%4.

Here, we also describe a previously unappreciated role for butyrate in altering B
cell differentiation and function in mice with arthritic disease. Interrogation of the
interaction between butyrate and B cells using a murine model of arthritis
demonstrated a sophisticated system whereby butyrate alters AHR-dependent
gene transcription, including key B cell differentiation genes and immunoregulatory
genes serving to support Breg suppressive function and inhibit B cell maturation.
Notably, we found that uMT mice, which lack both regulatory and inflammatory
(e.g. GC B cells and plasmablasts) B cells have equivalent disease severity to WT
mice in this model of arthritis but that chimeric mice, which exclusively lack IL-10
producing B cells, develop exacerbated disease compared to chimeric mice with
WT B cells 3%4. This demonstrates a fundamental role for IL-10 producing B cells
in suppressing arthritic severity following butyrate-supplementation in this model.
These data demonstrate for the first time that a microbial-derived metabolite can
control the balance between regulatory and mature B cell subsets. Notably, we
found that, only in AHR-sufficient B cells, butyrate enforces a developmental
programme, which promotes and maintains Breg differentiation, whilst inhibiting
mature B cell differentiation. These data demonstrate for the first time that a
microbial-derived metabolite can control the balance between regulatory and
mature B cell subsets and supports the previously described role of AHR in

inhibiting the terminal differentiation of B cells®'4.

Our data determined that butyrate-supplementation requires a fully competent
endogenous microbiota to exert its anti-arthritogenic capabilities on the B cell
compartment. Butyrate-supplementation shifted the microbiota to increase relative
abundance of Allobaculum, Bifidobacterium and Rhodosprillaceae_unclassified,
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genera which have been shown to influence tryptophan metabolism?0% 719, 720, 721,
One possible explanation for this shift is that butyrate possesses antimicrobial
activity that targets pathobionts, creating a niche for the growth of tryptophan-
metabolizing species. In the agricultural industry, butyrate is an established
component of chicken feeds used to control the growth of pathogenic bacteria’?.
In addition to a direct bactericidal effect, butyrate enhances the microbicidal
function of macrophages, by altering their metabolism and by eliciting the
production of anti-microbial peptides, which may control out-growth of pathogenic
components of the gut-microbiota®’. Another complementary explanation
justifying the observed shift in bacterial communities is that butyrate acts as a
nutrient for beneficial bacteria. At present, we cannot exclude that changes
observed in the gut microbiota following butyrate-supplementation could be the
result of reduced inflammation. Unfortunately, due to the intertwined response
between microbiota and inflammation it is difficult to extricate whether the butyrate
effect on bacteria is direct, mediated by cells, or by other anti-inflammatory
mediators. Future studies will be performed to investigate if the effect reported here
is due to changes in inflammation or due to direct effect on the microbiota. Our
findings support the notion that prebiotics supplementation could be used to
restrain inflammation in systemic autoimmune disease with no obvious gut-related

pathogenesis.

The diversity of endogenous AHR ligands have started to be well characterised in
recent years®®, However, determining the physiologically relevant ligands in
immune cell function and examining if these ligands have differing roles in directing
cell function has been harder to establish. Endogenous AHR ligands can be
generated by host cells, microbiota, and through metabolism of dietary
compounds®®®. Amongst the microbiota-derived ligands for AHR, an important
family are tryptophan-derived metabolites. For example, it has been previously
demonstrated that tryptophan is endogenously metabolized into tryptamine and
indole-3-acetic acid, which directly binds to AHR®06. 683 More recently, expression
of tryptophanase by certain microbiota species has been shown to process
tryptophan into indoles and its 3-substituted derivatives, which also act as agonists
for AHR"23, In addition, L-kynurenine and kynurenic acid which are produced
following metabolism of tryptophan by indoleamine 2,3-dioxygenase (IDO) can
also activate AHR in immune cells®®! 724, |n this study, we did not detect any
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variation in the levels of tryptophan, tryptamine, L-kynurenine or indole, yet we
observed a reduction in kynurenic acid (KYNA). We also found the levels of indole-
3-substituted derivatives to be below the limit of detection suggesting that these
pathways are unaffected by butyrate-supplementation. Rather our data suggests
an additional mechanism by which 5-Hydroxyindole-3-acetic acid (5-HIAA), the
main metabolite of serotonin (5-HT), activates AHR in B cells following butyrate-
supplementation. Similarly to T cells, where it has been shown that different AHR
ligands drive either Treg or Th17 differentiation®®', we show that both KYNA and
5-HIAA can activate AHR-dependent gene transcription in B cells, but only 5-HIAA
and not KYNA upregulates /l/0 transcription in B cells in an AHR-dependent

manner.

The production of the tryptophan-derived neurotransmitter 5-HT in the gut is
intimately connected with the presence and species of the gut microbiota’. As
well as regulating diverse physiological processes in both the brain and the gut, 5-
HT also has a proposed immune-modulatory function, including the promotion of
B cell proliferation, induction of cytokine release by monocytes, and changing in
capabilities of dendritic cells to present antigen and activate T cells’?% 7?7, Here we
determine that 5-HT’s main metabolite 5-HIAA activates AHR in B cells and drives
the transcription of both Cyp7a7 and //10 transcription in B cells and show that 5-
HIAA is immunoregulatory in arthritis. Our data supports a recently established link
between the serotonergic and AHR pathways, showing the efficacy of 5-HT in
inducing Cyp7a? expression via AHR in an intestinal epithelial cell line®"’. It also
adds to accumulating evidence that butyrate can induce 5-HT release by neural
enterochromaffin cells in the gut’?. We suggest that as well as regulating gut
homeostasis and peristalsis, the butyrate-serotonin-AHR axis also acts to influence
Breg homeostasis.

The data in this study suggest that gut-microbiota derived metabolites control many
aspects of B cell development and Breg function. Moreover, it suggests that the
threshold for Breg induction in response to inflammatory stimuli could potentially
be lowered in AHR ligand rich environments. We show that butyrate increases the
availability of the AHR agonist 5-HIAA and thus enforces an AHR-dependent
transcriptional programme which promotes the generation of Bregs, whilst
inhibiting terminal differentiation of B cells (Figure 7.1). To date, due to the
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heterogenous nature of the Breg response, researchers have been unable to
ascertain how to harness the suppressive function of Bregs. These results, in part,
address this gap and reveal that supplementation of microbial end products like

butyrate could be used for therapeutic intervention in autoimmune disease.
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Figure 7.1. Working model of the role of butyrate and AHR in Breg differentiation
and function. Butyrate promotes the growth of tryptophan metabolising bacteria, which
metabolise tryptophan to 5-HIAA. 5-HIAA acts as an AHR ligand, which induces Breg
differentiation by upregulating IL-10 and suppressing pro-inflammatory cytokine gene
expression. AHR'IL-10" Bregs then suppress pathogenic T cell responses in AlA.
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Appendices

Appendix I: Table Al. Transcription factors differentially expressed between GFP*
and GFP- populations.

Appendix II: Table All. AHR independent butyrate regulated genes.

Appendix lll: Table Alll. AHR-dependent butyrate regulated genes.
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Symbol Name Function FC adj.P.val FC adj.P.val
(cD21"CD24" (CD21"CD24" (CD21"CD24" (CD21"CD24"
pos vs pos vs pos vs FO) pos vs FO)
CD21"CcD24" CD21"CD24"
neg) neg)
Ahr Aryl-hydrocarbon receptor DNA binding 1.869114565  5.05135E-05  5.183739908 1.73543E-08
E2f8 E2F transcription factor 8 = Core promoter binding 3.524122031 8.24144E-05  9.937468163 1.16556E-07
Bhlhe41 Basic helix-loop-helix RNA polymerase Il core  3.151182551 5.20865E-05 5.070827978 2.34121E-07
family, member e41 promoter proximal
region sequence-
specific DNA binding
Pim1 Proviral integration site 1 Nucleotide binding 1.43710652 0.000803313  1.536952061 5.28079E-05
Tacc3 Transforming, acidic Protein binding 1.754219566  0.000237504  2.612848846 1.13543E-06
coiled-coil containing
protein 3
E2f7 E2F transcription factor 7 Core promoter binding 1.569164933 0.000491558  2.089170639 3.35506E-06
Dnmt1 DNA methyltransferase DNA binding 1.525927763 0.001016079  1.542642041 0.000192334
(cytosine-5) 1
Zbtb32 Zinc finger and BTB Nucleic acid binding 1.564102074 0.00060818 1.599906949 8.54549E-05
domain containing 32
Zfpm1 Zinc finger protein, RNA polymerase Il core  1.635156815  0.000956596  2.073406035 1.36055E-05
multitype 1 promoter binding
transcription factor
activity
Pmf1 Polyamine-modulated Transcription 1.613117282  0.000743998 2.03500123 9.61821E-06
factor 1 coactivator activity
C1qbp C1q binding protein Complement 1.49365815 0.002166338  1.796509212 4.16981E-05
component C1q binding
Foxm1 Forkhead box M1 DNA binding 1.457277204 0.00190059 2.20317842 3.01442E-06
Cenpf Centromere protein F Protein C-terminus 1.922637351 0.008852351 3.81234672 2.613E-05
binding
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Pdlim1 PDZ and LIM domain 1 Transcription 1.538439454  0.001738439  1.372627344 0.00277832
(elfin) coactivator activity
Setd8 SET domain containing P53 binding 1.481768428  0.005872492 1.58624982 0.000660724
(lysine methyltransferase)
8
E2f1 E2F transcription factor 1 Core promoter binding 1.27720107 0.005234129  1.799717751 4.40902E-06
Hes6 Hairy and enhancer of DNA binding 1.26830407 0.004558499  1.367381679 0.000227666
split 6
Smarca4 SWI/SNF related, matrix Nucleotide binding 1.335143927 0.011950492  1.398775214 0.00168523
associated, actin
dependent regulator of
chromatin
Dip2c DIP2 disco-interacting Unknown 1.258003811 0.02122796 1.734098658 2.86597E-05
protein 2 homolog C
(Drosophila)

Skil SKil-like Chromatin binding -1.201268078 0.022180352  -1.54986752 3.18895E-05
Hhex Hematopoietically DNA binding -1.235422164  0.026407274  -1.511651527 0.000170022

expressed homeobox
Rbpms RNA binding protein gene Nucleotide binding -1.326003662 0.040745097  -1.992794467 7.70317E-05

with multiple splicing
Hist1h4k Histone Cluster 1 H4 Unknown 1.274 0.019929 1.5213 0.00027

Family Member K

Table Al: Transcription factors differentially expressed between GFP* and GFP" populations. List of 23 candidate genes differentially
expressed between CD21"CD24"IL-10eGFP* and GFP" populations. Abbreviations: FC — fold change, FO — Follicular.
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Gene set — AHR independent butyrate regulated genes

Adamdec1 Casc4 Hip1 Mitfr1l Pomt1 Thxa2r
Ahdc1 Cbfa2t3 Hpse Mtmr4 Ppcdc Tecpr2
Anks1 Ddx11 Hsp90b1 Nfya R3hdm1 Tmc4
Ano10 Ece1 Hyou1 Pafah2 Rpgrip1! Tmcc3
Ano8 Fahd2a L3mbtI3 Patz1 Sdf2i1 Tmem129
Asl Fam173b Lamc1 Pdia3 Slc16a6 Tnfrsf4
Bcl2 FbxI5 Lman2l Pdia6 Slc2a9 Unc119b
Bcl9 Fkbp2 Magt1 Piga Slc37a2 Usp31
Bicd2 Finb Manf Pik3r5 Smg7 Vtila
Calr Fuca1 Med16 Plod1 Sorbs3 Xbp1
Canx Gprasp1 Mib2 Plxna1 St13 Znhit1
Capnb Gucailb Mrpl1 Poin Tbc1d19

Table All. AHR independent butyrate regulated genes. 71 identified genes which are
significantly differentially expressed after butyrate-supplementation in both Mb71°¥* and Ahr"-

Mb1°®* mice.
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Gene Set — AHR-dependent butyrate regulated genes

1110065P20Rik | Cchcer1 Gfod1 Nacc1 Rab260os Top3a
1700048020Rik | Cd180 Haghl Nek1 Rala Tpst1
1810014B01Rik | Cep104 Haus2 Nfe2l2 Recql Trmt10b
1810024B0O3Rik | Cep162 Hdac11 Nfkbiz Rnase12 Trmt2b
2010111101Rik | Cep78 Hist1h4d Noa1 Rpl12 Tsc22d1
2500004CO02Rik | Cers4 Ift74 Nod1 Rpl37 Ttc13
3110009E18Rik | Cgrrf1 Ints3 Nt5c2 Rpn1 Unc119
4632415L05Rik | Chid1 Ints9 Oplah Rps19-ps3 | Urb1
4833418N02Rik | Creld1 Ipmk Ovgp1 Rundc3b Utp4
4930402H24Rik | Creld2 Ipp Oxsm Sel1l3 Vmac
6030419C18Rik | Cwc27 ltga10 P2rx7 Selenoi Vps37b
A430033K04Rik | Cyp4v3 Kcnk13 Pacs2 Slamf1 Wdr62
';‘530072/\41 TRi Dbp Ketd1 Pcgf3 Sic12a3 Xpnpep3
Adam15 Dcxr Kctd17 Pde6d Slc12a5 Xrn2
Al1504432 Dedd?2 Kifcbb Pde8a Slc17a9 Zc3h12b
Aldh112 Dip2a Ldhd Pfkfb1 Slc25a1 Zdhhc20
Arid3b Dirc2 Lrp11 Prfkfb4 Slc2a8 Zdhhc7
Arl6ip4 Dnajb11 Lrpap1 Pgp Slc30a4 Zip112
Asphd1 Dagx1 Lta Pidk2a Spast Zfp128
Atg10 Dscr3 Mapre3 Pik3ip1 Spata24 Zfp229
Atp9a Eif2b4 Marf1 Plk2 Ssbp2 Zfp236
Atrn Emsy Mccc2 Ppard St3qal1 Zfp280c
Atxn2 Ergic1 Med26 Ppm1d Stxbp4 Zfp292
Baiap2 Evi5 Mettl22 Ppm1] Susd2 Zfp39
BC051142 Fam120c Mettl23 Ppp1r35 Suv39h2 Zfp438
Begain Fam241a Mfsd1 Ppp2rib Taf3 Zfp446
Bloc1s4 Fbf1 Mfsd2a Praf2 Tbl1x Zfp568
Bmt2 Fchsd1 Miki Prelid3b Tfcp2 Zfp729a
Btbd18 Flot1 Mrpl33 Prkar2a Timd2 Zfp943
Camk2a Fndc10 Mterf3 Prmt6 Tmem165 Zfyve21
Cars Gabbr1 Mturn Psph Tmem71 Znrf1
Ccdc85b Galnt7 Mzt2 Ptgert Tomm6os Zscan22
Gfm2 Pycr1 Zscan26

Table Alll. AHR-dependent butyrate regulated genes. 195 identified genes which were
significantly differentially expressed after butyrate-supplementation in Mb71¢®* mice, once

baseline transcriptional changes between control Mb1¢®* mice versus Ahr”"Mb1°®* mice had

been removed.
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