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ABSTRACT

The principal aim of this research was to assess at-line Near Infrared Spectroscopy
(NIRS) to support Process Analytical Technology (PAT) applications within solid

dosage form manufacturing.

The history of PAT was traced from implementation of process analytical applications
prior to the 2003 United States, Food and Drug Administration PAT initiative through
to current time. The use of NIRS within the PAT context was reviewed, highlighting
two areas in solid dosage manufacturing where further research of at-line NIRS is

warranted; material testing and finished dosage form analysis.

Novel applications of at-line NIRS were investigated and developed aligned with the
PAT philosophy, to establish an innovative system of analysis that combined
chemometrics and spectral analysis with statistical process control (SPC). In particular,
various chemometric algorithms were explored to enable rapid monitoring of global
spectral quality as well as the quality of specific critical-to-process material attributes
within a SPC framework. Novel approaches to within and between batch SPC for tablet
quality conformance were also developed including the adaption of distribution profile
control charts typically applied to particle size measurement. These were quick to
develop with greatly reduced reliance on reference analysis. It provided an opportunity
for extensive process monitoring and in-depth process understanding. The work
highlighted gaps in currently available chemometric and SPC capabilities within NIR
instrument control software and provided insight into a new direction for NIRS analysis

in the future.

The new conformance methodology was demonstrated to provide business value and
critical science based understanding of the pharmaceutical formulation and processes

with successful application of the methodology at a commercial Pfizer facility. This
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methodology is in the process of rolling out worldwide. The approach was found to be
approachable for plant operators through to quality analysts, and is broadly applicable

with the potential to extend beyond the solid dosage form studied.
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PREFACE

This thesis is organised in chapters with the first chapter providing a high level
overview of the Process Analytical Technology (PAT) initiative within the
pharmaceutical industry. The chapter closes by identifying the key areas of PAT

application which hold the highest value in focusing research.

Chapter two then provides an introduction and overview of the role of near infrared
spectroscopy (NIRS) in supporting the PAT initiative. Evaluation of a subset of the
available relevant literature demonstrates the value in focusing on at-line applications
for material and finished product testing in solid dosage form manufacturing. Chapter
three provides background as to the mathematical and statistical theory that underpins

NIRS analysis for PAT applications explored in this research.

Chapter four summarises the research conducted on the development of a NIRS
conformance methodology for material testing, exploring applications to assess global
spectral quality as well as the quality of specific material attributes and associated

impact on process and / or product quality.

Chapter five summarises the research conducted on the development of a NIRS
conformance methodology for finished solid oral dosage form analysis, focusing on
novel approaches for assessment of within and between batch quality during tabletting

operations.

Chapter six provides a summary of the research and assesses the criticality of the
research outcomes in relationship to closing the gaps in at-line NIRS application to

support the PAT philosophy as identified in the first two chapters.
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CHAPTER 1 THE PROCESS ANALYTICAL TECHNOLOGY

FRAMEWORK

1.1 Introduction

In this initial chapter of the thesis, the author provides an overview of the Process
Analytical Technology (PAT) philosophy as it is applied to the pharmaceutical industry.
Through this review the critical focus area of scientific research in the area of PAT is

identified and is the basis of the research detailed in later chapters of the thesis.

1.2 Process Analytical Technology defined

Chemical and physical analytical testing is the cornerstone of quality assurance of
pharmaceutical products, ensuring that the pharmaceutical products that reach the
consumer have acceptable quality and efficacy. In the 1990°s and early 2000’s, many
companies had in-house terminology for programs to describe the approach of moving
the analytical testing to the sampling location within manufacturing rather than moving

the sample to the quality control (QC) testing laboratory in a distant location.

In simplest terms, PAT is the application of analytical instruments and methodologies
(including statistical analysis) to the measurement of process and quality attributes at

the time, and in the location of, the manufacturing process.

The term PAT was used within Pfizer Inc to describe this work in the late 1990°s, with
“PAT Analysts” employed at manufacturing sites to develop and implement near
infrared (NIR) methods for raw material quality assessment and in-process tablet

monitoring.

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer = Page 19 of 305



During 2001 to 2003, the United States Food and Drug Administration (FDA) became
interested in PAT and what the application of analysis within the process could provide
the Pharmaceutical industry. The FDA defined PAT as:

“a system for designing, analyzing, and controlling manufacturing through

timely measurements (i.e., during processing) of critical quality and

performance attributes of raw and in-process materials and processes, with the

351

goal of ensuring final product quality.
The FDA definition was further cemented in the vernacular through the inclusion of the
definition verbatim in The International Conference on Harmonisation of Technical
Requirements for Registration of Pharmaceuticals for Human Use (ICH) tripartite

guidelines on quality risk management’ and later on pharmaceutical development.’

The FDA advocated that PAT should be focused on gaining understanding of processes,
process improvement and ultimately applied to validate and control manufacturing
processes. Thus the concept of PAT is broader than simply analytical measurement in
itself; rather it has become synonymous with a holistic and strategic application of

process analysis within a scientific, risk-based, systems oriented framework.

It was expected that implementation of PAT would provide benefits to the manufacturer
through improvements in product development and manufacturing and as a more
effective means to demonstrate quality assurance, providing economic business
benefits.* The regulatory environment was also expected to benefit through more
scientific and well understood processes resulting in harmonised and simpler review and

auditing.’

Before discussing the benefits of PAT and the various modes of PAT application
(process knowledge / process design, process monitoring / process analysis and process

control), it is worth reviewing the origins and timelines of the PAT initiative.
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It is important to stress that PAT is not a new invention of the FDA, rather, industry
pursued the initiative well in advance of the FDA involvement. The Wall Street Journal
described the earlier work of implementing analytical technologies in the process
environment by a cross section of pharmaceutical companies.® The review of the range
of PAT related NIR spectroscopy (NIRS) applications in Section 2.5 also demonstrates
that application of analytics in tune with current PAT philosophies occurred much
earlier than the launch and promotion of the term PAT by the FDA. The application of
chemometrics and data analysis aligned with the PAT initiative was also stated to occur

decades prior to the FDA publication.’

The first paper which discussed the FDA’s interest in the role of PAT in modernising
the pharmaceutical industry was published in 2002.® It describes that the FDA first
discussed PAT in 2001 with presentations at the FDA Science board meeting in
November 2001 culminating in the formation of a subcommittee on PAT in early 2002.
Throughout 2002 and 2003, the subcommittee met and devised a draft guidance
document on PAT. The vocabulary of PAT became firmly fixed in the pharmaceutical
industry following the issue of the draft guidance “Guidance for Industry PAT - A
Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality
Assurance™ by the FDA in September 2003. This document was later authorised with
minimal change and issued in September 2004' following a period of industry and

academic consultation.

The use of the term PAT allowed focussed discussion between companies in the
industry as well as common language for discussions across industry, academia and

regulatory bodies.
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1.3 Why the pharmaceutical industry needs PAT

The pharmaceutical industry differs from other manufacturing industries in that the
product made is consumed by those with compromised health to invoke a physiological
effect (primarily the improvement to human health). This has led to the practice of
heavily documenting the extensive internal quality assurance testing conducted to
ensure that the product released to market is of the highest quality. Regulatory bodies
exist to oversee the manufacturing and supply of pharmaceutical products to safeguard
the public, and each regulatory body outlines extensive quality assurance requirements
in associated guidelines, guidance and / or legal statutes. It is interesting to note that
despite this focus on assuring product quality, pharmaceutical manufacturing is said to
be behind other manufacturing industries such as the automotive and semiconductor
industries.” There are high internal quality failure rates (product deviations / rejects),
high cost and slow cycle times when compared to other industries. A
PricewaterhouseCoopers presentation to the FDA reported that pharmaceutical
manufacturing assumes 5-10% of materials are scrapped, while 20% of production costs

are spent ensuring quality.®

It has been argued that pharmaceutical manufacturing has not changed significantly
since the 1950’s with a 25 year lag in uptake of new technology.'’ In the past,
manufacturers commented that they cannot change due to conservative inflexible
regulation and controls placed on the industry by regulatory bodies, while regulatory
bodies have responded that they have insufficient information to mitigate the risk of
relaxing controls. Applying PAT can reduce the risk by decreasing uncertainty through

the provision of process information which was previously unknown.

Process and product knowledge is the key to effective and efficient pharmaceutical

manufacturing, and efficient regulatory oversight of the industry. The combination of
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process automation and process analytics has been said to provide new mechanisms for
process control which can ensure the quality of the final product while providing
understanding of the physicochemical phenomena occurring during manufacture of the
product.” It is hoped by industry that the PAT initiative can reduce product quality
problems while increasing the efficiency of manufacturing and quality assurance
processes. This would moderate regulatory burdens thus reducing production costs, and
in the long run, make pharmaceuticals more affordable.®

4-6, 8, 10, 12-20

Review of the multitude of papers published on the PAT initiative indicates

that the primary benefits of PAT include;

e Improved efficiency by managing product variability and improving quality

consistency leading to more capable/ robust processes
e Reduced production cycle times by use of PAT measurements and controls
e Reduced rejects, scrap, and reprocessing and prevention of recalls

o Improved customer service, by securing predictable product supply and the

potential of real time release

e Increased automation leading to improved operator safety and reduction in

human errors
¢ Increased certainty and confidence in the process robustness

e Continuous quality improvement opportunities within quality risk management

program with moderation of associated regulatory burdens

o Positive relationships with regulatory agencies and improving the scientific basis

of dialogue between industry and regulatory agencies

¢ Reduced cost of manufacturing
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Thus there is wide agreement that PAT is a key initiative to drive the pharmaceutical
manufacturing industry forward; facilitating many improvements to manufacturing that
are needed to meet business objectives. It is clear that PAT will lead to benefits to the
regulatory agencies, the pharmaceutical companies, patients and to the shareholders.
The benefits to shareholders are not often discussed, however it was highlighted in early
attention by The Wall street Journal in the pharmaceutical industry’s pursuit in PAT.®
However, most importantly, patients will receive the benefit of PAT through the

production of consistent high quality products.

PAT was further embedded in industry culture through the inclusion of PAT concepts in
the FDA “Guidance for Industry on Quality Systems Approach to Pharmaceutical
¢GMP Regulations”' and the ICH Harmonised Tripartite Guidelines on Pharmaceutical
Development (Q8R2)*, Quality Risk Management (Q9)* and Pharmaceutical Quality
System (Q10)**. Specifically, PAT is referenced in the ICH documents to gain enhanced
understanding of process performance,’ as a risk control mechanism,” as a means for in-
process testing® and control,” and as a support for parametric and real time release.” The
European Medicines Agency (EMA) launched a PAT team to work with industry on
PAT aspects and endorsed PAT through participation in drafting the ICH guidelines.
While separate regulatory guidance addressing PAT was not considered necessary in
Europe, the EMA (previously known as the European Agency for the Evaluation of
Medicinal Products (EMEA)) issued a paper which reflected on the incorporation of

PAT into regulatory submissions.”

PAT became a key focus area of many symposia, consortiums, conferences and industry
organisations from 2003. For example, the American Society for Testing and Materials
(ASTM) Committee E5S5 on Manufacture of Pharmaceutical Products was formed in
2003 to address issues related to process control, design, and performance for the

pharmaceutical manufacturing industry and largely focused on the preparation of
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consensus standards supporting PAT implementation in the industry (e.g. PAT support

of process design®® and process understanding25).

1.4 Modes of integration of PAT applications

The implementation of PAT is typically described utilising three modes of

. . 13,14,2
Integration; ™ 20

e at-line - where operators sample from the process and perform analysis at / near
to the process stream. The PAT tool is located near to but not integrated into the

process.

e on-line - where the PAT tool is integrated into the process with no operator
sampling with automated diversion of the sample to the PAT tool making use of
components such as sampling loops. Analysis typically occurs faster than at-line

methods but at a slower rate than the process equipment operational speed.

e in-line - where the PAT tool is fully integrated (invasively or non-invasively)
into the process with no sampling. Analysis occurs at the process equipment

operational speed.

At-line analysis has benefits in cost of installation and that the equipment is not
dedicated to one piece of process equipment and so can be applied to multiple
equipment trains or multiple applications (for example, raw material testing and in-
process intermediate monitoring). Process analysers or instrumentation can be easily
installed within existing in-process control laboratories or located near production
equipment while not impacting the process equipment or being impacted by the process
environment (e.g. heat, vibration). The validation of at-line PAT systems is

straightforward with no need to review or revalidate process equipment. Implementation

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer  Page 25 of 305



can be done in parallel with routine production without interfering with manufacturing

schedules or delaying product commercial release.'®

The disadvantages of at-line measurement is the lack of ability to apply automated
feedback and control, and the smaller sample size that can be analysed due to the need
for operators to present the sample to the measurement system. It may be challenging to
develop process understanding of the different points or phases within the process for
short duration processes as sampling and measuring samples may take too much time to

allow sufficient data points to characterise the process.

In-line and on-line integrated application of PAT provide the opportunity for automated
control and un-manned analysis at greater sampling frequency and large sample sizes
which can provide deep understanding of process phases and pathways, even of short
duration, without burdening operators. However, integrated applications have additional
cost and engineering requirements to interface the instrumentation with the process,
more extensive validation burden (process equipment and product contacting parts) and
greater complexity in terms of data, communications and control (e.g. data storage,

sophisticated control loops).16

When determining the optimum mode of PAT integration, the following aspects should

be considered;13
e level of desired control (automated, manual, human input for interpretation)

e engineering constraints (plant zoning, restriction on electronics and

communication, power, space and access limitations)
e process equipment constraints (pressurised vessels, motion or moving parts)

e environmental constraints (vibrating environment, harsh chemical environment)
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e effect of integration on process or equipment validation state (requirement to re-

establish equipment/ vessel integrity or revalidate the product).

e information technology constraints (communication to process equipment or

plant electronic management and data handling system)

e sampling constraints (representative sampling design, sample/instrument

interface, effective sample size, fouling, static/ dynamic measurement)

e PAT equipment restraints (distance of fibre optic cable runs, speed of scan

versus speed of sample movement)

1.5 Typical stages of PAT implementation

1.5.1 PAT - Process design and process knowledge

Typically the first application of PAT to a process / product is during process design
and process knowledge development. This may occur during research and development
for new products or in the commercial phase of a product to gain process understanding
or facilitate process redesign. This directly aligns with the overriding goal of PAT to

understand the manufacturing process.26

The FDA considers a process well understood when:?’
1) all critical sources of variability are identified and explained;
2) variability is managed by the process; and

3) product quality attributes can be accurately and reliably predicted over the

design space established.

Thus, to gain process knowledge and understand the critical steps of the process, PAT

may be applied to correlate process and quality attributes, to identify the critical
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attributes and to identify the sources of variation in these attributes. A general process
assessment may take place to identify the gaps in process knowledge and then PAT

applied to specific process steps or attributes.

While gathering process knowledge, PAT can be applied in depth to the process and
across multiple process points. This information can be used to devise a ‘process
signature’, which can be defined as the typical process trend / profile or behavior for the

attribute under study throughout the process time frame.

Typically the process signature is based on non-quantitative measurements and will be
devised on a large sample size sampled throughout the process. The process signature
may be formulated with one or more PAT measurement systems and may highlight
critical control points or locations of variation in the process, otherwise not identified by
the random small scale sampling that occurs for conventional Pharmacopeial analysis.
Process signatures are often an ideal way of graphically representing the ‘typical
process’ in all its glory, showing the variation (which may be acceptable or

unacceptable) that inherently occurs in the process.

An early application of the process signature approach to gaining process knowledge
can be seen in work five years prior to the FDA launch of the PAT initiative where NIR
was used to produce a profile of the manufacturing process of an injectible

pharmaceutical product.?®

Different design of experiments (DoEs) can be used during process design, scale up and
commercial process development to better understand the interactions of quality and
process attributes and the inherent variation in the attributes. Applying PAT at the
process design stage (i.e. prior to commercial manufacture), can aid in ensuring a robust
efficient process is introduced to the plant'® and is aligned with the Quality by Design

(QbD) principles introduced in the FDA “Guidance for Industry on Quality Systems
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Approach to Pharmaceutical cGMP Regulations” in 2006 and outlined in the ICH Q8

tripartite guideline on Pharmaceutical Development.?

The resulting information gathered from PAT and any other process / product
knowledge gained through process assessments and DoEs can be used to define the
design space. ICH Guidance on Pharmaceutical Development’ defines design space as:

“The multidimensional combination and interaction of input variables (e.g.,

material attributes) and process parameters that have been demonstrated to

provide assurance of quality.””

The use of PAT can ensure that a more robust, understood process is defined which can
cater for variable inputs that are inherent in manufacturing (e.g. variation in materials,
environmental factors, ageing of process equipment) while remaining at the set point

within the developed design space.'

Product marketing and the desire to quickly deliver a new pharmaceutical product to
patients often hampers full process design with rapid progress from the clinical stage to
commercial manufacture once approval to market is given. Consequently the
commercial process is often based on scale up of the laboratory scale process
experiments and different DoEs done at early research and development stages rather
than in the scale up period. Rapid to implement PAT applications that provide deep
process understanding without delaying progress of products through the research and
development process are therefore paramount. Though it is beneficial to study potential
quality and process attributes prior to commercial manufacturing, understanding the
commercial process is often only achieved at the point of validation of the commercial

manufacturing process.

During this first stage of implementing PAT (defining and understanding the process) it
may be identified that quality attributes previously tested in QC laboratories are not

critical to describing the process. Thus redundant, and in some cases laborious and
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expensive, quality verification testing of the quality or process parameters can be
reduced and the resources targeted on the attributes that are most critical. In some
instances, once the process is fully described, regulatory filings can be changed to
remove unnecessary registered tests. It must be noted here, that PAT is not implemented
with the intention of removing registered tests that are in place to verify or characterise

product attributes that relate to product clinical efficacy.

Effective design space and process knowledge can provide opportunities to ensure
effective specifications are set for testing of critical attributes from the outset. For
example, process and product specific specifications can be applied for raw materials
where a material’s physicochemical attribute has a critical affect on forward processing,
despite the attribute test not being required in Pharmacopeial guidance. This can only

occur once full process understanding is achieved.

1.5.2 PAT - Analyzing manufacturing / process monitoring

Once the design space is defined through process knowledge (Section 1.5.1), PAT can
be applied for process monitoring of identified critical or variable attributes to
demonstrate that processes are within the design space and consistently producing

quality product.

If process signatures were devised during the process design and process understanding
stage, the same sampling and testing procedures can be applied routinely to assure that
the process is continuing to perform according to the understood process signature. If
process signatures have not been developed, the process monitoring stage of PAT
provides the optimum time to apply PAT to the identified critical process parameters to

establish the normal behavior or monitor the typical variation. This is an important step
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to proceed through prior to applying specifications and thresholds to the data and

moving into the process control stage of PAT (Section 1.5.3).

Often quite a large sample size is used during process monitoring. Real time monitoring
provides the opportunity to use the information for rapid identification of any
unexpected result or deviation and rapid initiation of root cause assessment followed by
an opportunity for deviation rectification. At this stage, feedback is typically manual
and requires operator interpretation. This may cause initial production downtimes when
unexpected results or deviations occur, particularly as experience is gained in

interpretation of PAT data.®

As the expertise of the PAT application develops through the process design and
understanding stage and the process monitoring stage the PAT data can be used to

predict how the process is expected to perform at the next stage in production.

Application of PAT to non-critical process or quality attributes is not value adding as all
that will be achieved is the verification of a known stable process rather than satisfying
the purpose of PAT to predict product quality attributes though a high degree of process
understanding.27 The FDA views monitoring of non-critical parameters and not using
the data for process improvement or control as a deviation from the FDA philosophy of
PAT. It should be noted that the FDA interpretation of critical parameters is those that
impact product quality or efficacy. PAT may be applied to parameters that critically
impact business aspects (e.g. speed of operation) however these applications need not be
registered for regulatory review and the inclusion of such applications in filings may

detract from the purpose of PAT enabled product and process control.?’
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1.5.3 PAT - Process control / quality assurance and continual process

optimisation

As mentioned in Section 1.5.2, the FDA considers the use of PAT data to control the
process an integral part of the PAT approach. With the development of sufficient
process understanding, it is possible to establish causal and / or predictive relationships
between critical parameters and quality attributes such as the incoming raw materials,
manufacturing process, in-process materials, and final product quality, which could be

used for real time process control.'%%

Ultimately, PAT can be implemented to achieve “real time release” through
demonstration in real time throughout manufacturing that all critical processes are

understood and controlled to attain the desired quality attributes of the product.”’

Using feedback and feed forward controls, PAT can be used to provide a mechanism to
keep processes within the design space or conforming to established acceptable
behaviour. The PAT output can provide the ability to manage, reduce or eliminate

identified variability in the process.

Specifications can be built from all the data acquired during the prior two stages of PAT
implementation, to assist in rapid interpretation and feedback of the data to make
quality decisions. With in-line and on-line PAT approaches the feedback loop can be
automated (control loops and communication through software and equipment

programmable logic controllers) without interpretation or human intervention.

Continuous process optimisation can occur, where process parameters can be modified
within the design space using PAT to verify that the process remains in control. This

modifies the view of static processes following the completion of process validation."
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1.5.4 PAT - Validation and continuous verification

Concurrent with implementing PAT for monitoring (section 1.5.2) or control (section
1.5.3), PAT information can be utilised to support a change to the product quality
validation and verification paradigm. Data generated from PAT can be applied to
support validation or may facilitate a reduction in the level of validation testing
normally applied. When based on PAT results validation may be achieved in less time,
with fewer resources and with a greater degree of quality assurance. Validation and
verification is focused on critical parameters with scientific rationale and understanding.
This may allow faster scale-up and simpler supply assurance through quicker process

validation.’

The application of PAT to large sample size, to a large number of process steps or for
multiple critical process or quality attributes clearly exceeds the current quality
assurance generated by pharmacopeial analysis on a very small sample size at the

finished dosage stage.

The use of process knowledge of earlier process stages, followed by process prediction
leads to the ability to make informed decisions when process changes occur (for
example changes in raw material supply) to ensure the processes continue to operate
within the design space. The PAT data rapidly provides confirmation that the process is
in control and can thus revolutionise the approach to change control and continuous
process improvement. It could thus be proposed that any process improvement or
change that produces a process within the approved design space would need no further
regulatory review. This is a complete shift from traditional views to process validation

and quality assurance with process understanding the foundation.
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1.6 Current PAT constraints

With PAT, it could be envisaged that in the future all relevant critical quality and
process attributes would be continually monitored, evaluated, and adjusted (within the
defined design space) achieving flexible, process quality based endpoints using
validated in-process PAT measurements. In doing so, the process would be allowed to
cope with and deal with the inherent variability of material and process attributes that
can impact the quality of the output. The use of PAT in this way mitigates the risk of

process variation to product quality.

However, there are currently several constraints (real or perceived) that need to be
overcome to facilitate the industry moving forward with PAT. The constraints listed by
Ciurczak in 2003'° based around the two broad areas of instrumentation and regulation
4.429.30

are still constraints nearing ten years after the PAT initiative was launche

Instrumental issues include the need for; 4.5,10,29

e Process hardened instrumentation

e Guidance for calibration, validation and instrument standards for process

instrumentation
o Ease of interfacing process instrumentation / retrofitting process equipment

o Integrated data-management infrastructure capable of handling large data

volumes
e Software compliance and integration with process data management systems
e Guidance on what data must be stored and archived

e Guidance for specifications for large sample size and development of new

specifications for attributes with no historical specifications.
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Instrumentation issues are rapidly being addressed as technology becomes more
advanced and as competition between vendors leads to provision of more robust
equipment. The European and United States Pharmacopeias both contain general
chapters on NIR spectrometry’’ and spectrophotometry’> respectively and focus on
instrument operation and qualification, particularly reflectance measurement. The
inclusion of chapters in pharmacopeia for analytical techniques often used for PAT
measurement (e.g. NIRS, Raman) provides a mechanism to provide standardisation and
guidance on instrumentation. Industry organisations such as ASTM, International
Society for Pharmaceutical Engineering and International Organization for
Standardization also provide a mechanism to provide consensus standards on a range of
PAT related topics not covered in either regulatory or pharmacopeial guidance. Such

industry consensus standards will continue to close some of the instrumentation issues.

Perceived regulatory barriers has been stated to be the largest cause of the
pharmaceutical industry lagging in implementing PAT." Though the FDA guidance
clearly demonstrated FDA support of PAT, there are still regulatory concerns,

including; > '°

e How the current inspection process (regulatory audits) and regulations will

change to encompass PAT

e How other regulatory agencies will adopt PAT (compared to FDA and EMA) in

regions other than the United States and the EU

e Relief on cost of filing variations on approved products to implement

improvements with regulatory impact

In addition to instrumentation and regulatory concerns and constraints, other aspects of
PAT that need attention can be grouped under financial considerations and

organisational readiness.
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Such constraints noted in literature include; %> !> 16,26,29,30

e How to overcome / provide for the need for in-house expertise and training’

particularly in chemometrics and statistics

e Ensuring appropriate personnel and capital resources as well as project

management and leadership to complete projects to sponsor expectations
e How to identify, recruit, and keep the necessary competencies

e How to deal with the culture shock of implementing PAT and changing

validation, processing and quality paradigms

e Financial benefits for industry to pursue PAT and the perceived / actual poor

return on investment.

The increased focus on science based manufacturing and presence of PAT in
conferences, symposium and availability of web based training and webinars is assisting
in building in capability of PAT related skill sets in the current and future workforce.
Despite this focus, there is continued scope to ensure adequate skills are in graduating
students.* Retention of PAT capability is another significant challenge, with the
experience within Pfizer that those with an aptitude for PAT are often promoted out of
PAT roles. Management may assume training is a simple exercise; however there is a
greater need for knowledge management of PAT related activities so that when a project
manager moves on, a capable person in house has the knowledge and aptitude to

maintain and further progress PAT projects.

Vendors may assume that the profits within the pharmaceutical industry are available to
individual manufacturing facilities and as such inflate instrumentation and software
pricing when selling to the Pharmaceutical industry. The reality is that the
manufacturing facilities in the pharmaceutical industry are highly competitive, with the

need to recover research and development costs and then compete with the generic
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marketplace once product licensing exclusivity has been lost. Within the current global
economy every capital purchase within any company is based on the ability to recover
the capital investment in a timely manner and such inflated vendor pricing reduces the

deployment of PAT.

Areas of concern or constraint (instrumentation, regulatory, financial and organisational
capability) need to be addressed and overcome across the industry and within individual
companies before PAT can be truly effective, fully integrated and considered routine

rather than as a separate initiative.

1.7 Ciritical review of the current status and future focus of PAT

The benefits of PAT are clearly demonstrated and have been well discussed in the
public domain in published journal articles as well as with the prominence of PAT in
industry conference agendas since 2003. Though the PAT initiative is nearly a decade
old, culture shock and how to ensure management embraces change continues to be a
factor in debate on the success of PAT.* This is more down to human nature’s resistance
to change and the longer time needed for PAT competent personnel to reach upper

management positions to champion cultural change.

The original drive to implement PAT based on it being the right thing to do, being
perceived as an industry leader or to pursue relief from regulatory burden must also
translate to business / financial benefits for continued implementation. Often the
benefits are stated in soft terms that do not translate well to return on investment
calculations and financial benefits. With the economic crises / depression occurring
across the globe, pharmaceutical companies have become ever more cost conscious,
which can be synonymous with financial conservativeness. Added to this is the greater

presence of competing manufacturing in developing nations with cheaper production
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and labour costs and narrow margins. As such, investment in significant capital with
long term returns is not an industry priority. It is therefore important to focus efforts in
developing and implementing PAT on applications that meet the philosophy of the PAT
initiative while also meeting constrained business operations. There is a disincentive to
implement PAT applications necessitating regulatory filings for marketed products
when costly variations are required for separate markets (may be in excess of 100 for
globally marketed products). Even when few markets are impacted, applications
requiring preapproval may also translate to delayed return on investment depending on
which markets are impacted, with some markets taking years to approve PAT related

changes.

Review of literature describing historical implementation of PAT indicates that though
on-line and in-line PAT analysers deliver greater process knowledge and opportunity
for process control and continual process improvement, they do so with disadvantages
in cost, time and complexity of installation. Alternatively, at-line applications provide
opportunity for rapid installation without integration delays and the ability to apply non-
dedicated analysers across multiple process lines and process steps, despite lacking
automation or process feedback. Similarly, PAT applications with complex regulatory
consequences (necessitate filing) are not aligned with the current financial challenges

facing many manufacturing facilities.

The application of PAT in the area of biologics manufacturing is the centre of a recent
flurry of publications as the pharmaceutical industry recently gained momentum in
developing biologics therapies. Glassey and Rathore provide an excellent summary of
recent PAT applications and considerations for biopharmaceutical products® ** Despite
this new research area, the pharmaceutical industry continues to be dominated by oral
dosage forms. In fact many new biopharmaceuticals target the use of oral dosage form

delivery systems to capture the high level of patient compliance seen with oral dosage
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forms compared with other delivery systems.> It has been reported that tablets account

for over 70% of the prescribed medications reaching patients.*

Based on the review of the various integration options and stages of PAT
implementation as well as the constraints identified from literature review and an
understanding of the current pharmaceutical business and economic climate, research in
PAT should focus on low cost PAT applications that drive process robustness and
efficiency, provide opportunity for monitoring and internal control without regulatory
constraints. Focus should also continue on solid dosage form manufacturing as the
largest portion of pharmaceutical manufacturing continues to be in this area. At-line
applications of PAT focussed on process understanding and monitoring of tabletting
processes, are seen as pivotal to address this research focus area and are the subject of

this thesis.

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer  Page 39 of 305



CHAPTER 2 NEAR INFRARED SPECTROSCOPY IN PROCESS

ANALYTICAL TECHNOLOGY

2.1 Introduction

This chapter describes the role of NIRS to support the PAT philosophy. The
background theory of NIRS is touched on and the historical application of NIRS within
the PAT framework is reviewed for various units of pharmaceutical operation. Through
this review the potential areas for the novel use of NIRS to support at-line
implementation of PAT was identified and is the focus of the research described in later

chapters of this thesis.

2.2 Desirable attributes of PAT measurement systems

Techniques and tools for process analytics must be rapid to be applicable to test key
process and quality attributes of pharmaceutical samples at, or in, the process at
equipment operational speeds (real time analysis). They must be able to analyse a
sufficiently large sample size to facilitate process understanding and to establish process
signatures. PAT techniques must require little sample preparation, and techniques that

are non-destructive are highly regarded due to ease of result investigation.
Therefore the desired attributes of PAT measurement techniques are:

e Rapid

¢ No, or limited, sample preparation

e Non-destructive
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As PAT applications are located in the manufacturing plant, it is also necessary that the
control system for the PAT technique is able to support a simple operator interface so
that the analysis can be performed or monitored by unskilled (non-chemistry trained)
plant / factory operators for information feedback and control. Whether a simple
interface is available for easy plant operator monitoring and control is largely an
instrument software issue and would be of common interest independent of the

analytical technique employed.

2.3 Background theory of NIRS

To understand how well suited NIRS is to PAT applications, the theory of NIRS must

be examined.

As for mid and far infrared (IR) spectroscopy, NIRS is based on the absorption of
energy (in the 780-2500 nm region of the electromagnetic spectrum) by molecular
bonds with dipole moments (charge distribution inequality between the atoms) to absorb

energy and vibrate.

Molecular vibration can be depicted by the energy diagram based on the Morse function
as shown in Figure 1. Molecules largely reside at the ground energy state (vo) at room
temperature and can transition to the higher energy states when the energy matches the

energy gap between the energy levels.

The strong fundamental molecular vibrations, which are seen primarily in the mid IR
region, occur due to the transition of molecules from the ground energy state (vo) to the

1* excited energy state (v energy level).
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Figure 1: Energy diagram of an anharmonic oscillator

In a perfectly hamionic oscillator, according to Hooke’s Law (Equation 1) each

energy level is equally spaced and transitions to higher energy levels are not allowed.

Frequency (u) = — x A4—"L-m-
2/r y W) W2

W here 4 = force constant
m =mass of atoms

Equation 1: Hooke’s Law

However, molecular vibrations are anharmonic due to intramolecular interactions, and
transitions from the ground state to higher energy states can occur with transitions from
Voto V> being termed 1 overtones, and vq to Vi3 2"* overtones. Overtone transitions are
100 to 1000 times less likely to occur™ and are thus much weaker absorptions. These
overtones require higher energy and are shifted into the NIR region of the

electromagnetic spectrum.
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In poly-atomic molecules, multiple fundamental transitions (e.g. bending and stretching
of the same bond) can occur simultaneously at the right energy frequency input. As for
overtones the higher energy required often causes combination transitions to be seen as

weak absorption in the NIR region.

The particular frequency at which molecules absorb energy and vibrate is dependent on
the magnitude of the dipole moment, the orientation of the bonds within the molecule
(presence of hydrogen bonding, double bonds and steric hindrance reducing the ability
of bonds to vibrate) and the anharmonicity of the molecule. These characteristics cause
each molecule to uniquely absorb NIR energy, thus creating a NIR spectral fingerprint.

Typical NIR absorption bands for organic structures are shown in Figure 2.

Apart from pure liquid pharmaceutical formulations, irradiation of samples with NIR
light causes several scattering phenomena by the particles present in the formulation.

The different scattering typical with interaction with NIR light is shown in Figure 3.

Specular radiation contains no information on the sample, while the remaining
phenomena all contain physical and /or chemical information of the sample. The path
length of the NIR light through the sample during sample interaction is affected by the
size of the particles through which the light travels; hence both transmission and diffuse
reflection spectra contain physical information of the sample. Samples with larger
particles will absorb more energy than those with finer particles, causing baseline
offsets. The effects of scattering increase as wavelength of light increases causing a
curve in the spectral baseline. These scattering phenomena are now well established and

the impact is reduced by appropriate mathematical corrections.
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Figure 2: Characteristic NIR absorption bands for common organic structures
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Figure 3: NIR interaction with a particulate sample showing absorption (__ ), specular

reflection ( ), diffuse reflection (___ ) and transmission ( )

NIR measurement occurs in three main modes;

* Transmission: light passes through the sample with the light source on one side

ofthe samples and the detector on the other (black light path in Figure 3).

* Diffuse Reflection: light is shone onto the sample, with shallow penetration into
the sample, and is then detected on the same side of the sample as the original

light source (red light path in Figure 3).

* Transflectance: light is shone through a sample, hits a reflector and is reflected
back through the sample again before being detected on the same side of the

sample as the original light source.

In all cases, absorbance values are measured according to the following equation.

Absorbance = log—or log —

Where T = transmitted light
R = reflected (or transflected) light

Equation 2: Relationship of absorbance to transmission and reflection spectra
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2.4 Ability of NIRS to meet desirable attributes for PAT

As the NIR absorption is due to the weaker overtone and combination energy transitions
discussed in Section 2.3, the NIR absorbance is much weaker than the fundamental
absorbance in the IR region while the frequency of the energy provides excellent sample
penetration. This feature allows samples to be analysed without sample dilution typical
for IR (e.g. oil mull). The ability of NIRS to analyse neat samples, means that sample
preparation is not necessary. Sample presentation for analysis is typically not difficult
with two modes usually used - reflectance and transmission. Sample presentation is
optimised to ensure the natural path length of the sample (e.g. tablet thickness, liquid

cell) is appropriate and normally no sample modification is required.

The ability to analyse samples without modification coupled with weaker absorptions in
the NIR region (causing no damage to the molecules) leads to NIRS being a non-
invasive, non-destructive and inherently rapid analysis technique well suited to process
analysis. The technique is ideal in situations where the sample quantity is limited, as the

undamaged sample remains available for further analysis.

Pharmaceutical formulations are typically composed of four to ten components which
are primarily complex organic molecules. Therefore, most pharmaceutical components
are NIR active. NIR spectra of pharmaceutical products are thus a complex spectral
combination of the NIR active components in the formulations. The fingerprinting
ability of NIR spectroscopy discussed in Section 2.3 is also reflected in the NIR spectra
of pharmaceutical formulations. Though spectra of pharmaceutical formulations are
quite complex, once the data are resolved the spectral information provides immense
information of the formulation (the excipients as well as the Active Pharmaceutical

Ingredient (API)) and also the manufacturing process.
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Unlike the majority of analytical techniques, the chemical information of the
formulation can also be obtained without losing physical information of the sample.
Scattering phenomena, historically seen as a hindrance with NIRS, can be of significant
value for process analysis. Scattering information can yield information on the sample
particle size (materials or blends), sample density (tablet hardness or powder bulk
density), sample thickness (e.g. tablet thickness) and suspension and emulsion

characteristics.

Hence, with a single rapid NIR analysis, taking less than one minute, information on the
API, key excipients and physical characteristics of the sample can be gained non-
destructively without affecting product quality and with minimal sample preparation.
NIRS therefore meets the needs for analytical techniques for PAT applications as

outlined in Section 2.2.

2.5 Historical applications of near-infrared spectroscopy for PAT

NIRS has been used in the pharmaceutical industry since the late 1980’s. However, the
early focus of NIRS was on alternate testing for compendial / QC testing. There were
limited links to in-process testing or process understanding and instrumentation was
largely located within QC testing laboratories. Blanco provides an excellent summary of
the use of NIRS in the pharmaceutical industry in the pre-PAT era.’” However, these
applications do not fit within the PAT framework and will not be discussed further in

this review.

Though more limited than laboratory based NIRS methods, process linked applications
of NIRS pre-date the FDA guidance on PAT. The introduction of the terminology PAT
makes identification of process related NIR applications much simpler during literature

review on the topic after 2003. In following years, publications were split fairly equally
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between papers on how and why PAT is implemented and focus on specific
applications. However, as the terminology of PAT became known throughout the
pharmaceutical industry, publication of PAT implementation and applications became

more popular.

This section reviews a subset of PAT NIRS applications, discussing how the
applications have been implemented and whether there has been a discernable change in
implementation of PAT related applications following the issue of the draft FDA
guidance in September 2003. The review concentrates on solid oral dosage form
applications, as the key focus area defined in Section 1.7, including the application of

NIRS to input materials through to coating processes of tablets.

2.5.1 Material testing

Variability in physical or chemical properties of excipients and APIs can be a
significant factor affecting process robustness and product quality. A number of drug
product processes have shown sensitivities to variation in physical or chemical
properties of APIs and excipients, even when the materials meet their compendial or
registered specifications. Pharmacopeial tests may not focus on physical tests such as
particles size distribution and flow, or chemical tests such as moisture content which
directly relate to processability. Pharmacopeial tests may also be general for the
material with no link to the varied way the material may be used or behave in different
drug product manufacturing processes (e.g. therapeutic powder verses direct
compression solid oral dosage form) or different formulations (e.g. percent API

composition in one product may be 1% by weight and 25% by weight in another).

Compendial testing is performed on a delivery basis, and does not take into account

variability that may occur in different containers of the same delivery. This author
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collaborated in one such work where despite deliveries passing compendial testing (on
averaged results), container variation in starch content impacted the process and the
ability of product manufactured from individual drums to meet finished product
quality.38 In this work, NIRS was applied for rapid material testing for starch content in
the receival warehouse to aid prediction of product failure from the use of material from

individual containers.

NIRS was identified as an important tool for assessing physical and chemical aspects of
pharmaceutical materials as early as 1996, when it was established that comparison of
NIR spectra can be a rapid tool to material analysis.*® Applying NIRS to raw materials
within the PAT framework must surpass the prior wide application of NIRS for material

29, 30, 40-43

identification and target the application of NIRS to the task of qualifying the

material as appropriate for processing.

Material qualification employs various chemometric techniques to assess whether a
particular sample is consistent with acceptable material (material meeting the

29, 42, 44 (nically

established material specification). Traditional material qualification
utilises qualitative classification techniques and compares the spectrum of a sample to a
static library of acceptable material developed at a single point in time often without
linkage to the successful use of the material in manufacturing. This provides limited
process information. Roggo®' equates qualification with distance based chemometric
methods, however any classification technique that utilises a library to establish a
variability tolerance or acceptability threshold can be applied as a qualitative method.
Quantitative methods have also been utilised for material qualification of particular

material attributes (e.g. particle size), however thresholds have been typically applied to

the output to provide a categorical classification of acceptability.

For material analysis to be a true PAT application it is necessary to begin assessing the

relationship between observed material quality and the effect on product quality or on
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processing behaviour rather than just relating the output to compendia test replacement
or pass / fail binary knowledge of the material. Rather than qualifying that a material is
acceptable compared to a reference library it must be established that the library

represents a relevant variation that impacts product quality or process performance.

Various papers comment that qualification of materials has the potential to enable
prediction of material performance in manufacturing processes.”” 4% % However, a
very limited number of publications explore this aspect beyond demonstrating the
successful development of a qualification classification approach. Plugge® successfully
demonstrated the value of qualifying lactose and indicated that his approach could lead
to greater understanding of the performance and impact of the lactose in the solid
dosage form. This work in 1996 is well aligned with the PAT approach, however,
despite much research utilising Plugge’s chemometrics approach (Conformity Index)
limited application for process understanding has occurred. Rather, the chemometrics
has been simply applied as a classification and identification approach. One other
example of qualification being put into practice to relate material quality to processing
is Lopes’ research which demonstrated the prediction of fermentation process success
through a four level classification of soy bean flour, linking raw material NIR spectra to
processability established in pilot scale experiments.* Similarly, Haware’s work
utilised qualitative methods to characterise lactose and predict tensile strength and other

attributes of tablets utilising the material.*¢

The main area where material characterisation by NIR has related material quality to
product and quality performance is in polymorph analysis. Though this has largely been
in investigational rather than routine application, it is worthy of further discussion as

follows in Section 2.5.1.1.
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2.5.1.1 Polymorph analysis

Polymorphs (different crystal structures of the same compounds) and compound
solvates (often called pseudo-polymorphs) are an area of particular interest due to the
significant effect the different forms can have on product efficacy due to differences in
physical and chemical properties.”® Onward processing of the API (e.g. in wet
granulation and drying processes) can convert the polymorph form into undesirable
forms*’, and conversely the polymorph form of the API can greatly affect the ability of
the API to be successfully processed into finished goods due to differences in physical

characteristics.

Polymorphs and pseudo-polymorphs have been identified as an ideal application for
NIRS as polymorphs exhibit different NIR spectra due to variations in crystal lattice
impacting frequencies of vibration.*® Chieng’s recent review provides a summary of the
diverse use of NIRS analysis as a PAT application for polymorph analysis
complimenting the off-line characterisation with traditional techniques.*’ Polymorphic
form of the API within the solid dose preparation matrix has been analysed with the
ability to differentiate down to 1.5% of crystalline form of the API in thé amorphous
formulation.*® Later work has successfully measured an API to a limit of quantification
of 0.8% using a partial least squares regression method.”® In-line NIRS has been
successfully applied to the analysis of phase transitions / polymorph conversion during
the wet granulation and crystallisation processes with investigation into the process
kinetics. The NIRS methods were shown to provide opportunities for process

improvement.‘”’ !
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2.5.2 Dryer process monitoring

Drying processes occur in pharmaceutical manufacturing, both in the manufacture of
API and in final dosage form manufacturing where wet granulation processes are
employed. Traditionally drying processes are conducted for a set time, the dried
material sampled, and confirmation that the product is dried sufficiently obtained
through off-line moisture analysis (such as Loss on Drying (LOD), Karl Fischer (KF)
measurement or mass of condensate from dryer effluent). It is common for material to
sit in the drying vessel while waiting for the analytical result and then to require further
drying to achieve the desired moisture level. The delays waiting for analysis and the
successful application of NIRS for moisture analysis in other industries (utilising the
fact that O—H vibrations of water exhibit a large absorption in the NIR region) led NIRS
for pharmaceutical drying analysis to be one of the earlier applications explored. Initial
focus of the use of NIRS was as direct analytical method replacement of laboratory
based KF, gas chromatography (GC) and LOD methods by a quantitative NIRS method.
A number of such end-point determination methods were performed and are

summarised in Luypaert’s review article on NIR applications for moisture analysis.**

The traditional approach (KF / GC / LOD), or the use of NIRS as a replacement of such
methods within a QC framework, does not provide any information as to the actual
drying process. The risk of over-drying the material and the variation in drying from
batch to batch, led monitoring of pharmaceutical drying processes to be one of the

earliest in-line, in-process applications of NIRS in the pharmaceutical industry.

The application of a NIRS method for the determination of moisture during the drying
of a pharmaceutical granulation was reported for a microwave vacuum dryer as early as
1994.%2 This early paper focused on development of a quantitative NIR method as an
alternate test to the KF method. However, White also conceded that additional valuable

qualitative information about the drying process was provided by monitoring the
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moisture curve during the drying process. This is one of the earliest concessions to
process trending of analytical data and is directly compatible to the PAT philosophies as
espoused by the FDA guidance 10 years later. The application of NIRS to dryer
monitoring has been described by various authors since this first successful reported
application.” ** *>*% The majority of published work describes commercial scale
applications; however NIRS has also been applied during process development to
develop process understanding of the drying process and determining optimum process

conditions.’" >

An early in-line application of NIRS for monitoring the fluid bed drying process applied
multivariate analysis to project the data into 2-dimensional plots and trend the output to
correlate process activities with the NIRS data.'' This article shows successful PAT use
of NIRS in 2000, years prior to the advent of the PAT initiative. This initial application
heralded a switch in research to in-line NIRS for real time monitoring and control of
critical to quality attributes aligned with PAT. Henningsson’s work demonstrated that
such an approach enabled improvements in batch-to-batch moisture content consistency
leading to favourable yield and quality as well as reduction in process and testing cycle
times (leading to an increase in drying capacity of 10%).'® The development of on-line
quantitative methods based on reference chemistry has been largely replaced by
applying qualitative trending such as correlating NIR spectral data’' to process activities
without relying on reference chemistry. This approach can provide a much more
accurate picture of the drying process and can also overcome building deficiencies in
the reference chemistry into the NIRS method (e.g. KF methods may have high error for
some analyses due to side reactions or hygroscopic nature of samples and reagents

during sample preparation).>>*’

The majority of recent papers on drying monitoring focus on in / on-line analysis of

fluid bed dryers and agitated pan dryers both of which allow direct product analysis of
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the moving mass of drying product. On-line direct analysis of the product is not possible
with tray dryers and the only possible option for on-line analysis is exhaust gas

52, 58

measurement (e.g. monitoring the solvent content in dryer effluent) which is an

indirect indicator of the product moisture content.

Though at-line NIR analysis for end-point determination does not provide significant
process related benefits over traditional moisture analysis techniques, it does provide a
mechanism for greater quality assurance and process understanding through the ability
to analyse samples of product from various locations in the dryer. The use of at-line
NIR for mapping the performance of tray dryers has been overlooked to date with no
reports of work in this area. Such mapping would allow measurement across different
trays and at different locations and powder depths) providing dryer process
understanding and deeper quality assurance of the product. Similarly, enhanced quality
assurance and positional mapping across the pan of a fluid bed or agitated pan dyer by
at-line NIRS may also be applicable when cost of in-line installation is prohibitive. No

work has been reported in this area to date.

2.5.3 Wet granulation and dry roller compaction monitoring

NIRS has been utilised for analysis of wet granulation processes since the late 1990’s.>
PAT is typically applied to the fluidized bed or high shear wet granulation processes of

a solid dosage form to monitor the drying process and to identify the optimum end-

point. Drying related application of NIRS is described in Section 2.5.2.

Additionally, NIRS has been applied to provide understanding of the mechanism for
granule formation®* through the examination of NIR absorbance as the energetic state of
water changed from bound to bulk water. Hydrogen bonding characteristics, related to

bulk and bound moisture, vary during the different stages of granule formation.
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Rinténen assessed the three key process phases of mixing, spraying and wet massing of
a high shear wet granulation process using an in-line qualitative multivariate method
showing the utility of NIRS to provide significant chemical and physical process

knowledge. > ¥

The monitoring of the state of water has been further investigated with a NIRS method
that monitored the water state and the conversion of an API to a pseudo-polymorph
during the wet granulation process.”’ Applications also utilised the physicochemical
nature of NIRS to simultaneously understand the chemical changes in moisture bonding

with the physical growth of granules.** '

Burggraeve’s excellent review® summarises the history of the use of NIRS for
granulation monitoring showing that much work occurred prior to the FDA PAT
guidance document being issued, indicating that NIRS was being applied to gain

process understanding for wet granulation processes ahead of the FDA initiative.

Roller compaction process is used in combination with milling to moderate particle size
(e.g. increase particle size and normalise distribution) and particle properties (e.g.
shape). NIRS has been applied as a real-time at-line and in-line non-destructive
technique to determine both physical (density, tensile strength and Young’s Modulus)
and chemical (moisture content and API potency and content uniformity) of the blend
compact in a single measurement.®> ® All of these parameters impact the efficiency of
the next milling step in delivering the particle size desired for onward processing and
later blend uniformity of the product blend. The application of NIRS for rapid
measurement of roller compaction (dry granulation) enables process optimisation to
reduce cycle time and reworks as well as monitoring, reducing and controlling
variability of the blend as an input into the next process step. NIRS applied to monitor

the particle size distribution following milling has also been applied to verify the
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success of the roller compaction and milling process while also reducing process and

QC testing cycle time and costs.>

2.5.4 Active granule and pellet coating

Though the typical aspect of the granulation process to which PAT is applied is the
formation of an API containing granule, it is of note that the growth of granule coating
and active pellets has also been studied using NIRS. The active component may be in
the granule / pellet core or in the coating. Non-active granule/ pellet coating is often
used to control the API release in the finished formulation, enhance the API stability in

the product or provide flavour masking.

NIR has also been successfully implemented in the at-line mode to measure the polymer
coating process of controlled release granules. The rapid at-line determination of the
process endpoint led to an improved cycle time and reduced inventory'® and was also
noted to have potential opportunities for understanding, monitoring and controlling the

processes (aligned with PAT philosophy).

The application of in-line NIRS to the granule coating process® ¢’ has demonstrated the
greater process information gained by applying NIRS and indicates the possible use of

NIRS for monitoring and controlling the granule coating process.

Recent work has investigated the use of NIR chemical imaging for the analysis of pellet
cores and pellet coating® however as yet this has been applied in an investigational
mode and the cost and the time to analyse a small sample size will likely result in NIR
chemical imaging not being a widely deployable PAT application for the analysis,

monitoring and control of granule coating within operations.
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2.5.5 Blend homogeneity

Traditionally, solid dosage forms are manufactured by blending together the
formulation components for a set blend time established during three validation batches.
It is accepted that to produce high quality solid dosage forms, the intermediate blend
must be manufactured to a high degree of homogeneity. Traditional testing of
pharmaceutical blends by techniques such as high performance liquid chromatography
(HPLC) and ultra-violet (UV) spectrophotometry can take longer than the blending
process itself and assess the uniformity of the API in sub-samples of the blend alone to
describe the blend homogeneity. However, the process-ability of the blend in the next
processing step can be greatly affected by excipients such as lubricants or flow agents
and quality attributes such as dissolution can be dramatically affected by distribution of
excipients such as disintegrants and hydrophobic lubricants.®*’® Therefore the
distribution of key excipients should be determined as part of blend homogeneity

testing.

Early laboratory experiments into the use of NIR for pharmaceutical blend mixtures was
reported in 1991.”" n1998, the use of NIRS for blend monitoring was described where
the simple variance at wavelengths indicative of the API was used to decrease the use of
HPLC assays and provide rapid decisions to forward process.”® The at-line NIRS
analysis of blends across the whole blend matrix (combined NIR absorption of all
components) was also first investigated over 10 years ago.’®’* This early research
highlighted the benefit of NIRS to mitigate the extensive assays typically done in QC
laboratories during blend validation. The use of NIRS for blend validation rather than
just as end-point process monitoring, focused on providing process understanding,
aligns well with the PAT philosophy.

The application of NIRS specifically to materials other than the API is more limited but

has been discussed with regard to a blending study of magnesium stearate lubricant®"
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and starch content in a sucrose starch blend®® and more recently for minor excipient

components in a blend.”® "7

The greatest difficulty in measuring the homogeneity of blends is the inherent errors
involved in powder sampling using a conventional sampling tool such as a sample thief.
Establishing blend homogeneity without the need to extract samples of the blend at all
is therefore desired. NIRS lends itself to this application and has been investigated for
many years. In-line NIRS also facilitates analysis of large sample size with no loss in
product yield from sampling. Larger and more representative sample size is of interest
and the industry and regulatory groups continue to debate stratified sampling and the
minimum number of samples needed to describe the homogeneity of a blend with the

FDA guidance on stratified sampling remaining in draft since 2003.7

In in-line NIRS applications, the NIRS instrumentation is typically interfaced with the
blenders through fibre optic probes and measurements are taken frequently throughout
blending. The earliest in-line applications of NIRS to blend analysis was reported at the
end of 199577 and early 1996.” Both papers utilised variance analysis and trend charts
to monitor blend matrix homogeneity during the blending process. Other papers since
have described similar statistical process control (SPC) approaches (variance analysis,
trend charting, Hotelling’s T? test) coupled with chemometric data interpretation tools
such as spectral matching, PCA and regression methods.”* 7> 7 It has been found that
the blending curve and blending end-point varies between batches, which highlights the

benefit of applying PAT to each batch as ongoing quality verification.®> %

Much research predates the issue of the FDA guidance document in 2004. This
demonstrates again that companies were already actively pursuing PAT for key
pharmaceutical applications before the FDA promotion of PAT. Recent work has
emphasised the value of NIRS in PAT applications to support quality by design

efforts.®* Papers by Puchert®® and De Beer'® provide good reviews of the diverse NIRS
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applications for blend analysis, while Blanco’s review describes the various qualitative
and quantitative approaches to data analysis, particularly for end-point determination.®

NIR chemical imaging, an area of recent growth, was also investigated prior to PAT
becoming well established in the industry.86’ 87 Recent work on NIRS imaging®” % 88
continued the focus on process understanding on the microscopic level distribution of
components within the blend matrix. This provides an incredible degree of information
on both the spatial and chemical composition of the blend and has assessed correlation
of NIR imaging results to later processing and finished product quality. The key
limitations with NIR imaging being deployed within the production environment are;
the sample area and resolution vs. the time of analysis, cost and ability to interface
within the production environment (dusty, vibrating, etc.). Instrument and technology
development continues to work towards real time NIR chemical imaging while
competition in the market is starting to reduce prices. Within the current economic
climate and instrument capabilities, NIR imaging is beyond scope for wide deployment

to support process monitoring and control.

Though in-line analysis is the preferred mode of NIR analysis, some blenders (such as
stationary ribbon blenders, or rotating screw cone blenders) do not facilitate in-line or
on-line blend analysis. In such cases it may be possible to measure product at blender
discharge however spatial understanding of the blend uniformity within the blender is
lost. Thus at-line blend testing with sampling will continue to be required in some form

and will facilitate PAT application of NIRS.
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2.5.6 Chemical attribute monitoring of solid dosage form

Historical application of NIRS for intact tablet analysis has concentrated on the
quantitative API potency prediction followed by content uniformity determination.®'%!
Development of these quantitative methods has been applied primarily as a tool to
decrease the cycle time through the laboratories, exploiting the advantages of being fast
and non-destructive. These methods are not typically applied to gain process

. . . . 4
understanding and are well summarised in Lupaert’s review.*’

A significant change in NIRS approach was demonstrated by Plugge and Van Der Vlies
in 1993, where qualitative systems were used to provide semi-quantitative predictions
and quality assurance.'” Plugge introduced the Conformity Index algorithm as a
measure of the “degree of conformity” of a batch with samples of standard quality.
Axon et al. appreciated the potential of transmission NIRS for the qualitative content
uniformity assessment of drug substance in intact tablets using a simple univariate
qualitative approach.”® However, since this initial investigation of qualitative methods
of NIR for tablet analysis in the early 1990’s, little further work has been reported in
applying qualitative analysis in the area of in-process monitoring of larger sample size

during tabletting manufacturing.

Reich mentioned qualitative NIR tablet methods (applying “conformity” testing) in
passing during her review article on pharmaceutical applications of NIRS.** However
there was no detail and literature is dominated by quantitative methods. The primary

arena that qualitative analysis is currently applied to tablet analysis is in tablet

103-105 106-108

identification and counterfeit analysis rather than analysis of the tablet

components within a manufacturing setting.

There is limited reference to semi-quantitative methods for tablet analysis chemistry'®

and for quantitative methods developed without reference chemistry.'®''® De
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Maesschalck’s work utilised a semi-quantitative approach coupling regression with
discriminant analysis, however, this was then applied as an identification method within
the research and development arena to differentiate different dosage strengths of clinical
trial samples rather than in commercial tabletting operations.'” Blanco’s reference free
approach was to enable calibrations built on pure component powder mixtures prepared
gravimetrically in a laboratory setting to be corrected for spectral differences when
applied to production samples. This approach, though rapid to develop, may lead to
ongoing update of the representative process residual spectrum as process variations
occur over time. Blanco does not comment on how this approach would be validated
within a commercial facility and whether the limited calibration set would be robust to
the typical process variability that occurs in the life of a product, NIR instrument and
process equipment.wg’ 110 Shi and Li’s work investigated the use of qualitative or low
reference methods to assist in rapid screening of clinical trials tablets, however no

discussion was given on the extension of the approach in the commercial setting,''"'"2

A limited number of papers do discuss the virtue of applying NIRS to larger sample

SiZCSZS’ 113-118

to gain understanding of the tabletting process and provide heightened
quality assurance. The applications for this purpose have been minimal due to the
continued lack of direction of the application of appropriate specifications for large

1% Applying NIRS at-line for process monitoring rather than as

sample sizes (large n).
product release testing does provide a mechanism for gaining the process understanding
and inherent quality improvements while staying clear of the debate on large n, however

this appears to have been overlooked and no papers were identified discussing tablet

component trending.

NIR chemical imaging has been applied to process understanding of tablets and
capsules and investigation into various quality issues from as early as 2002% and

continues to be an area of research.?” 8”12 12! More recently NIR chemical imaging has
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been applied to counterfeit analysis.'** As described in Section 2.5.5, the cost, time and
small sample size limits chemical imaging analysis being deployed as a routine PAT

application for finished solid dosage form component analysis.

Several on-line NIR analysers are commercially available, (e.g. Bruker Tandem)
however the cost is quite prohibitive and success is very dependent on the ability to
automatically deliver the tablets to the analyser in a consistent manner (requiring
expensive robotics). The use of such on-line systems has not been published widely for

tablet testing''> and has not been reported for capsules.

Colon Soto reported the first use of in-line NIRS at the exit of the tablet press for
component quantitation.'”® This allowed a much larger sample size to be analysed,
however the accuracy was in excess of 4% at the centre of the calibration range and an
in-house conveyer system was required. Karande furthered this work through the use of
in-line NIR inserted in the tablet press directly after the tablets are ejected from the
dyes. However this work reported poor accuracy with the prediction error as high as

17.4% at the target API content.''*

No other work has been reported with in-line NIRS of intact tablets. An alternative to
in-line tablet analysis, identified by Reich in 2005, is described by Liu'?* with the use
of blend analysis from within the tablet press at the point of compression. This is
proposed as an alternate approach to content uniformity testing and follows in-line

analysis methodologies as for blend analysis in Section 2.5.5.

With the limitations of in-line and on-line analysis, at-line analysis is the primary mode
of PAT aligned NIRS applications for large sample size analysis of tablets and capsules.
Within this focus, qualitative approaches are an area of opportunity for research given

the limited process focused application to date.
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2.5.7 Physical attributes monitoring of solid dosage forms

NIRS has been investigated to gain understanding on product attributes other than API
potency prediction and content uniformity of solid dosage form (tablets and capsules),
with considerable interest in dissolution, tablet disintegration and hardness

characteristics.

One of the earliest papers on in-process assessment of physical attributes of solid
dosage forms discussed the use of NIRS for predicting dissolution times and tablet
hardness."’®> Though this 1995 work focused on developing quantitative methods for
assessing the physical attributes, the authors acknowledged that pattern recognition
methods were valuable and could be applied within manufacturing for qualitative
classification of samples and that the developed quantitative methods could be applied
on-line for process control.'® The application of NIRS for tablet hardness analysis was
further investigated with the comparison of the use of simple statistical techniques to the
more complex chemometrics / multivariate regression analyses. This work correlated
the absorption shifts seen due to changes in the effective pathlength of NIR light
through tablets compressed under different tabletting pressures to the tablet hardness.''®
The application to tablet hardness was extended to assess tablet porosity as well as
hardness''” and has also applied NIRS to dissolution prediction at different compression

118

forces ° (though in this later paper there is distinct deviation from linearity observed in

the linearity graphs at low dissolved API content).

Hattori’s recent work investigated the ability of NIRS to study the ingress of water,

porosity and the relationship to dissolution of intact tablets.'*

Much of the research has remained focused on development of quantitative methods
despite challenges in developing calibration samples over the range of the attribute

under investigation. Reich indicated that qualitative approaches might prove more
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practical;* however limited research has been conducted on qualitative methods. Also
though it is inferred that higher sample numbers can be tested, there is no published
targeted discussion on the possibility of applying the method for real-time process

monitoring or control.

2.5.8 Capsule and tablet coating

The capsule material used to encase the pharmaceutical blend in capsule finished dosage
form has significant impact on quality attributes such as dissolution and in the end
product efficacy. NIRS has been utilised for understanding the capsule characteristics
for both hard and soft gelatine capsules. At-line NIRS has been employed for bulk

125 synonymous to analysis of raw materials

capsule characterisation (such as moisture)
discussed in Section 2.5.1. Additionally, at-line NIRS has been applied to assess capsule
changes once filled with product (e.g. cross-linking) summarised well by Reich.*
Investigation of capsule characteristics in an on-line mode during encapsulation has not
been reported, however this is feasible within the encapsulation and packaging process

prior to blister closure, which would provide a means to assess variability in capsule

characteristics.

Tablets are coated for aesthetic purposes (e.g. appealing marketable colour), to align
with regulations (e.g. country regulations on colour of particular therapeutic products),
to provide flavour masking or to control active component release (e.g. dissolution rate
of sustained release product). Coating materials are typically insoluble, slowly
dissolving or erodible (for release control), readily soluble coating (for colour and
appearance), sugar coating (for flavour masking) and less often active component

coating.
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NIRS has been successfully applied to gain process understanding of coating processes

for tabletted products and is commonly applied to assess the coating thickness®™ '3 126

128 As early as 1995, NIRS was applied to assessing

127 and prediction of dissolution.
film coating thickness of film coated tablets and predicting dissolution times.'"® This
author collaborated on one such application where reflectance NIRS was used with
quantitative models to correlate spectral features to coating components in an extended
release product to gain understanding of coating effectiveness.”> This work also
describes the extension of analysis from coating thickness to gaining additional process
knowledge through understanding the relationship of spectral features to the API release
rate. Valuable knowledge was gained despite the developed method showing
insufficient correlation for quantitation. Other research has focused on the use of at-line
NIRS to monitor the curing end point process to understand changes occurring in the

coating structure.'?’

Direct on-line analysis of the pan coated product during the process is hampered by the
hostile mechanics of operation (heated environment tumbling product with atomised
sprayed coating material). As such, limited work has been conducted with the NIR
instrument deployed in an in-line mode. Recently in-line applications at commercial

128, 130

scale has been reported by Méltgen'?” and Gendre indicating a new focus of NIRS

for pan coating monitoring.

NIR chemical imaging has been applied to process understanding of tablet coating and
related quality issues.”” '*” As described previously, chemical imaging analysis is not

currently suitable for routine PAT application for coating analysis.
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2.6 Scientific research gap analysis of NIRS for PAT - research aims

and objectives

NIRS has been widely investigated and applied within the pharmaceutical industry. The
application of NIRS for PAT applications predates the introduction of the PAT
framework by the FDA, however the publication of the FDA guidance has mobilised
interest across the industry and ensured PAT terminology is embedded in the

pharmaceutical manufacturing culture.

Despite considerable research and application of PAT across the various areas of
pharmaceutical manufacturing for solid oral dosage forms, several gaps of application
of NIRS to support PAT exist. In particular, the typical approach of developing
qualitative identification methods for materials with no extension beyond replacing
traditional identification tests yields little process understanding and does not facilitate
the development of causal relationships between materials and process behaviours.
Also, development of alternate quantification methods with time consuming reference
chemistry may not be suited to the need for rapid deployment within processing areas,
flexibility or ease of update and may not provide process information necessary to gain
the desired process understanding or provide process monitoring or control. There is a
gap in the application of simple and rapid to implement NIR applications and methods
which are aligned to PAT by providing a mechanism for process understanding and
quality assurance. Research in this area will add value to the pharmaceutical industry by
closing this gap and will also respond to the scientific need for mechanisms of NIR
analysis not reliant on time consuming and potentially error laden reference chemistry.
Thus research should focus on spectral information and novel uses of chemometric

algorithms combined with SPC.
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After review of the pros and cons of at-line versus on-line mode of NIRS as well as the
previous applications in literature, the aspect of NIRS measurement with greatest
potential scope for impactful research was determined to be at-line analysis. The critical
drivers for this focus were the ease of integration and interfacing, ability to
multipurpose the instrumentation (thus offsetting capital investment) and the wide
availability of at-line systems in the industry. Thus the research has global applicability
for even the most cost conscious locations in the global pharmaceutical manufacturing

environment.

The ideal deployment of PAT would assess critical attributes and parameters at each
unit of operation throughout solid dosage form manufacture as each process step
impacts the next. Following a review of published application of NIRS to solid dosage
production across the breadth of pharmaceutical manufacturing, from materials and
intermediate processing through to end stage processing described in section 2.5, it was
identified that the most value would be derived from focusing research on gaps in the
application of at-line NIRS to support PAT at raw material and tablet component
analysis. The raw material process step is common to all oral dosage forms whether
granulated or direct compression, while tabletting was found to be the dominant
finished dosage form in the marketplace, and each of these areas were identified with

research gaps.*’

Figure 4 shows a flow chart mapping the typical solid dose manufacturing process,
highlighting the two research focus areas; materials and tabletting analysis. Sections
2.6.1 and 2.6.2 describe the aims and objectives of the two research focus areas, while

Chapter 4 and Chapter 5 describe the research in detail.
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2.6.1 Aims and objectives — research in materials analysis

Following the scientific research gap analysis and review of published work, the first
research focus aim was to investigate and develop novel applications of NIRS for at-line

analysis of materials aligned with PAT.

The objective was to develop an approach that rapidly assesses the material quality as a
whole and for particular material attributes of interest through the application of rapid to
develop qualitative NIRS methods and the use of SPC techniques to enhance the
assessment of material quality through deeper interrogation of material attributes and
the linkage to both product quality and process behaviour. The developed methodology
was required to be approachable for scientifically untrained warehouse operators to

allow rapid analysis at the point of material receipt.

2.6.2 Aims and objectives — research in tabletting analysis

The aim for the second research focus area was to investigate and develop novel NIRS
application to facilitate at-line process monitoring throughout tabletting for a key tablet

component of interest aligned with PAT.

The objective was to develop an approach with rapid to develop qualitative or semi-
quantitative methods that did not rely on significant reference chemistry and couple the
methods with SPC techniques to provide a means for in-depth understanding of the
tabletting process. The developed methodology was required to be approachable for
scientifically untrained tablet press operators to allow at-line monitoring and potential

manual feedback as the process occurs.
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Figure 4: Flowchart of a typical solid dose manufacturing process with areas of research focus

circled in red
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CHAPTER 3 CHEMOMETRICS AND STATISTICS FOR NIRS

PAT APPLICATIONS

3.1 Introduction

To successfully utilise the complex NIRS spectral data for PAT applications, data
mathematics treatments, multivariate analysis and statistical analysis techniques are
applied to extract the important and relevant sample information."”' Pomerantsev and
Rajalahti provide good summaries of the use of chemometrics in PAT since 1993." 13!
The common techniques applied, and in particular those employed in the PAT
applications researched and described in Chapter 4 to Chapter 5, are summarised in this

chapter.

3.2 Data treatments

Spectroscopic data such as that from NIR measurement systems is a complex data array,
whereby each sample measurement comprises n individual results where n is the
number of data points across the wavelength or wavenumber range of the measurement.
As such, the NIR spectrum is a curve joining these individual measurement results. As
mentioned in Section 2.3, the NIR spectrum includes the analytical response of the
sample (absorbance of energy by the sample) as well as a component due to specular
radiation (physical effects). The spectrum will also contain a component of instrumental

noise.

Data treatments are mathematical corrections of the data to correct for components in
the data not related to the sample measured (such as instrument noise) or to the analyte
of interest (such as pathlength effects). Common data treatments are described in the

following sections.
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3.2.1 Smoothing

Smoothing acts to join data points in the NIR spectrum in a fluid curve across the range
of frequencies analysed (range is typically quoted as wavelength (nm) or wavenumber
(cm™) depending on software) and remove instrument electronic noise. Smoothing is an
essential step before other data treatments to ensure that small peaks caused by joining
individual data points or electronic noise are not erroneously assigned an analytical
source. Smoothing is a common technique used across analytical chemistry and not a
data treatment unique to NIRS. Convention is to apply the lowest smoothing treatment
to remove the random noise in the signal without inadvertently removing small peaks
that do relate to the measured sample. A common smoothing technique is the moving
block mean across » data points, described in the equation below. Figure 5 shows the

effect of applying smoothing to NIR Spectra.

Corrected 4, =

Where 4, = absorbance value at frequency x
n =number of data points applied for smoothing

Equation 3: Typical smoothing calculation
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Figure 5: Zoomed image of spectra before (a) and after (b) smoothing

3.2.2 Scatter correction and normalisation

Scatter correction and baseline normalisation is a useful mathematical treatment for NIR

spectra of particle based samples. As discussed in Section 2.3 and illustrated in Figure

3, NIR spectra of particulate samples includes contributions from specular reflection

and scattering interactions of the light with the particles. Scattering effects are largely

due to the size of the particles approaching the wavelength of the NIR radiation. The

smaller the particles in a sample the more light is reflected from the particle surface, and
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less absorption occurs compared to coarser material. The result of this effect is baseline

shifts.

Scatter effects are more significant in transmission measurement where a larger portion
of the sample is measured and is also compounded by pathlength effects. Variation in
the thickness of samples directly impacts the light emitting from the sample and

reaching the detector, also contributing baseline offsets.

Particulate scatter effects also vary across the NIR wavelength range with more effects
occurring at the IR end of the electromagnetic spectrum at lower energy and lower
penetration. The varying nature of scattering across the wavelength range causes the

NIR spectra to have a curved baseline.

Scatter correction and normalisation are a range of techniques used to correct for
baseline and physical effects. The simplest scatter correction technique is applying a
linear absorbance correction value across the wavelength range. These techniques do
not take into account the varying impact of the effects across the wavelength range and
can result in treated spectra containing baseline offsets at portions of the range (e.g. at

extremes of the spectra when a centre point correction is applied).

Normalisation techniques are more effective in correcting the baseline offset across the
entire spectrum by accounting for the variation in the range of absorbance. The Standard
Normal Variate (SNV) pre-treatment described in Equation 4 is one such normalisation
technique. SNV centres the spectrum by subtracting the average absorbance value of the
spectrum from every point in the spectrum, then divides each point by the standard
deviation calculated from the Y-axis value of every point in the spectrum. Each
corrected spectrum will have a mean absorbance of zero and standard deviation of
absorbance intensities across the wavelength range of one. Figure 6 shows the success

of SNV normalisation in removing varying baseline offsets in NIR spectra.
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/=i
Ax -

Corrected Ax =

Where Ax ~ absorbance value at frequency x
n =number of data points in the spectrum

A =standard deviation of n absorbance values

Equation 4: Standard Normal Variate calculation
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Figure 6: Smoothed ran spectra before (a) and after (b) SNV normalisation
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3.2.3 Derivatives

As discussed in Section 3.2.2, the NIR spectrum has a curved baseline. This can lead to
challenges in resolving analyte absorptions from this curve. In addition, the NIR
spectrum is composed of complex broad, overlapping overtones and combination
absorbance bands from multiple components and/or functional groups. Derivatives are a
mathematical treatment which remove curved baselines, account for residual physical

effects and resolve broad peaks and improve fine structure.

The 1* derivative spectrum is derived from a moving block slope calculation across a
set number of data points. The peaks in the 1** derivative spectrum reflect changes to the
slope of the NIR spectrum. Each raw NIR spectrum peak will thus result in two peaks in

the 1% derivative spectrum

The 2™ derivative spectral treatment repeats the moving block slope calculation on the
1* derivative spectra and the resulting 2™ derivative spectrum represents the rate of
change of slope in the original NIR spectrum. Figure 7 provides a depiction of the
derivative mathematical treatment for a single absorption peak showing the relationship
of the derivative to the original raw spectrum. The 2" derivative is often preferred as
the peak absorbance can be related directly to the known absorbance bands of organic

structures while 1 derivative peak absorbance values are shifted.

Figure 8 shows the ability of derivatives to extract and emphasise spectral features for
the same data set as shown in Figure 6. Also note that as the order of derivatives
increase, the noise increases which can impact method sensitivity. This is illustrated in
Figure 6 and in Figure 8, where the absorbance range for the raw spectra in Figure 6
reduces with each derivative treatment shown in Figure 8. The selection of the
appropriate derivative treatment for a given data set should be determined balancing the

enhancement of the spectral features with the reduction in signal to noise ratio.
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Figure 7: Representation of the derivative mathematical treatment with (a) raw spectrum, (b) 1*

derivative spectrum and (c) 2" derivative spectrum
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Figure 8: Smooth normalised spectra with (a) T* derivative and (¢) 2 'derivative treatment

3.3 Chemometrics and multivariate analysis

The term Chemometries was founded in the early 1970’s and though many definitions
exist, in simplest terms, ehemometries ean be defined as:
"the application of mathematical and statistical method to chemical
measurements.
In partieular, ehemometries is applied to extraet information from eomplex multivariate
measurement data sets, to reduee eomplexity of data (often termed data eompression)

understand the relationships and interdependenee of the multiple variables and to
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improve performance of analytical methods generated from the complex chemical

measurement data.

As mentioned previously in Section 2.3, the NIR spectrum is composed of an array of
individual absorbance values across the frequency range of the measurement system. At
each data point in the range, the absorbance has contributions from many different
sources, the analyte of interest, the product matrix, instrument noise, environmental
factors (e.g. humidity, vibration), and sample handling effects (preparation and interface
with the measurement system). Chemometrics is commonly used to interrogate the
multivariate array of data in the NIR spectrum and draw out the important elements that

relate to the analyte of interest.

In terms of NIR data analysis there are three main types of chemometrics applied;
classification analysis, regression analysis and discriminant analysis (which utilises

regression to enable classification analysis).

3.3.1 Classification analysis

Classification analysis in NIRS is the use of chemometrics to analyse the NIR spectra
and produce a categorical determination, often pass or fail. This is most commonly
applied within the pharmaceutical industry for identification determination (e.g. raw

material identification).

Various chemometric algorithms are applied to the NIR spectrum as a means of
comparison to an established reference spectrum or reference spectral dataset (often
termed reference library). Several techniques dominate the literature and are discussed

in this section.
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3.3.1.1 Correlation

Correlation determines how well the sample spectrum overlays with the reference
spectrum (or average spectrum if a reference library is used). Correlation between two
variables is defined in statistical terms as the covariance of the variables divided by the
product of the respective standard deviations as shown in Equation 5. For correlation
models used in classification chemometrics, the x variable is the sample spectrum while
the y variable is the reference spectrum (or average spectrum if a reference library is

used).

The correlation calculation is analogous to simple linear regression of the absorbance
values of the sample spectrum at each frequency against the paired absorbance value of
the reference. The resulting correlation coefficient (r) provides the output of the
analysis, though often software will quote the r* value in place of r. An example is

shown in Figure 9.

Correlation (r) =

3 (e %P3 (v - 3
i=1

i=1

Where x; = absorbance value at frequency i for the sample

y; = absorbance value at frequency i for the reference

n =number of data points in the spectrum

Equation 5: Correlation (r) calculation
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Figure 9: Sample and reference 2™ derivative spectra (a) with resulting regression plot and

associated correlation coefficient (b)

33.1.2

Spectral distance and Euclidean distance

Spectral distance (SD) can be considered as the array of differences between two

spectra across n wavelengths. This is a common measurement between the reference

spectrum (or average reference spectrum ofa reference library) and a sample spectrum.
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Different software packages provide various statistics based on the SD metric, these

include:

o Total absolute SD - The sum of the absolute values of the SD across the spectra
(equivalent to the area under the curve) as shown in the equation below:
n

Total absolute SD = Z

i=1

Aref; _Asil

Where 4,¢, = absorbance values for the reference spectrum at point i
As; = absorbance values for the sample spectrum at point i
n =number of data points in the spectrum range

Equation 6: Total absolute spectral distance calculation

e Average absolute SD - The mean of the absolute values of the SD across the

spectra as shown in the equation below:

n
Z|Aref,~ - As,-

Average absolute SD = =L
n

Where 4,7, = absorbance values for the reference spectrum at point i
As; = absorbance values for the sample spectrum at point i
n =number of data points in the spectrum range

Equation 7: Average absolute spectral distance calculation

e Maximum absolute SD - The maximum absolute SD value at any frequency

across the spectra (termed Distance Score in some vendor software).

e FEuclidean distance (ED) — the square root of the sum of the squared SD across

the measurement range as shown in the equation overleaf:
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ED = i_(Aref,. - As,.)z

Where 4,f, = absorbance values for the reference spectrumat point i
A5, = absorbance values for the sample spectrum at point i
n=number of data points in the spectrum range

Equation 8: Euclidian distance calculation

The total and average SD or ED statistic is preferred for global spectral qualification
over maximum SD as these statistics encompass the results across the entire spectral

range.

For the above calculations, each wavelength is given equal weighting in the calculation
and does not take into account the magnitude of the absorbance at the wavelength or
whether a particular wavelength is expected to have greater variation. The result is that
SD measurements will emphasise when a sample varies at a peak of stronger
absorbance. Smaller peaks which may be of more interest in a particular analysis will

have less impact on the results.

3.3.1.3 Normalised SD

Normalising the SD accounts for the different variance in the different variables (in this
case wavelength) by dividing the SD at each wavelength by the standard deviation
calculated at each point for the reference library. The four metrics in 3.3.1.2 can be

calculated on the normalised SD values.

Some chemometrics software packages may term the display of normalised SD against
wavelength the “Conformity Index Plot”. This visual display can be useful when

diagnosing differences or identifying wavelengths of significant variation.
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3.3.1.4 Principal component analysis

NIR spectra have contributions from many different sources: the analyte of interest, the
product matrix, instrument noise, environmental factors, and sample handling. NIR
spectra also incorporate significant co-linearity where the analyte or product matrix
absorbs at several places across the spectrum. Where the analyte absorption increases,
matrix absorptions inversely decrease through dilution effects. This means that some of
the variables (wavelength absorbance) can be written as approximate linear functions of
others. Additionally, the NIR spectrum is composed of many overlapping bands of
absorbance from each component in the matrix; therefore any given variable may have

contributions from multiple components besides the analyte of interest.

Principal Component Analysis (PCA) solves this issue by combining variables that vary
in a related way together into a principal component (PC). A reference library is used to
establish the PCs. Each NIR spectrum is decomposed into a set of PCs (variation spectra
or loadings) with a corresponding constant scaling factor (PC score). The first PC will
account for the greatest sources of correlated spectral variation, with the subsequent PCs
explaining lesser sources of variation. The set of PCs could be used to reconstruct the
spectrum of a sample by multiplying each PC by the corresponding PC score and
adding the results together until the new spectrum closely matches the original
spectrum. Each sample would have a different set of PC scores since each sample will
be at least subtly different. The portion of the spectrum not explained by the number of
PCs chosen for the analysis (the spectral residual) is often assumed to be noise.

However, it is best described as un-modelled variation.
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Spectrum =~ (PQ x Scorej)+ RS
H

Where PC/ = principal component loading matrix for the /th principal component

Scorei =score values for the/th principal component

p =numberof principal components

RS =residual unexplained speetral variation matrix

Equation 9: Equation relating principal components to sample spectrum

PCA can be used to reduce noise from the spectra (‘clean’ the spectra), provide
simplified visualisation of the NIR data and can also be utilised for classification
analysis. Figure 10 shows a pictorial representation of PCA for an example with four
sample spectra. Figure 11 illustrates the PC Scores plot for the example in Figure 10
showing the scores for the second PC versus the scores for the third PC to demonstrate

visualisation and simple classillcation for a set of 12 samples.

PC 1: Product

Wavelength (nm)

PC 2: Water 0.11
0.16
0.09
liii[>iirit\ 0.18

Wavelength (nm)
T 0.07

Wavelength (nm) I PC 3: Impurity
0.06
X

= 0.03
0.06

Wavelength (nm)

NIR Spectra Principal Component PC Score

Eigure 10: Representation of deconstruction of four NIR spectra into PCs and PC scores.
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Bad product:
high water content
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high impurities
moderate water

Good product:
low water & impurity

PC ¢

Figure 11: Representation of PC scores plot showing PC2 against PC3.

The simplest form of classification can be perfonned on one or more PCs through
applying a threshold on acceptable score values. Alternatively, the ED and normalised
ED can be calculated on the PC score variables. Note that the normalised ED in PC
space is termed Mahalanobis distance (MD). The modified equations for ED in PC

space and MD are shown in Equation 10 and Equation 11.

ED = - Score,

Where ScorereJ] - score values for the mean reference spectrum for PC /
Scores™ - score values for the sample spectrum for PC /
p =number of principal components in the analysis

Equation 10: Euclidian distance calculation in PC Space
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MD=

2,( Scores. — Scoreyf, 2
Si

i

Where Scoreref, =score valuesfor themean referencespectrumfor PCi
Scores; =score valuesfor thesamplespectrumfor PCi

p =numberof principalcomponentsin theanalysis
S; =standarddeviationof Score valuesfor PCi for referencelibrary

Equation 11: Mahalanobis distance calculation

When the PCA analysis describes one population, the centre of the population will be at
the origin. Thus the equations for ED and MD are simplified and become a direct
function of the PC scores (the term Score,.; becomes zero). When PCA analysis
describes multiple populations, ED and MD can be calculated between a sample
spectrum and the center of each population. When a threshold is applied, the test sample

can be classified as within one or more of the reference populations.

Typically MD is used in this application to take into account the variability in the

population in a given PC.

3.3.2 Regression analysis

Regression algorithms provide a method of correlating spectral data to the analyte
concentration of interest. Four types of regression analysis are widely available in NIR
software packages. These are discussed briefly in this section in increasing order of

complexity.
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3.3.2.1 Classical least squares (linear) regression

In methods such as classical least squares (CLS) regression, a single point in the
spectrum is correlated against the reference method to produce an equation that relates
analyte concentration to NIR absorbance at that point (Beer-Lambert Law). CLS
regression is widely utilised in analytical chemistry and is appropriate for NIR analysis

of simple matrices such as solutions (e.g. Figure 12).

mi Xi+b

~
Il

Where y = analyte concentration
Xi =absorbance value at frequency / for the sample
nil - regression coefficient (slope) at point /

b - residual unmodelled component

Equation 12: Equation describing linear regression

6,5
- 0.5132 + 383.7 x
6,0

5.5

4.0
35

3.0
0.010 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018
(MR Absorbance

Figure 12: Example linear regression plot and associated regression equation
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3.3.2.2 Multiple linear regression

Co-linearity and co-absorption as described in section 3.3.1.4 contribute interference
when calibrating NIR spectral data. Multiple Linear Regression (MLR) is a variant on
linear regression in which two or more points in the NIR spectrum are correlated against
the reference method to produce an equation with less impact of interfering co-linearity
and co-absorption. The primary wavelength should correspond to a known absorption
for the analyte of interest. The additional (helping) terms are typically chosen to
represent inverse correlations (for example matrix components that are diluted as the
analyte concentration increases) and/or areas in the spectrum with absorbance features
not related to the analyte of interest (for example physical effects such as particle size or
moisture absorption). As such, MLR is a simple improvement on CLS to account for

co-linearity and co-absorption. The MLR regression equation can be written:
y=mx;+mix;+b

Where y = analyte concentration
x; = NIR absorbance at wavelength i
m; =regression coefficient (slope) at point i
x ; = NIR absorbance at wavelength j

m ; =regression coefficient (slope) at point j
b =residual unmodelled component

Equation 13: Equation describing MLR for two terms
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3.3.2.3 Principal Component Regression

Principal component regression (PCR) extends on MLR, however in place of the set of
different linear variables (i.e. wavelengths), multiple PCs are used as regression terms.
This is achieved in a two step process whereby a PCA is performed on the dataset to
determine the PCs to include followed by regression of these variables against the

reference values.

The selection of the PCs is solely based on the spectral variance in the data set and thus
it is possible to include terms in the regression equation that explain spectral variations
that have no relation to the analyte of interest and may lead to poor prediction
performance and reduced specificity compared to other regression techniques. PCR is
useful for simple matrices where spectral variation of the analyte of interest is dominant
in the high order PCs and for such systems where wavelengths are highly correlated as
the use of PCs take into account the underlying collinear relationships within the data.
New samples are projected in the same PC space and scores calculated before prediction

based on the established regression equation.

p
y =) m; Scores, +b

]

Where y = analyte concentration

Scores, =score values for the sample spectrum for PC i

p =number of principal componentsin the analysis
m; =regression coefficient (slope)at PC i

b =residual unmodelled component

Equation 14: Equation describing principal component regression
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3.3.2.4 Partial Least Squares Regression

Partial least squares (PLS) regression builds on PCR; however the relationship of the
spectral variance to the analyte of interest is incorporated in the initial PCA. The analyte
adjusted or (analyte weighted) PCs are often termed latent variables (LVs) rather than
PCs to differentiate from pure spectral variance PCs. Once the LVs are determined,

regression of these variables against the analyte reference values is performed.

P
y= Zmi Scores; + b

i

Where y = analyteconcentration

Scores, =score values for the sample spectrum for LV i

p =number of Latent Variablesin the analysis
m; =regression coefficient (slope) for LV i

b =residual unmodelled component)

Equation 15: Equation describing partial least squares regression

Note that some NIR vendor or chemometrics software now also provides PLS2
capabilities which allows for regression with multiple analytes of interest

(multiple ‘y’s).

3.3.3 Discriminant analysis

Discriminant analysis (DA) is a modification of the regression techniques where the y
values used in the regression are assigned to categorise populations in the data to
predetermined classification groups. For DA with two classes, one class is assigned the
value “1” (often applied to ‘acceptable’ samples) and the other “0” (often applied to

denote ‘unacceptable’ samples).
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All four regression techniques described in 3.3.2 can be utilised for DA with two
classes. When there are more than two classes of interest CLS, MLR, PCR and PLS
should be applied in series with one model created for each class. Additionally, NIR
vendor or chemometrics software packages that provide PLS2 capabilities allow PLS2-
DA to be used to create one model that incorporates all classes, with the multiple ‘y’s

representing the different classes.

3.4 Statistics and statistical process control

Statistical techniques are used to assess the performance characteristics of the developed

methods as well as to develop mechanisms for process monitoring and control.

3.4.1 Statistics used to assess method accuracy

The most common statistical parameters applied to chemometric regression methods to
indicate method performance are correlation coefficient (r), the squared correlation

coefficient (r*) and the standard error (SE).

The correlation coefficient and the squared correlation coefficient are applied to
chemometric regression methods to indicate the closeness of fit of a particular

relationship (e.g. linear fit).

The correlation equation shown in Equation 5 can be applied directly to the predicted
and reference values. This is reproduced and modified to represent the r* statistic in

Equation 16.
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g(yp, )(y "J_’r)
Z(yp, yp)2 Z(yr, yr)z

1’2—

Where y P = predicted value for case i
¥y, =reference value for case i
¥ =mean predicted value

¥, = mean reference value
¢ = number of cases

Equation 16: Calculation of r’ regression statistic

Standard error is applied to chemometric regression methods to indicate the method
accuracy and relates the error in prediction compared to the established true value

(typically referred to as the reference value).

SE can be calculated for the estimated values for the calibration sample set (termed SEC
or SEE depending on software), cross validation results (termed SECV), prediction
results of validation data sets (termed SEP) as well as laboratory reference results

(SEL).

Zc;(yp.- _yr,-)z
i

c—1

SE =

Where y P = predicted value for case i
¥y, =reference value for case i

¢ =number of cases

Equation 17: Equation for calculation of Standard Error
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Note that some vendor software will utilise ¢ rather than ¢-1 as the denominator in the
SE calculation. For data sets with large sample size (e.g. over 30 samples) which is
typical for chemometric regression methods, the impact of this calculation variation is
negligible. However, it is important to check the calculation used before comparing

values across different vendor software.

3.4.2 Student’s— £test — a test for outliers and equivalence of means

The one sample #-test is used to determine whether a value is statistically different from
the rest of the values in a univariate data set and can be used as an outlier test. A paired
t-test is used to demonstrate whether a subset of results (sample population) belongs to
the global population and is often used for regression performance assessment to
demonstrate equivalence between the output of the NIR prediction and a reference
method. In both cases, the #-test is performed by calculating the #.,; and determining the
probability that the ., falls within the Student’s t distribution (given a particular

confidence — typically 95% confidence).

_ -l

Lerit = ‘(g)—

Je

Where y = mean of individual values
y; = individual value for case i
¢ = number of cases

Equation 18: Equation for calculation of 7, for one sample #-test
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‘J’D - )’Di‘

Lerit = sh)

Je

Where; =meanof (y, -y, )forc
yp, =(p, - ¥r) for case i
S p = standard deviation of (y,, -y, )forc
Vp; = predicted value for case i
Vr, = reference value for case i

¢ = number of cases

Equation 19: Equation for calculation of z.,; for Paired r-test

3.43 F-testand ANOVA — analysis (equivalence) of variance

The F-test is used to determine if the variation in two univariate data sets are equivalent.
the F-test is performed by calculating the f.;;; and determining the probability that the
frit falls within the F-distribution (given the degrees of freedom (» - 1) and a particular

confidence — typically 95%).

ANOVA (Analysis of Variance) extends the F-test by taking into account variance
contributions from groupings within the data sets and is applied to assess the
significance of variation within and between data sets. It is a multivariate F-test used on
a small number of variables. The most common uses of ANOVA are intermediate
precision assessments and inter-laboratory studies where contributions to the method
variance due to different measurement conditions (different analyst, different day,

different measurement process or different instrument) are assessed.
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Where § . =standard deviation of values for first condition

S ¢, =standard deviation of values for second condition

Equation 20: Equation for calculation of f.,; for an F-test or ANOVA

3.4.4 Multivariate quality statistics — Hotelling’s T2and Q residual statistic

Hotelling’s T? and Q residual statistics are used to assess whether a value is statistically
different from the rest of the population in a multivariate data set. The T? value is
synonymous to a Student’s ¢-test in multidimensional space rather than univariate space
and can be applied as a multivariate outlier test. The T statistic assesses how close to
the population mean an individual sample (or the mean sample of a second sample
population) lies by comparing the vectors in relationship to the covariance matrix for

the multiple variables modelled in the multivariate data set.

The Q residual assesses the component of the sample measurement (or the mean sample
of a second sample population) that is not explained by the multiple variables modelled

in the multivariate data set.

As with the univariate Students -test, the T? and Q residual statistics are calculated and
the probability that the values fall within the expected distribution (given a particular
confidence - typically 95% confidence) is determined. Vendor software and

multivariate and PAT texts contain details of the equations.”® '*> 13
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3.4.5 Normality

Many statistical techniques (e.g. Student’s /-test) are based on the assumption that data
are randomly distributed about the mean value with the frequency distribution forming a
‘normal’ bell shaped curve. When such a state exists, the data are said to have a normal
or Gaussian distribution. Once normality is established, the data can be assessed based
on established characteristics of the normal distribution (e.g. ¢s %, 95% and 99.7% of

data will fall within £1, £2 and +3 standard deviations ofthe mean respectively).

Figure 13: Normality distribution curve with shading representing 95% of the data (within two

standard deviations from the mean)

Various tests exist for assessing normality (e.g. Anderson-Darling, Shapiro-Wilk
test)' "’ mainly based on either correlation of the sample population distribution to
that of a Gaussian distribution or comparison of the cumulative empirical distribution
function. Different tests have different power or sensitivity to non normal behaviour
such as kurtosis or skewness and different capability to assess different sample sizes.
There is much speculation as to the best technique to use with methods based on
correlation said to be more powerful with limited sample number compared to empirical
cumulative distribution funetion tests.The choice is often governed by the test
availability within statistical software. In all cases, a metric is calculated to assess the
probability that the values fall within the expected normal distribution (given a

particular confidence - typically 95% confidence).
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When data do not follow a nonnal distribution, the data may be mathematically
converted (e.g. through logarithmic or polynomial transforms) to a normal distribution

so that standard statistical techniques may be performed.

3.4.6 Statistical process control

Statistical process control (SPC) charts were introduced by Shewhart'*" in the 1930°s as
a means to provide a tool to monitor and control variation in industrial processes. The
basis of the approach is that a highly capable and controlled process should follow a
normal distribution and deviations from this nonnal distribution are caused by
systematic noise and/or special cause events causing shifts or increased variance. The
use of a graphical control chart aids in the identification of deviations from normal

Gaussian behaviour and provides opportunity for process quality improvement.

The typical SPG charts take the form of data displayed in time sequenced order across
the x-axis with the measured values plotted on the y-axis centred about the process
mean and with control lines set at the appropriate confidence interval (most often +3

standard deviations ofthe mean).

25 H

UCL

2.0-

Observation

Figure 14: Example of a Shewhart SPC chart with upper and lower control limits ( ) show n at

three standard deviations from the mean ( )

Bronwyn Grout\ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 97 of 305



In modern SPC software, the identification of deviations from statistically expected
behaviour is automated, with the software interrogating the data to identify systematic
and special cause effects underlying the randomly distributed data. Patterns such as
consecutive runs, oscillations, shifts and other trends will be flagged automatically for
the reviewer once parameters are set for such pattern recognition. In some cases, control
limits are of less interest than the presence of unexpected patterns and some SPC charts

will not display control limits (e.g. Run charts in Minitab statistics software).

The typical Shewhart SPC chart assumes that the data set is of one population, data is of
a continuous nature (not categorical or truncated) and that the population is of normal
Gaussian distribution. If these assumptions are not met, tests for probability and
statistical significance will lead to incorrect conclusions, although there may still be
merit in the visualisation of the data and the identification of trends. Alternatively, data
can be mathematically transformed to meet the normality assumption or non-parametric

tests and charts can be used (beyond the scope of this discussion).

3.4.7 Multivariate statistical process control

SPC is historically performed in a univariate manner, with one chart per measured
variable. When variables are inter-related, this may lead to incorrect assumptions of
control and unexpected poor quality outcomes or incorrect presumptions of control (e.g.
individual SPC charts for human height and age, which are clearly related variables,

may not identify the special cause of a person with a growth hormone disorder).

For systems with correlated variables, multivariate SPC (MSPC) should be applif:d.138
The most common MSPC charts are based on Hotelling’s T and Q statistics with the

upper and lower control limits based on the desired confidence interval.
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Unlike conventional SPC charts, significant understanding is needed of the variables
that are modelled in the underlying multivariate space when a result is identified as not
conforming to the established control limits. As yet, MSPC is not widely deployed in
the pharmaceutical industry for process control. MSPC charts are more often employed
for graphically representing the performance of a given static multivariate analysis
event (e.g. a specific PCA analysis’) , model suitability and optimisation*® or for
model monitoring'* /verification before applying a quantitative model (verifying that a
new sample is within the model space and within quantitative method scope). As such
this may be considered a multivariate model statistic chart rather than true MSPC where
the intention is to provide a mechanism for monitoring and control. Few examples have
been published to date of MSPC applied to pharmaceutical manufacturing to enable

monitoring and control.'® 814!

3.5 Review of software capability for NIRS PAT applications

Within a pharmaceutical manufacturing operation, it is typical to employ vendor
software to control PAT analyzers assuming the software is Good Manufacturing
Practice (GMP) compliant. As such, method development and routine operation of NIR
equipment for PAT applications rely on functionality within vendor software. Often
vendor software is sadly lacking, with only a small selection of the various chemometric
and statistical techniques described in Section 3.3 and Section 3.4 available within any

given vendor offering.

In some cases, advanced chemometric functionality is available within development
modules of the software (which proves useful during investigation, data mining and
method development). However, the same chemometric algorithms are then not

available in a routine operation mode. In an effort to provide easy user interface and
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reduce human error, some vendor software has reverted to a ‘black box’ where a user
with no chemometric knowledge can follow a wizard and develop and implement a
chemometric model. This may be enough when developing simple identification
methods or traditional quantitative methods for samples with simple matrices. However,
such lack of routine functionality inhibits the deployment of new and diverse
applications which will be required to deliver the software capability to support PAT
applications of NIRS and also prevents the use of the chemometrics tool to derive deep

process understanding.

As part of this research, this author worked with one vendor io attempt to extend the
chemometric and statistical functionality to the user interface. This effort was ultimately
unsuccessful with functionality added in off-line analysis mode but not easily operated
in real time by production operators or requiring significant investment (e.g. through the
use of Microsoft SQL server database or macros that are difficult to validate to GMP
requirements). It was felt that the inability to deliver the desired improvements may
point to a lack of understanding of pharmaceutical specific requirements for software
and data by vendors traditionally focused on other industries. There was limited uptake
of the added functionality by Pfizer manufacturing sites, which was in turn
misinterpreted by the vendor as lack of widespread interest in the functionality across
Pfizer. The vendor was reluctant to invest further effort on increasing functionality until
there was significant industry pressure that would translate to sufficient customers
willing to pay to upgrade functionality. Despite Pfizer being a significant customer, the
vendor felt the increased functionality was sufficient for the industry interest. This was
not felt to be vendor specific, rather it is the sentiment from many vendors, and prevents

innovative pursuit of improved chemometrics and statistics for PAT applications.
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Cross industry effort pursued the concept of a common PAT software platform that can
be deployed across all PAT applications within a factory to manage the operation of
analysers, application of process models and management of PAT data.'*? Several
vendors now have such software available (e.g. SIPAT from Siemens). However,
despite this effort, implementation of common PAT software platforms has been found
to be largely cost prohibitive in the industry setting for established products and

facilities.

The outcome is that the application of PAT based applications of NIRS involves a
compromise in what software functionality is available combined with willingness to
utilise multiple software to perform advanced chemometrics and SPC within the GMP

controlled environment.

The impact of software capability will be further discussed with regard to the specific

research described in Chapter 4 and Chapter 5.
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CHAPTER 4 APPLICATION OF AT-LINE NIRS FOR PAT

APPLICATIONS IN SOLID DOSAGE PHARMACEUTICAL

PRODUCTION — MATERIAL ANALYSIS

4.1 Introduction

The first of the identified areas of research was the investigation of novel ways to apply

at-line NIRS for PAT applications in the pharmaceutical industry for material analysis.

As discussed in section 2.5.1, NIRS has been widely employed for material
identification and various qualification techniques have also been developed. Typically,
material qualification by NIRS employs chemometric classification techniques to assess
whether a particular sample is consistent with acceptable material (defined in a
reference library). Within the pharmaceutical industry it is not common to utilise
adaptive chemometrics techniques such as neural networks (where each sample
analysed is added to a continuously growing reference library) due to real or perceived
regulatory hurdles of method validation. Instead, material qualification methods
compare new samples to a static reference library established when the method was
developed with little consideration to the linkage of the reference spectra to changing
process behaviour. Additionally, the continuous nature of the chemometrics data output
is largely ignored once the classification is determined. It is challenging to derive any
process information from a simple categorical classification. For material analysis to be
a true PAT application, it is necessary to begin assessing the relationship between
observed material quality and the effect on product quality or the effect on process
behaviour. NIR material conformance is a term coined for this purpose to incorporate

the material qualification chemometric output with SPC (through historical trending) to

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 102 of 305



provide a means to gain greater understanding and a measure of process behaviour

prediction (aligned with PAT philosophy).

Section 4.2 explores the identified gap of the application of NIRS for assessing global
quality (whole spectra) of materials by trending the continuous chemometric output
against historical data to gain process understanding and predict process behaviour of

the material in the forward process.

Once process understanding is established, a particular material attribute may be
identified as critical to the process or product quality. Section 4.3 reviews the
application of the NIR material conformance approach to a target material attribute
rather than the entire spectrum of a sample. The material attribute of interest may be
traditionally tested to define material quality in QC laboratories or may be a material

attribute specific to forward processing and as such provide additional process insight.

This research demonstrates the ability of rapid NIR analysis of materials through NIR
Material Conformance approach to assess global quality and critical material attributes

that impact product quality and process effectiveness.

4.2 Global material quality conformance

The development and application of a global material quality conformance method is
described in this section demonstrating the value of this research. Amlodipine besylate
(structure shown in Figure 15) was selected as the target material as it was the API in
Norvasc® tablets, the highest volume and highest value product for the manufacturing
facility in which the work was undertaken. Prior to this research, NIR material
identification was implemented at the site. As such, spectral data for each delivery (and
each container within the delivery) was available to undertake the work without

additional NIR analysis.
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Figure 15: Chemical structure of amlodipine besylate

4.2.1 Materials and methods

4.2.1.1 Design of analysis

A reference library was needed to provide flexibility in which qualification algorithms
were investigated. A minimum number of five deliveries were required to develop a
robust reference library. To ensure a suitable degree of natural variability of the material
was represented in the reference library, additional deliveries were obtained and a
subset of these samples chosen to be included in the reference library. To avoid spectral
redundancy, single spectra for each delivery were utilised for the reference library
(spectra from the first container of each delivery). Various algorithms were explored to
select the most appropriate modelling approach for the global quality conformance

method.

To ensure robust development of the SPC approach, it was determined that a minimum
of five deliveries independent of the reference library would be required. Individual
spectra for each container in the deliveries were required to develop the SPC approach
so that it was applicable to the real life scenario of assessing the conformance of every
container in a delivery. This was important as the dosage strength of the amlodipine

besylate in the Norvasc® finished product is low (approximately 3.45% weight / weight
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basis) and only one to two containers of API are utilised in any given batch of

Norvasc® tablets, hence individual container conformance was essential.

4.2.1.2 Samples

One representative spectrum from each of nine deliveries of amlodipine besylate
((R,S)3-ethyl-5-methyl-2-(2-aminoethoxymethyl)-4-(2-chlorophenyl)- 1,4-dihydro-6-

methyl-3,5-pyridinedicarboxylate besylate) were reviewed and six spectra were selected
to establish the reference library. Seven further deliveries were utilised to establish (five
deliveries) and verify (two deliveries) the SPC charts (varying number of spectra per
delivery based on the number of containers delivered). A selection of six subsequent
deliveries of the material was then reviewed and the suitability of the approach

demonstrated as two deliveries were found to show non-conformance.

All samples were prepared for NIRS analysis by placing the material in SUN Sri 4 mL
borosilicate glass shell vials (part number: 500 070) to a fill depth of 1 cm and
compressing with uniform pressure using a stainless steel weighted cylinder (1 cm

diameter and 5 cm length).

4.2.1.3 NIR apparatus and software

NIR reflectance spectra were measured using a FOSS NIRSystems 6500 Series II
spectrophotometer (FOSS NIRSystems Inc., Silver Spring, MD, USA) configured with
vial module with Si (400-1098 nm) and PbS (1100-2498 nm) detectors. The
spectrophotometer was controlled by DeLight software, version 2.3b and D2NIRS

software, version 1.2a (DSquared Development, La-grande, OR, USA).

NIR spectra were measured for each vial of material over the wavelength range of

400-2498 nm at 2 nm intervals. Each recorded spectrum was the average of 32
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individual scans (a total of 35s scan time per vial) and recorded with respect to a
Spectralon® reference (LabSphere Inc, North Sutton, NH, USA). The analyses were
conducted at typical laboratory temperature/ humidity environments of 20 to 25 °C/

60% relative humidity using the FOSS vial module aperture plate and holder.

DeLight version 2.3b with DMentia 1.1b software (DSquared Development, La-grande,
OR, USA) and Microsoft® Excel, version 9 (Microsoft® Corporation) were utilised for
chemometric model development and predictions, while Minitab® 16 version.1.16
(Minitab Inc, State College, PA, USA) was utilised for statistical evaluation and SPC

charts.

4.2.2 Global material quality conformance method development

4.2.2.1 Spectra pre-treatment

It is Pfizer general practice to apply the gentlest spectral pre-processing to remove noise
and reduce specular reflection without masking or hiding spectral features that may be
useful in the qualification of the material or introducing artefacts not related to the
sample analysed. For the measurement system utilised, five point smoothing is the
minimum smoothing option applicable. SNV is also the Pfizer preferred normalisation
treatment. Figure 16 demonstrates the effect of the selected pre-treatments, while each

pre-treatment and the corresponding effects are described in Table 1.
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Figure 16: Raw NIR spectra of ten amlodipine besylate deliveries across; (a) full wavelength range

and (b) reduced wavelength range with five point smoothing and SNV baseline correction

Table 1: Optimisation of data pre-processing treatments

Extract 1100-2498 nm Remove visual region and focus on region
available from PbS detector to prevent impact

from detector switch over.
Five point smoothing Provide continuous curve through the data points

SNV normalisation Remove baseline, path length & multiplicative

scatter effects
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Derivatives are commonly applied to further remove slope effects and enhance spectral
peak features. The derivative and gap (number of data points) recommended by FOSS
NIRSystems Inc for material analysis is 2" derivative with 10 points. To assess the
impact on spectral features, the 2" derivative spectra using five point and 10 point gaps
were compared. Figure 17 shows the spectra of the two treatments and demonstrates
that the ten point gap derivative treatment gives acceptable reduction of noise and
simplifies the spectra (e.g. no unresolved saddle peaks) without loss of valuable spectral

features.
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Figure 17: Full range and zoomed 2'"“*derivative spectra of amlodipine besylate with (a) five point

derivative gap and (b) ten point derivative gap
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4.2.2.2 Model development

PCA was used in addition to visual inspection of the pre-treated data to select the six
deliveries that represented the range of natural variation in amlodipine besylate. Spectra
from the deliveries at the extremes of the PCA scores plots were chosen for the
reference library. Two deliveries were removed, one that was centred on the PCA plot
(hence contributing redundant variation) and the other which was located near another
point in the first two PCs (contributing similar variation to the nearby point). On closer
review it was found that these two points were sequential deliveries received at the

manufacturing site and were from the same material supplier manufacturing lot.

PCA: 1. X Score 1 vs X Scare 2
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Figure 18: PCA scores plot for the eight deliveries for (a) PCs 1 & 2 and (b) PCs 2 & 3 where bold

points are those assigned to the reference library
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Global material quality conformance can best be achieved with chemometrics
techniques that assess the entire NIR spectrum. Three such techniques were assessed in
parallel: correlation, average absolute normalised SD (termed ANSD hereafter), and

PCA-MD (refer to Section 3.3.1 for a description of these techniques).

Correlation, normalised SD and PCA-MD models were developed in DMentia software
using default thresholds of 0.99, 3 and 3 respectively and three PCs for the PCA-MD
model (explaining 88.6% of variation). The models were then applied in DeLight
software to predict correlation, normalised SD and PCA-MD results for the reference
library. ANSD values were then calculated from the normalised absolutc SD value

across the full wavelength range. Table 2 shows the prediction results.

Table 2: Predicted global material quality conformance statistics for each chemometric technique

ANSD
Correlation (Absorbance) PCA-MD
Reference library 1 0.99998 0.51015 1.9708
Reference library 2 0.99998 0.64204 1.2095
Reference library 3 0.99994 0.84962 1.4621
Reference library 4 0.99995 0.51577 1.6842
Reference library 5 0.99999 0.23911 0.79455
Reference library 6 0.99996 0.71290 2.0119

The reference library data were analysed in Minitab and charts of the individual values
(I-charts) generated to represent the data graphically. These charts are shown in Figure
19 with the limits set at three standard deviations (__ ) from the mean value (__ ). The
I-chart for correlation uses an upper boundary limit of 1.0 and the ANSD a lower
boundary limit of 0.0 as the calculated control limits were beyond the allowed values

for correlation (1.0) and ANSD (0.0).
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Figure 19: I-chart of conformance prediction results for the reference library: (a) correlation,

(b) ANSD and (¢) PCA-MD
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4,2.2.3 Establishment of the conformance SPC charts

Once the conformance models have been created, SPC charts must be established that
will monitor results over time. This ensures that, though the metric is calculated against
a static model, deliveries can be compared to historically acceptable deliveries over time
and trends towards non-conformance can be identified prior to failure against the static
model. Five deliveries of varying number of containers were used to establish the SPC
charts with a further two deliveries used to verify the SPC chart before implementation
into the manufacturing environment. Though future deliveries may have any number of
containers; it must be assumed that the historical deliveries are representative of both
the typical number of containers as well as the typical variation within the delivery. As
individual and/or combinations of containers may be used in production, both an
individual container historical plot as well as an overall delivery summary historical

plot is valuable.

An individual value SPC chart (I-chart) is used to represent the typical quality of
individual containers in a given delivery with the control limits set by the individual
results from the five historical deliveries. The individual container SPC chart also
graphically represents the variability within containers of a delivery. As delivery
acceptance decisions are based on the overall delivery result, a SPC chart for overall
delivery average data was needed. An X-bar chart in Minitab was considered to be the
ideal control chart to represent the overall quality of a delivery. However, the X-bar
chart function in Minitab adjusts the control limits based on the sample size of the
subgroups leading to a confusing control chart for operators to interpret when the
number of containers may change for each delivery. For ease of implementation,
average results were calculated for each delivery from conformance metric outputs for
each container and an overall delivery control chart developed using the I-chart function

on the averaged values.
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control charts are based on the normal gaussian distribution and it is
important to verify that the conformance data are normally distributed prior to
developing the SPC charts. The Graphical Summary function in Minitab was used to
represent the data and assess normality for each conformance metric (Appendix 1 on
page 293). No evidence of non-normality was observed (p>0.05) at the 95% confidence
level. Normality p-values for each set of data are shown in Table 3. Note that output for
overall delivery metrics are an estimate only as the number of data points is small,

reducing the power of the normality tests.'*’

Table 3: Summary of the normality assessment (p-value) of the global material quality

conformance prediction results for the historical data set

Correlation ANSD PCA-MD
Individual Container 0.335 0.420 0.573
Overall Delivery 0.696 0.572 0.847

The SPC charts for the three metrics studied are shown in Figure 20 and Figure 21.
These SPC charts show both the five historical deliveries used to establish the control
chart limits as well as the two verification deliveries. The mean and standard deviations
applied in establishing the control charts are shown in Table 4 on page 116. Control
limits (___ ) were established at three standard deviations from the mean (__ ), except
for correlation individual and overall delivery charts which used an upper boundary of
1.0 and the PCA-MD individual and overall delivery charts which used a lower
boundary of 0.0. Boundary limits were used in these cases as the control limits

calculated were beyond the allowed values for correlation (1.0) and PCA-MD (0.0).
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Figure 20: Individual container SPC charts for historical and verification deliveries:

(a) correlation, (b) ANSD and (¢) PCA-MD
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Figure 21: Overall delivery SPC charts for historical and verification deliveries: (a) correlation,

(b) ANSD and (¢) PCA-MD
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Table 4: Parameters used to generate historical SPC charts for global material quality conformance

ANSD

Correlation PCA-MD
(Absorbance)

= Individual Container 0.99994 0.58873 1.4973

(]

-]

= Overall Delivery 0.99993 0.58061 1.3902
E E Individual Container 0.0000272 0.10397 0.53436
s 0«
: o
% g Overall Delivery 0.0000344 0.11002 0.46461

4.2.2.4 Implementation of the conformance method in manufacturing

The developed global material quality conformance methods were applied to a selection

of subsequent deliveries of amlodipine besylate (including two deliveries with non-

conformance) to demonstrate the suitability of the approach. The resulting SPC charts

for these deliveries are shown in Figure 22 and Figure 23 with non-conforming points

shown in red.

The first delivery is identified as out of conformance in the correlation and ANSD SPC

charts while the fifth delivery is identified as out of conformance on all three SPC

charts.
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Figure 22: Individual container SPC charts for historical, verification and subsequent deliveries:

(a) correlation, (b) ANSD and (¢) PCA-MD with non-conforming containers in red
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Figure 23: Overall delivery SPC charts for historical, verification and subsequent deliveries:

(a) correlation, (b) ANSD and (¢) PCA-MD with non-conforming deliveries in red
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Correlation methods are based on similarity of the test spectrum to the mean spectrum
of the reference library without taking into account variation within the reference library
about the mean spectrum. The ANSD method does take into account the variability in
the reference library across the wavelength range and reduces overweighting of the
result to wavelengths of high natural variation. PCA-MD also accounts for variance of
acceptable deliveries in the reference library and also reduces the impact of variation

not identified as the major sources in the PCs included in the algorithm.

The fact that PCA-MD found the first delivery to be in conformance while correlation
and ANSD indicated the delivery was out of conformance indicates that the variation
causing the non-conformance in the first delivery is occurring in later PCs and not in the
first three PCs used to build the PCA-MD model. The fifth delivery, however, must
have a variation to the reference library within the first three PCs to be identified as out

of conformance.

The first step in investigating a deviation in conformance is to review the spectra of the
nonconforming deliveries with respect to both the reference library and recent

conforming historical deliveries. Figure 24 shows the raw spectra overlay.

The first container of the fifth delivery has notably less raw spectral absorbance at
higher wavelength than those in the reference library and other delivery samples
indicating that the amlodipine besylate in this container is of finer particle size. This
was confirmed by observation by the warehouse operators that sampled and analysed

the delivery.

The spectra from the containers in the first delivery and the second container of the fifth
delivery fall within the range of the raw spectra of the reference library and the spectra

from containers in the conforming deliveries.
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The variation in particle size for the first container of the fifth delivery is not the source

ofnon-confonnance as the mathematical pre-treatments remove physical effects prior to

applying the conformance algorithms.

overlay.
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Figure 25 shows the 2"* derivative spectra
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Figure 24: Raw spectra of individual containers from deliveries 1 ( )and 5 ( ) overlaid with

spectra from: (a) reference library ( ) and (b) conforming deliveries 2,3, 4 & 6 ( )
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Review of the 2"" derivative speetra clearly shows a region of variation for the first
delivery at 1900-2100 nm (circled in Figure 25) while the fifth delivery shows less
obvious variation. It can be challenging to visually review NIR 2" derivative spectra
due to the complexity of the spectra. The use of investigational tools related to the
conformance method algorithms can aid in understanding the source of the non-

confonnance.
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Figure 25: 2"~ derivative spectra of individual containers from deliveries 1 ( )& 5 ( ) overlaid

with spectra from: (a) reference library ( ) and (b) conforming deliveries 2, 3, 4 & 6 ( )
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To investigate the source of the non-conformance in the correlation conformance
method, correlation plots for the sample spectra against the reference mean spectrum
(Figure 26 and Figure 27) and residual (sample — reference mean spectrum) plotted at
each wavelength (Figure 29 and Figure 30) for the first and fifth deliveries were
reviewed. The plots were generated within Minitab as DeLight software did not provide
any mechanism to review the cause of correlation deviation. The first containers of the
second and third deliveries were also reviewed to indicate the plots appearance for
conforming deliveries (Figure 28 and Figure 31). Note that the scale is identical for all

residual plots shown in Figure 29 to Figure 31 to aid in comparison.

The first delivery showed a similar scatter about the line of best fit compared to the
conforming deliveries with a small pocket of data points above the line, circled in
Figure 26. This observation is consistent with the residual plot where the magnitude of
the residuals at the majority of the range are similar to conforming batches apart from
two wavelength locations, at 1944 nm and 2078 nm. This observation is consistent for
all containers in the delivery. Variation at these wavelengths is characteristic of a
change in absorption by O-H structures (refer to Figure 2) and points to moisture as the
source of the variation. Smaller correlated variations occurring at 1446nm also relate to
O-H 1* overtone absorption support this hypothesis. The fifth delivery shows slightly
increased scatter about the line of best fit compared to the conforming deliveries
indicating variation across the range. The second container also shows a small pocket of

data points above the line shown circled in Figure 27.

The residuals plot shows markedly greater variation in the fifth delivery compared to
conforming deliveries. Additionally, the first container of the fifth delivery shows high
residuals at 1132 nm, 1660 nm and 2154 nm and the second container of the fifth
delivery high residuals at 1136 nm, 1502 nm, 1530 nm and 1668 nm which are

characteristic of changes in absorption from C-H and N-H functional groups (refer to
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Figure 2). Both functional groups are present within amlodipine besylate (refer to

Figure 15) and are also commonly seen in solvents used in API manufacture.
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Figure 26: Correlation plots for delivery 1 (a) container 1 to (d) container 4
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Figure 27: Correlation plots for delivery 5 (a) container 1 and (b) container 2
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Figure 28: Correlation plots for P* container from (a) delivery 2 and (b) delivery 3
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Figure 30: Residual plots for delivery 5 (a) container 1 and (b) container 2
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Figure 31: Residual plots for T* container from (a) delivery 2 and (b) delivery 3
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To investigate the source of the non-conformance in ANSD results for the two non-
conforming deliveries, the conformity index plot (absolute normalised SD against

wavelength) available within the DeLight software was reviewed (Figure 32).
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Figure 32: Conformity index plots for (a) delivery 1 and (b) delivery 5

The first delivery shows very high absolute normalised SD at 1946 nm and 1436 nm
and moderately high values at 1922 nm and 2006 nm with low values elsewhere in the
range. This is characteristic of changes in 0-H absorption (refer to Figure 2) indicative

of moisture variation. The fifth delivery shows higher absolute normalised SD at

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 125 of 305



wavelengths across the range, particularly 1430-1520 nm, 1880-2030 nm and 2350-
2425 nm. These regions are characteristic of O-H and C-H functional group absorption
present in amlodipine besylate (refer to Figure 15). The general increase in absolute
normalised SD across the range may be due to residual physical effects; however it may
also indicate changes within the crystal lattice of amlodipine besylate affecting the

absorption of all functional groups present in the molecule.

Note that there are differences in the wavelengths of variation for the correlation
method compared to the ANSD method. Normalising the data based on the reference
library reduces the impact of smaller peaks and at those wavelengths already known to

vary, as established in the reference library.

To investigate the source of the non-conformance identified in the PCA-MD
conformance method for the fifth delivery, PCA analysis was performed to review the
projection of the 2" derivative spectra for this delivery in PCA space alongside the

reference library.

From the PCA scores plots shown in Figure 33, the first container of the fifth delivery
separates significantly from the reference library on the 2™ PC axis and moderately on
the 3™ PC axis, while the second container separates significantly from the reference

library on the 3™ PC axis.
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Figure 33: PCA scores scatter plot of delivery 5 and reference library spectra, (a) PCs 1 vs. 2 and
(b)PCs 2 vs. 3

Review of the loadings for the 2" and 3™ PCs in Figure 34 shows that the first container
varies to the reference library at 1136 nm, 1502 nm, 2256 nm and 2464 nm while the
second container varies at 1128 nm, 1496 nm and 2156 nm. These regions are
characteristic of changes in absorption from C-H and N-H functional groups (refer to
Figure 2) present within amlodipine besylate (refer to Figure 15) and also commonly

seen in solvents used in API manufacture.
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Figure 34: PCA Loadings for (a) 2nd PC and (b) 3™ PC for delivery 5 and reference library spectra

It is of interest that the first delivery was not seen to be out of conformance by the
PCA-MD conformance method. This is likely due to the spectral variation in this
delivery occurring at wavelength regions not incorporated in the three PCs used to
create the conformance algorithm. To confirm this hypothesis, PCA analysis was

performed to review the projection of the 2™ derivative spectra for this delivery in PCA

space alongside the reference library.
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From the PCA scores plots shown in Figure 35, the first delivery separates distinctly
from the reference library on the 2° PC axis. The loadings plot for the 2™ PC (Figure
36) indicates that the main source of variation within this delivery compared to the
reference library is occurring at 1946 nm which is the characteristic O-H absorption

associated with moisture.
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Figure 35: Scores scatter plot of delivery 1 (bold) and reference library spectra, (a) PC 1 vs. 2 and
(b)PC2vs.3
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Figure 36: Loadings for PC2 for PCA analysis of delivery 1 and reference library spectra

Examination of the loadings plots for the PCs used in the PCA-MD conformance
method (Figure 37) confirms that this region is not represented in the three PCs used in
the conformance model. Figure 37 highlights this by overlaying the three PCs and
focusing the wavelength axis to the region about the absorbance of interest (note the
y-axis for plots in Figure 37 are to same scale for ease of comparison). Thus variation in
absorbance in this region will not impact the PCA-MD value and will not trigger a non-

conformance.
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Figure 38: Zoomed overlay of the three PC loadings of the reference library

4.2.3 Global material quality conformance method discussion

4.2.3.1 Impact ofnon-conformance to the product and process

The results of the NIR global material quality confonnance for the first and fifth
deliveries triggered close review of the material certificate of analysis (CoA) and
ensured that both deliveries received full QC testing. No registered QC test failed for
either delivery. However, moisture content was confirmed to be out of trend for the first
delivery (towards upper specification limit). As Norvasc® tablets are a low dose direct
compression product (3.45% drug loading on weight/ weight basis), risk assessment
determined that the higher moisture content API would not contribute significant
moisture to the fonnulation and would have low impact to finished product quality and
stability. The use of the material was observed closely in production to establish
whether this non-conformance would impact processability (e.g. impact flow
characteristics or change the stickiness ofthe blend during tabletting). It was determined
that the non-eonformance had no impaet on product or process. Though this non-

eonformance eould be elassified as a false negative, the occurrence provided
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opportunity to gain greater insight and understanding of the formulation and processing
design space that would otherwise not have been available. As such, this excursion from
normal trend provided an opportunity to gain process understanding and knowledge and
demonstrates the fit of the global material quality conformance approach with the PAT
initiative. With this variation understood and not found to impact quality or
conformance, the global material quality conformance method would be able to be
updated to include the variation if desired to prevent future false negative non-

conformance.

Despite the fifth delivery not being found to fail or to be out of trend on any QC test, at
dispensing, the 2™ container was found to have become caked during storage (entire
contents of container was one solid mass). This container was thus rejected and not
utilised in production. Close observation of the use of the first container in production
showed significant impact to processing with the product blend sticking considerably to
the tablet press, extending processing time two-fold and impacting the product quality
through poor clarity of the tablet embossing. Further QC testing as part of an extensive
investigation as to the processing and material deviation continued to find no deviation
on the registered quality tests. However, additional tests targeted to understand the
observed changes to the NIR N-H absorption, found a higher level of amine based
residual solvent content than typical (though well within acceptable residual solvent
levels). It is hypothesised that incorporation of the residual solvent into the crystal
lattice (solvate) is the source of the noted variation in the C-H functional groups

absorption and the root cause of the sticking behaviour.

This work shows very clearly the significant impact that global material quality
conformance methods can have in understanding processes and supporting investigation

of process variations. At the time of receipt in the warehouse, rapid analysis of the
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material by NIR can raise awareness of potential issues and assist in causative

knowledge and deeper understanding of formulation and process understanding.

4.2.3.2 Conformance method selection for continued implementation

In a real world scenario, three conformance algorithms would not be selected for
parallel implementation. Review of all three conformance methods within this research
provided insight into the capabilities of the three approaches to suit practical
implementation. Section 4.2.2.4 demonstrated that both correlation and ANSD were
able to differentiate non-conforming deliveries of amlodipine besylate while PCA-MD
was only able to identify one of the non-conforming deliveries. This is due to the
variation in the first delivery occurring in regions of the spectra not modelled in the PC
space. This demonstrates the importance in understanding the ability and limitations of

the various techniques.

PCA based quality conformance algorithms are limited to identifying variation in only
those wavelengths incorporated in the PCs of the model and risk false positive
conformance. If a conforming delivery is then found to be involved in process or quality
difficulties, the NIR analyst has the opportunity to revise the algorithm to ensure the
PCA model is sensitive to the variation and correct the false positive conformance. In
the outcomes described in 4.2.3.1, the first delivery was not found to impact process or
quality. However, if the PCA-MD model had been the only method utilised, the
opportunity to gain process insight and broaden understanding of the design space and

influence of moisture on the process and product would have been missed.

PCA-MD is best applied for materials with extensive understanding of material
characteristics where there is confidence that the PCA model will truly represent

expected variation in the material. It may not be the best choice initially when building
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process understanding. Another challenge is that vendor software may not facilitate the
use of algorithms in PCA space for quality prediction. Often vendor software provides
PCA for investigation rather than prediction. Where it is available, higher analyst

understanding is needed to interpret the output.

Correlation based conformance methods are very simple to develop and require limited
knowledge of sources of variation in the material. Correlation may risk emphasising
variation at wavelengths with known and acceptable variability and may risk false
negative conformance. When such false negative conformance occurs, the NIR analyst
has the opportunity to revise the algorithm to ensure that the mean reference spectrum
truly represents the mean absorbance. However, the variability or magnitude of
absorbance peaks is not accounted for in the algorithm. In the outcomes described in
4.2.3.1, the first delivery was found to be out of correlation conformance due to large
variation at peaks associated with moisture; however this was not found to impact
process or quality. Thus, the non-conformance for this delivery may be considered a
false negative result. If the variation causing the non-conformance is an isolated
incident, no update may be necessary. However, flagging subsequent deliveries
exhibiting the same non-conforming variation would consume unnecessary time and
effort documenting that the variation has no impact and may potentially delay
production and supply of pharmaceutical product to customers. As such, if a repeat
incident was expected, update of the correlation global material quality conformance

method would be recommended.

Correlation is a very simple approach and all typical vendor software packages provide
this algorithm. However, as vendors expect this algorithm to be applied in a pass / fail
approach, there is typically no capability in the software to readily investigate the cause
of non-conformance. As was seen in this research, data must be exported to external

software to investigate the root cause of any non-conformance identified.
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ANSD appears to be a good compromise in balancing the risk of false positive and
negative conformance. When a false result occurs, incorporating the un-modelled
variation is more effective than with correlation as the variation will be built into the
standard deviation at deviating wavelengths as well as the mean spectrum. Similarly to
correlation, the non-conformance of the first delivery may be seen as a false negative
conformance and may indicate the need to update the global material quality

conformance method if subsequent deliveries are found to contain the same variation.

Not all vendor software provides flexibility in the quality metrics available for
normalised SD. Some vendors do not provide the means to develop normalised SD
methods at all, while others report only the maximum value at any wavelength in the
region. In such cases, the resulting conformance SPC would be built on results at
different wavelengths for each sample analysed which is of little statistical and
predictive value. If normalised SD data are not available, data would need to be
exported to external software for further calculations which would not suit the

manufacturing (or material warehouse) environment.

In general, trending of results is not available in vendor software and SPC charts need to
be developed external to vendor software and is independent of the conformance

method algorithm chosen.

For the manufacturing facility where this work was conducted, both correlation and
ANSD approaches were pursued. ANSD was the preferred option however, as the site
already used a correlation model for material identification purposes, it was determined

that both global material quality conformance methods would be implemented.

The DeLight software utilised at the site allowed simple implementation of the methods
in the facility. This software has the capability to reproduce the individual container

I-chart including control limits to allow the operator to monitor the results in real time.
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As each delivery is saved as an individual data file and variable averaging is not a
capability of DeLight (to address the variable number of containers in each delivery), it
was not possible to reproduce the overall delivery SPC charts. As such, following data
acquisition and model prediction, data were exported to external software for SPC
trending and review by Quality Assurance personnel. The manufacturing staff selected
Excel to perform the SPC trending due to operator familiarity with Excel compared to
Minitab. Standard operating procedures (SOPs) were developed and warehouse
operators trained to conduct the NIR analysis and the initial trend chart review. It was
found that the conformance methodology was extremely approachable to warehouse
operators who appreciated the visual nature and real time feebdack on their work. The
warehouse operators felt an empowerment and enhanced engagement that offset the
slight increase in workload to perform the NIR analysis. Warehouse operators were able
to immediately raise a concern to the Quality Assurance department when a non-
conformance occurred. Quality Assurance personnel had increased information on the
material quality to enable decisions on material investigations. Quality Assurance
personnel received additional training on reviewing the output of global quality
conformance methods, however an NIR trained analyst was generally required to
perform deviation investigation and root cause assessments. The implementation of
conformance methodology was seen as very successful by warehouse operators, Quality

Assurance personnel and site management.

Figure 39 shows the user interface that operators were able to use to monitor the global

material quality conformance in real time during material receipt testing.
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Figure 39: Operator interface for developed global material quality conformance for amlodipine

besylate with DeLight software

4.2.4 Summary - criticality of research

This research investigated the use of continuous data output from three qualification
algorithms (correlation, ANSD and PCA-MD) and SPC charting to create a Global
Material Quality Conformance approach. Typically, material qualifieation algorithm
output is used simply as a categorieal classifieation technique and the extended use of

the data with SPC has not been previously reported.

Three global material quality conformance methods were developed and applied in
parallel to commercial deliveries of amlodipine besylate at a Pfizer facility and the
value of the work was demonstrated in the ability to identify non-conforming deliveries

as described in 4.2.3.1. The benefits and limitations to the three different methods were
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compared and commentary was provided as to the availability of vendor software to

easily implement such approaches.

Global material quality conformance methods were demonstrated to provide an
opportunity to gain greater insight in to the design space of product formulations and
processes and enabled rapid identification of material variation with the potential to
greatly impact the pharmaceutical manufacturing process and/ or product quality. The
approach also facilitated rapid root cause determination of material variation that

impacted product and process.

4.3 Material attribute quality conformance

The development and application of a material attribute quality conformance method is

described in this section to extend on the approach and value described in Section 4.2.

Material attribute quality conformance is applicable when a specific aspect of a
material’s quality is identified as benefiting from monitoring and control. Unlike global
material quality conformance methods, material attribute quality conformance methods
are not sensitive to variation from aspects of the material other than the target attribute.
Chemometric algorithms are chosen that narrow the focus to only those spectral features
in the NIR spectra that relate to the attribute of interest. Following on from the research
conducted in Section 4.2, amlodipine besylate was selected as an appropriate research
subject with the amine based residual solvent conteﬁt as the target attribute. Following
exhaustive quality testing and investigation, it had been determined that the amine based
residual solvent had no impact on product quality and stability other than issues with
appearance. The significant challenge for the manufacturing site was the impact of
processing the material with high amine based residual solvent content in the tabletting

operations. Though the quality of the product reaching the customer was preserved, the
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supply of this vital medicine was impacted by the manufacturing difficulties of using
the material and the uncertainty as to the extent of processing difficulties encountered
lot to lot. Global investigation of this issue showed that deliveries of API with high
amine based residual solvent caused problems at many sites of manufacture with the
severity of impact related to the processing equipment factors (e.g. brand of tablet press,
speed of compression and compression tooling finish). Processing issues could be
mitigated through process interventions such as slowing press operation and regularly
cleaning and polishing press punches and dyes of sticking material throughout

processing.

The high impact of the amine based residual solvent in amlodipine besylate indicated
that this material attribute was an excellent candidate for the material attribute quality

conformance method research.

4.3.1 Materials and Methods

4.3.1.1 Design of Analysis

The reference library established for the global material quality conformance methods
researched in Section 4.2 was the basis of developing the material attribute quality
conformance method. The spectra in the global material quality conformance method
reference library provided the range of amlodipine besylate deliveries with acceptable
low amine based residual solvent content. For ease of description, this reference library

is termed “acceptable reference library” for the remainder of Section 4.3.

Single spectra for two further deliveries with high amine based residual solvent content
and unique manufacturer’s lot were required to provide flexibility in investigation of
appropriate chemometrics algorithms. These spectra were used as either negative

challenge samples (for method algorithm optimisation) or for extension of the
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acceptable reference library to represent unacceptable material depending on the
algorithm chosen. For ease of discussion, the reference library including the two high
amine residual solvent spectra is termed “extended reference library” for the remainder
of Section 4.3. Various algorithms were explored to select the most appropriate

modelling approach for the material attribute quality conformance method.

To ensure robust development of the SPC approach, it was determined that a minimum
of five deliveries with acceptable level of amine based residual solvent content
independent of the acceptable reference library would be required. An individual
spectrum for each container in the deliveries was required to develop the SPC approach
so that it was applicable to the real life scenario of assessing the conformance of every
container in a delivery. As mentioned in Section 4.2.1.1, this is important as the dosage
strength of amlodipine besylate in the Norvasc® finished dosage form is low
(approximately 3.45% weight / weight basis) and only one to two containers of API are

utilised in any given batch of Norvasc® tablets.

4.3.1.2 Samples

The deliveries from the two different manufacturers’ lots with unacceptably high amine
based residual solvent content were identified as those with high deviation in the global
material quality conformance method SPC charts and confirmed as having severe
impact on processing. One representative spectrum (from the first container in the
delivery) from each of the two deliveries was selected and added to the acceptable

reference library to create the extended reference library.

The seven deliveries with acceptable amine residual solvent content immediately prior
to the first instance of a delivery with high amine based residual solvent content were

selected to establish (five deliveries) and verify (two deliveries) the SPC charts (varying
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number of spectra per delivery based on the number of containers delivered). A third
delivery with unacceptably high amine content was selected (independent of those in the

extended reference library) and included in the verification set.

Six subsequent deliveries were then reviewed and the suitability of the approach

demonstrated through the inclusion of deliveries with non-conformance.

All samples were prepared for NIRS analysis by placing the material in SUN Sri 4 mL
borosilicate glass Shell vial (part number: 500 070) to a fill depth of 1 cm and
compressing with uniform pressure using a stainless steel weighted cylinder (1 cm

diameter and 5 cm length).

4.3.1.3 NIR Apparatus and software

NIR reflectance spectra were measured as outlined in Section 4.2.1.3.

DeLight version 2.3b with DMentia 1.1b software (DSquared Development, La-grande,
OR, USA) and Microsoft® Excel, version 9 (Microsoft® Corporation) were utilised for
chemometric model development and predictions, while Minitab® 16 version.1.16
(Minitab Inc, State College, PA, USA) was utilised for statistical evaluation and SPC

chart development.

4.3.2 Material attribute quality conformance method development

4.3.2.1 Spectra pre-treatment

The pre-treatment optimised in 4.2.2.1 was applied to all spectra for the material

attribute quality conformance method development.
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4.3.2.2 Model development

Material attribute quality conformance can best be achieved with chemometric
techniques that assess the spectral features directly related to the target attribute. Whole
region techniques explored in Section 4.2 are not suited. The simplest approach is to
identify an individual wavelength that directly relates to the attribute of interest.
However, the complex overlapping nature of peak absorptions in NIRS makes it
challenging to identify a single wavelength at which absorption is due solely to one
matrix component free of other interference (from other matrix components or physical
effects). As such, multiple wavelength techniques are better suited. Rather than
performing ratios or other manual mathematical manipulations of absorbance at
multiple wavelengths, MLR analysis (refer to Section 0) with DA (refer to Section
3.3.3) can be developed in most vendor software. The MLR-DA output can then be
trended to represent where on the continuum of acceptable to unacceptable future

deliveries fall.

Normalised SD metrics (refer to Section 3.3.1.3) over a narrow range can be applied
once a suitable range is identified that is specific to the target material attribute. Care
needs to be taken to ensure that the region is not sensitive to variations not related to the

attribute of interest.

PCA based methods can be applied after training the PCA on what variation is of
interest. If the variation between good and acceptable lots is described wholly within the
first PC, a simple threshold applied to the PC score values may be suitable. Where
variation between acceptable and unacceptable material requires further PCs, PCA-MD
can be used. However, it should be noted that the distance is calculated from the centre
point of the distribution in the reference set (between the acceptable and unacceptable
data). Weighting the reference set towards the acceptable lots can ensure the variation of

interest is captured within high order PCs without shifting the centre of the distribution
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too far towards the unacceptable lots. Care should be taken in understanding any other
sources of variation contributing to the PCs used in the model to avoid false non-

conformance from other spurious causes.

PCR-DA or PLS-DA (refer to Section 3.3.3) can also be applied and the output trended
for future samples. The main advantage of PLS-DA is that the variation in the reference
data (in this case class category) directs the compression of the data, while PCR-DA

relies solely on spectral variation in the data compression into PCs.

Three techniques were assessed in parallel, MLR-DA, total normalised absolute SD
over reduced range (termed TNSD-RR hereafter), and PLS-DA. Note that the use of
PCA scores thresholds was of interest however prediction of PCA scores from a stored

PCA model is not available within DeLight software.

The normalised SD model developed in DMentia for the global material quality
conformance method described in Section 4.2.2.2 was utilised for the basis of the
TNSD-RR method. Note that for the TNSD-RR conformance method approach, the
extended reference library is not used to develop the model, rather it is utilised to
optimise the method. To determine the reduced range to use for the TNSD-RR method,
the 2" derivative spectra of the extended reference library was reviewed. Regions of
distinct variation between acceptable and unacceptable amine based residual solvent are
easily visually identified, in particular between 1446-1556 nm and 1900-2100 nm
(circled in Figure 40). These regions relate to the characteristic regions of 1% overtone
and combination absorption related to O-H and N-H functional groups (refer to Figure
2) in the amlodipine besylate and amine based solvent. Impact to the O-H absorptions

may relate to the solvent itself or the impact of the solvate on the O-H bonds of the API.
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Figure 40: 2%* derivative NIR spectra of the extended reference library with high amine based

residual solvent content spectra in red

TNSD-RR for the extended reference library was calculated from the normalised SD
value across the range 1446-1556 nm in the DeLight software. The TNSD-RR results
(shown in Table 5) were analysed in Minitab and represented graphically through the
development ofa chart ofthe individual values (I-chart) with the control limits (__ ) set
at three standard deviations from the mean ( ) for the six acceptable deliveries. The
resulting 1-chart for TNSD-RR (shown in Figure 41) uses a lower boundary limit of 0.0,
as the calculated control limit was beyond the allowed values of 0.0. Note that the two
deliveries in the extended reference library with high amine based residual solvent
content are marked in red with a “1” superscript. This is the notation used in Minitab to
indicate data points that fail the control test of being within three standard deviations

from the mean.
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Table S: Predicted material attribute quality conformance statistics for TNSD-RR

TNSD-RR
(Absorbance)
Reference library 1 19.47
Reference library 2 46.43
Reference library 3 44.99
Reference library 4 41.30
Reference library 5 18.09
Reference library s 23.51
Reference library High Amine 1 608.8
Reference library High Amine 2 489.7
600
500
g) 400
200.
100
UCL=68.9
X=32,3
LB=0
1 2 3 4 5 6 7 8

Observation

Figure 41: I-chart of predicted TNSD-RR results for the extended reference library

The MLR-DA model was developed in DMentia software. A plot of correlation against
wavelength (Figure 42) assisted in the selection ofthe primary wavelength (wavelength
in a region of high correlation to the acceptability classification) and a secondary
wavelength (low correlating wavelength utilised to stabilise the MLR model against

unrelated variation).
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doser examination of Figure 42 identified strong positive correlation (r>0.95) between
1490-1512 nm and 2050-2072 nm (circled in black) and strong inverse correlation
(r<-0.95) between 1452-1484 nm and 2008-2036 nm (circled in red). These regions
included the regions identified visually when selecting the reduced range for the TNSD-

RR method.

MLR 1*ceptadility R i

Figure 42: Correlation of acceptability class for 2"¢ derivative spectra of the extended reference

library

Examination of the positive correlation regions showed absolute maximum correlation
at 1502 nm and 2052 nm, while the inverse correlation region showed absolute
maximum correlation at 1478 nm and 2028 nm. O f these highly correlating peaks, the
peak at 1502 nm is centred more within the correlating region and would thus provide a
more stable MLR model. A MLR-DA model was developed with 1502 nm as the
primary wavelength and with 1614 nm selected by the DMentia software as the

secondary wavelength.

Figure 43 shows the 2"" derivative spectra focused into the wavelength region of these
peaks to illustrate the suitability of the wavelength choices. Both wavelengths are at

peak maxima and will therefore be stable to slight wavelength shifts for the life of the
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conformance method. There is also clear discrimination between the aeceptability
classes in the extended reference library at 1502 nm and no eorrelation at 1614 nm
indicating this is an excellent secondary wavelength choice to stabilise the MLR-DA

model.

|2 nm

1614 nm

Figure 43: Zoomed 2" derivative spectra of the extended reference library with high amine based

residual solvent content spectra in red annotated with the MLR-DA model wavelengths

The MLR-DA model statisties ealculated as deseribed in Section 3.4.1 are shown in
Table ¢ and demonstrate the model is very capable of relating the eorrelation of
acceptability class (r* >0.99) with low error (SEE of 0.03556 representing a 3.556%

error in estimating acceptable deliveries).

Table 6: Model statistics for the MLR-DA model

2 0.9949

SEE
(clasy  0.03556

slope 0.9661

Intercept
(Class) 002539
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The MLR-DA results for the extended reference library predicted in DeLight (shown in
Table 7) were analysed in Minitab and represented graphically through the development
of a chart of the individual values (I-chart) with the limits (__ ) set at three standard
deviations from the mean () for the six acceptable deliveries. The resulting I-chart
for MLR-DA is shown in Figure 44. Note that the two deliveries in the Extended
Reference Library with high amine based residual solvent content are marked in red
with a “1” superscript, the notation used in Minitab to indicate data points that fail the

control test of being within three standard deviations from the mean.

Table 7: Predicted MLR-DA material attribute quality conformance results for the extended

reference library

MLR-DA
(class)
Reference library 1 1.032
Reference library 2 0.9680
Reference library 3 1.023
Reference library 4 0.9711
Reference library 5 0.9571
Reference library 6 0.9986
Reference library High Amine 1 -0.008790
Reference library High Amine 2 0.05956
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Figure 44: I-chart of predicted MLR-DA class results for the extended reference library

To assess the capability of the MLR-DA model to predict satisfactorily for samples
independent of those used in the model, deliveries external to the extended reference
library were predicted with the model in DeLight and the prediction statistics reviewed.
Two deliveries of varying number of containers with acceptable amine based residual
solvent content and one delivery of unacceptable amine based residual solvent content
were used to verify the model. The predicted results and the residual between the

predicted and expected class are shown in Table s .

The SEP for the MLR-DA was calculated according to Equation 17 and found to be
0.03682 (representing a 3.682% error in estimating acceptable deliveries) and yielded a
SEP: SEE ratio of 1.04. This close agreement in errors indicates that the MLR-DA

model is very capable when predicting new deliveries.
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Table 8: Predicted MLR-DA material attribute quality conformance for verification deliveries

Predicted Class | Expected Class Residual
Verification 1 0.9824 1 0.0176
Verification 1 0.9823 1 0.0177
Verification 2 0.9717 1 0.0283
Verification 2 1.020 1 -0.0200
Verification 2 1.023 1 -0.0230
Verification 2 1.022 1 -0.0220
Verification 2 1.042 1 -0.0420
Verification 2 0.9758 1 0.0242
Verification 3 0.04227 0 -0.04227
Verification 3 -0.05751 0 0.05751
Verification 3 -0.05762 0 0.05762

PLS-DA models were developed over the full wavelength range in DMentia software.
Review of the PLS scores plots in Figure 45, shows that the deliveries with the
acceptable and unacceptable amine based residual solvent content separate
predominantly along the first LV axis. The axes in the plots in Figure 45 are to the same

scale showing the relative magnitude of the variation explained in each LV.
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PLS 1;X Score 1vs X Score 2

High Amine residual solvent content

PLS: 1: X Score 3 vs X Score 4

Figure 45: LV scores plots for the extended reference library (a) LVs 1vs. 2 and (b) LVs 3 vs. 4

Examination of the weighted loadings of the PLS models in Figure 46 shows that the
first LV includes the wavelengths at the peaks identified in the MLR-DA to be highly
correlated to the acceptability of amine based residual solvent content. The wavelengths
of variation included in the 2" and 3™ LV were not in specific regions identified with

high correlation.
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Figure 46: Weighted loading for the PLS-DA model of extended reference library (a) LV 1,
(b)LV2and(c)LV3
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To better understand the variations included in the second LV, a plot of the residual
spectra after the removal of the variation included in the LV was examined (Figure
47). Closer inspection identified that the largest variation remaining in the residual
spectra that would be modelled in the 2"* LV is related to differences of two samples

within the extended reference library (second and third reference deliveries).

Examination of the residual spectra at the wavelengths identified in the PLS-DA
loading for the 2"* LV, showed that at 1670 nm and 2148 nm, the unacceptable lots (red
spectra in Figure 47) group with the second and third reference deliveries (bold black

spectra in Figure 47) away from the remaining four reference deliveries.

The 2"* LV may then stabilise the PLS-DA model through appropriately weighting the

structured variation not associated with amine based residual solvent content.

PLS 1 residuals

Figure 47: Residual spectra after removal of spectral variation accounted for in LV 1, with
associated 2"“ derivative spectra at identified wavelengths of LV 2; (a) 1670 nm, (b) 2148 nm and

(¢) 2256 nm

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 154 of 305



To better understand the variation included in the 3" LV, a plot of the residual spectra
after the removal of the variation from the first two LVs was reviewed (Figure 48). It is
worth noting that the scale of the residual spectra is an order of magnitude smaller than
the residual after only one LV is removed (Figure 47) and the residual spectra appears
less structured (more random). The areas of highest residual relate to differences
between the two unacceptable amine based residual solvent content deliveries. Closer
examination of the residual spectra at wavelength regions identified in the PLS-DA
loading for the 3" LV, shows that at 1494 nm and 1518 nm the residuals do not relate to
specific peaks in » " derivative spectra rather at points of inflection.

HLb 1 resiauais

1800 1800
Wavetenolh fam)

1518 nm

1494 nm

Figure 48: (a) Residual spectra after first two PLS LVs with (b) associated 2%* derivative spectra at

identified wavelengths of LV 3

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 155 of 305



Predicted Error Sum of Squares (PRESS) was calculated for five LVs with leave-one-
out cross validation to assist in selecting the optimum number of LVs to use in the
model. As expected, Figure 49 shows a continued improvement in the SEE as an
increasing number of LVs are included in the model. This relates to the model being
better able to describe the extended reference library speetra as more variation is
included. However, the SECV shows an improvement as the 2" LV is included and
then increasing error as additional LVs are ineluded in the model. This indicates that the
model may be modelling noise and unrelated variation in the data contributed by
individual reference library samples, destabilising the model’s ability to accurately
prediet the acceptability classification. Observation of the variation removed in both the
x-axis (spectral variance) and y-axis (acceptability variance) as each LV is included in
the model, shows a steep increase with the inclusion of the 2"* LV (to approximately

85% for each axis) followed by a slower incline.

90%

0.2 80%
60%

50%

40%
0.05 ZyA)
0%

0%

Latent Variable

SEE SECV Spectral Variance Acceptability Variance

Figure 49: Standard error (class) and percent variance for PLS-DA models developed with varying

number of LVs
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Review of the scores, the loadings and the PRESS output indicates that two LVs may be
optimal, balancing an improved error without over fitting and including noise and
unrelated variation. As the PRESS was performed on limited data (8 spectra) it was
worth also assessing a PLS-DA model with three LVs to see whether the additional
y-axis variation included (reaching 93.6%) leads to sufficient improvement in prediction

to offset the risk of adding noise and increasing error.

The PLS-DA model statistics for the two models are shown in Table 9 and indicate that
the PLS-DA model with three LVs is more capable of relating the correlation of
acceptability class (higher r*) with lower error. Also note the three LV model compares

well with the MLR-DA model statistics described in Table 6.

Table 9: PLS-DA model statistics

Two LVs Three LVs
r2 0.9774 0.9959
SEE (class) 0.06958 0.02949
slope 0.9774 0.9959
Intercept (class) 0.01694 0.003044

To assess the capability of the two PLS-DA models to perform satisfactorily for
samples independent of those used in the models, deliveries external to the extended
reference library were predicted with the models in DeLight and the prediction statistics
reviewed. The three deliveries used to assess the MLR-DA model performance were
utilised to verify the performance of PLS-DA models developed on both two and three
LVs. The predicted results and the residual between the predicted and expected class are

shown in Table 10.
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developed PLS-DA models

Table 10: Predicted material attribute quality conformance for verification deliveries using the two

Two LVs Three LVs
Expected | Predicted Predicted | Residual
Class Class Residual Class

Verification 1 1.070 -0.070 0.9965 0.0035
Verification 1 1.043 -0.043 0.9666 0.0334
Verification 1 0.8830 0.1170 0.9566 0.0434
Verification 1 09111 0.0889 1.010 -0.010
Verification 1 0.9157 0.0843 0.9953 0.0047
Verification 1 0.9154 0.0846 0.9896 0.0104
Verification 1 0.9211 0.0789 1.008 -0.008
Verification 1 0.8728 0.1272 0.9312 0.0688
Verification 0 -0.08713 0.08713 -0.01932 0.01932
Verification 0 -0.1406 0.1406 -0.1007 0.1007
Verification 0 -0.1299 0.1299 -0.09285 0.09285

The SEP for the PLS-DA predictions were calculated according to Equation 17. The
two LV PLS-DA model had a SEP of 0.1045 yielding a SEP:SEE ratio of 1.50 while the
three LV model had a SEP of 0.05213 yielding a SEP:SEE ratio of 1.77. As with the
Extended Reference Set, the two LVs model SEP is almost twice that of the three LVs
model. The SEP: SEE ratio gives an indication of the future capability of PLS models to
predict unknown samples. A rule of thumb often used in the pharmaceutical industry
(noted in the 2003 EMEA guidance on NIR'*) is that SEP: SEE ratio greater than 1.4
may indicate potential over-fitting of the model (inclusion of reference specific
variation or noise) and may indicate a risk to long term robustness. The required
accuracy for a two class DA model is not as stringent compared to the conventional use
of PLS for quantitative analysis. Thus it is more useful to note that although the two LV

model may be more robust for the prediction of future deliveries (lower SEP: SEE ratio)
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this slight improvement is offset by the significant increase in the error in the two LV
model compared to the three LV model. Thus, the three LV PLS-DA model was
selected for continued development of the material attribute quality conformance

method.

The final PLS-DA prediction results for the extended reference library predicted in
DeLight (shown in Table 11) were analysed in Minitab and represented graphically with
a chart of the individual values (I-charts) with the limits () set at three standard
deviations from the mean (__ ) for the six acceptable deliveries. The resulting I-chart

for MLR-DA is shown in Figure 50.

Note that the two deliveries in the extended reference library with high amine based
residual solvent content are marked in red with a “1” superscript, the notation used in
Minitab to indicate data points that fail the control test of being within three standard

deviations from the mean.

Table 11: Final predicted material attribute quality conformance for the extended reference library

using the final three LV PLS-DA model

PLS-DA
(Class)
Reference library 1 0.9901
Reference library 2 0.9545
Reference library 3 1.011
Reference library 4 1.046
Reference library 5 1.025
Reference library 6 0.9678
Reference library High Amine 1 0.001380
Reference library High Amine 2 0.004710
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Figure 50: I-chart of predicted PLS-DA results for the extended reference library with points with

high amine based residual solvent in red

4.3.2.3 Establishment ofthe conformance control charts

Once the confonnancc models have been created, SPC charts must be established that
will monitor results over time. This ensures that, although the metric is calculated
against a static model, deliveries can be compared to historically acceptable deliveries
over time and trends towards non-conformance can be identified prior to failure against
the static model. Five historical deliveries of varying number of containers were used to
establish the control charts for the material attribute quality conformance methods.
These five deliveries were all known to process well and contained typical acceptable
amine based residual solvent content. Three deliveries (those used to verify the
MLR-DA and PLS-DA model SLPs in Table 8 and Table 10) were then used to verify
the material attribute quality conformance SPC charts to demonstrate the suitability of
the approach prior to implementation into the manufacturing facility. As was discussed
in 4.2.2.3, individual and/ or combinations of containers may be used in production, and
both an individual container historical chart as well as an overall delivery chart is

valuable.
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Shewhart'®’ control charts are based on the normal Gaussian distribution and it is
important to verify that the conformance data is normally distributed. The Graphical
Summary function in Minitab was used to represent the data and assess normality for
each conformance metric (Appendix 2 on page 295). No evidence of non-normality was
observed (p>0.05) at the 95% confidence level. Normality p-value for each set of data is
shown in Table 12. Note that output for overall delivery metrics is an estimate only as

the number of data points is small, reducing the power of the normality tests.'*

Table 12: Summary of the normality assessment (p-value) of the material attribute quality

conformance prediction results for the historical data

TNSD-RR MLR-DA PLS-DA
2 Individual Container 0.439 0.248 0.569
S
Z Overall Delivery 0.369 0.407 0.433

An individual SPC chart (I-chart) was developed to represent the typical quality of
individual containers in a given delivery with the control limits set by the individual
results from the five historical deliveries. Average results were calculated for each
delivery and overall delivery SPC charts developed using the I-chart Minitab function.
The mean and standard deviations applied in establishing the control charts are shown
in Table 13. Control limits () were established at three standard deviations from the

mean ( ) value.
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Table 13: Parameters used to generate the SPC charts for material attribute quality conformance

TNSD-RR MLR-DA PLS-DA
(Absorbance) (Class) (Class)
: Individual Container 57.54 1.034 0.9504
<
D
= Overall Delivery 54.82 1.027 0.9527
T _E Individual Container 16.25 0.04690 0.04531
% g Overall Delivery 11.17 0.04850 0.03113

The SPC charts for the three material attribute quality conformance models studied are
shown in Figure 51 and Figure 52. These SPC charts show both the five historical
deliveries used to establish the control chart limits as well as the three verification
deliveries and demonstrates that the SPC charts easily distinguish deliveries with

unacceptable amine based residual solvent content.
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Figure 51: Individual container SPC charts for historical and verification deliveries: (a) TNSD-RR,

(b) MLR-DA and (¢) PLS-DA with containers with high amine based residual solvent in red
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Figure 52: Overall delivery SPC charts for historical and verification deliveries: (a) TNSD-RR,

(b) MLR-DA and (¢c) PLS-DA with deliveries with high amine based residual solvent in red
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4.3.2.4 Implementation of the developed method in manufacturing

The developed conformance methods were applied to six subsequent deliveries. The
material attribute quality conformance SPC charts showing the historical, verification
and subsequent deliveries are shown in Figure 53 and Figure 54. Note that the second
delivery is the same delivery as that denoted as the fifth delivery in the global quality

conformance method research detailed in 4.2.2.4.

The MLR-DA SPC chart indicated both containers of the second delivery were out of
conformance, while only container two showed non-conformance for the TNSD-RR and
PLS-DA SPC charts. The fourth delivery was identified as just out of conformance for
TNSD-RR, yet was seen as conforming in both MLR-DA and PLS-DA conformance

SPC charts.

The fifth and sixth deliveries were both out of conformance for all three methods with

the sixth delivery showing the most extreme non-conformance.

The first step in investigating a deviation in conformance is to compare the spectra of
the non-conforming containers and deliveries to the acceptable reference library and
recent conforming deliveries. Figure 55 shows the raw spectra overlay showing that the
fourth delivery has increased absorbance at higher wavelength indicating the material is
coarser and more scattering than the acceptable reference library and the other
conforming deliveries. Meanwhile, the fifth and sixth deliveries and first container of
the second delivery are finer (less absorbing). Container one of the second delivery
appears the finest of all samples while container two sits at the coarser end of the range
of particle size in the acceptable reference library and conforming deliveries. The
difference in particle size of the second delivery was confirmed by appearance during

sampling as noted in 4.2.2.4.
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Figure 53: Individual container SPC charts for historical, verification and subsequent deliveries:
(a) TNSD-RR, (b) MLR-DA and (c) PLS-DA with containers with high amine based residual

solvent in red
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Figure 54: Overall delivery SPC charts for historical, verification and subsequent deliveries:
(a) TNSD-RR, (b) MLR-DA and (¢) PLS-DA with deliveries with high amine based residual solvent

in red
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V*velenith (nm)

Figure 55: Raw spectra of individual containers for deliveries 2 ( ),4(__)5& 6(_)overlaid

with (a) acceptable reference library ( ) and (b) deliveries 1 «&3 (__ )

Figure 56 shows the 2"" derivative spectra overlay indicating the regions of most
difference are between 1440-1560 nm and 1990-2110 nm (circled in Figure 56) which

are the regions identified to be related to the amine based residual solvent content.

Figure 57 contains an expansion of the circled regions in Figure 56 to allow closer

examination ofthe variations occurring in these wavelength regions.
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Figure 56: 2™ derivative spectra of individual containers for deliveries 2 ( ), 4 ( )5 & 6 ( )

overlaid with (a) acceptable reference library (___ ) and (b) deliveries 1& 3 (__ )
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Figure 57: Zoomed 2"¢ derivative spectra of deliveries 2 ( ), 4(__)5&6( ) overlaid with

acceptable reference library & deliveries 1& 3 (__ ) at (a) 1440-1560 nm and (b) 1990-2110 nm

To investigate the source ofthe non-conformance in TNSD-RR for deliveries two, four
and six, Figure 57(a) was examined as this image shows the region used for the

TNSD-RR conformance model.

Deliveries five and six and container one of delivery two all showed the characteristic
spectral deviation of material with high amine based residual content. The deviation
aligns with that seen in deliveries with confirmed high amine based residual solvent

content (see Figure 43).The deviation is more significant in delivery six than in both
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delivery five and container one of delivery two, indicating that delivery six would be
expected to have higher levels of amine based residual solvent. Note that container two
of delivery two aligns with the acceptable reference library and conforming deliveries

and as such is not seen as out of conformance.

Delivery four is not showing the spectral deviation expected for high amine based
residual solvent, rather it indicates a deviation to the acceptable reference library in the
opposite direction compared to deliveries with confirmed high amine based residual
content. This may indicate delivery four is lower in amine based residual solvent

content than the materials in the acceptable reference library.

Figure 57(a) also provides insight into the non-conformance seen in the MLR-DA
conformance method for deliveries two, five and six as the absorbance at 1502 nm is the
key x-variable in the MLR-DA regression equation. The marked reduction in the
absorbance of deliveries five and six at this wavelength leads to the low MLR-DA
prediction for these deliveries and subsequently the qualification of these deliveries as

out of conformance.

It is interesting to note that both containers of delivery two are found to not conform
despite container two of delivery two aligning with the acceptable reference library and
other conforming deliveries in this region. The two wavelengths used in the MLR-DA
model were scrutinised more closely as shown in Figure 58. Figure 58(a) demonstrates
that container two of delivery two aligns well with conforming deliveries one and three
at 1502 nm unlike container one which has markedly lower absorbance. However, the
situation is reversed at 1614 nm with container one aligning to deliveries one and three
while container two has higher absorbance. The inclusion of the absorbance at 1614 nm
as an x-variable in the MLR-DA regression equation leads to the MLR-DA predicted

result falling just beyond the control limits set from historically acceptable material.
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It is also worth noting that the higher absorption for delivery four at both wavelengths
leads to reducing the difference in the prediction results for delivery four and this
delivery is not identified as a non-econforming delivery as it was with TNSD-RR. The
outcomes for delivery two and four highlights the importance of careful selection ofthe

additional ‘stabilising’ x-variables included in MLR based analysis.

0.0014- Deliverv 4

0.0011

Container 2 of Deiiverv 2

0.0005-

20
Sample number
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S 0.00084-

000061
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Figure 58: 2"“derivative absorbance of acceptable reference library (circled) and six deliveries at

(a) 1502 nm and (b) 1614 nm
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To investigate the PLS-DA non-conformance for deliveries four, five, six and container
one of delivery two, the wavelengths used in the PLS-DA model (identified in Figure
46) were scrutinised more closely. The key wavelengths utilised in the 1** LV, 1502 nm
and 2056 nm, are shown in Figure 57. As discussed with regards to TNSD-RR, Figure
57(a) clearly shows separation of the deliveries and containers with non-conformance
compared to the acceptable reference library and the conforming deliveries. This is
mirrored also in Figure 57(b) with deliveries five and six separating distinctly at

2056 nm.

The key wavelengths utilised in the 2nd LV, 1670 nm, 2148 nm and 2256 nm, are shown
in Figure 59. These wavelengths show grouping of non-conforming and conforming
deliveries. Note that in Figure 59(a), delivery four is absorbing more strongly than the
conforming deliveries one, three and the acceptable reference library, while deliveries
two, five and six have lower absorbance. As discussed with regards the TNSD-RR
results, the non-conformance in delivery four is not the same as in deliveries five and
six. It is also worth noting that delivery four was not identified as out of conformance
with individual samples however it is flagged with the tighter control limits for the

overall delivery control chart.

The key wavelengths utilised in the 3 LV, 1494 nm and 1518 nm are also included in
the region shown in Figure 57(a). As mentioned during model development, these
wavelengths are not signifying peak absorptions; rather the variation at these
wavelengths is related to changes to inflection points and slopes due to the surrounding

peaks (the largest of which is the key wavelength in the 1% LV).
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Figure 59: 2% derivative spectra of deliveries 2 ( ), 4 ( )5 & 6 ( ) overlaid with the

acceptable reference library, deliveries 1 «&3 ( ) at (a) 1670 nm , (b) 2148 nm and (c) 2256 nm
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4.3.3 Material attribute quality conformance method discussion

4.3.3.1 Impact of non-conformance for the product and process

The results of the material attribute quality conformance for deliveries two, four, five
and six alerted the Quality and Production departments that these deliveries had amine
based residual solvent levels deviating from that found in material with acceptable
levels. This assisted in scheduling decisions as the production team was forewarned that
processing would likely be slowed for the deliveries with suspected high amine based
residual solvent. Due to the ongoing investigation initiated by the first delivery with
non-conformance of the global quality material conformance, all deliveries received full
confirmation testing according to the registered specification and results aligned with

the results on the CoA, passing all specified acceptance criteria.

As mentioned in 4.2.3.1, container two of delivery two was found to have become
caked into one solid mass during storage and this container was rejected and not utilised
in production. Close observation of the use of container one of delivery two in
production showed significant impact to processing with the product blend sticking
considerably to the tablet press, extending processing time two-fold and impacting the
product quality through poor clarity on the tablet embossing. Delivery five showed
similar delays in production, while delivery six was found to have an extreme impact on
processing almost halting manufacturing with hourly stoppages to remove sticking
material from punches. It was also found that the impact to processing was most severe
for the smaller 5 mg dosage strength tablet compared to the 10 mg tablet. This was
hypothesised to be a function of the tablet surface area and the different compaction
force used during tabletting to meet the different hardness specification for the two

dosage strengths (11-14 kg for 5 mg tablets compared to 28-30 kg for 10 mg tablets).

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 175 of 305



Delivery four, which showed an inverse variation to the other non-conforming
deliveries, processed well in production. The identification of the non-conformance for
this delivery assisted in understanding the relationship of the variation in the spectra and
impact on processing. Through the non-conforming deliveries, it was demonstrated that
the more extreme the non-conformance of the material attribute quality conformance the

larger the impact in processing.

Data from the material attribute quality conformance method was utilised to assist with
scheduling production of Norvasc® through either mixing material from deliveries
predicted to impact processing with deliveries predicted to process well or allocating the
deliveries with severe non-conformance to the 10 mg dosage strength. In doing so,
material could be utilised with reduced impact on processing and product embossing

appearance.

The approach also assisted a global investigation into the issue which identified impact
to processing at several other Pfizer drug product manufacturing facilities. The severity
of the impact appeared to vary related to tablet press model, compaction settings,
tooling surface finish and quality and percent of magnesium stearate (lubricant) in the
formulation. The production facility for which this research was performed, utilised the
data to negotiate lot selection at the API manufacturing site so that, where possible,
material predicted to impact the production facility would be redirected to other global
sites with less severe impact while resolving the issue and implementing mitigation

procedures.
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4.3.3.2 Conformance method selection for continued implementation

Review of all three conformance methods within this research provided insight into the
capabilities of the three approaches to suit practical implementation. Section 4.3.2.4
demonstrated that all three approaches were able to correctly differentiate non-
conforming deliveries five, six and container one of delivery two which impacted

processing.

TNSD-RR also identified the individual containers and overall delivery quality for
delivery four to be out of conformance. For the purpose of the conformance method (to
identify deliveries with unacceptable amine based residual solvent) this can be seen as a
false negative. As TNSD-RR is based on the absolute variation to the average spectra of
the acceptable reference library, the control chart does not give any indication of
directionality. Absolute spectral differences are typically used for 2™ derivative spectra
as a single positive peak in raw spectra will have a central negative peak with two
positive shoulder peaks in the 2™ derivative spectra (see Figure 7). Thus, without the
use of absolute SDs, deviations in the shoulder peaks will negate deviations in the
central peak. The lack of directionality in the conformance control chart is therefore a
limitation to the TNSD-RR approach. Both MLR-DA and PLS-DA conformance
methods incorporate directionality of the deviation. This can be seen by the fact that the
output for delivery four is at the opposite side of the centre line in the MLR-DA and
PLS-DA control charts in Figure 53 and Figure 54. It is worth noting that delivery four
is found as out of conformance for the PLS-DA SPC chart for overall delivery quality.
Again, this could be considered a false negative given that delivery four processed well.
However, the directionality of the control chart coupled with the fact that the individual
containers were acceptable according to the individual container SPC chart lends useful

information as to this delivery’s level of amine based residual solvent content.
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MLR-DA also identified container two of delivery two to be out of conformance.
Whether this is a false negative is challenging as this container was not utilised in
production. However, review of the data indicates that the cause of the variation was
due to a relative change in the stabilising wavelength used in the MLR-DA calculation.
This is an interesting outcome and it may be worth further scrutiny given the fact that
this container formed a solid mass on storage while other containers and deliveries did
not. There is therefore something uniquely different about this container which probably
should have been flagged. However, this material attribute conformance method was
established to analyse the acceptability of the amine based residual solvent content. For
this reason, the identification of this container to be out of conformance by MLR-DA
can be seen as a false negative. This demonstrates the criticality in identifying the most
appropriate stabilising / supporting wavelengths when applying MLR analysis. It would
be possible to redevelop the MLR model using different secondary stabilising
wavelengths. However, given the high number of possible wavelengths, PLS-DA
provides a more practical approach through the use of LVs to weight wavelengths

appropriately in the regression equation.

Based on the lack of dimensionality in the TNSD-RR and the criticality of secondary
wavelength selection in MLR-DA, this work indicates that PLS-DA 1is the optimal

approach to use for continued implementation.

Further enhancements could be made through including more than two classes in the
model (e.g. to categorise deliveries as acceptable, moderately or severely deviating)
once further data was gathered and aligned with feedback on processability from
production. Additionally, control limits could be established based on historical data for
deliveries with extreme non-conformance to indicate deliveries that should be rejected
(with agreement with API Supplier). However, the Pfizer facility was satisfied with the

two class DA approach with control charts based on historically acceptable material.
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Though the SPC charts in this research were performed in Minitab, the Pfizer facility
chose to implement the conformance method and SPC charts with Excel due to operator

familiarity and accessibility.

As was discussed in Section 4.2.3.2, vendor software does not often provide the
capability to implement NIRS conformance methods. In general trending of results is
not available in vendor software for at-line NIR instruments and SPC charts often need
to be developed external to vendor software. Additionally, not all vendor software
provide flexibility in the quality metrics available for normalised SD (as mentioned in
Section 4.2.3.2, normalised SD algorithms may be missing entirely or report only the
maximum value at any wavelength in the region used). The majority of vendor software

includes MLR analysis and all include PLS regression.

The DeLight software utilised at the site allowed simple implementation of the methods
in the facility. The DeLight software has the capability to reproduce the individual
container I-chart including control limits to allow the operator to monitor the results in
real time. As mentioned in 4.2.3.2, DeLight does not have the capability to reproduce
the overall delivery SPC chart. As such, following data acquisition, data were exported

to Excel for SPC trending and review by Quality Assurance personnel.

Figure 60 shows the user interface that operators were able to use to monitor the
material attribute quality conformance in real time during material receipt testing. In
this case, the user interface incorporated output for both the global and material attribute
quality conformance methods in one combined simple user interface for warehouse

personnel.
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Figure 60: Operator interface for developed within DeLight Software with material attribute

quality conformance individual container control chart marked in red
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4.3.4 Summary - criticality of research

This research investigated the use of continuous data output from three qualification
algorithms (TNSD-RR, MLR-DA and PLS-DA) and SPC charting to create a material
attribute quality conformance approach for monitoring undesirable amine based residual
solvent content in amlodipine besylate. Typically, qualification algorithm output is used
simply as a categorical classification technique (pass / fail) and the extended use of the

data with SPC has not been previously reported.

Three material attribute quality conformance methods were developed and applied in
parallel to real deliveries of amlodipine besylate at a Pfizer facility and the value of the
work was demonstrated in the ability to identify non-conforming deliveries as described
in 4.3.3.1. The benefits and limitations to the three different methods were compared
and commentary was provided as to the availability of vendor software to easily

implement such approaches.

Material attribute quality conformance methods were demonstrated to enable rapid
identification of material variation with the potential to greatly impact the
pharmaceutical manufacturing process and / or product quality. The approach facilitated
processability prediction and appropriate scheduling of material use in manufacturing
and also provided the means to negotiate preferred manufacturers lot selection based on
established causality. The work also continued to provide valuable information into the
global effort to establish the root cause of material variation impacting production of a

key Pfizer product.
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4.4 Review of research outcomes

The research described in Chapter 4 successfully addressed the identified need for the
development of novel applications of NIRS for at-line analysis of materials aligned with
PAT. The innovative approach of NIR Material Conformance enables powerful process
understanding of the material variation and its impact on product quality and process
performance. Rather than the traditional application of NIR for material identification or
the use of the NIR data for pass / fail categorisation of material qualification, the
developed NIR Material Conformance approach utilises the continuous nature of
chemometrics qualification algorithms coupled with SPC to monitor material rapidly at
receipt and assess whether the delivery conforms to statistical expectations compared to
both the wvalidated static model and continuously evolving historical deliveries.
Deviations from SPC can be identified prior to impact to product quality and process
performance. Behaviours of the material in the formulation and in future process steps

can be predicted based on enhanced causal knowledge.

The approach goes beyond the black box approach to qualification model development.
To gain real process information requires a skilled practitioner to delve deeper into the
analysis of spectral deviations and the chemometrics behind the algorithms available in

software.

To haress the breadth of possible applications and the diverse use of chemometrics for
such Material Conformance methods, vendor software will need to evolve to enable
greater functionality in both chemometrics algorithms as well as statistics. Pfizer
continues to work with strategic vendors to attempt to influence the direction of
software updates. However, as discussed in Section 3.5, this has not been overly

successful to date.
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The research met the desired objectives of developing novel ways to apply at-line NIR
for material analysis, aligning with the PAT philosophy described in Chapter 1 and
addressing the gaps in material analysis identified in Chapter 2. The work was well
received by the Pfizer facility from warehouse operators and Quality personnel through
to management and provided an unprecedented level of insight into the material

characteristics of an important raw material.
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CHAPTERS APPLICATION OF AT-LINE NIRS FOR PAT
APPLICATIONS IN SOLID DOSAGE PHARMACEUTICAL

PRODUCTION - TABLET ANALYSIS

5.1 Introduction

As discussed in Section 2.5, historical application of NIRS for intact tablet analysis has
concentrated on the API potency prediction followed by content uniformity
determination to decrease the cycle time through the laboratories, exploiting the
advantages of NIRS analysis being fast and non-destructive. These methods are not
typically applied to gain process unders/tanding and thus not aligned with the PAT
philosophy. Applying NIRS at-line for process monitoring rather than as product release
testing in the laboratory provides a mechanism for gaining process understanding and

inherent quality improvements.

The proposed conformance methodology builds on the material attribute quality
conformance approach discussed in Section 4.3. The focus of NIR tablet conformance
methodology is to assess whether the quality attribute of interest (typically the API
content) fits within a previously established acceptable and/or ‘normal’ population and

combines qualitative or semi-quantitative chemometrics with SPC techniques.

Though different algorithms have historically been used to assess the conformance of a
sample spectrum to the predetermined acceptable set of spectra (particularly applied for
raw material quality assessment), any algorithm result, spectral processing output or

straight absorbance value can be utilised in a conformance method.

A benefit of conformance methodology over traditional quantitative methods, is that
reference chemistry can be restricted to samples used to validate the method, greatly

reducing the large extent of reference chemistry which is typically conducted when
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developing quantitative NIRS methods. This leads to rapid development of the

conformance methods.

Section 5.2, describes the investigation of qualitative NIRS tablet conformance methods
to provide a method to assess the API content of tablets and determine the quality of the
product by demonstrating that the product is consistent to the predetermined threshold
of acceptability (obtained from a historical set of acceptable batches). Once established,
this method provides a mechanism to monitor the quality of the tabletting process by
trending the result for a large number of tablets throughout manufacturing, providing

the opportunity to establish normal process signatures for the tabletting process.

Section 5.3 extends the NIR tablet conformance methodology with semi-quantitative
regression based chemometric algorithms. Rather than utilising reference values, this
semi-quantitative approach extends DA by the use of nominal values in the regression
methods explored. The semi-quantitative output is then applied using SPC techniques to
monitor the tabletting process. Once more, the combination of SPC with the

conformance model data provides a window of insight into the manufacturing process.

Although the explored conformance methodology is not targeted for regulatory filing,
aspects of analytical method validation for such qualitative and semi-quantitative
methods are explored in Section 5.4 to address concerns on how to validate the
underlying analytical methods which will provide a mechanism for quality assurance.
Fit for purpose validation of the methods is discussed, aligning with ICH Guidelines on

Analytical Method validation.
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5.2 Qualitative tablet component quality conformance

The development and application of a Qualitative Tablet Component Quality
Conformance method is described in this section demonstrating the value of this
research. Continuing from the product focus in Chapter 4, Norvasc® 5 mg tablets was
selected as the target product as it was the highest volume and highest value product at
the manufacturing facility in which the work was undertaken. The component of interest

was the active component of Norvasc® 5 mg tablets, the amlodipine base.

5.2.1 Materials and methods

5.2.1.1 Design of analysis

A minimum of five batches were required to establish the normal range of spectra for
Norvasc® 5 mg tablets and comprise the historical dataset used to develop the
conformance model and establish SPC charts. To ensure a suitable degree of natural
process and material variability in the tablets was represented in the historical data set,
ten batches were obtained covering several years and compressed on all tablet presses
utilised for the product at the manufacturing facility. A subset of these batches was then
chosen to be included in the historical dataset equally representing each of the tablet
presses utilised, with the remaining batches available to assist in optimising and

verifying the suitability of the method.

To represent typical within batch variability, 10 tablets for each batch were utilised for
the historical dataset. Various qualitative algorithms were explored to select the most
appropriate modelling approach for the qualitative tablet component quality
conformance method. As production processes are highly controlled, the natural range
of concentrations of the API in production tablets is very narrow and the likelihood of

sampling tablets from the tails of the distribution to extend the range of the method is
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very low. As such, extended range tablets were manufactured at pilot scale. Though
ideally extended range tablets would be made based on DoE, exploring variation of all
components in the matrix, given financial and time constraints, a simple spiking with
API (amlodipine besylate) and dilution with diluent (microcrystalline cellulose PH 102)
approach was selected to develop the extended range using a production blend of the
Norvasc® formulation. Tablets were then compressed to mimic the same physical traits
of the Norvasc® production tablets. The extended range tablets were used to assist in

optimising and verifying the suitability of the method.

The developed qualitative models were then applied to nine commercial tablet batches
with appropriate frequent time based sampling to allow the development of process
based SPC charts. Six batches, manufactured on the three tablet presses the facility uses
to manufacture Norvasc®, were used to establish normal process behaviour and the
remaining three commercial batches (one from each tablet press model) were utilised in
assessing the suitability of the complete Qualitative Tablet Component Quality

Conformance Method.

5.2.1.2 Reagents and samples

Non-film coated Norvasc® tablets were manufactured at development (pilot batch) and
production scales (over a four year period). Norvasc® 5 mg production tablets
nominally have 5 mg amlodipine base content per 200 mg tablet (i.e. 2.5% weight
basis). Norvasc® are formulated with the API amlodipine besylate rather than the active
component, amlodipine base. For ease of discussion, amlodipine base is termed the
“amlodipine active” and amlodipine besylate the “amlodipine API” for the remainder of

Chapter 5.
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Development scale tablets were produced by dry blending the amlodipine API with the
other tablet components (microcrystalline cellulose PH102, dibasic calcium phosphate,
sodium starch glycollate and magnesium stearate) and compressing into 200 mg tablets.
The amlodipine API and microcrystalline cellulose PH 102 (nominally 62.0% weight
basis) were varied in the different development batches while keeping the remaining
components constant to form a suitable range of amlodipine active content, expressed as

75%, 85%, 115% and 125% of label claim.

For each development batch, blends were pressed into white, octagonal shape tablets
(average thickness 3.43 mm, and average mass 200 mg), with a bisect line on one face.

The development tablets were devoid of embossment and markings.

HPLC grade methanol and purified water (both Riedel-de Haén, Seelze, Germany) and
potassium  dihydrogen orthophosphate  (Fisher Chemicals, Loughborough,

Leicestershire, UK) were used for the HPLC mobile phase and diluent solvents.

5.2.1.3 NIR apparatus and software

NIR transmission spectra were measured using a FOSS NIRSystems 6500 Series 11
spectrophotometer (FOSS NIRSystems Inc., Silver Spring, MD, USA) configured with
an InTact™ tablet transmittance analyser (NR-1650) with an Indium-Gallium-Arsenide
(InGaAs) detector. The spectrophotometer was controlled by DeLight software, version
2.3b and D2NIRS software, version 1.2a (DSquared Development, La-grande, OR,

USA).

NIR spectra were measured for individual tablets over the wavelength range
600-1900 nm at 2 nm intervals. Each recorded spectrum was the average of 32
individual scans (a total of 35 seconds scan time per tablet) and recorded with respect to

an air reference. The ten tablets in each of the ten production batches as well as ten
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tablets from each of the four 75% to 125% development batches were scanned in a
typical laboratory temperature / humidity environment of 20° to 25° C / 60% relative
humidity using custom made tablet holders to minimise light leakage and assure
reproducible sample positioning and presentation. Tablets were placed in the tablet
holders with the same orientation to ensure the bisect line (and embossing for
production tablets) contribution to scatter was consistent to minimize spectral variation.
A total of 140 spectra were saved for threshold and method validation. NIR spectra for
individual tablets sampled throughout commercial production for the nine batches

studied were acquired using the same procedure.

Individual tablet components were evaluated utilising a 1 mm deep top loading
transmission cell (glass 20-C 1 mm cell (Starna Pty Ltd, Australia)) for presentation for

transmission NIR analysis.

Data analysis and model development were achieved using DeLight software, version
2.3b and DMentia 1.1b software (DSquared Development, La-grande, OR, USA),
Minitab version 16.1 (MinitabTM, Inc.) and Microsoft® Excel, version 9 (Microsoft®
corporation). Minitab® 16 version.1.16 (Minitab Inc, State College, PA, USA) was

utilised for statistical evaluation and SPC chart development.

5.2.1.4 HPLC apparatus, software and methods

Reference chemistry measurements were made using a Thermo Separation Products and
Varian integrated HPLC systems (Aligent Technologies, Palo Alto, CA, USA ) with UV
detection. The columns used for this reversed-phase method were Supelcosil LC-18-DB
with a 50 mm length x 4.6 mm internal diameter stainless steel columns (Supelco) with

5 um particle size packing. The operating temperature was ambient (20° to 25 °C).
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The amlodipine active content of individual tablets was measured by isocratic reversed-
phase HPLC with UV detection at 237 nm. The mobile phase was purified methanol:
0.03 M phosphate buffer (600:400, v/v), and the flow rate was 1.5 mL/min. The
phosphate buffer was made by dissolving 4.08 g of potassium dihydrogen phosphate in

distilled water in a 1 L volumetric flask which was then made up to volume.

Sample solutions were prepared by dissolving an individual tablet in 200 mL of mobile
phase, and then diluting 25 mL of this stock solution to make a 50 mL working sample
solution. Duplicate 20 pL injections were made for each sample and the peak areas
measured. To calibrate the system, standard solutions of the amlodipine active were
prepared by dissolving 35 mg of amlodipine API reference standard in 200 mL mobile
phase and diluting by the same factor as used for the tablet samples. Duplicate
injections (20 pL) were made for each standard and the measured peak areas used to

construct a peak area vs. mass of amlodipine active calibration curve.

5.2.2 OQualitative tablet component quality conformance method development

5.2.2.1 Spectra pre-treatment

As described in Section 4.2.2.1, the gentlest mathematical spectral pre-treatment should
be applied to remove noise and reduce specular reflection without masking or hiding
spectral features that may be useful in the analysis. The spectra from the ten production
and four extended range tablet batches were utilised for optimising mathematical pre-
treatments and derivative transforms. Table 14 describes the optimised pre-treatment
with the associated desired effect. Figure 61 shows the success of the mathematical pre-
treatment to remove noise and normalise baseline shifts due to pathlength effects of
within and between batch tablet thickness variations and blend density scattering

effects. The success of the pre-treatment can be seen in Figure 61.
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Table 14: Optimisation of data pre-processing treatments for tablet analysis

Extract 800-1360 nm

Remove regions of high noise and non-linearity ofthe detector

response as well as region below 800 nm impacted by product

colour in the visible region

Five point smoothing

SNV nonnalisation

600 800 1000 1200 1400 1600
‘Wavelength / nm

0.5

0.5

800 900 1000 1100 1200
Wavelength / nm

1800

1300

Provide continuous curve through the 2 nm data interval

Remove baseline, path length & multiplicative scatter effects

Figure 61: (a) Raw NIR spectra of complete data set across full wavelength range, (b) pretreated

spectra NIR with reduced wavelength range, five point smoothing and SNV normalisation
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Derivatives are commonly applied to further remove slope effects and enhance spectral
peak features. For complex matrices such as tablet formulations, it is important to apply
appropriate derivative treatment to extract useful spectral features from the overlapping
absorption bands of both the API and other components in the formulation without loss
of information. This is vital in Norvasc® tablets as the percentage of amlodipine active

in the formulation is low (2.5% on weight basis).

The typical derivative transform used for tablet analysis recommended by FOSS is 2"
derivative. The resulting spectra from application of and 2"" derivative transforms

with five point derivative gap are shown in Figure 62.
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Figure 62: (a) f ‘derivative and (b) 2% derivative data with five point derivative gap
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To determine the optimum parameters suitable for the Norvasc® tablet data, impact of
the treatments for a region of the spectra specific to the amlodipine API was reviewed.
To identify the region related to the amlodipine API, the ten commercial and the four
development batches (75% to 125% label claim) were utilised to evaluate the
correlation coefficient between the nominal amlodipine active content and NIR
absorbance at each waveleﬁgth for both first and second derivative maths treatment
using the lowest gap for both 1** and 2™ derivative transforms. The correlation plots in
Figure 63 demonstrate regions at 1100-1140 nm and 1120-1150 nm have high stable

correlation.
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Figure 63: Correlation to nominal amlodipine active content of (a) 1* derivative and (b) 2™

derivative data with five point derivative gap
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The spectrum of each individual formulation component was overlaid to examine the

region identified in the correlation plots in Figure 63 to ensure that the correlation seen

is due to amlodipine active absorption and not dilution or other effects. Figure 64 shows

the spectra ofall components with a five pt derivative data interval.
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Figure 64: Overlay of (a) f ‘derivative and (b) 2" derivative spectra of Norvasc® tablet
components; amlodipine besylate ( ), sodium starch glycollate ( ),calcium phosphate ( ),

microcrystalline cellulose ( ), and magnesium stearate ( )

Visualisation of component spectra identified the peaks at 1122 and 1136 nm as the
most promising wavelengths for specific measurement of the amlodipine active for

and 2"~ derivative mathematical treatments respectively.
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The NIR absorbance at these wavelengths correspond to second overtone N-H and
aromatic C-H vibrations (Figure 2) enabling good specificity in the measurement of
amlodipine active as the remaining components of the tablet matrix do not contain
aromatic and N-H functional groups. Note that both the amlodipine active (amlodipine

base) and the besylate ion contain aromatic functional groups.

First and second derivatives with varying data intervals were visually and statistically
evaluated using the ten commercial and the four 75% to 125% development batches to
assess the correlation of NIR absorbance with the nominal amlodipine active content at
the regions identified in Figure 64. Table 15 shows the correlation at the centre of the
stable correlation region and the associated range of derivative spectral absorption for
different derivative gap intervals. Note that the centre of the stable region shifted as

indicated for the 1* derivative spectra as the data interval gap increased.

Table 15: Optimisation of derivative data transforms for tablet analysis

First derivative Second derivative

Data gap | Correlation Absorbance range Correlation Absorbance range

Interval | (wavelength) (and values) (wavelength) (and values)

5 0.9735 0.007624 -0.9038 0.002048
(1122nm) | (0.01017-0.01779) | (1136nm) | (0.001371-0.00342)

6 0.9661 0.007016 -0.9034 0.001869
(1122nm) | (0.01039-0.01741) | (1136nm) | (0.001643-0.003513)

7 0.9535 0.006413 -0.9034 0.001687
(1120nm) | (0.007090-0.01350) | (1136 nm) | (0.001905-0.003591)

8 0.9391 0.005841 -0.9041 0.001508
(1120 nm) (0.007496-0.01334) (1136 nm) (0.002141-0.003649)

9 0.9156 0.005359 -0.9058 0.001339
(1118nm) | (0.004768-0.01013) | (1136nm) | (0.002344-0.003682)

10 0.8845 0.004922 -0.9086 0.001183
(1116 nm) | (0.002449-0.007372)| (1136 nm) | (0.002508-0.003691)
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It was found that 1% derivative data transform resulted in improved correlation of
absorbance to nominal amlodipine active content and a five point derivative gap

enhanced absorbance sensitivity (higher absorbance and wider absorbance range).

5.2.2.2 Model development

PCA of the optimised pre-treated spectra of the ten historical production batches was
used to assist in the selection of six production batches that represented the range of
acceptable variation in excipient and amlodipine active variation in commercial
production (which covered four years of manufacture). Six PCs were required to

describe 90% of the spectral variance.

While the first two PCs explained 75% of the variance, it should be noted that the
spectral variance explained is primarily physical scattering effects (the separation of
scores into two groups in Figure 65(a) relates to production batches manufactured on
the two tablet press brands, Korsch and Fette. Note that two Fette and one Korsch tablet

presses were utilised at the manufacturing facility to compress Norvasc®.

The production batches at the extremes of the PCA scatter plots (representing four years
of production and all tablet presses) were chosen for the historical dataset, representing
the natural physical variation as well as variation due to the chemical components of the
formulation. The remaining four batches were utilised for validation (covering three

years of production batches and all tablet presses).
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Figure 65: PCA scores scatter plot for the ten production batches for (a) PCs 1 & 2, (b) PCs 3 & 4

and (¢) PCs 5 & 6 witb selected historical dataset set in bold
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Options for simple non-regression qualification chemometric techniques were reviewed
that would be specific for the tablet attribute of interest, the amlodipine active content.
The simplest technique is the use of single wavelength absorbance values. Absorption at
1122nm was previously shown to be appropriately specific to amlodipine API (see
Figure 63(a) and Figure 64(a)) and was selected as one of the qualitative metrics for

further investigation for the conformance method.

Correlation and normalised SD algorithms over a reduced range were considered. As it
was desired that the conformance method would indicate direction of deviation when
not in conformance, average normalised SD over reduced range with sign maintained
(absolute value not taken) was selected for further investigation. For ease of discussion

this is termed ANSD-RR hereafter.

Given the heavy influence of physical effects in the PCA, it was determined that
PCA-MD would not provide specificity for amlodipine active content without training
the PCA with the extended range batches. Such training would equate to a regression or

discriminant analysis approach and is explored and discussed in Section 5.3.

Normalised SD models were developed in DMentia software using the default threshold
of 3. The model was then applied in DeLight software to predict normalised SD results
for the historical dataset. ANSD-RR values were then calculated from the normalised
SD value across the wavelength range 1110-1132 nm (the region with correlation over
0.75 in the correlation plot shown in Figure 63(a)). The absorbance value at 1122 nm
for the pre-treated 1% derivative spectra were also obtained from DeLight software

(termed 1122 nm Absorbance for ease of further discussion).
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5.2.2.3 Establishment of the conformance SPC charts

Once the conformance chemometrics have been established and models created, SPC
charts must be established that will monitor results within and between batches over
time. This ensures that, although the metric is calculated against a static model (in the
case of the ANSD-RR method), batches can be compared to historically acceptable
deliveries over time and trends towards non-conformance can be identified prior to

failure.

For tablet analysis, assessment on a unit dose level is required (at the individual tablet
basis) as well as overall batch quality. Additionally, within batch trend analysis is
required when NIR analysis is performed throughout production at the process

monitoring level.

To establish the individual tablet SPC chart, the 1122 nm Absorbance and ANSD-RR
data for the six batches in the historical dataset (tabulated in Appendix 3 on page 297)
were exported into Minitab software to establish normality to allow the development of
Shewhart'*” SPC charts. The Graphical Summary function in Minitab was used to
represent the data and assess normality for each conformance metric (Appendix 4 on
page 299). No evidence of non-normality was observed (p>0.05) at the 95% confidence

level. Normality p-value for each set of data is shown in Table 16.

Figure 66 shows the Minitab I-chart for the historical dataset. The mean and standard
deviations applied in establishing the control charts are shown in Table 16. Control
limits (___) were set at three standard deviations from the mean (__ ) to represent the

“Voice of the Process” (VOP).
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Table 16: Parameters used to generate the SPC charts for the qualitative tablet component

conformance methods

1122 nm
Absorbance ANSD-RR
/7-value 0.053
Mean
0.01411 -0.00002
(Absorbance)
Standard Deviation
0.0004070 0.8422
(Absorbance)

0.0155

UCL=0.015333
0,0150
0.0145

X=0.014112

£ 0.0140
0.0135
0.0130

LCL=0.012891

%
UCL=2.527
X=-0.000
LCL=-2.527
v/ \

Figure 66: I chart for the historical dataset for (a) 1122 nm Absorbance & (b) ANSD-RR
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To demonstrate that the determined SPC chart with VOP limits are appropriate, the SPC
chart was applied to new tablets from four commercial production batches and the
development tablets intentionally manufactured outside of normal amlodipine active

content.

The SPC chart for 1122 nm Absorbance data shown in Figure 67(a) demonstrates that
the thresholds are appropriate to monitor when individual values fall outside the
established nornial process (marked in red with “I”) and also when trends occur such as

runs oftablets on either side ofthe mean (marked in red with “2 7).

0,018 ! RERT 1 1
I N
2 0.017 ! HfIWyV : !
1 1 1
»y 0.016 1 | |
1 1 1
I 0.015 r A . . UCL=0.015333
AV 1
S 0.014 ! St X=0.014112
© i
9 oon3 I . LCL=0.012891
<
I 0.012 | !
m 1 1
S 0.011 1 |
1 1
0.010 |, ! !
% % %
/
A 0
(a) o o <O
7.5 1 1 1
1 1
5.0 11 [1
0 T
02'5 1 1 1 uUCL=2.53
0
1
0.0 1 , ol X=-0.00
1
a 1 1 2
2.5 . LCL=-2.53
< Yy ol .
1 1 1
-5.0 1 1 1
111 1 1 1 1
(b)

Figure 67: I-chart for the verification data showing verification batches for

(a) 1122 nm Absorbance and (b) ANSD-RR
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The control chart for ANSD-RR shown in Figure 67(b) shows that the VOP limits
indicate some of the tablets that are at the limits of acceptable amlodipine active content
(85% label claim) are within the expected normal population of the process. This
indicates a lack of sensitivity (analyte response) of the method (potentially from
averaging in response of other components absorbing near to the amlodipine API).
However, it also may indicate that the development tablets were not at the nominal

amlodipine active content.

It is important to establish thresholds that also effectively flag when the amlodipine
active content of tablets fall outside the acceptable “Voice of the Customer” (VOC)
range rather than just the VOP, i.e. when the amlodipine active content falls outside an
acceptable level rather than just outside the established normal process variation. For a
product developed under QbD, the VOP may be considered the normal operating range

while the VOC may be considered the limits of the defined design space.

Large discussions have been held within the pharmaceutical industry regarding
application of the Pharmacopeial content uniformity concept to large sample sizes.'”
However, looking at what is an acceptable content for each individual tablet that reaches
the market, we can apply a conservative threshold for the VOC of an absorbance that is

equivalent to a amlodipine active content of 15% from target label claim.

The VOC limits can be set by the use of tablets with known amlodipine active content
and correlating the algorithm output to amlodipine active content. One of the key
benefits of the conformance methodology is the reduced number of samples required to
validate the approach and hence the reduced reference chemistry required. Two tablets
from each of the verification batches were used to establish the VOC limits by
performing a simple linear regression on the algorithm output and HPLC assay results

(in mg per tablet) acquired through reference chemistry.
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The data used to establish the VOC limits are shown in Table 17 and indicate that the
tablets in the 85% development batch would be expected to just be beyond ‘acceptable’
tablets (assaying at an average of 83% label claim, while the 115% development batch
would be expected to fall just within the ‘acceptable’ tablet range (assaying at an
average of 114% label claim). Note that the 75% Development batch was assayed at
67% of label claim (while the other development batches were assayed closer to the
targeted percentage of label claim). This indicates an error likely occurred in calculating
or dispensing the excipient used to dilute the Norvasc® blend during the manufacture of

the 75% development batch.

Table 17: Reference chemistry results used to establish VOC limits

HPLC Assay % Label 1122 nm ANSD-RR
(mg / tablet) Claim Absorbance (Absorbance)
75% Development 1 3.42 68.4% 0.01084 -4.401
75% Development 2 3.35 67.0% 0.01049 -4.954
85% Development 1 4.20 84.0% 0.01221 -2.390
85% Development 2 4.09 81.8% 0.01199 -2.757
115% Development 1 5.74 114.8% 0.01611 3.243
115% Development 2 5.68 113.6% 0.01592 2.993
125% Development 1 5.94 118.8% 0.01711 5.051
125% Development 2 6.03 120.5% 0.01763 5.859
Production 1-1 5.04 100.7% 0.01392 -0.6385
Production 1-2 4.89 97.8% 0.01370 -0.9206
Production 2-1 491 98.1% 0.01362 -1.154
Production 2-2 4.80 96.0% 0.01360 -1.177
Production 3-1 4.800 96.0% 0.01446 0.7235
Production 3-2 4.96 99.1% 0.01453 0.8534
Production 4-1 4.89 97.7% 0.01380 -0.3828
Production 4-2 4.95 98.9% 0.01390 -0.2465
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The regression and resulting equations are shown in Figure 6¢s. The VOC limits can be
established from the equation for 4.25 mg / tablet (85% of label claim) and 5.75 mg /
tablet (115% of label claim). The calculated VOC limits for the two metrics are shown

in Table 18.

6.5 HPLC = - 0.5132 + 383.7 (1122nm Absorbance)
6.0

5.5

5.0-

4.5-

4.0

35

0.161005

R-Sq % .1%
3.0

0.010 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018
1122 nm Absorbance (Absorbance)

6.5 HPLC = 4.859 + 0.2464 (ANSD-RR)

6.0
5.5
5.0
4.5
4.0
35

3.0

-5.0 -2.5 0.0 2.5 5.0
ANSD-RR (Absorbance)

Figure 68: Regression fitted line and equation for sixteen representative tablets from the

verification batches for (a) 1122 nm Absorbance and (b) ANSD-RR
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Table 18: Calculated VOC limits for 1122 nm Absorbance and ANSD-RR metrics

1122 nm Absorbance ANSD-RR
85% Label Claim 0.01241 -Z472
115 Label Claim 0.01632 Less

Figure 69 shows the control chart of the verification batches with both the VOP limits
(__ ) and the VOC Limits ( _ ). Note that the VOC limits are offset from the VOP
limits as the VOC limits are centred about the target assay content (label claim) and not

based on the process mean ( ),

0.018 4
2 0.017
0.016323
fo 0.016 -
I UCL=0.015333
0.015
¢ oows X=0.014112
1 0.013 LA~0.012091
i 0.012414
I 0.012 h1
R 0.011 ! !
)
0.010 Yo
(a) % % % %
75 I ] ]
! AR : :
| 1
5.0
I I
______________________ 3.62
I | | | UCL=2.53
|
0.0 : X=-0.00
|
247
25 T , T [(1~-2.53
i1 | |
| I |
5.0 I I
(b) V % % %

Figure 69: I-chart for the verification data showing verification batches with VOC and VOP limits

for (a) 1122 nm Absorbance and (b) ANSD-RR
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Applying the equations determined in Figure 68 to the process mean values used to
establish the VOP limits found that the process mean was equivalent to a HPLC
amlodipine active content results of 4.902 mg and 4.859 mg per tablet for the 1122 nm
Absorbance and ANSD-RR methods respectively. The average of the HPLC results for
the verification production tablets (shown in Table 17) confirmed the offset to label

claim with the average assay 4.903 mg per tablet.

It is also of note that the suspected sensitivity issue of the ANSD-RR method was
confirmed through the addition of the VOC limits. The VOC limits fall within the VOP
limits at low amlodipine active content showing that the method is not capable of
accurately discriminating tablets at the limits desired. This may be a factor of non-linear

response in the ANSD-RR metric (r* of 0.916 as shown in Figure 68b).

The verification results of the 1122 nm Absorbance method show that the derived SPC
charts for the individual tablets (reflecting both the VOP and VOC) is appropriate to be
applied during the tabletting process to monitor individual tablets as they are
manufactured. The SPC chart correctly identified that the 115% development batch
tablets were at or just within VOC limits while identifying the 85% development batch
tablets were at or outside of the VOC limits. The 1122 nm Absorbance control chart

also showed sensitivity with separation of the tighter VOP limits from the VOC limits.

The developed SPC charts would provide sufficient insight into the content uniformity
of processes when applied throughout tabletting operations by identifying individual
tablets beyond 85 — 115 % label claim, thus allowing manufacturing to count the
number of tablets beyond the acceptable range, arrange for confirmatory testing and

asll9

determine batch compliance to content uniformity as described in Sandell approach

for content uniformity for large n.
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The established individual SPC chart addresses the important question of whether each
individual tablet is within the normal process limits and also whether the tablets
analysed will meet quality requirements (average amlodipine active content and content
uniformity). However, there are key process questions that the individual tablet SPC

chart alone does not address, namely whether:

1.  any abnormal process trends exist for a given batch compared to normal

batch trends,
2. any abnormal within batch process trends exist for a given batch,
3.  the overall variation within the batch is typical.

To enable monitoring of tablets throughout the process to address these questions, the
number of tablets to be tested at each sampling point and the frequency of sampling
must be established. The number of samples to be taken at each time point should be
kept to a minimum to prevent burden on operators, while being sufficient to give a
representative set of samples to derive the time point sample mean to represent the
amlodipine active content in the product at that point of tabletting. Five tablets were
considered appropriate to yield an accurate estimate of the sample point mean.
Increasing this number will only give more information about the consistency of the
individual tablet punches on the tabletting press turret (typically composed of 20 to 40

punch / die sets).

The frequency of sampling must be set to ensure adequate description of the process
trends and should be considered proportional to the frequency of any known process
events (e.g. tablet press operational adjustments). With modern automatic tablet presses
it is suggested that half hourly to hourly sampling would be sufficient. The batch size
and resulting tabletting process run time should also be considered to ensure that a

minimum of 20 sample positions are achieved. A minimum of 20 sampling positions
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will provide opportunities to identify runs and cyclic patterns in the data. Consideration
should also be taken as to whether different frequency should be applied at tablet press
stoppages, shift changes or bulk blend feed changes (e.g. changing holding bins, or

refilling rate of tablet press feed hopper).

The tablet press compression speed and batch size for Norvasc® 5 mg tablets at the
facility at which this work was conducted led to the tabletting operation requiring
35-40 hours. Product was collected in pails with one pail equating to approximately
30 minutes of tabletting. It was determined that five tablets would be taken at the
completion of each pail at approximately 30 minute intervals to ensure that each sample
point represents equal portions of the tablet product (by tablet volume manufactured).
This testing frequency required less than three minutes of analysis time for each

sampling point.

To address whether any abnormal process trends exist for a given batch compared to .
typical batch trends, individual tablets analysed throughout tabletting for six process
batches were reviewed. The data were represented in a time series plot to establish
whether any characteristic process trends exist for the Norvasc® tableﬁing process.
Figure 70 shows the trend of the 1122 nm Absorbance result for six commercial batches
manufactured on three models of tablet presses with five tablets sampled every half

hour.

No characteristic process signature occurs batch to batch. Batch four and five
(manufactured on two different tablet press brands) show an increase in absorbance over
the length of the process run then a decline near the end of the batch while batch six
shows a decrease in absorbance throughout the batch. As there is no typical systematic
process signature, process signature trajectory modelling across batches would not be

beneficial.

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 208 of 305



0.0155
Batch 1
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PI P8 P16 P24 P32 P39 P47 P55 P63 P71 P78
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Figure 70: Time series chart of six commercial batches showing lack of common process signature

across the tabletting operation

To address the second process monitoring question, SPC charts to assess within batch
trends for a time ordered subset of the process were required. These control charts
would identify deviations from the process and allow monitoring of changes to the
process trends within a batch. Assessment of the six process batches (with five tablets
sampled at half hourly intervals), determined that the I-chart and Moving Range (MR)
chart for Sample Means and the Run chart were appropriate control charts to assess

within batch process trends.

The I-chart for Sample Mean identifies any process deviation using within-batch control
limits set at three standard deviations from the batch mean value. The MR chart for
Sample Mean identifies any sudden shift from one time point to the next time point
beyond what is nonnally observed for that batch. The Run chart complements the
I-chart by objectively identifying the presence of trends, patterns or deviations which

cannot be explained by random variation.
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It should be noted that the standard X-bar chart could not be used as the process limits
are based on the within sample point variation (representing the variation in tablet
punch/ dies in the tablet press turret), therefore the I-chart for Sample Means is used to
ensure that the process control limits are based on between sample point and across the

process variation.

Figure 71 and Figure 72 show an example of the I-MR and Run chart respectively for
the first of the six batches used to develop the SPC strategy. The 1-MR chart (Figure 71)
shows that several sampling points are beyond the expected population (beyond three
standard deviations of the batch mean) and also that there are four sudden shifts
between sampling points. The Run chart (Figure 72) also indicates that there is a
significant degree of clustering of points on one side of the mean (p-value for clustering
<0.05). These plots provide insight into the tabletting operation. This information may
be able to be aligned with tablet press operation parameters, powder blend charging and

also operator shift patterns to enable further improvements to process capability.

0.0152 -
0.0150 -
X=0,0148542
00148 -
1 o0146 -

0,0144 -

Observation

0,0004
00,0003
0O 0,0002

z 0l

0,0000 LCL=0

MR=0,0000697

Observation

Figure 71: I-MR chart of 1122 nm Absorbance for the T historical batch showing within batch
trends with (a) I chart for sample mean (Absorbance) and (b) MR chart for sample mean

(Absorbance)
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Approx P-Value for Mixtures: 1.000 Approx P-Value for Oscillation: 0.766

Figure 72: Run chart of 1122 nm Absorbance (Absorbance) for the T* historical batch showing

within batch trends

To address whether the overall variation within a bateh is typical, a mechanism to
monitor both the overall spread and the variation pattern of results in a large sample set
was required. Six real process data sets were used to investigate various methods for

monitoring the spread and variation pattern aspects ofthe process.

The fact that the sample size differs between batches when samples are taken on a time
basis complicates the establishment of appropriate measures. Sampling by product
volume (per product pail) was an attempt to limit this effect however fill height per pail

was subjective (manual switch of pail by operator).

Standard statistical theory postulates that the probability of sampling at the extremes of
the sample population increases as sample size increases. However, this is the situation
when randomly sampling from a population, where each tablet has equal probability of
being selected for testing. This situation does not occur with time-based process
monitoring as tablets are targeted specifically for analysis based on the manufacturing
process time. In time based sampling, samples at the extremes of the sample population

will be captured in greater numbers only if the frequency of sampling increases at the
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time points of increased process instability or extremes of process trends. The process is
likely to be most unstable at the start of manufacturing and at the very end of the
tabletting process where powder flow to the powder press can become disrupted from
normal mass flow characteristics. Sampling is no longer random, therefore conventional

probability calculations no longer prevail.

An assumption can be made that the sampling frequency has been set appropriately to
capture the breadth of the process and that the subset of tablets taken from the process is
truly representative of the process. Here we must assume that the operation speed of the
tablet press does not change throughout the manufacturing process so that each time
point represents an equal portion of the process throughout manufacturing. In this
instance the range calculated across all samples in the subset will be a reflection of the
range of the process, regardless of the sample size (given a fixed batch size) and thus

the range can be used to indicate the spread of the batch population.

The six commercial process batches were used to calculate the typical range for the
product. The range of the 1122 nm Absorbance was calculated and the Graphical
Summary function in Minitab used to represent the data and assess normality (Appendix
4 on page 299). No evidence of non-normality was observed (p>0.05) at the 95%
confidence level. The normality p-value is shown in Table 19. Note that output is an
estimate only as the number of data points is small, reducing the power of the normality

tests.'>’

Figure 73 shows the range Minitab I-chart of 1122 nm Absorbance for the six
commercial Norvasc® batches. The mean and standard deviations applied in
establishing the chart are shown in Table 19. The control limits () were set at three

standard deviations from the mean ( ) value.
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Table 19: Parameters used to generate the bateh range SPC chart for the qualitative tablet

component quality conformance method

/T-value 0.553
M
can 0.001032
(Absorbance)

Standard Deviation 0.000058

(Absorbance)

0.00125

UCL=0.0012057

o 0,00115
0,00110

~0,00105
X=0,0010317

0,00100
< 0,00095

% 0,00090

0,00085 LCL=0,0008577

Observation

Figure 73: I chart of the range of 1122 nm Absorbance for the six commercial Batches

The determination of the variability within the range is more complicated as the

calculation typically used, standard deviation, is in itself‘n’ dependent and does not just

rely on the sampling plan capturing an unbiased representative view of the process in

successive batches. The presence of process trends also affects the use of a standard

deviation calculation as the standard deviation calculation assumes the population is

randomly distributed about the mean. It may then be of more interest to assess the

distribution pattern ofthe data, independent ofthe distribution orientation to the mean.
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Distribution histograms are typically performed with the y-axis as the frequency of the
occurrence of results within contiguous equal sized divisions (or bins) of the range of
values. The use of frequency percent (frequency over the sample size) rather than just
the frequency ensures that the analysis is independent of sample size. The convention
on selecting the number of bins to use for developing a distribution histogram is to use
the square root of the number of samples. However, to be able to directly compare the
distributions histograms batch to batch, the same number of bins is required. For the
Norvasc® tablet process, the mean sample size was 370 tablets. This is likely a good
estimate of future sample size given the tablet press speed of operation and batch
volume. Therefore 19 bins were chosen for the analysis (close to the square root of
370). Figure 74 depicts the frequency distribution histograms for the six commercial

batches oftablets with the percent frequency occurrence across 19 bins.

-rrmT— m. .. T1Kk AU 120 T E—— 1 mi
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Figure 74: Distribution histograms for 1122 nm Absorbance for the six commercial batches

The shape of the distribution histogram (standardised across batches by the use of
percent frequency and constant binning) can be used to establish the boundary of

acceptable distribution where the limits are three standard deviations from the mean
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distribution curve (calculated from the six historical batches). This control mechanism
is analogous to the monitoring control methods available and routinely utilised for on-
line particle size monitoring PAT analyzers. However the application of such an

approach is novel to NIRS methods.

Figure 75 demonstrates the resulting distribution profile SPC chart with VOP limits
(__ ) set at three standard deviations from the mean frequency percent in each bin for
the six commercial batches used to establish the SPC strategy. A boundary limit of 0.0
was utilised for the lower limit at any bin that exceeded the allowed range of percent

values.

Note that although Minitab allows for frequency percent distribution histograms with
manual binning. Minitab does not have the capability to develop the distribution profile
SPC chart (without extensive macros which are not ideal within a GMP environment
due to software validation requirements). The distribution profile SPC chart was

therefore developed using Excel.

30%
Batch 6
25% - Batch 5
Batch 4
20% Batch 3
Batch 2
u 15% - Batch 1
Limits
10%
5%
0%

15

Figure 75: Overlay of distribution profiles for six commercial batches with the derived VOP

limits (__ )
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The application of I-MR for Sample Mean, Run charts, Range I-charts and distribution
profile SPC charts all provide significantly greater process understanding than simply
counting tablets that fall beyond 85 — 115 % Label Claim; the current best practise for
applying content uniformity assessment to large sample sizes.''® This is an example of
clear separation of process based analytical analysis verses regulatory directed quality
compliance driven analysis. It is this author’s position that such conformance based
approaches to process data are more scientifically sound and provides much greater
assurance of the quality of product produced by a well understood and controlled

process.

5.2.2.4 Implementation of the developed method concepts in manufacturing

The developed qualitative tablet component quality conformance method was applied to
three additional commercial batches independent of the batches used to establish the

conformance method to assess the suitability of the approach for implementation.

The application of the indiv.idual tablet SPC chart to the new commercial process
batches is shown in the three graphs in Figure 76 where five tablets were sampled at
half hourly intervals throughout the tabletting process. Figure 76 demonstrates that no
individual tablet falls outside the VOP or VOC limits. This demonstrates that the
process has generated tablets that conform to previous product history and that tablets
will meet the desired quality. Note that batches two and three are shifted towards lower

absorbance compared to batch one.
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Figure 76: Individual tablet SPC chart of 1122 nm Absorbance for three production batches;

(a) batch 1to (c¢) batch 3 with VOP ( ) and VOC ( ) limits & product mean (___ )
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The application of the within batch control charts for these three process batches are
shown in Figure 77 and Figure 78. The I-MR for sample mean SPC chart for the three
batches (Figure 77) indicates that within the three batches there are excursions beyond
the within batch process limits (flagged in red). The MR portion of the chart also has
identified that there are occasional sudden changes between time points that are higher
in magnitude than expected for batch one and batch three. This may align with tablet
press adjustments, refill of blend in press feed hoppers or operator shift patterns and is
worth further investigation to identify whether any of these factors can be improved to
positively affect the process capability. This was not conducted at the time of scanning

and was a missed opportunity for process knowledge.

The Run charts for the three batches shown in Figure 78 indicate that all three batches
have a higher proportion of clusters of points on one side of the mean than would be
statistically expected. As the p-value is less than 0.05 at 95% confidence, the
distribution of points in clusters is seen as likely due to non-random effects. This
indicates that there is likely to be a non-random cause of variation in the data yielding
the process signature for the process. The first batch also has a higher proportion of runs
of increasing or decreasing data than would be expected (p<0.05 for trends). The
presence of runs suggests the presence of underlying process trends and visually there
does appear to be a general cyclic pattern across the batch mean throughout the batch.
This information could provide insight into the tablet press operation through the day
and across different operator shift patterns. Further batches should be monitored with
these trend charts to establish any root causes for the within batch process signature
(clusters, point to point steps and runs) and whether there are opportunities for process

improvement.

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 218 of 305



0.0145
UCU=0,0144579

0.0144
0.0143
0.0142 LCL"0.0141962
0.0141
Observation
0.00024
0.00018
UCL=0.0001607
0.00012
MR=0.0000492
0.00000
Observation
UCL=0.0140321
0.0140
K.0.0138509
0.0138
LCL»0.0136696
0.0136
Observation
UCU.0.0002226
0.00020
I 0.00015
¢ 000
r 0.00005
0.00000 LCL-0
Observation
UCL-0.0139246
0.0139
0.0138
X=0.0137297
0.0137
0.0136
LCWO.0135348
0.0135
Observation
0.0003
UCii=0.0002395
0.0002
0.0001
MR=0.0000733
0.0000 LCU=0

Observation

Figure 77: 1-MR charts of 1122 nm Absorbance (Absorbance) for three production batches;

(a) batch 1to (c) batch 3 with within batch process limits (___ ) and batch mean (__ )
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Figure 78: Within batch Run chart of 1122 nm Absorbance (Absorbance) for three production

batches; (a) batch 1 to (¢) batch 3
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Figure 79 shows the Range I-chart for the three additional batches of the product using
the established threshold from the six production batches. Figure 79 demonstrates that
the three batches have unexpectedly narrow range compared to the six batches used to
establish the conformance Range chart limits. This may indicate the production process
was maintained more tightly and the tablets are more uniform or that the uniformity of
the blend under compression was improved. The breach ofthe lower control limit in the
SPC chart would warrant further investigation to determine why the range of the data is
narrowed in these batches and to determine how to influence the variability of tablet
product in future deliveries. This is an opportunity for learning about the process and
gaining process insight and process understanding. Once the reason for these two
batches to have reduced variability is understood, the historical SPC chart could be

updated to include these batches in the limit calculations.
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Figure 79: I-chart of Range of 1122 nm Absorbance (Absorbance) for three production batches
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Figure 80 demonstrates that the distribution profile of the amlodipine active content for
the three additional batches is within the acceptable distribution limits and that the
batches each conform to expectation. Note that the extremes of the distribution (the
‘tails’) are reduced in percent frequency despite the profiles being wholly with the
established normal profile for Norvasc® 5 mg tablets. This directly led to the out of

trend range output seen in Figure 79.

30%
Batch 3
25%, Batch 2
Batch 1
20% Limits
U 15% -
10%

5%
0% A
Figure 80: Distribution profile of 1122nm Absorbance (Absorbance) for three production batches

with established distribution profile SPC limits ( )

5.2.3 Qualitative Tablet Component Quality Conformance Method Discussion

The qualitative conformance methods investigated, and the resulting univariate
qualitative tablet component quality conformance method for Norvasc® 5 mg tablets,
were extremely rapid to develop with very limited reference chemistry (only 16 tablets).
This compares sharply with the traditional quantitative NIRS methods, which typically
require extensive development time and considerable reference analysis (in the order of
100-200 tablets). The qualitative approach, in its simplicity, requires less experienced
NIRS analysts to develop compared to traditional regression based approaches.

Competency in NIRS is still required to be able to select the qualitative metric that is
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most suited given the matrix and component of interest. Any of the diverse
chemometric techniques discussed in literature that are applied to classification of
materials may be utilised to develop a conformance approach. This research has shown
that qualitative metrics that provide continuous data with their signs are preferred so
that the direction of any identified deviation can be quickly discerned by the operator.
Within this work ANSD-RR was found to lack sensitivity despite appearing to be
specific to the amlodipine active content. Regression based approaches may be
necessary if a qualitative approach with sufficient specificity, linearity and sensitivity in

response for the attribute of interest cannot be achieved.

The developed conformance method includes the use of various SPC charts to monitor
individual tablets and within batch variation as well as conformance batch to batch.
Consideration of the ease of use within manufacturing operations (appropriate
complexity and easy to use operator interface) must be balanced with providing

sufficient information on the quality of the product and process capability.

During the development of this approach it was noted that vendor software typically
lacks the capability to provide flexibility to implement qualitative methods for purposes
other than identification and most also lack the ability to perform process relevant
statistics and develop and display SPC charts in real time. Some software has in-line
process modules in the software which can handle continuous data collection as the
process runs. However, these still generally apply the traditional identification and
quantitative algorithms in a continually updating mode. Many do not chart the results,
but rather tabulate the prediction results. Those that do graph results have limited user
customisation and / or require costly server data storage. There is also a general lack in
consideration to establishing conformance limits related to product history rather than
the static model. Current NIRS vendor software does not provide the means to perform

distribution profile analysis. If a manufacturing site has the software utilised for on-line
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particle size analysis, data could be exported and analysed in this software, otherwise
the data must be exported to Excel to perform this analysis manually. Ideally automated
capability would be available in NIRS vendor software. As part of this research, Pfizer
has worked with some NIRS software vendors to develop the ability to provide SPC
charts with minimal success. There continues to be a lack of flexibility to develop and

implement a range of SPC charts such as has been outlined in this research.

The DeLight software has the capability to reproduce the individual tablet I-chart
including VOP and VOC limits to allow the operator to monitor the results in real time.
It is possible to reproduce the I-chart and MR-chart for Sample Means within DeLight,
however, the control limits must be manually overlaid on the data by the operator at the
end of the batch as it is only once the batch is complete that the within batch process
control limits can be determined and overlaid on the plots. This can be performed with
appropriate steps outlined in a SOP. It is not possible to reproduce the Run chart or
distribution profile SPC chart within DeLight. Data must be exported to create these
conformance plots in Excel and Minitab and within the manufacturing environment this
would likely be performed by Quality Assurance personnel and would be valuable
information to include in batch documentation. Figure 81 shows the user interface that
operators can use to monitor the tablet conformance method in real time during

tabletting operations.

The developed approach provides a simple conformance SPC chart view for operators
to monitor during manufacturing within NIR software, while also providing
considerable process information about conformance within and between batches
through the use of additional SPC metrics at batch completion in external software

(Excel and Minitab).
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Figure 81: Operator interface for the developed qualitative tablet component quality conformance

SPC charts within DeLight software

The application of the qualitative conformance to commercial batches with frequent
sampling through manufacture demonstrated significant insight into the tabletting
operation. This is demonstrated through the application of the method to commercial
tablets monitored throughout tabletting discussed in Section 5.2.2.4. The individual
tablet 1-chart showed that each batch produced tablets that were within the historically
established product SPC limits (both at the VO? and VOC level). The I-MR and Run
charts, however showed each batch contained within batch variation that was seen as
significant at the 95% confidence level. It is possible that these events were within the
normal random behaviour of the process and within the 5% of the population expected
to fall beyond the limits. Further work may be valuable in understanding how events
identified in the I-MR chart and Run charts relate to tabletting press operation activities.
This was not undertaken at the time that the qualitative methods were applied to the
commercial batches. The three batches studied indicated the tablets were within an
acceptable distribution that fell within the established expected distribution (within the

SPG control limits for the product) however the distribution profile indicates a narrower

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 225 of 305



distribution with smaller tails resulting in lower than expected range in the conformance

method metric (range I-chart showed abnormally low range for two assessed batches).

It is important to understand the value of the information in terms of process knowledge
and how the new understanding relates to quality perspectives. Questions such as those

listed below may need to be considered;

e When does an out-of-conformance occurrence become an actionable
manufacturing deviation?
e What data or reports should be part of the batch record?

¢ Does deviation to historical norm necessitate an investigation

Hesitation to adopt such applications may result if the output is reviewed within the

traditional quality assurance mindset.

5.2.4 Summary - Criticality of research

This research investigated the use of data from two qualitative techniques (simple
univariate output and ANSD-RR) coupled with SPC charting to create a qualitative
tablet component quality conformance approach. Typically a qualification algorithm
output is used simply as a categorical classification technique and the extended use of
the data coupled with SPC for tablet process monitoring has not been previously

reported.

A conformance method based on univariate output was developed and applied to real
commercial batches of Norvasc® 5 mg tablets at a Pfizer facility and the value of the
work was demonstrated in the ability to interrogate batch to batch and within batch
trends in conformance as discussed in Section 5.2.2.4. The benefits and challenges to

the implementation for the conformance method were discussed including a
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commentary on the availability of vendor software to easily implement such

approaches.

Qualitative tablet component quality conformance methods can be applied for any tablet
component, not just the API. Success for the active component for Norvasc® 5 mg
tablets, which is at a low percentage by weight of the formulation, indicates that this
approach would be applicable for any component for any product, provided a qualitative
method can be developed with sufficient specificity, sensitivity and the appropriate
linearity of response. The requirement for the qualitative approach to provide
specificity, sensitivity and appropriate linearity was demonstrated with the ANSD-RR
approach lacking sensitivity and hence not meeting the needs of the application to

monitor tabletting at the process and VOC levels.

The application of the qualitative tablet component quality conformance method was
demonstrated to provide an opportunity to gain greater insight in to the tabletting
process and enable real time identification of deviation of process and product from the
normal operation. This approach allows rapid remedial action to prevent any occurrence
that would have the potential to greatly impact the pharmaceutical manufacturing
process and/ or product quality. This work is clearly aligned with the philosophy of
PAT through providing an in depth understanding of tabletting operations, providing

opportunity for process optimisation and improvement while also assuring quality.
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5.3 Semi-quantitative tablet component quality conformance

Although research in Section 5.2 has demonstrated the ability to establish a qualitative
tablet component quality conformance method, the success requires the qualitative
method to have sufficient specificity, selectivity and linearity as described in Section
5.2.3. Where development of such methods is challenging, a semi-quantitative approach
using regression based c¢hemometric techniques may be more appropriate. The
development and application of a semi-quantitative tablet component quality
conformance method using regression based chemometrics is described in this section

demonstrating the value of this research.

Norvasc® 5 mg tablets were selected as the target product as it was the highest volume
and highest value product at the manufacturing facility that the work was undertaken.
The use of the same research subject as was studied in Section 5.2 allowed direct
comparison of the qualitative and semi-quantitative conformance approaches with no

further analytical testing or NIRS analysis.

5.3.1 Materials and Methods

5.3.1.1 Design of analysis

The historical dataset established for the qualitative tablet component conformance
method research in Section 5.2.1.1 was utilised to develop the semi-quantitative
conformance method and establish SPC charts. The verification batches established in
Section 5.2.1.1 (including four commercial batches and the four development scale
extended range batches) were used to assist in optimising and verifying the suitability of
the method. Various regression algorithms were explored to select the most appropriate
modelling approach for the semi-quantitative tablet component quality conformance

method.
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The use of the same data sets for the semi-quantitative approach as with the qualitative
approach enabled direct comparison of the fit of both approaches for the purpose of
monitoring the tablet operation without the need to take into account differences in the

underlying sample sets.

The developed semi-quantitative tablet component quality conformance models were
then applied to the same nine commercial tablet batches outlined in Section 5.2.1.1 to
establish normal process behaviour (six batches) and assess the suitability of the
complete semi-quantitative tablet component quality conformance method (three

batches).

5.3.1.2 Reagents and samples

Non-film coated Norvasc® 5 mg tablets at production scales (over a four year period)
and development tablets at pilot batch scale were manufactured as described in Section

52.1.2.

HPLC grade methanol and purified water (both Riedel-de Haén, Seelze, Germany) and
potassium  dihydrogen orthophosphate  (Fisher = Chemicals, Loughborough,

Leicestershire, UK) were used for the HPLC mobile phase and diluent solvents.

5.3.1.3 NIR apparatus and software

NIR spectra for method development and verification (140 spectra in total) and for
tablet operation monitoring (nine commercial batches) were measured as described in

Section 5.2.1.3.
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Individual tablet components were evaluated during specificity assessment utilising a
1 mm deep top loading transmission cell (glass 20-C 1 mm cell (Starna Pty Ltd,

Australia)) for presentation for transmission NIR analysis.

Data analysis and calculation of the thresholds was achieved using DeLight software,
version 2.3b and Dementia 1.1b software (DSquared Development, La-grande, OR,
USA), Minitab version 16.1 (Minitab, Inc.) and Microsoft® Excel, version 9

(Microsoft® Corporation).

5.3.1.4 HPLC apparatus, software and methods

Reference chemistry measurements were made as described in Section 5.2.1.3.

5.3.2 Qualitative Tablet Component Quality Conformance Method Development

5.3.2.1 Spectra pre-treatment

The mathematical pre-treatment (800—1360 nm extract, SNV and five point smoothing)

1 derivative with five point gap) optimised in 5.2.2.1 was

and derivative transform (
applied to all spectra for the semi-quantitative tablet component quality conformance

method.

5.3.2.2 Model development

As univariate qualification methods were previously reviewed in Section 5.2,
multivariate regression techniques were explored. The simplest multivariate regression
technique, MLR (refer to Section 0), and the more traditionally applied PLS regression

(refer to 0), were chosen for further analysis.
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Rather than full regression techniques, a hybrid of DA (refer to Section 3.3.3) using
nominated values at five levels was chosen to reduce the volume of reference analysis
and create a semi-quantitative approach. The reference analysis results (in mg per
tablet) described in 5.2.2.3 on 16 tablets from the verification batches (results tabulated
in Table 17) were used to nominate values for each tablet in the historical batches used
to develop the regression model. Originally the intention was to apply the theoretical
amlodipine active content, 3.75, 4.25, 5.75 and 6.25 mg per tablet , for each of the ten
tablets in the 75 %, 85 %, 115 % and 125 % development batches. However following
the assay of the 16 tablets during the development of the qualitative tablet component
quality conformance method development (Section 5.2.2.3), it was apparent that
assigning the theoretical value was not appropriate due to the hypothesis error in
formulating the 75% development batch. Therefore, each tablet in the historical dataset
used to develop the calibration curve was nominated the amlodipine content based on
the result obtained from the HPLC analysis of the two representative tablets from the
verification data at each concentration level. The nominated amlodipine active content
for the ten tablets in the 75 %, 85 %, 115 % and 125 % development batches were 3.35,
4.15, 5.70 and 6.00 mg per tablet respectively. All production samples were nominated
amlodipine active content values of 4.90 mg per tablet based on the two representative
tablets assayed for each of the four verification batches. This result was lower than the
expected 5.00 mg per tablet (label claim) indicating either a slight offset in process
target (possibly tied to a purity assumption in dispensing the amlodipine API in the
formulation) and or systematic bias in the HPLC reference method. Note that the
discrepancy between expected and HPLC determined amlodipine active content is

within acceptable validation limits for a HPLC method.

For the purpose of discussion MLR-DA with nominated values is termed MLR-NV and

PLS-DA with nominated values is termed PLS-NV hereafter.
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The MLR-NV model (with two terms) was developed in DMentia software utilising the
historical dataset (composed of six production batches) and the first five development
spectra of each content level (for ease of discussion this data set is termed Regression
Dataset). Initially, the DMentia software was allowed to automatically pick the
optimum wavelengths for the two terms in the regression. The wavelength 1122 nm was

selected as the primary variable while 1282 nm was selected for the secondary variable.

Figure 82 shows the correlation plot for the first term in the MLR-NV regression
indicating that 1122 nm is the optimum wavelength for the primary wavelength as the
maximum occurs at a stable correlation. The primary wavelength is the same as that
identified in Section 5.2.2.1 as highly correlated to the amlodipine besylate content and
the wavelength utilised in the development of the qualitative tablet component quality

conformance method.
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Figure 82: Correlation plot for the 1st MLR-NV wavelength term

The correlation plot for the 2" term (Figure 83) shows the correlation at each
wavelength to the residual content (predicted content from 1% term subtracted from the
nominated content). This shows that spectra are strongly correlated to the residual

content between 1172-1194 nm and 1266-1294 nm with the maximum at 1282 nm.
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Figure 83: Correlation plot for the 2" MLR-NV wavelength term

Figure 84 shows the 1st derivative spectra focused on these wavelength regions to
illustrate the suitability of the wavelength choices. There is clear discrimination between
the content levels at 1122 nm indicating this wavelength is ideal for the primary
MLR-NV wavelength term, while there is no differentiation by content at 1196 nm or
1282 nm. As 1284 nm is a peak maximum, this wavelength would provide a more stable
wavelength selection as the secondary term rather than 1196 nm and 1282 nm.
Including the spectral information at this wavelength will stabilise the prediction and
correct for any underlying systematic noise in the spectra and as such 1284 nm was

selected as the secondary stabilising MLR-NV term.

Note that the correlation at 1284 nm in the 1% term correlation plot is very low

confirming that this wavelength is not collinear with 1122 nm.
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Figure 84: Zoomed 1st derivative spectra marked with MLR-NV wavelengths for the Regression

Dataset with; production batches (—), 85 % & 115% development batches (—) and 75 % & 125%
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A third term was reviewed however the third term had little impact on the MLR-NV
model statistics and wavelength selection was not clear (correlation appeared low with
no prominent features thus indicating that a third term will include random noise in the

regression). As such a two term model was chosen for further study.

The MLR-NYV results for the Regression Dataset used to create the model are tabulated
in Appendix 5 on page 301. The MLR-NV model statistics are show in Table 20 and
demonstrates the model is very capable of relating the correlation of tablet content
(*>0.95) with low error (SEE of 0.08634 represents a 1.727% error in estimating

content at label claim).

Table 20: Model statistics for the MLR-NV model

r2 0.9764
SEE
(mg/ tablet) | 0.08634
slope 0.9470
Intercept

(mg / tablet) 0.2584

To assess the capability of the MLR-NV model to predict satisfactorily for samples
independent of those used in the model, deliveries external to the Regression Dataset
were predicted with the models in DeLight and the prediction statistics reviewed. Four
production batches (ten tablets for each batch) and the remaining development tablets
(five tablets for each batch) were used to verify the model. The predicted results are
tabulated in Appendix 6 on page 303. The SEP for the MLR-NV predictions was
calculated according to Equation 17 and found to be 0.1024, yielding a SEP: SEE ratio
of 1.19. This close agreement in errors indicates that the MLR-NV model is very
capable when predicting new deliveries. Figure 85 depicts the residuals of the

predictions and indicates a degree of non-random scatter about zero.
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Nominated Content (mg / Tablet)

Figure 85: MLR-NV residuals plot for prediction of verification tablets

Despite the MLR-NV yielding appropriate prediction error, the non-random pattern of
the residuals indicates that there is a need to include further variables in the MLR to
explain all correlations in the data to the amlodipine active content. Including additional
wavelengths (increasing the terms in the MLR-NV analysis) is one option, however the
initial assessment showed little clarity in selection of the 3™ tenn and investigation of

PLS based models was preferred.

PLS-NV models were developed over the 810-1340 nm range in DMentia software
utilising the Regression Dataset. The range was reduced from 800-1360 nm due to
spreading of the data at the extremes of the range as an effect of the SNV correction
which had a strong influence on the PLS regression. Given the complexity of the
formulation (five components) and tablet physical matrix, an initial model was
developed with eight LVs to explore the wvariables and their relationship to the

amlodipine active content.

Review of the scores plots in Figure 86 and Figure 87, show that the data separates
relative to the amlodipine active content predominantly along the first and second LV

axes.
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Differences between batches and between commercial and development batches
(independent of amlodipine active content) appear to be explained in the 2" through 5"
LVs. Note also that the magnitude of the scores for fifth to eighth LVs in Figure 87 are

an order of magnitude lower than the earlier variables.
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Figure 86: LV scores plots for the regression data set (a) LVs 1vs. 2 and (b) LVs 3 vs. 4 with

samples from the development batches in bold
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Figure 87: LV scores plots for the regression data set (a) LVs 5 vs. 6 and (b) LVs 7 vs. 8 with

samples from the development batches in bold

Examination of the weights (red lines) of the LV spectral loadings (black lines) in
Figure 88(a) shows that the first LV includes the wavelength (1122 nm) that has
previously been identified to be highly correlated to the amlodipine active content. The
wavelengths of variation included in the next two LVs (refer to Figure 88(b)-(c)) relate
to 0-H functional group absorbance (at -970 nm) commonly seen in free moisture
(refer to Figure 2) and C-H functional group absorbance (1180-1240 nm) commonly
seen in aliphatic compounds (refer to Figure 2) indicating contribution from excipients

such as microcrystalline cellulose, magnesium stearate and sodium starch glycollate.
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Figure 88: Weighted loading for the PLS-NV model of regression dataset (a) LV 1to (¢) LV 3 with
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Figure 89: Weighted loading for the PLS-NV model of regression dataset (a) LV 4 to (¢) LV 6 with

loadings in black and weights in red
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The wavelengths of variation included in the fourth LVs (refer to Figure 89(a)) also
relate to O-H functional group absorbance (at ~970 nm) and contributions from
excipients. The variation explained in fifth LV is less obvious (Figure 89(b)), relating to
the differences between batch six and the other production batches and also differences
seen in the spike and dilute development batches compared to the production batches.
This is likely due to physical effects and tablet press as no distinct regions of the
wavelength are identified as assignable to functional group absorption of particular
formulation components and many wavelengths are affected (which would be expected
to be the case with physical effects affecting the entire spectrum). The sixth LV (Figure
89(c) once more shows contribution from the region likely indicative of a C-H
functional group absorbance and therefore is likely to be modelling residual batch to

batch or individual tablet to tablet matrix variations.

PRESS was calculated for the eight LVs with leave-one-out cross validation to assist in
selecting the optimum number of variables to use in the PLS-NV model. As expected,
Figure 90 shows a continued improvement in the SEE as an increasing number of LVs
are included in the model. This relates to the model being better able to describe the
Regression Dataset spectra as more spectral detail is included. The SECV shows a
marked improvement as the second LV is included and then decreasing error in parallel

to the SEE with the closest agreement occurring at the fourth LV.

Observation of the variation removed in the x-axis (spectral variance) as each LV is
included in the model shows a steep increase with the inclusion of the first five
variables (reaching 81.8% variance explained) then a slower increase thereafter. The
majority of the variation in the y-axis (amlodipine active content variance) is explained
in the first and second LVs (explaining 77.5% of the variance) with a gradual increase

in the variation explained for subsequent variables.
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Review ofthe scores, the loadings and the PRESS output indicates that five LVs may be
optimal and balances an improved error without over fitting and including noise and

unrelated variation which may lead to lack of robustness ofthe model over time.
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Figure 90: SE and variation for the PLS NV models developed with varying number of LVs

The PLS-NV results for the Regression Dataset used to create the model are tabulated in
Appendix 5 on page 301. The PLS-NV model statistics for the model is shown in Table
21 and indicates that the PLS-NV model with five LVs is capable of relating the
correlation of amlodipine active content (r*>0.95) with low error (SLL of 0.08805
represents a 1.761% error in estimating content of label claim). Also note the model
compares well with the MLR-NV model statistics described in Table 20 with similar

correlation and error.

Table 21: Model statistics for the PLS-NV model with five LV

r2 0.9745

SEE (mg / tablet) 0.08805
slope 0.9745
Intercept (mg/tablet) 0.01243
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To assess the capability of the PLS-NV model to perform satisfactorily for samples
independent of those used in the model, the verification data set utilised to assess the
MLR-NV model was applied to assess the PLS-NV model developed on five LVs. The

predicted results are tabulated in Appendix 6 on page 303.

The SEP for the PLS-NV model was calculated according to Equation 17 and found to
be 0.09220 yielding a SEP:SEE ratio of 1.05. This close agreement in the errors

indicates that the PLS-NV model is very capable when predicting new deliveries.

Figure 91 depicts the residuals of the prediction and indicates a slight degree of
non-random scatter about zero. The slight linear variation in the data will result in low
potency tablets being predicted slightly lower in expected content while over potency
tablets would be predicted slightly over expected content. This is equivalent to erring on
the side of caution. Note that the PLS-NV model shows more homoscedastic behaviour

than was seen in the MLR-NV model (refer to Figure 85).
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Figure 91: PLS-NV residuals plot for prediction of verification tablets modelled with five LVs
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Following review of the MLR-NV and the PLS-NV models, the five LV PLS-NV
model was selected for continued development of the semi-quantitative tablet

component quality conformance method.

5.3.2.3 Establishment of the conformance control charts

As was discussed in 5.2.2.3, once the conformance chemometrics have been established
and models created, SPC charts must be established that will monitor results within and

between batches over time.

To establish the individual tablet conformance control chart, the predicted amlodipine
active content from the PLS-NV model with five LVs for the six historical dataset
(tabulated in Appendix 6 on page 303) were exported into Minitab software to establish

137 control charts. The Graphical

normality to allow the development of Shewhart
Summary function in Minitab was used to represent the data and assess normality

(Appendix 7 on page 305). No evidence of non-normality was observed (p>0.05) at the

95% confidence level. The normality p-value is shown in Table 22.

Note that one tablet result was identified as a potential outlier. This individual tablet
was assayed by HPLC and confirmed that the amlodipine active content was higher
(HPLC assay of 5.20 mg / tablet) than would be expected from the data within the rest
of the historical data set. As HPLC confirmed the result, it was determined that it was
valid to include the tablet result in the historical dataset for the development of the SPC

charts.
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Table 22: Parameters used to generate the SPC charts for the semi-quantitative tablet component

quality conformance method

/7-value 0.061

Mean

4.903
(mg / tablet)

Standard Deviation

0.0875
(mg / tablet)

Figure 92 shows the 1-chart for the historical dataset. The mean and standard deviations
applied in establishing the control charts are shown in Table 22. Control limits ()
indicating the VOP were set at three standard deviations from the historical dataset
mean ( ) value. The confirmed higher amlodipine content sample is marked in red

with a “I” notation as the sample is beyond three standard deviations from the mean.
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Figure 92: 1-chart for the historical dataset for the PLS-NV model
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As the units of measure for the output from the PLS-NV predietions are in mg per
tablet, VOC limits ean be applied direetly. Aligned with the VOC limits applied in the
qualitative tablet component quality conformance method, limits were set at £15 % of

label claim (4.25 and 5.75 mg per tablet).

To demonstrate that the determined VOP and VOC limits are appropriate, tablets from
four further commercial production batches and the remaining five extended range
development tablets were assessed with the developed SPC chart. Figure 93
demonstrates that the thresholds are appropriate to monitor when individual values fall
outside the established normal process as all development batch samples are marked in

red with the“1” denoting the samples exceed the VOP limits.

UAL=5.165
X=4.903

u L(~=4.640
4.5

4.25

e

Figure 93: I-chart for the verification data showing verification batches with VOC ( ) and VOP

() limits

The tablets assayed by HPLC and used to nominate amlodipine active content values
(shown in Table 17) indicate that the tablets in the 85 % development batch would be
expected to just be beyond ‘acceptable’ tablets (assaying at an average of 4.15 mg per

tablet), while the 115 % development tablets would be expected to fall just within the
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‘acceptable’ tablet range (assaying at an average of 5.71 mg per tablet). The SPC chart
shown in Figure 93 aligns directly with these expectations demonstrating the suitability

of the VOP and VOC limits.

The verification results of the PLS-NV method show that the derived SPC chart for the
individual tablets (reflecting both the VOP and the VOC) is appropriate to be applied
during the tabletting process to monitor individual tablets as they are manufactured. The
SPC chart correctly identified that the 115% development samples were at or just within
VOC limits while identifying the 85% development were at or outside of the VOC

limits.

The developed SPC charts would provide sufficient insight into the content uniformity
of processes when applied throughout tabletting operations by identifying individual
tablets beyond 85-115 % label claim allowing manufacturing to count the number of
tablets beyond the acceptable range, arrange for confirmatory testing and determine
Pl

batch compliance to content uniformity as described in Sandel approach for

content uniformity for large n.

The established individual control chart addresses the important question of whether
each individual tablet is within the normal process parameters for that product and also
whether the tablets analysed will meet quality requirements (average amlodipine active
content and content uniformity). To assess the key process questions identified in
5.2.2.3 (within batch trends and overall batch variation conformance), control charts
aligned with that developed for the qualitative tablet content conformance method
(described in 5.2.2.3) were developed. The batches of Norvasc® 5 mg tablets utilised in
the development of the process monitoring SPC chart strategy in 5.2.2.3 were again
utilised for the semi-quantitative tablet component quality conformance method to

allow direct comparison of the two approaches.
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For each of the nine batehes (representing the use of three tablet presses), five tablets
were taken at half hourly intervals throughout tabletting operations. This frequency was

set based as per diseussion in Section 5.2.2.3 on page 208.

Although no typieal systematie proeess signature was seen in the qualitative tablet
component conformance method (refer to Figure 70), the data output from predietion
with the PLS-NV model were reviewed for the same six eommereial batehes. Onee
more. Figure 94 shows no characteristic batch to batch process trends / trajectories
existed for the Norvasc® tabletting proeess. As there was no typieal systematie process

signature, proeess signature trajectory modelling across batehes was not pursued.
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Figure 94: Time Series chart of six commercial batches showing lack of common process signature

across the tabletting operation

I-MR chart for Sample Means and Run charts were developed as control charts to assess
within batch process trends. Figure 95 and Figure 96 show an example of the [-MR and
Run charts for the first of the six historical batehes used to develop the control chart

strategy.
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The I-MR chart (Figure 96) shows that several sampling points are beyond the expected
population (beyond three standard deviations of the batch mean marked with a “1”) and
also that there is a series of data points on one side ofthe mean (marked with a “2”). No

sudden shifts between sampling points were identified in the MR chart.

5.05

LCL=4.9118

Observation

Observation

Figure 95: I-MR chart of predicted amlodipine active content (mg / tablet) for the T' historical
batch showing within batch trends with (a) I-chart for sample mean and (b) MR chart for sample

mean

The Run chart (Figure 96) indicates that there is a significant degree of clustering of
points on one side of the mean (p-value for clustering <0.05) and also a degree of
trending up and down (/;-value for trends < 0.05). Data were not found to alternate up or
down or to have any significant oscillating / cycling pattern (/?-value for mixtures and

oscillations > 0.05).

As was noted in the qualitative tablet component quality conformance method, these
plots provide insight into the tabletting operation. The information may be able to be
aligned with tablet press operation parameters, powder blend charging and operator shift

patterns to enable further improvements to process capability.
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Figure 96: Run chart of predicted Amlodipine active content (mg / tablet) for the 1* historical batch

showing within batch trends

An I-chart for ranges was calculated across all samples in the six commercial process
batches to establish a SPC chart to monitor the spread of amlodipine active content
across the batch. Once more an assumption is made that the systematic sampling by
time provides a means to capture the approximate spread of the batch population. As
this sampling strategy was applied for all batches, the assumption is that the SPC ehart
developed with six historical commercial batches will approximate future manufactured

batches.

The range of the predicted amlodipine active content (from the PLS-NV model) was
calculated and the Graphical Summary function in Minitab used to represent the data
and assess normality (Appendix 7 on page 305). No evidence of non-normality was
observed (/7>0.05) at the 95% confidence level. The normality /7-value is shown in
Table 23. Note that output is an estimate only as the number of data points is small,

reducing the power ofthe normality tests. 13
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Figure 97 shows the Minitab 1-ehart for ranges for the historical dataset. The mean and
standard deviations applied in establishing the control charts are shown in Table 23. The

control limits ( ) were set at three standard deviations from the mean ( ).
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Figure 97: I chart of the range of PLS-NV predicted amlodipine active content for the six

commercial batches

Table 23: Parameters used to generate the range SPC chart for the semi-quantitative tablet

component quality conformance method

/7-value 0.690

Mean
0.3580

(mg / tablet)

Standard Deviation
0.0534

(mg / tablet)

Distribution profiles were derived from frequency distribution histograms of the
PLS-NV model predictions as discussed in Section 5.2.2.3. To enable direct comparison
batch to batch and the development of an appropriate control mechanism, the
distribution histograms were standardised through the use of percent frequencies rather

than absolute frequencies and also by the use of 19 data bins (as discussed in Section
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5.2.2.3). Figure 98 depicts the frequency distribution histograms for the six commercial

batches oftablets with the percent frequency occurrence across 19 bins.

Figure 98: Distribution histogram of the PLS-NV predicted amlodipine active content for the six

commercial batches

The curves of the distribution histograms (standardised across batches by the use of
percent frequencies and constant binning) were used to establish the boundary of
acceptable distribution (control limit was set as three standard deviations from the mean
of the established typical distribution). Figure 99 shows the control chart for the

distribution profiles developed from the six commercial batches.
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Figure 99: Overlay of distribution profiles for six commercial batches with derived control

limits ( )

The developed semi-quantitative tablet component quality confonnance method
provides significantly greater assurance of the quality of the product through providing
a mechanism to demonstrate the product is manufactured using a well understood and

controlled process.

5.3.2.4 Implementation ofthe developed method concepts in manufacturing

The application of the individual tablet control chart to commercial process data (five
tablets sampled at half hourly intervals throughout the tabletting process) is shown in

Figure 100.
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Figure 100: Individual tablet SPC chart of predicted amlodipine active content (mg / tablet) for
three production batches; (a) batch 1to (c) batch 3 with VOP ( )and VOC ( ) limits and

product mean ( )
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Figure 100 demonstrates that batch two and three are centred about the VOP mean with
no tablets beyond the VOP limits. Batch one is shifted to lower amlodipine active
content with three individual tablets at or just outside the VOP limits. It may have been
of interesting to rescan the out of trend tablets alongside a control to verify that the
analysis was representative with no operator errors. This was not conducted at the time
of scanning. No individual tablets fell near the VOC limits demonstrating tight
processing control and that tablets will meet the desired quality expectations. The shift
in batch one mean from the established product mean is of interest and indicates an

opportunity for process understanding and improvement.

The application of the within batch control charts for the three process batches used
previously are shown in Figure 101 and Figure 102. The I-MR control charts for the
three batches shown in Figure 101 indicate that within the three batches there are
excursions beyond the within batch process limits (flagged in red and marked with a
“1”). Batch one and three also have occurrences of nine consecutive sample points on
one side of the line (flagged in red and marked with a “2” in the chart). The MR chart
also has identified that there are occasional sudden changes between time points that are
higher in magnitude than expected for batch one and three. This may align with tablet
press adjustments, refill of blend in press feed hoppers or operator shift patterns and is
worth further investigation to identify whether any of these factors can be improved to

positively affect the process capability. As mentioned in Section 5.2.2.4, this was not

conducted at the time of scanning and was a missed opportunity for process knowledge.
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Figure 101: 1 MR chart of predicted amlodipine active content (mg / tablet) for three production

batches; (a) batch 1to (c) batch 3 with within batch process limits () and batch mean ( )
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The Run charts for the three batches shown in Figure 102 indicate that Batches one and
three have a higher proportion of clusters of points on one side ofthe mean than would
be statistically expected (as (/?7<0.05) at 95% confidence, the distribution of points in
clusters is seen as likely due to non-random effects. No batch is seen to have a
significant number of consecutive runs, oseillations/cyeles or alternating values

(mixtures).

The information regarding within batch process trending could provide insight into the
tablet press operation through the day and across different shift patterns or the impact of
charging blend into the blender. Further batches should be monitored with these trend
charts to establish any root causes for the within batch process signature (clusters, point

to point steps) and whether there are opportunities for process improvement.

Figure 103 shows the Range 1-ehart for the three additional batches of the product using
the established threshold from the six commercial batches. The range of all three
batches conforms to the established control limits indicating that the range of the

amlodipine active content is typical for Norvasc® 5 mg tablet batches.
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Figure 103: I-chart of range for predicted amlodipine active content (mg / tablet) for three

production batches
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Figure 104 shows the derived distribution profile SPC chart for the three verification
production batches. The distribution profile SPC chart indicates that batch one is shifted
to lower amlodipine active content; breaching the control limits at lower amlodipine
active content bins. Additionally batch two has a higher percentage of tablets at the
centre of the distribution and a narrower curve indicating production was controlled
more tightly about the process mean. Batch three had a distribution profile well aligned

with the established typical process.
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Figure 104; Distribution profile of predicted amlodipine active content of three production batches

with established distribution profile SPC limits ( )

5.3.3 Semi-quantitative tablet component quality conformance method discussion

As with the qualitative tablet component quality conformance method discussed in
Section 5.2.3, the semi-quantitative tablet component quality confonnance method for
Norvasc® 5 mg tablets was extremely rapid to develop with approximately 10% of the
reference chemistry compared to that typically required for traditional quantitative NIR
methods. The semi-quantitative approach requires similar chemometric expertise as is
required for development oftraditional fully quantitative methods. The key difference in

approaches is the use of nominated reference values rather than individual reference
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values for each tablet used in the regression calibration and verification sets and the

coupling of the output of the model to historical process oriented SPC trending.

The use of theoretical content would require no reference chemistry. However, the
developer would have to be supremely confident that the extended range tablets
developed were at the target content, relying on the ability to formulate the extended
range tablets. The use of nominated values can lead to increased prediction errors due to
averaging the content for any given set of samples. Therefore, knowingly choosing to
add another source of uncertainty by using the theoretical amlodipine active content
with no reference chemistry was not considered ideal. As such, it was determined that
the use of reference chemistry of a minimum number of tablets to enable the assignment
of nominated content is an appropriate balance of introducing error into the regression

while providing rapid development and implementation.

While any regression model could be utilised in the development of a semi-quantitative
tablet component quality conformance approach, this work assessed two common
multivariate regression techniques, MLR and PLS. It was found that for this complex
direct compression low dose product PLS, with nominated amlodipine active content,
was more capable at correlating the amlodipine active content within the tablet form,

overcoming matrix absorption and physical effects.

The vendor software limitations identified in Section 5.2.3 are similar, except that
regression chemometrics are typically standard functionality in most vendor software.
The main limitation is with the inability of the vendor software to incorporate SPC
functionality requiring the export of data and use of external software for SPC trending.
Within GMP production environments, the routine export of data is typically avoided as
is the use of macros requiring software validation. Additionally, the use of multiple

software programs requires additional training and operator capability. Until industry as
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a whole demands funetionality sueh as that applied in this researeh, vendors will likely

be reluctant to incorporate such features.

As discussed in Section 5.2.2.4 the DeLight software has the capability to reproduce the
individual tablet I-chart including VOP and VOC limits to allow the operator to monitor
the results in real time. The I-MR chart for sample means can also be replicated within
DeLight without the control limits. The Run ehart and distribution profile SPC ehart
cannot be replicated within DeLight and data must be exported to create these
conformance plots in external software. Figure 105 shows the operator user interface for

monitoring the tablet confonnance method in real time during tabletting.

Paw Spectra

Figure 105: Operator interface for developed semi-quantitative tablet component quality

conformance SPC charts within DeLight software

The developed semi-quantitative tablet content quality conformance method was shown
to provide simple easy to use real time SPC charts to identify individual tablets
deviating from expected behaviour as well as valuable process information regarding
within batch trending as well as the range and distribution profile of Norvasc® 5 mg

tablets at batch completion.
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This is demonstrated through the application of the method to commercial tablets
monitored throughout tabletting discussed in Section 5.3.2.4. The individual tablet
I-chart showed that batch one produced three tablets that were at the VOP limit
established for Norvasc® 5mg tablets based on the established historical control limits.
As all tablets were within the VOC limits and also as the entire batch was shifted to
lower predicted amlodipine active content, these tablets were not analysed by reference
chemistry. However this would be an option if quality assurance were particularly
concerned at the predicted result of any given tablet. Performing reference chemistry

could assist in investigating any unexpected deviation (as part of established site SOPs).

The I-MR and Run charts showed batch one and two had minimal within batch
variation while batch three had more numerous out of conformance events that were
seen as significant at the 95% confidence level. It is possible that these events were
within the normal random behaviour of the process and within the 5% of the population
expected to fall beyond the limits. Further work may be valuable in understanding how
events identified in the I-MR chart and Run charts relate to tabletting press operation
activities and why batch three was seen to contain significantly different process
signature that the other two batches. Such data was not collected at the time that the
semi-quantitative method was applied to the commercial batch data. Note that these
within batch SPC charts could not be generated in real time and as such, within batch
variations were only identified at batch completion and opportunity to relate

observations to real time process operation events was missed.

The I-chart for range demonstrated that the range of amlodipine active content for the
entire batch was consistent with historical expectation. The distribution profile SPC
chart indicates a narrower distribution with smaller tails resulting in lower than
expected range in the conformance method metric for batch two. This batch could be

reviewed more closely to determine why this batch has shown greater process capability
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(tighter distribution with less trends and clustering) and can be considered a ‘gold

standard’ batch to replicate in future manufacturing.

5.3.4 Summary - Criticality of Research

This research investigated the use of data from two semi-quantitative techniques (MLR
and PLS with nominated reference values) coupled with SPC charting to create a Semi-
quantitative Tablet Component Quality Conformance approach. There has been limited
application of ‘reduced reference’ quantitative method development through the use of
gravimetrically developed and nominal or theoretically assigned reference values''® and
the use of discriminant analysis applied with regression analysis of tablets.” However,
the use of the data coupled with SPC for analysis of large number of tablets through

process monitoring has not been previously reported.

Two semi-quantitative conformance methods were developed and compared for
suitability for the application and PLS-NV found to be the most applicable. A
conformance method based on PLS-NV model coupled with SPC was developed and
applied to real commercial batches of Norvasc® 5 mg tablets at a Pfizer facility and the
value of the work demonstrated in the ability to interrogate batch to batch and within
batch trends in conformance as discussed in Section 5.3.2.4. The benefits and
challenges of implementing the conformance method were discussed including a

commentary on the availability of vendor software to facilitate such approaches.

The semi-quantitative tablet component quality conformance method was demonstrated
to provide an excellent means to gain greater insight into the tabletting process and can
enable real time identification of deviation of process and product from the normal

operation allowing rapid remedial action to prevent any occurrence that would have the
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potential to greatly impact the pharmaceutical manufacturing process and / or product

quality.

With an appropriate DoE and development batch programme, the semi-quantitative
tablet quality conformance approach could be applicable to any key tablet component,
not just the active component as studied in this research. Success for the active
component for Norvasc® 5 mg tablets at low percentage of the formulation indicates
that this approach would be applicable for any component for any product where an

appropriate semi-quantitative model can be developed.

This work is clearly aligned with the philosophy of PAT through providing an in depth
understanding of tabletting operations, providing opportunity for process optimisation
and improvement while also assuring quality. The work was implemented into the
Pfizer Canada manufacturing facility and is the basis of amlodipine active content
alternate testing within the real time release strategy for Norvasc® 5 mg current being

implemented at the Pfizer Sydney site.

5.4 Interpretation and appropriateness of ICH guidelines on

analytical method validation to conformance methodology

The qualitative and semi-quantitative conformance approaches developed in Section 5.2
and Section 5.3 are built upon the initial ability to develop an appropriate model or

metric for the tablet component of interest - the active component in individual tablets.

The methods were developed rapidly with minimum reference chemistry and the
development of the control charts and implementation of these charts on real batches

indicates successful methods.

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 264 of 305



However, to satisfy review by those used to reviewing traditional analytical methods,
this section provides a summary of the validity of the method with reference to the
principles outlined by the ICH Harmonised Tripartite Guideline - Q2 (R2): Validation

of Analytical Procedures: Text and Methodology.'**

The EMEA (now known as EMA) published a note for guidance on NIRS in 20034
which provided guidance on validation of NIRS analytical methods. For many years this
was widely used in industry to direct analytical method validation activities, however
this document did not cover the use of qualitative methods (other that as pass / fail
classification) or semi-quantitative methods. The EMA issued an updated guidance in
2012' which removed the section providing detailed guidance on validation in lieu of
the applicability of the ICH Q2 (R2) guidance following harmonisation activities.
Throughout this period, the application of ICH Q2 (R2) approach to analytical method
validation of PAT based methods has been inconsistent, as discussed by De Bleye,'*
and literature mainly describe validation of off-line and at-line quantitative NIRS

90, 96, 147, 148

methods and less frequently in-line in-process control analysis.*?

Directly applying validation guidelines according to the ICH Q2 (R2) guidance is not
appropriate, as semi-quantitative methods are not within the scope of this document.
Many of the validation principles in the ICH guidance do stand, however, they should
be considered with respect to the purpose of the conformance methods. The various
traditional validation characteristics are discussed in this section in relation to the

applicability to conformance methodology.
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5.4.1 Specificity

The ICH guidance document defines specificity as:

“Specificity is the ability to assess unequivocally the analyte in the presence

of components which may be expected to be present”.'**

NIR spectra consist of overlapping absorption bands, therefore there is difficulty in
stating unequivocally that the absorbance at a specific measured wavelength is solely
due to the APIL. To demonstrate method specificity, it is important to demonstrate that
the model or metric used in the conformance method appropriately targets the attribute
of interest and addresses the aspect of interference from other components in the matrix

as well as interference from unrelated spectral effects (e.g. scatter effects).

The qualitative tablet component quality conformance method was developed with a
univariate method at a single wavelength. Therefore, to demonstrate specificity, this
single wavelength must be shown to be specific to the attribute of interest. Through
examination of the matrix components, it has previously been shown that the
wavelength 1122 nm was found to be related to API absorbance (Figure 61).
Amlodipine besylate specificity within the product matrix was further demonstrated by
overlaying development tablet spectra at 75%-125% label claim with normal production

tablet cores (nominally at 2.5% w/w) (Figure 64).

Furthermore, throughout the development of the method tablets from a variety of
production batches manufactured over a four year timeframe utilising components from
different manufacturers lots were utilised to build in robustness to typical variations in
the tablet matrix into the method. This provides added assurance that the SNV, 1%
derivative absorbance at 1122 nm is specific for changes to the amlodipine active

content.
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The semi-quantitative tablet component quality conformance method was developed on
a PLS-NV model. Examination of the LVs of the model in Figure 88 demonstrated that
the primary variable in the model was the absorbance at 1122 nm and as described

earlier, this wavelength demonstrates clear specificity to the amlodipine active content.

Additionally, the inclusion of a variety of production batches manufactured over an
extended period and capturing natural variation in physical characteristics of the tablets,
demonstrated the developed semi-quantitative method is specific to the amlodipine
active in the presence of factors such as scattering phenomenon and that these factors do

not interfere.

5.4.2 Linearity

The ICH guidance document defines linearity as:

“The linearity of an analytical procedure is its ability (within a given range)
to obtain test results which are directly proportional to the concentration

(amount) of analyte in the sample”.***

The linearity of a NIRS conformance method can be directly assessed according to the
ICH principles. The linearity of the qualitative tablet component quality conformance
model was established earlier and visually demonstrated in Figure 68. The data used in
the regression were tabulated in Table 17. The regression statistics are shown in Table
24. Note that the large slope coefficient relates to the different order of magnitudes in

the axes (absorbance vs. mg / tablet).
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Table 24: Linearity outcomes for the qualitative tablet component quality conformance model

Intercept Slope
(Absorbance)
Coefficients -0.5132 383.7
95% Confidence Interval -1.135-0.1089 339.6 427.7
Standard Error 0.2901 20.53
Correlation 0.9805
R’ 0.9614
Standard Error 0.1610

(Absorbance)

The linearity of the semi-quantitative tablet component quality conformance model was
calculated by regression of the predicted amlodipine active content from the PLS-NV
model against the paired HPLC reference values for the 16 tablets that were used to
establish the nominated values. The regression statistics are shown in Table 25. The
data used in the regression are tabulated in Table 26 and linearity is visually

demonstrated in Figure 106.

Table 25: Linearity outcomes for the semi-quantitative tablet component quality conformance

model
Intercept Slope
(mg / tablet)
Coefficients -0.1160 1.022
95% Confidence Interval -0.3407 - 0.1086 0.9768 - 1.068
Standard Error 0.1047 0.02130
Correlation 0.9970
R’ 0.9940
Standard Error 0.06371

(mg / tablet)
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Table 26: Reference chemistry and predicted amlodipine active content for the PLS-NV model

HPLC Assay PLS-NV Predicted

(mg/ tablet) Content (mg/ tablet)
75% Development 1 342 349
75% Development 2 3.35 342
85% Development 1 4.20 4.14
85% Development 2 4.09 4.10
115% Development 1 5.74 5.78
115% Development 2 5.68 5.71
125% Development 1 5.94 5.81
125% Development 2 6.03 6.04
Production 1-1 5.04 5.02
Production 1-2 4.89 4.80
Production 2-1 4.91 492
Production 2-2 4.80 4.92
Production 3-1 4.80 4.88
Production 3-2 4.96 4.97
Production 4-1 4.89 4.85
Production 4-2 4.95 493

HPLC = -0.1160+ 1.022 (PLS.
6.0

5.5

4.0

35
R-Sq

3.0
35 4.0 4.5 5.0 5.5 6.0

SLV PLS NV predicted Active Content (mg / Tablet)

Figure 106: Regression fitted line and equation for sixteen representative tablets from the

verification batches for the PLS-NV model with five LVs
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The linearity assessment results demonstrate that both the qualitative and semi-
quantitative NIR tablet component quality conformance methods are appropriately

linear and fit-for-purpose.

5.4.3 Precision (repeatability and intermediate precision)

The ICH guidance document defines precision as:

“The precision of an analytical procedure expresses the closeness of
agreement (degree of scatter) between a series of measurements obtained
from multiple sampling of the same homogeneous sample under the
prescribed conditions. Precision may be considered at three levels:

repeatability, intermediate precision and reproducibility”."**

The precision of a NIRS conformance method can be directly assessed according to the
ICH principles. It is simpler to assess than in conventional circumstances due to the
non-destructive nature of NIRS measurements. There is no issue regarding homogeneity

of the samples used to perform the test, the sample is simply rescanned.

The repeatability (short term precision or measurement variability) of the methods was
determined by the same operator scanning the same tablet six times. The data for the
repeatability assessment is shown in Table 27. The standard deviations and relative
standard deviations of the tablet component quality conformance model outputs for the

replicate scans were extremely small as anticipated.
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Table 27: Repeatability outcomes for the tablet component quality conformance models

Replicate 1122 nm Absorbance PLS-NV Prediction
(Absorbance) (mg / tablet)
1 0.013909 49375
2 0.013910 4.9406
3 0.013911 4.9428
4 0.013910 4.9406
5 0.013907 4.9455
6 0.013908 49423
Mean 0.013909 49416
Mean £ 95%
0.013909 + 1.2x10-06 49416 £ 0.002145
Confidence Interval
Standard Deviation 1.5x10-06 0.0027
Relative Standard
0.01058% 0.05425%
Deviation

The intermediate precision (mid term precision or within laboratory variability) was
assessed by two different analysts measuring the same set of samples on separate days
by NIRS. It can be seen from Table 28 that the Pooled relative SE (operator one and

operator two pooled results) were very low (considerably less than 1.0%).

A test for equal variance was performed in Minitab and the intermediate precision data
for both tablet component quality conformance models were found to be equivalent

across the studied range at 95% confidence (p>0.05) as shown in Figure 107.

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 271 of 305



Table 28: Intermediate precision outcomes for the tablet component quality conformance models

with analysis by different analysts on different days

Sample 1122 nm Absorbance PLS-NV Prediction
(Absorbance) (mg / tablet)
Day 1 Day 2 Day 1 Day 2
Analyst 1 Analyst 2 Analyst 1 Analyst 2
75% 1 0.009767 0.009681 3.1708 3.1517
75% 2 0.009891 0.009813 3.2071 3.1943
85% 1 0.01174 0.01163 4.0110 3.9867
85%2 0.01170 0.01159 3.9321 3.9369
115% 1 0.01586 0.01581 5.5257 5.5212
115% 2 0.01582 0.01580 5.4972 5.4991
125% 1 0.01786 0.01780 6.1190 6.1112
125% 2 0.01791 0.01787 6.0729 6.0782
Production 1 0.01387 0.01395 49115 4.8989
Production 2 0.01388 0.01395 4.9726 4.9736
Production 3 0.01385 0.01383 4.8401 4.8328
Production 4 0.01390 0.01397 4.9860 4.9892
Production 5 0.01372 0.01378 4.9656 4.9530
Production 6 0.01396 0.01399 5.0588 5.0205
Production 7 0.01385 0.01393 5.0248 5.0048
Production 8 0.01392 0.01398 5.0297 5.0105
Pooled Mean 0.01384 4.8277
SE 0.000071 0.01218
Relative SE 0.513% 0.252%
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F-Test

DIAl
Test Statistic 0.99
P-Value 0.979
Levene's Test
D2A2 Test Statistic 0.00
P-Value 0.982
0.0020 0.0025 0.0030 0.0035 0.0040
95% Bonferroni Confidence Intervals for StDevs
DIAI
D2A2
0.010 0.012 0.014 0.016 0.018
il22nm Absorbance
DIAl
Test Statistic 0.99
P-Value 0.988
Levene's Test
D2A2 Test Statistic 0.00
P-Value 0.999
0.50 0.75 1.00 1.25 1.50
95% Bonferroni Confidence Intervals for StDevs
DIA1
D2A2
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

PLS-NV Prediction

Figure 107: Minitab test for equal variances output for sixteen paired intermediate precision

samples for (a) 1122 nm Absorbance and (b) PLS-NV model with five LVs

Reproducibility was not studied as the method was applicable only to the product
manufactured at the site for which the researeh was conducted and on the instrument on
which it was developed (only instrument at the site). There was no plan to transfer the
method between instruments or laboratories. Any future transfer of the method would
be assessed fully under a method transfer protocol (which would include reproducibility

studies).
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5.4.4 Accuracy

The ICH guidance document defines accuracy as:

“The accuracy of an analytical procedure expresses the closeness of
agreement between the value which is accepted either as a conventional
true value or an accepted reference value and the value found. This is

. 44
sometimes termed trueness .

However, it is further stated that “accuracy may be inferred once precision, linearity

and specificity have been established”."**

Accuracy cannot be assessed for the qualitative tablet component quality conformance
method as the units of measure (Absorbance units), though correlated to the traditional
method, are on a different scale and magnitude. Therefore accuracy of the qualitative
tablet component quality conformance method is inferred from the established

acceptable precision, linearity and specificity.

Accuracy can be assessed for the semi-quantitative tablet component quality
conformance method as for other traditional quantitative NIRS methods, through the
comparison of the predicted NIRS results to an established true (reference) values. The
data used in the accuracy determination were those applied to assessing linearity,
tabulated in Table 26. The accuracy statistics are shown in Table 29 demonstrating that
the semi-quantitative tablet component quality conformance method is accurate with a
relative SEP of less than 2% and very small bias. A paired T-test for means was also
performed which demonstrated that there was no significant difference between the

means of the two analysis methods at 95% confidence (p-value>0.05).
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Table 29: Accuracy outcomes for the tablet component quality conformance models

HPLC PLS-NV
(mg / tablet) Prediction
(mg / tablet)
Mean 4.854 4.861
Pooled Mean 4.858
SEP 0.0637
Relative SEP 1.311%
Bias -0.00694
teri 2.13
Estat 0.43398
p-value 0.67048

5.4.5 Range
The ICH guidance document defines range as:

“The range of an analytical procedure is the interval between the upper and
lower concentration (amounts) of analyte in the sample (including these
concentrations) for which it has been demonstrated that the analytical

procedure has a suitable level of precision, accuracy and linearity”. 144

The range of a NIRS conformance method can be directly assessed according to the
ICH principles. The qualitative tablet component quality conformance method was
determined to have a range 0.01049 - 0.01763 Absorbance which is equivalent to
3.512 - 6.251 mg per tablet once the established equation correlating model response to

reference data is applied (refer to Figure 68).

The semi-quantitative tablet component quality conformance method was determined to
have a range 3.256 — 6.047 mg per tablet based on the predicted values of the

Regression dataset used to develop the PLS-NV model.
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5.4.6 Robustness
The ICH guidance document defines range as:

“The robustness of an analytical procedure is a measure of its capacity to
remain unaffected by small, but deliberate variations in method parameters

. . . . . . .. . 44
and provides an indication of its reliability during normal usage”.!

As samples were collected from a variety of production batches, manufactured over a
four year timeframe from different component manufacturers lots and compressed on
different tablet presses, the conformance methods inherently include seasonal changes
(such as environmental aspects), wear and tear of the NIR spectrometer (including part
servicing and lamp replacement), component material variations, formulation (weighing
and blending) variation as well as processing (compression, thickness) variations. The
intermediate precision result has demonstrated the conformance method is robust to
changes in analyst and daily fluctuations. Thus, it is deemed that the method is

inherently robust and appropriately fit for purpose.

5.5 Comparison of qualitative and semi-quantitative conformance

methods for applicability in the manufacturing setting

Though conformance methods based on qualitative and semi-quantitative algorithms
were both explored (Sections 5.2 and 5.3 respectively) and demonstrated to provide a
mechanism for monitoring the Norvasc® Smg tabletting process, a manufacturing

facility would select one approach for a given application.

Both approaches provided an opportunity for increased understanding of within and
between batch variability and provided opportunity for process improvements. There

were slight differences in the trends seen for the same batches studied by both
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approaches, most notably in the I-chart for sample means for batch three (Figure 77
compared to Figure 101). These differences are related to the impact of matrix and
physical effects on the conformance algorithm. It is expected that the semi-quantitative
method may be less impacted by these affects assuming sufficient representation of
matrix and physical effects are built into and appropriately weighted in the regression

model.

The semi-quantitative approach provided an advantage over the qualitative tablet
component quality conformance method by providing control charts based on the
natural unit of measurement of the analyte, in this case mg per tablet. However, this can
also be a distraction within production with operators or quality personnel becoming
fixated by the predicted numerical value (quality compliance mindset) rather than
utilising the information given to gain further understanding of the process. This could
lead to unnecessary, time consuming, deviation investigations of what may be the
inherent process signature and variability characteristics of a given product. If this is a

concern, it may be preferred to opt for a qualitative approach.

The main disadvantage of the semi-quantitative approach compared to the qualitative
approach described in Section 5.2 is the higher complexity in the chemometrics and
thus the need for greater NIRS analytical expertise to develop the method. However the

advantages of rapid development and reduced reference chemistry are still achieved.

The manufacturing facility for which the research was undertaken chose to progress the
semi-quantitative approach. The facility was then sold and exited the Pfizer
manufacturing network in 2008 and outcomes of routine application of the approach

since 2008 are not available.

The developed tablet component quality conformance method would be simple to apply

in a non-routine setting for validation or process optimisation activities and would
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provide opportunity to very quickly implement a means for real-time tablet monitoring
to deliver process understanding to enable process enhancements and improvements.
When supporting validation activities, historical SPC charts can be developed for an
existing process and then product manufactured following the process improvement or
approved material or process change can be compared to the established baseline. The
conformance method development can be tailored to the specific validation activity (for
example a conformance method can be developed to monitor a key excipient in the

product before the introduction of an alternate supplier).

It is worth noting that within the research and development realm, insufficient batches
are typically manufactured to develop a historical SPC approach in early product
development. In such cases, the same qualitative or semi-quantitative approach with
reduced reference chemistry can be implemented with the associated statistical charts
without historical limits to aid in visualisation of batch distribution and within and
between batch variability. Within batch I-MR, Run charts and distribution profiles could
be very valuable when reviewing DoE’s performed while developing the final dosage

form process.

5.6 Review of research outcomes

The rapid development of NIRS Tablet Conformance analysis was successfully
demonstrated in Chapter 5 through the application of the approach to the active tablet
component, amlodipine base, in Norvasc® 5 mg tablet finished cores. This work
successfully addressed the identified need for process oriented application of NIRS

aligned with the PAT initiative to monitor tabletting production.

The novel approach of tablet component conformance analysis enabled extensive deep -

understanding of the within and between batch process behaviour while also assessing
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the ability of individual tablets to meet the quality expectations of customers at a more

significant sampling level with no impact to regulatory commitments.

Conformance models based on qualitative and semi-quantitative algorithms were
explored in Sections 5.2 and 5.3 respectively. In both cases the reference chemistry
required was reduced to only 16 tablets. The models were rapidly developed and
validated as fit for purpose with respect to the expectations outlined in the ICH
Harmonised Tripartite Guideline - Q2 (R1): Validation of Analytical Procedures: Text
and Methodology'** in Section 5.4. SPC charts were developed for qualitative and semi-

quantitative model predictions based on commercial historical process batches.

The application of the developed conformance methodologies to commercial production
batches demonstrated the success of the approach in gaining in-depth process
knowledge of the tabletting process and would facilitate process enhancements leading

to improved product quality for the consumer.

One of the greatest difficulties faced with implementing the new approaches to data
analysis in real time within the process environment is the limitations in the software
that runs the NIR spectrometer. This is an area which will need to be improved to
enable industry to implement advanced PAT applications using NIR. However, this will
require the companies that develop the software to accept that industry is moving in
new ways and requires a desire in those companies to move with the industry to harness

the full potential of NIRS for PAT applications.

The research met the desired objectives of developing novel ways to apply at-line NIR
for material analysis, aligning with the PAT philosophy described in Chapter 1 and

addressing the gaps in material analysis identified in Chapter 2.

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 279 of 305



CHAPTER 6 RESEARCH SUMMARY AND THESIS

CONCLUSION

PAT, though often considered a new initiative, has been actively pursued since the early
1990’s, though the term PAT was cemented in pharmaceutical technology language
following the FDA launch of the Guidance for Industry on PAT. During Chapter 1 the
history of PAT was reviewed highlighting the different drivers of PAT and the
perceived benefits from the regulatory, manufacturer and consumer view point.
Different modes and different stages of application of PAT in pharmaceutical
manufacturing were reviewed following a brief discussion on the constraints impacting
implementation of PAT broadly in the industry. The future of PAT was considered in
relation to the current economic and business climate within which the pharmaceutical

industry currently operates.

Application of PAT measurement systems as fully in-line and on-line integrated
systems are often thought to be the final desired state to allow unmanned analysis of
large sample size to fully describe the process performance and product quality.
However, integrated applications often have increased cost and challenges for
implementation preventing widespread deployment. Similarly, applications that impact
regulatory timelines for new products or have long lead time for regulatory approvals
detract from the value of implementing PAT due to long periods before return on
investment can be achieved. It was noted that pharmaceutical products are dominated by
solid dosage forms and in particular by tablets. It was thus concluded that at-line PAT
applications for process understanding and monitoring and control for solid oral dosage
forms that avoid regulatory impact are an economically viable area for widespread

deployment of PAT and worthy of focussed scientific research.
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The application of NIRS to support PAT initiatives was explored in Chapter 2, where it
was demonstrated that NIRS has a rich history of application within the pharmaceutical
industry. The PAT initiative has focused the use of NIRS in the pharmaceutical industry
as a process understanding and improvement tool rather than as a direct replacement to

conventional QC testing as NIRS was often previously applied.

The deployment of NIRS within the PAT framework was reviewed for solid dosage
form processes and two process areas of particular scientific need were identified.
Despite significant use of NIRS in material testing, the traditional use of NIRS as a
replacement identification method falls short of the aims of the PAT initiative. There
was a strong need for NIRS to be applied to material characteristics that relate to
product quality and process performance to develop the deep understanding of the
causal relationships between input materials and processes and the resulting output

products.

Additionally, it was determined that there was a gap in current practise and research in
the application of NIRS to tablet component analysis beyond alternate assay and content
uniformity measurement. Directly replacing traditional QC testing by NIRS does not
progress PAT philosophy. Rather, the application of NIRS must delve into the analysis
of the tablet component throughout the tabletting operation, relating the observed NIRS
spectra to relevant process performance and product quality metrics. A novel approach
was needed in applying NIRS for these two aspects of solid dosage form manufacturing

aligned with the PAT philosophy.

To enable the development of novel PAT applications of NIRS, common mathematics
and chemometrics treatments and analyses along with univariate and multivariate

statistical process control concepts were reviewed in Chapter 3.
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Novel applications of at-line NIRS were investigated and developed aligned with the
PAT philosophy to establish an innovative system of analysis that combined

chemometrics and spectral analysis with statistical process control.

Various chemometric algorithms were explored to enable rapid monitoring of global
spectral quality as well as the quality of specific critical-to-process material attribute
within a statistical process control framework which related material characteristics to
historically demonstrated acceptable product quality and process performance. The
developed material conformance methods were implemented within a commercial
pharmaceutical facility in Pfizer and the success of the approach clearly demonstrated
by the identification and investigation into non-conforming deliveries in Chapter 4. The
conformance approach provided unforeseen opportunity to gain understanding of causal
relationships between raw materials and an important Pfizer product. The valuable
information gained through the application of raw material conformance methods
enabled rapid identification of potential product or processing issues at material receipt
and allowed schedule modification to prevent production facility impact, provided
customer supply assurance and facilitated rapid root cause analysis. The statistical
process control charts and NIRS user interface were well received by the warehouse
operators despite challenges in available statistical and chemometrics features within

vendor NIR software.

Novel approaches to within and between batch statistical process control for tablet
quality conformance were also developed. Tablet component conformance methods
were created using rapid to develop qualitative and semi-quantitative chemometrics
algorithms that required minimal reference analysis. The chemometrics methods were
then coupled with statistical process control analysis to develop a strategy of analysis
that assessed the tablet component of interest within intact tablets sampled in large

sample size throughout tabletting operations. The SPC charts that were developed
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assessed the ability of individual tablets to meet historically established normal
component behaviour for the product as well as conventional quality metrics.
Additionally, within batch and between batch variability was analysed to fully assess
the conformance of a batch of tablets to expected product quality and process
performance. This work, described in Chapter 5, included the novel adaption of
distribution profile control charts typically applied to particle size measurement. The
tablet component conformance methods provided an opportunity for extensive process
monitoring and unsurpassed in-depth process understanding. The approach was found to

be approachable for plant operators through to quality assurance analysts.

The research described in Chapter 4 and Chapter 5 was shown to provide exceptional
business value and advanced the critical science based understanding of the
pharmaceutical formulation. The research was well aligned with the PAT initiative;
clearly meeting the overall aims of the research in developing PAT aligned at-line

applications of NIRS and the specific aims and objectives outlined in Section 2.6.

6.1 Future Work

The approach demonstrated in this thesis is broadly applicable with the potential to
extend beyond the solid dosage form studied. Raw materials are applicable to all
manufacturing processes and the physicochemical nature of NIRS analysis enables

assessment of both chemical and physical material attributes in a single analysis.

The approach has since been rolled out as a standard methodology within Pfizer and has

been applied most recently in manufacturing sites in Egypt and Venezuela.

Similarly, though the focus of this work was tablet component analysis and the aspect
studied was the active component, the tablet component conformance methodology can

be applied for excipients and also for any other process step in solid dosage form
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manufacture or more broadly across manufacturing to other finished dosage forms.
Further work is currently planned to extend the conformance approach to at-line
conformance analysis of moisture for tray drying applications as well as incorporating

the concepts in NIRS support of process validation.

There is also potential applicability of the conformance methodology for PAT
techniques beyond NIRS. Any process analysis measurement would benefit from both
the reduced reference approach as well as the broader use of statistical process control

analysis to shed greater light on the process under study.

The work highlighted gaps in currently available chemometric and statistical process
control capabilities within NIR instrument control software. A recent brainstorm by
PAT experts within Pfizer identified this as one area of future focus to close the gaps
and enable PAT support for advanced paradigms. NIRS vendors will need to be willing
to add capability to meet the evolving needs of the pharmaceutical industry; otherwise
pharmaceutical manufacturers will pursue other strategic partnerships with software and
hardware vendors that are willing to work towards the future directions of PAT

deployment.
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APPENDIX 1- Global material quality conformance

MINITAB GRAPHICAL SUMMARIES WITH NORMALITY ASSESSMENT
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Figure 108: Minitab graphical summary with normality results for individual container

conformance results for historical deliveries: (a) correlation, (b) ANSD and (¢) PCA-MD
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Figure 109: Minitab graphical summary with normality results for overall delivery conformance

results for historical deliveries: (a) correlation, (b) ANSD and (¢) PCA-MD
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APPENDIX 2- M aterial attribute quality conformance

MINITAB GRAPHICAL SUMMARIES WITH NORMALITY ASSESSMENT
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Figure 110: Minitab graphical summary with normality results for individual container

conformance results for historical deliveries: (a) TNSD-RR, (h) MLR-DA and (¢) PLS-DA
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Figure 111: Minitab graphical summary with normality results for overall delivery conformance

results for historical deliveries: (a) TNSD-RR, (b) MLR-DA and (¢) PLS-DA
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APPENDIX 3 — QUALITATIVE TABLET COMPONENT QUALITY

CONFORMANCE PREDICTION RESULTS FOR THE HISTORICAL

THRESHOLD BATCHES
Batch -Tablet 1122 nm ANSD-RR | Batch -Tablet 1122 nm ANSD-RR
Absorbance Absorbance
1-1 0.0137 -0.8785 3-1 0.01337 -1.532
1-2 0.01378 -0.7909 3-2 0.01356 -1.24
1-3 0.01428 -0.2146 33 0.01356 -1.284
14 0.01402 -0.5173 3-4 0.01345 -1.358
1-5 0.0141 -0.4265 3-5 0.01361 -1.237
1-6 0.01393 -0.5338 3-6 0.01368 -1.119
1-7 0.01402 -0.5031 3-7 0.01332 -1.542
1-8 0.01408 -0.4412 3-8 0.01363 -1.186
1-9 0.0142 -0.274 39 0.01341 -1.422
1-10 0.01397 -0.5322 3-10 0.01345 -1.384
2-1 0.01436 0.1596 4-1 0.01421 0.2149
2-2 0.01415 -0.1038 4-2 0.01434 0.3871
2-3 0.01418 -0.06524 4-3 0.01432 0.3859
2-4 0.01399 -0.3254 4-4 0.01398 -0.002242
2-5 0.0142 0.04181 4-5 0.01407 0.135
2-6 0.01414 -0.03106 4-6 0.01415 0.2215
2-7 0.01466 0.4745 4-7 0.01454 0.7107
2-8 0.01404 -0.1887 4-8 0.01447 0.6531
2-9 0.01429 0.1281 4-9 0.01423 0.3836
2-10 0.01387 -0.3953 4-10 0.01421 0.3038
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Batch -Tablet 1122 nm ANSD-RR | Batch -Tablet 1122 nm ANSD-RR
Absorbance Absorbance
5-1 0.01474 1.297 6-1 0.01406 0.2609
5-2 0.01471 1.331 6-2 0.01379 -0.015
5-3 0.01483 1.457 6-3 0.01383 0.07393
5-4 0.0148 1.395 6-4 0.01423 0.4888
5-5 0.01461 1.209 6-5 0.01397 0.1486
5-6 0.01491 1.483 6-6 0.01381 -0.01242
5-7 0.01484 1.467 6-7 0.01399 0.1678
5-8 0.01462 1.268 6-8 0.0142 0.4114
5-9 0.01477 1.436 6-9 0.01402 0.2207
5-10 0.01468 1.276 6-10 0.0138 -0.03544
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APPENDIX 4 - QUALITATIVE TABLET COMPONENT QUALITY
CONFORMANCE MINITAB GRAPHICAL SUMMARIES WITH

NORMALITY ASSESSMENT

(a)

Anda«reon-DiHinfl Notnfi»lity Test
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Figure 112: Minitab graphical summary with normality results for the individual tablet historical

dataset for (a) 1122 nm Absorbance and (b) ANSD-RR
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Anderson-DiHing Nmmality Test
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Figure 113: Minitab graphical summary with normality results for the range of

1122 nm Absorbance for the six commercial batches
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APPENDIX 5 — SEMI-QUANTITATIVE TABLET COMPONENT

QUALITY CONFORMANCE PREDICTION RESULTS FOR THE

REGRESSION DATASET
Batch -Tablet| MLR-NV PLS-NV | Batch -Tablet| MLR-NV PLS-NV
1-1 4.827 4.748 31 4.84 4.8
1-2 4.892 4.86 3-2 4.884 4.896
1-3 5.046 5.003 33 4.895 4.896
1-4 4.979 4.95 34 4.824 4.784
1-5 5.008 4.978 3-5 4917 4.937
1-6 4.879 4.824 3-6 4.926 4.886
1-7 4.95 4.909 3-7 4.778 4.726
1-8 4.986 4.947 3-8 4.873 4.83
1-9 4.991 4.936 39 4.797 4.751
1-10 4.898 4.837 3-10 4.824 4.767
2-1 4.994 4.974 4-1 4.947 4.937
2-2 4.968 4.978 4-2 4.981 4.986
2-3 4.959 4.947 4-3 4.95 4.932
2-4 4.948 4.957 4-4 4.837 4.795
2-5 4.96 4.977 4-5 4.853 4.813
2-6 4.953 4.989 4-6 4.9 4.869
2-7 5.155 5.166 4-7 4.996 4.946
2-8 4.907 4.932 4-8 4.969 4.941
2-9 4.969 4.989 4-9 4.899 4.884
2-10 4.823 4.813 4-10 4.903 4.881
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Batch -Tablet| MLR-NV PLS-NV | Batch -Tablet| MLR-NV PLS-NV
5-1 4.946 4.935 75%-1 3.55 3.488
5-2 4.936 4.939 75%-2 3.457 3.423
5-3 4913 4.807 75%-3 3.31 3.256
54 4.968 4.965 75%-4 3.539 3.494
5-5 4.904 4.897 75%-5 3.345 3.272
5-6 4.978 4.927 85%-1 4.091 4.143
5-7 4.978 4.98 85%-2 4.028 4.098
5-8 4.881 4.875 85%-3 4.114 4213
5-9 491 4.872 85%-4 4.057 4.072

5-10 4.923 4.94 85%-5 4.14 4.22
6-1 4913 5.025 115%-1 5.687 5.777
6-2 4.789 4.852 115%-2 5.496 5.574
6-3 4.756 4.751 115%-3 5.611 5.705
6-4 4.948 5.042 115%-4 5.617 5.737
6-5 4.873 4.964 115%-5 5.514 5.591
6-6 4.802 4.795 125%-1 5.808 5.814
6-7 4.86 4.905 125%-2 5.992 6.038
6-8 4.946 5.04 125%-3 5.881 5.906
6-9 4.886 4.923 125%-4 6.04 6.047

6-10 4.773 4.753 125%-5 5.957 5.978
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APPENDIX 6 — SEMI-QUANTITATIVE TABLET COMPONENT

QUALITY CONFORMANCE PREDICTION RESULTS FOR THE

VERIFICATION DATASET
Batch -Tablet| MLR-NV PLS-NV | Batch -Tablet| MLR-NV PLS-NV
1-1 5.029 5.024 3-1 4.929 4.877
1-2 4.885 4.799 3-2 4.96 4972
1-3 5.044 4.993 33 4.947 4.96
1-4 4.899 4818 34 4.934 4.936
1-5 4.8 4.694 35 4.962 4.982
1-6 5.17 5.139 3-6 4.969 4.962
1-7 4.825 4.781 3-7 4.9 4.922
1-8 4.89 4.817 3-8 4.838 4.829
1-9 5.17 5.122 3-9 5.106 5.139
1-10 4.909 4.832 3-10 4.849 4.849
2-1 4.966 4.924 4-1 4.824 4.852
2-2 4.957 4.92 4-2 4.861 4.925
2-3 4.946 4.894 4-3 4.798 4.833
24 4.95 4.925 4-4 4.838 4.891
2-5 4.986 4.959 4-5 4.864 4.907
2-6 4.964 4.937 4-6 4.859 4.891
2-7 5.018 4.995 4-7 4.904 4.922
2-8 4.978 4.935 4-8 4.797 4.839
2-9 4.986 4.944 4-9 4.937 4.993
2-10 4.871 4.834 4-10 4.774 4.805
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Batch -Tablet| MLR-NV PLS-NV | Batch -Tablet| MLR-NV PLS-NV
75%-1 3.469 3.411 115%-1 5.606 5.717
75%-2 3.355 3.287 115%-2 5.532 5.657
75%-3 3.523 3.477 115%-3 5.495 5.569
75%-4 3.437 3.39 115%-4 5.64 5.734
75%-5 3.567 3.529 115%-5 5.68 5.757
85%-1 4.075 4.152 125%-1 5.9 5.926
85%-2 4.081 4.133 125%-2 5.992 6.003
85%-3 4.137 4214 125%-3 5.824 5.825
85%-4 4.184 4231 125%-4 6.02 6.053
85%-5 4.181 4.211 125%-5 5.884 5.889
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APPENDIX 7 - Semi-quantitative tablet component
QUALITY CONEORMANCE MINITAB GRAPHICAL SUMMARIES WITH

NORMALITY ASSESSMENT

Anderson Darling Normality Test
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Figure 114: Minitab graphical summary with normality results for the PLS-NV predictions for the

historical dataset
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Figure 115: Minitab graphical summary with normality results for the range of PLS-NV predicted

amlodipine active content for the six historical commercial batches
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