The Aryl Hydrocarbon Receptor Plays a Key Role in the Transcriptional Programme of Regulatory B cells

by Christopher James Michael Piper

Supervisors
Prof. Claudia Mauri
Prof. David Isenberg
Dr. Paul Blair

UCL Centre for Rheumatology
The Rayne Institute
5 University Street
London, WC1E 6JF

UCL
Immunology
Submitted for the degree of Doctor of Philosophy

May 2020
Declaration

I, Christopher Piper, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.

Christopher Piper
May 2020
Acknowledgements

I would like to express my sincere gratitude to my supervisor Professor Claudia Mauri for all her support, encouragement and mentoring over the years. I feel exceedingly fortunate to have worked in your lab and I have learned so much over the years through your guidance. I would like to thank the Rosetrees Trust for funding my PhD and, in tandem with the Wellcome Trust for making this research possible.

I would like to thank members of the Mauri Lab, both past and present, for their support, advice and friendship and for our philosophical late night chats about science, politics and just general life. To Lizzy - for all your support, career advice and for listening to me moan about RNA-seq and ATAC-seq. It’s been a rollercoaster 1.5 years, but we made it! To Merry, with whom I worked closely during the ‘JDM years,’ I thank you for your all your support and for your positivity. It was a pleasure working with you during this time. To Kiran - for all that you have taught me in the lab and for giving me the necessary tools to succeed in science. In particular, I would like to thank Kristine for all the wonderful memories and friendship over the years, particularly our time ‘skiing’, and also our time in Davos and Japan. I couldn’t have done it without you. Also for giving me the nicknames, ChrisP, PerCP and Crispr; thankfully the latter two haven’t caught on! To all my colleagues - Kristine, Amanda, Lizzy, Paul, Diego, Diana and Hannah; you are all amazingly talented individuals and I feel extremely fortunate to have worked with you throughout my time here.

I would also like to thank all of my friends, especially my TA friends Mathu and Harry (London), Roland (Switzerland), Johan (Denmark) and Imtiyaaz (South Africa) for all the good times, general chats and for the daily laughs. It was good to chat to you after many a late night in the lab.

To my family - Mum and Dad and my two sisters Caroline and Victoria. I feel extremely blessed to have you as my family and this journey would not have been possible, if not for your unending love and support over the years. Thanks for all your encouragement and for helping me to realise my potential. I love you all more than you know. This thesis is dedicated to you all.
Abstract

Regulatory B cells (Bregs) play a critical role in the control of autoimmunity and inflammation. IL-10 production is the hallmark for the identification of Bregs. However, the molecular determinants that regulate the transcription of IL-10 and control the Breg developmental program remain unknown. The aryl hydrocarbon receptor (AHR) is an environmental sensor that binds to a variety of ligands, including physiological compounds derived from the digestion of dietary components by commensal microbiota. Here, we demonstrate that AHR regulates the differentiation and function of IL-10-producing CD19+CD21hiCD24hi Bregs and limits their differentiation into B cells that contribute to inflammation. Chromatin profiling and transcriptome analyses show that loss of AHR in B cells reduces expression of IL-10 by skewing the differentiation of CD19+CD21hiCD24hi B cells into a pro-inflammatory program, under Breg-inducing conditions. B cell AHR-deficient mice develop exacerbated arthritis, show significant reductions in IL-10-producing Bregs and regulatory T cells (Tregs), and show an increase in T helper (Th) 1 and Th17 cells compared with B cell AHR-sufficient mice.

The most abundant source of AHR ligands are derived from the diet and the metabolism of dietary tryptophan. We have previously established a link between microbiota-driven signals in the gut and the differentiation of Bregs. Of the gut microbiota-derived metabolites, the short-chain fatty acids (SCFAs) are the most well characterised. More recently, the SCFA butyrate has been demonstrated to act as an AHR ligand in an intestinal epithelial cell line. Given the association of butyrate with AHR activation and the supporting findings showing that butyrate promotes Treg function, these data led us to hypothesise that butyrate acts via AHR to enhance Breg suppression. Here, we demonstrate that mice supplemented with butyrate reduces arthritis severity by inhibiting the differentiation of GC B cells and plasma cells, whilst maintaining Breg numbers and promoting the suppressive function of Bregs. We show that supplementation of mice with butyrate, changes the composition of the microbiota to favour species which metabolise tryptophan; a major source of AHR ligands. Therefore, we hypothesised that butyrate controls the balance between pro-arthritogenic and regulatory B cell differentiation, through the generation of microbiota derived AHR ligands. To date, the AHR ligands which direct Breg function are unknown. We rule out that butyrate acts as a direct ligand of AHR and establish that supplementation with butyrate increases the availability
of 5-Hydroxyindole-3-acetic acid (5-HIAA), a downstream metabolite of serotonin, which we identify as a novel ligand of AHR in B cells. Mice supplemented with 5-HIAA promote Breg function and suppress arthritis severity, only in mice with AHR-sufficient B cells. Thus, we identify AHR as a relevant contributor to the transcriptional regulation of Breg differentiation and show that microbiota in the gut influence Breg differentiation by increasing the availability of AHR ligands.
Impact statement

Regulatory B cells (Bregs) are a potent modulator of immune responses, which prevent excessive inflammation and maintain immune homeostasis after infection or tissue-injury. Abnormalities in Breg number and function are often prevalent in immune-related pathologies such as autoimmune disease, chronic infections, cancer and in the rejection of transplants. Thus, it is of utmost clinical importance to understand the ontogeny of these populations, to phenotypically characterise Breg populations and to understand the cellular signals and the molecular cues which drive Breg differentiation. By better characterising Breg populations and the processes leading to their differentiation, we can potentially identify target molecules/pathways for therapeutic interventions in immune-related pathologies.

To address these knowledge gaps in the field of regulatory B cell research, our aim was to identify a unique molecular signature that distinguishes Bregs from effector B cells, as well as identify the molecular signals that drive Breg differentiation. The data presented here identifies the aryl hydrocarbon receptor (AHR) as a key transcription factor involved in defining Breg identity and controlling Breg function. Our data suggests that we can expand or contract Breg numbers through modulating AHR signalling, which could have therapeutic potential in a variety of autoimmune diseases and in cancer.

In recent years, we have started to build a clearer picture of the signals required for Breg differentiation and have previously shown that the microbiota facilitates this process. Here we link microbiota derived signals and AHR-driven Breg differentiation. We show that the short chain fatty acid butyrate, a microbial-derived end product of complex carbohydrate metabolism, changes the composition of the microbiota. This shift promotes the growth of bacterial genera which metabolise tryptophan to generate the metabolite 5 Hydroxyindole-3-acetic acid (5-HIAA), which we show for the first time is a novel AHR ligand. Moreover, we show that the metabolites of tryptophan can influence Breg differentiation in a metabolite-specific manner. Collectively, these data highlight that microbiota and dietary metabolites control the balance between effector and regulatory B cell differentiation and show this process is driven through AHR. Thus, data from these studies implicate an important role of dietary and microbial-derived metabolites in the generation of regulatory B cells and could provide a therapeutic target in the treatment of...
autoimmunity, either through manipulation of microbial end-products or through supplementation of AHR ligands.
Table of Contents

List of figures ... 12
List of tables .. 15
List of abbreviations ... 16

CHAPTER I: Introduction ... 23
 1.1 B cells .. 23
 1.1.1 B cell development in the bone marrow ... 23
 1.1.2 B cell development in the spleen ... 29
 1.1.3 B2 B cells ... 32
 1.1.4 B cells as orchestrators of the immune response 50
 1.2 Regulatory B cells .. 53
 1.2.1 Introduction to the field ... 53
 1.2.2 Signals required for Breg differentiation .. 53
 1.2.3 Regulatory B cell Phenotype and Mechanisms of suppression 63
 1.2.4 Human Breg populations .. 73
 1.3 AIA as a model to study Breg function ... 75
 1.4 The transcriptional regulation of IL-10 ... 76
 1.4.1 Transcriptional control of Il10 in B cells ... 76
 1.4.2 The post-translational and epigenetic regulation of Il10 expression in B cells 78
 1.5 The AHR pathway ... 81
 1.5.1 General introduction .. 81
 1.5.2 Other mechanisms of gene regulation by AHR 84
 1.5.3. AHR Ligands ... 85
 1.5.4 Regulatory feedback loops .. 92
 1.5.5 The function of AHR in immunity .. 92
 1.6 The role of short chain fatty acids in the immune system 101
 1.6.1 The regulation of B cell responses by SCFAs - a proposed role for AHR? .. 103

CHAPTER II: Materials and Methods .. 105
 2.1. Mice .. 105
 2.1.1 Mouse strains .. 105
 2.1.2 Genotyping of mouse strains .. 105
 2.2 Induction of antigen-induced arthritis (AIA) .. 106
 2.3. Short-chain fatty acid supplementation ... 107
 2.4 Gavage with 5-hydroxyindole-3-acetic acid and kynurenic Acid 107
 2.5 Histology ... 107
 2.6 Generation of chimeric mice .. 108
 2.7 Murine cell isolation and preparation of single cell suspensions 108
2.1 Preparation of cell suspensions from lymphoid organs ... 108
2.2 Isolation of lymphocytes from bone marrow.. 109
2.3 Isolation of murine B cell subsets ... 109
2.4 Isolation of murine CD43 B cells using magnetic beads .. 109
2.5 Isolation of murine lymphocyte subsets by FACS sorting 109
2.6 Adoptive transfer of CD19⁺CD21^{hi}CD24^{hi} B cells from Ah₂Mb_{1cre/+} and control
Mb_{1cre/+} mice ... 110
2.7 Congenic adoptive transfer of CD19⁺CD21^{hi}CD24^{hi} B cells from Ah₂Mb_{1cre/+} and control
Mb_{1cre/+} mice ... 111
2.8 Adoptive transfer of IL-10eGFP⁺CD19⁺CD21^{hi}CD24^{hi}Bregs 111
2.9 Adoptive transfer of Tregs ... 111
2.10 Cell culture ... 111
2.11 Detection of cytokine and antibody concentrations by ELISA 112
2.12 Flow cytometry ... 112
2.13 Immunofluorescence ... 117
2.14 In vitro suppression assay .. 118
2.15 Gene expression analysis ... 118
2.16 Chromatin Immunoprecipitation .. 120
2.17 Western Blot .. 121
2.18 High performance liquid chromatography .. 122
2.19 Extraction and derivation of short-chain fatty acids from mouse stool pellets
... 122
2.20 Analysis of short-chain fatty acid hydrazides by high performance liquid
chromatography ... 122
2.21 Extraction of indoles, kynurenine and kynurenic acid from mouse faecal pellets
... 123
2.22 16s rDNA sequencing .. 124
2.23 Microarray .. 125
2.24 RNA sequencing .. 125
2.24.1 Sample preparation and sequencing of the transcriptome 125
2.24.2 Bioinformatic analysis of RNA-seq data ... 126
2.25 Assay for transposable accessible chromatin with high-throughput sequencing (ATAC-seq) .. 126
 2.25.1 Sample preparation and sequencing ... 126
 2.25.2 Bioinformatic analysis of ATAC-seq data ... 127
2.26. Data and code availability .. 128
2.27. Statistical analysis .. 128

Chapter III: Results I .. 129
 3.1 IL-10⁺ Bregs present a restricted cytokine and chemokine gene expression profile ... 131
 3.2 AHR is highly expressed in IL-10-producing Bregs 136
 3.3 AHR upregulation promotes the generation of IL-10⁺CD19⁺CD21⁺⁺CD24⁺⁺ Bregs .. 140

Chapter IV: Results II ... 148
 4.1 AHR controls the Breg transcriptional programme by suppressing pro-inflammatory gene expression .. 149
 4.2 AHR regulates chromatin accessibility of cytokine and chemokine gene loci in B cells .. 157

Chapter V: Results III ... 159
 5.1 B cell specific AHR deficiency causes exacerbated arthritis and increased T cell-driven arthritogenic responses .. 160
 5.2 Ah⁻/⁻Mb1⁺cre/+ mice do not have a defect in B cell development, but present with a reduced frequency and number of Bregs .. 165
 5.3 AHR deficient CD19⁺CD21⁺⁺CD24⁺⁺ B cells are unable to differentiate into Bregs in vivo ... 177

Chapter VI: Results IV .. 179
 6.1 Butyrate supplementation suppression of experimental arthritis is Breg dependent .. 181
 6.2 Suppression of disease by butyrate supplementation requires B cell expression of AHR .. 187
 6.3 Butyrate supplementation supports Breg suppressive function and controls B cell differentiation partly via an AHR-dependent transcriptional programme .. 193
 6.4 Butyrate changes the availability of microbiota-induced AHR ligands 198

Chapter VII: Discussion ... 203
 7.1 AHR defines Breg identity .. 203
 7.2 Establishing a link between gut microbiota and Breg differentiation 206

References .. 212
List of publications arising from this thesis..258
Appendices..259
List of figures

Figure 1.1. B cell development in the bone marrow.. 27
Figure 1.2. B cell differentiation in the spleen.. 49
Figure 1.3. Stimuli that induce murine Breg differentiation....................................... 62
Figure 1.4. Breg subsets and mechanisms of suppression in mouse........................... 72
Figure 1.5. AHR signalling pathway.. 83
Figure 1.6. AHR regulates the transcriptional network governing terminal B cell differentiation.. 100

Figure 2.1. Splenic B cell purity plots.. 109
Figure 2.2. Gating strategy and purity plots for CD19+CD21hiCD24hi B cells............. 110
Figure 3.1. IL-10+ Bregs are predominantly found in the CD19+CD21hiCD24hi B cell population in the spleen in AIA... 133
Figure 3.2. IL-10+ Bregs have a unique transcriptional profile..................................... 134
Figure 3.3. Bregs have a restricted cytokine and chemokine transcriptional profile.. 135
Figure 3.4. Identification of AHR as a key IL-10-associated transcription factor in Bregs.. 137
Figure 3.5. The Il10 and Ahr loci are more accessible in IL-10+CD19+CD21hiCD24hi Bregs.. 139
Figure 3.6. LPS+anti-IgM induce Ahr and Il10 expression in CD19+CD21hiCD24hi B cells.. 142
Figure 3.7. AHR is most highly expressed in IL-10+CD19+CD21hiCD24hi B cells after stimulation with LPS+anti-IgM... 143
Figure 3.8. Increased levels of Ahr and downstream pathway in ex vivo CD19+CD21hiCD24hi B cells compared to FO B cells... 144
Figure 3.9. AHR controls the differentiation of CD19+CD21hiCD24hi B cells into Bregs.. 145
Figure 3.10. AHR agonists induce IL-10 in CD19+CD21hiCD24hi B cells............... 146
Figure 3.11. AHR binds to the Il10 locus in IL-10+ Bregs... 147
Figure 4.1. Validation of B cell AHR deficient (Ahrfl/Mb1cre+) mice.......................... 151
Figure 4.2. Activation of CD19+CD21hiCD24hi B cells under Breg polarizing conditions increases Ahr expression and the accessibility of the Ahr locus.......... 152
Figure 4.3. AHR increases Breg associated gene expression upon activation with LPS+anti-IgM.. 153
Figure 4.4. AHR suppresses pro-inflammatory gene expression during the differentiation of Bregs. 154
Figure 4.5. Blocking AHR affects the cytokine and chemokine gene expression of LPS+anti-IgM stimulated CD19+CD21hiCD24hi B cells. 155
Figure 4.6. Il6 and Tnf are direct targets of AHR and are not affected in the absence of IL-10 signalling. 156
Figure 4.7. AHR increases chromatin accessibility of CD19+CD21hiCD24hi B cells under Breg polarising conditions. 158
Figure 5.1. B cell AHR deficiency exacerbates antigen induced arthritis. 161
Figure 5.2. Ahfrfl/Mb1cre/+ mice have increased IFN-γ and IL-17 expressing CD4+ T cells. 162
Figure 5.3. Ahfrfl/Mb1cre/+ mice have reduced numbers of FOXP3+ Tregs in the DLN. 163
Figure 5.4. Adoptive transfer of AHR-deficient CD19+CD21hiCD24hi B cells fails to ameliorate arthritis in recipient mice. 164
Figure 5.5. B cell subset numbers are unaffected in the absence of AHR expression in B cells. 167
Figure 5.6. AHR plays a redundant role in early B cell development in the bone marrow. 168
Figure 5.7. AHR represses plasma cell differentiation. 169
Figure 5.8. CD19+CD21hiCD24hi B cells in Ahfrfl/Mb1cre/+ mice are less able to differentiate into Bregs. 170
Figure 5.9. AHR is required for IL-10 production by B cells in vitro. 171
Figure 5.10. AHR does not control IL-35 production by B cells. 172
Figure 5.11. AHR does not affect the proliferation of CD19+CD21hiCD24hi B cells in arthritic mice. 173
Figure 5.12. CD19+CD21hiCD24hi B cells in Ahfrfl/Mb1cre/+ mice are less able to differentiate into Bregs in the MLNs. 174
Figure 5.13. α4β7 is not differentially expressed between Mb1cre/+ and Ahfrfl/Mb1cre/+ CD19+CD21hiCD24hi B cells. 175
Figure 5.14. No difference in monocyte IL-1β and IL-6 expression is observed between Mb1cre/+ and Ahfrfl/Mb1cre/+ mice. 176
Figure 5.15. AHR is required for the differentiation of IL-10+ Bregs in vivo. 178
Figure 6.1. Suppression of arthritis by butyrate supplementation requires IL-10-expressing B cells. 184
Figure 6.2. The number of IL-10+CD19+CD21hiCD24hi Bregs is maintained following butyrate supplementation. .. 185
Figure 6.3. Butyrate suppresses the numbers of plasmablasts and GC B cells...186
Figure 6.4. Suppression of arthritis by butyrate supplementation depends upon AHR expression in B cells... 189
Figure 6.5. Butyrate suppresses plasmablast and GC differentiation whilst maintaining Bregs in an AHR dependent mechanism................................. 190
Figure 6.6. Expression of AHR in B cells is fundamental for modulation of T cell function after butyrate-supplementation... 191
Figure 6.7. Butyrate-supplementation suppresses B cell maturation through activation of AHR... 192
Figure 6.8. Butyrate supplementation modulates the transcriptional profile of CD19+CD21hiCD24hi B cells in an AHR-dependent Manner......................... 195
Figure 6.9. Butyrate supplementation modulates the epigenetic profile of CD19+CD21hiCD24hi B cells in an AHR-dependent manner by increasing histone acetylation... 196
Figure 6.10. CD45.2+CD19+CD21hiCD24hi B cells from butyrate-supplemented WT but not Ahr−/− mice retain their phenotype and differentiate into IL-10+ Bregs upon adoptive transfer... 197
Figure 6.11. The suppression of arthritis by butyrate is dependent on the gut microbiota... 200
Figure 6.12. Butyrate supplementation increases the availability of AHR ligands... 201
Figure 6.13. Hydroxyindole-3-acetic acid increases Il10 transcription by B cells in vivo and in vitro by acting as a ligand for AHR... 202
Figure 7.1. Working model of the role of butyrate and AHR in Breg differentiation and function... 211
List of tables

Table 1.1. List of known endogenous and exogenous AHR agonists and antagonists..89
Table 2.1. PCR cycling parameters used for genotyping...106
Table 2.2. Mouse flow cytometry antibodies for extracellular antigens.......................114
Table 2.3. Mouse flow cytometry antibodies for intracellular antigens......................117
Table 2.4. Murine qRT-PCR primers..120
Table 2.5. ChIP qPCR primers..121
Appendix Table I. Transcription factors differentially expressed between GFP+ and GFP- populations...260
Appendix Table II. AHR independent butyrate regulated genes...............................262
Appendix Table III. AHR-dependent butyrate regulated genes.................................263
List of abbreviations

3'IgHRR - 3'IgH transcriptional regulatory region
3-MC - 3-methylchoanthrene
5-HIAA - 5-Hydroxyindole-3-acetic acid
5-HT - 5-hydroxytryptamine
α-GalCer - α-galactosylceramide
ABX - antibiotic
AHR - Aryl hydrocarbon receptor
AHRR - aryl hydrocarbon receptor repressor
AIA - antigen-induced arthritis
AID - activation-induced cytidine deaminase
AIP - AHR-interacting protein
ALDH - aldehyde dehydrogenase
AP1 - activator protein 1
APC - antigen-presenting cell
APRIL - a proliferation-inducing ligand
ARE - adenosine-rich elements
ARNT - aryl hydrocarbon nuclear translocator
ATAC-seq - assay for transposase-accessible chromatin using sequencing
BAFF - B cell-activating factor
BAFFR - B cell-activating factor receptor
BATF - basic leucine zipper transcription factor ATF-like
BCL - B cell lymphoma/leukaemia
BCMA - B cell maturation antigen
BCR - B cell receptor
Be - B effector
bHLH - basic helix-loop-helix
BLIMP-1 - B lymphocyte-induced maturation protein 1
Breg - regulatory B cell
BRG1 - Brahma/SWI2-related gene 1
BTK - Bruton’s tyrosine kinase
CBFβ - core-binding factor subunit β
CCL - CC chemokine ligand
CCR - CC chemokine receptor
CD - cluster of differentiation
CFA - complete Freund’s adjuvant
ChIP - chromatin immunoprecipitation
CHS - contact hypersensitivity
CIA - collagen-induced arthritis
CII - type II collagen
CLP - common lymphoid progenitor
CNS - conserved non-coding sequence
CREB - cyclic adenosine 3,5-monophosphate response element-binding protein
CSR - class-switch recombination
CTLA-4 - cytotoxic T-lymphocyte associated protein 4
CUL4B - cullin 4B ubiquitin ligase complex
CXCL - CXC chemokine ligand
CXCR - CXC chemokine receptor
CYP - cytochrome P
D - diversity in reference to gene rearrangement
DAR - differentially accessible region
DC - dendritic cell
DEG - differentially expressed genes
DIM - 3,3'-diindolylmethane
DL1 - delta-like 1
DNFB - 2,4-dinitrofluorobenzene
DRE - dioxin response element
DSS - dextran sulphate sodium
DTH - delayed type hypersensitivity
DZ - dark zone
EAE - experimental autoimmune encephalomyelitis
EBF1 - early B cell factor 1
EBI2 - Epstein Barr virus induced gene 2
ER - endoplasmic reticulum
ERK - extracellular signal-related kinase
ESR - oestrogen receptor
FDC - follicular dendritic cell
FFAR - free fatty acid receptor
FICZ - 6-formylindolo[3,2-b]carbazole
FLT3 - Fms-like tyrosine kinase 3
FO - follicular
FOXO1 - forkhead box O1
FOXP3 - forkhead box P3
GALT - gut associated lymphoid tissue
GATA3 - GATA binding protein 3
GC - germinal centre
GC-RMA - Gene chip robust multi-array average
GFI1 - growth factor independence 1
GIFT15 - GM-CSF and IL-15 fused
GLT - germline transcripts
GM-CSF - granulocyte-macrophage colony-stimulating factor
GPCR - G-protein-coupled receptor
H - heavy in reference to Ig chains
H3K27 - histone 3 lysine 27
HAH - halogenated aromatic hydrocarbons
HAT - histone acetyltransferase
HDACi - histone deacetylase inhibitor
HEL - hen egg lysozyme
HIF1α - hypoxia-inducible factor 1α
hs - hypersensitive sites
HSA - heat stable antigen
HSC - hematopoietic stem cell
HSP - heat shock protein
I3C - indole-3-carbinol
IBD - inflammatory bowel disease
ICAM - intracellular adhesion molecule
ICOS - inducible T cell co-stimulator
ICOSL - inducible T cell co-stimulator ligand
ICZ - indolo-[3,2-b]-carbazole
IDO - indoleamine 2,3-dioxygenase
IFA - incomplete Freund’s adjuvant
Ig - immunoglobulin
IKKα - IκB kinase α
IL - interleukin
ILC - innate-like lymphoid cell
iNKT - invariant natural killer T
IPA - indolepyruvic acid
ITAM - immunoreceptor tyrosine-based activation motif
ITIM - immunoreceptor tyrosine-based inhibitory motifs
IRF - Interferon regulatory factor
J - joining in reference to gene rearrangement
KLF – Kruppel like factor
KO – knockout
KYNA – kynurenic acid
L - light in reference to Ig chains
LAG3 - lymphocyte activation gene 3
LFA-1 - lymphocyte function associated antigen 1
LLPC - long-lived plasma cell
LMPP - lymphoid-primed multipotent precursor
LPS – lipopolysaccharide
LT - lymphotoxin
LZ – light zone
MADCAM1 - mucosal vascular addressin cell adhesion molecule 1
MAPK - mitogen-activated protein kinase
MBC - memory B cell
mBSA - methylated bovine serum albumin
MCMV - murine cytomegalovirus
mRNA – messenger RNA
MFI - median fluorescence intensity
MHC - major histocompatibility complex
miR - microRNA
MLN - mesenteric lymph node
MOG - myelin oligodendrocyte glycoprotein
mTOR - mammalian target of rapamycin
MyD88 - myeloid differentiation primary-response gene 88
MZ - marginal zone
NFAT - nuclear factor of activated T cells
NF-κB - nuclear factor κB
NHEJ - Non-homologous end-joining factors
NK - natural killer
NOR – norisoboldine
NP-CGG - 4-Hydroxy-3-nitrophenylacetyl-chicken gamma globulin
NRF2 - nuclear factor erythroid 2-related factor
OCT4 - octamer-binding protein
OVA - ovalbumin
PABA-HEA - paraaminobenzoic acid-Hen egg albumin
PAH - polycyclic aromatic hydrocarbons
PALS - periarteriolar lymphoid sheath
PAS - PER-ARNT-SIM
PAX5 - paired box 5
PCA - Principal component analysis
PCPA - L-para-chlorophenylalanine
PDC - plasmacytoid dendritic cell
PER - periodic circadian protein
PI3K - phosphoinositide 3-kinase
PLCγ2 - phospholipase Cγ2
PMA - phorbol 12-myristate 13-acetate
pMHC - peptide MHC
PP - Peyer’s patches
Prdm1 - positive-regulatory-domain containing 1
PRR - pattern recognition receptor
PtC - phosphatidylcholine
P-TEFb - positive transcription elongation factor
RA - rheumatoid arthritis
RAG-1/-2 - recombination activating genes-1/-2
RARA - retinoic acid receptor alpha
RB - retinoblastoma protein
RBC - Red blood cells
RBP - RNA binding proteins
RBP - Jk recombination signal binding protein for Igk J region
RSS - recombination signal sequences
RUNX - runt-related transcription factor
S1P - sphingosine 1-phosphate
S1P1 - sphingosine 1-phosphate receptor 1
SCFA - Short chain fatty acid
SHM - somatic hypermutation
SHP1 - SH2-domain-containing PTP 1
SIM - single-minded protein
SLAM - signalling lymphocyte activation molecule
SLC - surrogate light chain
SLC5A8 - sodium-coupled monocarboxylate transporter 1
SLE - systemic lupus erythematosus
SLPC - short-lived plasma cell
SP1 - specificity protein 1
SPF - specific pathogen free
SREBF1 - sterol regulatory element-binding protein 1
STAT - signal transducer and activator of transcription
STIM - stromal interaction molecules
SWI/SNF - switching defective/sucrose non-fermenting
T1/T2/T3 – transitional 1/2/3
T2-FP - Transitional 2 follicular precursor
T2-MZP - transitional 2-marginal zone precursor
TACI - transmembrane activator and calcium modulator and cyclophilin-ligand interactor
TCDD - 2,3,7,8-tetrachlorodibenzo-p-dioxin
TCR - T cell receptor
TD - T-dependent
TdT - terminal deoxynucleotidyl transferase
TFIIB - transcription factor IIB
Tfh - T follicular helper
Tfr - T follicular regulatory cells
TGF-β1 - transforming growth factor-β1
Th - T helper
TI - T-independent
TIM - T cell Ig and mucin domain
TLR - Toll-like receptor
TNFα - tumour necrosis factor α
Treg - regulatory T cells
TSS - transcription start site
URE - Uridine-rich elements
UTR - untranslated regions
V - variable in reference to gene rearrangement
WT - wild-type
XBP1 - X-box binding protein 1
Xid - X-linked immunodeficiency
XLA - X-linked agammaglobulinemia
XRE - xenobiotic response element
CHAPTER I: Introduction

1.1 B cells
B cells are lymphocytes, which express a unique antigen receptor, which recognises specific antigenic epitopes, and undergo clonal selection and expansion in response to their cognate antigen. Whilst both B and T cells undergo somatic gene rearrangement for their antigen receptors, both receptors differ in a number of key areas. In terms of antigen processing and presentation, the antigen receptor on B cells can recognise protein, lipid or carbohydrate antigens in their native conformation and this process is not major histocompatibility complex (MHC) restricted. This is in contrast to the antigen receptor on T cells, which only recognises MHC-restricted processed peptide antigen, or lipid antigens presented by cluster of differentiation (CD) 1 molecules\(^1\). One of the key roles of B cells is to provide protective humoral responses through the production of antibodies. However, B cells also coordinate immune responses through antigen presentation and through the production of cytokines and chemokines\(^1\). In order to understand how B cells modulate and coordinate immune responses, it is important to understand the developmental pathways of B cells and the phenotypical and functional diversity of B cells.

1.1.1 B cell development in the bone marrow
1.1.1.1 Commitment to the B cell lineage
During embryogenesis, haematopoiesis first occurs in the yolk sac\(^3\) and at a later developmental stage in the foetal liver, which is seeded by circulating haematopoietic cells\(^4\). At birth, haematopoietic stem cells (HSCs) colonise the bone marrow, whilst in the postnatal stages of life the HSC pool is maintained in the bone marrow by HSC self-renewal and differentiation\(^5\). Indeed, in contrast to the proliferative nature of foetal HSCs, most postnatal HSCs are quiescent and divide only to replenish the pool of HSCs or to regulate the number of differentiated blood cells\(^6,\,7\).

For the commitment to the B cell lineage, HSCs first differentiate into lymphoid-primed multipotent precursors (LMPPs)\(^8\) and then into the common lymphoid precursors (CLPs). As HSCs differentiate into CLPs, the expression of Fms-like tyrosine kinase 3 (FLT3) and Interleukin (IL)-7R\(\alpha\), key factors for the survival and
expansion of both LMPPs\(^9\) and CLPs\(^{10}\), are increased. LMPPs and CLPs can undergo a differentiation programme to become T or B cells, but also retain myeloid differentiation potential.

T and B cells share a number of developmental commonalities, namely their ability to carry out somatic gene rearrangement of genes for their respective antigen receptor through the recombination activating genes 1 and 2 (RAG1/RAG2)-mediated programme, which results in a large variety of antigen specificities in these receptors, allowing for the recognition of a wide range of antigens. However, these cell populations also share a number of other developmental programmes including cell cycle arrest phases, required for gene rearrangement and the use of positive and negative checkpoints to ensure a fully functional antigen receptor repertoire with limited self-reactivity\(^{11}\). The divergence of the T cell-like and B cell-like programmes dates back more than 500 million years\(^{12}\). Distinct transcriptional regulatory modules are required for the development of T and B cell precursor subsets.

Differentiation to the CLP stage is dependent on a series of transcription factors, including IKAROS\(^{13}\), PU.1\(^{14}\), E2A\(^{15}\) and B cell lymphoma/leukaemia (BCL)11A\(^{16}\). In addition, a second group of transcription factors, including growth factor independence 1 (GFI1)\(^{17}\), signal transducer and activator of transcription (STAT)5A/STAT5B\(^{18}\), MYB\(^{19}\) and runt-related transcription factor (RUNX) family members and binding partner core-binding factor subunit β (CBFβ)\(^{20}\) are required for the differentiation of CLPs, as well as being indispensable for other haematopoietic programmes. Commitment towards the B cell fate is also partly dependent on increased RAG1 expression, the downregulation of KIT and the expression of a \(\lambda 5\) transgene\(^{21, 22}\). However, the two fundamental transcription factors needed for commitment to a B cell fate are early B cell factor 1 (EBF1) and paired box 5 (PAX5)\(^{23}\), as will be discussed below.

1.1.1.2 Early B cell development

The early B cell precursors can be split into 4 fractions, consisting of pre-pro B cells, pro-B cells, large pre-B cells and small pre-B cells. Development of B cells in the bone marrow is characterised by the sequential rearrangement of the B cell receptor heavy and light chain genes\(^{24}\). The transition from the uncommitted pre-
pro B cells to pro-B cells is marked by the upregulation of PAX525, 26. EBF1 in tandem with E2A, creates a distinguishable gene expression profile specific to the B cell lineage. PAX5 is required for the stabilization of this profile, and in addition, plays a key role in the rearrangement of the Ig heavy chain regions, by changing the accessibility of these regions. Both EBF1 and PAX5 interact, and work in tandem, with many other transcription factors important for the pan-haematopoietic lineage, including MYB and IKAROS, which are responsible for contributing to the expression of a large proportion of the B cell lineage specific genes. PAX5 and EBF1 remain expressed throughout the differentiation stages of a B cell, and only in the terminal differentiation stage are these genes silenced27, 28. As well as positively directing the B cell lineage transcriptional programme, PAX5 alongside EBF1 has a negative role in reducing the T cell developmental potential. Ectopic expression of PAX5 in HSCs and progenitors favoured B cell development over T cell lymphopoiesis, specifically through its role in inhibiting the expression of Notch129, 30.

Pro-B cells are identified by the rearrangement of the \textit{Igh} gene locus, with recombination of one of the large arrays of variable (V), diversity (D) and joining (J) gene segments. V(D)J recombination is mediated through recombinase complex containing RAG1/RAG2 and other DNA repair enzymes. The RAG complex has endonuclease activity and introduces double-stranded breaks in the \textit{Igh} locus at recombination signal sequences (RSSs), that flank each gene segment. Non-homologous end-joining factors (NHEJ) join the V, D and J segments together31. In pro-B cells, recombination of the D and J gene segments occurs first and is followed by the recombination of the DJ\textsubscript{H} segment to one V\textsubscript{H} gene segment and then splicing onto one of the adjacent constant µ (C\textsubscript{µ}) exons to form a complete Ig\textsubscript{µ} heavy chain gene24. During the recombination stage, diversification of the BCR repertoire can be achieved by the actions of the terminal deoxynucleotidyl transferase (TDT) enzyme, which adds non-templated nucleotides to the V-D and D-J junctions of the Ig heavy chain, increasing diversity at the complementarity determining region 3 (CDR3) of the Ig heavy chain32. Many B cells which undergo somatic recombination produce out-of-frame rearrangements and subsequently initiate apoptosis. Only one of three B cells which undergo recombination of the V(D)J regions occur in frame33, 34.
Entry into the pre-B cell stage is marked by the expression of the pre-BCR, which involves the pairing of a complete Ig\(\mu\) heavy chain with the invariant surrogate light chain (SLC) proteins \(\lambda.5\) and VpreB\(^{35, 36}\). In addition, Ig\(\alpha\) and Ig\(\beta\), both of which contain immunoreceptor tyrosine-based activation motifs (ITAMs), are expressed and mediate downstream signals after activation of the pre-BCR complex. Signals through the pre-BCR are an important step in the differentiation of pre-B cells. However, it is not currently known if this occurs in a ligand-dependent or independent manner\(^{37}\). Signals through the pre-BCR promotes the proliferation and expansion of B cells, thus giving rise to the developmental stage known as ‘large pre-B cells’; the end result being an expansion of B cells with the same ‘in frame’ heavy chain. Signals through the pre-BCR halts further V\(H\) to DJ\(H\) rearrangements of the \(Igh\) locus, in part by a process known as allelic exclusion. This process stops the second allele undergoing V\(H\) to DJ\(H\) recombination, thus ensuring monospecificity of B cells, which is required for efficient antigen-specific antibody responses\(^{38}\). Lastly, pre-BCR signals also induce the re-expression of RAG1/RAG2, which leads to the recombination of the \(V_L\) to \(J_L\) gene segments of the immunoglobulin light chain (firstly the \(Ig\kappa\) loci, then the \(Ig\lambda\) loci if unsuccessful), which marks the entry into small pre-B cell stage. The developing B cell has two attempts at rearranging the \(Igh\) locus and 4 attempts at the Ig light chain rearrangement (both paternal and maternal \(Ig\kappa\) loci and \(Ig\lambda\) loci). If successful, a fully functional BCR is synthesized and expressed on the surface of the B cell, marking the Ig\(M^+\)Ig\(D^-\) immature B cell stage of development\(^{39, 40}\). The different stages of B cell development in the bone marrow are shown in Figure 1.1.
Figure 1.1. B cell development in the bone marrow. Cells commit to the B cell lineage at the Pro-B cell stage, upon which PAX5 directs the transcriptional programme leading to the silencing of other lineage specific transcription networks. The B cell transcriptional programme is strengthened by expression of E2A and EBF1. At the Pro-B cell stage gene arrangement of the Igh chain locus occurs. Upon successful V_{H}-D_{H}-J_{H} gene rearrangement, the pre-BCR is expressed upon the cell with the surrogate light chain. After signals through the pre-BCR and rounds of proliferation, small pre-B cells re-upregulate RAG1/2 and rearrange the light chain. Successful rearrangement of both heavy and light chains leads to the expression of a fully functional BCR on immature B cells.
1.1.1.3 Central B cell tolerance

During various stages of a B cells developmental cycle, tolerance checkpoints are used to decrease the numbers of autoreactive B cells from entering the periphery. Central B cell tolerance is the process in the bone marrow by which emerging immature B cells are rendered tolerant to self-antigens and any strongly autoreactive B cells are removed from the pool41. Historically, it was thought that any lymphocyte clone that reacted to self-antigen would be eliminated by apoptosis to prevent immune activation to 'self'; a process called clonal deletion41. This theory was later examined by using transgenic mice expressing antibodies against H2-k or against hen egg lysozyme (HEL). Results from these studies demonstrated that immature B cells that bound to these antigens with high avidity, failed to differentiate further and entered apoptosis within 1-3 days of ligation42, 43, 44. However, it is now thought that only a small fraction of self-reactive B cells undergoes clonal deletion. Indeed, central tolerance primarily takes place through receptor editing and induction of anergy, with clonal deletion occurring only when receptor editing fails45. Approximately 50-75\% of immature B cells express BCRs that are specific for self-antigens, compared to only 20-40\% of transitional and naïve mature B cells46, 47. A proportion of autoreactive immature B cells do evade central tolerance, enter the periphery and differentiate into mature B cells41, 48.

Engagement of the BCR on immature B cells by self-antigen, leads to the downregulation of the BCR and the upregulation of forkhead box O1 (FOXO1), which promotes RAG1/2 expression and receptor editing49, 50. Receptor editing is the process by which there is secondary rearrangement of the VJ gene segments of the Ig light chain. Although uncommon, some B cells can undergo receptor editing on the heavy chain51. The exact frequency of B cells which undergo receptor editing is difficult to determine45. One study has reported that approximately 20\% of immature B cells are actively carrying out receptor editing52. The process of receptor editing is directional and starts at the κ L-chain loci, before proceeding to the λ L-chain. Receptor editing that results in a kappa-lambda edit rather than a kappa-kappa edit has been suggested to be more effective in silencing natural autoreactive B cells53. If receptor editing fails to quench autoreactivity, then self-reactive B cells undergo apoptosis, a process termed clonal deletion.
If an autoreactive lymphocyte bypasses central tolerance and escapes to the periphery, then the cell will be subject to peripheral tolerance mechanisms such as anergy. Anergic B cells in the periphery have a markedly reduced half-life (averaging 3-5 days), when compared to non-autoreactive B cells (averaging 7-8 weeks), and are marked by reduced expression of IgM and increased recruitment of negative regulators of BCR signalling to the BCR54, 55, 56, 57. When an immature B cell successfully expresses a non-autoreactive BCR, the B cell enters the transitional 1 (T1) B cell stage and can leave the bone marrow and recirculate to the periphery. Transitional B cells are no longer able to carry out RAG mediated V(D)J or VJ recombination of the heavy and light chains respectively45.

1.1.2 B cell development in the spleen
1.1.2.1 BCR tonic signalling
Signals through the pre-BCR and mature BCR are essential for the development of B cells in the bone marrow and, in addition, are required for B cells to enter the periphery. Indeed, if a newly developed immature B cell lacks a functional mature BCR these cells do not differentiate any further or egress from the bone marrow58, 59. In order for B cells to survive in the periphery, tonic BCR signalling is required. Tonic BCR signalling is the process in which you have functional downstream signalling of the BCR, independent of antigen activation. Tonic BCR signalling differs from that of antigenic activation in that it does not lead to the full activation of B cells, but rather promotes B cell survival and maturation. In the absence of constitutive BCR signalling in immature B cells, light chain rearrangement is reinitiated and immature B cells upregulate a gene expression profile consistent to that of Pro-B cells60.

Activation of the BCR through tonic signalling or through interaction with antigen, induces the activation of the Igα and Igβ subunits of the BCR complex and leads to the Lyn-mediated phosphorylation of the tyrosine amino acids in their ITAM motifs61, 62. BCR activation is finely tuned by a series of co-activatory or inhibitory molecules which modulate BCR signalling. Positive regulators of BCR signalling include CD1963 and CD45; the latter is a phosphatase which targets an inhibitory tyrosine residue on the SRC-family protein tyrosine kinases for dephosphorylation64. BCR signalling is inhibited by the negative co-receptors CD5, CD22 and CD72 and activation of their immunoreceptor tyrosine-based inhibitory
motifs (ITIMs) recruits the protein tyrosine phosphatase SH2-domain-containing PTP 1 (SHP1). SHP1 attenuates BCR signalling by competing with the activatory protein tyrosine kinases like LYN66. Activation of the BCR complex induces a complex network of downstream activators including the mitogen-activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT), nuclear factor κB (NF-κB) and phosphoinositide 3-kinase (PI3K) pathways. Inducible deletion of the BCR leads to the loss of mature B cells with the average half-life spanning 3-6 days. Only constitutive PI3K, but not MAPK/extracellular signal-related kinase (ERK), NF-κB or BCL2 (by itself), signalling rescues the survival of mature B cells66, 67. In contrast, antigen engagement of the BCR, fails to induce T1 B cells to proliferate and they undergo apoptosis. These findings demonstrate that a certain threshold of BCR signalling strength is needed for survival of the early transitional B cells, and that as a B cell matures they acquire the ability to respond to antigenic BCR activation68.

1.1.2.2 The role of BAFF in B cell maturation

B lymphocyte activating factor (BAFF), a member of the tumour necrosis factor (TNF) family, is a trimeric cytokine which can be found in membrane-bound or soluble forms. The primary source of BAFF expression is mainly from innate immune cells including, but not limited to, neutrophils, macrophages, dendritic cells, monocytes, but can also be produced by bone marrow stromal cells and B cells69, 70. BAFF signals through one of three receptors including the B cell activating factor of the TNF-family receptor (BAFFR), the transmembrane activator and calcium modulator and cyclophilin ligand activator (TACI) and through B cell maturation antigen (BCMA)71. Activation of the BAFFR promotes survival of B cells through activation of the non-canonical NF-κB2 pathway72, 73.

For B cells to mature beyond the T1 stage, activation of B cells by BAFF is required in tandem with tonic BCR signalling. Indeed, in BAFF knockout mice there is almost a complete loss of marginal zone (MZ) and follicular (FO) B cells74, 75. It is at the early transitional stages, that B cells start to express the BAFFR, at which point they start to receive pro-survival signals. The expression of these receptors varies according to the developmental stage, with the BAFFR being predominantly important for T1 and T2 development, whilst expression of TACI and BCMA is important for mature B cell function and survival76, 77, 78, 79. BAFFR expression
directly correlates with the levels of surface IgM. Interestingly, the expression of BAFFR is decreased in autoreactive B cells, suggesting an important role in selectively promoting the survival of non-autoreactive B cells80. Highlighting the essential role of BAFF in B cell maturation and survival, BAFF-Tg mice have enlarged T2 and marginal zone (MZ) B cell compartments in the spleen81. As well as having an important pro-survival function for B cells at the transitional B cell stages and beyond, signals through TACI and the BAFFR on B cells have been shown to have a role in other B cell functions such as isotype switching, as will be discussed later on82.

1.1.2.3 B-1 cells

B-1 cells are a subpopulation of B cells which have the capacity to self-renew and are functionally and phenotypically distinct from B-2 cells. The finding that CD5 (also known as Ly-1 in mice and Leu-1 in humans) expression was highly expressed both on many B cell chronic lymphocytic leukaemia cells and in B cell tumours prompted researchers to identify the steady state CD5-expressing B cells83, 84, 85. This population was first identified in mice by Hayakawa and colleagues in 1983 and were defined by the expression of CD586. It soon became evident that B-1 cells could be subdivided into two distinct subpopulations; B-1a cells which express CD5 and B-1b cells which are CD5 negative87, 88. Each population has distinct immunological functions and developmental pathways, with B-1b cells developing in tandem with B-2 cells89.

B-1 cells are functionally distinct from B-2 cells and are characterised by their ability to self-renew and to spontaneously produce IgM antibodies. Furthermore, unlike B-2 cells, B-1 cells are mainly found in the peritoneal and pleural cavities (defined as IgMhiIgDloCD23−CD11b+CD43+CD23−CD11b−CD43+CD23−CD11b+CD43+CD5−/−)90, with a small population found in the spleen (IgMhiIgDloCD23−CD11b+CD43+CD23−CD11b−CD43+CD23−CD11b+CD43+CD5−/−)91, 92. B-1 cells are abundant in young mice and the frequencies of this population decrease into adulthood86. In particular, B-1a cells, can produce natural polyreactive IgM antibodies, which tend to have an autoreactive repertoire with reduced junctional diversity, decreased levels of somatic hypermutation and tend to favour V\textsubscript{H}12 usage93. Around 10% of peritoneal B-1 cells were found to bind phosphatidylcholine (PC), which is expressed on senescent red blood cells (RBCs)94. B-1 cells also recognise a carbohydrate epitope on the thymocyte glycoprotein Thy-1, thereby illustrating the broad self-
reactive BCR repertoire of B-1 cells. Intriguingly, B-1a cells acquire their self-reactive phenotype by bypassing the pre-BCR stage. The SLC is redundant in B-1a cell development as the frequency of this population is unaffected by the absence of the SLC. Indeed, the SLC has a reduced efficiency in binding with autoreactive heavy chains and as such its absence may allow the expression of the autoreactive BCRs that characterise B-1a cells. Natural antibodies produced by B-1 cells can also bind to the phosphocholine epitope on the cell wall polysaccharide of *Streptococcus pneumoniae*, leading to their opsonisation and clearance. Thus B-1 cells are an important source of natural antibodies for clearance of apoptotic cells and in the first line defence against pathogens such as *S. pneumoniae* and *Salmonella typhi*, amongst others and participate in T cell independent responses (TI), as opposed to B-2 cells which participate in both T cell dependent (TD) and TI responses.

In addition to their role in natural antibody production, B-1 cells are an important source of the anti-inflammatory cytokine IL-10 and have been implicated in attenuated responses to *Leishmania*. In contrast to murine B-1 cells, the existence and phenotype of human B-1 cell orthologues remain inconclusive.

1.1.3 B2 B cells

1.1.3.1 Transitional B cells

T1 B cells migrate out of the central sinus of the bone marrow and enter the periphery via the blood stream. Migration to the spleen occurs through the central arterioles and T1 B cells subsequently migrate to the periarteriolar lymphoid sheaths (PALS). The migration of T1 B cells directly to the spleen and not to other lymphoid tissue is mediated by their lack of CD62L expression, which is important for entry into other secondary lymphoid tissues. Entry into the T2 stage is marked by the upregulation of IgD and the complement receptor CD21. In addition to the expression of IgM, IgD and CD21, transitional B cell subsets in the murine spleen can be distinguished by the expression of AA4.1, CD23 and heat stable antigen (HSA; also known as CD24).

Loder, Carsetti and their colleagues first proposed that B cell development in the spleen was marked by a series of steps based on signals received through the BCR and identified the phenotype of transitional B cells. This phenotypical
characterisation was further refined in a later study by showing that transitional B cells, rather than being a homogenous population, consisted of two distinct subpopulations defined by their response to BCR engagement and by the levels of expression of CD21, CD23, CD24, IgD and IgM. Importantly, the results from this study, established a timeline of B cell development from immature B cells from the bone marrow to mature B cells in the spleen and reported two key findings. Firstly, T1 B cells (CD21loCD24hiIgD−loIgMhi) were established as the progenitors of T2 B cells (CD21intCD24hiIgDhiIgMhi) and maturation along this pathway was contingent upon positive selection through the BCR110. Secondly, as demonstrated through adoptive transfer experiments of T2 B cells into Rag2−− mice, T2 B cells were demonstrated to develop into mature B cells in the spleen110.

Allman and colleagues proposed an alternative model that defines the different transitional B cell subpopulations, according to the expression of IgM, CD23 and AA4.168. Two important distinctions arose between the two proposed models. In contrast to T1 and T2 in Loder and Carsetti’s model, Allman’s model proposed that transitional B cells could be split into three subpopulations; T1 (AA4+iGmhighCD23−), T2 (AA4+iGmhighCD23+) and T3 (AA4+iGmlowCD23+). Importantly, the functional characteristics of T2 B cells also differ. In Allman’s model, T1, T2 and T3 B cells are unable to proliferate in response to BCR crosslinking \textit{in vitro}, \textit{or in vivo}. Moreover, they suggested that it is the T3 population, instead of the T2 population, that gives rise to mature B cells. In contrast, in Loder and Carsetti’s model, T2 B cells are able to proliferate in response to BCR engagement; a finding which was subsequently confirmed by the Rawlings and Khan groups113, 114.

More recent studies have called into question the idea that T3 B cells differentiate into mature B cells115. Instead, it has been proposed that T3 B cells more resemble anergic B cells, are not part of the typical transitional B cell differentiation pathway and are hyporesponsive to activation through the BCR115. This hypothesis was elegantly supported by the finding that in the absence of HEL expression, mice that express a high affinity anti-HEL IgM have very few T3 B cells. In contrast, when HEL was present the T3 population comprised the vast majority of the transitional B cells116. Despite the lack of consensus regarding the stages of transitional B cell development, it is generally accepted that transitional B cells can differentiate into mature naïve MZ and FO B cells, dependent on the environmental signals they
receive117. The current consensus is that the T2 population described by Loder \textit{et al} is a heterogenous population that contains T2 marginal zone precursor (T2-MZP) and T2- follicular precursor (T2-FP) populations. Whilst T2-FP B cells can be found in all secondary lymphoid organs, T2-MZP B cells are only resident in the spleen118. The phenotype of T2-MZP B cells based on the expression of CD21, CD23 and CD24, as described by Loder and Pillai, will be used throughout this thesis.

1.1.3.2 Anatomical features of the spleen

The spleen functions as a filter for both blood-borne pathogens and antigens, as well as having pivotal roles in iron metabolism and the removal of old and faulty erythrocytes from the blood119. Broadly speaking, the spleen is structurally organised into two distinct compartments; the red pulp and the white pulp. The red pulp consists of a mesh of fibroblasts and reticular fibres and red pulp macrophages; the latter have a major role in the clearance of RBCs. The spleen has no afferent lymph vessels and, as such, leukocytes can only enter the spleen through the arterial vessels. Arterial blood traverses the cords of Billroth, which are enriched in macrophages, and then moves into the venous sinuses of the spleens. Due to the arrangement of the endothelial cells on the venous sinuses and the connecting stress fibres, aging RBCs are unable to cross into the sinuses due to the rigidity of their membranes. Consequently, the aging RBCs are stuck in the cords of the red pulp and phagocytosed by the red pulp macrophages120.

The white pulp of the spleen encompasses distinct anatomical compartments which include the periarteriolar lymphocyte sheath (PALS), where there is a predominance of T cells, and the follicle and marginal zone areas, where B cells are located. The marginal zone surrounds both the PALS and B cell follicles121. In addition, the marginal zone also contains dendritic cells, marginal zone macrophages (defined as SIGN-RI$^+$MARCO$^+$) and metallophilic macrophages119, 122. Marginal zone macrophages have defined roles in pathogen clearance and importantly liver X receptor alpha signalling in MZ macrophages is required for the retention of MZ B cells in the marginal zone122.
1.1.3.3 Functional characteristics of mature B-2 B cells

After leaving the bone marrow, transitional B cells migrate to the spleen. Whilst residing in the spleen, T2 precursor populations can give rise to both FO and MZ B cells. The maturation of T2 B cells into FO B cells mainly takes place in the spleen, however T2 B cells can also develop into FO B cells in the bone marrow. This was demonstrated by the presence of in situ maturation of B cells in the bone marrow of splenectomised lymphotoxin (LT) α deficient mice, which also lack secondary lymph nodes and Peyer’s Patches (PP)123, 124.

FO B cells home to the follicles on a gradient of C-X-C motif chemokine ligand (CXCL)\textsubscript{13} and require the expression of C-X-C motif chemokine receptor (CXCR)\textsubscript{5} to access and to be retained in the B cell follicles125. The close positioning of FO B cells to the T cell zone means these cells are ideally suited for T cell dependent (TD) antibody responses. When a FO B cell encounters an antigen and receives T cell help, it can either differentiate into a short lived plasma cell or can enter into the GC reaction, in which the FO B cell can either become a germinal centre (GC) B cell, long-lived plasma cell or memory B cell126. FO B cells are able to migrate to the MZ, but are unable to reside there due to a lack of integrin-mediated adhesion and, therefore, migrate into the red pulp127. Why FO B cells migrate to the MZ is not known, but one plausible explanation is that this route is one possible way that FO B cells can exit from the B cell follicles and circulate between the blood, spleen and peripheral lymph nodes.

T2-MZP B cells migrate to the marginal zone of the spleen and differentiate into MZ B cells, where they are retained and acquire the ability to self-renew126. The retention of MZ B cells into the MZ is dependent on signals through the sphingosine 1-phosphate receptor 1 (S1P\textsubscript{1}) and the presence of the ligand sphingosine 1-phosphate (S1P) in the blood. Signals through S1P\textsubscript{1} prevent CXCL13-mediated recruitment of MZ B cells to the follicle area of the spleen128. The main source of S1P in adults is RBCs and both the vascular and lymphatic endothelial cells, with RBC’s accounting for the production of approximately 75% of plasma S1P in mice129, 130, 131, 132. Importantly, activation of MZ B cells via the BCR or by lipopolysaccharide (LPS) leads to downregulation of S1P\textsubscript{1} and their movement of MZ B cells out of the MZ128. In the MZ, retention signals are required to stop the egress of MZ B cells. Integrins play a key role in this process, as combined
inhibition of both $\alpha 4\beta 1$ and lymphocyte function associated antigen 1 (LFA-1) leads to the migration of MZ B cells out of the MZ133. It is important to note the role that mucosal vascular addressin cell adhesion molecule 1 (MADCAM1$^+$) endothelial cells play in the anatomical structure of the spleen and in MZ B cell function. In the absence of S1P$_3$, the single cell endothelial layer that lines the marginal sinus is disrupted and the endothelial cells are dispersed134. This loss of barrier function has two main consequences. Firstly, MZ B cell numbers are increased and these cells are more rapidly able to migrate to the B cell follicles. Secondly, MZ B cells in this setting display less effective T cell independent antigen responses134.

The location of MZ B cells, means that these cells are uniquely adapted to respond to blood-borne antigens and pathogens, such as the encapsulated bacteria. The position of MZ B cells allows for the first wave of humoral immunity against pathogens and they can produce antigen-specific antibodies in a T cell independent (TI) manner and a TD manner (at least in human MZ B cells). TI responses tend to be elicited against polysaccharides on the cell walls of encapsulated bacteria135. In addition, MZ B cells are able to rapidly deliver opsonised antigens from the blood, via capture by the complement receptor CD21, and shuttle the antigen between the MZ and the follicles. Whilst in the follicles, MZ B cells can transfer the antigens to follicular dendritic cells (FDCs), promoting T cell dependent FO B cell responses136. Indeed, around 20% of MZ B cells transit between the compartments every hour. Moreover, owing to the high expression of CD1d, MZ B cells can orchestrate immune responses via presentation of lipid antigen to invariant natural killer T cells (iNKT). MZ B cells are also a key source of lipid antigen specific antibodies137.

The functional characteristics of the humoral response vary between MZ and FO B cells. In contrast to FO B cells, MZ B cells can produce natural antibody in the absence of infection and are more likely to recognise self-antigen than FO B cells138. In addition, antibodies produced by MZ B cells tend to be of low affinity, have a broader specificity and mostly belong to the IgM class139. After interacting with antigen, MZ B cells can rapidly differentiate into plasmablasts either in the follicles or in extrafollicular foci and produce large quantities of IgM within the first 3 days of a primary response140,141. Alternatively, MZ B cells can also produce IgA and IgG after class switch recombination (CSR), which will be discussed later142.
Whilst FO B cells between mice and humans are functionally very similar, a number of differences exist in MZ B cell phenotype and function between species. One intriguing feature is that in humans, MZ B cells are also found outside of the spleen, suggesting that, unlike in mice where they are sessile, in humans they can recirculate143. In particular, in humans, MZ B cells can be found in the subepithelial dome of the Peyer’s Patches144, the epithelium of tonsillar crypts145 or in the subcapsular sinus of lymph nodes146. Interestingly, MZ B cells in humans (defined as IgMhiIgDlowCD1c+CD21hiCD23−CD27+) are phenotypically similar to memory B cells, in that both populations express CD27 and contain mutated V(D)J genes. Indeed, a proportion of these cells retain a molecular programme that indicates that these cells have previously been in a germinal centre reaction, which suggests they have exited the GC reaction before CSR147, 148. However, this population is distinct from memory B cells as they have fewer IgV mutations and fewer past cell divisions than memory B cells, and also express IgD149. Mouse MZ B cells express non-mutated IgV mutations, a proportion of which encode for a polyreactive BCR. On the other hand, approximately 90-95\% of human MZ B cells have mutated IgV regions139, 148. However, the processes governing MZ B cell development in humans remain poorly understood.

\subsection*{1.1.3.4 MZ vs FO B cell fate decisions}

The differentiation of a T2 B cell into a MZ or FO B cell is a complex process, which involves the integration of signals though the BCR, BAFFR, NOTCH2, the canonical NF-κB pathway and regulation of these pathways through the expression of microRNA’s and RNA-binding proteins (RBPs). The strength of BCR signalling is a crucial component in what determines the differentiation into either a MZ or FO B cell. It is well established that weak BCR signalling favours MZ B cell differentiation, whilst strong BCR signalling favours FO B cells126. Absence of functional positive or negative regulators of BCR signalling lead to defects in either MZ or FO B cell development. Bruton’s tyrosine kinase (BTK) is a crucial component of the BCR signalling cascade, which promotes activation of the NFAT and NF-κB pathways. Absence of the BTK protein in humans leads to the primary immunodeficiency X-linked agammaglobulinemia (XLA), in which there is a severe block in B cell differentiation in the bone marrow150. However, mice with a loss of function mutation in the \textit{Btk} gene present with a milder phenotype, with only an
impairment of mature B cells in the periphery151, 152. Activation of BTK phosphorylates and activates phospholipase C\(\gamma\)2 (PLC\(\gamma\)2)153. Loss of function mutations in PLC\(\gamma\)2 also result in a reduction of FO B cells154, 155. This phenotype is also observed in mice lacking CD45 (a positive regulator of BCR signalling), which can be reversed upon reciprocal deletion of the negative regulator SHP156. In contrast, deficiency of both AIOLOS and CD22 (two negative regulators of BCR signalling) lead to a reduction in MZ B cells157, 158, 159. In both cases BCR signalling was increased, supporting the notion that strong BCR signals favour FO B cell development over MZ B cells. In support of these findings, mice lacking sialic acid esterase (SIAE) and CMP N-acetyl hydroxylase (CMAH), two enzymes which promote the generation of sialic acid ligands for CD22, have increased BCR signalling and reduced numbers of T2-MZP B cells and MZ B cells160.

Although signals through the BCR are a pre-requisite for survival and for the maturation of B cells, other signals feed into regulating the differentiation potential of a T2 B cell into a MZ or FO B cell. Both tonic BCR signalling and BAFFR signalling promote the survival of B cells up until the FO B cell stage through the non-canonical NF-\(\kappa\)B pathway. This process is mediated by increasing the levels of the NF-\(\kappa\)B precursor p100 and by promoting the cleavage of p100 to p52 by the \(I\kappa\)B kinase \(\alpha\) (IKK\(\alpha\))161, 162. Although BAFFR mainly signals through the non-canonical NF-\(\kappa\)B pathway in transitional B cells, signals through this receptor can also activate the canonical pathway126. Mice lacking p50 have a defect in MZ B cell development. This is also true, but to a lesser extent, in the absence of C-REL or RELA, suggesting that the NF-\(\kappa\)B complexes are partially involved in marginal zone B cell development163.

Unlike in FO B cells, NOTCH2 signalling is required for the differentiation of MZ B cells164, 165. Both T2-MZP and MZ B cells are absent in mice with a B cell deficiency of NOTCH2, the receptor for delta like-1 (DL1), indicating the importance of this pathway for inducing the differentiation of T1 B cells into T2-MZP and then MZ B cells165. Transitional B cells are rendered responsive to NOTCH2 signalling by the BCR-dependent upregulation of ADAM10, which cleaves NOTCH2 and releases the intracellular domain (NICD) to activate downstream gene targets in tandem with other signalling components166. Mice lacking NOTCH2, the signalling components of the NOTCH pathway RBP-J\(\kappa\) and Mastermind-like 1 or the Notch
ligand DL1 have reduced numbers of MZ B cells in the spleen164, 167, 168, 169. The exact transcriptional programme initiated by NOTCH2 signalling in MZ B cells is not clear, but is thought to involve the E2A and the ID2/ID3 proteins; the latter promoting MZ B cell differentiation170.

Recent evidence also points to an increasingly important role of microRNA’s and RBPs in the post-transcriptional regulation of gene networks regulating B cell development. The RNA-binding protein ZFP36L1 promotes the maintenance of the MZ B cell compartment by actively limiting the expression of the transcription factors interferon regulatory factor (IRF)\textsubscript{8} and Kruppel like factor (KLF)\textsubscript{2}; two factors known to implement the FO B cell transcriptional programme171, 172. In the absence of KLF\textsubscript{2}, the marginal zone B cell population is expanded173, 174. This is in direct contrast to KLF\textsubscript{3}, which promotes MZ B cell development175. Direct binding of microRNA’s (miRs) to the 3’ complementary untranslated regions (UTR) of target messenger RNA (mRNA’s) regulates B cell development. Both miR-146\textsubscript{a} and miR-142, respectively promote or repress the generation of MZ B cells176, 177. Absence of the endonuclease DICER, the enzyme responsible for the generation of small interfering RNA’s and miRNA’s, also promotes MZ B cell development, suggesting an important role of post-transcriptional regulation in governing mature B cell differentiation178. Interestingly, miR-146\textsubscript{a} is upregulated by NF-\kappaB signalling and targets components of the NOTCH pathway176, 179.

\textbf{1.1.3.5 Initiation of the Germinal Centre Response}

The GC is the location in which mature B cells undergo affinity maturation and isotype switching. Throughout the maturation process of a B cell, affinity to an antigen, be it ‘self’ or non-self, and the strength of BCR signalling decides the fate of the B cell, through both negative and positive selection. One of the defining features of a mature B cell and the humoral immune response is the incremental increase in antibody affinity over time through somatic hyper-mutation (SHM), driven by the enzyme activation-induced cytidine deaminase (AID)180, 181. This process occurs in the primary response with an antigen and upon secondary challenge to an antigen182. These B cell clones are then negatively and positively selected within the GC and compete for signals in an affinity dependent manner. Successful B cell clones then undergo an intense burst of proliferation and maturation either into antibody secreting plasma cells or into memory B cells.
The germinal centre can be split into two distinct anatomical compartments. The region which is closest to the T cell zone and mainly absent of FDCs is the dark zone (DZ). The region which is closest to the MZ in the spleen, which is rich in FDCs and is distal to the T cell zone, is known as the light zone (LZ)\(^{183}\). Within the DZ reside the highly proliferative B cells, also known as centroblasts, which express high levels of the chemokine receptor CXCR4\(^{184}\). The centroblasts are retained in the DZ by CXCL12-expressing reticular cells\(^{185}\). The DZ is considered to be the site of SHM, as the DZ B cells have high expression of AID. In contrast, the LZ contains centrocytes (GC B cells found in the LZ, which are not actively proliferating), and many more FDCs, infiltrating naïve B cells and T follicular helper cells (Tfh) than the DZ\(^{186}\).

The entire GC process is contingent upon exposure of an antigen-reactive B cell to their cognate antigen in its native conformation\(^{186}\). Recognition of antigen primarily takes place in secondary lymphoid organs, where these organs are specialised in filtering blood and lymph. There is also a continual migration of cells to and from these organs. Both these factors combined increase the chances of a B cell to encounter its cognate antigen. The initial capture of antigen is mediated by different cell types, according to the secondary lymphoid organ. In the case of the lymph nodes, antigen capture is carried out by specialised macrophages in the subcapsular region\(^{187}\). In the follicular regions in the spleen, FDC’s capture and display opsonised antigens on the dendritic processes. These tail processes are in contact with the follicular B cells\(^{188}\). Indeed, in B cell follicles which lack GCs, FDCs play a crucial role in organising the B cells into compact clusters\(^{189}\). In the GCs of both spleens and lymph nodes, FDCs are key for the survival of GC B cells. In the absence of toll like receptor (TLR)4 signalling in FDCs, both the GC size is reduced and there is a reduction in the affinity of the BCRs, due to impaired SHM. FDC TLR4 responses are driven \textit{in vivo} by endogenous oxidised phospholipids\(^{190}\). In addition, FDCs can retain antigen for several weeks. This process is important for testing the affinity of the BCRs on B cells that have undergone SHM\(^{188,191}\).

The retention of antigen is critical, as B cells which migrate into the follicles survey the antigen presented by FDCs and subcapsular macrophages. Migration to the follicles is guided by FDC and stromal cell derived CXCL13 and oxysterol 7α25-
hydroxycholesterol production. Production of these two chemoattractants recruit antigen naïve B cells to the outer follicle, through binding to the CXCR5 and Epstein Barr virus induced gene 2 (EBI2) receptors respectively. It is important to note that in GCs EBI2 is strongly downregulated, which prevents migration of GC B cells to the outer follicle192, 193, 194. Retention of GC B cells in the centre of the follicle is also maintained by expression of S1P\textsubscript{2}, which inhibits the migration of GC B cells in response to follicular chemoattractants195. Antigen activation induces the upregulation of C-C motif chemokine receptor (CCR)7 and EBI2, which trigger the migration of B cells to the T cell-B cell border, where they receive co-stimulatory signals from CD4+ T cells196. Importantly, antigen activation of the BCR leads to the internalisation of the receptor and, ultimately, transfer of the antigen to the lysosomes for proteolytic processing ready for loading to MHC class II molecules. MHC molecules then present the cognate antigen to CD4+ T helper (Th) cells197. If a B cell is unsuccessful in encountering an antigen, it will exit the lymphoid tissue in response to S1P, via expression of S1P\textsubscript{1}198.

B cell activation by CD4+ T helper cells is a multistep process. Firstly, naïve CD4+ T cells are primed by dendritic cells that present antigen in the context of MHC class II, and express CD80/CD86. The integration of these signals with IL-6, inducible T cell co-stimulator ligand (ICOSL) and IL-2 are required for the initiation of the Tfh cell differentiation programme (pre-Tfh cells)199, 200. Key to this process is the upregulation of BCL6 and CXCR5, which allows for the migration of the activated T cells to the T-B cell border199, 200. B cells receiving T cell help will either initiate the GC response or differentiate into short-lived plasma cells or GC-independent memory B cells based on the strength of BCR activation201, 202. Extrafollicular plasma cells are an important early source of antibodies in the fight against infection, whilst the GC response is being initiated197.

Cell fate decisions promoting GC B cell differentiation incorporate many cell signals derived from Tfh cells. LFA1 on Tfh cells binds intracellular adhesion molecule (ICAM)1 and ICAM2 on B cells to form long-lasting cognate interactions, which promote B cell clonal expansion and GC seeding203. Optimal B-T cell interactions depend on the co-stimulatory molecules CD86:CD28, ICOS:ICOSL and also on homotypic interactions between members of the signalling lymphocytet activation molecule (SLAM) family (namely SLAM, Ly108 and CD84)197, 204. SLAM pathway
Interactions are important for IL-4 production by Tfh cells, which in turn influence B cell proliferation. IL-4 in tandem with IL-21 produced by Tfh are crucial for promoting B cell proliferation, CSR and ultimately differentiation to memory B cells or plasma cells. Notably, IL-21 signalling seems to be more important for the transition of pre-GC B cells to the intrafollicular GC B cell stage. However, both cytokines are key for the induction of Bcl6 and Aicda, which are both crucial in the GC response. In addition, CD40-CD40L interactions co-operate with IL-4 signalling to induce Aicda in B cells. Moreover, activation of CD40 by Tfh CD40L expression can induce ICOSL expression in mouse GC B cells, leading to a positive feedback loop in B-T cell interactions. It is important to note that expression of PDL1 and PDL2 on B cells can negatively regulate the GC response, by inhibiting Tfh recruitment into the follicle. Once B-T cell help interactions are concluded, B cells will migrate to the centre of the follicle and initiate the GC response.

In recent years, a new population of regulatory T cells (Treg) called T follicular regulatory cells (Tfr), which express the bona fide Treg transcription factor FOXP3, have been shown to display regulatory properties within the GC response. Tfr cells play an important role throughout the GC process from the initiation of the GC response to the resolution of a GC and also contribute to the inhibition of autoantibody production. The exact mechanism of Tfr cell regulation of the GC response is still being elucidated, however it is believed to involve expression of the co-inhibitory receptor cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and to halt the expansion of both Tfh cells and GC B cells.

1.1.3.6 Positive and negative selection of clones within the GC
Following the migration of activated B cells to the dark zone, centroblasts undergo SHM. SHM is the process by which stepwise point mutations are introduced into the Ig V genes. Both SHM and CSR is driven by the expression of AID, which deaminates cytidine residues in the Ig gene. Due to the high rate of mutation and the fact that AID targets single stranded DNA at transcriptionally inactive sites, AID can damage the genome and lead to chromosomal translocations, thereby leading to GC lymphomas. The high mutation rate generates successive BCR clones which change the affinity of the BCR, in a process known as affinity maturation.
After activation, B cells can change the isotype of their BCR through CSR from IgM and IgD to IgA, IgE or IgG, with each Ig isotype having distinct immunological functions. As with SHM, CSR requires the expression of AID. Recent studies have also implicated a role of the aryl hydrocarbon receptor (AHR) in the regulation of CSR, due to its direct binding and negative regulation of the Aicda gene. Due to the excision of DNA regions during CSR, a stepwise approach to the induction of different Ig isotypes is maintained such that an IgG⁺ B cell can switch to IgE⁺, but not vice versa. Selection of the relevant isotype is driven by T cell help.

Until recently, GCs have been considered to be the main site where CSR takes place. Using immunisation models and examining first germline transcripts (GLTs), a marker of CSR, Vinuesa and colleagues have recently shown that CSR takes place before GC or extrafollicular B cell differentiation stages at the B-T cell border. The authors suggest that this mechanism occurs as a way to restrict and prevent the long-term survival of B cell clones with pathogenic double-strand breaks.

Typically, proliferation and hypermutation of GC B cells occurs in the DZ. The B cell clones are then tested for affinity in the LZ, in a competitive manner, for antigen presented by FDCs. Dependent on the mutations generated, B cell clones will undergo positive and negative selection events within the germinal centre. The germinal centre reaction is a dynamic process with a constant migration of GC B cells between the LZ and DZ compartments. All the meanwhile, GC B cells undergo successive cycles of SHM and proliferation and are prone to selective pressures within the GC. This holds true for clonal populations of cells, which will undergo contraction or expansion based on the relative fitness of the population. The process of migration between the LZ to the DZ is known as cyclic re-entry and is required for a greater degree of affinity against an antigen. Subsequent studies have provided experimental evidence for this process, using in vivo imaging to illustrate the bi-directional nature of GC B cells. The transition into the LZ is contingent upon GC B cells undergoing a set number of cell divisions, and the downregulation of CXCR4 alone is not enough for migration to the LZ. It is estimated that 10-30% of B cells in the LZ re-enter the DZ after positive selection in the LZ.
In recent years, the mechanism of positive selection has been elucidated and confirmed by a number of in vivo studies. Antigen presented by FDCs in the LZ is retrieved by BCRs expressed by GC B cells in an affinity-dependent manner. GC B cells with a higher affinity BCR are more likely to retrieve the antigen than a GC B cell with a lower affinity BCR226. Antigen retrieved in this manner is presented to Tfh cells. By limiting the number of Tfh cells present in the LZ, GC B cell clones undergo selective pressure and compete for T cell help. The number of antigen loaded MHC class II molecules vary between different GC B cell clones, with GC B cells with high affinity BCRs taking up and processing more antigen on MHC class II molecules. A competitive advantage exists for GC B cells with increasing amounts of peptide MHC (pMHC) concentrations on their surface and it is these cells that have strong interactions with Tfh cells and receive signals for cyclic re-entry227. Contact duration of GC B cells with Tfh cells is increased in those cells with higher levels of pMHC228. This mechanism allows for an indirect sensing by Tfh of BCR affinity and shows that T cell help is required for the cyclic re-entry of GC B cells to the DZ224, 229. It is important to note, that the strength of T cell help will determine the number of cell divisions a GC B cell will undergo in the DZ and promotes the survival of a clonal population based on their ‘fitness’, by accumulating increased numbers of the same B cell clone229. Tfh production of IL-4, IL-21, BAFF and expression of CD40L are all key essential survival signals for GC B cells, with GC B cells exposed to increasing amounts of these signals based on the levels of surface pMHC228, 230.

Re-entry into the DZ leads to the downregulation of pMHC on GC B cells, thus ensuring that any newly generated BCR can undergo successive cycles of selection and prevent any autoreactivity to self-antigen231. In addition, it has recently been discovered that soluble antibodies can compete with newly generated B cell clones for antigen expressed on FDCs, thus ensuring the survival of the clone with the highest affinity and preventing BCRs with overlapping specificities232.

Due to the random nature of SHM, deleterious effects of hypermutation may also occur in the IgV gene leading to the recognition of ‘self’. A number of checkpoints exist to regulate and eliminate any self-reactive B cell clones. An elegant study by Chan et al showed that self-reactive GC B cells are only eliminated if the self-
antigen is present in the GC microenvironment. GC B cells which recognise other tissue specific antigens were not subject to negative selection233. Complementing the elimination of self-reactive GC B cells, under certain conditions, anergic self-reactive IgM0IgD$^+$ GC B cells could re-enter the DZ to undergo SHM thereby eliminating autoreactivity in these clones234.

It was previously thought that only a few clones could inhabit a single GC235. However, in recent years this view has been challenged. The number of clones inhabiting a single GC in the early stages of GC formation vary greatly, but can exceed more than 100. GCs can lose clonal diversity at varying rates dependent on a host of factors, including the strength of T cell help and based on the antigen-related properties. However, clonal bursts (rapid proliferation) of high affinity SHM variants can lead to loss of clonal diversity236. GC lifespan varies greatly, dependent on the type of immune stimulus. Certain vaccines or chronic viral infections, or indeed inflammation in autoimmune disease, can lead to GCs which remain active for long periods of time237. However, the requirements needed for long-term GC maintenance are not very well defined.

1.1.3.7 Mature B cell fate decisions

The cell fate decision for a mature B cell to either differentiate into a memory B cell or plasma cell occurs at two distinct stages, either at the T-B cell border when the mature B cell receives T cell help or after positive selection in the LZ186. B cells that are differentiating towards plasma cells are called plasmablasts and are defined by their continued proliferation, which ceases when a cell terminally differentiates to a plasma cell238. What determines this cell fate decision is still under intense study. Two key determinants in this response are the affinity and isotype of the BCR. As is the case for both at the B-T cell border and after positive selection in the GC, B cells with a higher affinity for antigen will preferentially differentiate into plasma cells. Antigen receptor signals are required for the initiation of this process, but T cell help is essential for the completion of differentiation239. Depending on the stage of activation of B cells in the GC process by their cognate antigen, these cells can either differentiate into short-lived or long-lived plasma cells (SLPCs or LLPCs). B cells which differentiate at the B-T cell border tend to be short-lived and remain in the peripheral lymphoid tissue. In contrast, GC B cells in the LZ can give rise to LLPCs and live for several months238. The isotype of the BCR also
influences plasma cell differentiation. Intriguingly, B cells with the IgE subclass favour differentiation into non-GC derived SLPC, and not MBCs or LLPCs240.

The differentiation into plasma cells requires the induction of a transcriptional programme that enables the plasma cell to secrete large amounts of immunoglobulin, to relocate to different niches and to support the long-term survival of the cell. This programme is primarily driven by the expression of B lymphocyte-induced maturation protein 1 (BLIMP-1), encoded by PR domain zinc finger protein 1 (Prdm1), X-box binding protein 1 (XBP1) and IRF4 and through the silencing of the B cell transcriptional programme238. Due to the high immunoglobulin turnover, PCs are prone to ER stress from the accumulation of unfolded proteins. XBP1 is induced by endoplasmic reticulum (ER) stress and plays a particularly vital role in regulating the rate of immunoglobulin secretion, processing of \textit{Igh} mRNA and in promoting an organised ER morphology in plasma cells241, 242.

BLIMP-1 is essential for the differentiation programme of a mature B cell into a plasma cell. Rapidly dividing plasmablasts can be distinguished from PCs by their intermediate expression of BLIMP-1, in contrast to the high expression in plasma cells243. Although essential for the formation of mature plasma cells, BLIMP-1 is not required for the initiation of plasma cell differentiation, as shown by the generation of a pre-plasmablast population in its absence244. BLIMP-1 is primarily thought to suppress key regulators of the B cell programme. However, it has since been shown to have a multifactorial role in regulating the developmental programme of plasma cells245. As well as suppressing both Aicda and other B cell programme specific transcription factors, BLIMP-1 induces the transcription of the immunoglobulin genes, regulates the post-translational switch mechanism responsible for the production of a secretory form of immunoglobulin and recruits chromatin remodelling complexes to its target genes. BLIMP-1 is required for the induction of IRF4, another key transcription factor involved in the plasma cell differentiation programme, thus illustrating the essential role of BLIMP-1 in orchestrating an interconnected transcriptional programme245. IRF4 itself is important in the induction of \textit{Prdm1} and is essential for the differentiation of plasma cells and for promoting their survival246. In the absence of IRF4, plasma cells fail to survive247, 248. Despite the notable functional and phenotypical differences
between SLPCs and LLPCs, the transcriptional programme governing the fate decision between these two populations remains largely unknown. A recent study has illustrated the role of the zinc finger protein ZBTB20 in establishing a pool of LLPCs in response to some immunisations, but not others.249

Once a cell differentiates into a plasma cell, it migrates from the GC and homes primarily to the bone marrow niche. However, other tissue-specific niches have been described within the spleen and lymph nodes.250 Exit from the lymphoid tissue requires the upregulation of S1P\textsubscript{1}.197 Plasma cells upregulate different chemokine receptors required for homing to their respective niches. For migration to the bone marrow CXCR4 expression is required, whilst homing to the gut requires expression of CCR9 and CCR10.197 Whilst in their respective niches LLPCs receive survival signals that promotes their survival. The extent to which their longevity is down to survival signals in the niches versus the intrinsic features of the LLPCs is not clear.197

In contrast to plasma cells, the cell derived signals and transcription factors controlling memory B cell (MBC) differentiation are much less well characterised. Much like in plasma cells, MBC differentiation is influenced by the BCR isotype, as well as by signals through CD40 and cytokines. IL-9, for instance, promotes the generation of memory B cells.251 Unlike the defined transcriptional programme of plasma cells, no unique transcription factor of MBC differentiation has been identified. However, GC B cells which express higher levels of BACH2 have the propensity to seed the MBC pool.252

Historically, it was thought that all MBCs had undergone CSR and were derived from GC B cells. Later this notion was revised, as BCL6 deficient B cells, which can’t form GC, differentiated into IgM and IgG1 MBCs in the spleen, suggesting that not all MBCs go through the GC reaction.253 However, GC B cells still give rise to a large proportion of the MBC pool.254 For the most part MBCs are a recirculating population of cells, but they can also be tissue resident.255 MBCs found in the lymph nodes, are located in the subcapsular niche, which predisposes MBCs to rapid exposure to antigen.256 Shlomchik and colleagues showed that the MBC pool in mice can be divided into 5 populations based on their expression of PD-L2, CD80 and CD73, with these populations differing in their ontogeny and
selection257. It has since been shown that CD80−PD-L2− MBCs mainly seed the GCs, whilst CD80+PD-L2+ MBCs rapidly differentiate into plasma cells, upon rechallenge with a TD antigen258.

Upon re-exposure to antigen, MBCs can migrate to the bone marrow and rapidly differentiate into LLPCs254. The predisposition of MBCs to differentiate into LLPCs upon antigen exposure, seems partially dependent on the downregulation of BACH2252. The notion that MBCs, in a secondary response to antigen, are the main source of B cells to enter the GC has recently been challenged. Instead, naïve B cells without prior GC exposure appear to be the main source of cells which repopulate the GCs (over 90%) in a secondary response to an antigen259. B cell maturation in the spleen and the signals and transcription factors which define these processes are summarised in Figure 1.2.
Figure 1.2. B cell differentiation in the spleen. Transitional 1 B cells in the periphery migrate to the spleen, upon where they differentiate into T2 precursors seeding both the MZ and FO B cell pools. FO B cells, upon encounter with antigen, can directly differentiate into SLPC, memory B cells or GC B cells. GC B cells can either reseed the GC, give rise to LLPCs or memory B cells, dependent on the strength of BCR signalling and on the isotype of the BCR.
1.1.4 B cells as orchestrators of the immune response

Although B cells are primarily recognised for their role in producing antibodies, B cells can also co-ordinate immune responses through antigen presentation and through co-stimulatory signals. One of the features of B cells is their ability to act as an antigen presenting cells (APC). Native antigen captured by the BCR can be endocytosed, loaded onto MHCII molecules and presented to CD4 and CD8 T cells. Alternative means of access to antigen for presentation by MHC molecules include fluid phase pinocytosis and macroautophagy. However, BCR mediated presentation is by far the most efficient mechanism of antigen presentation. Multiple factors contribute to the efficiency of BCR-mediated antigen presentation. Firstly, the high affinity of the BCR allows for the efficient capture of antigens, even at very low concentrations. Secondly, B cells can retain their antigen-BCR complexes for extended periods of time allowing time for the cognate recognition of the antigen by T cells. The locale of mature B cells and their ability to survey the secondary lymphoid tissue makes encounter with their specific antigen much more likely. Lastly, antigen-specific MHCII activate their cognate T cell and leads to the upregulation of co-stimulatory molecules on both B and T cells. Antigen activation of the BCR leads to the upregulation of CD80 and CD86, alongside MHC class II, which interact with CD28 and the T cell receptor (TCR) on T cells. B cells are also important for the presentation of lipid antigens to iNKT cells, leading to iNKT activation and suppression of excessive inflammation.

Cytokine production by B cells is important for shaping the immune response and the development of lymphoid tissue, both positively and negatively regulating immune cell activation. Harris et al showed that cytokine secreting B cells could be divided into two distinct effector populations, B effector 1 (Be1) and Be2, based on the microenvironmental cues that the B cells receive. Be1 cells produce interferon-γ (IFNγ) and TNFα, whilst Be2 produce IL-4, IL-6 and IL-13 in vitro, which could subsequently influence the differentiation of naïve CD4+ T cells into Th1 or Th2 cells respectively. In addition, the authors identified that Be1 were increased in *Toxoplasma gondii* infected mice, whilst Be2 cells were the predominant cytokine producing B cells in *Heligmosomoides polygyrus* infected mice; two microorganisms known to induce Th1 and Th2 type responses respectively.

50
Since this seminal study, the reported list of cytokines produced by B cells have grown, with demonstrated roles in shaping T helper cell and innate immune responses. EBV transformed mouse B cells produce IL-5, which promotes the proliferation of eosinophil precursors\(^{267}\). Moreover, B cell expression of lymphotoxin and tumour necrosis factor \(\alpha\) (TNF\(\alpha\)) are required for the formation of B cell follicles in the spleen and in the development of follicular dendritic cells\(^{268,269,270}\).

Cytokines produced by B cells can also shape T helper cell differentiation into Th1, Th2, Th17 or Tfh cells. B cells produce IL-2 in response to \(H\) polygyrus and \(T\) gondii. In turn, IL-2 produced by B cells promotes the polarisation of naïve CD4\(^+\) T cells to Th2 cells and the formation of memory T cells\(^{271}\). The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) activates DCs that promote Th1 differentiation\(^{272}\). GM-CSF production by B-1a cells is important for the survival of mice from \(Escherichia\) coli and \(Streptococcus\) pneumoniae. GM-CSF produced by these cells acts in an autocrine manner and promotes the rapid production of natural polyclonal IgM\(^{273}\). Furthermore, GM-CSF production by CD138\(^{hi}\)IgM\(^{hi}\)B220\(^{+}\)CD21\(^{-}\)CD23\(^{-}\)CD43\(^{-}\)VLA4\(^{-}\) plasma cells expands the numbers of classical dendritic cells that promote Th1 responses and increases inflammation in atherosclerosis\(^{274}\). Another important cytokine produced by B cells with pleiotropic functions is IL-6. Production of IL-6 leads to the expression of IL-21 in CD4\(^+\) T cells and influences Tfh differentiation\(^{275}\). Furthermore, IL-6 activates both Th1 and Th17 cells in experimental autoimmune encephalomyelitis (EAE)\(^{276,277}\). Lastly, B cells are also able to secrete IL-17A and IL-17F. Modification of CD45 by \(T.\) cruzi trans-sialidase leads to the induction of IL-17 in mouse extrafollicular IgM\(^{hi}\) plasmablasts and in human B cells\(^{278}\).

B cells are also known to produce chemokines including CCL3, CCL4, CCL17 and CCL22, which are important for the recruitment of immune cells in infection and play a role in the pathogenesis of autoimmune diseases. CCL3 is a chemoattractant that binds to the chemokine receptors CCR1, CCR3 and CCR5 on a wide variety of cell types, including T cells\(^{279}\). B cell derived CCL3 in \(T.\) gondii infection recruits CD4\(^+\) T cells and enhances CD4\(^+\) T cell IFN-\(\gamma\) production\(^{280}\). On the other hand, recruitment of Tregs to B cells or other APCs is facilitated by the expression of CCL4\(^{281}\). Both the closely related chemokines CCL17 and CCL22
are expressed by B cells and are important in the recruitment of activated T cells, primarily Th2 cells and CD4+CD25+ Tregs282, 283, 284, 285.

B cells are also a crucial source of anti-inflammatory cytokine mediators important for the resolution of inflammation. Dependent on the inflammatory context, B cells can produce IL-35, transforming growth factor beta (TGF-\(\beta\)1) and IL-10, which will be discussed in depth in the next section.
1.2 Regulatory B cells

1.2.1 Introduction to the field

Regulatory B cells (Bregs) is a collective term given to B cells that suppress or regulate inflammation and promote tolerance through a variety of mechanisms. Historically, Breg function has been identified by their role in regulating pathogenic T cell responses, but this has been expanded to show that Bregs can influence a wide variety of other cell types, including conventional dendritic cells (DCs), iNKT cells and monocytes, amongst others\(^{286}\).

The suppressive function of B cells was first proposed in the 1970’s in studies examining delayed type hypersensitivity (DTH) reactions using either 2,4 dinitrofluorobenzene (DNFB) or ovalbumin (OVA) in incomplete Freud’s adjuvant (IFA) or paraaminobenzoic acid-Hen egg albumin conjugate (PABA-HEA) in guinea pigs. Increased intensity and prolonged DTH reactions were observed in B cell depleted DNFB sensitised guinea pigs\(^{287}\). Later studies showed that adoptive transfer of lymphocytes or total splenocytes suppressed the intensity of the DTH response\(^{288, 289}\). These cells were dubbed “suppressor B cells”. However, the mechanisms behind the suppressive response were never investigated and the study of B cell regulation was not renewed until the 1990’s, when it was observed that B cell deficient mice developed an exacerbated form of EAE\(^{290}\). After these initial observations, three key studies identified that B cell mediated suppression was dependent on the expression of IL-10 in mouse models of colitis, EAE and collagen induced arthritis (CIA), as will be discussed throughout this section\(^{291, 292, 293}\). IL-10-expressing B cells were coined as regulatory B cells; a term which now encompasses a wide variety of subsets and mechanisms of suppression.

1.2.2 Signals required for Breg differentiation

Evidence in the literature shows that Bregs increase in response to inflammatory signals. Although far away from having identified all the signals that induce their differentiation, it appears that Bregs differentiate in response to a combination of pro-inflammatory cytokines and in response to activated T cells and plasmacytoid dendritic cells (pDCs). The current extent of our knowledge is hampered by the lack of a transcription factor unique to Bregs, and the reliance on looking at IL-10 expression and suppressive capacity to define and identify Bregs. In the context of this thesis, I define Breg differentiation as the ability of a precursor population to
acquire the ability to start producing IL-10 and to become suppressive. The stimuli known to be involved in the differentiation of murine Bregs are summarised in Figure 1.3.

1.2.2.1 BCR and antigen specificity

Although the role of antigen specificity in the function of Bregs remains to be fully elucidated, there are several lines of evidence suggesting that antigen specificity plays a role in the differentiation of Bregs. EAE is the most commonly used experimental model to examine autoimmune inflammatory disease of the central nervous system and shares some of the clinical features associated with multiple sclerosis in humans. To induce EAE, mice are immunised with the myelin oligodendrocyte glycoprotein (MOG) antigen in complete Freund’s adjuvant (CFA)\(^{294}\). Chimeric mice reconstituted with MD4 B cells that carry the IghelMD4 transgene and therefore specifically recognise the HEL antigen\(^{295}\), developed a more severe course of EAE disease, compared to mice reconstituted with wild type (WT) B6 B cells\(^{292}\). These results suggest that in EAE, B cells require activation through the BCR by the MOG antigen to elicit suppressive function. Supporting this data, MD4 mice have reduced frequencies of splenic IL-10-producing CD1d\(^+\)CD5\(^+\) B cells (B10); a population previously ascribed with regulatory capacity\(^{296}\). In CIA, type II collagen (CII) antigen activation of the BCR enhances CD40-induced IL-10 production in total B cells and in T2-MZP B cells\(^{293, \, 297}\). Moreover, adoptive transfer of T2-MZP B cells isolated from mice immunised with MOG in CFA, failed to suppress the development of arthritis (unpublished data). It is important to note that in this experiment mice were immunised with CII in CFA following the adoptive transfer of T2-MZP B cells. A role of self-antigen in the differentiation of Bregs has also been proposed. TgV\(_{13}\)3B4 mice which have polyreactive natural antibodies against self-antigens such as actin and keratin, have increased numbers of B10 cells. Indeed, immunisation with actin increased the numbers of B10 cells in these mice, suggesting that positive selection of B10 cells occurs through self-antigen activation of the BCR\(^{298}\).

Both the strength of BCR activation and activation of its downstream signals are involved in the induction of IL-10. Mice with a loss-of-function point mutation in p110\(_\delta\), a PI3K subunit downstream of the BCR, develop spontaneous inflammatory bowel disease (IBD), implicating that BCR activation plays an important part in the
differentiation of Bregs299. Although no link was made in this study, it could be that BCR driven IL-10 production was reduced in these mice, as \textit{Il10}-/- mice develop a similar spontaneous form of colitis300. B cell expression of stromal interaction molecules (STIM) 1/2 is required for BCR driven IL-10 production in B10 cells301. BCR activation triggers store-operated Ca2+ influx and this process requires the endoplasmic reticulum calcium sensors STIM1/2302. B10 cells from mice lacking expression of STIM1/2 exclusively on B cells (\textit{Stim1}ffe/ff\textit{Stim2}ffe/ff\textit{Mb1}cre/+) have a marked reduction of secreted IL-10, following stimulation with LPS+anti-IgM compared to B10 cells from \textit{Mb1}cre/+ controls, due to decreased activation of NFAT. As a result of the reduced IL-10 production by B cells, these mice developed a more severe EAE compared to WT mice. Adoptive transfer of IL-10-IRES-GFP transduced \textit{Stim1}ffe/ff\textit{Stim2}ffe/ff\textit{Mb1}cre/+ B cells into \textit{μMT} recipient mice, reduced the severity of EAE, corroborating the role of the BCR in the suppressive function of Bregs301.

The BCR co-receptors are also involved in the differentiation of Bregs. Mice lacking the co-receptor CD19, develop exacerbated inflammation in a number of models of inflammation including contact hypersensitivity (CHS), spontaneous models of lupus and dextran sulfate sodium (DSS) induced colitis, whilst overexpression of CD19 increases Breg number and reduces inflammation in CHS303, 304, 305, 306.

1.2.2.2 CD40 and other cognate interactions with T cells
CD40 is a co-stimulatory transmembrane receptor, expressed on B cells, DCs, macrophages, monocytes and in some non-haematopoietic cells such as endothelial cells. Expression of CD40 is required for a wide range of B cell functions including, but not limited to, formation of GCs, CSR, induction of cytokines, lowering the threshold required for BCR signalling and for upregulating the expression of MHCII and other co-stimulatory receptors307. CD40 activation is a key inducer of cytokines in B cells, with known roles in promoting the expression of IL-6, IL-10, IL-12, LT\textalpha, TGF-\textbeta and TNF\textalpha308.

Ever since the first studies identifying and characterising Bregs, CD40 has been linked to the differentiation of Bregs. Mizoguchi and colleagues were the first to identify a role of CD40, CD80 and CD86 in B cell mediated suppression, using adoptive transfer of B cells into \textit{Tcrα-/-}\textit{μMT} mice. \textit{Tcrα-/-} mice develop a
spontaneous form of chronic colitis resembling ulcerative colitis in humans. Unlike untreated B cells, B cells treated with blocking anti-CD40, anti-CD80 or anti-CD86 antibodies before adoptive transfer to αβlow mice were unable to limit the pathogenic function of αβlow T cells in colitis. A regulatory role of B cell CD40 was further demonstrated in EAE and CIA models. Activation with antigen (either MOG 35-55 or CII respectively), in combination with agonistic anti-CD40 increased IL-10 expression in B cells. Chimeric mice lacking CD40 on B cells developed a severe course of EAE. Similarly, in CIA, adoptive transfer of collagen and agonistic anti-CD40 stimulated B cells suppressed induction of disease.

MRL/lpr mice develop a spontaneous form of autoimmune disease characterised by anti-double stranded DNA antibodies and immune complex-associated disease of the kidney and is one of the experimental models used to determine the aetiology of systemic lupus erythematosus (SLE). Disease progression in MRL/lpr mice is characterised by a marked decrease in T2-MZP B cell numbers. Moreover, adoptive transfer of T2-MZP B cells from MRL/lpr mice, unlike control T2-MZP B cells as described above, failed to improve the mortality rate of recipient MRL/lpr mice. Suppressive capacity was restored to MRL/lpr T2-MZP B cells after activation with an agonistic anti-CD40. The requirement for CD40 is not limited to T2-MZP derived Bregs, as adoptive transfer of B10 cells from Cd40−/− mice fail to confer protection from EAE in WT recipient mice.

CD80 and CD86 (historically known as B7.1 and B7.2) are two co-stimulatory molecules which are expressed on B cells, bind to CD28 or CTLA-4 on T cells and regulate T cell activation. As mentioned earlier, CD80/86 are key for B cell suppression of colitis. Furthermore, in EAE, mice lacking CD80/86 on B cells failed to enter the remission phase of disease, suggesting that B cell expression of CD80/86 is required for the resolution of EAE.

1.2.2.3 Toll like receptors

TLRs are pattern recognition receptors (PRRs), which respond to signals from infection and cellular/tissue damage, via the recognition of pathogen-associated molecular patterns and damage-associated molecular patterns respectively. TLRs are one class of a bigger family of PRR receptors, including retinoic acid inducible gene 1-like receptors, nucleotide oligomerization domain-like receptors and C-type...
lectin receptors. Following engagement of TLRs, downstream signals are mediated either by myeloid differentiation primary-response protein 88 (MYD88) or TIR domain-containing adaptor protein inducing IFNβ (TRIF). Activation of TLRs initiates signalling cascades that leads to downstream activation of NF-κB, IRFs and the MAP kinases. TLR activation promotes B cell differentiation and initiation of cytokine production315. Murine B cells express varying levels of TLR1-9, and even between B cell subsets there are marked differences in expression patterns of TLRs. B cells are particularly responsive to TLR2, TLR4, TLR7 and TLR9 agonists, with selective agonists preferentially inducing more IL-10, IL-6 or IL-12p40. Of note, TLR2 agonist peptidoglycan, TLR4 agonist lipopolysaccharide (LPS) and TLR9 agonist CpG-B induces the most IL-10 production by B cells316. B cells can upregulate IL-10 in a TLR2-dependent manner, upon administration of tumour cell-released autophagosomes or upon activation with *Helicobacter pylori* sonicate317 318.

The role of TLR4 in Breg function has been extensively studied in multiple Breg subsets. LPS activation of B cells increases the expression of IL-10, TGF-β1 and FASL, which promotes Breg-mediated suppression of pro-diabetogenic Th1 responses in NOD mice319. In addition, TGF-β1 expression by B cells can induce anergy in CD8+ T cells320. Subsequent reports have extended these findings to show that TLR4 promotes Breg function in autoimmunity and infection models. Intraperitoneal injection of LPS delays the onset of EAE321. Although the authors never addressed the mechanism of action, considering the wealth of evidence linking TLR4 activation to B cell IL-10 production, it is tempting to speculate that the delayed onset could be due to the initial burst of IL-10 production by B cells321. Indeed, supporting this idea, LPS administration to mice before the induction of cerebral ischemia, reduced infarct volumes and protected mice from neuronal apoptosis. LPS pre-conditioned mice had elevated levels of IL-10 in the brain and increased numbers of IL-10+CD19+ cells in the spleen322. LPS, either alone or in combination with other inflammatory signals, supports the differentiation of T2-MZP, B10, CD138+ plasma cells and LAG3+CD138hi plasma cell Breg subsets303,323.

Central to both TLR2 and TLR4 is the signalling through the adaptor protein MYD88. Deletion of MYD88 in B cells lead to the prolonged survival of mice
infected with *S. typhimurium*, and this was associated with a reduction in IL-10 production by CD138+ plasmablast cells\(^3^{24}\). Moreover, chimeric mice lacking MYD88 in B cells developed an exacerbated EAE, compared to WT mice\(^3^{25}\). Furthermore, in WT mice infected with *Leishmania donavani*, signals through MYD88 are important for differentiation of Bregs. MZ B cells from infected mice suppressed CD4\(^+\) and CD8\(^+\) T cell responses through expression of IL-10 and suppressed the protective T cell responses during *L. donavani* infection\(^3^{26}\). Thus, these studies show a central role of MYD88 in TLR mediated Breg differentiation.

Although much less characterised, signals through TLR7 have also been implicated in the generation of Bregs. Both *in vivo* and *in vitro* activation of B cells with the TLR7 agonists imiquimod or R848 induce the expression of IL-10 in B cells, with the highest proportion of IL-10 being expressed by CD19\(^+\)CD1d\(^hi\) B cells. Adoptive transfer of CD19\(^+\)CD1d\(^hi\) B cells protects recipient mice from developing allergic lung inflammation by promoting the differentiation of naïve CD4\(^+\) T cells into Tregs in an IL-10 dependent manner\(^3^{27}\). Several studies have also shown that R848 induces IL-10 production in human mature (CD19\(^+\)CD27\(^+\)) and immature (CD19\(^+\)CD27\(^-\)) B cells, suggesting a role of TLR7 in the differentiation of both human and murine Bregs\(^3^{27, 328, 329}\).

Disentangling the role of TLR9 in Breg differentiation has been harder to establish. Although, TLR9 activation is a potent inducer of IL-10 in both mouse and human B cells, there have been conflicting reports as to the role of TLR9 in Breg induction *in vivo*\(^3^{316, 330, 331}\). Chimeric mice reconstituted with *Tlr9*\(^{-/-}\) B cells did not develop a worse course of EAE compared to B-WT controls, implicating a functional redundancy of the TLR9 pathway in Breg mediated suppression, at least in the context of EAE\(^3^{325}\). In contrast, several studies have shown that TLR9 activated Bregs limit inflammation in models of autoimmunity and sepsis. TLR9 activated CD5\(^+\)CD23\(^-\) B cells inhibited pro-inflammatory cytokine production by pDCs and conventional DCs *in vitro*, through the production of IL-10. Moreover, mice given CpG-B are protected from D-galactosamine induced endotoxic shock; a process driven through TLR9-induced IL-10 production by CD5\(^+\)CD23\(^-\) B cells. In support of this data, adoptive transfer of *Tlr9*\(^{-/-}\) B cells failed to promote the survival of *Il10*\(^{-/-}\) recipient mice, unlike in *Il10*\(^{-/-}\) mice receiving WT B cells, which prevented endotoxic shock\(^3^{332}\). TLR9 activation also induces IL-10 expression in neonatal
CD5⁺ B cells, which in turn inhibits DC driven Th1 priming. Lastly, two studies by Gray and colleagues showed that apoptotic cells (ACs), through activation of TLR9, increased IL-10 production by MZ B cells and B-1a cells. Mice receiving AC stimulated B cells reduced CIA and EAE disease severity. Thus, the role of TLR9 in Breg differentiation and function seems to be disease and cell type specific.

1.2.2.4 Cytokines as inducers of Breg differentiation
It is now well established that inflammatory signals can promote the differentiation of Bregs. To date, numerous cytokines from different cellular sources have been shown to facilitate the induction and expansion of Breg populations in a variety of models of autoimmunity, infection and transplantation. Of particular note, it has been shown that the composition of the microbiota can provide signals for the differentiation of Bregs. Adoptive transfer of T2-MZP B cells from antibiotic (ABX) treated mice to recipient WT mice, failed to alleviate antigen induced arthritis (AIA) in recipient mice, due to a reduction in T2-MZP B cell IL-10 production. In addition, T2-MZP B cells isolated from specific-pathogen free (SPF) housed mice, present with a marked reduction in IL-10⁺Bregs compared to conventionally housed mice, implicating that microbiota is required for the induction of IL-10⁺Bregs. Of note, both in ABX treated mice and in SPF housed mice, there was a significant reduction of the frequency and numbers of splenic IL-1β and IL-6 producing macrophages (CD11b⁺CD11c⁻). Stimulation of T2-MZP B cells with a combination of these two cytokines and agonistic anti-CD40 increased the frequencies of IL-10⁺Bregs (T2-MZP, B10 and TIM-1⁺ subsets). Chimeric mice lacking the IL-1R1 or IL-6R specifically on B cells (B-Il1r1⁻ or B-Il-6r⁻) developed an exacerbated arthritis, further linking these two inflammatory cytokines to Breg differentiation and function. Importantly, 70% of splenic T2-MZP B cells expressed the integrin α4β7; a marker which indicates that lymphocytes have previously recirculated via the gut. The α4β7⁺ T2-MZP B cells displayed enhanced suppressive capacity, compared to α4β7⁻ T2-MZP B cells. Collectively, this data suggests that the precursors of Bregs may be primed initially in the gut and upon exposure to inflammatory stimuli in the spleen, then differentiate into IL-10⁺Bregs.
IL-21 is a versatile cytokine with broad functions in the innate and adaptive immune response and is mainly produced by Tfh, Th17, CD8+ and NKT cells. In B cells, IL-21 has a role in plasma cell differentiation, IgG1 production and more recently has been identified to be important in Breg differentiation. B10 cell differentiation requires both IL-21 and CD40:CD40L interactions with T cells. Adoptive transfer of B10 B cells from Il21r−/−, Cd40−/− and Mhc-II−/− mice failed to alleviate EAE in recipient mice, unlike their WT counterparts, further suggesting a role of IL-21 in the differentiation and function of B10 cells. Moreover, addition of IL-21 to anti-IgM and anti-TIM-1 cultured B cells further increased IL-10 production in TIM-1+Bregs. These findings have been translated to human Breg populations, with IL-21 in combination with signals through the BCR or with TLR9 and CD40, inducing IL-10 and/or Granzyme B expression in B cells, depending on the co-stimuli used.

Interestingly, both BAFF and APRIL, two key cytokines involved in B cell maturation and survival, are important inducers of IL-10 production in both mouse and human B cells. Administration of BAFF in vivo and in vitro, induced IL-10 in MZ B cells. In addition, BAFF increased IL-35 expression, another immunoregulatory cytokine expressed by Bregs, mainly in a population exhibiting a MZ B cell phenotype in MRL/lpr mice. Likewise, addition of BAFF to CpG-B stimulated B cells also induced human Breg differentiation in healthy controls (HC) and in chronic lymphocytic leukaemia (CLL) patients. Importantly though, this seems to be in part, an indirect effect of the pro-survival function of BAFF on these cells.

APRIL can also confer immunosuppressive function to B cells, primarily through inducing IL-10 expression in B-1a cells. Mice overexpressing APRIL (APRIL-tg) are protected from EAE and oxalazone induced CHS reactions. APRIL-tg mice depleted of peritoneal B-1a cells negated the protective effect of APRIL in EAE. Similarly, APRIL can increase IL-10 expression in both HC and rheumatoid arthritis (RA) B cells and induces naïve human B cells to differentiate into IL-10-secreting IgA+PD-L1+ Bregs.

A number of cytokines share the ability to promote both Treg and Breg differentiation in mice. IL-33 for instance, induces a novel form of Breg defined as
CD19^+CD25^+CD1d^{hi} IgM^{hi} CD5^-CD23^-TIM1^- (subsequently coined Breg-IL-33). Injection of IL-33 into WT mice increases the frequencies of IL-10^+ Bregs found in the blood. Adoptive transfer of the Breg-IL-33 precursor population (CD19^+CD23^- B cells) from IL-33 treated mice into Il10^-/- mice, markedly delayed onset of IBD in these mice and reduced gut histopathological signs associated with IBD. Moreover, adoptive transfer of CD19^+CD23^- B cells from IL-33 treated Il10^-/- mice failed to confer protection from IBD, suggesting that IL-33 primes Breg function by increasing the expression of IL-10. These findings were confirmed in DSS colitis, where IL-33 induced IL-10^+ Breg differentiation in the mesenteric lymph nodes (MLNs) of mice. In addition, IL-35 expands an IL-10^+IL-35^+ Breg population in both mice and humans, as will be discussed later. Lastly, IL-5 has been shown to promote the function of killer B cells; a population which mediates cell death through the expression of FASL. IL-5 in tandem with CD40L signalling, induces IL-10 expression in B cells and promotes the antigen-specific killing of CD4^+ T cells.

Whilst no study to date has implicated a role of IFN\(\alpha\) in driving Breg IL-10 in mice, pDC driven IFN\(\alpha\) expression expands human IL-10^+CD24^{hi}CD38^{hi} Bregs in healthy controls, in a dose dependent response. In healthy controls, low levels of IFN\(\alpha\) expands IL-10^+CD24^{hi}CD38^{hi} Breg numbers, and Bregs in turn suppress pDC driven IFN\(\alpha\) production. In contrast, high levels of IFN\(\alpha\) produced by pDCs in SLE patients induces the differentiation of plasmablasts and fails to expand Breg numbers, suggesting that the strength and dose of inflammatory stimuli is important for determining regulatory versus effector B cell fate decisions.
Figure 1.3. Stimuli that induce murine Breg differentiation. The expanding list of inflammatory stimuli which induce Breg differentiation includes signals through the BCR, TLR and CD40 ligation and activation through various cytokine receptors. Activation of Bregs induces the expression of IL-10, IL-35 and TGF-β1.
1.2.3 Regulatory B cell Phenotype and Mechanisms of suppression

Bregs are defined by the ability to suppress inflammation primarily through the production of IL-10, but also through alternative means of suppression such as TGF-β1 or IL-35 and by contact-dependent mechanisms. The ontogeny of Bregs and their relation to conventional B cell development remains elusive. However, it is becoming increasingly clear that Bregs can arise at various stages of B cell development and that the common denominator in Breg differentiation at different stages, as described above, is the presence of inflammatory signals. Murine Breg subsets and mechanisms of immune suppression are summarised in Figure 1.4.

In disease settings, Breg numbers and their function can be perturbed. In the case of autoimmunity, the numbers and function of Bregs are often diminished, whilst Breg IL-10 often promotes cancer progression. What pre-determines the Breg vs Beffector cell fate decision is unknown and remains an important relevant question to address in the clinical setting.

1.2.3.1 Transitional-2 Marginal Zone Precursor Cells

Building on previous findings showing that anti-CD40 stimulated B cells suppressed CIA through the provision of IL-10, further characterisation of Bregs revealed that T2-MZP B cells (defined as CD19⁺CD21hiCD23hiCD24hiIgMhiIgDhiCD1dhiAA4⁺) were the main producers of IL-10 in CIA. Importantly, the frequency of IL-10⁺T2-MZP B cells were increased in the remission phase of CIA and displayed greater suppressive capacity upon adoptive transfer than their antigen naïve counterparts, suggesting inflammatory signals were needed for Breg differentiation. No suppression was observed after the adoptive transfer of MZ and FO B cells. T2-MZP reduced disease severity by decreasing the levels of CII specific IgG2a antibodies in the serum and by inhibiting CD4⁺IFNγ production. Importantly, only IL-10-sufficient T2-MZP B cells could suppress CIA, upon adoptive transfer highlighting Breg suppressive function was contingent upon IL-10 expression. The importance of T2-MZP Bregs in autoimmunity, was also confirmed in MLR/lpr mice, which develop a spontaneous severe systemic lupus-like autoimmune disease, as described in section 1.2.2.2.

Further mechanistic insight into IL-10⁺T2-MZP Breg function was elucidated in AIA, a T-cell driven DTH model which mimics some of the pathological characteristics seen in RA. IL-10⁺Bregs were shown to be important for the induction of
forkhead box P3 (FOXP3) Tregs and Tr1 cells. Indeed, Il10−/− B cell chimeric mice had reduced numbers of FOXP3 Tregs in the inguinal draining lymph nodes (dLN) and in the synovia of the joint, mirrored by an increased frequency of IFN-γ+ and IL-17+ CD4+ T cells, implicating IL-10+Bregs in the differentiation fates of naïve CD4+ T cells in this model. Il10−/− B cells displayed reduced contact times with WT CD4+ T cells, in comparison to WT B cells, suggesting that, in addition to IL-10, Bregs can regulate immune responses by cell-contact dependent mechanisms. Suppressive function of T2-MZP Bregs or T2-like Bregs has also been shown to be important in infection, cancer and transplantation models and in allergic hypersensitivity reactions. In the latter, infection of WT mice with Schistosoma mansoni conferred protection from anaphylaxis reactions and chronic airway hyperresponsiveness, due to parasite driven upregulation of IL-10 by B cells.

Whilst IL-10 production is still considered a hallmark of Breg identity and function, IL-10 independent mechanisms are also a big part of the Breg ‘arsenal’ in restraining inflammation in a variety of settings and diseases. CD1d is an MHC class I-like antigen presenting molecule, which presents glycosphingolipid and phospholipid antigens to iNKT cells. Within the B cell populations, CD1d is highly expressed on MZ and T2-MZP B cells. High expression of CD1d is commonly expressed by different Breg subsets. T2-MZP Bregs have been shown to confer immunosuppressive function to iNKT cells, in an IL-10 independent manner, through the expression of CD1d. Chimeric mice lacking CD1d on B cells develop an exacerbated arthritis compared to WT mice. Moreover, whereas adoptive transfer of WT T2-MZP B cells was able to ameliorate arthritis in recipient mice, adoptive transfer of Cd1d−/− T2-MZP B cells failed to suppress AIA. T2-MZP B cells from α-galactosylceramide (α-GalCer) treated WT mice, presented α-GalCer on CD1d and enhanced iNKT suppression of CD4+ IFN-γ and IL-17 production, implicating a crucial role of B cell CD1d expression in the amelioration of arthritis in this setting. It is important to note that even though MZ B cells express the highest level of CD1d amongst the B cell subpopulations, MZ B cell depletion did not impact α-GalCer mediated suppression in this study.
1.2.3.2 MZ B cells

MZ B cells can also produce IL-10 in response to a wide range of TLR agonists, including LPS and CpG316. Injection of mice with ACs ameliorates CIA disease, through the production of B cell IL-10. In this setting, MZ B cells secreted the most IL-10 in response to AC driven TLR9 activation. Although not directly demonstrated experimentally in this study, the authors reasoned that MZ B cells were the subset responsible for AC-induced protection from CIA334. Subsequent research by the Gray group has later shown that B-1a cells are the main cells which carry out immune tolerance to apoptotic cells359. MZ B cells have also been shown to be detrimental to survival of mice with *Listeria monocytogenes*, due to their production of IL-10. Adoptive transfer of MZ B cells into *Il10*-/- mice increased bacterial load in the spleen of recipient mice. Importantly, MZ B cell deficient mice (*Rbpj* conditional KO) developed resistance to *L. monocytogenes* infection and prolonged the survival of infected mice360.

In addition to IL-10, a subset of MZ B cells can also produce TGF-\(\beta\)1. Adoptive transfer of activated B cells producing TGF-\(\beta\)1 have been shown to suppress diabetes incidence, through reducing T cell IFN-\(\gamma\) expression in pre-diabetic NOD mice and leading to the apoptosis of diabetogenic T cells. Although not directly attributed to MZ B cells, increased levels of apoptosis were seen in the MZ area of the spleen of mice adoptively transferred with activated B cells, suggesting these cells were the likely source of TGF-\(\beta\)1319. TGF-\(\beta\)1 expressing B cells have since been shown to control Treg induction and to promote immune tolerance. Whilst the exact phenotype of TGF-\(\beta\)1 expressing B cells remains to be elucidated, it is not thought to be included in the T2-MZP, B10 or CD138+ plasma cell Bregs361.

1.2.3.3 B10 cells

Shortly after the discovery that T2-MZP B cells were a source of IL-10+Bregs, a new subset of Bregs defined as CD1dhiCD5+, known as B10 cells were identified to have regulatory capacity in an oxazolone-driven model of CHS303. B10 cells were identified based on their expression of IL-10 after 5h stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin. Mice expressing the human CD19 transgene (hCD19tg) were more resistant to CHS than WT mice, due to increased numbers of B10 cells. Conversely, *Cd19*-/- mice developed an exacerbated CHS reaction, suggesting B10 cell generation is dependent on the BCR signalling303.
Adoptive transfer of \(II \)10\(^{-}\)CD1d\(^{hi}\)CD5\(^{+}\) B cells failed to suppress CHS in recipient mice, showing that B10 cells suppress via the provision of IL-10. Importantly, only antigen-specific B10 cells were able to suppress disease, as evidenced by the fact that adoptive transfer of CD1d\(^{hi}\)CD5\(^{+}\) B cells from mice sensitized to a different antigen (DFNB), failed to resolve CHS in Cd19\(^{-}\) recipient mice\(^{303}\).

It is important to note that the B10 cells are defined as CD19\(^{hi}\)CD24\(^{hi}\)CD21\(^{+}\)CD23\(^{-}\)IgM\(^{hi}\)CD1d\(^{hi}\)CD5\(^{+}\) and therefore share overlapping markers with that of CD5\(^{+}\)B-1a cells, MZ and T2-MZP B cells, but do not exclusively fit into one population of cells. Nevertheless, there are many degrees of similarity between T2-MZP B cells and CD1d\(^{hi}\)CD5\(^{+}\)-derived Bregs. Both populations need ‘priming’ through inflammation before suppressive capacity is seen. Antigen naïve T2-MZP B cells and B10 cells fail to ameliorate disease severity in AIA and CHS respectively. This feature could be due to the kinetics of Breg differentiation in both models, requiring several days for Breg differentiation in vivo. Both B10 cells and T2-MZP B cells require T-cell help to become fully functional Bregs, with both CD40L expression on T cells and MHC class II expression on B cells being important for the generation of Bregs\(^{311}\). Interestingly, B10 cells retain the ability to differentiate into plasma cells and induce the expression of Blimp-1 and Irf4. Moreover, B10 cells are able to produce antigen-specific IgG in response to immunizations and also polyreactive IgM which recognises both self and foreign antigens\(^{362}\). Data from these studies supports the notion that B10 cells are derived from multiple subpopulations and do not define a distinct B cell lineage.

Since their initial characterisation in CHS reactions, B10 cells have also been reported to have functional roles in a number of models of autoimmunity and infection. Adoptive transfer of B10 cells reduced the severity of EAE in WT recipient mice and suppressed CD4\(^{+}\) T cell IFN-\(\gamma\) expression, in an IL-10 dependent manner\(^{305, 363}\). Adoptive transfer of B10 cells also ameliorated the symptoms of lupus in NZB/W mice and reduced intestinal inflammation in DSS induced colitis\(^{304, 306}\). In the context of infection, B10 cells play a deleterious role in the survival of mice infected with Leishmaniasis major and Listeria monocytogenes\(^{364, 365}\). Mice infected with L. monocytogenes have increased numbers of B10 cells in vivo, which suppress macrophage TNF\(\alpha\), IFN-\(\gamma\) and nitric oxide production. Additionally, B10
cells impaired the ability of macrophages to phagocytose the pathogen, leading to increased bacterial load365.

1.2.3.4 B-1 cells

B-1a cells with suppressive capacity have been described in autoimmune and infection models and in recognition to self-antigens found on ACs355. B-1a cells are a major source of natural polyreactive IgM which is important for the clearance of ACs and play a key role in the first line defence against pathogens105. In addition B-1a cells are a potent source of IL-10106.

TLR9 engagement with DNA complexes from ACs drives the expression of IL-10 in MZ and B-1a cells. Indeed, \textit{Tlr9}−/− peritoneal cavity B-1a B cells are unable to increase IL-10 upon stimulation with ACs, unlike their WT counterparts330. IL-10 secretion by B-1a cells can dampen macrophage phagocytosis and reduce secreted levels of nitric oxide and hydrogen peroxide365.

Numerous other studies have implicated an important role of IL-10+B-1a cells in models of infection and autoimmunity. IL-10 expression by B-1a cells can be induced by lacto-N-fucopentaose III, a sugar found on \textit{Schistosoma mansoni} eggs. Infection with \textit{S. mansoni} increased numbers of B-1a cells within 2-4 weeks of infection in multiple strains of mice, namely in the CBA/J, C3H/HeJ and BALB/c, but not in C57BL/6 and BALB/c.Xid mice, which could account for the differing degrees of pathology reported between the strains367. Interestingly, BALB/c.Xid mice which have reduced numbers of CD5+ B-1a cells are more susceptible to \textit{Litomosoides sigmodontis} infection, due to the relative paucity of natural IgM and IL-10 secreted in these mice367. Alongside IL-10 production, B-1a cells upon infection with \textit{S. mansoni}, upregulate FASL and have increased capacity to induce the apoptosis of CD4+ T cells. These cells were later termed ‘Killer B cells’368.

In CHS, suppression of disease is dependent on IL-10+CD22-expressing B-1a cells369. CD22 is a transmembrane receptor which binds to sialic acids and negatively regulates signals through the BCR370. \textit{Cd22}−/− mice develop a more severe CHS reaction. Adoptive transfer of peritoneal B-1a, and not B-1b cells, reduced the severity of the CHS reaction. Although no differences were observed in the amount of IL-10 produced by splenic or peritoneal B-1a B cells between WT
and Cd22^{−/−} mice, adoptive transfer of peritoneal B-1a cells from both mice into recipient WT mice revealed distinct migratory patterns. Cd22^{−/−} B-1a cells migrated less to the spleen and LN’s in the CHS reaction and therefore were less able to suppress disease in an IL-10-dependent manner³⁶⁹. Similarly to T2-MZP B cells and B10 cells, adoptive transfer of B-1a cells also conferred protection in EAE³⁵⁹. B-1a B cells can also exert tolerogenic function in an IL-10 independent fashion. In colitis, Tcr^{α^{−/−}} mice which were housed in a SPF environment developed a more severe form of colitis than conventionally housed mice. Colitis severity correlated to the amount of B-1a derived natural IgM. Indeed, when mice which lacked B cells and the TCR^α chain (αµ double knockout mice [DKO]) were conventionally housed, they developed a worse course of disease than SPF housed Tcr^{α^{−/−}} mice, implicating that B-1a B cells play a key role in suppression of disease; a finding which was confirmed by suppression of colitis upon adoptive transfer of peritoneal of B-1a cells into αµ DKO mice³⁷¹. The mechanism as to how natural IgM suppressed colitis induction was not addressed in this study.

1.2.3.5 Plasmablasts and plasma cells

The first indication Breg subsets could be contained within plasma cells and plasmablasts came from examining the transcription of Il10_{in vivo} by using an Il10_{eGFP} transcriptional reporter strain (known as Vert-X mice)³⁷². After challenging these mice with LPS, CpG, goat anti-IgD or murine cytomegalovirus, it was identified that CD19⁺ B cells comprised the biggest population within the IL-10⁺GFP⁺ population. Remarkably, CD19⁺CD138⁺ plasmablasts after anti-IgD or murine cytomegalovirus (MCMV) challenge made up around 60% and 30% of the GFP⁺ leukocytes in the dLN respectively. However, the relative frequencies of splenic B cell subpopulations constituting the GFP⁺ population in the spleen was not reported³⁷². IL-10 producing CD19⁺CD138⁺ plasmablasts were also shown to be increased in vivo, after 1 day of infection with Salmonella typhimurium³²⁴. IL-10 secretion by CD19⁺CD138⁺ cells had a detrimental effect in the survival of mice infected with Salmonella. Indeed, B-Il10^{−/−} chimeric mice were protected from S. typhimurium infection due to increased numbers of IFN-γ secreting natural killer (NK) and CD4⁺ T cells and TNF_α producing neutrophils; two key cell types in protective immunity against Salmonella infection³²⁴, ³⁷³, ³⁷⁴.
A protective effect of plasmablast derived Bregs have also been demonstrated in EAE, where IL-10$^+$ plasmablasts (defined here as CD138$^+$CD44$^+$) are important for the suppression of disease375. Importantly, suppression of EAE is dependent on the homing of IL-10$^+$ plasmablasts to the lymph nodes; a process which is mediated by the expression of CD62L (aka as SELL)376. Adoptive transfer of Sell$^-$ B cells to B cell deficient recipients (µMT) failed to suppress disease, unlike adoptive transfer of WT B cells. Interestingly, the generation of CD138$^+$CD44$^+$ Bregs is independent of the GC reaction, as mice lacking functional copies of BCL6 still had comparable numbers of plasmablasts compared to the WT controls375.

The role of plasma cell derived Bregs has also recently been demonstrated in restricting tumour-directed cytotoxic T cell functions. IgA$^+$PD-L1$^+$IL-10-expressing plasma cells inhibit cytotoxic T cell function after oxaliplatin treatment; an immunogenic cytotoxic chemotherapeutic agent377. More recently, a subset of natural regulatory plasma cells has been identified, which suppress immune responses via the production of IL-10378. These cells express lymphocyte activation gene 3 (LAG3), which is an important receptor for enhancing Treg mediated suppression379. This population was shown to be mainly IgM$^+$ and are present in naïve mice, suggesting these cells do not go through the GC reaction. LAG3$^+$ plasma cells differentiate into IL-10$^+$Bregs upon activation with LPS or LPS+anti-IgM or upon infection of mice with S. typhimurium378.

In addition to regulation of IL-10, plasma cells also produce IL-35, which is a heterodimeric cytokine consisting of the IL-12 family members p35 and EB13380. IL-35 has previously been shown to contribute to Treg function in IBD and in CIA381,382. Chimeric mice with B cells lacking either p35 or EB13 develop a more severe course of EAE, due to enhanced effector T cell IFN-γ and IL-17 production. Reciprocally, the lack of B cell p35 or EB13 in S. typhimurium infection prolonged survival of these mice by expanding the numbers of mononuclear phagocytes and increasing CD4$^+$ IFN-γ production. The main source of IL-35-expressing B cells during S. typhimurium infection were CD138$^+$ plasma cells. It is important to note that CD138$^+$ plasma cells are also able to co-express IL-10380. IL-35 can also act in an autocrine manner to promote the expansion of IL-10$^+$IL-35$^+$Bregs. Moreover, treatment of mice with IL-35 protected mice from experimental autoimmune uveitis347. Whether plasmablast and plasma cell derived Bregs functionally mature from
Bregs that arise from previous stages of B cell maturation, or whether they represent a *de novo* form of Bregs remains unclear.

1.2.3.6 Other Breg subsets

A growing number of Breg subsets are identified based on their differing phenotype and function. These subsets share expression of core B cell markers, but also express distinct markers from the subsets discussed above. Amongst these, GM-CSF and IL-15 fusokine (GIFT15) generated Bregs appear phenotypically similar to T2-MZP Bregs as they also express CD21, CD23, CD24, CD1d, IgD and IgM. However, in contrast to T2-MZP Bregs, GIFT15 Bregs express very low levels of CD19 and high levels of CD138; a phenotype reminiscent of plasma cells. Intravenous injection of GIFT15 Bregs ameliorates EAE disease, through the upregulation of IL-10 and MHC class II on B cells.

Another well described Breg subset is defined by the expression of T-cell Ig domain-1 (TIM-1); a marker which is associated with immune regulation. In T cells, activation with a low affinity anti-TIM-1 antibody (RMT1-10) inhibits EAE and can promote long-term allograft acceptance by promoting skewing towards Th2 and Tregs. TIM-1 expression is widely reported to be expressed across a majority of IL-10+Breg subsets, including B10 cells, CD138+IgA+ plasma cells and CD138+ plasmablasts. The role of TIM-1+Bregs has been well characterised in transplantation studies and in models of autoimmunity.

The expression of TIM-1 on B cells was first identified by work from the Rothstein group. Data from this study showed that upon allogeneic islet transplantation, B cells in the spleen upregulated the expression of TIM-1. Importantly, in chemically-induced diabetic BALB/c mice receiving a transplantation of B6 islets, treatment with RMT1-10 promoted tolerance to the allograft and survival of these mice, through upregulation of B cell IL-4 and IL-10 expression. Furthermore, generation of mice which lack the mucin domain of TIM-1 (TIM-1ΔMUCIN), showed decreased binding to phosphatidylserine on ACs and were unable to induce IL-10 upon activation with ACs. Activation of TIM-1 by RMT1-10 in TIM-1ΔMUCIN mice failed to promote survival in these mice. TIM-1ΔMUCIN mice also developed spontaneous autoimmunity with increased production of IFN-γ by CD4+ T cells and had elevated serum levels of IgG and dsDNA IgG. The loss of B cell TIM-1...
expression also promotes age-related tissue inflammation and splenomegaly. Moreover, Tim1−/− B cells produced less IL-10 and more pro-inflammatory IL-12 and IL-6 upon BCR ligation. Indeed, the severity of EAE disease is worse in Tim1−/− mice and can be ameliorated by the adoptive transfer of WT TIM-1+ B cells337.

Recently, a novel subset of Breg defined as CD39+CD73+ have been shown to exert immunosuppressive function by the production of adenosine. CD39 expression is common on B cells, but CD73 expression is limited to certain populations. Roughly 30-50% of B-1 cells and IL-10 expressing B10 cells are CD73+. Specifically, CD73+B-1 cells can produce adenosine in the presence of 5′-adenosine monophosphate (AMP). Cd73−/− mice develop a more severe course of DSS colitis compared to WT mice, which can be partially resolved upon adoptive transfer of CD73+B-1 cells. Interestingly, Il10−/− B-1 cells produce less adenosine and express less CD73, suggesting a proportion of these cells have dual functions producing adenosine and IL-10390.
Figure 1.4. Breg subsets and mechanisms of suppression in mouse. Breg subsets in mouse arise from multiple stages of B cell differentiation. Mechanisms of suppression include secreted cytokines (IL-10, IL-35 and TGF-β1), cell-contact dependent mechanisms (CD1d, MHCII, CD80/86, CD40, FASL and TIM-1) and modulation of metabolic processes (i.e adenosine production by CD39 and CD73).
1.2.4 Human Breg populations

Due to the comparative lack of tools and technologies in the isolation and tracking of IL-10+ cells in human B cells, less is known about Breg ontogeny and their role in vivo. As is the case with mouse Bregs, human Bregs are defined by the expression of IL-10, or indeed by expression of other markers that exert suppressive functions. Although there are numerous phenotypical differences between mouse and human Breg subsets, the mechanisms of suppression are largely conserved between species. Bregs are known to be functionally impaired or have reduced numbers in multiple autoimmune diseases, including, but not limited to, SLE, systemic sclerosis, RA, ANCA-associated vasculitis and multiple sclerosis. Moreover, the function and phenotypes of human Bregs in infection, transplantation, allergy and cancer are starting to be unraveled.

Breg identification and function in humans was first attributed to CD19+CD24hiCD38hi transitional (or immature) B cells in the blood, with the CD19+CD24hiCD38hi transitional B cell population identified as the main IL-10-expressing B cell population. Analogous to murine Bregs, the IL-10+Breg population could be expanded upon ligation of CD40 on B cells and suppressed CD4+ T cell IFN-γ and TNFα expression. Similar to T2-MZP B cells in MRL/lpr mice, CD19+CD24hiCD38hi B cells from SLE patients produce less IL-10 after stimulation with CD40 and fail to suppress T cell IFN-γ and TNFα. Moreover, CD19+CD24hiCD38hi B cells from SLE patients are also defective in maintaining iNKT cell homeostasis, due to a defect of CD1d recycling in this population.

Similarly to T2-MZP Bregs in mouse, in addition to inhibiting Th1 and Th17 differentiation, human CD19+CD24hiCD38hi Bregs also promote the generation of FOXP3+ Tregs. In RA, CD19+CD24hiCD38hi Bregs are unable to convert naïve CD4+CD25- T cells into Tregs, or to suppress the differentiation into Th17 cells, but maintain the ability to suppress Th1 differentiation. Since these initial findings, there have been many reports showing reduced Breg function or numbers in autoimmune diseases. These findings have recently been extended to studies of Breg function in cancer. In gastric cancer, intratumoural CD19+CD24hiCD38hiCD1dhiCD5+ B cells produce more IL-10 than B cells from the blood or B cells from the peritumoural area. Bregs in gastric cancer promote the
differentiation of CD4+FOXP3+ Tregs and reduce the frequencies of CD4+IFN-γ+ T cells in the blood. Thus, in this setting, Bregs promote tumour evasion.

Although the phenotypical markers vary between mouse and human Breg populations, a number of other human Breg subsets share functional similarities to, and are derived from the same precursor populations as, their mouse counterparts. B10 cells have also been identified in the peripheral blood of HCs, and are readily available to produce IL-10 after activation with LPS, PMA and ionomycin. Interestingly B10 cells share a cell surface phenotype resembling that of memory B cells, with a reported phenotype of CD24hiCD27+CD38loCD48hiCD148hi. B10 cells were reported to suppress monocyte-derived TNFα production. In addition, a human orthologue of the mouse plasmablast Breg population (IL-10+CD138+CD44hi) has been identified in the peripheral blood, defined as IL-10+CD27intCD38hi. Lastly, both adenosine triphosphate-hydrolysing (CD39+CD73+CD25+) and Granzyme-B+ Breg populations have been identified in human blood. Both Breg populations suppress the proliferation of CD4+ T cells, whilst Granzyme-B+ Bregs additionally induce CD4+ T cell apoptosis.

The only human Breg subset so far discovered with no mouse analogue are BR1 cells, which are enriched after allergen immunotherapy. Uniquely these cells produce IgG4, which is not expressed by murine B cells. Bee keepers tolerised to bee venom allergen phospholipase A2, have increased frequencies of IL-10+IgG4+CD25hiCD71hiCD73- Bregs compared to HCs. Remarkably, allergic patients have increased numbers of BR1 cells after receiving specific immunotherapy, thus linking BR1 cells to the maintenance of tolerance against bee venom allergens.
1.3 AIA as a model to study Breg function

AIA is a T cell driven DTH reaction driven by the injection of antigen into the knee joint of a pre-immunised animal\(^{353}\). AIA was first described in the 1960s, where AIA was induced in rabbits\(^{402}\). AIA can be induced by a variety of antigens, including fibrin, ovalbumin and methylated bovine serum albumin (mBSA). In mice, however, cationic antigens must be used for the retention of the antigen in the anionic cartilage of the joints of the animals\(^{353}\). Our work is based on the mBSA induced AIA model, which was first described in 1977\(^{403}\).

The pathogenesis of AIA is thought to be mediated primarily by CD4\(^+\) T cells. Initial experiments in this model, showed that transfer of splenocytes enriched in CD4\(^+\) T cells exacerbated the severity of disease in recipient mice\(^{404}\). Depletion of B cells further accentuated the clinical severity of the disease, implicating a role of B cells in the immunoregulation of the disease\(^{404}\). Determination that it was CD4\(^+\) and not CD8\(^+\) T cells which were pathogenic was delineated by Petrow et al, who showed that the depletion of CD4\(^+\), and not CD8\(^+\), T cells before transfer prevented the development of arthritis in SCID recipient mice\(^{405}\). Flare mediated destruction of the joint is T cell driven and antigen specific\(^{406, 407, 408}\). Moreover, CD4 depletion ameliorates disease by reducing inflammatory macrophage production of IL-1\(\beta\) and IL-6 in the joints of AIA mice\(^{409}\). IL-1\(\beta\) drives joint pathology by promoting joint inflammation and cartilage degradation\(^{410}\).

A number of features of the AIA model make it ideal to study the function of Bregs. Firstly, the disease course is well defined; that is to say peak swelling is achieved at days 1-3, and remission from disease occurs at days 5-7. This allows for study of Bregs and their differentiation during both the inflammatory and resolution stages of disease. Secondly, arthritis is restricted to one joint, so we can determine disease swelling relative to the unaffected joint and examine the degree of severity of swelling in conditional and global knockout mice. Lastly, the incidence rate of AIA is 100%, with no sex bias\(^{353}\).
1.4 The transcriptional regulation of IL-10

IL-10 is an anti-inflammatory cytokine which targets both innate and adaptive immune responses. It exerts its immunosuppressive function and reduces tissue damage by curbing excessive inflammation caused by effector cells during the resolution phase of infection and inflammation411. Although originally associated as a Th2-associated cytokine412, IL-10 has since been shown to be a critical regulator of anti-inflammatory responses, initiated in cell types of both the adaptive and innate immune system413. IL-10 transcriptional regulation is a complex process, often dictated by the type of stimuli inducing IL-10, and is regulated in a cell-context dependent manner by several transcription factors and by epigenetic regulation. In macrophages, IL-10 is regulated by c-MAF414, cyclic adenosine 3,5-monophosphate response element-binding protein (CREB)415, NF-κB416, specificity protein 1 (SP1)417 and several others418. In Th2, GATA binding protein 3 (GATA3)419 and c-JUN420 are important for induction of IL-10. In Treg, IRF1 and basic leucine zipper transcriptional factor ATF-like (BATF) are critical in acting as pioneering transcription factors for opening the \textit{Il10} locus and initiating the transcription of IL-10421, allowing c-MAF and AHR to bind and regulate IL-10422.

1.4.1 Transcriptional control of \textit{Il10} in B cells

The transcription factors which regulate \textit{Il10} expression in macrophages, DCs, CD4+ T cells and other cell types have been well described418. However, unlike in other immune cells the molecular determinants that regulate the transcription of IL-10 in B cells remains relatively unknown. B cell expression of IL-10 is indispensable for regulatory function and its expression is tightly regulated. Recently, hypoxia-inducible factor 1α (HIF1α) has been linked to IL-10 expression in B cells423. HIF1α responds to hypoxia and initiates the metabolic rewiring of a cell, by altering the gene expression profile to help the cell adapt to hypoxic conditions424. \textit{Hif1a} expression is increased in B cells upon activation with LPS or anti-IgM stimulation. In B cell conditional knockout mice (\textit{Hif1a}-/-\textit{Mb1cre}), both the frequencies of B-1a cells in the peritoneal cavity and IL-10+B-1a cells in the spleen are reduced compared to WT controls, suggesting an important role of HIF1α in the generation of IL-10+Bregs423. This seems to be, in part, due to the role of HIF1α in regulating glycolysis. Splenic B cells cultured in hypoxic conditions make more \textit{Il10} and this is dependent on HIF1α and STAT3 co-operatively transactivating the \textit{Il10} locus.
*Hif1α^{fl/fl}Mb1^{cre} mice develop exacerbated courses of CIA and EAE compared to WT controls, due to the skewing of T cells towards a Th1 and Th17 phenotype⁴²³.

C-MAF is a member of the activator protein 1 (AP1) transcription factor family, which has previously been shown to increase the expression of IL-10 in Tr1 cells and in macrophages⁴¹⁸. More recently, the expression of c-MAF has also been associated with IL-10 production by B cells⁴²⁵. LPS activated B cells upregulate the expression of IL-10 and cMAF. Total splenic B cells have reduced levels of IL-10, after C-MAF is silenced by short hairpin RNA, thereby implicating this transcription factor in the regulation of IL-10. Whether c-MAF binds to the *Il10* locus has not been determined in B cells⁴²⁵. However, it is feasible that c-MAF binds to the *Il10* locus in B cells, as this has been demonstrated in Tr1 cells⁴²².

As discussed earlier, NFATc1 is a component of the BCR signalling pathway and is important in regulating the expression of IL-10 in B cells. However, there have been conflicting reports as to whether NFATc1 acts as a positive or negative regulator of IL-10 expression in B cells. Mice with B cell specific deficiency of NFATc1 developed a significantly ameliorated course of EAE⁴²⁶. *Nfatc1^{fl/fl}Mb1cre* developed an attenuated psoriasis, due to the increased numbers of IL-10⁺CD1d^{hi}CD5⁺ and IL-10⁺CD138⁺ B cells, compared to WT mice⁴²⁷. In contrast, Matsumoto *et al* report that the calcium sensors STIM1/2 and NFATc1 are required for BCR driven IL-10 production³⁰¹.

More recently, BLIMP-1 and IRF4 have been linked to the transcription of *Il10* by plasmablasts, with IRF4 directly binding to the conserved non-coding sequence (CNS)9 region of the *Il10* locus in BLIMP-1⁺ B cells³⁷⁵. Of interest, IRF1 and BATF bind to the same region in Tregs⁴²¹. After TLR and BCR activation, B cells deficient in IRF4 secreted less IL-10. B cell IRF4 deficient mice developed an exacerbated EAE disease compared to their WT counterparts³⁷⁵. Moreover, ectopic expression of IRF4 in a B cell lymphoma line enhanced IL-10 secretion, thus suggesting a direct role of IRF4 in the regulation of IL-10 in B cells⁴²⁸.

In human B cells, very little is known regarding the transcription of *Il10*. Using a luciferase reporter downstream of the *Il10* locus in human B cell lines, Ziegler-Heitbrock *et al* showed that STAT3 was required for the induction of IL-10. Mutated
STAT3, but not IRF1, binding sites prevented the transcription of \(\text{Il10} \). Less phosphorylation of STAT3 was also associated to reduced IL-10 in CD19\(^+\)CD24\(^{hi}\)CD38\(^{hi}\) B cells from SLE patients\(^{391}\). Moreover, inhibition of ERK1/2 or STAT3 with inhibitory peptides abrogated IL-10 production from TLR7/8 and TLR9 stimulated human B cells, suggesting a role of these pathways in the regulation of B cell IL-10\(^{328}\). It should be noted, that although individually these transcription factors are important for the induction of IL-10, it is far more likely that these transcription factors interact and act in tandem with each other as part of a transcriptional complex for the induction of IL-10.

1.4.2 The post-translational and epigenetic regulation of Il10 expression in B cells

The expression of cytokines needs to be tightly regulated to prevent hypo-/hyper-activation of the immune system. In the absence of IL-10, mice develop chronic transmural enterocolitis, a condition which bears a resemblance to Crohn’s disease in humans\(^{430}\). Equally, excess IL-10 can have pro-tumourigenic effects. Indeed, it has been shown that IL-10 promotes an escape mechanism for cancerous cells to avoid immune surveillance\(^{431, 432}\). However, this remains a highly debatable topic, with evidence both supporting and contradicting this hypothesis. It is likely to be a context-specific phenomenon, where multiple factors such as the hosts genetics, the inflammatory milieu and the type of cancer interplay.

To prevent dysregulation of immune responses, as well as being regulated at the transcriptional level, cytokines can be controlled through post-translational modifications. Cytokine mRNAs are often unstable and are subjected to rapid degradation after their synthesis, due to the presence of adenosine- and uridine-rich elements (ARE/URE) in the 3'UTR\(^{418}\). Several pro-inflammatory and anti-inflammatory cytokines/chemokines have ARE elements, including IL-10\(^{433}\), IL-27\(^{434}\), GM-CSF\(^{435}\) (the first cytokine identified to contain ARE) and TNF\(^{436}\). IL-10 contains 6 AUUUA pentamers, which facilitates the binding of the tristetraprolin (also known as ZFP36)\(^{433}\). ZFP36 belongs to a family of RNA-binding proteins, which targets mRNA by binding to AREs on mRNA and recruiting deadenylation and degradation factors\(^{437}\). Although no study to date has defined the role of ZFP36 in IL-10 expression in B cells, it is highly likely to play a role in regulating the amount of IL-10 produced. Recent evidence has pointed towards a role of other ZFP36
family member’s in the regulation of B cell differentiation. ZFP36L1 maintains MZ B cell identity by promoting the degradation of KLF2 and IRF8; two transcription factors known to enforce a FO B cell phenotype.171

In addition to RBPs, miRNAs play a crucial role in the post-translational regulation of mRNA expression in B cells. MiRNAs are small endogenous RNAs of 21-25 nucleotides in length and direct their target mRNAs for degradation.438 Of the known miRNAs, both miR-15/16-1 and miR-21 play a direct inhibitory role in the regulation of IL-10 in B cells. Intriguingly, both CD1dhiCD5+ and TIM-1+B cells express lower levels of miR-21 than their CD1d-CD5- and TIM-1- counterparts. Blocking miR-21 with a specific antagomir, in LPS and CD40 stimulated B cells increased IL-10 production by B cells. In addition, mimics of miR-21 also inhibit IL-10 production. Treatment of mice with the antagomir of miR-21 (antagomir-21) or adoptive transfer of antagomir-21 treated B cells partially ameliorated EAE severity, suggesting a contributing role for post-translational regulation of IL-10 in B cells \textit{in vivo}.439 In addition, aged (15-18 month old) miR-15a/16-1 KO mice have increased IL-10+B cells compared to age-matched WT controls.440 However, this is not the case in young adult mice (8-12 weeks). The reason for the increased IL-10, specifically in the aged miR-15a/16-1 KO mice, was due to increased tumour burden and the corresponding increase in TIM-1+B cells in the aged miR-15a/16-1 KO mice. These data suggest, in addition to inhibiting IL-10 production, miR-15a/16-1 also are important in suppressing the development of TIM-1+ B cells.440

Unlike other MiRs, miR-155 and its mimics increase IL-10 expression in human B cells, by increasing the phosphorylated levels of STAT3. MiR-155 acts indirectly on IL-10, by downregulating the expression of JARID2; the epigenetic negative regulator of IL-10.441 JARID2 silences gene expression by recruiting polycomb repressive complex 2 to target sites, which leads to histone 3 lysine 27 (H3K27) trimethylation.442

Epigenetic modulation and chromatin remodelling of loci represent an important step in the initiation, maintenance and cessation of transcription. Epigenetic imprinting and chromatin accessibility of any given locus, varies according to the cell type, activation status of a cell and on the type of external stimuli a cell receives. Broadly speaking, DNA methylation inhibits gene expression, whilst acetylation promotes gene transcription, by making the chromatin more...
accessible418. In mouse splenic B cells, and human peripheral blood B cells, the methylation status of the \textit{Il10} locus differs between IL-10+ and IL-10- subsets. Specifically, within the CNS -9, -4.5kb and +1.6kb regions on the mouse \textit{Il10} locus, IL-10+ B cells have less CpG island methylation, indicating these sites are more accessible in cells actively producing IL-10.

The human \textit{Il10} locus also has less methylation in IL-10+ B cells, when compared to IL-10- B cells specifically at the CNS -12.5kb region (which corresponds to the CNS -9kb region in mice). These data indicate that there is species specific epigenetic regulation of the \textit{Il10} locus. CLL cells, which produce more IL-10 than healthy B cells, also have a lower degree of methylation at the -12.5kb region443. Of interest both IRF1 and BATF, two pioneering transcription factors, involved in opening the \textit{Il10} locus in Tr1 cells bind to CNS -9 region421. In Tr1 cells opening of the chromatin facilitates the binding of c-MAF and AHR to MAF recognition element and xenobiotic response element (XRE) sites on the \textit{Il10} locus, closer to the transcription start site (TSS)422. Determining the pioneering transcription factors which bind to these sites in B cells remains to be determined.
1.5 The AHR pathway

1.5.1 General introduction

The aryl hydrocarbon receptor is an evolutionary conserved transcription factor, belonging to the basic helix-loop-helix (bHLH) periodic circadian protein (PER)-AHR nuclear translocator (ARNT)-single-minded protein (SIM) superfamily of transcription factors. Typically, these transcription factors are involved in sensing changes in the environment, such as oxygen gradients or circadian rhythms. Recognition of endogenous factors by AHR is achieved through the PER-ARNT-SIM (PAS) domains. In addition, AHR contains an (N-)terminal bHLH domain required for DNA binding and a Q-rich carboxy (C-)terminal transcriptional activation domain. Like other members of the large bHLH family, the bHLH domains in AHR can homodimerise in the absence, or heterodimerise, in the presence of its binding partner ARNT. The heterodimeric bHLH domains of AHR:ARNT bind to the AHR-specific consensus sequence (5’-NGCGTG-3’) known as the xenobiotic or dioxin response element (XRE/DRE) and initiates gene transcription of AHR target genes, with AHR and ARNT binding the T(N)GC (5’-half sites) and GTG (3’-half sites) sequences respectively. PAS domains of AHR are linked to the binding of the bHLH regions to DNA, as proteins lacking the PAS domains fail to show XRE binding activity, suggesting a role of the PAS domains in regulating the conformational activity of the bHLH domains.

In the absence of ligands, AHR is maintained in an inactive state in the cytoplasm of the cell, bound to actin filaments as part of a chaperone complex with AHR-interacting protein (AIP; also known as XAP2), a dimer of heat shock protein (HSP)90, the SRC protein kinase and p23. The chaperone complex serves to regulate AHR activity and signalling in multiple ways. One HSP90 molecule binds to the bHLH region of AHR, whilst the second binds to both the bHLH region and the ligand binding region contained within the PAS-B domain of AHR, which prevents constitutive AHR binding to DNA and maintains AHR in a conformational shape suited for high ligand-binding affinity. The chaperone AIP and co-chaperone p23 are important for maintaining the cytoplasmic localisation of AHR before ligand binding and, in addition, prevents the ubiquitination and subsequent degradation of AHR.
Binding of a ligand to AHR causes the dissociation of AIP from the complex, but not HSP90, which leads to a conformational change exposing a nuclear localisation signal in the bHLH region of AHR, allowing the translocation of AHR to the nucleus through interaction of the AHR complex with β-importin. Interaction of AHR with ARNT in the nucleus leads to the dissociation of the chaperone machinery, and subsequent recruitment of the AHR-ARNT complex to the XRE regions to regulate gene expression, as shown in Figure 1.5.
Figure 1.5. AHR signalling pathway. AHR ligands from the diet, microbiota, host metabolism or the environment activate AHR, inducing a conformational change in AHR, allowing for the nuclear translocation of the ligand-AHR complex. Whilst in the nucleus, AHR binds to ARNT and the complex binds to XRE/DRE sites on DNA and initiates gene transcription. Two direct gene targets include Ahrr and Cyp1a1 which act to curtail AHR signalling through displacement of AHR from ARNT, or through AHR ligand metabolism. AHR activation can also trigger phosphorylation cascades, through the release of SRC. Target proteins can also be directed for proteosomal degradation through the E3 ubiquitin ligase activity of AHR. Lastly, AHR can also regulate gene transcription, by binding to different transcription factor response elements through interaction with other transcription factors.
1.5.2 Other mechanisms of gene regulation by AHR

In addition to the role of AHR in regulating its target genes, through binding to XRE regions, AHR can also regulate gene expression by other direct and indirect mechanisms. AHR can directly interact with the transcription machinery including transcription factor IIIB (TFIIB)469 and the mediator complex470, enhancing the transcription of its target genes. In particular, AHR has been shown to interact with the positive transcription elongation factor (P-TEFb)471; a cyclin-dependent kinase controlling elongation by RNA polymerase II472.

One emerging role of AHR is its ability to regulate the local chromatin architecture. Of note, AHR interacts with Brahma/SWI2-related gene 1 (BRG1), part of the switching defective/sucrose non-fermenting (SWI/SNF) chromatin-remodelling complex, and direct interaction with this complex regulates AHR target gene expression473. AHR can positively regulate the epigenetic landscape by modifying histone acetylation and methylation, through displacement of histone deacetylase (HDAC) complexes by AHR474, 475. In addition, AHR can recruit the steroid receptor coactivator-1 complex, which has histone acetyltransferase (HAT) activity476.

In addition to the regulation of gene expression by the classical canonical pathway, AHR can also crosstalk with other pathways by binding to other DNA-responsive elements in combination with other transcription factors to modulate their downstream gene targets445, 477. AHR has been shown to interact with members of the NF-κB pathway, most notably RELA and RELB. AHR/REL complexes bind NF-κB response elements in the IL6478, BAFF, CCL1, CXCL13 and IRF3 promoters479 in human macrophages. Similarly, AHR binding to RELA has been shown to regulate CMYC in human mammary cells480 and IL6 in human lung adenocarcinoma cells481. AHR can interact with STAT1, downregulating murine macrophage IL-6 expression, highlighting a central role of the crosstalk between these pathways in the regulation of immune responses482. AHR can be recruited to different transcription factor binding sites through interactions with KLF6483, retinoic acid receptor alpha (RARA), retinoblastoma protein (RB)484, oestrogen receptor (ESR)485, sterol regulatory element-binding protein 1 (SREBF1)486 and nuclear factor erythroid 2-related factor (NRF2)487, amongst others488. Given AHR primarily functions as an environmental sensor, the fact that it can bind to and
regulate other transcription factor responses suggests a crucial role of AHR as a molecular rheostat in the fine-tuning of cellular responses.

AHR can also negatively regulate the activity of these transcription factors by reducing their half-life by functioning as an E3 ubiquitin ligase, targeting these proteins for proteosomal degradation. One well characterised example is the ESR, where AHR forms a part of the cullin 4B ubiquitin ligase complex (CUL4B) which targets the ESR for degradation489. Formation of the CUL4BAHR complex is dependent on the presence of an AHR ligand and on the readily available levels of ARNT. ARNT competes with CUL4B to bind to AHR, with low levels of ARNT leading to increased E3 ubiquitin ligase activity by AHR490. Similar processes also dictate the degradation of other transcription factors by AHR including HIF1\textalpha, MYC, FOS, octamer-binding protein (OCT4)491, 492, RELA493 and β-catenin; the latter of which is implicated in the suppression of intestinal carcinogenesis494.

1.5.3. AHR Ligands
AHR acts as an environmental sensor, linking external environmental signals to internal cellular processes, therefore its primary function is to sense both exogenous and endogenous chemical mediators and modulate downstream target genes. Broadly speaking, AHR agonists can be split into two main categories with those that are synthetic (exogenous) in nature (i.e formed from municipal waste products or other anthropogenic activity) and endogenous ligands which are naturally occurring in nature and which can be further subdivided into many different categories. Due to the large number of AHR ligands described in the literature, these have been summarised in Table 1.1.

1.5.3.1 Exogenous ligands
Extensive research has been conducted on exogenous AHR ligands, in particular on the environmental contaminants such as the halogenated aromatic hydrocarbons (HAH) and the non-halogenated polycyclic aromatic hydrocarbons (PAH)495. The HAH’s are more metabolically stable and have a higher binding affinity to AHR (pM to nM range), compared to the PAH’s (in the nM to µM range). The HAH’s include the polyhalogenated dibenzo-p-dioxins, biphenyls and dibenzofurans496. The most well characterised and potent HAH in terms of its binding affinity is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which is a by-
product of industrial organic synthesis of herbicides. TCDD exposure leads to chloracne outbreaks, in addition to more life-threatening clinical symptoms including emphysema, progressive liver and renal failure and myocardial degeneration\(^\text{445}\). Due to its acute toxicity and spate of accidental exposures, primarily the Seveso accident north of Milan in 1976\(^\text{497}\), early studies examined the mechanism of toxicity behind TCDD, which eventually led to the discovery of the receptor which bound TCDD in 1976\(^\text{498}\). Even today, activation of AHR through TCDD remains well studied in multiple fields of biology including toxicology and immunology.

In contrast, the PAHs are generated through incomplete combustions of fossil fuels, or other anthropogenic activity such as petroleum refining, coke and asphalt production and wood treatment\(^\text{499}\). The most well studied PAH AHR agonists include the benzoflavones, 3-methylchoanthrene (3-MC) and benzo(a)pyrene. In addition, a number of ‘non-classical’ synthetic AHR ligands exist, which are structurally diverse and whose physiochemical properties are very different from the classical synthetic AHR agonists, highlighting the structural diversity of AHR ligands.

1.5.3.2 **Endogenous AHR ligands**

Since the generation of synthetic AHR ligands is dependent on anthropogenic activity, the evolutionary pressure of synthetic ligands on the function of AHR in vertebrate systems is a relatively new event. Instead, the exposure to endogenous AHR ligands are more likely to have driven the evolution of AHR structure and function. The vast majority of AHR ligands are provided through the diet, either through naturally occurring dietary ligands, such as the indoles and flavonoids or through the metabolism of tryptophan\(^\text{500}\). One of the prototypic endogenous AHR ligands is indole-3-carbinol (I\(_3\)C), a metabolite of glucobrassicin, which is naturally present in cruciferous vegetables including broccoli and Brussels sprouts\(^\text{501}\). Under acidic conditions in the stomach, I\(_3\)C is further enzymatically degraded to the higher affinity AHR ligands 3,3’-diindolylmethane (DIM) and indolo-[3,2-b]-carbazole (ICZ)\(^\text{502}\). Another abundant source of dietary AHR ligands is flavonoids, which are ubiquitously found in fruits and vegetables and represent the most abundant class of plant polyphenols. Activators of AHR have been identified in
three of the six major subgroups of flavonoids including flavonols, isoflavones and flavones503.

The most likely source of endogenous agonists of AHR are the derivatives of tryptophan metabolism, due to the aromaticity of tryptophan. Dietary tryptophan is metabolised through four main pathways: through hydroxylation (serotonin and melatonin), transamination (indolepyruvic acid [IPA]), decarboxylation (tryptamine) and lastly through the kynurenine pathway, which accounts for 95\% of all dietary tryptophan metabolism504. However, AHR ligands can arise from all 4 pathways of tryptophan metabolism. Indeed, IPA can activate AHR and suppress experimental colitis in mice505 and tryptamine is a pro-ligand for AHR506. The downstream metabolite of tryptamine which activates AHR has so far evaded discovery. Other groups have shown that serotonin (5-hydroxytryptamine; 5-HT) is an endogenous activator of AHR in intestinal epithelial cells507 and we demonstrate here that one of serotonin’s downstream metabolites, 5-hydroxyindoleacetic acid (5-HIAA), can induce \textit{Cyp1a1} and \textit{Il10} expression in murine B cells. Kynurenine has been suggested to be an AHR ligand, but its physiological relevance as an AHR ligand has cast doubt due to the comparative concentration needed to elicit reporter activity in a hepatoma cell line, in comparison to the well-established AHR ligand 6-formylindolo[3,2-b]carbazole (FICZ)508. Instead, it is more likely that kynurenine, like tryptamine, serves as a pro-ligand for AHR. In support of this, downstream metabolites of kynurenine such as cinnabaric acid have been shown to be more potent AHR agonists509.

Amongst non-haematopoietic tissues, AHR expression is highest in liver, kidney, lung, skin and in the gut; all of which are exposed to high concentrations of endogenous AHR ligands510. Although the majority of AHR ligands are derived from the diet, site specific ligands can exist in high concentrations in other organs. FICZ is present in the skin and can activate AHR at picomolar concentrations511 and is formed through the photolysis of L-tryptophan by ultraviolet light512. It is perhaps unsurprising that AHR expression is ubiquitously expressed in all cell types in the derma513 and epiderma514, 515 layers of the skin, as a mechanism to respond to oxidative stress caused by UV light and to prevent excessive inflammation in response to the build-up of oxygen reactive species516. Given the ubiquitous expression of AHR in the body, especially at barrier sites, ligand
promiscuity is crucial to AHR’s role as an environmental sensor and allows for detection of diverse metabolites present at different barrier sites in the body and the regulation of cellular responses at these sites.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Type of metabolite or compound</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous ligands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3,7,8-Tetrachloro-(\alpha)-dioxin (TCDD)(^{688})</td>
<td>Polycyclic/halogenated aromatic hydrocarbons</td>
<td>Industrial pollutants</td>
</tr>
<tr>
<td>2,3,7,8-Tetrachlorodibenzo(a)furane(^{517})</td>
<td>Polycyclic/halogenated aromatic hydrocarbons</td>
<td></td>
</tr>
<tr>
<td>3,4,3,4’-Tetrachloroazoxybenzene(^{518})</td>
<td>Polycyclic/halogenated aromatic hydrocarbon</td>
<td></td>
</tr>
<tr>
<td>3,4,3,4’-Tetrachloroazobenzene(^{518})</td>
<td>Polycyclic/halogenated aromatic hydrocarbon</td>
<td></td>
</tr>
<tr>
<td>2,3,6,7-Tetrachlorodibenzofuran(^{519})</td>
<td>Polycyclic/halogenated aromatic hydrocarbon</td>
<td></td>
</tr>
<tr>
<td>3-Methylcholanthrene (3-MC)(^{520})</td>
<td>Polycyclic/halogenated aromatic hydrocarbon</td>
<td></td>
</tr>
<tr>
<td>3,3’,4,4’,5-pentachlorobiphenyl(^{521})</td>
<td>Polycyclic/halogenated aromatic hydrocarbon</td>
<td></td>
</tr>
<tr>
<td>Benzo[a]pyrene(^{522})</td>
<td>Polycyclic/halogenated aromatic hydrocarbon</td>
<td></td>
</tr>
<tr>
<td>7,12-dimethylbenz[a]anthracene(^{523})</td>
<td>Polycyclic/halogenated aromatic hydrocarbon</td>
<td></td>
</tr>
<tr>
<td>(\beta)-naphthoflavone(^{524})</td>
<td>Polycyclic/halogenated aromatic hydrocarbon</td>
<td></td>
</tr>
<tr>
<td>Omeprazole(^{524})</td>
<td>Benzimidazole</td>
<td>Synthetic</td>
</tr>
<tr>
<td>VAF347(^{525})</td>
<td>Pyrimidinylphenylamine</td>
<td></td>
</tr>
<tr>
<td>4-hydroxy-tamoxifen (4OHT)(^{526})</td>
<td>Triphenylethylene</td>
<td></td>
</tr>
<tr>
<td>6-Methyl-1,3,8-trichlorodibenzo(a)furane (6-MCDF)(^{527})</td>
<td>Alkyl polychlorinated dibenzofuran</td>
<td></td>
</tr>
<tr>
<td>Laquinimod(^{528})</td>
<td>Carboxamide</td>
<td></td>
</tr>
<tr>
<td>IMA-06201(^{529})</td>
<td>N.D</td>
<td></td>
</tr>
<tr>
<td>IMA-08401(^{530})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-chloro-7H-benzimidazo[2,1-a]benzo[de]isoquinolin-7-one (10-Cl-BBQ)(^{531})</td>
<td>Benzimidazoisoquinoline</td>
<td></td>
</tr>
<tr>
<td>Leflunomide(^{532})</td>
<td>N.D</td>
<td></td>
</tr>
<tr>
<td>(2‘Z,3‘E)-6-Bromo-1-methylindirubin-3’-oxime (MeBIO)(^{533})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pifithrin-(\alpha) hydrobromide(^{534})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endogenous ligands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malassezin(^{535})</td>
<td>Indole alkaloid</td>
<td>Yeast and/or fungi</td>
</tr>
<tr>
<td>Trypanthrin(^{536})</td>
<td>Alkaloid tryptophan derivative</td>
<td>Yeast and Plants</td>
</tr>
<tr>
<td>Bilirubin(^{537})</td>
<td>Haem metabolites</td>
<td>Host metabolism</td>
</tr>
<tr>
<td>Biliverdin(^{537})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipoxin A4(^{538})</td>
<td>Arachidonic acid metabolites</td>
<td>Host metabolism</td>
</tr>
<tr>
<td>Prostaglandin G2 (PGG2)(^{539})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Category</td>
<td>Type</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Leukotriene A4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroxyeicosatetraenoic acid ([12(R)-HETE])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirubin</td>
<td>Phytochemicals</td>
<td>Plants</td>
</tr>
<tr>
<td>Indigo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirubin-3’-oxime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallic acid</td>
<td>Phenolic acid</td>
<td></td>
</tr>
<tr>
<td>Norisolboline</td>
<td>Alkaloid</td>
<td></td>
</tr>
<tr>
<td>Indole</td>
<td>Indole metabolites</td>
<td>Dietary metabolite and microbiota metabolism</td>
</tr>
<tr>
<td>2-1(1’H-indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE)</td>
<td></td>
<td>Endogenous/chemical process</td>
</tr>
<tr>
<td>Indolo[3,2-b]carbazole (ICZ)</td>
<td></td>
<td>Dietary metabolite</td>
</tr>
<tr>
<td>2-(indol-3-ylmethyl)-3,3’-diindolylmethane (Ltr-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,3’-diindolylmethane (DIM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indole-3-acetonitrile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indole-3-carbinol (I3C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curcumin</td>
<td>Polyphenol</td>
<td>Fungi</td>
</tr>
<tr>
<td>Diosmin</td>
<td></td>
<td>Plants</td>
</tr>
<tr>
<td>Flavipin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrysin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galangin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genistein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baicalein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daidzein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apigenin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kynurenine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kynurenic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xanthurenic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cinnabarinic acid (CA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-formylindolo[3,2-b]carbazole (FICZ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Hydroxy-tryptophan (5-HT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Hydroxyindole-3-acetic acid (5-HIAA)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tryptamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indole-3-acetic acid (IAA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-methylindole (Skatoled)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indole-3-carboxaldehyde (I3A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-indoxyl sulfate (I3S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tapinarof</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butyrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propionate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iso-valerate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kynurenic acid</td>
<td>Tryptophan metabolites</td>
<td>Microbiome and/or host metabolism</td>
</tr>
<tr>
<td>Xanthurenic acid</td>
<td>Tryptophan metabolites</td>
<td>Microbiome and/or host metabolism</td>
</tr>
<tr>
<td>Cinnabarinic acid (CA)</td>
<td>Tryptophan metabolites</td>
<td>Microbiome and/or host metabolism</td>
</tr>
<tr>
<td>6-formylindolo[3,2-b]carbazole (FICZ)</td>
<td>Tryptophan metabolites</td>
<td>Microbiome and/or host metabolism</td>
</tr>
<tr>
<td>5-Hydroxy-tryptophan (5-HT)</td>
<td>Tryptophan metabolites</td>
<td>Microbiome and/or host metabolism</td>
</tr>
<tr>
<td>5-Hydroxyindole-3-acetic acid (5-HIAA)**</td>
<td>Tryptophan metabolites</td>
<td>Microbiome and/or host metabolism</td>
</tr>
<tr>
<td>Tryptamine</td>
<td>Tryptophan metabolites</td>
<td>Microbiome and/or host metabolism</td>
</tr>
<tr>
<td>Indole-3-acetic acid (IAA)</td>
<td>Tryptophan metabolites</td>
<td>Microbiome and/or host metabolism</td>
</tr>
<tr>
<td>3-methylindole (Skatoled)</td>
<td>Tryptophan metabolites</td>
<td>Microbiome and/or host metabolism</td>
</tr>
<tr>
<td>Indole-3-carboxaldehyde (I3A)</td>
<td>Tryptophan metabolites</td>
<td>Microbiome and/or host metabolism</td>
</tr>
<tr>
<td>3-indoxyl sulfate (I3S)</td>
<td>Tryptophan metabolites</td>
<td>Microbiome and/or host metabolism</td>
</tr>
<tr>
<td>Tapinarof</td>
<td>Stilbenoid</td>
<td>Bacterial derived</td>
</tr>
<tr>
<td>Butyrate</td>
<td>Short chain fatty acids</td>
<td>Microbiome</td>
</tr>
<tr>
<td>Propionate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iso-valerate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHR antagonists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Kaempferol[^562]</td>
<td>Flavonoids</td>
<td>Plants</td>
</tr>
<tr>
<td>Quercetin[^562]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myricetin[^553]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leuteolin[^553]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resveratrol[^563]</td>
<td>Stilbenoid polyphenol</td>
<td></td>
</tr>
<tr>
<td>CH-223191[^564]</td>
<td>N.D.</td>
<td>Synthetic</td>
</tr>
<tr>
<td>Stemregenin 1 (SR1)[^565]</td>
<td>Purine derivative</td>
<td></td>
</tr>
<tr>
<td>GNF351[^566]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3'-methoxy-4’-nitroflavone (MNF) [^567]</td>
<td>Flavonoids</td>
<td></td>
</tr>
<tr>
<td>3',4'-Dimethoxyflavone (DMF) [^568]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1. List of known endogenous and exogenous AHR agonists and antagonists. All agonists listed are defined by their ability to induce the expression of *Cyp1a1* or their ability to induce AHR driven XRE luciferase reporter activity in transfected cell lines. N.D. Not determined. **Novel AHR agonist in B cells identified by this group. Kynurenine is controversially listed as a ligand, as the concentration needed to elicit XRE driven luciferase reporter activity is higher than the physiological concentration in the body.**
1.5.4 Regulatory feedback loops

Unabated AHR signalling often leads to pathological responses, so AHR expression and activity need to be tightly regulated. Central to this process are several autoregulatory feedback loops, for example those involving the expression of the cytochrome P (CYP)450 group of enzymes. The CYP450 family are drug metabolising enzymes, expressed in many different cell types, which play a critical role in the oxidative metabolism of lipophilic compounds. One of these enzymes, CYP1A1, is expressed as a consequence of AHR binding to XRE upstream of the Cyp1a1 gene. CYP1A1 metabolises AHR ligands, thus negatively regulating AHR signalling. Certain AHR ligands, like the dietary phytochemicals and FICZ are more readily metabolised by CYP1A1. Other ligands like TCDD are more resistant to degradation and persist in the cytoplasm and nucleus (bound to AHR) of the cell. As a way to combat AHR ligands which persist and induce constitutive signalling, AHR induces the expression of the aryl hydrocarbon receptor repressor (AHRR). AHRR has a higher binding affinity for ARNT and can displace AHR from ARNT. Finally, AHR is degraded through the ubiquitin-proteasome pathway after activation.

1.5.5 The function of AHR in immunity

A link between AHR and the immune system was originally established after it was observed that TCDD given at increasing dosages in rodents, induced thymic involution and reduced lymphocyte counts. Reduced frequencies of circulating lymphocytes were also noted in humans accidently exposed to TCDD and related chemicals. AHR is expressed in most cells of the immune system, including, but not limited to, monocytes, DCs, mast cells, γδ T cells, innate-like lymphoid cells (ILCs), NK cells, Th17 cells, FOXP3+ Tregs, Tr1 cells and B cells. Furthermore, DREs are found in a multitude of genes important in orchestrating immune responses, highlighting the importance of AHR in regulating cellular and humoral mediated immune responses.

1.5.5.1 The role of AHR in T cell differentiation and function

Within the T cell subsets, AHR is highly expressed within the Th17 and Treg populations (both FOXP3+ Tregs and Tr1 cells). In Th1 and Th2 cells, AHR expression is restricted. AHR is known to promote the generation of Th17 cells and expression of IL-17 and IL-22. Administration of FICZ to mice leads to a
more severe course of EAE, with a reduction in FOXP3+ Tregs and an increase in Th17 cells581. In fact, FICZ and other natural agonists of AHR found in culture medium promote the differentiation of Th17 cells. Furthermore, blocking AHR inhibits Th17 differentiation583. Similarly, FICZ activation of AHR supports the generation of Th17 and Th22 cells in humans584, 585. AHR expression in Th17 cells is driven through IL-6 and IL-21 induced STAT3 expression586. AHR can then bind to the \textit{Il17} and \textit{Il22} loci and co-ordinate IL-22 expression by facilitating the recruitment of ROR\textgamma{}t to the \textit{Il22} promoter in IL-21 stimulated CD4+ T cells486, 587. It is worth noting that although Th17 cells are thought to be pathogenic in a variety of autoimmune diseases588, Th17 differentiation induced in response to TGF\beta{} and IL-6 can be anti-inflammatory in certain contexts589. This is in direct contrast to Th17 cells generated in the presence of IL-23, or in the presence of IL-1\beta{}, IL-6 and IL-23, which promote pathogenicity590, 591.

As well as promoting Th17 differentiation, AHR can contribute to the transdifferentiation of T cells by skewing Th17 cells towards the anti-inflammatory Tr1 cells; a process driven by TGF-\beta{} and SMAD3 signalling. Upon secondary infection with helminths, the number of Tr1 ex-Th17 cells are significantly increased. Tr1 ex-Th17 cells were also enriched in antigen specific MOG+CD4+ T cells, compared to MOG+CD4+ T cells in EAE. Intriguingly, in Tr1 ex-Th17, addition of FICZ increased IL-10592. The AHR agonist bilirubin also promotes immunosuppression by upregulating CD39 expression on Th17 cells and leads to the downregulation of IL-17 and upregulation of IL-10 in both mouse and human Th17 cells. Mice treated with bilirubin develop a less severe form of DSS colitis593. Collectively, these findings suggest that AHR contributes to the differentiation of Th17 cells, however does not determine whether the Th17 cell exerts pathogenic or suppressive function. Dependent on the cytokine milieu e.g. TGF\beta{} or IL-23, AHR plays a supportive role in the function of Th17 cells. The role of AHR in the transdifferentiation of Th17 to Tr1 cells, would seem to support the notion that AHR primarily acts as an immunosuppressive agent. However, how AHR dictates this process is unknown and it is likely that the dose of AHR ligands, the chronicity of AHR ligation and co-stimuli all play a part in this process.

The role of AHR in regulating IL-10 production by T cells is well defined. Initial studies demonstrated that AHR activation by TCDD could mediate suppression of
T cell responses. Recently, it has been reported that TCDD induces functional Tregs, which suppresses acute graft-versus-host disease and EAE. In addition, the AHR ligand norisoboldine (NOR) expanded CD4+CD25+FOXP3+ Tregs under hypoxic conditions, by inhibiting glycolysis in an AHR-dependent manner. NOR treatment of mice, much like TCDD, alleviated colitis. Culture of naïve CD4+CD25− T cells with kynurenine can also increase the frequencies of CD4+CD25+FOXP3+ Tregs.

Upregulation of AHR in Tr1 occurs through IL-27 signalling. Mechanistically, AHR forms part of a transcriptional complex with c-MAF and transactivates both the Il10 and Il21 promoters in Tr1 cells. Interestingly, in this study, both FICZ and TCDD led to the upregulation of IL-10. Optimal IL-10 and IL-21 production was achieved by culturing naïve T cells with TGFβ, IL-27 and FICZ. MOG (35-55) peptide and IL-27 activated CD4+ T cells, were able to suppress EAE disease upon adoptive transfer into recipient mice. However, this was not the case in mice receiving MOG (35-55) peptide and IL-27 activated donor Ahr^{did} (non-responsive allele) CD4+ T cells, suggesting Tr1 cell mediated suppression was dependent on the expression of functional AHR. Concordantly, in human CD4+ T cells, activation of AHR through TCDD, drove the differentiation of CD4+FOXP3− Tr1 cells and the upregulation of IL-10. Granzyme B was also upregulated and required for CD4+FOXP3− Tr1 cells to suppress effector T cells. Addition of TGF-β1 and TCDD to naïve CD4+ T cells induced FOXP3+ Tregs, which suppressed effector T cells through expression of CD39. More recently, it has been shown that the cytokine Activin-A induces the differentiation of human Tr1 cells. Activin-A signalling induced the expression of AHR, IRF4 and MAF. These transcription factors co-operated as a part of a transcriptional complex which bound to the Il10 locus and upregulated the expression of IL-10.

In addition to enhancing IL-10 production by FOXP3+ Tregs and Tr1 cells, AHR also maintains Tr1 function by metabolic reprogramming. HIF1α controls the early metabolic programming of Tr1 cells and is required for the initial production of IL-10. However, long term production of IL-10 is dependent on AHR signalling and the role of AHR in supporting the degradation of HIF1α. AHR also controls cellular processes of Tregs by modulating the chromatin remodelling of these cells. In CD4+ T cells stimulated with anti-CD3 and anti-CD28, addition of TCDD reduced
the methylation of the *Foxp3* locus, whilst simultaneously increasing the methylation of the *Il17* locus. The *Foxp3* gene needs to be in its unmethylated state to be transcribed. Whether AHR causes displacement of HDACs, or recruits chromatin remodelling complexes to the *Foxp3* locus is not known.

1.5.5.2 AHR in the regulation of B cell responses

In contrast to the wealth of knowledge available in the literature describing the role of AHR in T cells, the function of AHR in B cell biology is less well characterised. Through work on the prototypical ligand TCDD, initial studies identified three key roles of AHR on B cells, which laid down foundations for further study characterising these processes. AHR influences the activation and proliferation of B cells, B cell development and antibody production. Although TCDD has been instrumental in determining much of the knowledge we know regarding the role of AHR in B cells, it is a persistent activator of AHR and is resistant to degradation, so does not reflect the physiological role of AHR activity in B cells. Equally, different ligands can induce tissue specific and cell specific outcomes in a context dependent manner. As such, it is important to identify the role of endogenous ligands in AHR-driven regulation of B cell responses. Both the endogenous ligands of AHR in B cells and their role in shaping B cell responses remain very poorly characterised. Nevertheless, the role of TCDD and other HAH and PAH ligands in shaping these processes will be summarised below.

Initial work characterising the antibody response after TCDD treatment, revealed that guinea pigs receiving tetanus toxoid reduced the serum levels of anti-tetanus toxin antibodies in a dose dependent response to TCDD treatment. Later studies confirmed these findings by showing TCDD treated mice had reduced numbers of antibody secreting cells to both a series of TD and TI antigens. Treatment of mice with TCDD and sensitisation of mice *in vivo* to TD antigens (sheep RBC’s), TI antigens (dinitrophenyl–ficol, trinitrophenyl-lipopolysaccharide) or polyclonal activators of B cells (anti-Ig or LPS) revealed equivalent suppression of the IgM response regardless of the type of antigen used. More importantly, the addition of TCDD to LPS activated B cells *in vitro*, suppressed the IgM response, demonstrating a direct effect of TCDD on B cells. Morris *et al* showed that it was the highly proliferative B cells in the G1 phase of the cell cycle that were more susceptible to the refractory effects of TCDD. The immunotoxic role of TCDD...
was first directly demonstrated by direct binding of TCDD-bound AHR to the XRE regions of the 3’IgH transcriptional regulatory region (3’IgHRR) in the mouse B cell lymphoma derived cell line CH12.LX and purified mouse splenic B cells, which led to the downregulation of secreted IgM\(^{608, 609}\). The 3’IgHRR region is a 40k region upstream of the constant \(\alpha\) region, and contains four enhancers called DNaseI hypersensitive sites (hs) 3, hs1,2, hs3b and hs4\(^{610}\). In tandem, TCDD treatment of LPS activated CH12.LX B cells, also led to downregulation of Igk, the J chain and XBP1\(^{611}\). Importantly, deletion of this regulatory region leads to the cessation of Ig heavy chain production\(^{612}\). This region also plays a crucial role as deletion of the two 3’ enhancers hs3b and hs4, impairs class switching\(^{613}\).

The addition of TCDD and its timing, either prior to or post-antigen sensitisation is also important. Adding TCDD prior to, or at the time of, antigen sensitisation marks a large suppression of the IgM response. TCDD added post antigen sensitisation (1-5 days) saw a marked decrease in the strength of this response\(^{604, 606}\). Data from these studies suggested that AHR affected B cell development, as TCDD only inhibited the IgM response during a narrow time frame around antigen activation. Data from these studies prompted research into the role of TCDD-driven AHR activation on B cell development.

Activation of AHR occurs throughout the B cell maturation process, occurring from the HSC stage right through to the terminal differentiation of B cells. As such the expression of AHR is tightly regulated throughout the maturation process and is highly expressed at certain stages to exert its function as an environmental sensor. We know for instance that AHR is highly expressed in MZ B cells, peritoneal B-1 cells and in Peyer’s patches B cells; all sites at which these cells carry out immunosurveillance for pathogens and their associated antigens. Indeed, BCR signals are key for driving the induction of AHR expression, which could explain why both pro- and pre-B cells express very low levels of AHR\(^{614, 615}\). Since developing B cells in the bone marrow are more susceptible to environmental stressors and to clonal deletion by the binding of self-antigen, it was hypothesised that bone marrow B cells would be more susceptible to signals through AHR\(^{614}\). Indirect activation of AHR in bone marrow cultures with the AHR agonist 7,12-dimethylbenz [a]anthracene rapidly induced apoptosis in pre-B cells at very low doses (10nM)\(^{616}\). Activation of AHR in bone marrow stromal cells was responsible
for the apoptosis of pro- and pre-B cells, as co-culture of Ahr^{−/−} stromal cells with a bone marrow-derived preB cell line (BU-11) in the presence of PAHs, failed to induce apoptosis of preB cells. Conversely, co-culture of Ahr^{+/+} stromal cells with preB cells was able to induce apoptosis⁶¹⁷. These data suggested that AHR could influence early B cell development, indirectly through altering the bone marrow milieu. Very little is known regarding AHR function from the transitional B cell to mature B cell stages.

In contrast, the role of AHR in terminal differentiation has been extensively studied. AHR is important for inhibiting the terminal differentiation of B cells. In humans, <i>in vitro</i> CD40L-induced differentiation of B cells into plasma cells is inhibited by the addition of the PAH benzo[a]pyrene⁶¹⁸. In addition to its role in regulating Ig production, follow-up studies in mice have shown that AHR acts as a critical overseer in managing the transcriptional network governing mature B cell differentiation and function (summarised in Figure 1.6). As eluded to earlier, BLIMP-1 is essential in driving the differentiation of mature FO B cells to plasmablasts and then plasma cells. BLIMP-1 suppresses the induction of Aicda and promotes the expression of <i>lrf4</i>, two key events in the terminal differentiation of B cells²⁴⁵. Of note, AHR inhibits the expression of BLIMP-1 through transrepression of the <i>Prdm1</i> gene. This involves two separate processes; 1) AHR suppression of AP1 and 2) AHR induction of Bach2 expression. TCDD activated AHR inhibits AP-1 expression and reduced AP-1 binding to the <i>Prdm1</i> promoter, thereby inhibiting BLIMP-1 expression⁶¹⁹. Suppression of BLIMP-1 also occurs through AHR-mediated upregulation of BACH2, a transcription factor important in memory B cell development and for the repression of BLIMP-1^{620,621}. Activation of B cells with TCDD, leads to AHR binding to the first intron of the <i>Bach2</i> gene, thereby facilitating its expression and indirectly repressing BLIMP-1 by BACH2 mediated binding of the <i>Prdm1</i> gene.⁶²⁰

Furthermore, TCDD activation of AHR led to a reduction in BLIMP-1 binding of the <i>Pax5</i> promoter⁶¹⁹. In normal B cell development, BLIMP-1 expression and the loss of PAX5 expression is required for plasma cell differentiation⁶²². It is important to note that no direct binding of AHR to the <i>Prdm1</i> gene in B cells has been reported. Further highlighting the ligand and cell-context specific role of AHR activation, methylcolanthrene bound AHR, either directly or indirectly, increases BLIMP-1
expression in epidermal keratinocytes. Using mathematical modelling, Zhang et al. showed that TCDD mediated repression of terminal B cell differentiation occurred in a binary fashion. That is to say that TCDD reduced the number of IgM-secreting cells in a dose-dependent manner, rather than proportionally reducing the individual plasma cell amount of secreted IgM. The authors hypothesised that TCDD might delay B cell differentiation and increase the chances of class switching. In fact, the converse is true, as we now know that AHR plays a crucial role in CSR. TCDD treated mice infected with influenza have a reduction in the virus-specific IgG, compared to the vehicle control group. More recently, Vaidyanathan et al. show that AHR can negatively regulate CSR in the absence of any infection, through binding of AHR to the Aicda gene and negatively regulating its expression. Moreover, addition of TCDD to B cells cultured with LPS and anti-IgD dextran reduced the frequencies of IgG3+ and IgA+ B cells. Mixed bone marrow chimeras containing WT CD45.1 and Ah+/− CD45.2 B cells revealed that in mice immunised with 4-Hydroxy-3-nitrophenylacetyl-chicken gamma globulin (NP-CGG), a TD antigen, Ah+/− mice contributed to a greater proportion of the NP-specific IgG1+B cell pool. Moreover, chimeric mice infected with the PR8 strain of influenza, revealed that no differences in the frequencies of GC B cells were observed between the WT B cells and Ah+/− B cells. However, within the B220+GL7+IgG1+ GC B cell population, Ah+/− B cells accounted for over 80% of the haemagglutinin antigen specific B cells. In parallel, more B220loCD138+ plasma cells were also derived from Ah+/− B cells, thus highlighting the critical role of B cell AHR expression in restraining both CSR and terminal differentiation of B cells.

In addition to regulating B cell maturation, AHR also controls the activation and proliferation of B cells. Stimulation of B cells with IL-4, LPS or activation through the BCR can all induce the expression of AHR in B cells and can act in synergy to further increase AHR expression. In human B cells, both TLR9 activation through CpG-B and CD40 activation can induce AHR expression. Unlike STAT3 in T cells, the transcription factors which upregulate AHR in B cells remains unknown, although the NF-κB pathway has been ruled out. Resting B cells express low levels of AHR, which is then increased upon activation. This is in direct contrast to naïve T cells, who per se do not induce AHR expression upon activation. It is tempting to speculate that B cells, after activation, upregulate AHR to respond to environmental cues and regulate their responses in a ligand
dose-dependent manner. Recently, Villa and colleagues have shown that AHR deficiency in B cells, impairs their ability to proliferate in response to anti-IgM. Moreover, the proliferation of antigen specific B cells are impaired in AHR deficient B cells. AHR increased the proliferative capacity of splenic B cells after BCR ligation, through interaction with the cell cycle regulator cyclin O615.

In conclusion, whilst TCDD has given researchers an insight into the role of AHR in directing B cell responses, these processes in vivo are likely to be more transient and much more complex, due to rapid turnover and metabolism of endogenous ligands. Thus, to obtain a more physiological readout of AHR in B cell function, we opted to use the potent endogenous AHR activator FICZ and also to utilise both global and B cell specific AHR knockout mice. We report a role of AHR in the differentiation and maintenance of IL-10+Bregs and identify a novel AHR ligand 5-HIAA, which promotes Breg function.
Figure 1.6. AHR regulates the transcriptional network governing terminal B cell differentiation. AHR inhibits the differentiation of activated B cells into plasma cells via transrepression of *Prdm1*, through the upregulation of Bach2. XRE sites have been reported in the *Xbp1* locus, but no direct regulation has been observed.
1.6 The role of short chain fatty acids in the immune system

Short chain fatty acids (SCFAs) are a metabolic by-product produced by the fermentation of dietary fibre by anaerobic bacteria628, 629. Whilst SCFAs can be produced naturally by host metabolism in the liver, the major site of production is in the colon, where anaerobic bacteria thrive630. Acetate, propionate and butyrate are the main SCFAs produced and the concentrations of these metabolites vary according to the diet, host genetics and importantly, the composition of the microbiota. Members of the \textit{Bacteroidetes} phylum are primary producers of acetate and propionate, whilst the \textit{Firmicutes} phylum are the predominant source of butyrate631. SCFAs can activate at least 4 known G-protein-coupled receptors (GPCRs); the free fatty acid receptors (FFAR)2 and FFAR3 (also known as GPR43 and GPR41), the olfactory receptor-78 and the niacin/butyrate receptor GPR109a632. Although GPR43 and GPR41 can bind to propionate, acetate, butyrate and other SCFAs, both receptors primarily bind to acetate and propionate628, 633. In contrast, GPR109a selectively binds to butyrate and niacin634. Additionally, SCFAs can enter a cell through the sodium-coupled monocarboxylate transporter 1 (SLC5A8) and can exert their epigenetic modulatory function once inside a cell635.

SCFAs can exert distinct functions on colonocytes and on immune cells through several distinct mechanisms, which include their direct role as histone deacetylase inhibitors (HDACi), activation of histone acetyltransferase, stabilisation of hypoxia inducible factors or signalling by the GPCRs,636, 637, 638, 639 More recently, butyrate has been shown to enhance histone crotonylation which, like acetylation, occurs at the lysine residues640. The effects of histone crotonylation on gene expression are unclear, as this epigenetic modification can both activate and inhibit gene expression640, 641. Lastly, butyrate has been shown to induce other epigenetic modifications including histone methylation, inhibition of histone phosphorylation, DNA methylation and hyperacetylation of non-histone proteins642, 643, 644, 645. These data highlight the diverse functions of SCFAs in the epigenetic regulation of gene expression.

SCFAs can induce a pro-inflammatory or tolerogenic profile in immune cells, depending on the cell type, type of stimulation, the environment and on the type of SCFA. Of the SCFAs, butyrate has been shown to have an anti-inflammatory role.
in multiple cell types632. Butyrate suppresses the production of nitric oxide, IL-6 and IL-12p40 by murine bone marrow derived macrophages and colonic lamina propria macrophages upon culture with LPS. However, no suppression was seen with acetate and propionate, suggesting SCFA specific effects on the regulation of immune responses. Suppression of pro-inflammatory cytokine expression in these cells is mediated by butyrate’s role as a HDACi, and the resulting increase in histone 3 lysine 9 acetylation at the promoter regions of \textit{Il2}, \textit{Il12b} and \textit{Nos2} genes646. Indeed, through its role as a HDACi, butyrate drives monocyte to macrophage differentiation and increases macrophage antimicrobial activity. Mice given butyrate have increased resistance to enteropathogens647.

The role of SCFA’s in T cell differentiation and function have been well characterised. SCFAs regulate T cell differentiation, both through direct activation of T cells or indirectly by modulating DC function629. Mice lacking the SCFA transporter SLC5A8, do not induce the expression of indoleamine 2,3-dioxygenase (IDO)1 or aldehyde dehydrogenase (ALDH)1A2 upon exposure to butyrate. Unlike the WT counterparts, \textit{Slc5a8}-/- DCs are unable to convert naïve Tregs to FOXP3+ Tregs and do not inhibit the generation of IFN-\(\gamma\) expressing T cells in a model of colitis648. In addition, butyrate can promote tolerogenic macrophage and DC generation through activation of the butyrate receptor GPR109A, which induces the expression of IL-10 and ALDH1A1 in colonic DCs and macrophages from WT mice. GPR109A-activated DCs promote the differentiation of naïve CD4+ T cells to FOXP3+ Tregs and provide protection against DSS colitis649.

Butyrate can also act directly on CD4+ T cells through increasing the acetylation of the non-coding sequence regions of the \textit{Foxp3} locus, thereby promoting the differentiation of naïve CD4+ T cells to FOXP3+ Tregs650, 651. SCFAs can also impact the differentiation of other T helper cell subsets. Mice treated with propionate are protected from allergic airway inflammation, due to an impairment in DCs to induce Th2 differentiation652. Similarly, acetate influences the generation of Th17 and IL-10+ T cells, through increasing the acetylation of p70 S6 kinase; a downstream target of the mammalian target of rapamycin (mTOR) pathway653. The mTOR pathway is required for the generation of effector and regulatory cytokine production by T cells, including IFN-\(\gamma\), IL-10 and IL-17654.
1.6.1 The regulation of B cell responses by SCFAs - a proposed role for AHR?

To date, elucidating the role of SCFAs on B cell responses have been limited to the effects of SCFAs on the humoral response. Initial studies revealed that mice fed a high fibre diet had increased numbers of IgA⁺ plasma cells in the lamina propria and IgA⁺ GC B cells in the Peyer’s patches (PP), which was attributed to the effect of propionate. Mice fed a high fibre diet or a low fibre diet supplemented with propionate increased the expression of Aicda in PP B cells and class switching towards IgA⁺ expressing cells. Importantly, both the CNS regions and the class switch regions of the Aicda and Igha loci respectively, had increased acetylation, suggesting that SCFAs regulated this response through its role as an HDACi.

The increase in intestinal IgA was later suggested to be driven by SCFA sensing by the GPR43 receptor, as GPR43 KO mice had reduced levels of faecal IgA⁺ and reduced frequencies of IgA⁺ expressing B cells in the lamina propria. Furthermore, unlike in control WT mice, treatment of Gpr43⁻/⁻ mice with acetate failed to increase faecal IgA levels. Acetate driven IgA production was shown to be partially dependent on GPR43-induced retinoic acid production by DCs. It is important to note that butyrate did not increase IgA levels in this study, thus reinforcing the idea that each SCFA can exert different functional roles in the regulation of B cell responses.

In direct contrast to the previous studies, Sanchez et al reported that administration of butyrate and propionate together reduced the levels of IgM, IgG and IgA-expressing B cells in the lamina propria, PPs and MLNs. After challenge with both TD (NP-CGG) and TI antigens (NP-LPS), mice receiving butyrate and propionate had reduced serum levels of IgM, IgG1 and IgA. Importantly, administration of SCFAs to WT mice decreased CSR, by reducing the expression of Aicda and also reduced terminal differentiation of B cells to plasma cells by inhibiting Prdm1. These effects were attributed to the role of butyrate and propionate as HDAC inhibitors, as the selective GPR43 antagonist GLPG0974 did not affect the suppression of Aicda or Prdm1 by butyrate or propionate. Whilst the reasons for contrasting results between the studies are not entirely explained, it is likely that the type and dose of SCFA affect the outcome of SCFAs on CSR and terminal differentiation.
As detailed in the previous sections, there are notable functional similarities between the role of AHR and SCFAs in the regulation of B cell responses. Notably, both AHR and SCFAs reduce CSR by inhibiting $Aicda$ expression, halt the terminal differentiation of B cells and reduce the levels of secreted immunoglobulin. Indeed, several lines of evidence link the effects of SCFAs to AHR activation. Butyrate has been shown to be a direct AHR ligand in an intestinal epithelial cell line561. In addition, butyrate can also enhance TCDD-driven AHR activation in mouse colonocytes658. These data combined led us to hypothesise that SCFAs regulate B cell responses in an AHR-dependent manner.
CHAPTER II: Materials and Methods

2.1. Mice

2.1.1 Mouse strains

All mice were generated on a C57BL/6 background. C57BL/6 WT mice were purchased from Envigo, UK; B6.129S2-Lgdm1Cgn/J (µMT) mice were purchased from Jackson, USA. IL-10eGFP mice were as described\cite{659}, courtesy of Prof Karp; 129(B6)-Il10tm1Cgn/J (Il10^{-/-}) mice were kindly given courtesy of Professor Fiona Powrie (Kennedy Institute of Rheumatology Oxford University); B6.SJL-PtpraPepcb/BoyJ (CD45.1) mice were kindly given courtesy of Professor Derek Gilroy (University College London). Ahr^{-/-}, Ahr^{+/+}, Mb1^{cre/cre}, Ahr^{fl/fl}R26R^{fl/fl} (courtesy of Prof Reth) and Ahr^{-/-}Mb1^{cre/cre} mice were kindly provided by Prof. Brigitta Stockinger. Ahr^{fl/-}Mb1^{cre/+} were generated by crossing male Ahr^{-/-}Mb1^{cre/cre} with female Ahr^{fl/fl}R26R^{fl/fl} mice. Mice were used at 6–12 weeks of age and were age- and sex-matched. All mice were bred and maintained at the animal facility, University College London. All experiments were approved by the Animal Welfare and Ethical Review Body of University College London and authorized by the United Kingdom Home Office.

2.1.2 Genotyping of mouse strains

Ear clips were taken from mice and processed using a KAPA HotStart mouse genotyping kit (Sigma-Aldrich), according to manufacturer’s instructions. Briefly, ear clips ∼2mm in diameter were incubated in 100µl lysis buffer containing 88µl H2O, 10µl 10x KAPA express extract buffer and 2µl KAPA express extract enzyme (20,000 U/ml). Ear tissue was incubated at 75°C for 10 mins, followed by 95°C for 5 minutes. Extracts were diluted 10-fold in Tris-HCL (pH 8.0-8.5).

PCR was carried out on the diluted DNA extracts in a volume of 25µl, consisting of 1µl of DNA extract or H2O (no template control), 12.5µl of 2x KAPA2G Fast (Hotstart) genotyping mix with dye, 1.25µl of each primer and topped up with H2O to 25µl. Primers were used at a final concentration of 0.5µM. Primer sequences against genomic DNA were custom designed using Primer-BLAST or using the previously described sequences on the Jax website. Primers for Mb1 were designed to span exons 2+3; the deleted segments in Mb1^{cre} mice. The following
primer sequences were used for genotyping: \textit{Ahr} common forward (5’-AACTAGGTAAGTCACTCAGCATTACA-3’), \textit{Ahr} wild type reverse (5’CCCCTCTACTATAGTGCTACCCCAAC-3’), \textit{Ahr} mutant reverse (5’CTAAAGCGCATGCTCCAGAC-3’), \textit{Mb1} forward (5’-GTACGGCTCCACTCCTGATG-3’), \textit{Mb1} reverse (5’-GGAAGAAAGAGGGAGCAGGG-3’). PCR reactions were run with using the following cycling parameters in Table 2.1, using a TGradient (Biometra) thermocycler.

<table>
<thead>
<tr>
<th>Step Number</th>
<th>Temp (°C)</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>94</td>
<td>2 mins</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>94</td>
<td>20 sec</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>15 sec</td>
<td>0.5°C decrease per cycle</td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>10 sec</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Various</td>
<td>Various</td>
<td>Repeat steps 2-4 for 10 cycles (Touchdown)</td>
</tr>
<tr>
<td>6</td>
<td>94</td>
<td>15 sec</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>15 sec</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>72</td>
<td>10 sec</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Various</td>
<td>Various</td>
<td>Repeat steps 6-8 for 28 cycles for genotyping \textit{Ahr} and 25 cycles for \textit{Mb1}.</td>
</tr>
<tr>
<td>10</td>
<td>72</td>
<td>2 mins</td>
<td></td>
</tr>
</tbody>
</table>

\textbf{Table 2.1.} PCR cycling parameters used for genotyping.

Amplicon lengths were assessed by using a 1% w/v agarose gel (1% agarose, 1x Tris-Acetate-EDTA; Sigma-Aldrich). SYBR™ Safe DNA stain (ThermoFisher Scientific) was included in the gel mix at a 1/10,000 dilution. 15µl of the PCR product (dye already intercalated) or 5µl of Hyperladder™ 1kb (Bioline) DNA ladder were loaded into a well and the gel was run at 90v for 40 minutes. The gel was assessed by UV light for DNA bands, using the ChemiDoc™ XRS imager and Quantity One software (BioRad).

\section*{2.2 Induction of antigen-induced arthritis (AIA)}

AIA was induced by injecting mice subcutaneously at the tail base with 200µg of methylated BSA (mBSA; Sigma-Aldrich) emulsified in 100µl Complete Freund’s Adjuvant (CFA). CFA was made by mixing 3mg/ml of \textit{Mycobacterium tuberculosis} (Difco) in Incomplete Freund’s Adjuvant (IFA; Sigma-Aldrich). After 7 days, mice
received an intra-articular (IA) injection of 10 µl of PBS containing 200 µg mBSA in the right knee and 10 µl PBS alone in the left knee as a control. Joint size was measured using callipers (POCO 2T; Kroeplin GmbH) at daily intervals and swelling was calculated as a percentage increase in size between the inflamed and control knee. All experiments, unless stated otherwise, were carried out at day 7 post-IA injection.

2.3. Short-chain fatty acid supplementation
1 week prior to the induction of arthritis the drinking water of mice was supplemented with sodium acetate, sodium propionate or sodium butyrate (all 150 mM; Sigma-Aldrich) and changed every 3 days as previously described. The control group received sodium chloride. Mice were maintained on SCFAs throughout the duration of the experiment. For RNA-seq and ATAC-seq analysis, mice were gavaged daily with 500 mg/kg of sodium butyrate to reduce variation caused by individual differences in daily water intake. Control mice received a gavage of 500 mg/kg of sodium chloride. For antibiotic-treated experiments, one week prior to induction of arthritis, vancomycin (500 mg/L; Sigma-Aldrich), Neomycin (1 g/L; Sigma-Aldrich), and Metronidazole (1 g/L; Sigma-Aldrich) were added to drinking water as previously described. Untreated and treated mice were then gavaged daily with 500 mg/kg of sodium butyrate or sodium chloride as a control. Mice were maintained on antibiotics throughout the duration of the experiment. For L-para-chlorophenylalanine (PCPA) experiments, mice were supplemented with butyrate as described above and gavaged daily with PCPA (4 mg per mouse) in a suspension of 0.5% methyl cellulose and 0.01% Tween 80. Control mice received vehicle alone.

2.4 Gavage with 5-hydroxyindole-3-acetic acid and kynurenic Acid
Mice were gavaged daily from 1 week prior to the induction of arthritis and throughout the experiment with either 5-Hydroxyindole-3-acetic acid (5-HIAA, 0.5 mg per mouse) or kynurenic acid (KYNA, 0.125 mg per mouse) dissolved in oil. Control mice received vehicle alone.

2.5 Histology
Affected joints from Ahr^{fl/fl}Mb^{cre/+} and Mb^{cre/+} mice were removed post-mortem, fixed in 5% (w/v) buffered formalin, and decalcified in 5% EDTA. The joints were
subsequently embedded in paraffin, sectioned, and stained with hematoxylin and
eosin Y (H&E). Briefly, the sections were rehydrated in PBS, stained with
hematoxylin, washed, counterstained with eosin Y, then washed and dehydrated
in sequentially higher concentrations of ethanol from 75% to 100%. The sections
were scanned using the NDP NanoZoomer (Hamamatsu) at 20x magnification and
analyzed with the NDP view software.

2.6 Generation of chimeric mice
Recipient WT mice received 800cGy gamma-irradiation via a caesium source. 5 h
following irradiation, recipients received 10x10^6 donor bone marrow cells. To
generate CD45.2^Ahr^-/^-CD45.1^+ congenic chimeric mice, WT mice were
reconstituted with 10x10^6 donor bone marrow cells containing 50% from CD45.1^+
WT mice and 50% from CD45.2^Ahr^-/^- mice. To generate mice in which the
absence of IL-10 was exclusively restricted to B cells, WT mice were reconstituted
with mixture of bone marrow consisting of 80% from µMT (B cell deficient) with
20% from Il10^-/- mice. Control mice received 80% from µMT and 20% bone marrow
from WT mice (to give a normal B cell compartment). Chimeras were left to fully
reconstitute at least 8 weeks before use in AIA experiments.

2.7 Murine cell isolation and preparation of single cell suspensions
To make complete RPMI-1640, media was supplemented with 10% fetal calf
serum, 1% penicillin/streptomycin (P/S; 100U/ml Penicillin + 100µg/ml
streptomycin; Sigma-Aldrich). In addition, 50µM 2-mercaptoethanol (ThermoFisher
Scientific) was added to the media. All FCS was heat inactivated before use in
culture. All wash steps were carried out by adding 30ml complete RPMI media to
the cell suspension and included a centrifugation step at 500xg for 10 minutes,
unless otherwise stated.

2.7.1 Preparation of cell suspensions from lymphoid organs
Spleens, draining lymph nodes (DLNs) and MLNs were dissected post-mortem
from mice and collected in complete RPMI, on ice. For splenocyte and lymph node
cell preparation, organs were mashed through a 70µM cell strainer (BD
Biosciences) into a 50ml centrifuge tube, using the plunger of a sterile 5ml syringe.
Collected splenic cell pellets were lysed using 1ml of Red Cell Lysis Buffer (Sigma-
Aldrich) per spleen. The cell pellet was resuspended with 1ml RBC lysis buffer and
left for 1 min at room temperature. The cell suspension was then washed and resuspended in 10ml complete RPMI for cell counting.

2.7.2 Isolation of lymphocytes from bone marrow
Femur bones from mice were collected post-mortem and stored in complete RPMI on ice. The bone marrow cells were flushed from the femur bones with 1x PBS (Sigma-Aldrich), using a 0.5ml syringe (29G). The resulting tissue was mashed through a 70µM cell strainer and the cells were washed with complete RPMI, before counting.

2.8 Isolation of murine B cell subsets

2.8.1 Isolation of murine CD43⁺ B cells using magnetic beads
Total splenocytes or cells isolated from lymph nodes were resuspended in MACS buffer (2% FCS, 2mM EDTA), before labelling cells with beads targeting CD43. A column based negative selection kit for the isolation of CD43⁺ cells (Miltenyi Biotec) was used for the isolation of untouched resting B cells, as per manufacturer instructions. B cell purity was routinely >90% (Figure 2.1).

![Figure 2.1. Splenic B cell purity plots.](image)

Representative flow cytometry plots showing the frequency of CD19⁺ B cells from *Mb1cre*⁺ and *Ahrfl*⁻*Mb1cre*⁺ mice, following negative selection.

2.8.2 Isolation of murine lymphocyte subsets by FACS sorting
For isolation of murine B cell subsets from the spleen, total B cells were initially isolated by CD43-based negative selection and then were washed twice with MACS buffer, prior to staining. Cells were stained at 50M/ml for 30 minutes at 4°C with the following antibodies: CD19 BV785 (6D5), CD21 APC (7E9), CD23 FITC (B3B4) and CD24 PE-Cy7 (M1/69). B cell subsets were sorted using a cell sorter (FACSAria; BD Pharmingen). Dead cells were excluded by the use of 4,6-diamidino-2-phenylindole at 0.5µg/ml (DAPI; Sigma). For RNA-seq, ATAC-seq and
microarray data sets the addition of BV605 dump channel antibodies against CD3 (17A2), CD4 (RM4-5), CD8a (53-6.7), CD11b (M1/70), CD11c (N418), F4/80 (BM8), LY6C/G (RB6-8C5), erythroid cells (TER-119) and TCRβ (H57-597) were incorporated (Biolegend). For isolation of T cell subpopulations, cells were stained with CD3 BV605 (17A2), CD4 BV711 (RM4-5) and CD25 APC (PC61).

For both murine B cell subpopulations, sort purity of B cell subpopulations was routinely >90% (Figure 2.2). Cells were collected into 1xPBS (50% FCS) in polypropylene FACS tubes and washed with complete RPMI media.

![Figure 2.2. Gating strategy and purity plots for CD19^+CD21^{hi}CD24^{hi} B cells. Representative flow cytometry plots showing CD19^+CD21^{hi}CD24^{hi} B cells from Mb1^{cre/+} (left plots) and Ahr^{fl/fl}Mb1^{cre/+} (right plots) mice prior to sorting (top plots) and purity of CD19^+CD21^{hi}CD24^{hi} B cells after sorting (bottom plots).](image)

2.9 Adoptive transfer of CD19^+CD21^{hi}CD24^{hi} B cells from Ahr^{fl/fl}Mb1^{cre/+} and control Mb1^{cre/+} mice
CD19^+CD21^{hi}CD24^{hi} B cells were FACS-sorted from spleens of Ahr^{fl/fl}Mb1^{cre/+} and control Mb1^{cre/+} mice after remission from AIA and 5x10^6 were transferred into recipient wild-type mice on the day of intra-articular injection. The control group (no transfer) received a PBS injection.
2.10 Congenic adoptive transfer of CD19*CD21^{hi}CD24^{hi} B cells from \(Ahr^{fl/-}Mb1^{cre/+} \) and control \(Mb1^{cre/+} \) mice

CD45.2*CD19*CD21^{hi}CD24^{hi} B cells (0.75x10^6) were isolated from control and butyrate supplemented WT and \(Ahr^{-/-} \) mice seven days’ post-disease onset and adoptively transferred into recipient CD45.1* mice on the day of intra-articular injection.

2.11 Adoptive transfer of IL-10eGFP*CD19*CD21^{hi}CD24^{hi}Bregs

IL-10eGFP*CD19*CD21^{hi}CD24^{hi} Bregs (2.3x10^5) were isolated from control or butyrate treated IL-10eGFP (Vert-X) reporter mice seven days' post-disease onset and adoptively transferred intravenously into recipient WT mice on the day of intra-articular injection.

2.12 Adoptive transfer of Tregs

CD3*CD4*CD25^{+} Tregs were isolated from butyrate-supplemented and control \(Mb1^{cre/+} \) and \(Ahr^{fl/-}Mb1^{cre/+} \) mice seven days’ post-disease onset and CD3*CD4*CD25^{+} Tregs (2x10^5) were transferred intravenously into recipient WT mice on the day of intra-articular injection. The control group (no transfer) received a PBS injection.

2.13 Cell culture

Cells were cultured at 37°C with 5% CO_2 with either RPMI-1640 (Sigma-Aldrich) containing L-glutamine and NAHCO_3 or Iscove’s Modified Dulbecco’s Medium (IMDM; Pan Biotech; murine cultures only), enriched in AHR agonists, supplemented with L-Glutamine and 25mM HEPES. Both media were supplemented with 10% fetal calf serum (LabTech), 1% penicillin/streptomycin (100U/ml Penicillin+100µg/ml streptomycin; Sigma-Aldrich) and, for murine culture, 50µM 2-Mercaptoethanol (ThermoFisher Scientific) was added. Cells were cultured at 2.5x10^6/ml in a 96 well round-bottom plate. For intracellular cytokine staining, phorbol 12-myristate 13-acetate (PMA; 50ng/ml; Sigma-Aldrich), Ionomycin (250ng/ml; Sigma-Aldrich) and Brefeldin A (5µg/ml; Sigma-Aldrich) were added to culture 4.5h before flow cytometry staining.

Total lymphocytes, B cells and B cell subsets were cultured for 48h with CpGb ODN1826 (1µM; Invivogen), LPS (1µg/ml; Sigma-Aldrich) ± anti-mouse IgM
(10µg/ml; Jackson ImmunoResearch) or anti-CD40 (10µg/ml; BioXcell) ± mBSA (10µg/ml; Sigma-Aldrich). In addition, the AHR agonists FICZ (100nM; Enzo LifeSciences), 5-HIAA (10µM; Sigma-Aldrich), KYNA (50µM; Sigma-Aldrich) or the AHR antagonist CH-223191 (3µM; Sigma-Aldrich) were added to culture. For 48h culture, anti-IgM ± AHR agonists/antagonist were added 24h into culture. For PCR (6 and 24h cultures), AHR agonists/antagonist were added at the start of culture.

2.14 Detection of cytokine and antibody concentrations by ELISA
Supernatants were collected from cell cultures, prior to the addition of PMA, Ionomycin and Brefeldin A to the culture. Cytokine concentrations were calculated using a polynomial (4th order) standard curve. For B cells and B cell subpopulations, cells were cultured at a concentration of 2.5M/ml. For the detection of IL-2, IL-6, IL-10, IL-17 and TNF-α duoset ELISA kits from R&D were used, according to manufacturer’s instructions. Serum was collected from Mb1cre/+ and Ahrfl/-Mb1cre/+ day 7 post AIA and was analyzed for total IgA, IgG and IgM (ThermoFisher Scientific).

2.15 Flow cytometry
Anti-rat and anti-hamster Igκ compensation particles kits (BD Biosciences) were used for singles for flow cytometry, according to manufacturer’s instructions. LIVE/DEAD singles were made using ArC™ Amine Reactive Compensation Bead Kit (ThermoFisher Scientific), according to manufacturer’s instructions. Flow cytometric data were collected on an LSRII or LSR Fortessa (BD Pharmingen) using FACS Diva software. Data were analyzed using Flowjo (Tree Star).

2.15.1 Surface staining and analysis of reporter expression
For multi-color flow cytometric surface staining, 1x10⁶ mouse cells were first centrifuged at 800xg for 3 minutes. All wash steps included a centrifugation step at 800xg for 3 minutes. Cells were washed once with 200µl of 1xPBS. Cells were stained with LIVE/DEAD™ Fixable Blue Dead cell stain (ThermoFisher Scientific) at a final concentration of 1/500, diluted in 1xPBS for 20 minutes at room temperature, in the dark. Cells were then topped up to 200µl with FACS buffer (1xPBS, 1%FCS, 0.005% Sodium azide) and washed once more with FACS buffer. Antibodies targeting cell surface antigens were diluted in FACS buffer or Brilliant
stain buffer (if two or more antibodies contained Brilliant violet conjugates; BD Biosciences) at the optimised concentration (Table 2.2) and added to cells in a 50µl staining volume and were left to incubate at 4°C for 25 minutes in the dark. Cells were washed twice with FACS buffer and then resuspended with 100µl 2% paraformaldehyde and left to incubate at 4°C for 20 minutes in the dark. Cells were then washed twice with FACS buffer and then resuspended in 220µl FACS buffer, prior to acquisition. For the detection of eGFP and FP635 reporter expression, cells were stained as described above, but without the fixation step. Cells were run live, within 2h of staining. To calculate absolute numbers, the total cell count was multiplied by the fraction of lymphocytes in the live gate.
<table>
<thead>
<tr>
<th>Antigen</th>
<th>Fluorochrome</th>
<th>Clone</th>
<th>Isotype</th>
<th>Concentration</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD1d</td>
<td>PerCP/Cy5.5</td>
<td>1B1</td>
<td>Rat IgG2b, κ</td>
<td>1μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD3</td>
<td>BV605</td>
<td>17A2</td>
<td>Rat IgG2b, κ</td>
<td>1μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD4</td>
<td>BV605</td>
<td>RM4-5</td>
<td>Rat IgG2a, κ</td>
<td>1μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD4</td>
<td>FITC</td>
<td>RM4-5</td>
<td>Rat IgG2a, κ</td>
<td>2.5μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD5</td>
<td>AF647</td>
<td>53-7.3</td>
<td>Rat IgG2a, κ</td>
<td>2.5μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD8a</td>
<td>BV605</td>
<td>53-6.7</td>
<td>Rat IgG2a, κ</td>
<td>1μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD8a</td>
<td>PE</td>
<td>53-6.7</td>
<td>Rat IgG2a, κ</td>
<td>1μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD9</td>
<td>AF647</td>
<td>MZ3</td>
<td>Rat IgG2a, κ</td>
<td>2.5μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD11b</td>
<td>APC</td>
<td>M1/70</td>
<td>Rat IgG2b, κ</td>
<td>1μg/ml</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>CD11b</td>
<td>BV605</td>
<td>M1/70</td>
<td>Rat IgG2b, κ</td>
<td>1μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD11c</td>
<td>BV605</td>
<td>N418</td>
<td>Armenian Hamster IgG</td>
<td>1μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD11c</td>
<td>FITC</td>
<td>N418</td>
<td>Armenian Hamster IgG</td>
<td>2.5μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD11c</td>
<td>PE</td>
<td>HL3</td>
<td>Armenian Hamster IgG2</td>
<td>1μg/ml</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>CD19</td>
<td>BV785</td>
<td>6D5</td>
<td>Rat IgG2a, κ</td>
<td>1μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD21</td>
<td>APC</td>
<td>7E9</td>
<td>Rat IgG2a, κ</td>
<td>1μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD21</td>
<td>BV421</td>
<td>7E9</td>
<td>Rat IgG2a, κ</td>
<td>1μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD21</td>
<td>FITC</td>
<td>7E9</td>
<td>Rat IgG2a, κ</td>
<td>2.5μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD23</td>
<td>BV711</td>
<td>B3B4</td>
<td>Rat IgG2a, κ</td>
<td>1μg/ml</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>CD23</td>
<td>FITC</td>
<td>B3B4</td>
<td>Rat IgG2a, κ</td>
<td>2.5μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD23</td>
<td>PE/Cy7</td>
<td>B3B4</td>
<td>Rat IgG2a, κ</td>
<td>1μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD24</td>
<td>APC</td>
<td>M1/69</td>
<td>Rat IgG2b, κ</td>
<td>1μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD24</td>
<td>BV421</td>
<td>M1/69</td>
<td>Rat IgG2b, κ</td>
<td>1µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>CD24</td>
<td>PE/Cy7</td>
<td>M1/69</td>
<td>Rat IgG2b, κ</td>
<td>1µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD25</td>
<td>PE</td>
<td>PC61</td>
<td>Rat IgG1, λ</td>
<td>1µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD38</td>
<td>PE/Cy7</td>
<td>90</td>
<td>Rat IgG2a, κ</td>
<td>1µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD39</td>
<td>PE</td>
<td>Duha59</td>
<td>Rat IgG2a, κ</td>
<td>1µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD43</td>
<td>PE-Cy7</td>
<td>S7</td>
<td>Rat IgG2a, κ</td>
<td>1µg/ml</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>CD45.2</td>
<td>BUV737</td>
<td>104</td>
<td>Mouse IgG2a, κ</td>
<td>1µg/ml</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>CD45R (B220)</td>
<td>BUV395</td>
<td>RA3-6B2</td>
<td>Rat IgG2a, κ</td>
<td>1µg/ml</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>CD73</td>
<td>APC</td>
<td>TY/11.8</td>
<td>Rat IgG1, κ</td>
<td>1µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD93</td>
<td>PE/Cy7</td>
<td>AA4.1</td>
<td>Rat IgG2b, κ</td>
<td>1µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD95</td>
<td>PE/Cy7</td>
<td>Jo2</td>
<td>Hamster IgG2, λ2</td>
<td>1µg/ml</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>CD103</td>
<td>BV421</td>
<td>2E7</td>
<td>Armenian Hamster IgG</td>
<td>1µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD138</td>
<td>BV711</td>
<td>281-2</td>
<td>Rat IgG2a, κ</td>
<td>1µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD138</td>
<td>BV605</td>
<td>281-2</td>
<td>Rat IgG2a, κ</td>
<td>1µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD184 (CXCR4)</td>
<td>APC</td>
<td>L276F12</td>
<td>Rat IgG2b, κ</td>
<td>1µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD185 (CXCR5)</td>
<td>PerCP/Cy5.5</td>
<td>L138D7</td>
<td>Rat IgG2b, κ</td>
<td>1µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD196 (CCR6)</td>
<td>BV605</td>
<td>29-2L17</td>
<td>Armenian Hamster IgG</td>
<td>1µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD199 (CCR9)</td>
<td>PE/Cy7</td>
<td>CW-1.2</td>
<td>Mouse IgG2a, κ</td>
<td>1µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD249</td>
<td>PE</td>
<td>BP-1</td>
<td>Mouse IgG2a, κ</td>
<td>1µg/ml</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>CD273 (PD-L2)</td>
<td>PE</td>
<td>TY25</td>
<td>Rat IgG2a, κ</td>
<td>1µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD317 (PDCA-1)</td>
<td>PE</td>
<td>129C1</td>
<td>Rat IgG2b, κ</td>
<td>1µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD326 (EpCAM)</td>
<td>FITC</td>
<td>G8.8</td>
<td>Rat IgG2a, κ</td>
<td>2.5µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD365 (TIM-1)</td>
<td>PE</td>
<td>RMT1-4</td>
<td>Rat IgG2b, κ</td>
<td>1µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>F4/80</td>
<td>BV605</td>
<td>BM8</td>
<td>Rat IgG2a, κ</td>
<td>1µg/ml</td>
<td>Biolegend</td>
</tr>
</tbody>
</table>
Table 2.2. Mouse flow cytometry antibodies for extracellular antigens.

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Fluorescent</th>
<th>Isotype</th>
<th>Concentration</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL7</td>
<td>PerCP/Cy5.5</td>
<td>Rat IgM, κ</td>
<td>2μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>IgD</td>
<td>PerCP/Cy5.5</td>
<td>Rat IgG2a, κ</td>
<td>2μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>IgM</td>
<td>APC/Cy7</td>
<td>Rat IgG2a, κ</td>
<td>1μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>Ly6C/G</td>
<td>BV605</td>
<td>Rat IgG2b, κ</td>
<td>1μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>TER-119</td>
<td>BV605</td>
<td>Rat IgG2b, κ</td>
<td>1μg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>TCRβ</td>
<td>BV605</td>
<td>Armenian Hamster IgG</td>
<td>1μg/ml</td>
<td>Biolegend</td>
</tr>
</tbody>
</table>

2.15.2 Intracellular staining for the detection of murine cytokines and nuclear transcription factors

For the detection of intracellular cytokines and intra-nuclear transcription factors, cells were stained as above in 2.15.1, up until the fixation step. Cells were then washed twice with 200μl FACS buffer and then fixed with either 100μl intracellular fixation buffer or 100μl FOXP3/Transcription factor staining kit, for cytokines and transcription factors respectively (ThermoFisher Scientific). Cells were fixed at 4°C, for 25 minutes in the dark. Cells were washed twice with 1x Permeabilisation buffer (10x Permeabilisation buffer diluted in FACS buffer; ThermoFisher Scientific). Antibodies targeting intracellular/nuclear antigens were diluted in 1x permeabilisation buffer at the optimised concentration (Table 2.3) and added to cells in a 50μl staining volume and were left to incubate at 4°C for 40 minutes in the dark. Cells were washed twice with 1x permeabilisation buffer, followed by one wash with FACS buffer. Cells were then resuspended in 220μl FACS buffer, prior to acquisition.
Table 2.3 Mouse flow cytometry antibodies for intracellular antigens.

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Fluorochrome</th>
<th>Clone</th>
<th>Isotype</th>
<th>Concentration</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLIMP-1</td>
<td>AF647</td>
<td>5E7</td>
<td>Rat IgG2a, κ</td>
<td>2µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>FOXP3</td>
<td>APC</td>
<td>FJK-16s</td>
<td>Rat IgG2a, κ</td>
<td>2µg/ml</td>
<td>Thermo Fisher</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>PE</td>
<td>XMG1.2</td>
<td>Rat IgG1, κ</td>
<td>2µg/ml</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>IL-6</td>
<td>AF488</td>
<td>MP5-20F3</td>
<td>Rat IgG1</td>
<td>4µg/ml</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>IL-6</td>
<td>V450</td>
<td>MP5-20F3</td>
<td>Rat IgG1</td>
<td>2µg/ml</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>IL-10</td>
<td>PE</td>
<td>JES5-16E3</td>
<td>Rat IgG2b, κ</td>
<td>4µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>IL-17A</td>
<td>eFluor 450</td>
<td>eBio17B7</td>
<td>Rat IgG2a, κ</td>
<td>2µg/ml</td>
<td>Thermo Fisher</td>
</tr>
<tr>
<td>IL-17A</td>
<td>PE</td>
<td>eBio17B7</td>
<td>Rat IgG2a, κ</td>
<td>2µg/ml</td>
<td>Thermo Fisher</td>
</tr>
<tr>
<td>Ki-67</td>
<td>BV421</td>
<td>16A8</td>
<td>Rat IgG2a, κ</td>
<td>1µg/ml</td>
<td>Biolegend</td>
</tr>
<tr>
<td>TNFα</td>
<td>BV510</td>
<td>MP6-XT22</td>
<td>Rat IgG1, κ</td>
<td>2µg/ml</td>
<td>Biolegend</td>
</tr>
</tbody>
</table>

2.16 Immunofluorescence

Spleens were dissected and embedded into optimal cutting temperature compound (OCT, Tissue-Tek) and snap-frozen for cryo-sectioning (6µm). Slides were incubated in 100% ethanol to fix for 5-10min (4°C), followed by rehydration in PBS for 5min (4°C). The sections were blocked with 10% normal goat serum and 0.3% TX-100 (20 min at RT) and then incubated with primary antibodies for 2hr at RT. Primary antibodies: rat anti-mouse GL7 (Thermo Fisher), B220-PE (BD). Secondary antibody: AF647 – conjugated anti-rat IgM (1hr at RT). The slides were mounted in Vectashield with DAPI (Vector Labs). Whole slide fluorescent images (20x) were taken on a Zeiss Axio Scan Z1 microscope using the 365 nm LED to detect DAPI staining in the nuclei, the 470 nm LED for GFP detection (IL-10), the 555 nm LED for PE detection (B220) and the 625 nm LED for the detection of Alexa fluor 647 (GL7). Scans were analyzed using Leica Software and Fiji (ImageJ).
2.17 In vitro suppression assay
Splenic B cell subsets from Ahr⁻/⁻ and Ahr⁺/⁻ mice were FACS sorted at day 7 post IA injection and stimulated with CpG-B (ODN2006) for 6 hours. Cells were washed and then co-cultured with 0.5µg/ml plate-bound anti-CD3 (145-2C11, BD Biosciences) for 72 hours with CD4⁺CD25⁻ FACS sorted T cells from Ahr⁺/⁻ mice. Following stimulation, cells were analyzed for CD4⁺ IFN-γ expression. The percentage suppression of IFN-γ was calculated as a percentage reduction in IFN-γ from CD4⁺ cells cultured alone, compared to when B cell subsets were added to culture.

2.18 Gene expression analysis
2.18.1 Column-based RNA extraction
Total murine B cells or B cell subsets (0.2-1.5 x10⁶ cells) from either ex-vivo or after culture were transferred to a 15ml centrifuge tube, washed with MACS buffer and centrifuged at 500xg for 10 minutes. All centrifugation steps were at 4°C. Cells were resuspended in 1ml MACS buffer and transferred to a 1.5ml Eppendorf and centrifuged at 1000xg for 10 minutes. The supernatant was aspirated and cells were resuspended in 100µl of the extraction buffer and mixed thoroughly. The cell extract was incubated at 42°C for 30 minutes on a heat block and stored at -80°C, until further use. RNA from isolated B cells/subsets was extracted using Arcturus Picopure RNA isolation kit (ThermoFisher Scientific), according to manufacturer’s instructions. Briefly, columns were washed for 5 minutes with 250µl conditioning buffer and centrifuged at 16,000xg for 1 minute. The cell extract was diluted 1:1 with 70% ethanol and mixed thoroughly. The mixture was transferred to the column and centrifuged for 2 minutes at 100xg, to allow the RNA to bind to the column. The column was then centrifuged for 30 seconds at 16,000xg, to remove flow-through. Columns were washed once with wash buffer 1 (WB1) and centrifuged at 8000xg for 1 minute. 40µl of DNase, diluted in RDD buffer, (350 Kunitz/ml; Qiagen) was added to the column and left to incubate for 20 minutes at room temperature. The column was washed 1x WB1 and twice with WB2, before a final centrifugation step of 16,000xg for 2 minutes. RNA was eluted in 16µl elution buffer at 1000xg for one minute, followed by 16,000xg for one minute into a 0.5ml Eppendorf. RNA concentration was analysed by Nanodrop-1000 (ThermoFisher Scientific).
2.18.2 cDNA synthesis

Depending on cell number, either 500ng or 1µg of RNA template was used to generate cDNA. The amount of RNA template was standardised between samples and experiments. RNA was reverse transcribed using an iScript cDNA synthesis kit (Bio-Rad), according to manufacturer’s instructions. Briefly, 15µl of RNA/H2O solution was mixed with 4µl of 5x reverse-transcription mix and 1µl reverse transcriptase (RT), to make a final volume of 20µl. The solution was left at room temperature for 5 minutes, before transferring to a heat block for 20 minutes at 46°C. The mixture was incubated for 1 minute at 95°C, for reverse transcriptase inactivation. Samples were topped up to 100µl with molecular biology grade H2O.

2.18.3 Quantitative polymerase chain reaction (qPCR)

qPCR was carried out on the cDNA samples using iQ™ SYBR® Green Supermix (Bio-Rad), according to manufacturer’s instructions. All PCR reactions were carried out in a volume of 20µl, consisting of 5µl of cDNA or H2O (no template control), 10µl of 2x iQ SYBR® Green, 1µl each of forward and reverse primers (or 2µl of Quantitect primer mix) and 3µl H2O. Primers were used at a concentration of 10µM, with a final concentration in the reaction of 0.5µM. Primer sequences were custom designed using Primer-BLAST or taken from the literature. Primers were designed with an amplicon length of <200bp. The primers are summarised in Table 2.4. Quantitect primers for murine Arnt, Ahr and Cyp1a1 were purchased from Qiagen. All primers were initially assessed by agarose gel electrophoresis to check amplicon length.

All qPCR reactions were performed on the OPTICON™ instrument (BioRad). The following cycling parameters were used: an initial denaturation step of 3 minutes at 95°C, followed by 41 three-step cycles of 95°C, 60°C and 72°C, for 30 seconds each. Melt curve analysis was incorporated at the end of the cycles, starting at 55°C, with reads every 0.2°C (held for 1 second between reads) up till 95°C. PCR products were tested for amplicon lengths by an agarose gel (1% w/v), to check the specificity of primer pairs. qPCR data were calculated as the ratio of gene to β-Actin expression by the relative quantification method (ΔΔCt; means±s.e.m. of triplicate determination).
Table 2.4. Murine qRT-PCR primers.

<table>
<thead>
<tr>
<th>Target gene</th>
<th>Forward primer</th>
<th>Reverse primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahr</td>
<td>5'-AGGATCGGGGTACCAGTTCA-3'</td>
<td>5'-CTCCAGCGACTGTGTGTTC-3'</td>
</tr>
<tr>
<td>β-actin</td>
<td>5'-AGATGCCCATGATGTTGAGG-3'</td>
<td>5'-AGGTCCAGACGCAGGATG-3'</td>
</tr>
<tr>
<td>Ccl3</td>
<td>5'-TGAGAGTCTTGGAGGCAGGCA-3'</td>
<td>5'-TGTTGGTACTTGCCAGCACAAC-3'</td>
</tr>
<tr>
<td>Ccl2</td>
<td>5'-CAGGCAAGTCTGGTGAA-3'</td>
<td>5'-AAAAGGCAGTCCGCTGGG-3'</td>
</tr>
<tr>
<td>Ebi3</td>
<td>5'-CGGTGCCCTACATGCTAAT-3'</td>
<td>5'-CGGGAGTCGCTATGAGAG-3'</td>
</tr>
<tr>
<td>Il6</td>
<td>5'-GCCCTTCTGGGAGCAGTCT-3'</td>
<td>5'-TGCCATTGCACACTCCTTTT-3'</td>
</tr>
<tr>
<td>Il10</td>
<td>5'-GTTGCCAAGCCTTATCGGA-3'</td>
<td>5'-ACCTGCTCCACTGCGTTTGC-3'</td>
</tr>
<tr>
<td>p35</td>
<td>5'-CATGATGAGCTGTAGCTGAG-3'</td>
<td>5'-CAGATAGCCATCCATCGAT-3'</td>
</tr>
<tr>
<td>Tnf</td>
<td>5'-AATGGCCTCCTCTCCTCATCAG-3'</td>
<td>5'-CCACTTTGGGTTTGTGCTACA-3'</td>
</tr>
</tbody>
</table>

2.19 Chromatin Immunoprecipitation

Total Vert-X splenic B cells were bead cell sorted and cultured for 24h with LPS, followed by addition of anti-IgM (10μg/ml) and FICZ (100nM) at 24h into culture. After 48h, total B cells were FACS sorted based on eGFP for IL-10+ and IL-10- populations. Cells were fixed for 10 minutes with 1% (vol/vol) formaldeyde and quenched with 400mM Tris. Fixed cells were lysed with 120μl lysis buffer (1% (wt/vol) SDS, 10mM EDTA and 50mM Tris-HCl, pH 8.1, 1 × protease inhibitor ‘cocktail’ (Roche), 1mM PMSF) per 5x10^6 cells. Chromatin was sheared to 200-500bp fragments and 10% of the initial chromatin material was kept as input. The chromatin was diluted 5-fold in Dilution Buffer (1% (vol/vol) Triton X-100, 2mM EDTA, 150mM NaCl and 20mM Tris-HCl, pH 8.1) and incubated overnight, after preclearing, with 1μg/10^6 cells of a polyclonal AHR-specific antibody (BML-SA210; Enzo Life Sciences). Immunoprecipitation took place by incubation with protein G Dynal magnetic beads (Invitrogen), held for at least 3 hours at 4°C. Immunoprecipitated chromatin complexes were washed with High Salt Wash Buffer (2x), Low Salt Wash Buffer (2x), LiCl Wash Buffer (2x) and TE Buffer (2x).
Immunoprecipitated chromatin was eluted from the magnetic beads with Proteinase K Digestion Buffer and heated at 65°C for at least 6h for reverse crosslinking. DNA fragments were purified with NucleoMag beads kit (MN) and were analyzed by SYBR Green Quantitative Real-time PCR. The primers used for the ChIP qPCR are summarised in Table 2.5.

<table>
<thead>
<tr>
<th>Target region</th>
<th>Forward primer</th>
<th>Reverse primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyp1a1 3.6kb</td>
<td>5'-GCTCTTTCTCTGCCAGGTG-3'</td>
<td>5'-GGCTAGGGTCACAATGGAA-3'</td>
</tr>
<tr>
<td>Cyp1a1 Promoter</td>
<td>5'-AAGCATCACCCCTTTGTAGCC-3'</td>
<td>5'-CAGGCAACACAGAGAAGTCG-3'</td>
</tr>
<tr>
<td>Gapdh Promoter</td>
<td>5'-GCGCGAAAGTAAAGAAGAGCCC-3'</td>
<td>5'-AGCGGCCCAGGTCTTAAGTATTAG-3'</td>
</tr>
<tr>
<td>Il10 -3.5kb</td>
<td>5'-AGGGCTTGATAACGTGTGAGT-3'</td>
<td>5'-TGAACTTCACACCCAGCTTGAG-3'</td>
</tr>
<tr>
<td>Il10 -2kb</td>
<td>5'-TAAAGAGGTGCTGCTTCTCCTG-3'</td>
<td>5'-TGGCACTGGACAGTTCTATGA-3'</td>
</tr>
<tr>
<td>Il10 -0.5kb</td>
<td>5'-AGGGAGGAGGAGCCTGGAATAA-3'</td>
<td>5'-CCTGTTCCTTGCCCTCCCCCTTT-3'</td>
</tr>
<tr>
<td>Il10 +2kb</td>
<td>5'-GCCACATGCATCCAGAGACAC-3'</td>
<td>5'-GTGCCTCAAAGTCACCTCCAAC-3'</td>
</tr>
</tbody>
</table>

Table 2.5. ChIP qPCR primers.

2.20 Western Blot
5x10^6 cells CD19^+CD21^hiCD24^hi and FO B cells were FACS sorted from arthritic WT mice and lysed for 15 minutes at 4°C with cell lysis buffer (Cell signaling technology) for extraction of whole cell lysate. Additionally, total B cells (10x10^6) cells were negatively purified from WT mice and cultured for 18 h with 500µM of butyrate (Sigma-Aldrich) or in the presence of a vehicle control. B cells were lysed and protein was resolved by SDS-PAGE, transferred to polyvinylidene fluoride (PVDF) membranes (Amersham; for detection of total H3K27 and H3K27ac) or nitrocellulose membranes (for detection of AHR and β-ACTIN), and blotted using
anti-H3K27ac (1/1000; Abcam) and anti-pan-H3 (1/1000; Abcam) or anti-AHR (1/1000; Enzo Life sciences) and anti-β-ACTIN (1/1000; Cell Signaling Technology). Bound antibodies were revealed with HRP-conjugated species-specific secondary antibodies using ECL substrate (Amersham).

2.21 High performance liquid chromatography

2.21.1 Extraction and derivation of short-chain fatty acids from mouse stool pellets

Individual stool pellets were weighed into clean Eppendorf tubes and homogenised in 1ml of 50% methanol. After centrifugation at 13,000xg for 5mins to remove particulate matter, 200µl of the clear supernatants were derivatized as previously reported. Briefly, the clear supernatants were spiked with 2-ethylbutyric acid as an internal standard and the mixture incubated with 2-Nitrophenylhydrazine hydrochloride (NPH) at 60°C for 20mins, with 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) in pyridine as catalysts. The reaction was then terminated and colour allowed to develop by the addition of potassium hydroxide in methanol, followed by incubation at 60°C for a further 20mins. After cooling, the mixture was acidified by the addition of phosphoric acid and the derivatized fatty acids extracted into diethyl ether. After drying down the ether extracts under a gentle stream of nitrogen gas, the resulting fatty acid hydrazides were dissolved in methanol for high performance liquid chromatography (HPLC) analysis.

2.21.2 Analysis of short-chain fatty acid hydrazides by high performance liquid chromatography

Separation of short-chain fatty acid (SCFA) hydrazides was performed by injecting 25µl onto a C8 Hypersil MOS2 column (250 x 4.6mm, 5µm particle size) and eluting using a linear gradient of 20-90% acetonitrile against water over 17min at a flow rate of 1.5ml/min. Compounds eluting from the column were monitored by UV/Vis absorption using a measurement wavelength of 400nm, and quantitated by integration of peak area. Standard curves (20.0-0.1µM) were constructed using pure compounds as follows: Succinic acid (Rt 3.92 min), Lactic acid (Rt 4.72 min), Acetic acid (Rt 5.067 min), propionic acid (Rt 6.173 min), iso-butyric acid (Rt 7.387 min), butyric acid (Rt 7.587 min), 2-methylbutyric acid (Rt 8.733 min), isovaleric acid (Rt 8.947 min), n-valeric acid (Rt 9.24 min), hexanoic acid (Rt 10.707 min), 2-
ethylbutyric acid (R_t 9.88 min) hexanoic acid (R_t 10.707 min), Pyruvic acid (R_t 12.773).

2.21.3 Extraction of indoles, kynurenine and kynurenic acid from mouse faecal pellets

Individual faecal pellets were weighed into clean Eppendorf tubes and homogenized in 200µL of methanol. After centrifuging at 13,000xg for 5min to remove particulate matter, the clear supernatants were diluted 1 in 10 in methanol and subject to high performance liquid chromatography (HPLC) analysis.

2.21.4 Analysis of indoles

Separation of indoles was performed by injecting 20µL onto an ODS Hypersil column (150 x 4.6mm, 3µm particle size) and eluting using a linear gradient of 5%–100% acetonitrile in 10mM ammonium formate buffer, pH 3.5 over 20min at a flow rate of 0.8ml/min. Compounds eluting from the column were monitored by both fluorescence detection (λ_{ex}: 275nm, λ_{em}: 352nm) as well as by UV/Vis absorption using an online PDA detector (scanning 200-650nm), and quantitated by integration of peak area. Standard curves (20.0 - 0.1µM) were constructed using pure compounds as follows: tryptophan (R_t 6.97 min), tryptamine (R_t 13.04 min), indole (R_t 14.41 min), indole-3-acetic acid (R_t 11.42 min), indole-3-propionic acid (R_t 13.7), 3-methylindole (R_t 15.87 min), indole 3-carboxaldehyde (R_t 10.96 min), 5-Hydroxyindole-3-acetic acid (R_t 8.09 min).

2.21.5 Analysis of L-kynurenine and kynurenic acid

Separation of L-Kynurenine and Kynurenic Acid was performed by injecting 25µL onto an ODS Hypersil column (150 x 4.6mm, 3 µm particle size) and eluting using a linear gradient of 1%–10% acetonitrile in 10mM ammonium formate buffer, pH 3.5 over 17min at a flow rate of 0.8ml/min. Compounds eluting from the column were monitored by both fluorescence detection (λ_{em}: 364nm, λ_{em}: 480nm for 7.5 min followed by λ_{em}: 330nm, λ_{em}: 390nm for the remainder of the run) as well as by UV/Vis absorption using an online PDA detector (scanning 200-650nm), and quantitated by integration of peak area. Standard curves were constructed using pure compounds as follows: L-Kynurenine (R_t 5.97 min) and Kynurenic Acid (R_t 10.6 min).
2.22 16s rDNA sequencing

20-50mg of faecal material was extracted using the QIAmp DNA mini kit (Qiagen). Extraction was carried out as per the manufacturer’s protocol with an additional cell disruption step by bead beating using lysing matrix E (MP Biolmedicals) at 50 Hz for 1 min (Tissuelyser LT, Qiagen). Two negative extraction controls were included. Barcoded primers spanning the V3-V4 region of the 16S rRNA gene were designed as described previously to include an Illumina adapter, an 8 nucleotide barcode sequence, a 10 nucleotide pad sequence, a 2 nucleotide linker, and a gene-specific primer: 341F-CCTACGGGNGGCWGCAG or 805R-GACTACHVGGGTATCTAATCC. (Sigma-Aldrich, Dorset, UK). Extracted DNA samples were amplified with different barcode combinations using the Taq Core PCR kit (Qiagen) as per manufacturer’s instructions with forward and reverse primers at 0.5µM each. A Microbial Community Standard (Zymo Research) of known bacterial composition was also amplified to assess any bias and error rates. The PCR cycling conditions were as follows: initial denaturation at 95°C for 3 min, 30 cycles of 95°C for 30 sec, 54°C for 30 sec, 72°C for 10 min and a final extension at 72°C for 10 min. PCR products were purified with AMPure beads (0.7x, Beckman Coulter) and quantified using the Qubit dsDNA High Sensitivity Assay Kit (ThermoFisher). Samples were then pooled to create libraries with approximately equal concentrations of 16S rRNA amplicons from each sample. The pooled library was quality and quantity checked using the High Sensitivity D1000 ScreenTape assay (Agilent Technologies) and a NEBNext library quantification kit (New England Biolabs). The pooled library was spiked with 10% PhiX (Illumina) and sequenced on an Illumina MiSeq using the Reagent Kit V2 with 500 cycles (Illumina) and custom primers as previously described. The open-source software Mothur V1.35.13 was used for initial bioinformatic analysis of the sequencing data. Raw sequencing data was demultiplexed and processed according to the online Mothur SOP. Sequences were trimmed and those with ambiguous bases were discarded. Suspected chimeric sequences were identified using VSEARCH and removed. Phylogenetic identification of each OTU was achieved by aligning sequences to the SILVA 16S alignment database (v128). Sequences that did not meet a 97% similarity threshold were discarded of. Sample reads were rarefied to 50,000 reads prior to further analysis. OTU values generated
by Mothur were further analyzed using R-studio (phyloseq) or GraphPad Prism (La Jolla, USA) v. 400 Software for Apple Mac.

2.23 Microarray
Splenic murine B cell subsets were sorted and RNA extracted using columns (Picopure, Life Technologies) and hybridised to murine mogene 2.0 ST arrays (Affymetrix). Raw CEL files were processed using the online GeneProfiler tool (accessible at www.beringresearch.com). The GeneProfiler pipeline consists of present/absent call detection, Robust Microarray Average (RMA) normalization, and outlier detection. Differential expression analysis was performed using the limma package. Heatmaps generated from the microarray data show z scores, based on normalised GeneChip Robust Multiarray Averaging (GC-RMA) values. z scores were generated using the following equation.

\[z_i = \frac{x_i - \mu}{\sigma} \]

\(z_i \) is the zeta score of a given sample; \(x \) is the GC-RMA value of a given sample; \(\mu \) is the sample mean of all GC-RMA for a given gene and \(\sigma \) is the standard deviation of all samples.

2.24 RNA sequencing

2.24.1 Sample preparation and sequencing of the transcriptome
Splenic CD19⁺CD21⁺CD24⁺ B cells were isolated from butyrate supplemented and control \(Mb1^{cre} \) and \(Ahr^{fl/\Delta}Mb1^{cre} \) mice in the remission phase of arthritis, at day 7 post-IA injection. Sorted cells were either left untouched (ex-vivo) or stimulated with LPS+anti-IgM for 6h in IMDM media (CD19⁺CD21⁺CD24⁺ B cells only). Dead cells were excluded using DAPI. Total RNA was isolated from these populations using the Picopure RNA isolation kit (ThermoFisher Scientific), according to manufacturer’s instructions. 60bp single reads were sequenced on 3 lanes of an Illumina hiseq. 130-500ng of total RNA was fragmented followed by reverse transcription and second strand cDNA synthesis. The double strand cDNA was subjected to end repair, A base addition, adapter ligation and PCR amplification to create libraries. Libraries were evaluated by Qubit and TapeStation. Sequencing libraries were constructed with barcodes to allow multiplexing of samples in 3
lanes. The libraries were sequenced at the Weizmann Institute of Science on an Illumina HiSeq 2500 V4 instrument. Around 23-43 million single-end 60-bp reads were sequenced per sample. Poly-A/T stretches and Illumina adapters were trimmed from the reads using cutadapt. Resulting reads <30bp were discarded. Reads were mapped to the Mus Musculus GRCm38 reference genome using STAR. Gene annotations were applied from Ensembl (EndToEnd option and outFilterMismatchNoverLmax was set to 0.04). Gene expression levels were quantified using htseq-count (“HTSeq,” n.d.) using the gtf above. Transcripts per million (TPM) values were estimated independently using Kallisto.

2.24.2 Bioinformatic analysis of RNA-seq data
Differential expression analysis was carried out using the default settings of the edgeR algorithm. p-values reflect two-sided p-values obtained using the exact test proposed by Robinson and Smyth for a difference in means, between two groups of negative binomial random variables (implemented in edgeR package). Signalling Pathway Impact Analysis (SPIA) was used to detect significantly over-represented pathways, with the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways database employed as a reference. The full mouse genome was used as background for enrichment. For gene network analysis mouse protein-protein interactions were obtained from the STRING database (PMID: 25352553). An undirected graph representation was used to visualise all interacting protein pairs, whereby each node in a graph corresponds to a protein, whilst each edge corresponds to an interaction (STRING confidence score > 0.5). Differentially expressed subnetworks were extracted by overlying all significantly expressed genes with their corresponding protein names in the network. Heatmaps generated from the RNA-seq data show z-scores using the same equation in 2.20, but instead using normalised logged counts per million (CPM).

2.25 Assay for transposable accessible chromatin with high-throughput sequencing (ATAC-seq)
2.25.1 Sample preparation and sequencing
Splenic CD19+CD21hiCD24hi B cells were isolated as above for RNA-seq from Mb1cre/+ and Ahfrfl/Mb1cre/+ mice. Cells were either left untouched (ex-vivo) or stimulated with LPS+anti-IgM for 6h in IMDM media (splenic CD19+CD21hiCD24hi
B cells only). After sorting, 40,000 cells were washed with 1xPBS (10% FCS). The cell pellet was prepped for sequencing by using the Nextera DNA library preparation kit (Illumina). Briefly, 10.5 µl nuclease free water, 12.5 µl 2x Transposase buffer, 2 µl transposase and 0.25 µl digitonin (0.05%) per reaction were added to the cell pellets. Cells were incubated at 37°C for 30 minutes. DNA was then purified using a MinElute PCR purification kit (Qiagen), according to manufacturer’s instructions. Following DNA purification, 1 µl of eluted DNA was used in a qPCR reaction to estimate the optimum number of amplification cycles. Library amplification was followed by solid phase reversible immobilization (SPRI) size selection to exclude fragments larger than 1,200bp. DNA concentration was measured with a Qubit fluorometer (Life Technologies). Library amplification was performed using custom Nextera primers. The libraries were sequenced by the Biomedical Sequencing Facility at CeMM using the Illumina HiSeq4000 platform and the 50bp single-end configuration.

2.25.2 Bioinformatic analysis of ATAC-seq data
Bioinformatic analysis was carried out as previously described. Briefly, Illumina Casava1.7 software was used for basecalling. Sequenced reads were trimmed for adaptor and Nextera sequences and reads were mapped to mm10 reference genome using bowtie2 v2.2.4 with the “–very-sensitive” parameter. Duplicate reads were marked and removed with picard tools version 1.118. Reads were extended to the average fragment size and bigWig files containing counts of reads per basepair created. Peaks for ATAC-seq samples were called with MACS2 version 2.1.1.20160309 using the “–nomodel” and “–extsize 147” parameters. Peaks were assigned to genes by proximity. If a peak overlapped the gene body or promoter ± 2500bp of the transcription start site (TSS) the peak was assigned to that gene. If a peak did not fall into these criteria, the peak was assigned to the closest TSS. If the nearest TSS to the peak was further than 100kb away, no gene was assigned. DESeq2 was used to compare either the effect of genotype or butyrate treatment on the chromatin landscape, and for visualization we created a normalized chromatin accessibility matrix by normalizing for the regulatory elements’ length and GC content using the R package cqn. To assess transcription factor activity, we employed ChromVar by fixing a 500bp window on the center of the regulatory elements and using the JASPAR2016 database, computing deviations and their scores, followed by differential variability for genotype and treatment with default
parameters. For visualisation of representative tracks, track heights between samples were normalised through group autoscaling.

2.26. Data and code availability
The microarray, RNA-seq and ATAC-seq datasets generated during this study are available at ArrayExpress: E-MTAB-7345, E-MTAB-7375, E-MTAB-7525 and E-MTAB-8393. The 16S datasets generated during this study are available at NCBI Sequence Read Archive (accession number PRJNA603680).

2.27 Statistical analysis
Heatmap analyses for microarray, RNA-seq and ATAC-seq datasets were carried out using Multiple Experiment Viewer (MeV_4_8) software. Hierarchical clustering was applied to genes using average linking clustering with the Euclidean distance metric. Venn diagrams were generated using Venny 2.1. All data are expressed as mean±s.e.m, unless stated otherwise. For in vivo studies, power calculations were performed on data showing mean maximum wild-type arthritic knee swelling of 2 mm with a s.d. of 0.39 mm, and an expected test group (transferred T2-MZPs) arthritic knee swelling of 1.4 mm. Group sizes of three mice or above were sufficient to reach a statistical power of at least 80% (http://www.statisticalsolutions.net/pss_calc.php). Mice were assigned at random to treatment groups for all mouse studies and, where possible, mixed among cages. Clinical scoring was performed in a blinded fashion. Mice that developed adverse reactions to protocols were excluded from data sets. Statistical significance was determined using unpaired t tests (comparison of two groups), Mann-Whitney tests (comparison of two groups, non-parametric data), Spearman correlation, one-way ANOVA (comparison of three or more groups) or two-way ANOVA (comparison of two or more groups with 2 independent variables). All data met the assumption of statistical tests and had a normal distribution and variance was similar between groups that were statistically compared. Results were considered significant at \(p \leq 0.05 \). Statistical tests were carried out using GraphPad Prism (La Jolla, CA, USA) v.6, Software for Apple Mac.
Chapter III: Results I

Although there is some consensus regarding the effector function of Bregs, there is no unified view of Breg phenotype, with an ever-growing list of Breg subsets being reported in almost all stages of B cell differentiation. Bregs are characterised by their expression of IL-10, in addition to in vivo or in vitro assays assessing their suppressive capacity. However, a conserved transcription factor which controls Breg function that is expressed by all Breg subsets, has so far evaded discovery. Unlike in murine T cells, where it is well established that IL-10 expression is controlled by several transcription factors, including CMAF, AHR, BATF and IRF1, there is limited knowledge of the transcriptional control of IL-10 production by Bregs. Studies of the molecular control of murine B cell IL-10 production have been limited to the examination of NFATC1, IRF4, CMAF and HIF1α. Of these transcription factors, only IRF4 has been demonstrated to directly bind to the Il10 locus in B cells. Moreover, binding to the Il10 locus was only demonstrated in BLIMP-1-GFP+ plasmablasts and not in other B cell populations. Thus, the aim of this work was to compare the gene expression profiles between Bregs and non-Bregs and identify a transcription factor which is uniquely expressed by IL-10+CD19+CD21hiCD24hi Bregs (a population of cells which contain virtually all splenic IL-10+ B cells).

In this chapter, I compare gene expression profiles between IL-10+ Bregs (IL-10+CD19+CD21hiCD24hi) and IL-10- B cell subsets (IL-10-CD19+CD21hiCD24hi and IL-10- FO B cells) and show that IL-10+ Bregs have a unique transcriptional profile with limited cytokine and chemokine expression, when compared to the IL-10- B cell counterparts. We identify AHR as being highly expressed in IL-10+ Bregs, with CD19+CD21hiCD24hi B cells poised to become high AHR-expressing B cells. Activation of CD19+CD21hiCD24hi B cells with LPS+anti-IgM induced both the expression of AHR and IL-10. Based on three key findings, we identify that the induction of IL-10 in B cells is AHR-dependent. Firstly, we demonstrate that Ahr−/− CD19+CD21hiCD24hi B cells secrete less IL-10 in response to activation with LPS+anti-IgM and fail to inhibit IFN-γ production by CD4+ T cells in vitro. Secondly, we show that the addition of AHR agonists augment IL-10 production by CD19+CD21hiCD24hi B cells. Lastly, we show that AHR directly binds to the Il10 locus in IL-10+ Bregs.
The bioinformatics analysis for the microarray (which involved the count matrix generation, normalisation and differential gene expression analysis) was performed by Ignat Drozdov (Bering Ltd). Similarly, the ATAC-seq bioinformatics analysis (quality control, read trimming, mapping to the genome and peak calling) was carried out by Andre Rendeiro and Thomas Krausgruber (CeMM, Austria). The ChIP qPCR was performed in collaboration with Aggelos Banos (BRFAA, Greece). Where data analysis or experiments were carried out in collaboration, the respective authors are listed in the figure legends.
3.1 IL-10+ Bregs present a restricted cytokine and chemokine gene expression profile

To identify candidate genes that regulate the transcription of IL10 in Bregs, arthritis was induced in IL-10eGFP reporter mice (Vert-X)659. We sorted splenic IL-10eGFP+CD19+CD21hiCD24hi Bregs, IL-10eGFP+CD19+CD21hiCD24hi B cells and IL-10eGFP− FO B cells (the two GFP+ populations are hereafter referred to as IL-10eGFP− B cell subsets) and profiled these cells by gene expression microarray (Figures 3.1A-B). This sorting strategy was chosen to capture the majority of described Breg subsets, including IL-10+T2-MZP, IL-10+MZ, and IL-10+CD1dhiCD5+ B cells, which have been shown to exert suppressive capacity via IL-10 in this model of arthritis, and in other models of autoimmunity296, 297, 319, 680. Of note, very few IL-10-producing Bregs were present in the joints or DLNs of arthritic mice (Figure 3.1C). Virtually no IL-10-expressing plasma cells or plasmablasts (LAG3+ plasma cells378, and CD138+CD44+ plasmablasts375) were detected in the spleen or DLNs following the induction of arthritis (Figures 3.1D-J).

The purity of sorted IL-10eGFP+ and IL-10eGFP− subsets isolated for the microarray was over 98% (Figure 3.2A). Principal component analysis (PCA) revealed 3 distinct groups along the first dimension, with the IL-10eGFP+CD19+CD21hiCD24hi Breg population clustered separately away from both IL-10eGFP− B cell subsets (Figure 3.2B). Analysis of gene expression revealed 1073 differentially expressed genes between IL-10eGFP+CD19+CD21hiCD24hi Bregs and IL-10eGFP−CD19+CD21hiCD24hi B cells, and 1267 genes that were differentially expressed between IL-10eGFP+CD19+CD21hiCD24hi Bregs and IL-10eGFP− FO B cells (fold change >1.5 and adjusted p-value <0.05) (Figure 3.2C-D).

In the context of arthritis, splenic Bregs have been shown to mainly produce IL-10286. Of the cytokine genes upregulated in IL-10eGFP+CD19+CD21hiCD24hi Bregs, only Il10 and Ebi3 reached an adjusted p value of <0.05, compared to both IL-10eGFP− B cell subsets. However, since Il12a was not found to be upregulated in IL-10eGFP+CD19+CD21hiCD24hi Bregs, we excluded a role of IL-35 in these cells. Although a trend in the increase of transcripts for pro-inflammatory genes such as Il1a, Il12b, Il15 and Il18 was noted, the expression of these genes was not
significantly different from the IL-10eGFP− B cell subsets (Figure 3.3A). IL-10eGFP− FO B cells, which unlike CD19+CD21hiCD24hi B cells do not suppress inflammation on adoptive transfer297, express a different transcriptional profile, characterized by a higher expression of cytokines and cytokine receptors known to mediate inflammatory responses, compared to IL-10eGFP+CD19+CD21hiCD24hi Bregs (Figures 3.3A-B). The transcripts that were significantly differentially expressed in IL-10eGFP+CD19+CD21hiCD24hi Bregs versus IL-10eGFP− B cell subsets are summarised in (Figure 3.3C). In keeping with the anti-inflammatory role of Bregs, we found that the Th2 attracting chemokines Ccl17 and Ccl22285, 681, and the chemokine receptor Cxcr3, important for the trafficking of lymphocytes to the synovium in arthritis682, were upregulated in IL-10eGFP+CD19+CD21hiCD24hi Bregs compared to IL-10eGFP− B cell subsets (Figures 3.3A-C). These results showed that in the context of arthritis, splenic Bregs displayed a distinct anti-inflammatory transcriptional profile compared to IL-10eGFP− B cell subsets.
Figure 3.1. IL-10* Bregs are predominantly found in the CD19*CD21hiCD24hi B cell population in the spleen in AIA. Antigen-induced arthritis (AIA) was induced in IL-10eGFP reporter (Vert-X) mice. (A) Representative flow cytometry plots showing the frequency of CD19*CD21hiCD24hi and CD19*CD21hiCD24int (FO) B cells. (B) Representative flow cytometry plots showing the frequency of IL-10eGFP* CD19*CD21hiCD24hi and IL-10eGFP* FO B cell subsets. (C) Bar chart showing the frequencies of IL-10*CD19* B cells in the joint, draining LNs and spleens of Vert-X mice (n=3). D-G, Representative flow cytometry plots showing respectively the frequencies of (D) CD138*LAG3* plasma cells, (E) IL-10*CD138*LAG3* plasma cells, (F) CD138*CD44hi plasmablasts and (G) IL-10*CD138*CD44hi plasmablasts in the spleen. (H) Bar chart showing the percentages of CD19*CD138*, CD19*CD138*LAG3* and CD19*CD138*CD44hi plasmablasts in the spleens of Vert-X mice, as shown gated in D+F (n=5). (I) Representative flow cytometry plots showing respectively the frequencies of (left) CD138*LAG3* and (right) CD138*CD44hi plasmablasts in the DLNs of Vert-X mice. (J) Bar chart showing the percentages of CD19*CD138*, CD19*CD138*LAG3* and CD19*CD138*CD44hi plasmablasts/plasma cells in the DLNs of in Vert-X mice, as shown gated in I (n=5). All experiments were carried out at day 7 post IA-injection. Figures A-B, data are representative of at least 5 independent experiments. For figures D-J, data representative of 2 independent experiments. Figures C, H and J, data are expressed as mean±sem. *p<0.05, **p<0.01. C, H and J, one-way ANOVA. Figure C was generated by Elizabeth Rosser.
Figure 3.2. IL-10+ Bregs have a unique transcriptional profile. Antigen-induced arthritis (AIA) was induced in IL-10eGFP reporter (Vert-X) mice. (A) Representative flow cytometry plots showing purity of IL-10eGFP+CD19+CD21hiCD24hi and IL-10eGFP+CD19+CD21hiCD24hi B cells. (B) Principal Component Analysis of transcripts in IL-10eGFP+CD19+CD21hiCD24hi, IL-10eGFP+CD19+CD21hiCD24hi, IL-10eGFP+CD19+CD21hiCD24hi and IL-10eGFP+FO B cell subsets (n=3). (C) Heat map showing the expression of genes by IL-10eGFP+CD19+CD21hiCD24hi, IL-10eGFP+CD19+CD21hiCD24hi and IL-10eGFP+FO B cells. Blue dashed line represents a standard deviation of 0. (D) Total number of differentially expressed genes between IL-10eGFP+CD19+CD21hiCD24hi and IL-10eGFP+subsets (>1.5 fold change, adjusted p value <.05). For figure C, heat map shows z scores based on normalized GC-RMA values. All experiments were performed at day 7 post IA-injection. For figures B-C, analysis was performed in collaboration with Ignat Drozdov.
Figure 3.3. Bregs have a restricted cytokine and chemokine transcriptional profile. Antigen-induced arthritis (AIA) was induced in IL-10eGFP reporter (Vert-X) mice. (A) Heat maps showing the expression of cytokine (left) and chemokine (right) genes, in the respective subsets. (B) Heat maps of cytokine receptor (left) and chemokine receptor (right) expression profiles, in the respective subsets (n=3). (C) Log$_2$ fold changes of all significant genes identified in A-B for the GFP$^+$ (left graph) and GFP$^-$ signatures (right graph). Log$_2$ fold changes are highlighted for GFP$^+$ vs both GFP$^-$ populations. All experiments were performed at day 7 post IA-injection. For figures A-B, heat maps show z scores based on normalized GC-RMA values. Listed genes highlighted in red are upregulated in the IL-10eGFP$^+$CD19$^+$CD21$^+$hiCD24$^+$ population compared to both IL-10eGFP$^-$ populations (adjusted p value <0.05).
3.2 AHR is highly expressed in IL-10-producing Bregs

To screen for molecules involved in IL-10 transcription and Breg function, genes concordant for comparisons 1 (between IL-10eGFP+CD19+CD21hiCD24hi Bregs and IL-10eGFP- FO B cells) and comparison 2 (between IL-10eGFP+CD19+CD21hiCD24hi Bregs and IL-10eGFP-CD19+CD21hiCD24hi B cells) (Figure 3.4A) were filtered based on the transcription factor gene ontology term, resulting in 23 candidates (Figure 3.4B and Appendix I). Pathway analyses showed that AHR represented a central network hub (Figure 3.4C) and was the most significantly enriched candidate in IL-10eGFP+CD19+CD21hiCD24hi Bregs (adjusted \(p \) value <3.34x10^{-5}; Figure 3.4D). Analysis of transcription factors previously shown to be associated with the transcriptional regulation of Il10 in other lymphocyte subsets, including Tregs^{418}, revealed that AHR was the most significantly upregulated IL-10-related transcription factor in IL-10eGFP+CD19+CD21hiCD24hi Bregs, in comparison to IL-10eGFP- B cell subsets (Figure 3.4E). Microarray signal intensities for Il10 and Ahr were higher in IL-10eGFP+CD19+CD21hiCD24hi Bregs compared to IL-10eGFP- B cell subsets (Figure 3.4F). qPCR analysis confirmed that Il10 and Ahr mRNA expression was higher in IL-10eGFP+CD19+CD21hiCD24hi Bregs, than in both IL-10eGFP- B cell subsets (Figures 3.4G-H). Corroborating the results in Figures 3.4G-H, assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq), showed increased accessibility in both the Il10 and Ahr loci in IL-10eGFP+CD19+CD21hiCD24hi Bregs, in comparison to both IL-10eGFP- B cell subsets (Figure 3.5). These data demonstrate that, amongst the previously described IL-10 associated transcription factors, only AHR is significantly upregulated in IL-10eGFP+CD19+CD21hiCD24hi Bregs compared to both IL-10eGFP- B cell subsets.
Figure 3.4. Identification of AHR as a key IL-10-associated transcription factor in Bregs. Antigen-induced arthritis (AIA) was induced in IL-10eGFP reporter mice. (A) Scatter plot showing fold changes of differentially expressed genes from the two comparisons (n=660). Concordant changes for both comparisons are shown in red, and discordant changes in grey. (B) Heat map showing z scores of significantly differentially expressed genes (n=23, adj. p value p<0.05) based on normalized GC-RMA values, filtered on the transcription factor activity gene ontology term in sorted IL-10eGFP+CD19+CD21hiCD24hi, IL-10eGFP-CD19+CD21hiCD24hi and IL-10eGFP-FO B cells. (C) Ingenuity pathway network analysis identifies a cluster of genes with AHR as central hub. The lines between genes represent known interactions (solid lines represent direct interactions; dashed lines represent indirect interactions). (D) Volcano plot analysis showing log2 fold changes between IL-10eGFP+CD19+CD21hiCD24hi Bregs versus IL-10eGFP-CD19+CD21hiCD24hi B cells, plotted against -log10 adjusted p value. Ahr is highlighted in red (adjusted p value of 3.4E-05). (E) Heat map of z scores of transcription factors regulating IL-10, expressed by IL-10eGFP+CD19+CD21hiCD24hi, IL-10eGFP-
CD19⁺CD21hiCD24hi and IL-10eGFP⁺FO B cells. Genes highlighted in red are upregulated in the IL-10eGFP⁺CD19⁺CD21hiCD24hi population compared to IL-10eGFP⁻ populations. Black asterisks - p-adjusted values <0.05 for the IL-10⁺CD19⁺CD21hiCD24hi Breg vs IL-10eGFP⁻ FO B cell comparison. Red asterisks - p-adjusted values <0.05 for the IL-10eGFP⁺CD19⁺CD21hiCD24hi Breg vs IL-10eGFP⁻CD19⁺CD21hiCD24hi B cell comparison. (F) Microarray signal intensities of Il10 and Ahr (n=3). Validation of (G) Il10 and (H) Ahr mRNA expression in the indicated B cell subsets by qPCR (n=3). For qPCR, gene expression was calculated normalizing to β-Actin. All experiments were performed at day 7 post IA-injection. Figures F-H, data are expressed as mean±sem. Figures F-H, data representative of 3 independent experiments with biological replicates. *p<0.05, **p<0.01, ***p<0.001. F, two-way ANOVA; G-H, one-way ANOVA. For figures A-C, analysis was performed in collaboration with Ignat Drozdov.
Figure 3.5. The *Il10* and *Ahr* loci are more accessible in IL-10^+^CD19^+^CD21^{hi^}CD24^{hi^} Bregs. Representative ATAC-seq tracks for the *Il10* (top) and *Ahr* (bottom) loci in IL-10eGFP^+^CD19^+^CD21^{hi^}CD24^{hi^} Bregs, IL-10eGFP^+^CD19^+^CD21^{hi^}CD24^{hi^} and IL-10eGFP^+^ FO B cells (*n* = 3). Track heights between samples are normalised through group autoscaling.
3.3 AHR upregulation promotes the generation of IL-10+CD19+CD21hiCD24hi Bregs

We and others have recently shown that BCR signals combined with TLR stimulation induce a substantial upregulation of AHR in B cells\(^2^{17}, 6^{15}\). As BCR signals together with TLR engagement are known to be pivotal in the generation of Bregs\(^2^{86}\), next we investigated whether the differentiation of Bregs, ‘marked’ by the induction of IL-10 expression by these stimuli, was AHR-dependent. For this purpose, CD19+CD21hiCD24hi B cells were sorted from the spleens of arthritic mice and stimulated with LPS±anti-IgM. An 11-fold increase in the frequency of IL-10+CD19+CD21hiCD24hi Bregs and a 200-fold increase in the production of IL-10 by CD19+CD21hiCD24hi Bregs, was observed upon LPS+anti-IgM stimulation compared to unstimulated (Figures 3.6A-C). We established the kinetics of AHR and AHR pathway associated gene expression in relation to Il10 transcription, after activation with Breg-polarizing stimuli. We observed a peak in the expression of Ahr and Cyp1a1 (the gene encoding the AHR-dependent cytochrome P4501A1) at 6hrs post stimulation with LPS+anti-IgM, followed by an upregulation of the AHR repressor (Ahrr) and Il10 at 24hr. No significant changes in the expression of the AHR binding partner, the aryl hydrocarbon receptor nuclear translocator (Arnt) were observed (Figures 3.6D-H). After activation with LPS+anti-IgM, increased levels of AHR expression were observed in IL-10+CD19+CD21hiCD24hi Bregs compared to IL-10- FO and IL-10+CD19+CD21hiCD24hi B cells (Figure 3.7). Of note, ex vivo CD19+CD21hiCD24hi B cells display higher expression of Ahr (confirmed at protein level by flow cytometry and western blotting). Il10, Cyp1a1, Ahr and Arnt compared to FO B cells (Figures 3.8A-H). Together these data show that IL-10+CD19+CD21hiCD24hi Bregs express the highest levels of AHR compared to the IL-10+CD19+CD21hiCD24hi and IL-10- FO B cells and that in CD19+CD21hiCD24hi B cells, AHR upregulation precedes the production of IL-10.

To understand the role of AHR in the regulation and function of IL-10 expression in CD19+CD21hiCD24hi Bregs, we isolated CD19+CD21hiCD24hi B cells and FO B cells from Ahr\(^{-/-}\) and Ahr\(^{-/-}\) mice and stimulated them in vitro with LPS+anti-IgM. The absence of AHR significantly reduced the ability of CD19+CD21hiCD24hi B cells to differentiate into IL-10-producing CD19+CD21hiCD24hi Bregs compared to AHR competent CD19+CD21hiCD24hi B cells (Figure 3.9A). In addition, Ahr\(^{-/-}\) CD19+CD21hiCD24hi B cells presented a reduced capacity to inhibit IFN-γ
production by CD4+ T cells in vitro compared to Ahr+/ CD19+CD21hiCD24hi B cells (Figures 3.9B-C). FO B cells failed to produce IL-10 and to suppress IFN-γ production by CD4+ T cells, irrespective of AHR expression (Figures 3.9B-C).

To assess if activation of AHR with endogenous ligands directly promotes the differentiation of CD19+CD21hiCD24hi B cells into IL-10+CD19+CD21hiCD24hi Bregs, we stimulated sorted CD19+CD21hiCD24hi B cells or FO B cells with the AHR ligand 6-formylindolo(3,2-b) carbazole (FICZ). AHR activation significantly upregulated the expression of Cyp1a1 and Il10 in the CD19+CD21hiCD24hi B cell subset but not in FO B cells, compared to the vehicle control (Figures 3.10A-B). Secretion of IL-10 was further enhanced by the addition of FICZ to LPS+anti-IgM stimulated CD19+CD21hiCD24hi B cells, compared to LPS+anti-IgM alone (Figure 3.10C). An increase in Breg IL-10 expression was observed when CD19+CD21hiCD24hi B cells were cultured in Iscove’s Modified Dulbecco’s Medium (IMDM; enriched in aromatic amino acids which give rise to AHR ligands583, 683), compared to RPMI media (Figure 3.10D).

We next investigated whether AHR regulates IL-10 expression in IL-10eGFP+CD19+CD21hiCD24hi Bregs by directly binding to the Il10 locus. To address this, we took advantage of the JASPAR tool684 and identified putative AHR binding sites in 500bp regions up to -5kb upstream and +5kb downstream of the Il10 transcription start site (TSS), and designed primer probes to span these regions (Figure 3.11A). We sorted IL-10eGFP+ and IL-10eGFP- B cells, after stimulation with LPS+anti-IgM+FICZ (the combination of stimuli was used to maximise AHR activation and translocation to the nucleus) and performed chromatin immunoprecipitation (ChIP) qPCR on AHR bound DNA (Figure 3.11B). Significantly enriched AHR binding was observed at -3.5kb upstream of the Il10 transcription start site in the IL-10eGFP+ population. Minimal binding of AHR was observed in other regions of the Il10 locus. As a positive control, we confirmed that, under these experimental conditions, there was an enriched binding of AHR to the promoter of Cyp1a1, but no binding to Gapdh; an AHR-independent housekeeping gene (Figure 3.11C). These results demonstrate that AHR can directly regulate IL-10 expression in Bregs by binding to the Il10 locus.
Figure 3.6. LPS+anti-IgM induce Ahr and Il10 expression in CD19^+CD21^hiCD24^hi B cells. Antigen-induced arthritis (AIA) was induced in IL-10eGFP reporter or C57BL/6 mice. A-B, (A) Representative flow cytometry plots and (B) bar chart showing the percentage of IL-10 expression in CD19^+CD21^hiCD24^hi B cells (n=5). In these experiments CD19^+CD21^hiCD24^hi B cells were stimulated for 24h with LPS followed by an additional 24h with anti-IgM. (C) IL-10 production, as measured by ELISA (n=7). D-H, CD19^+CD21^hiCD24^hi B cells were isolated from WT C57BL/6 mice and stimulated for 6h or 24h with LPS+anti-IgM. The mRNA levels of (D) Ahr, (E) Cyp1a1, (F) Ahr, (G) Arnt and (H) Il10 were analyzed ex-vivo and after stimulation (n=3). For qPCR, gene expression was calculated normalizing to β-Actin. All experiments were performed at day 7 post IA-injection. Data representative of at least 3 independent experiments with biological replicates. Figures B-H, data are expressed as mean±sem. *p<0.05, **p<0.01, ***p<0.001. B-H, one-way ANOVA.
Figure 3.7. AHR is most highly expressed in IL-10^+CD19^+CD21^{hi}CD24^{hi} B cells after stimulation with LPS+anti-IgM. Representative histogram and bar chart showing the MFI of AHR expression in IL-10^+CD19^+CD21^{hi}CD24^{hi}, IL-10^-CD19^-CD21^{hi}CD24^{hi} and IL-10^-FO B cells after 48h stimulation with LPS+anti-IgM (n=4). All experiments were carried out at day 7 post IA-injection. Data representative of at least 2 independent experiments with biological replicates. Data are expressed as mean±sem. ***p<0.001, one-way ANOVA.
Figure 3.8. Increased levels of Ahr and downstream pathway in ex vivo CD19^+CD21^hiCD24^hi B cells compared to FO B cells. CD19^+CD21^hiCD24^hi and FO B cells were isolated from WT mice and the mRNA levels of (A) Ahr, (B) Il10, (C) Cyp1a1, (D) Ahrr and (E) Arnt were analysed ex-vivo (n=3). (F) Representative histogram and (G) bar chart showing the median fluorescent intensity (MFI) of AHR expression in CD19^+CD21^hiCD24^hi and FO B cells ex vivo (n=4). (H) Western blot showing the expression of AHR in CD19^+CD21^hiCD24^hi and FO B cells isolated from arthritic WT mice. β-ACTIN was used as a loading control. The numbers indicate the size of the protein bands in kDa. For qPCR, gene expression was calculated normalizing to β-Actin. All experiments were carried out at day 7 post IA-injection. Data representative of at least 2 independent experiments with biological replicates. Figures A-E and G, data are expressed as mean±sem. *p<0.05. A-E and G, Student’s t test.
Figure 3.9. AHR controls the differentiation of CD19⁺CD21⁺⁺CD24⁺⁺ B cells into Bregs. Antigen-induced arthritis (AIA) was induced in Ahr⁺/⁻ and Ahr⁻/⁻ mice (A) IL-10 production measured by ELISA in LPS+anti-IgM stimulated CD19⁺CD21⁺⁺CD24⁺⁺ B cells and FO B cells from Ahr⁺/⁻ and Ahr⁻/⁻ mice (n=4 per group). (B) CpG-B-stimulated CD19⁺CD21⁺⁺CD24⁺⁺ and FO B cells from Ahr⁺/⁻ and Ahr⁻/⁻ mice co-cultured for 72 hours with anti-CD3 stimulated autologous CD4⁺ T cells from Ahr⁺/⁻ mice. Representative flow cytometry plots showing the frequency of IFN-γ⁺CD4⁺ T cells. (C) Bar chart showing percentage suppression of IFN-γ⁺CD4⁺ T cells by splenic CD19⁺CD21⁺⁺CD24⁺⁺ B cells or FO B cells, following stimulation with anti-CD3 (n=3). All experiments were performed at day 7 post IA-injection. Data representative of at least 3 independent experiments with biological replicates. Figures A and C, data are expressed as mean±sem. **p<0.01, ***p<0.001. A and C, two-way ANOVA.
Figure 3.10. AHR agonists induce IL-10 in CD19^+CD21^{hi}CD24^{hi} B cells. Antigen-induced arthritis (AIA) was induced in WT C57BL/6 mice. CD19^+CD21^{hi}CD24^{hi} and FO B cells were stimulated for 6h with either vehicle alone (DMSO) or with the AHR agonist FICZ and the expression of (A) *Cyp1a1* and (B) *Il10* was measured by qPCR (n=3). (C) CD19^+CD21^{hi}CD24^{hi} B cells were cultured in RPMI media for 48h with LPS+anti-IgM±FICZ and IL-10 was measured in the supernatant (n=4). (D) CD19^+CD21^{hi}CD24^{hi} B cells were cultured in LPS+anti-IgM for 48h in RPMI or IMDM media and IL-10 was measured in the supernatant (n=5). For qPCR, gene expression was calculated normalizing to β-Actin. All experiments were performed at day 7 post IA-injection. Data representative of at least 3 independent experiments with biological replicates. Figures A-D, data are expressed as mean±sem. **p<0.01, ***p<0.001. A, B and D, two-way ANOVA; C, one-way ANOVA.
Figure 3.11. AHR binds to the *Il10* locus in IL-10+ Bregs. Antigen-induced arthritis (AIA) was induced in IL-10eGFP reporter or C57BL/6 mice. (A) Jaspar binding motif analysis of putative AHR binding sites (XRE sites) in 500bp regions of DNA, upstream of the *Il10* transcription start site (TSS). (B) Schematic representing the experimental design for the ChIP-qPCR assay. Briefly, we isolated splenic B cells from IL-10eGFP reporter mice, stimulated them for 24h with LPS followed by 24h with anti-IgM+FICZ. (C) ChIP analysis of AHR binding to the *Il10* locus was performed in IL-10eGFP+CD19+ and IL-10eGFP-CD19+ B cells. Bar chart showing the relative enrichment of AHR binding to regions upstream/downstream, or in the promoters (labeled as P), of the *Il10*, *Cyp1a1* and *Gapdh* loci (*n*=3). All experiments were performed at day 7 post IA-injection. Data representative of at least 3 independent experiments with biological replicates. Figure C, data are expressed as mean±sem. *p*<0.05. C, multiple unpaired t tests. For Figure C, experiment was performed in collaboration with Aggelos Banos (ChIP assay post-fixation of cells).
Chapter IV: Results II

We have so far identified that AHR was highly expressed in IL-10+ Bregs and that AHR controlled IL-10 production in these cells via direct binding to the Il10 locus. Furthermore, we demonstrated that Bregs have a tightly restricted gene expression profile with limited expression of cytokines, chemokines and their related receptors, compared to effector B cells. AHR has previously been shown to downregulate pro-inflammatory cytokines such as IFN-γ, IL-1β, IL-6, IL-17, IL-23a and TNFα in a variety of immune cells482, 685, 686. We hypothesised that AHR, in addition to regulating IL-10 expression, also limited inflammatory gene expression in Bregs.

Using a combination of chromatin profiling and transcriptome analyses we show that loss of AHR in B cells reduces the expression of IL-10 by skewing the differentiation of CD19+CD21hiCD24hi B cells into a pro-inflammatory programme, even under Breg-polarising conditions. We go on to show that inhibition of AHR increases Il6, Tnf and Il2 transcription in CD19+CD21hiCD24hi B cells and rule out that these cytokines are increased in AhrBir-Mb1cre/+ CD19+CD21hiCD24hi B cells, as a consequence of reduced IL-10 signalling. This data suggests that these genes are direct targets of AHR. Thus, we highlight an important role of AHR in defining the identity of IL-10+ Bregs. The combined results in chapter III and this chapter, show that AHR acts as a transcriptional regulator of Breg differentiation by implementing a molecular programme that controls B cell IL-10 production and represses pro-inflammatory cytokine production.

The bioinformatic pipeline analysis for the RNA-seq (mapping to the mouse genome, normalisation and differential gene expression analysis) was carried out by Ignat Drozdov (Bering Ltd). Likewise, the bioinformatic pipeline for the ATAC-seq (read trimming, mapping to genome and peak calling) was carried out by Andre Rendeiro and Thomas Krausgruber (CeMM, Austria). Where data analysis was carried out in collaboration, the respective authors are listed in the figure legends.
4.1 AHR controls the Breg transcriptional programme by suppressing pro-inflammatory gene expression

To examine the role of AHR in controlling the differentiation of CD19+CD21^hiCD24^hi B cells into Bregs, and to ascertain the relative contribution of AHR in establishing the restricted Breg phenotype identified in the microarray (Figure 3.3), in addition to its role in regulating IL-10 production, we took advantage of mice with a B cell-specific deficiency of AHR (Ahr^fl/fl^Mb1^cre/+^) (Figures 4.1A-C). The use of these mice avoids any cell extrinsic effects of AHR that could indirectly influence Breg differentiation. CD19+CD21^hiCD24^hi B cells were sorted from immunised Mb1^cre/+^ and Ahr^fl/fl^Mb1^cre/+^ mice and the transcriptional profile of sorted CD19+CD21^hiCD24^hi B cells was compared before and after stimulation under Breg polarising conditions (LPS+anti-IgM). Both the normalized counts for Ahr and the accessibility of the Ahr locus, measured by ATAC-seq increased in LPS+anti-IgM stimulated Mb1^cre/+^ CD19+CD21^hiCD24^hi B cells, compared to ex-vivo Mb1^cre/+^ CD19+CD21^hiCD24^hi B cells (Figures 4.2A-B). Signaling pathway impact analysis (SPIA) of differentially expressed genes (DEG) revealed overrepresented pathways relating to cytokine-cytokine receptor interactions and chemokine signalling, in stimulated Mb1^cre/+^ CD19+CD21^hiCD24^hi B cells versus ex vivo Mb1^cre/+^ CD19+CD21^hiCD24^hi B cells (Figure 4.3A). Analysis of the genes differentially expressed within this pathway, confirmed that under Breg polarising conditions, several genes identified in the IL-10eGFP^+^ signature (as shown in Figure 3.3C) including Il10, Ccl22 and Il2ra were upregulated, whilst those associated to the IL-10eGFP^-^ signature including Il12a, Il10ra and Ltb were downregulated, under Breg-polarising conditions (Figure 4.3B-C).

A signature of genes related to cytokine-cytokine receptor interaction was upregulated in Ahr^fl/fl^Mb1^cre/+^ CD19+CD21^hiCD24^hi B cells under LPS+anti-IgM stimulation compared to Mb1^cre/+^ CD19+CD21^hiCD24^hi B cells (Figure 4.4A). 44 of 102 genes in this pathway were significantly differentially expressed between Ahr^fl/fl^Mb1^cre/+^ and Mb1^cre/+^ CD19+CD21^hiCD24^hi B cells (Figures 4.4B). Of the genes that were differentially expressed under Breg polarising conditions (Figure 4.3B), pro-inflammatory cytokines including Il6, Tnf, Il2, and chemokines such as Ccl3, Ccl5 and Cxcl16, known to recruit lymphocytes to the inflamed synovia in models of arthritis, were upregulated in the absence of AHR (Figure 4.4B). The absence of AHR expression, led to the downregulation of the Il5ra gene, previously
associated with Breg function349, and \textit{Ccl22} and \textit{Il18}, which we have identified as Breg-associated genes in the microarray. Testing key arthritogenic pro-inflammatory transcripts691, 692, 693 by qPCR confirmed that \textit{Il2}, \textit{Il6} and \textit{Tnf} were increased in \textit{Ahr}fl\textendash\textit{Mb1}cre/+ \textit{CD19}+\textit{CD21}hi\textit{CD24}hi B cells, and the Breg-associated transcripts \textit{Ccl22} and \textit{Il5ra} were decreased, compared to \textit{Mb1}cre/+ \textit{CD19}+\textit{CD21}hi\textit{CD24}hi B cells. The increase in pro-inflammatory cytokines in \textit{Ahr}fl\textendash\textit{Mb1}cre/+ \textit{CD19}+\textit{CD21}hi\textit{CD24}hi B cells was confirmed by ELISA (Figures 4.4C-D).

To confirm that AHR suppresses pro-inflammatory gene expression during the development of Bregs, we blocked AHR signaling \textit{in vitro} with CH-223191. Concordant to the results identified with the RNA-seq, blocking AHR signaling resulted in the upregulation of \textit{Il6} and \textit{Tnf}, and the downregulation of \textit{Il10} and \textit{Ccl22} mRNA (Figure 4.5).

Our data suggests that AHR contributes to the Breg transcriptional programme by suppressing pro-inflammatory gene expression. To rule out whether this effect is secondary to the decrease of IL-10, we cultured WT and \textit{Il10r}-/- \textit{CD19}+\textit{CD21}hi\textit{CD24}hi B cells with LPS\textendash anti-IgM in the presence or absence of the selective AHR antagonist CH-223191. The expression of \textit{Il6} and \textit{Tnf} was significantly increased in both WT and \textit{Il10r}-/- \textit{CD19}+\textit{CD21}hi\textit{CD24}hi B cells cultured with the AHR antagonist, suggesting a direct effect of AHR in the suppression of pro-inflammatory gene expression (Figure 4.6). Collectively, these data show that under Breg-polarizing conditions, AHR acts as a molecular switch that ‘turns off’ a number of pro-inflammatory cytokines and chemokines in \textit{CD19}+\textit{CD21}hi\textit{CD24}hi B cells, whilst promoting the expression of IL-10*\textit{CD19}+\textit{CD21}hi\textit{CD24}hi Breg-associated cytokines and receptors.
Figure 4.1. Validation of B cell AHR deficient (Ahr^{fl}-Mb1^{cre/+}) mice. (A) Schematic showing breeding strategy for the generation of Ahr^{fl}-Mb1^{cre/+} mice. Ahr^{fl}-Mb1^{cre/+} mice lack AHR in MB1-expressing cells and report Cre activity via FP635 expression. (B) Representative flow cytometry plots of FP635 expression in the parental Ahr^{fl/fl}R26R FP635^{fl/fl} strain, Mb1^{cre/+} control mice and Ahr^{fl}-Mb1^{cre/+} mice. (C) Splenocytes from Ahr^{fl}-Mb1^{cre/+} mice and Mb1^{cre/+} controls were sorted into CD19⁺B220⁺ and CD19[−]B220[−] fractions and the levels of Ahr mRNA were analysed ex vivo (n=3). For qPCR, gene expression was calculated normalizing to β-Actin. All experiments were carried out at day 7 post IA-injection. Data representative of at least 2 independent experiments with biological replicates. Figure C, data are expressed as mean±sem. **p<0.01. C, unpaired t test.
Figure 4.2. Activation of CD19⁺CD21^{hi}CD24^{hi} B cells under Breg polarising conditions increases Ahr expression and the accessibility of the Ahr locus. (A) Normalised counts (CPM) of Ahr expression in Mb^{1<cre}/⁺ mice ex vivo and after activation for 6h with LPS+anti-IgM. (B) Representative tracks of the Ahr locus before and after stimulation with LPS+anti-IgM in Mb^{1<cre}/+ CD19⁺CD21^{hi}CD24^{hi} B cells. Red box indicates one significantly differentially accessible region. All experiments were carried out at day 7 post IA-injection. For RNA-seq data, n=3 per condition and genotype. For ATAC-seq data, n=3 for Mb^{1<cre}/+ mice and n=2 for Ahr^{fl/fl}Mb^{1<cre}/+ mice. Figure A, data expressed as mean±sem.
Figure 4.3. AHR increases Breg associated gene expression upon activation with LPS+anti-IgM. AIA was induced in Mb1cre/+ and Ahrfl/-/Mb1cre/+ mice. (A) Signalling pathway impact analysis (SPIA) showing the top significant (p<0.05) over-represented and under-represented pathways in LPS+anti-IgM stimulated compared to ex vivo CD19⁺CD21hiCD24hi B cells from Mb1cre/+ mice. The total perturbation accumulation of these pathways (tA) score is represented on the x-axis. (B) Volcano plot of RNA-seq analysis showing log₂ fold changes between LPS+anti-IgM stimulated compared to ex vivo CD19⁺CD21hiCD24hi B cells from Mb1cre/+ mice, plotted against –log₁₀ p value for the cytokine-cytokine receptor interaction pathway. Red dots represent significantly differentially expressed genes with the red line denoting a cut-off p value of <0.05. (C) Log₂ fold changes for core GFP⁺ and GFP⁻ gene signatures (identified from Figure 3.3C) comparing 6h LPS+anti-IgM vs ex vivo Mb1cre/+ CD19⁺CD21hiCD24hi B cells. All experiments were performed at day 7 post IA-injection. For RNA-seq data, n=3 per condition and genotype.
Figure 4.4. AHR suppresses pro-inflammatory gene expression during the differentiation of Bregs. AIA was induced in Mb1^{cre/+} and Ahr^{fl/-}Mb1^{cre/+} mice. (A) Signalling pathway impact analysis (SPIA) showing the top significant (p<0.05) over-represented and under-represented pathways in 6h LPS+anti-IgM stimulated CD19^{CD21^{hi}CD24^{hi}} B cells from Ahr^{fl/-}Mb1^{cre/+} mice compared to Mb1^{cre/+} mice. (B) Volcano plot of RNA-seq analysis showing log2 fold changes between LPS+anti-IgM stimulated CD19^{CD21^{hi}CD24^{hi}} B cells from Ahr^{fl/-}Mb1^{cre/+} vs Mb1^{cre/+} mice, plotted against –log10 p value for the cytokine-cytokine receptor interaction pathway. (C) CD19^{CD21^{hi}CD24^{hi}} B cells were isolated from Mb1^{cre/+} mice and Ahr^{fl/-}Mb1^{cre/+} mice, stimulated for 6h with LPS+anti-IgM and assessed for mRNA levels of Il2, Il6, Tnf, Ccl22 and Il5ra (n=4). (D) IL-2, IL-6 and TNFα concentrations from 48h LPS+anti-IgM stimulated CD19^{CD21^{hi}CD24^{hi}} B cells from Mb1^{cre/+} mice and Ahr^{fl/-}Mb1^{cre/+} mice (n=4). For qPCR, gene expression was calculated normalizing to β-Actin. All experiments were performed at day 7 post IA-injection. For RNA-seq data, n=3 per condition and genotype. For ATAC-seq data, n=3 for Mb1^{cre/+} mice and n=2 for Ahr^{fl/-}Mb1^{cre/+} mice. For figures C-D, data representative of 2 independent experiments with biological replicates and data are expressed as mean±sem. *p<0.05. C-D, Mann-Whitney test.
Figure 4.5. Blocking AHR affects the cytokine and chemokine gene expression of LPS+anti-IgM stimulated CD19⁺CD21^{hi}CD24^{hi} B cells. CD19⁺CD21^{hi}CD24^{hi} B cells were isolated from WT mice and stimulated for 24h with LPS+anti-IgM in the presence of the AHR antagonist CH-223191 or a vehicle control and *Il10, Ccl22, Il6* and *Tnf* mRNA levels were analyzed (n=5). For qPCR, gene expression was calculated normalizing to β-Actin. All experiments were carried out at day 7 post IA-injection. Data representative of two independent experiments with biological replicates. Data expressed as mean±sem. *p<0.05, **p<0.01, Mann-whitney test.
Figure 4.6. *Il6* and *Tnf* are direct targets of AHR and are not affected in the absence of IL-10 signalling. WT or *Il10r-/-* CD19⁺CD21^{hi}CD24^{hi} B cells were cultured with LPS+anti-IgM±CH-223191 for 24h and *Il6* and *Tnf* mRNA levels were analyzed (n=5). For qPCR, gene expression was calculated normalizing to β-Actin. All experiments were carried out at day 7 post IA-injection. Data representative of two independent experiments with biological replicates. Data expressed as mean±sem. *p<0.05, **p<0.01, two-way ANOVA.
4.2 AHR regulates chromatin accessibility of cytokine and chemokine gene loci in B cells

Xenobiotic response elements (XRE), which are specific sites for AHR binding, have been reported in many genes involved in immune function\(^8\). Comparison of the genome-wide footprint density of up- and down-stream XRE sites, using a previously reported XRE consensus sequence in B cells\(^9\), revealed increased chromatin accessibility of these regions in \(Mb1^{cre/+}\)CD19\(^+\)CD21\(^{hi}\)CD24\(^{hi}\) B cells after activation of with LPS+anti-IgM (Figure 4.7A). No increase was seen in \(Ahr^{fl/-}\)\(Mb1^{cre/+}\) CD19\(^+\)CD21\(^{hi}\)CD24\(^{hi}\) B cells after activation with LPS+anti-IgM. Specific interrogation of differentially accessible regions (DAR) in loci encoding genes from the cytokine-cytokine receptor interaction pathway, revealed an overall decrease in chromatin accessibility in these genes in \(Ahr^{fl/-}\)\(Mb1^{cre/+}\) CD19\(^+\)CD21\(^{hi}\)CD24\(^{hi}\) B cells. 78 DARs (p value <0.05) were identified amongst the genes regulated by AHR at the transcriptional level, including \(Il2\), \(Il6\), \(Ccl3\), \(Ccl5\), \(Il5ra\), \(Ccl22\) and \(Il10\) between LPS+anti-IgM polarised \(Ahr^{fl/-}\)\(Mb1^{cre/+}\) and \(Mb1^{cre/+}\) CD19\(^+\)CD21\(^{hi}\)CD24\(^{hi}\) B cells (Figure 4.7B). These data indicate that AHR binds to the XRE regions and regulates the chromatin accessibility of a number of genes within the cytokine-cytokine receptor interaction pathway.
Figure 4.7. AHR increases chromatin accessibility of CD19\(^+\)CD21\(^{hi}\)CD24\(^{hi}\) B cells under Breg polarising conditions. AIA was induced in Mb1\(^{cre/+}\) and Ahr\(^{fl/-}\)Mb1\(^{cre/+}\) mice. (A) Bar chart showing the ratio of mean normalized accessibility in all AHR binding sites (XRE regions) over the normalized mean accessibility of other regulatory elements (mean±95% confidence intervals). (B) Volcano plot of ATAC-seq DARs in genes taken from the cytokine-cytokine receptor interaction pathway, comparing chromatin accessibility at these sites between Ahr\(^{fl/-}\)Mb1\(^{cre/+}\) and Mb1\(^{cre/+}\) CD19\(^+\)CD21\(^{hi}\)CD24\(^{hi}\) B cells after 6h LPS+anti-IgM. All experiments were performed at day 7 post IA-injection. For ATAC-seq data, n=3 for Mb1\(^{cre/+}\) mice and n=2 for Ahr\(^{fl/-}\)Mb1\(^{cre/+}\) mice.
Chapter V: Results III

The results in chapters III and IV show that AHR is a key transcription factor in the differentiation of CD19+CD21hiCD24hi B cells into IL-10+Bregs, and maintains Breg identity by suppressing pro-inflammatory cytokines otherwise seen in effector B cell populations. In this chapter, we show that AHR is required for Breg suppressive function in vivo in a model of arthritis.

We show that B cell-specific AHR deficient mice (Ahrfl/Mb1cre/+) develop a worse disease course of AIA compared to control Mb1cre/+ mice, with increased numbers of pathogenic IL-17 and IFN-γ expressing CD4+ T cells. As highlighted in the introduction, Breg-derived IL-10 is important for inhibiting the expression of IL-17 and IFN-γ by CD4+ T cells354. Unlike the adoptive transfer of control Mb1cre/+ CD19+CD21hiCD24hi B cells, transfer of Ahrfl/Mb1cre/+ CD19+CD21hiCD24hi B cells failed to suppress AIA disease and inhibit pathogenic CD4+ T cell responses. This is due to a marked reduction of IL-10 production by CD19+CD21hiCD24hi B cells in Ahrfl/Mb1cre/+ mice. Importantly, using a series of in vivo experiments, we show that the impairment in Breg differentiation in AHR deficient CD19+CD21hiCD24hi B cells is a cell intrinsic defect and not a consequence of impaired survival or proliferation of these cells. Moreover, we demonstrate that in the same inflammatory environment, using a mixed bone marrow chimera, only AHR-sufficient CD19+CD21hiCD24hi B cells differentiate in IL-10+ Bregs.

Where experiments were carried out in collaboration, the respective authors are listed in the figure legends.
5.1 B cell specific AHR deficiency causes exacerbated arthritis and increased T cell-driven arthritogenic responses

Having confirmed the contribution of AHR in the programming of the IL-10+CD19+CD21hiCD24hi Breg transcriptional profile, we explored the impact of AHR deficiency specifically in B cells on the immune response associated with arthritis. Ahrfl/-Mb1cre/+ mice developed exacerbated arthritis compared to control Mb1cre/+ mice (Figure 5.1A). Histological analysis of joint tissue showed an increase in immune cell infiltration in the synovia and hyper-vascularization in Ahrfl/-Mb1cre/+ compared to control Mb1cre/+ mice (Figure 5.1B). The enhanced inflammation was associated with a significant increase in the frequency and number of IFN-γ and IL-17-expressing CD4+ T cells in the spleen and DLN in Ahrfl/-Mb1cre/+ mice (Figures 5.2A-D). Increased levels of IL-17 were also observed in the synovium of inflamed joints of Ahrfl/-Mb1cre/+ compared to control group, whereas IFN-γ levels were undetectable (Figure 5.2E). Ahrfl/-Mb1cre/+ mice had an increased frequency and number of IL-17+CD4+ T cells and a reduction in the frequency and total number of FOXP3+ Tregs in the inguinal DLN, compared to the control mice (Figures 5.2C-D and Figures 5.3A-B).

Adoptive transfer of Mb1cre/+ or Ahrfl/-Mb1cre/+ CD19+CD21hiCD24hi B cells into syngeneic mice showed that only CD19+CD21hiCD24hi B cells from Mb1cre/+, but not from Ahrfl/-Mb1cre/+ mice, significantly inhibited disease and Th1/Th17 differentiation in the recipient mice (Figures 5.4A-C), confirming that CD19+CD21hiCD24hi B cells were less effective at suppressing inflammation in the absence of AHR.
Figure 5.1. B cell AHR deficiency exacerbates antigen induced arthritis. (A) Mean clinical score of Mb1^{cre/+} and Ahr^{fl/-} Mb1^{cre/+} mice following induction of arthritis; y axis shows percentage swelling in antigen-injected knee compared to control knee (n=12 per group). (B) Representative H&E staining of arthritic joints from Mb1^{cre/+} and Ahr^{fl/-} Mb1^{cre/+} mice (n=3; original magnification of 20×). Arrows indicate hyper-vascularisation. Scale bar = 100 µM. All experiments were performed at day 7 post IA-injection. Data representative of at least 3 independent experiments with biological replicates. For figure A, data are expressed as mean±sem. **p<0.01, ***p<0.001, two-way ANOVA.
Figure 5.2. Ahr$^{fl/}$Mb1$^{cre/+}$ mice have increased IFN-γ and IL-17 expressing CD4$^{+}$ T cells. A-D, Representative flow cytometry plots and bar charts showing respectively the percentage and number of (A,B) IFN-γCD4$^{+}$ T cells and (C,D) IL-17$^{+}$CD4$^{+}$ T cells in the spleens and DLNs of Mb1$^{cre/+}$ and Ahr$^{fl/}$Mb1$^{cre/+}$ mice ($n=7$). (E) IL-17 concentration as measured in the synovial fluid of Mb1$^{cre/+}$ and Ahr$^{fl/}$Mb1$^{cre/+}$ mice ($n=6$). All experiments were performed at day 7 post IA-injection. Data representative of at least 3 independent experiments with biological replicates. Figures B and D-E, data are expressed as mean±sem. *$p<0.05$, **$p<0.01$. B and D, two-way ANOVA; E, Mann-Whitney test.
Figure 5.3. Ahr$^{fl/-}$Mb1$^{cre/+}$ mice have reduced numbers of FOXP3$^+$ Tregs in the DLN.
(A) Representative flow cytometry plots and (B) bar charts showing respectively the percentage and number of FOXP3$^+$CD4$^+$ T cells in the spleens and DLNs of Mb1$^{cre/+}$ and Ahr$^{fl/-}$Mb1$^{cre/+}$ mice (n=7). All experiments were performed at day 7 post IA-injection. Data representative of at least 3 independent experiments with biological replicates. For figure B, data are expressed as mean±sem. *$p<0.05$. B, two-way ANOVA.
Figure 5.4. Adoptive transfer of AHR-deficient CD19⁺CD21^{hi}CD24^{hi} B cells fails to ameliorate arthritis in recipient mice. (A) Schematic showing the experimental design of the adoptive transfer system. (B) Mean clinical score of C57BL/6 mice following adoptive transfer of CD19⁺CD21^{hi}CD24^{hi} B cells purified from $Mb^{cre/+}$ and $Ahr^{fl/fl}Mb^{cre/+}$ mice, administered on the day of disease onset. Control (no transfer) group received PBS ($n=5$). (C) Bar charts showing respectively the percentage of IFN-γ⁺CD4⁺ T cells and IL-17⁺CD4⁺ T cells in the spleens of WT recipient mice, following an adoptive transfer of $Mb^{cre/+}$ and $Ahr^{fl/fl}Mb^{cre/+}$ CD19⁺CD21^{hi}CD24^{hi} B cells, or a PBS control ($n=5$). All experiments were performed at day 7 post IA-injection. Data representative of at least 3 independent experiments with biological replicates. Figures B and C, data are expressed as mean±sem. *$p<0.05$, **$p<0.01$. B, two-way ANOVA; C, one-way ANOVA.
5.2 Ahr^{fl/-}Mb1^{cre/+} mice do not have a defect in B cell development, but present with a reduced frequency and number of Bregs

To establish that the increase in disease severity and the impact on the T cell compartment was due to the lack of AHR-expressing Bregs, rather than a consequence of abnormal B cell development, we next compared the frequencies of pro, pro-pre, pre, immature, transitional (T), early and late mature B cells in the bone marrow or T1 or FO B cells in the spleens of Ahr^{fl/-}Mb1^{cre/+} and Mb1^{cre/+} mice. We observed no differences in these populations, suggesting that the increase in arthritis severity and in pro-inflammatory T cells was indeed due to a reduction of CD19⁺CD21⁺CD24⁺ Bregs, rather than a consequence of abnormal B cell development (Figures 5.5A-B, Figures 5.6A-H). In line with previous findings showing that AHR represses differentiation of B cells into plasma cells⁶⁰⁶, we found increased frequencies of splenic plasma cells (Figures 5.7A-B) and increased Prdm1 mRNA expression in Ahr^{fl/-}Mb1^{cre/+} B cells relative to Mb1^{cre/+} B cells (Figure 5.7C). Despite changes in the frequency of plasma cells in the spleens there were no differences in the amount of secreted IgG, IgM and IgA in the serum of arthritic Ahr^{fl/-}Mb1^{cre/+} versus Mb1^{cre/+} mice (Figure 5.7D).

While there were no differences in the number of splenic CD19⁺CD21⁺CD24⁺ B cells between the two groups, Ahr^{fl/-}Mb1^{cre/+}CD21⁺CD24⁺ B cells secreted significantly less IL-10 than Mb1^{cre/+}CD19⁺CD21⁺CD24⁺ B cells, following stimulation with LPS+anti-IgM (Figure 5.8). IL-10 production by Ahr^{fl/-}Mb1^{cre/+} CD19⁺ B cells was significantly reduced in response to TLR9 stimulation (Figures 5.9A-C). Comparable levels of Ebi3 and Il12a were present in B cells from Ahr^{fl/-}Mb1^{cre/+} mice and Mb1^{cre/+} mice (Figures 5.10A-B). These results together with our previous findings showing a redundant effect of IL-35 in Bregs in this model⁶⁹⁵, excluded that Bregs were non-functional because of a lack of IL-35 production, in the absence of AHR.

The observed IL-10 reduction was not due to impaired B cell proliferation, since an equivalent expression of Ki-67 in Mb1^{cre/+} and Ahr^{fl/-}Mb1^{cre/+} CD19⁺CD21⁺CD24⁺ B cells was observed both directly <i>ex vivo</i> after AIA and after stimulation with LPS+anti-IgM (Figures 5.11A-D). No difference in genes related to the cell cycle was observed, including Ccnb1, previously shown to be regulated by AHR in splenic B cells⁶¹⁵, between Mb1^{cre/+} and Ahr^{fl/-}Mb1^{cre/+} CD19⁺CD21⁺CD24⁺ B cells (Figure
5.11E), suggesting that there was no impairment in BCR-driven regulation of B cell entry into the cell cycle.

Mesenteric lymph nodes (MLNs) are important sites for the licensing of Breg development, through exposure to microbiota-driven induction of the pro-inflammatory cytokines IL-1β and IL-6. Fewer CD19⁺CD21hiCD24hi B cells, and a decreased amount of B cell derived IL-10 after *in vitro* polarisation with LPS+anti-IgM, were observed in the MLN of Ahrfl⁻/⁻Mb1cre/⁺ mice compared to control Mb1cre/⁺ mice (Figures 5.12A-C). Of interest, no difference in the gut-homing integrin α4β7 expression was observed in splenic or MLN-derived CD19⁺CD21hiCD24hi B cells between Ahrfl⁻/⁻Mb1cre/⁺ and Mb1cre/⁺ mice, suggesting the reduction of Bregs observed in the MLN of Ahrfl⁻/⁻Mb1cre/⁺ mice is α4β7-independent (Figures 5.13A-C). We can exclude that the decreased frequency of Bregs was the consequence of a reduction in monocyte-derived IL-1β and IL-6 produced in the spleens or in the MLNs, as equivalent amounts of these cytokines were produced by these cells in both Ahrfl⁻/⁻Mb1cre/⁺ and Mb1cre/⁺ mice (Figures 5.14A-D). Thus, our results collectively show that mice lacking AHR expression in B cells phenocopy the results that we have previously observed in mice with Il10⁻/⁻ B cells and show that AHR influences IL-10⁺CD19⁺CD21hiCD24hi Breg differentiation in a cell intrinsic manner.
Figure 5.5. B cell subset numbers are unaffected in the absence of AHR expression in B cells. AIA was induced in $Mb^{1\text{cre/+}}$ and $Ahr^{fl/-}Mb^{1\text{cre/+}}$ mice. (A) Representative flow cytometry plots showing percentage and (B) bar charts showing the percentages and absolute numbers of CD19$^+$CD21$^-$CD24hi (T1), CD19$^+$CD21hiCD24hi and FO B cells in the spleens of $Mb^{1\text{cre/+}}$ and $Ahr^{fl/-}Mb^{1\text{cre/+}}$ mice ($n=7$). All experiments were performed at day 7 post IA-injection. Data representative of at least 2 independent experiments with biological replicates. For figure B, data are expressed as mean±sem. B, Two-way ANOVA.
Figure 5.6. AHR plays a redundant role in early B cell development in the bone marrow. (A) Representative flow cytometry plots showing $Mb^{1\text{cre/+}}$ and $Ahr^{fl/-}Mb^{1\text{cre/+}}$ B cell subsets in the bone marrow. B-H, Bar charts showing the frequencies of (B) pro, (C) pro-pre, (D) pre, (E) immature, (F) transitional (G) early mature and (H) late mature B cells, as a percentage of total CD19$^+$ B cells in the bone marrow for $Mb^{1\text{cre/+}}$ and $Ahr^{fl/-}Mb^{1\text{cre/+}}$ mice (n=3 per genotype). All experiments were carried out at day 7 post IA-injection. Data representative of at least 2 independent experiments with biological replicates. Figures B-H, data are expressed as mean±sem. B-H, Mann-Whitney test.
Figure 5.7. AHR represses plasma cell differentiation. (A) Representative flow cytometry plots and (B) bar chart showing the percentage of splenic BLIMP-1+ B cells from Mb1cre/+ and Ahrfl/Mb1cre/+ mice (n=3). (C) Total splenic B cells were isolated from Mb1cre/+ and Ahrfl/Mb1cre/+ mice and Prdm1 mRNA levels were analysed ex-vivo (n=3). (D) Serum concentrations of total IgG, IgM and IgA from Mb1cre/+ and Ahrfl/Mb1cre/+ mice were measured by ELISA. For qPCR, gene expression was calculated normalizing to β-Actin. All experiments were carried out at day 7 post IA-injection. Data representative of at least 2 independent experiments with biological replicates. Figures B-D, data are expressed as mean±sem. *p<0.05, **p<0.01. B-D, Student’s t test.
Figure 5.8. CD19$^+$CD21hiCD24hi B cells in $Ahr^{fl/-}$Mb1$^{cre/+}$ mice are less able to differentiate into Bregs. AIA was induced in $Mb^{cre/+}$ and $Ahr^{fl/-}$Mb1$^{cre/+}$ mice. CD19$^+$CD21hiCD24hi or FO B cells were sorted from $Mb^{cre/+}$ and $Ahr^{fl/-}$Mb1$^{cre/+}$ mice and stimulated with LPS+anti-IgM for 48h. IL-10 production, as measured by ELISA ($n=4$ per group). All experiments were performed at day 7 post IA-injection. Data representative of at 2 independent experiments with biological replicates. Data are expressed as mean±SEM. *$p<0.05$, **$p<0.01$, ***$p<0.01$, two-way ANOVA.
Figure 5.9. AHR is required for IL-10 production by B cells in vitro. Representative flow cytometry plots (A) and bar chart (B) showing the percentage of IL-10-expressing CD19⁺ B cells from Mb1cre/+ and AhrRdr Mb1cre/+ mice, after 48h stimulation with CpG-B (n=3). (C) IL-10 production, as measured by ELISA (n=3). All experiments were carried out at day 7 post IA-injection. All data representative of at least 2 independent experiments, with biological replicates. Figures B-C, data expressed as mean±sem. **p<0.01. B-C, two-way ANOVA.
Figure 5.10. AHR does not control IL-35 production by B cells. Splenic B cells were isolated from \(Mb^{cre/+}\) and \(Ahr^{f/+}Mb^{cre/+}\) mice and stimulated with LPS for the indicated times and (A) \(Ebi3\) and (B) \(p35\) mRNA levels were analysed (n=3). All experiments were carried out at day 7 post IA-injection. For qPCR gene expression was calculated normalising to \(\beta\)-Actin. All data representative of at least 2 independent experiments, with biological replicates. Figures A-B, data expressed as mean±sem. A-B, two-way ANOVA.
Figure 5.11. AHR does not affect the proliferation of CD19^CD21^{hi}CD24^{hi} B cells in arthritic mice. (A) Representative flow cytometry plots and (B) bar graphs summarising Ki-67 expression in CD19^CD21^{hi}CD24^{hi} B cells from Mb1^{cre/+} and Ahr^{fl/-}Mb1^{cre/+} mice ex vivo after day 7 AIA and (C-D) after 48h stimulation with LPS+anti-IgM (n=3). (E) Volcano plot (RNA-seq analysis) showing log2 fold changes between 6h LPS+anti-IgM stimulated CD19^CD21^{hi}CD24^{hi} B cells from Ahr^{fl/-}Mb1^{cre/+} versus Mb1^{cre/+} mice, plotted against average log counts per million (CPM; across all samples) for cell cycle related genes (n=259). All experiments were carried out at day 7 post IA-injection. All data representative of at least 2 independent experiments, with biological replicates. Figures B and D, data expressed as mean±sem. B and D, Mann-Whitney.
Figure 5.12 CD19^+CD21^hiCD24^hi B cells in Ahr^{fl/−}Mb1^{cre/+} mice are less able to differentiate into Bregs in the MLNs. AIA was induced in Mb1^{cre/+} and Ahr^{fl/−}Mb1^{cre/+} mice. (A) Representative flow cytometry plots showing percentage and (B) bar charts showing the percentages and absolute numbers of CD19^+CD21^−CD24^hi (T1), CD19^+CD21^hiCD24^hi and FO B cells in the MLNs of Mb1^{cre/+} and Ahr^{fl/−}Mb1^{cre/+} mice (n=7). (C) CD19^+ B cells were sorted from Mb1^{cre/+} and Ahr^{fl/−}Mb1^{cre/+} mice and stimulated with LPS+anti-IgM for 48h. IL-10 production, as measured by ELISA (n=3). All experiments were performed at day 7 post IA-injection. Data representative of at least 2 independent experiments with biological replicates. Figures B-C, data are expressed as mean±sem. *p<0.05. B, two-way ANOVA; C, Mann-Whitney.
Figure 5.13. α4β7 is not differentially expressed between *Mb1cre/+* and *Ahrfl/Mb1cre/+* CD19^CD21^hiCD24^hi B cells. (A) Representative flow cytometry plots of splenic α4β7 expression in CD19^CD21^hiCD24^hi B cells from *Mb1cre/+* and *Ahrfl/Mb1cre/+* mice. B-C, Bar charts showing the frequencies of α4β7-expressing CD19^CD21^hiCD24^hi B cells in the (B) spleen and (C) MLNs of *Mb1cre/+* and *Ahrfl/Mb1cre/+* mice (n=6). All experiments were carried out at day 7 post IA-injection. All data representative of at least 2 independent experiments, with biological replicates. Figures B-C, data expressed as mean±sem. B-C, Mann-Whitney.
Figure 5.14. No difference in monocyte IL-1\(\beta\) and IL-6 expression is observed between \(Mbo1^{cre/+}\) and \(Ahr^{fl/fl}/Mbo1^{cre/+}\) mice. Total splenocytes or MLN cells were cultured for 6h with LPS. A-D, Representative flow cytometry plots and bar charts showing respectively the percentage of (A,C) splenic and (B,D) MLN IL-1\(\beta\) and IL-6-expressing monocytes (n=5). All data representative of at least 2 independent experiments with biological replicates. Figures C-D, data expressed as mean±sem. C-D, Mann Whitney.
5.3 AHR deficient CD19⁺CD21^{hi}CD24^{hi} B cells are unable to differentiate into Bregs <i>in vivo</i>

To test if there was a defect in Breg differentiation <i>in vivo</i>, we followed the fate of adoptively transferred CD19⁺CD21^{hi}CD24^{hi} B cells from WT and Ahr^{−/−} mice into immunized CD45.1 recipient mice. An equal frequency of donor CD45.2⁺CD19⁺CD21^{hi}CD24^{hi} B cells from WT and Ahr^{−/−} mice were identified 48 hours post-transfer. However, a significant decrease in the frequency of Ahr^{−/−} CD45.2⁺CD19⁺CD21^{hi}CD24^{hi} B cells that differentiated into IL-10⁺ Bregs was observed when compared to WT CD45.2⁺CD19⁺CD21^{hi}CD24^{hi} B cells, indicating that B cell intrinsic AHR is required for the differentiation of IL-10⁺ Bregs <i>in vivo</i> (Figures 5.15A-D). One caveat of assaying B cells from Ahr^{−/−} mice and then comparing it to WT mice is that the former develops exacerbated disease, which could influence the results due to the increase in inflammation. To demonstrate that the reduced frequency of IL-10 producing B cells was due to the lack of AHR and not a reflection of the pro-inflammatory environment from which the cells were isolated, we generated mixed bone-marrow chimeric mice, where lethally irradiated host mice were reconstituted with a 1:1 mixture of congeneric CD45.1 WT and CD45.2 Ahr^{−/−} bone marrow. We noted that CD45.2 Ahr^{−/−} derived CD19⁺CD21^{hi}CD24^{hi} B cells expressed significantly lower levels of IL-10 compared to WT-derived CD19⁺CD21^{hi}CD24^{hi} B cells in the spleen of arthritic mice (Figures 5.15E-F). Our results demonstrate that AHR directly influences the differentiation of CD19⁺CD21^{hi}CD24^{hi} B cells into IL-10⁺ Bregs <i>in vivo</i> and the defect in Breg differentiation is not a consequence of increased inflammation seen in Ahr^{−/−} mice.
Figure 5.15. AHR is required for the differentiation of IL-10⁺ Bregs in vivo. AIA was induced in WT and Ahr⁻/⁻ mice. (A) Schematic showing the experimental design of the congenic adoptive transfer system. (B) Representative flow cytometry plots showing the frequency of adoptively transferred CD45.2⁺ B cells from WT and Ahr⁻/⁻ mice into CD45.1 recipient mice. (C) Representative flow cytometry plots and bar chart showing the frequency of CD45.2⁺CD19⁺CD21⁺CD24hi B cells from WT and Ahr⁻/⁻ mice. (D) Representative flow cytometry and bar chart showing the frequency of CD45.2⁺IL-10⁺ B cells from WT and Ahr⁻/⁻ mice (n=4). (E) Schematic showing the experimental design of mixed bone marrow chimera reconstitution. (F) Representative flow cytometry plots and bar chart showing the percentages of IL-10⁺CD19⁺CD21⁺CD24hi B cells in a mixed 50:50 bone marrow chimera of WT CD45.1 and Ahr⁻/⁻ CD45.2 cells (n=5). All experiments were performed at day 7 post IA-injection. Data representative of at 2 independent experiments with biological replicates. Figures C-D and F, data are expressed as mean±sem. *p<0.05, **p<0.01. C, D and F, Mann-Whitney. Experiments performed in collaboration with Elizabeth Rosser.
Chapter VI: Results IV

The results in this chapter were carried out in collaboration with Elizabeth Rosser and form part of a manuscript, which is included here in Appendix V697. Due to the collaborative nature of the experiments I helped process the samples and jointly run the flow cytometry samples. Due to my specialty in AHR, my contribution was geared towards the experiments performed around AHR and the molecular biology side of the project (PCR’s, western blot, RNA-seq and ATAC-seq analysis) and I carried out the breeding and maintenance of the AHR strains. 16s rDNA sequencing was carried out by Nigel Klein (Institute of Child Health, UCL). Michael Orford and Simon Eaton (Institute of Child Health, UCL) performed HPLC assay design and analysis. Where experiments were performed in collaboration, the respective authors are indicated in the figure legends.

We have so far shown that AHR controls Breg differentiation and function by directly regulating IL-10 expression and by suppressing a pro-inflammatory programme in CD19+CD21hiCD24hi B cells, after activation with inflammatory stimuli. The endogenous ligands of AHR in B cells remain poorly characterised. Given the abundance of dietary AHR ligands found in the gut698 and that we have previously shown that inflammatory signals in the gut-associated lymphoid tissue (GALT), promote the suppressive function and differentiation of Bregs323, we aimed to investigate whether signals through AHR from gut derived metabolites can drive Breg differentiation.

As discussed in the introduction, the microbiota-derived SCFAs are a potent class of immune-modulatory compounds with the capacity to modulate Treg, Th17 cells, and macrophage differentiation in the gut and periphery647, 650, 699. We show here that supplementing mice with butyrate can suppress arthritis severity and this is dependent on having fully functional Bregs. Moreover, we show that butyrate inhibits the differentiation of GC B cells and plasma cells, whilst maintaining Breg numbers and promoting the suppressive function of Bregs.

It has previously been described that butyrate acts as an AHR ligand in an intestinal epithelial cell line561. Therefore, we aimed to investigate whether the suppression of arthritis by butyrate supplementation was a consequence of signals through AHR. We show that the suppression of arthritis by butyrate is dependent on the
expression of AHR by B cells. Addition of butyrate to AHR-sufficient $Mb^{1\text{cre/+}}$ mice inhibited B cell maturation, whilst also promoting the differentiation of CD19$^+$CD21$^{\text{hi}}$CD24$^{\text{hi}}$ B cells into IL-10$^+$Bregs in vivo. Analysis of the transcriptional and epigenetic profiles of $Mb^{1\text{cre/+}}$ and $Ahr^{fl/-}Mb^{1\text{cre/+}}$ CD19$^+$CD21$^{\text{hi}}$CD24$^{\text{hi}}$ B cells revealed that butyrate downregulated the expression of several key transcription factors required for B cell differentiation, including Bcl6 and Prdm1, in an AHR-dependent manner. We validated these findings in vivo by congenic transfer of WT and $Ahr^{-/-}$ CD19$^+$CD21$^{\text{hi}}$CD24$^{\text{hi}}$ B cells into WT recipient mice. These data revealed that CD19$^+$CD21$^{\text{hi}}$CD24$^{\text{hi}}$ B cells from butyrate treated WT mice readily differentiated into IL-10$^+$ Bregs in vivo compared to the control-treated WT counterparts. Butyrate did not control the differentiation of Bregs in the absence of AHR, suggesting that AHR was needed for butyrate to enhance Breg differentiation.

We rule out butyrate as a direct ligand of AHR, instead showing that butyrate alters the gut microflora composition to favour the growth of bacterial genera, which promote the metabolism of tryptophan to the serotonin metabolite 5-HIAA. Lastly, we demonstrate that supplementation with 5-HIAA suppresses arthritis, only in B cell AHR-sufficient $Mb^{1\text{cre/+}}$ mice and show that 5-HIAA is a direct ligand of AHR. Thus collectively, these results highlight that butyrate increases the availability of the AHR ligand 5-HIAA, which in turn activates AHR and promotes Breg mediated suppression of arthritis.
6.1 Butyrate supplementation suppression of experimental arthritis Is Breg dependent

We have recently shown that low-grade inflammatory signals that drive the differentiation of immature B cells into Bregs are provided in the gut-associated lymphoid tissue (GALT) as a result of the interaction between the gut microbiota and the innate immune system. The question of whether inflammatory signals produced in response to the microbiota control Breg development alone or whether microbial factors also play a direct role remains unanswered. Among different gut-microbiota-derived metabolites, the most well-characterized are the end products of dietary fibre fermentation, the short-chain fatty acids (SCFAs). To investigate how the levels of butyrate change during the course of arthritis, we utilized the antigen-induced model of arthritis (AIA) and measured stool levels of butyrate, pre-arthritis and during the acute and remission phases of arthritis. We found that butyrate levels were reduced during the acute and remission phases of arthritis compared to pre-arthritic mice (Figure 6.1A). These results suggest that the observed defect in butyrate production in arthritic mice, once established, cannot be reversed in spite of the reduced inflammation observed during disease remission. In line with reduced SCFAs, the bacterial families Lactobacillaceae, Rikenellaceae, and Bacteroidaceae were reduced in the stool of arthritic mice compared to naive mice (Figure 6.1B). Members of these bacterial families form a common functional group of bacteria that metabolize non-digestible carbohydrates into the immunogenic SCFA. Conversely, we detected an increase in Desulfovibrionaceae, Deferribacteraceae, Sutterellaceae, and Prevotellaceae families in the stool of arthritic versus naive mice (Figure 6.1B).

Previously published research has demonstrated that supplementation with SCFAs, and in particular butyrate, has an immunosuppressive effect in diseases including diabetes and colitis. To evaluate the contribution of butyrate in controlling the severity of arthritis and to determine the possible role of B cells in mediating suppression, butyrate was supplemented in the drinking water of wild-type (WT) mice and B-cell-deficient (µMT) mice prior to disease induction. Control mice for both genotypes received drinking water that was salt and pH balanced (hereafter referred to as the control group). Supplementation with butyrate reduced arthritis in WT mice compared to control mice (Figure 6.1C). Butyrate supplementation failed to suppress disease in B-cell-deficient mice (µMT) (Figure
6.1C), demonstrating that under these experimental conditions, B cells are key in mediating the beneficial effects of butyrate supplementation. Furthermore, butyrate supplementation failed to suppress disease in mixed bone marrow chimeric mice lacking IL-10-producing B cells (Figure 6.1D), pinpointing the requirement of Bregs in the butyrate-mediated suppression of arthritis.

To investigate the effect of butyrate supplementation on both pro-arthritogenic cells and Bregs, we next took advantage of IL-10eGFP reporter mice, allowing the visualization of B cells actively transcribing IL-10\(^{372}\). Amelioration of disease in butyrate-supplemented IL-10eGFP reporter mice was similar to WT mice (Figures 6.1E-F respectively showing clinical score and histological changes of the joints). We next assessed the effect of butyrate supplementation on the differentiation of Bregs, identified here as IL-10eGFP\(^{+}\)CD19\(^{+}\)CD21\(^{hi}\)CD24\(^{hi}\) B cells\(^{702}\). We found that IL10eGFP\(^{+}\)CD19\(^{+}\)CD21\(^{hi}\)CD24\(^{hi}\) Breg number and frequency were similar between butyrate-supplemented and control mice (Figure 6.2A). There was no difference in the frequency and/or number of splenic follicular (FO) B cells, transitional-1 (T1) B cells, or total CD19\(^{+}\)CD21\(^{hi}\)CD24\(^{hi}\) B cells (Figures 6.2B-E). However, there was a significant reduction of CD19\(^{+}\)CD138\(^{+}\)BLIMP-1\(^{+}\) plasmablast and CD19\(^{+}\)CD95\(^{+}\)GL7\(^{+}\) GC B cell frequency and number between butyrate-supplemented and control mice (Figures 6.3A+C). Blinded histological analyses further confirmed a reduction in the number of GCs per B cell follicle and in the size of GCs in the spleens of butyrate-supplemented versus control mice (Figure 6.3E). Thus, butyrate supplementation had increased the ratio of IL-10eGFP\(^{+}\)CD19\(^{+}\)CD21\(^{hi}\)CD24\(^{hi}\) Bregs to plasmablasts and IL-10eGFP\(^{+}\)CD19\(^{+}\)CD21\(^{hi}\)CD24\(^{hi}\) Bregs to GC B cells compared to control mice (Figures 6.3B+D).

To determine whether butyrate supplementation affects the immunosuppressive function of Bregs, an equal number of IL-10eGFP\(^{+}\)CD19\(^{+}\)CD21\(^{hi}\)CD24\(^{hi}\) Bregs was isolated from butyrate-supplemented or control IL-10eGFP reporter mice and transferred into syngeneic arthritic hosts. IL-10eGFP\(^{+}\)CD19\(^{+}\)CD21\(^{hi}\)CD24\(^{hi}\) Bregs from butyrate-supplemented mice displayed enhanced suppressive capacity upon adoptive transfer compared to IL-10eGFP\(^{+}\)CD19\(^{+}\)CD21\(^{hi}\)CD24\(^{hi}\) Bregs from control mice (Figure 6.3F). These results demonstrated that butyrate supplementation...
concurrently increases Breg suppressive capacity and limits GC B cell and plasmablast differentiation.
Figure 6.1. Suppression of arthritis by butyrate supplementation requires IL-10-expressing B cells. (A) Stool butyrate levels in WT mice pre-arthritis (n=23), with acute arthritis (n=8), and in remission from arthritis (n=18) as measured by high-performance liquid chromatography (cumulative data are shown). (B) Volcano plot shows fold change between bacterial families in the faeces of naïve mice compared to arthritic mice at day 3 post-disease onset (n=4 per group). (C) Mean clinical score of control (cumulative n=25) and butyrate-supplemented WT mice (cumulative n=24) (one representative experiment of six experiments is shown) or µMT mice (control, cumulative n=7; butyrate, cumulative n=9). (D) Mean clinical score of control (cumulative n=25) and butyrate-supplemented B-WT chimeric mice or B-II10eGFP chimeric mice (n=8 per group) (one representative experiment of two experiments is shown); y axis shows percentage swelling in antigen-injected knee compared to control knee. (E) Mean clinical score of control (cumulative n=15) and butyrate-supplemented IL-10eGFP reporter mice (cumulative n=13); y axis shows percentage swelling in antigen-injected knee compared to control knee (one representative experiment of two experiments is shown). (F) Representative H&E staining of knee joints from control and butyrate-supplemented IL-10eGFP reporter mice (left) and blinded histology scores (right) of joint damage. Figures A and C-F, data are expressed as mean±sem. *p<0.05, **p<0.01, ***p<0.001. A, one-way ANOVA; B-E, two-way ANOVA; F, Student’s t test.
Figure 6.2. The number of IL-10^CD19^CD21^{hi}CD24^{hi}Bregs is maintained following butyrate supplementation. (A) Representative flow cytometry plots (left) and bar charts (right) showing CD19^CD21^{hi}CD24^{hi}IL-10eGFP^+ Breg frequency and number in control (cumulative n=15) and butyrate-supplemented mice (cumulative n=13) (one representative experiment of three experiments is shown). (B) Representative plots showing the percentage of CD19^CD21^{lo}CD24^{hi} (T1) B cells, and CD19^CD21^{lo}CD24^{hi} B cells in the spleen at day 7 post-disease onset. Bar charts showing the percentage and number of (C) CD19^CD21^{lo}CD24^{lo} B cells, (D) CD19^CD21^{hi}CD24^{hi} B cells, and (E) CD19^CD21^{hi}CD24^{hi} B cells. (Control, cumulative n=15; Butyrate cumulative n=13; one representative experiment of three experiments is shown. Figures A-E, data are expressed as mean±sem. A-E, Student's t test.)
Figure 6.3. Butyrate suppresses the numbers of plasmablasts and GC B cells. (A) Representative flow cytometry plots (left) and bar charts (right) showing CD19\(^+\)CD138\(^+\)BLIMP-1\(^+\) plasmablast frequency and number in control and butyrate-supplemented mice (cumulative n=11 per group, one representative experiment of two experiments is shown). (B) Bar chart showing the ratio of CD19\(^+\)CD21\(^hi\)CD24\(^hi\)IL-10 eGFP\(^+\) Bregs to plasmablasts in control and butyrate-supplemented mice (cumulative n=11 per group, one representative experiment of two experiments is shown). (C) Representative flow cytometry plots (left) and bar chart (right) shows the percentage and number of CD19\(^+\) CD95\(^+\)GL7\(^+\) germinal center (GC) B cells in control and butyrate-supplemented mice (cumulative n=11 per group, one representative experiment of three experiments is shown). (D) Bar chart shows ratio of CD19\(^+\)CD21\(^hi\)CD24\(^hi\)IL-10 eGFP\(^+\) Bregs to GC B cells in control and butyrate-supplemented mice (cumulative n=11, one representative experiment of two experiments is shown). (E) Representative immunofluorescence blinded histological analysis of the number and size of GC control and butyrate-supplemented mice (original magnification 203, n=3). (F) Mean clinical score following transfer of CD19\(^+\)CD21\(^hi\)CD24\(^hi\)IL-10 eGFP\(^+\) Bregs from control (cumulative n=6) or butyrate-supplemented mice (cumulative n=6), a control group that did not receive a transfer; y axis shows percentage swelling in antigen-injected knee compared to control knee (cumulative n=8) (one representative experiment of two experiments is shown). Cells were isolated at day 7 post-disease onset. Figures A-F, data are expressed as mean±sem. *p<0.05, **p<0.01, ***p<0.001. A-E, Student’s t test; F, two-way ANOVA.
6.2 Suppression of disease by butyrate supplementation requires B cell expression of AHR

We have demonstrated that there is higher expression of AHR in IL-10eGFP*CD19*CD21hiCD24hi Bregs and that activation of AHR contributes to the induction of a transcriptional program that controls IL-10*CD19*CD21hiCD24hi Breg suppressive function. These data, taken together with our previous findings demonstrating that butyrate suppresses arthritis by enhancing Breg function, led us to hypothesise that butyrate required AHR for its immunomodulatory role in arthritis. In line with this hypothesis, the expression of Cyp1a1, a prototypical reporter gene of AHR activation, was significantly upregulated in B cells isolated from butyrate-supplemented mice compared to control mice (Figure 6.4A). To confirm a role for AHR in the immunomodulatory effect of butyrate supplementation on the B cell compartment and arthritis severity, we supplemented Ahrfl/−Mb1cre/+ and Mb1cre/+ mice with butyrate and assessed arthritis severity. Butyrate supplementation suppressed arthritis severity and IL-17+ T cell frequency only in AHR-sufficient Mb1cre/+ mice but not in Ahrfl/−Mb1cre/+ mice (Figures 6.4B-C). Confirming the results from the previous chapters, B cells from Ahrfl/−Mb1cre/+ mice released less IL-10 compared to those isolated from Mb1cre/+ mice. Whilst butyrate maintained IL-10 production in B cells from Mb1cre/+ mice, butyrate supplementation further decreased IL-10 production in B cells from Ahrfl/−Mb1cre/+ mice (Figure 6.5A).

Butyrate supplementation did not alter CD19*CD21hiCD24hi B cell frequency or number in Mb1cre/+ or Ahrfl/−Mb1cre/+ mice compared to control groups (Figure 6.5B). Butyrate supplementation reduced CD19*CD138*BLIMP-1+ plasmablast and CD19*CD95*GL7+ GC B cell frequency and number in Mb1cre/+ mice, but failed to suppress CD19*CD138*BLIMP-1+ plasmablast and CD19*CD95*GL7+ GC B cell frequency and number in Ahrfl/−Mb1cre/+ mice (Figures 6.5C-D). Although Treg frequency and number were unaffected by butyrate supplementation (Figures 6.6A-B), CD4*CD25+ Tregs isolated from butyrate-supplemented Mb1cre/+ mice displayed enhanced suppressive capacity upon adoptive transfer into WT mice (Figure 6.6C). In contrast, Tregs isolated from both control and butyrate-supplemented Ahrfl/−Mb1cre/+ mice failed to suppress disease on adoptive transfer (Figure 6.6C). As inflammation is a driver of Breg differentiation and function, and because Ahrfl/−Mb1cre/+ mice develop an exacerbated arthritic inflammation
compared to $Mb1^{cre/+}$ mice, we next tested the effect of butyrate supplementation in chimeric mice reconstituted with a 1:1 mix of bone marrow cells from CD45.1 WT and CD45.2 $Ahr^{-/-}$ mice (Figure 6.7A). Under these conditions, WT and $Ahr^{-/-}$ B cells are exposed to identical inflammatory signals following arthritis induction. The frequency and number of WT CD45.1$^{+}$CD45.2$^{+}$IL-10$^{+}$CD19$^{+}$CD21hiCD24hi Bregs was unaffected by butyrate supplementation, whereas $Ahr^{-/-}$CD45.1$^{-}$CD45.2$^{+}$CD19$^{+}$CD21hiCD24hi B cells failed to differentiate into IL-10$^{+}$CD19$^{+}$CD21hiCD24hi Bregs in both control and butyrate-supplemented mice (Figure 6.7B). In addition, butyrate supplementation reduced the frequency and number of plasmablasts and GC B cells within CD45.1 WT-derived cells but not in CD45.2 $Ahr^{-/-}$ derived cells (Figures 6.7C-D).
Figure 6.4. Suppression of arthritis by butyrate supplementation depends upon AHR expression in B cells. (A) Bar chart shows expression of Cyp1a1 relative to β-actin in splenic B cells isolated from control or butyrate-supplemented mice (cumulative n=5, one representative experiment of two experiments is shown). (B) Mean clinical score of control and butyrate-supplemented Mb1cre/+ mice or Ahrfl/Mb1cre/+ mice; y axis shows percentage swelling in antigen-injected knee compared to control knee (cumulative n=15 per group, one representative experiment of five experiments is shown). (C) Bar chart showing the suppression of IL-17+CD4+ T cells in Mb1cre/+ mice or Ahrfl/Mb1cre/+ mice that received butyrate-supplementation compared to control Mb1cre/+ mice or Ahrfl/Mb1cre/+ mice (cumulative n=6 per group, one representative experiment of two experiments is shown). Figures A-C, data are expressed as mean±sem. *p<0.05. A and C, Student's t test; B, two-way ANOVA.
Figure 6.5. Butyrate suppresses plasmablast and GC differentiation whilst maintaining Bregs in an AHR dependent mechanism. (A) IL-10 production by splenic B cells isolated from control Mb1cre/+ mice, butyrate-supplemented Mb1cre/+ mice, control Ahrfl-/Mb1cre/+ mice, and butyrate-supplemented Ahrfl-Mb1cre/+ mice at day 7 post-disease onset as measured by ELISA (n=3 per group). (B) Representative flow cytometry plots and bar charts showing the frequency and number of CD19^+CD21^hiCD24^hi B cells in control Mb1cre/+ mice (cumulative n=8), butyrate-supplemented Mb1cre/+ mice (cumulative n=5), control Ahrfl-Mb1cre/+ mice (n=7), and butyrate-supplemented Ahrfl-Mb1cre/+ mice (cumulative n=6) at day 7 post-disease onset (cumulative data are shown). (C) Representative flow cytometry plots and bar charts showing the frequency and number of CD19^+CD138^+BLIMP-1^+ B cells in control Mb1cre/+ mice (cumulative n=8), butyrate-supplemented Mb1cre/+ mice (cumulative n=5), control Ahrfl-Mb1cre/+ mice (cumulative n=7), and butyrate-supplemented Ahrfl-Mb1cre/+ mice (cumulative n=6) (cumulative data are shown). (D) Representative flow cytometry plots and bar charts showing the frequency and number of CD19^+CD95^+GL7^+ B cells in control Mb1cre/+ mice (cumulative n=8), butyrate-supplemented Mb1cre/+ mice (cumulative n=5), control Ahrfl-Mb1cre/+ mice (cumulative n=7), and butyrate-supplemented Ahrfl-Mb1cre/+ mice (cumulative n=6) (cumulative data are shown). Cells were isolated at day 7 post-disease onset. Figures A-D, data are expressed as mean±sem. *p<0.05, **p<0.01, ***p<0.001. A-D, one-way ANOVA.
Figure 6.6. Expression of AHR in B cells is fundamental for modulation of T cell function after butyrate-supplementation. (A) Representative plots (B) and bar charts showing the percentage and number of FOXP3+CD4+ T cells in Mb1cre/+ or Ahrfl/Mb1cre/+ mice that received butyrate-supplementation (n=6 and n=7 respectively) compared to control Mb1cre/+ or Ahrfl/Mb1cre/+ mice (n=8 and n=9 respectively) cumulative data are shown. (C) Mean clinical score following transfer of Tregs from control or butyrate supplemented Mb1cre/+ and control or butyrate supplemented Ahrfl/Mb1cre/+ a control group that did not receive transfer; y axis shows percentage swelling in antigen-injected knee compared to control knee (n=3 per group). Figures B-C, data are expressed as mean±sem. B, one-way ANOVA; C, two-way ANOVA.
Figure 6.7. Butyrate-supplementation suppresses B cell maturation through activation of AHR. (A) Schematic showing experimental design for competitive congenic bone marrow chimeric experiment. (B) Representative flow cytometry plots (left) and bar charts (right) showing the frequency and number of CD45.1+ IL-10+CD21hiCD24hi B cells or CD45.1+IL-10+CD21hiCD24hi B cells in butyrate-supplemented or control chimeric mice (cumulative n=4 per group). (C) Representative flow cytometry plots (left) and bar charts showing the frequency and number of plasmablasts within CD45.1+WT or CD45.2+Ahr⁻/⁻ derived cells in butyrate-supplemented or control chimeric mice (cumulative n=4 per group). (D) Representative flow cytometry plots (left) and bar charts (right) showing the frequency and number of GC B cells within CD45.1+WT or CD45.2+Ahr⁻/⁻ derived cells in butyrate-supplemented or control chimeric mice (cumulative n=4 per group). Figures B-D, data are expressed as mean±sem. *p<0.05. B-D, one-way ANOVA.
6.3 Butyrate supplementation supports Breg suppressive function and controls B cell differentiation partly via an AHR-dependent transcriptional programme

To understand how butyrate supports Breg suppressive function and suppresses GC B cell and plasmablast differentiation, we compared the gene expression profiles and chromatin accessibility of CD19⁺CD21⁹⁺CD24⁹⁺ B cells isolated from butyrate-supplemented and control Mb1⁰⁰cre/+ and Ahr⁰⁰fl/Mb1⁰⁰cre/+ mice. There were 412 significant differentially expressed genes (DEGs) between control and butyrate-supplemented Mb1⁰⁰cre/+ CD19⁺CD21⁹⁺CD24⁹⁺ B cells (Figure 6.8A). There were more changes (566 significant DEGs) in butyrate-supplemented versus control Ahr⁰⁰fl/Mb1⁰⁰cre/+ CD19⁺CD21⁹⁺CD24⁹⁺ B cells. This suggests that, as well as being necessary to mediate some of butyrate’s effects on gene expression, AHR also modulates the expression of a number of genes that would otherwise be altered by butyrate treatment (Figure 6.8A). Signaling pathway impact analysis (SPIA) revealed that the “protein processing in the endoplasmic reticulum” pathway, previously associated with the differentiation of B cells into plasma cells⁷⁰³, was significantly downregulated by butyrate supplementation in Mb1⁰⁰cre/+ CD19⁺CD21⁹⁺CD24⁹⁺ B cells and significantly upregulated in Ahr⁰⁰fl/Mb1⁰⁰cre/+ CD19⁺CD21⁹⁺CD24⁹⁺ B cells (Figure 6.8B). Based on this observation, we interrogated DEGs in the B cell differentiation Gene Ontology term (GO:0030183) and compared the effect of butyrate supplementation on gene expression in both genotypes. B cell lymphoma 6 protein (BCL6), a master regulator of GC B cell differentiation, and the orphan G protein-coupled receptor (GPR183), important in extrafollicular plasmablast differentiation⁷⁰², were among the genes reduced in CD19⁺CD21⁹⁺CD24⁹⁺ B cells from Mb1⁰⁰cre/+ mice compared to Ahr⁰⁰fl/Mb1⁰⁰cre/+ mice after butyrate supplementation (Figure 6.8C). Conversely, the expression of ID2, a negative regulator of B cell maturation⁷⁰⁴, was upregulated in CD19⁺CD21⁹⁺CD24⁹⁺ B cells from Mb1⁰⁰cre/+ mice, but not from Ahr⁰⁰fl/Mb1⁰⁰cre/+ mice after butyrate supplementation (Figure 6.8C). To investigate whether there was an AHR-independent mechanism in the Breg-mediated regulation of arthritis by butyrate supplementation, we performed a four-way comparison analysis among all the groups (Figure 6.8D). This analysis also highlights the baseline transcriptional changes between control Mb1⁰⁰cre/+ versus Ahr⁰⁰fl/Mb1⁰⁰cre/+ mice. We found that 71 significantly DEGs were regulated in both Mb1⁰⁰cre/+ versus Ahr⁰⁰fl/Mb1⁰⁰cre/+ mice by butyrate supplementation (Figure 6.5D; Appendix II). There were 195 significantly
DEGs observed only in Mb1cre/+ mice but not Ahrfl/Mb1cre/+ mice following butyrate supplementation after genotype confounding genes had been removed; the majority of these genes were structural proteins (Figure 6.8D; Appendix III).

Similarly to the baseline transcriptional changes between Mb1cre/+ versus Ahrfl- Mb1cre/+ mice observed during the transcriptome analysis, there were clear differences in chromatin accessibility as measured by ATAC-seq between control Mb1cre/+ mice and Ahrfl-Mb1cre/+ mice (Figure 6.9A). However, corroborating the results in Figure 6.8C, there was decreased accessibility in several B cell maturation genes, including the Bcl6 and Gpr183 loci, upon butyrate supplementation exclusively in Mb1cre/+ CD19+CD21hiCD24hi B cells (Figure 6.9B). ATAC-seq analysis also revealed that butyrate supplementation did not alter accessibility of the AHR:ARNT specific binding motifs, but did increase accessibility at binding motifs for transcription factors that have been identified to function alongside the AHR:ARNT heterodimer, including ESRRA (estrogen receptor alpha), CREB1, and RARB/RAR (Retinoic acid receptor) (Figure 6.9C). We confirmed that, similarly to Tregs and monocytes, butyrate acted as a histone deacetylase inhibitor (HDACi) on splenic B cells in vitro, providing a partial explanation of its effect on the transcriptional and epigenetic landscape of CD19+CD21hiCD24hi B cells (Figure 6.9D).

To investigate whether changes in the epigenetic and transcriptional profile of AHR+CD19+CD21hiCD24hi B cells and AHR-CD19+CD21hiCD24hi B cells following butyrate supplementation had altered their stability and ability to differentiate into IL-10 competent Bregs, we followed the fate of adoptively transferred CD19+CD21hiCD24hi B cells isolated from butyrate-supplemented and control WT or global Ahr- in congenic CD45.1 recipient WT mice. A higher number of donor CD45.2+CD19+CD21hiCD24hi B cells were recovered post-transfer, and more transferred cells were IL-10+ when cells were isolated from butyrate-supplemented WT mice compared to control WT mice (Figures 6.10A–E). The rate of cell recovery was not altered by butyrate supplementation when cells were isolated from Ahr- mice and there was a failure of CD45.2+CD19+CD21hiCD24hi B cells to differentiate into IL-10+ Bregs (Figures 6.10A–E).
Figure 6.8. Butyrate supplementation modulates the transcriptional profile of CD19⁺CD21^{hi}CD24^{hi} B cells in an AHR-dependent Manner. (A) Volcano plots shows log₂ fold change (FC) in gene expression between CD19⁺CD21^{hi}CD24^{hi} B cells isolated from butyrate-supplemented Mb^{cre/+} mice compared to control Mb^{cre/+} mice (top plot) and between butyrate-supplemented Ah^{fl/}-Mb^{cre/+} mice compared to control Ah^{fl/}-Mb^{cre/+} mice (bottom plot). Red dots represent significant DEG, with the red line denoting a cut off p value of < 0.05. (B) Signaling pathway impact analysis (SPIA) ranked on significance (pG) comparing the pathways over-represented (red) and under-represented (blue) pathways in butyrate supplemented compared to control CD19⁺CD21^{hi}CD24^{hi} B cells from Mb^{cre/+} mice (top graph) and Ah^{fl/}-Mb^{cre/+} mice (bottom graph). The total perturbation accumulation of these pathways (TA) score is listed for the 'protein processing in endoplasmic reticulum' pathway. (C) Heat map shows the expression of B cell differentiation genes in CD19⁺CD21^{hi}CD24^{hi} B cells isolated from control Mb^{cre/+} mice, butyrate-supplemented Mb^{cre/+} mice, control Ah^{fl/}-Mb^{cre/+} mice, and butyrate-supplemented Ah^{fl/}-Mb^{cre/+} mice. Mean z scores were calculated from log CPM values. Samples highlighted in red are significantly differentially expressed between CD19⁺CD21^{hi}CD24^{hi} B cells isolated from butyrate-supplemented Mb^{cre/+} mice compared to butyrate-supplemented Ah^{fl/}-Mb^{cre/+} mice. Samples highlighted in bold are significantly differentially expressed between CD19⁺CD21^{hi}CD24^{hi} B cells isolated from butyrate-supplemented Mb^{cre/+} mice compared to control Mb^{cre/+} mice. (D) Venn diagram indicating the number of significant (p < 0.05) DEG across all 4 comparisons and the number of overlapping genes between each comparison. For RNA-seq data, n=3 per group. Cells were isolated at day 7 post-disease onset.
Figure 6.9. Butyrate supplementation modulates the epigenetic profile of CD19⁺CD21^{hi}CD24^{hi} B cells in an AHR-dependent manner by increasing histone acetylation. (A) Heatmap shows differentially regulated regions of chromatin in CD19⁺CD21^{hi}CD24^{hi} B cells isolated from control Mb1^{cre/+} mice, butyrate-supplemented Mb1^{cre/+} mice, control Ahr^{fl/fl}Mb1^{cre/+} mice, and butyrate-supplemented Ahr^{fl/fl}Mb1^{cre/+} mice as measured by ATAC-seq. (B) Representative ATAC-seq tracks for the Bcl6 and Gpr183 loci in CD19⁺CD21^{hi}CD24^{hi} B cells from butyrate-supplemented or control Mb1^{cre/+} and Ahr^{fl/fl}Mb1^{cre/+} mice (n=3). Track heights between samples are normalized through group autoscaling. (C) Heatmap shows inferred transcription factor activity scores based on accessibility at transcription factor binding motifs in CD19⁺CD21^{hi}CD24^{hi} B cells isolated from control Mb1^{cre/+} mice, butyrate-supplemented Mb1^{cre/+} mice, control Ahr^{fl/fl}Mb1^{cre/+} mice, and butyrate-supplemented Ahr^{fl/fl}Mb1^{cre/+} mice as measured by ATAC-seq. AHR cofactors are highlighted in red. (D) Total splenic B cells were isolated from WT mice and treated either with a vehicle control or 500µM butyrate for 18h and analysed for H3K27ac by Western blot. Total H3 was used as a control. The numbers indicate the size of the protein bands in kDa. One of two representative experiments shown. For ATAC-seq data, n=3 for Mb1^{cre/+} mice and n=2 for Ahr^{fl/fl}Mb1^{cre/+} mice. For figures A and C, experiments performed in collaboration with Andre Rendeiro.
Figure 6.10. CD45.2+CD19+CD21hiCD24hi B cells from butyrate-supplemented WT but not Ahr−/− mice retain their phenotype and differentiate into IL-10+ Bregs upon adoptive transfer. (A-B) Representative flow cytometry plots show (A) CD45.2+CD19+ B cell and (B) CD45.2+CD19+CD21hiCD24hi B cell frequency in CD45.1 congenic WT mice that had received a transfer of CD19+CD21hiCD24hi B cells isolated from control or butyrate-supplemented WT or Ahr−/− mice. (C) Bar chart shows number of CD45.2+CD19+CD21hiCD24hi B cells recovered post-transfer from CD45.1 congenic WT mice that had received a transfer of CD19+CD21hiCD24hi B cells isolated from control or butyrate-supplemented WT or Ahr−/− mice (cumulative n=3 per group, cumulative data are shown). (D) Representative flow cytometry plots and bar charts show CD45.2+CD19+IL-10+ B cell frequency in CD45.1 congenic WT mice that had received a transfer of CD19+CD21hiCD24hi B cells isolated from control or butyrate-supplemented WT or Ahr−/− mice. (E) Bar chart shows number of CD45.2+CD19+IL-10+ B cells recovered post-transfer from CD45.1 congenic WT mice that had received a transfer of control or butyrate-supplemented WT or Ahr−/− mice. Cells were isolated at 48 h post-transfer (cumulative n=3 per group, cumulative data are shown). Figures C and E, data are expressed as mean±sem. **p<0.01. C and E, one-way ANOVA.
6.4 Butyrate changes the availability of microbiota-induced AHR ligands

The microbiota is an important contributor to the pool of endogenous AHR ligands, and we and others have previously shown that changes in the composition of the gut microbiota alters the differentiation of CD19+CD21hiCD24hi B cells into functionally suppressive Bregs\(^{323,707}\). Having excluded a direct effect for butyrate in activating AHR, as butyrate did not upregulate the marker of AHR activation \(\text{Cyp1a1}\) compared to vehicle-treated B cells \textit{in vitro} (Figure 6.11A), we investigated whether the endogenous microbiota or their metabolites are important in the butyrate-mediated suppression of arthritis and Breg maintenance. To address this, broad-spectrum antibiotic (ABX)-treated mice were given butyrate by oral gavage; this combination of antibiotics is known to ablate the majority of the gut microbiota\(^{323,708}\). We found that the suppressive activity of butyrate depended upon the presence of the endogenous gut microbiota, as butyrate supplementation was ineffective at suppressing arthritis in ABX-treated mice (Figure 6.11B). In support of our previously published results showing that commensal microbiota is important in Breg differentiation, B cells isolated from ABX-treated mice expressed less \(\text{Il10}\) mRNA compared to untreated controls\(^{323}\), and this defect was not recovered after butyrate supplementation (Figure 6.11C).

Having established that commensal microbes are required for butyrate to suppress arthritis, we compared the relative abundance of bacteria phyla in the stool of naive, control, and butyrate-supplemented arthritic mice using 16S rDNA amplicon sequencing. Butyrate supplementation induced a shift in the stool microbiota of arthritic mice, favoring a profile that was more similar to naive mice (Figure 6.12A). A detailed analysis of the bacterial composition revealed an increase in the abundance of the bacterial genera \textit{Allobaculum}, \textit{Bifidobacterium}, and \textit{Rhodospirillaceae_unclassified} in butyrate-supplemented versus control mice (Figure 6.12B). Members of these bacteria genera have a previously described role in influencing the generation of tryptophan-derived metabolites, a family of ligands implicated in the activation of AHR\(^{709}\). To understand whether changes in bacterial composition following butyrate supplementation altered the level of tryptophan-derived metabolites, we measured these metabolites in the stool of butyrate-supplemented and control mice. There were no differences in the amount of tryptophan, tryptamine, indole, and L-kynurenine in stool samples from butyrate-supplemented compared to control mice (Figures 6.12C-D). Indole-3-acetate and
Indole-3-propionate levels were also measured but found to be below the limit of detection in all samples. There was, however, a significant increase in 5-HIAA, the main metabolite of serotonin (Figure 6.12E), and a significant reduction in the level of the kynurenine-derived metabolite kynurenic acid (KYNA) (Figure 6.12D).

To directly address how the changes in 5-HIAA and KYNA levels affect AHR-dependent gene transcription in B cells, WT B cells were isolated from naive mice and stimulated with 5-HIAA and KYNA in vitro. Unlike KYNA, which only induced Cyp1a1 induction in B cells, 5-HIAA increased both Cyp1a1 and Il10 expression in B cells compared to vehicle-control-treated B cells (Figure 6.13A). Most importantly, treatment of WT mice with these AHR ligands in vivo demonstrated that 5-HIAA, but not KYNA, suppressed arthritis development and increased both Cyp1a1 and Il10 transcription in B cells ex vivo (Figures 6.13B-C). To examine the role for AHR in the immunosuppressive effect of 5-HIAA, we gavaged Mb1cre/+ mice and Ahrfl/Mb1cre/+ mice with 5-HIAA. 5-HIAA suppressed arthritis in Mb1cre/+ mice but not in Ahrfl/Mb1cre/+ mice (Figure 6.13D). Finally, to explore the role of 5-HIAA in the ability of butyrate supplementation to suppress arthritis, mice were treated with the tryptophan hydrolase (TPH) inhibitor L-para-chlorophenylalanine (PCPA), which is known to reduce 5-HIAA and serotonin biosynthesis. In mice treated with PCPA, butyrate supplementation lost its ability to suppress arthritis when compared to vehicle-treated control mice (Figure 6.13E). Collectively, these data demonstrate that butyrate supplementation increases the production of 5-HIAA, a newly identified AHR ligand in B cells, which mediates the suppressive effect of butyrate supplementation in vivo.
Figure 6.11. The suppression of arthritis by butyrate is dependent on the gut microbiota. (A) Bar chart shows relative expression of *Cyp1a1* following 6 hours culture with butyrate (cumulative n=5). (B) Mean clinical score of control and butyrate-supplemented ABX-treated or untreated mice; y axis shows percentage swelling in antigen-injected knee compared to control knee (cumulative n=8 per group, one representative experiment of two experiments is shown). (C) Bar chart shows expression of *Il10* relative to β-actin in splenic B cells isolated from ABX-treated WT or untreated mice (cumulative n=3 per group). Figures A-C, data are expressed as mean±sem. A, Student’s t test; B, two-way ANOVA; C, one-way ANOVA.
Figure 6.12. Butyrate supplementation increases the availability of AHR ligands. (A) Bar chart shows relative abundance of bacterial phyla in the stool of naive, control arthritic, or butyrate-supplemented arthritic mice (n=4 per group). (B) XY graph shows operational taxonomic units (OTUs) of bacterial genera in butyrate-supplemented and control arthritic mice (n=4 per group). (C-E) Bar charts shows levels of (C) tryptophan, tryptamine, indole, (D) L-Kynurenine, Kynurenic Acid (KYNA) and (E) 5-HIAA in the stool of control arthritic WT and butyrate-supplemented arthritic mice (cumulative n=5 per group). Figures C-E, data are expressed as mean±sem. *p<0.05, **p<0.01. C and E, Student’s t test. For figures A-B, experiments performed in collaboration with Nigel Klein.
Figure 6.13. Hydroxyindole-3-acetic acid increases \textit{Il10} transcription by B cells \textit{in vivo} and \textit{in vitro} by acting as a ligand for AHR. (A) Relative expression of \textit{Cyp1a1} and \textit{Il10} in total splenic B cells following 6h culture with 5-HIAA or kynurenic acid (KYNA) compared to vehicle alone (cumulative \(n=3\) per group). (B) Mean clinical score of control, 5-HIAA-gavaged, or KYNA-gavaged mice; y axis shows percentage swelling in antigen-injected knee compared to control knee (cumulative \(n=8\) per group, one representative experiment of two experiments is shown). (C) Bar charts show expression of \textit{Cyp1a1} and \textit{Il10} relative to \textit{\beta-actin} in splenic B cells isolated from control, 5-HIAA-gavaged, or KYNA-gavaged mice (cumulative \(n=3\) per group). (D) Mean clinical score of control or 5-HIAA-gavaged \textit{Mb}^{cre/+} mice or \textit{Ahr}^{fl/fl}\textit{Mb}^{cre/+} mice; y axis shows percentage swelling in antigen-injected knee compared to control knee (cumulative \(n=8\) per group, one representative experiment of two experiments is shown). (E) Mean clinical score of control and butyrate-supplemented L-para-chlorophenylalanine (PCPA)-treated (tryptophanase inhibitor, TPH) or vehicle-treated mice; y axis shows percentage swelling in antigen-injected knee compared to control knee (cumulative \(n=10\) per group, one representative experiment of two experiments is shown). Figures A-E, data are expressed as mean±sem. *\(p<0.05\), **\(p<0.01\). A, Student’s t test; B and D-E, two-way ANOVA; C, one-way ANOVA.
Chapter VII: Discussion

7.1 AHR defines Breg identity

Bregs are generated in the periphery in response to a variety of “homeostatic” inflammatory stimuli including activation through TLRs and by pro-inflammatory cytokines266. The transcriptional programme, which governs the differentiation and function of IL-10-+CD19-+CD21hiCD24hi Bregs remains virtually unknown. Here, we show that AHR contributes to the differentiation of CD19-+CD21hiCD24hi B cells into functionally suppressive IL-10-+CD19-+CD21hiCD24hi Bregs, by regulating their IL-10 production and by repressing the transcription of pro-inflammatory mediators.

The importance of IL-10 in mediating the suppressive effect of Bregs is well established and its role is corroborated by \textit{in vivo} results showing that mice lacking IL-10-producing B cells develop exacerbated autoimmunity354. Similarly, AHR deficiency restricted to B cells impairs IL-10-+CD19-+CD21hiCD24hi Breg differentiation and function, resulting in an increase of IFN-\gamma and IL-17-expressing CD4+ T cells, a decrease in Tregs, and the development of an exacerbated arthritis.

AHR plays a pleiotropic role in the regulation of several immune responses445, most notably, in the differentiation of CD4+ T cells where AHR influences both the differentiation and activation of Th17 cells, which are known to play a major role in the pathogenesis of several autoimmune diseases711, and the differentiation of CD4+ T cells into Tr1 cells422. Immune suppression was one of the earliest known observations of AHR function. 2,3,7,8-tetrachlorodibenzo-\textalpha-dioxin (TCDD), an environmental contaminant and potent AHR agonist, was found to suppress DTH responses to tuberculin594. More recently, it has become apparent that AHR has a conserved role in the regulation of IL-10 across the innate and adaptive immune system, controlling IL-10 production in NK cells712, peritoneal482 and bone marrow derived macrophages713 and in Tr1 cells, where AHR binding to the \textit{Il10} promoter region has been described422. We demonstrate that in IL-10-+ B cells, AHR binds upstream of the \textit{Il10} transcription start site, to a different genomic region than in Tr1 cells, suggesting that there are cell-context and cell-signal specific epigenetic differences in the regulation of \textit{Il10}714.

An interesting finding in our study was the discovery that AHR controls the differentiation of CD19-+CD21hiCD24hi B cells into a polarized IL-10-+CD19-+CD21hiCD24hi Breg population that produces only IL-10, by contributing
to IL-10 induction and by suppressing the transcription of several pro-inflammatory cytokines, such as Il2, Il6 and Tnf. AHR has been previously shown to inhibit pro-inflammatory IL-17 and IFN-γ cytokine production in T cells and to induce Tr1 cell differentiation in the gut686. In addition, in the absence of AHR in macrophages, mice are more susceptible to LPS-induced endotoxic shock and present with an increase in pro-inflammatory IL-6 expression482. AHR deletion in microglial cells led to the upregulation of Ccl2, Il1b, Nos2 and Vegfb gene expression, factors known to be involved in inflammation and neurodegeneration685. Our data reveals that AHR preserves the immunosuppressive function of splenic IL-10+CD19+CD21hiCD24hi Bregs by silencing a pro-inflammatory transcriptional programme. Whether AHR complexes bind to XRE on the loci of pro-inflammatory cytokines and directly inhibit their expression in B cells, or if AHR co-ordinates the suppression of pro-inflammatory immune responses through interaction with other transcription factors in B cells warrants further study.

Our adoptive transfer results suggest that the predominant effect of a lack of AHR in B cells is the loss of IL-10. We have previously shown that adoptive transfer of II10-/- B cells are unable to suppress arthritis297,354. Here we show that WT mice do not get worse disease than the PBS control injected mice upon adoptive transfer of AHR-CD19+CD21hiCD24hi B cells. Equally, AHR-CD19+CD21hiCD24hi B cells do not suppress disease onset in the recipient mice, unlike the transfer of control AHR+CD19+CD21hiCD24hi B cells. These data therefore suggest that the deleterious effects observed in AIA is the consequence of the reduced amount of IL-10. However, we cannot rule out the possibility that, in vivo, AHR-deficient B cells contribute to overall inflammation through the upregulation of pro-inflammatory cytokines and chemokines or indirectly through the recruitment of other cell types.

We have recently reported that AHR deletion rather than impairing the capacity of B cells to proliferate compromised their ability to commence the cell cycle. Indeed, there was reduction in Ccno mRNA expression in splenic B cells isolated from naïve Ahrfl-Mb1cre/+ compared to Mb1cre/+ mice615. Here we show that this defect, unlike in the steady state, is overcome during an arthritogenic response, as no change in Ki-67 expression or in genes regulating the cell cycle, including Ccno, were observed between Mb1cre/+ and Ahrfl-Mb1cre/+ CD19+CD21hiCD24hi B cells.
taken directly from arthritic mice. Furthermore, no difference was observed in Ki-67 expression between \(Mb1^{\text{cre}+/} \) and \(Ahr^{\beta/}\)\(Mb1^{\text{cre}+/} \) CD19\(^+\)CD21\(^{hi} \)CD24\(^{hi} \) B cells after restimulation with LPS+anti-IgM. Although, in the latter, we used purified CD19\(^+\)CD21\(^{hi} \)CD24\(^{hi} \) B cells instead of total splenic B cells and used different stimuli to activate this population, which together might account for the differences observed in this study. Therefore, these data confirmed that the phenotype observed in the absence of AHR expression in B cells is not due to impaired B cell proliferation, but instead is due to the reduced ability of B cells to differentiate into Bregs and reduction in the production of IL-10.

Our results show that while the loss of B cell AHR expression reduces IL-10\(^+\)CD19\(^+\)CD21\(^{hi} \)CD24\(^{hi} \) Breg frequency and leads to an expansion of plasma cells, it does not affect the frequencies or absolute numbers of B cell populations up to a mature naïve B cell stage. Taken together with previous findings showing that AHR is expressed by B cells from the immature B cell stage in the bone marrow\(^{615,616,715} \), we suggest that B cell AHR expression is important primarily for the control of IL-10\(^+\)CD19\(^+\)CD21\(^{hi} \)CD24\(^{hi} \) Breg immune-regulatory transcriptional programming and restricting plasma cell development, but is dispensable for homeostatic early B cell development.

We report that \(Ahr^{\beta/}\)\(Mb1^{\text{cre}+/} \) mice have increased frequencies of splenic plasma cells compared to control \(Mb1^{\text{cre}+/} \) mice and these results are in line with those showing that both prototypic AHR agonists (polycyclic aromatic and planar halogenated hydrocarbons) affect terminal differentiation of B cells and humoral immune responses, by inhibiting plasma cell differentiation and reducing the production of IgM\(^{217,606,619} \). We find increased levels of \(Prdm1 \) mRNA expression in B cells lacking AHR, consistent with previous findings showing that the suppression of terminal differentiation is mediated through AHR increasing BACH2 expression\(^{620} \). BACH2 in turn represses the expression of BLIMP-1, a key transcription factor that controls B cell differentiation into immunoglobulin-producing plasma cells\(^{716} \). We have extended the significance of these results to an inflammatory model and showed that early B cell development and maturation of B cells is not affected by B cell AHR expression, but that AHR is required for the differentiation of IL-10\(^+\)CD19\(^+\)CD21\(^{hi} \)CD24\(^{hi} \) Bregs. It is tantalizing to propose that the increase in plasma cells observed in mice lacking AHR is due to the impaired
function of Bregs. We have previously shown that, at least in humans, IL-10 produced by Bregs directly inhibits T helper cell differentiation which prevents plasma cell differentiation.

Here we have shown that AHR, in response to inflammatory signals, plays an important role in the homeostatic maintenance of Breg function by acting as a molecular brake, preventing the differentiation of Bregs into effector B cells producing pro-inflammatory mediators. In addition to identifying that AHR regulates IL-10 expression in Bregs, our data highlight an additional mechanism by which AHR restrains inflammatory responses. These results add to a growing body of evidence supporting AHR as a key modulator of immune tolerance, and therefore, a potential therapeutic target in autoimmunity.

7.2 Establishing a link between gut microbiota and Breg differentiation
Bregs are generated in the periphery in response to bacterial-derived metabolites and inflammatory signals. Whereas more is understood regarding how inflammation and inflammatory cytokines drive Breg differentiation, the participation of microbiota in Breg biology is poorly understood. We have previously shown that low-grade inflammatory signals that drive the differentiation of immature B cells into Bregs are provided in the gut-associated lymphoid tissue, as a result of the interaction between the gut microbiota and the innate immune system. Mice depleted of endogenous bacteria following administration of broad-spectrum antibiotics do not develop arthritis or Bregs, suggesting an intricate relationship between microbiota, inflammation, and Breg differentiation. We hypothesised that signals through AHR in B cells in the GALT, prime B cells to differentiate into Bregs. Here we establish a link between the dietary SCFA butyrate and AHR-driven differentiation of Bregs. Butyrate-supplementation attenuates arthritis severity in mice by supporting AHR+ Breg function and suppressing mature B cell subset differentiation. We show that butyrate is not a direct ligand of AHR in B cells, but indirectly supports Breg differentiation in an AHR-dependent manner by increasing the levels of the newly identified AHR ligand 5-HIAA; a downstream metabolite of serotonin.

Recent literature has demonstrated that butyrate can alter the function of a wide variety of immune cells. In agreement with this, we found that butyrate-
supplementation of arthritic mice enhanced Treg suppressive function upon adoptive transfer. Butyrate has been shown to induce FOXP3+ Tregs both directly, by acting as a histone deacetylase inhibitor (HDACi), and indirectly, by promoting anti-inflammatory properties in macrophages and DC by engaging G protein coupled receptors GPR43 and GPR109A. Building on these findings, we found that Tregs only displayed enhanced suppressive function when isolated from butyrate-supplemented mice with a fully functional Breg compartment. This supports published data demonstrating that Treg homeostasis is altered in mice lacking IL-10 producing B cells.

Here, we also describe a previously unappreciated role for butyrate in altering B cell differentiation and function in mice with arthritic disease. Interrogation of the interaction between butyrate and B cells using a murine model of arthritis demonstrated a sophisticated system whereby butyrate alters AHR-dependent gene transcription, including key B cell differentiation genes and immunoregulatory genes serving to support Breg suppressive function and inhibit B cell maturation. Notably, we found that μMT mice, which lack both regulatory and inflammatory (e.g. GC B cells and plasmablasts) B cells have equivalent disease severity to WT mice in this model of arthritis but that chimeric mice, which exclusively lack IL-10 producing B cells, develop exacerbated disease compared to chimeric mice with WT B cells. This demonstrates a fundamental role for IL-10 producing B cells in suppressing arthritic severity following butyrate-supplementation in this model. These data demonstrate for the first time that a microbial-derived metabolite can control the balance between regulatory and mature B cell subsets. Notably, we found that, only in AHR-sufficient B cells, butyrate enforces a developmental programme, which promotes and maintains Breg differentiation, whilst inhibiting mature B cell differentiation. These data demonstrate for the first time that a microbial-derived metabolite can control the balance between regulatory and mature B cell subsets and supports the previously described role of AHR in inhibiting the terminal differentiation of B cells.

Our data determined that butyrate-supplementation requires a fully competent endogenous microbiota to exert its anti-arthritogenic capabilities on the B cell compartment. Butyrate-supplementation shifted the microbiota to increase relative abundance of Allobaculum, Bifidobacterium and Rhodospillaceae_unclassified,
genera which have been shown to influence tryptophan metabolism709, 719, 720, 721. One possible explanation for this shift is that butyrate possesses antimicrobial activity that targets pathobionts, creating a niche for the growth of tryptophan-metabolizing species. In the agricultural industry, butyrate is an established component of chicken feeds used to control the growth of pathogenic bacteria722. In addition to a direct bactericidal effect, butyrate enhances the microbicidal function of macrophages, by altering their metabolism and by eliciting the production of anti-microbial peptides, which may control out-growth of pathogenic components of the gut-microbiota647. Another complementary explanation justifying the observed shift in bacterial communities is that butyrate acts as a nutrient for beneficial bacteria. At present, we cannot exclude that changes observed in the gut microbiota following butyrate-supplementation could be the result of reduced inflammation. Unfortunately, due to the intertwined response between microbiota and inflammation it is difficult to extricate whether the butyrate effect on bacteria is direct, mediated by cells, or by other anti-inflammatory mediators. Future studies will be performed to investigate if the effect reported here is due to changes in inflammation or due to direct effect on the microbiota. Our findings support the notion that prebiotics supplementation could be used to restrain inflammation in systemic autoimmune disease with no obvious gut-related pathogenesis.

The diversity of endogenous AHR ligands have started to be well characterised in recent years698. However, determining the physiologically relevant ligands in immune cell function and examining if these ligands have differing roles in directing cell function has been harder to establish. Endogenous AHR ligands can be generated by host cells, microbiota, and through metabolism of dietary compounds698. Amongst the microbiota-derived ligands for AHR, an important family are tryptophan-derived metabolites. For example, it has been previously demonstrated that tryptophan is endogenously metabolized into tryptamine and indole-3-acetic acid, which directly binds to AHR506, 683. More recently, expression of tryptophanase by certain microbiota species has been shown to process tryptophan into indoles and its 3-substituted derivatives, which also act as agonists for AHR723. In addition, L-kynurenine and kynurenic acid which are produced following metabolism of tryptophan by indoleamine 2,3-dioxygenase (IDO) can also activate AHR in immune cells581, 724. In this study, we did not detect any
variation in the levels of tryptophan, tryptamine, L-kynurenine or indole, yet we observed a reduction in kynurenic acid (KYNA). We also found the levels of indole-3-substituted derivatives to be below the limit of detection suggesting that these pathways are unaffected by butyrate-supplementation. Rather our data suggests an additional mechanism by which 5-Hydroxyindole-3-acetic acid (5-HIAA), the main metabolite of serotonin (5-HT), activates AHR in B cells following butyrate-supplementation. Similarly to T cells, where it has been shown that different AHR ligands drive either Treg or Th17 differentiation\(^\text{581}\), we show that both KYNA and 5-HIAA can activate AHR-dependent gene transcription in B cells, but only 5-HIAA and not KYNA upregulates \textit{Il10} transcription in B cells in an AHR-dependent manner.

The production of the tryptophan-derived neurotransmitter 5-HT in the gut is intimately connected with the presence and species of the gut microbiota\(^\text{725}\). As well as regulating diverse physiological processes in both the brain and the gut, 5-HT also has a proposed immune-modulatory function, including the promotion of B cell proliferation, induction of cytokine release by monocytes, and changing in capabilities of dendritic cells to present antigen and activate T cells\(^\text{726, 727}\). Here we determine that 5-HT’s main metabolite 5-HIAA activates AHR in B cells and drives the transcription of both \textit{Cyp1a1} and \textit{Il10} transcription in B cells and show that 5-HIAA is immunoregulatory in arthritis. Our data supports a recently established link between the serotonergic and AHR pathways, showing the efficacy of 5-HT in inducing \textit{Cyp1a1} expression via AHR in an intestinal epithelial cell line\(^\text{507}\). It also adds to accumulating evidence that butyrate can induce 5-HT release by neural enterochromaffin cells in the gut\(^\text{728}\). We suggest that as well as regulating gut homeostasis and peristalsis, the butyrate-serotonin-AHR axis also acts to influence Breg homeostasis.

The data in this study suggest that gut-microbiota derived metabolites control many aspects of B cell development and Breg function. Moreover, it suggests that the threshold for Breg induction in response to inflammatory stimuli could potentially be lowered in AHR ligand rich environments. We show that butyrate increases the availability of the AHR agonist 5-HIAA and thus enforces an AHR-dependent transcriptional programme which promotes the generation of Bregs, whilst inhibiting terminal differentiation of B cells (Figure 7.1). To date, due to the
heterogenous nature of the Breg response, researchers have been unable to ascertain how to harness the suppressive function of Bregs. These results, in part, address this gap and reveal that supplementation of microbial end products like butyrate could be used for therapeutic intervention in autoimmune disease.
Figure 7.1. Working model of the role of butyrate and AHR in Breg differentiation and function. Butyrate promotes the growth of tryptophan metabolising bacteria, which metabolise tryptophan to 5-HIAA. 5-HIAA acts as an AHR ligand, which induces Breg differentiation by upregulating IL-10 and suppressing pro-inflammatory cytokine gene expression. AHR⁺IL-10⁺ Bregs then suppress pathogenic T cell responses in AIA.
References

83. Royston, I., Majda, J.A., Baird, S.M., Meserve, B.L. & Griffiths, J.C. Human T cell antigens defined by monoclonal antibodies: the 65,000-dalton antigen of T cells
(T65) is also found on chronic lymphocytic leukemia cells bearing surface immunoglobulin. *J Immunol* **125**, 725-731 (1980).

185. Bannard, O. *et al.* Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection. *Immunity* 39, 912-924 (2013).

363. Matsushita, T., Horikawa, M., Iwata, Y. & Tedder, T.F. Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late-phase immunopathogenesis. *J Immunol* **185**, 2240-2252 (2010).

387. Ding, Q. et al. Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. *J Clin Invest* **121**, 3645-3656 (2011).

Yue, F.Y. *et al.* Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I, HLA class-II and ICAM-1 molecules. *Int J Cancer* **71**, 630-637 (1997).

Enan, E. & Matsumura, F. Identification of c-Src as the integral component of the cytosolic Ah receptor complex, transducing the signal of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the protein phosphorylation pathway. *Biochem Pharmacol* 52, 1599-1612 (1996).

Coumailleau, P., Poellinger, L., Gustafsson, J.A. & Whitelaw, M.L. Definition of a minimal domain of the dioxin receptor that is associated with Hsp90 and maintains

List of publications arising from this thesis

Appendices

Appendix I: Table AI. Transcription factors differentially expressed between GFP+ and GFP- populations.

Appendix II: Table AII. AHR independent butyrate regulated genes.

Appendix III: Table AIII. AHR-dependent butyrate regulated genes.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Function</th>
<th>FC (CD21<sup>hi</sup>CD24<sup>hi</sup> pos vs CD21<sup>hi</sup>CD24<sup>hi</sup> neg)</th>
<th>adj.P.Val (CD21<sup>hi</sup>CD24<sup>hi</sup> pos vs CD21<sup>hi</sup>CD24<sup>hi</sup> neg)</th>
<th>FC (CD21<sup>hi</sup>CD24<sup>hi</sup> pos vs FO)</th>
<th>adj.P.Val (CD21<sup>hi</sup>CD24<sup>hi</sup> pos vs FO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahr</td>
<td>Aryl-hydrocarbon receptor Dna binding</td>
<td>1.869114565</td>
<td>5.05135E-05</td>
<td>5.183739908</td>
<td>1.73543E-08</td>
<td></td>
</tr>
<tr>
<td>E2f8</td>
<td>E2F transcription factor 8 Core promoter binding</td>
<td>3.524122031</td>
<td>8.24144E-05</td>
<td>9.937468163</td>
<td>1.16556E-07</td>
<td></td>
</tr>
<tr>
<td>Bhlhe41</td>
<td>Basic helix-loop-helix Family, member e41 RNA polymerase II core promoter proximal region sequence-specific DNA binding</td>
<td>3.151182551</td>
<td>5.20865E-05</td>
<td>5.070827978</td>
<td>2.34121E-07</td>
<td></td>
</tr>
<tr>
<td>Pim1</td>
<td>Proviral integration site 1 Nucleotide binding</td>
<td>1.43710652</td>
<td>0.000803313</td>
<td>1.536952061</td>
<td>5.28079E-05</td>
<td></td>
</tr>
<tr>
<td>Tacc3</td>
<td>Transforming, acidic coiled-coil containing protein 3 Protein binding</td>
<td>1.754219566</td>
<td>0.000237504</td>
<td>2.612848846</td>
<td>1.13543E-06</td>
<td></td>
</tr>
<tr>
<td>E2f7</td>
<td>E2F transcription factor 7 Core promoter binding</td>
<td>1.569164933</td>
<td>0.000491558</td>
<td>2.089170639</td>
<td>3.35506E-06</td>
<td></td>
</tr>
<tr>
<td>Dnmt1</td>
<td>DNA methyltransferase (cytosine-5) 1 Core promoter binding</td>
<td>1.525927763</td>
<td>0.001016079</td>
<td>1.542642041</td>
<td>0.000192334</td>
<td></td>
</tr>
<tr>
<td>Zbb32</td>
<td>Zinc finger and BTB domain containing 32 Nucleic acid binding</td>
<td>1.564102074</td>
<td>0.00060818</td>
<td>1.599906949</td>
<td>8.54549E-05</td>
<td></td>
</tr>
<tr>
<td>Zfpm1</td>
<td>Zinc finger protein, multitype 1 RNA polymerase II core promoter binding transcription factor activity</td>
<td>1.635156815</td>
<td>0.000956596</td>
<td>2.073406035</td>
<td>1.36055E-05</td>
<td></td>
</tr>
<tr>
<td>Pmf1</td>
<td>Polyamine-modulated factor 1 Transcription coactivator activity</td>
<td>1.613117282</td>
<td>0.000743998</td>
<td>2.03500123</td>
<td>9.61821E-06</td>
<td></td>
</tr>
<tr>
<td>C1qbp</td>
<td>C1q binding protein Complement component C1q binding</td>
<td>1.49365815</td>
<td>0.002166338</td>
<td>1.796509212</td>
<td>4.16981E-05</td>
<td></td>
</tr>
<tr>
<td>Foxm1</td>
<td>Forkhead box M1 DNA binding</td>
<td>1.457277204</td>
<td>0.00190059</td>
<td>2.20317842</td>
<td>3.01442E-06</td>
<td></td>
</tr>
<tr>
<td>Cenpf</td>
<td>Centromere protein F Protein C-terminus binding</td>
<td>1.922637351</td>
<td>0.008852351</td>
<td>3.81234672</td>
<td>2.613E-05</td>
<td></td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Function</td>
<td>Fold Change (GFP+)</td>
<td>FC (GFP-)</td>
<td>p-value (GFP+)</td>
<td>p-value (GFP-)</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---</td>
<td>--------------------</td>
<td>-----------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Pdlim1</td>
<td>PDZ and LIM domain 1 (elfin)</td>
<td>Transcription coactivator activity</td>
<td>1.538439454</td>
<td>0.001738439</td>
<td>1.372627344</td>
<td>0.00277832</td>
</tr>
<tr>
<td>Setd8</td>
<td>SET domain containing (lysine methyltransferase) 8</td>
<td>P53 binding</td>
<td>1.481768428</td>
<td>0.005872492</td>
<td>1.58624982</td>
<td>0.000660724</td>
</tr>
<tr>
<td>E2f1</td>
<td>E2F transcription factor 1</td>
<td>Core promoter binding</td>
<td>1.27720107</td>
<td>0.005234129</td>
<td>1.799717751</td>
<td>4.40902E-06</td>
</tr>
<tr>
<td>Hes6</td>
<td>Hairy and enhancer of split 6</td>
<td>DNA binding</td>
<td>1.26830407</td>
<td>0.004558499</td>
<td>1.367381679</td>
<td>0.000227666</td>
</tr>
<tr>
<td>Smarca4</td>
<td>SWI/SNF related, matrix associated, actin dependent regulator of chromatin</td>
<td>Nucleotide binding</td>
<td>1.335143927</td>
<td>0.011950492</td>
<td>1.398775214</td>
<td>0.00168523</td>
</tr>
<tr>
<td>Dip2c</td>
<td>DIP2 disco-interacting protein 2 homolog C (Drosophila)</td>
<td>Unknown</td>
<td>1.258003811</td>
<td>0.02122796</td>
<td>1.734098658</td>
<td>2.86597E-05</td>
</tr>
<tr>
<td>Skil</td>
<td>SKI-like</td>
<td>Chromatin binding</td>
<td>-1.201268078</td>
<td>0.022180352</td>
<td>-1.54986752</td>
<td>3.18895E-05</td>
</tr>
<tr>
<td>Hhex</td>
<td>Hematopoietically expressed homeobox</td>
<td>DNA binding</td>
<td>-1.235422164</td>
<td>0.026407274</td>
<td>-1.511651527</td>
<td>0.000170022</td>
</tr>
<tr>
<td>Rbpms</td>
<td>RNA binding protein gene with multiple splicing</td>
<td>Nucleotide binding</td>
<td>-1.326003662</td>
<td>0.040745097</td>
<td>-1.992794467</td>
<td>7.70317E-05</td>
</tr>
<tr>
<td>Hist1h4k</td>
<td>Histone Cluster 1 H4 Family Member K</td>
<td>Unknown</td>
<td>1.274</td>
<td>0.019929</td>
<td>1.5213</td>
<td>0.00027</td>
</tr>
</tbody>
</table>

Table A1: Transcription factors differentially expressed between GFP* and GFP* populations. List of 23 candidate genes differentially expressed between CD21hiCD24hiIL-10eGFP* and GFP* populations. Abbreviations: FC – fold change, FO – Follicular.
Table AII. AHR independent butyrate regulated genes.

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Symbol</th>
<th>Gene Symbol</th>
<th>Gene Symbol</th>
<th>Gene Symbol</th>
<th>Gene Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adamdec1</td>
<td>Casc4</td>
<td>Hip1</td>
<td>Mtfr1l</td>
<td>Pomt1</td>
<td>Tbx2a2r</td>
</tr>
<tr>
<td>Ahdc1</td>
<td>Cbfa2l3</td>
<td>Hpse</td>
<td>Mtmr4</td>
<td>Ppdc</td>
<td>Tecpr2</td>
</tr>
<tr>
<td>Anks1</td>
<td>Ddx11</td>
<td>Hsp90b1</td>
<td>Nfya</td>
<td>R3hdm1</td>
<td>Tmc4</td>
</tr>
<tr>
<td>Ano10</td>
<td>Ece1</td>
<td>Hyou1</td>
<td>Pafah2</td>
<td>Rpgrip1l</td>
<td>Tmcc3</td>
</tr>
<tr>
<td>Ano8</td>
<td>Fahd2a</td>
<td>L3mbt3</td>
<td>Patz1</td>
<td>Sdf2l1</td>
<td>Tmem129</td>
</tr>
<tr>
<td>Asl</td>
<td>Fam173b</td>
<td>Lamc1</td>
<td>Pdia3</td>
<td>Slc16a6</td>
<td>Tnfrsf4</td>
</tr>
<tr>
<td>Bcl2</td>
<td>Fbxl5</td>
<td>Lman2l</td>
<td>Pdia6</td>
<td>Slc2a9</td>
<td>Unc119b</td>
</tr>
<tr>
<td>Bcl9</td>
<td>Fkbp2</td>
<td>Magt1</td>
<td>Piga</td>
<td>Slc37a2</td>
<td>Usp31</td>
</tr>
<tr>
<td>Bicd2</td>
<td>Flnb</td>
<td>Manf</td>
<td>Pik3r5</td>
<td>Smg7</td>
<td>Vti1a</td>
</tr>
<tr>
<td>Calr</td>
<td>Fuca1</td>
<td>Med16</td>
<td>Plod1</td>
<td>Sorbs3</td>
<td>Xbp1</td>
</tr>
<tr>
<td>Canx</td>
<td>Gprasp1</td>
<td>Mib2</td>
<td>Plxna1</td>
<td>St13</td>
<td>Znhit1</td>
</tr>
<tr>
<td>Capn5</td>
<td>Guca1b</td>
<td>Mrpl1</td>
<td>Poln</td>
<td>Tbc1d19</td>
<td></td>
</tr>
</tbody>
</table>

71 identified genes which are significantly differentially expressed after butyrate-supplementation in both $Mb1^{cre/+}$ and Ahr^{fl}- $Mb1^{cre/+}$ mice.
<table>
<thead>
<tr>
<th>Gene Set – AHR-dependent butyrate regulated genes</th>
<th>Cchr1</th>
<th>Gfod1</th>
<th>Nacc1</th>
<th>Rab26os</th>
<th>Top3a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1110065P20Rik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1700048O20Rik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1810014B01Rik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1810024B03Rik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20101111O1Rik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500004C02Rik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3110009E18Rik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4632415L05Rik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4833418N02Rik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4930402H24Rik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6030419C18Rik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A430033K04Rik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A530072M11Rik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adam15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alf04432</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldh1l2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>And3b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arl6ip4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphd1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atg10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atp9a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atxn2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baiap2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC051142</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Begin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bloc1s4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bmt2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bttb18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camk2a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ccdc85b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gfmr2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table AIII. AHR-dependent butyrate regulated genes. 195 identified genes which were significantly differentially expressed after butyrate-supplementation in Mb1Cre/ mice, once baseline transcriptional changes between control Mb1Cre/ mice versus Ahf/Mb1Cre/ mice had been removed.