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A b st r a c t

The principal aim of this research was to assess at-line Near Infrared Spectroscopy 

(NIRS) to support Process Analytical Technology (PAT) applications within solid 

dosage form manufacturing.

The history of PAT was traced from implementation of process analytical applications 

prior to the 2003 United States, Food and Drug Administration PAT initiative through 

to current time. The use of NIRS within the PAT context was reviewed, highlighting 

two areas in solid dosage manufacturing where further research of at-line NIRS is 

warranted; material testing and finished dosage form analysis.

Novel applications of at-line NIRS were investigated and developed aligned with the 

PAT philosophy, to establish an innovative system of analysis that combined 

chemometrics and spectral analysis with statistical process control (SPC). In particular, 

various chemometric algorithms were explored to enable rapid monitoring of global 

spectral quality as well as the quality of specific critical-to-process material attributes 

within a SPC framework. Novel approaches to within and between batch SPC for tablet 

quality conformance were also developed including the adaption of distribution profile 

control charts typically applied to particle size measurement. These were quick to 

develop with greatly reduced reliance on reference analysis. It provided an opportunity 

for extensive process monitoring and in-depth process understanding. The work 

highlighted gaps in currently available chemometric and SPC capabilities within NIR 

instrument control software and provided insight into a new direction for NIRS analysis 

in the friture.

The new conformance methodology was demonstrated to provide business value and 

critical science based understanding of the pharmaceutical formulation and processes 

with successful application of the methodology at a commercial Pfizer facility. This
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methodology is in the process of rolling out worldwide. The approach was found to be 

approachable for plant operators through to quality analysts, and is broadly applicable 

with the potential to extend beyond the solid dosage form studied.
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PREFACE

This thesis is organised in chapters with the first chapter providing a high level 

overview of the Process Analytical Technology (PAT) initiative within the 

pharmaceutical industry. The chapter closes by identifying the key areas of PAT 

application which hold the highest value in focusing research.

Chapter two then provides an introduction and overview of the role of near infrared 

spectroscopy (NIRS) in supporting the PAT initiative. Evaluation of a subset of the 

available relevant literature demonstrates the value in focusing on at-line applications 

for material and finished product testing in solid dosage form manufacturing. Chapter 

three provides background as to the mathematical and statistical theory that underpins 

NIRS analysis for PAT applications explored in this research.

Chapter four summarises the research conducted on the development of a NIRS 

conformance methodology for material testing, exploring applications to assess global 

spectral quality as well as the quality of specific material attributes and associated 

impact on process and / or product quality.

Chapter five summarises the research conducted on the development of a NIRS 

conformance methodology for finished solid oral dosage form analysis, focusing on 

novel approaches for assessment of within and between batch quality during tabletting 

operations.

Chapter six provides a summary o f the research and assesses the criticality of the 

research outcomes in relationship to closing the gaps in at-line NIRS application to 

support the PAT philosophy as identified in the first two chapters.
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CHAPTER 1 T h e  P r o c e ss  A n a l y t ic a l  T e c h n o l o g y  

FRAM EW ORK

1.1 Introduction

In this initial chapter of the thesis, the author provides an overview of the Process 

Analytical Technology (PAT) philosophy as it is applied to the pharmaceutical industry. 

Through this review the critical focus area of scientific research in the area of PAT is 

identified and is the basis of the research detailed in later chapters of the thesis.

1.2 Process Analytical Technology defined

Chemical and physical analytical testing is the cornerstone of quality assurance of 

pharmaceutical products, ensuring that the pharmaceutical products that reach the 

consumer have acceptable quality and efficacy. In the 1990’s and early 2000’s, many 

companies had in-house terminology for programs to describe the approach of moving 

the analytical testing to the sampling location within manufacturing rather than moving 

the sample to the quality control (QC) testing laboratory in a distant location.

In simplest terms, PAT is the application of analytical instruments and methodologies 

(including statistical analysis) to the measurement of process and quality attributes at 

the time, and in the location of, the manufacturing process.

The term PAT was used within Pfizer Inc to describe this work in the late 1990’s, with 

“PAT Analysts” employed at manufacturing sites to develop and implement near 

infrared (NIR) methods for raw material quality assessment and in-process tablet 

monitoring.
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During 2001 to 2003, the United States Food and Drug Administration (FDA) became 

interested in PAT and what the application of analysis within the process could provide 

the Pharmaceutical industry. The FDA defined PAT as:

"a system fo r  designing, analyzing, and controlling manufacturing through 

timely measurements (i.e., during processing) o f  critical quality and 

performance attributes o f  raw and in-process materials and processes, with the 

goal o f  ensuring final product quality.

The FDA definition was further cemented in the vernacular through the inclusion of the

definition verbatim in The International Conference on Harmonisation of Technical

Requirements for Registration of Pharmaceuticals for Human Use (ICH) tripartite

guidelines on quality risk management^ and later on pharmaceutical development.^

The FDA advocated that PAT should be focused on gaining understanding of processes, 

process improvement and ultimately applied to validate and control manufacturing 

processes. Thus the concept of PAT is broader than simply analytical measurement in 

itself; rather it has become synonymous with a holistic and strategic application of 

process analysis within a scientific, risk-based, systems oriented framework.

It was expected that implementation of PAT would provide benefits to the manufacturer 

through improvements in product development and manufacturing and as a more 

effective means to demonstrate quality assurance, providing economic business 

benefits.'^ The regulatory environment was also expected to benefit through more 

scientific and well understood processes resulting in harmonised and simpler review and 

auditing.^

Before discussing the benefits of PAT and the various modes of PAT application 

(process knowledge / process design, process monitoring / process analysis and process 

control), it is worth reviewing the origins and timelines of the PAT initiative.
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It is important to stress that PAT is not a new invention of the FDA, rather, industry 

pursued the initiative well in advance of the FDA involvement. The Wall Street Journal 

described the earlier work of implementing analytical technologies in the process 

environment by a cross section of pharmaceutical companies.^ The review of the range 

of PAT related NIR spectroscopy (NIRS) applications in Section 2.5 also demonstrates 

that application of analytics in tune with current PAT philosophies occurred much 

earlier than the launch and promotion of the term PAT by the FDA. The application of 

chemometrics and data analysis aligned with the PAT initiative was also stated to occur 

decades prior to the FDA publication.^

The first paper which discussed the FDA’s interest in the role of PAT in modernising 

the pharmaceutical industry was published in 2002.^ It describes that the FDA first 

discussed PAT in 2001 with presentations at the FDA Science board meeting in 

November 2001 culminating in the formation of a subcommittee on PAT in early 2002. 

Throughout 2002 and 2003, the subcommittee met and devised a draft guidance 

document on PAT. The vocabulary of PAT became firmly fixed in the pharmaceutical 

industry following the issue of the draft guidance “Guidance for Industry PAT - A 

Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality 

Assurance”  ̂by the FDA in September 2003. This document was later authorised with 

minimal change and issued in September 2004^ following a period of industry and 

academic consultation.

The use of the term PAT allowed focussed discussion between companies in the 

industry as well as common language for discussions across industry, academia and 

regulatory bodies.
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1.3 Why the pharmaceutical industry needs PAT

The pharmaceutical industry differs from other manufacturing industries in that the 

product made is consumed by those with compromised health to invoke a physiological 

effect (primarily the improvement to human health). This has led to the practice of 

heavily documenting the extensive internal quality assurance testing conducted to 

ensure that the product released to market is of the highest quality. Regulatory bodies 

exist to oversee the manufacturing and supply of pharmaceutical products to safeguard 

the public, and each regulatory body outlines extensive quality assurance requirements 

in associated guidelines, guidance and / or legal statutes. It is interesting to note that 

despite this focus on assuring product quality, pharmaceutical manufacturing is said to 

be behind other manufacturing industries such as the automotive and semiconductor 

industries.^ There are high internal quality failure rates (product deviations / rejects), 

high cost and slow cycle times when compared to other industries. A 

PricewaterhouseCoopers presentation to the FDA reported that pharmaceutical 

manufacturing assumes 5-10% of materials are scrapped, while 20% of production costs 

are spent ensuring quality.^

It has been argued that pharmaceutical manufacturing has not changed significantly 

since the 1950’s with a 25 year lag in uptake of new te c h n o lo g y . In  the past, 

manufacturers commented that they cannot change due to conservative inflexible 

regulation and controls placed on the industry by regulatory bodies, while regulatory 

bodies have responded that they have insufficient information to mitigate the risk of 

relaxing controls. Applying PAT can reduce the risk by decreasing uncertainty through 

the provision of process information which was previously unknown.

Process and product knowledge is the key to effective and efficient pharmaceutical 

manufacturing, and efficient regulatory oversight of the industry. The combination of
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process automation and process analytics has been said to provide new mechanisms for 

process control which can ensure the quality of the final product while providing 

understanding of the physicochemical phenomena occurring during manufacture of the 

product/' It is hoped by industry that the PAT initiative can reduce product quality 

problems while increasing the efficiency of manufacturing and quality assurance 

processes. This would moderate regulatory burdens thus reducing production costs, and 

in the long run, make pharmaceuticals more affordable.^

Review of the multitude of papers published on the PAT initiative"''^’ indicates

that the primary benefits of PAT include;

• Improved efficiency by managing product variability and improving quality 

consistency leading to more capable/ robust processes

• Reduced production cycle times by use of PAT measurements and controls

• Reduced rejects, scrap, and reprocessing and prevention of recalls

• Improved customer service, by securing predictable product supply and the 

potential of real time release

• Increased automation leading to improved operator safety and reduction in 

human errors

• Increased certainty and confidence in the process robustness

• Continuous quality improvement opportunities within quality risk management 

program with moderation of associated regulatory burdens

• Positive relationships with regulatory agencies and improving the scientific basis 

of dialogue between industry and regulatory agencies

• Reduced cost of manufacturing
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Thus there is wide agreement that PAT is a key initiative to drive the pharmaceutical 

manufacturing industry forward; facilitating many improvements to manufacturing that 

are needed to meet business objectives. It is clear that PAT will lead to benefits to the 

regulatory agencies, the pharmaceutical companies, patients and to the shareholders. 

The benefits to shareholders are not often discussed, however it was highlighted in early 

attention by The Wall street Journal in the pharmaceutical industry’s pursuit in PAT.^ 

However, most importantly, patients will receive the benefit o f PAT through the 

production of consistent high quality products.

PAT was further embedded in industry culture through the inclusion of PAT concepts in 

the FDA “Guidance for Industry on Quality Systems Approach to Pharmaceutical 

cGMP Regulations”^̂  and the ICH Harmonised Tripartite Guidelines on Pharmaceutical 

Development (Q8R2)^, Quality Risk Management (Q9)^ and Pharmaceutical Quality 

System (QIO)^^. Specifically, PAT is referenced in the ICH documents to gain enhanced 

understanding of process performance,^ as a risk control mechanism,^ as a means for in- 

process testing^ and control,^ and as a support for parametric and real time release.^ The 

European Medicines Agency (EMA) launched a PAT team to work with industry on 

PAT aspects and endorsed PAT through participation in drafting the ICH guidelines. 

While separate regulatory guidance addressing PAT was not considered necessary in 

Europe, the EMA (previously known as the European Agency for the Evaluation of 

Medicinal Products (EMEA)) issued a paper which reflected on the incorporation of 

PAT into regulatory submissions.^^

PAT became a key focus area of many symposia, consortiums, conferences and industry 

organisations from 2003. For example, the American Society for Testing and Materials 

(ASTM) Committee E55 on Manufacture of Pharmaceutical Products was formed in 

2003 to address issues related to process control, design, and performance for the 

pharmaceutical manufacturing industry and largely focused on the preparation of
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consensus standards supporting PAT implementation in the industry (e.g. PAT support 

of process design^"  ̂and process understanding^^).

1.4 Modes of integration of PAT applications

The implementation of PAT is typically described utilising three modes of 

integration;

• at-line - where operators sample from the process and perform analysis at / near 

to the process stream. The PAT tool is located near to but not integrated into the 

process.

• on-line - where the PAT tool is integrated into the process with no operator 

sampling with automated diversion of the sample to the PAT tool making use of 

components such as sampling loops. Analysis typically occurs faster than at-line 

methods but at a slower rate than the process equipment operational speed.

• in-line - where the PAT tool is fully integrated (invasively or non-invasively) 

into the process with no sampling. Analysis occurs at the process equipment 

operational speed.

At-line analysis has benefits in cost o f installation and that the equipment is not 

dedicated to one piece of process equipment and so can be applied to multiple 

equipment trains or multiple applications (for example, raw material testing and in- 

process intermediate monitoring). Process analysers or instrumentation can be easily 

installed within existing in-process control laboratories or located near production 

equipment while not impacting the process equipment or being impacted by the process 

environment (e.g. heat, vibration). The validation of at-line PAT systems is 

straightforward with no need to review or revalidate process equipment. Implementation
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can be done in parallel with routine production without interfering with manufacturing 

schedules or delaying product commercial release/^

The disadvantages of at-line measurement is the lack of ability to apply automated 

feedback and control, and the smaller sample size that can be analysed due to the need 

for operators to present the sample to the measurement system. It may be challenging to 

develop process understanding of the different points or phases within the process for 

short duration processes as sampling and measuring samples may take too much time to 

allow sufficient data points to characterise the process.

In-line and on-line integrated application of PAT provide the opportunity for automated 

control and un-manned analysis at greater sampling frequency and large sample sizes 

which can provide deep understanding of process phases and pathways, even of short 

duration, without burdening operators. However, integrated applications have additional 

cost and engineering requirements to interface the instrumentation with the process, 

more extensive validation burden (process equipment and product contacting parts) and 

greater complexity in terms of data, communications and control (e.g. data storage, 

sophisticated control loops).

When determining the optimum mode of PAT integration, the following aspects should 

be considered;*^

• level of desired control (automated, manual, human input for interpretation)

• engineering constraints (plant zoning, restriction on electronics and 

communication, power, space and access limitations)

• process equipment constraints (pressurised vessels, motion or moving parts)

• environmental constraints (vibrating environment, harsh chemical environment)

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 26 of 305



effect of integration on process or equipment validation state (requirement to re­

establish equipment/ vessel integrity or revalidate the product).

information technology constraints (communication to process equipment or 

plant electronic management and data handling system)

sampling constraints (representative sampling design, sample/instrument 

interface, effective sample size, fouling, static/ dynamic measurement)

PAT equipment restraints (distance of fibre optic cable runs, speed of scan 

versus speed of sample movement)

1.5 Typical stages of PAT implementation

1.5.1 PAT - Process design and process knowledge

Typically the first application of PAT to a process / product is during process design 

and process knowledge development. This may occur during research and development 

for new products or in the commercial phase of a product to gain process understanding 

or facilitate process redesign. This directly aligns with the overriding goal of PAT to 

understand the manufacturing process.^^

The FDA considers a process well understood when:^^

1) all critical sources of variability are identified and explained;

2) variability is managed by the process; and

3) product quality attributes can be accurately and reliably predicted over the 

design space established.

Thus, to gain process knowledge and understand the critical steps of the process, PAT 

may be applied to correlate process and quality attributes, to identify the critical
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attributes and to identify the sources of variation in these attributes. A general process 

assessment may take place to identify the gaps in process knowledge and then PAT 

applied to specific process steps or attributes.

While gathering process knowledge, PAT can be applied in depth to the process and 

across multiple process points. This information can be used to devise a ‘process 

signature’, which can be defined as the typical process trend / profile or behavior for the 

attribute under study throughout the process time frame.

Typically the process signature is based on non-quantitative measurements and will be 

devised on a large sample size sampled throughout the process. The process signature 

may be formulated with one or more PAT measurement systems and may highlight 

critical control points or locations of variation in the process, otherwise not identified by 

the random small scale sampling that occurs for conventional Pharmacopeial analysis. 

Process signatures are often an ideal way of graphically representing the ‘typical 

process’ in all its glory, showing the variation (which may be acceptable or 

unacceptable) that inherently occurs in the process.

An early application of the process signature approach to gaining process knowledge 

can be seen in work five years prior to the FDA launch of the PAT initiative where NIR 

was used to produce a profile of the manufacturing process of an injectible 

pharmaceutical product.^®

Different design of experiments (DoEs) can be used during process design, scale up and 

commercial process development to better understand the interactions of quality and 

process attributes and the inherent variation in the attributes. Applying PAT at the 

process design stage (i.e. prior to commercial manufacture), can aid in ensuring a robust 

efficient process is introduced to the plant^^ and is aligned with the Quality by Design 

(QbD) principles introduced in the FDA “Guidance for Industry on Quality Systems
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Approach to Pharmaceutical cGMP Regulations” in 2006^^ and outlined in the ICH Q8 

tripartite guideline on Pharmaceutical Development.^

The resulting information gathered from PAT and any other process / product 

knowledge gained through process assessments and DoEs can be used to define the 

design space. ICH Guidance on Pharmaceutical Development^ defines design space as:

“The multidimensional combination and interaction o f input variables (e.g., 

material attributes) and process parameters that have been demonstrated to 

provide assurance o f quality.

The use of PAT can ensure that a more robust, understood process is defined which can

cater for variable inputs that are inherent in manufacturing (e.g. variation in materials,

environmental factors, ageing of process equipment) while remaining at the set point

within the developed design space.

Product marketing and the desire to quickly deliver a new pharmaceutical product to 

patients often hampers full process design with rapid progress from the clinical stage to 

commercial manufacture once approval to market is given. Consequently the 

commercial process is often based on scale up of the laboratory scale process 

experiments and different DoEs done at early research and development stages rather 

than in the scale up period. Rapid to implement PAT applications that provide deep 

process understanding without delaying progress of products through the research and 

development process are therefore paramount. Though it is beneficial to study potential 

quality and process attributes prior to commercial manufacturing, understanding the 

commercial process is often only achieved at the point of validation of the commercial 

manufacturing process.

During this first stage of implementing PAT (defining and understanding the process) it 

may be identified that quality attributes previously tested in QC laboratories are not 

critical to describing the process. Thus redundant, and in some cases laborious and
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expensive, quality verification testing o f the quality or process parameters can be 

reduced and the resources targeted on the attributes that are most critical. In some 

instances, once the process is fully described, regulatory filings can be changed to 

remove unnecessary registered tests. It must be noted here, that PAT is not implemented 

with the intention of removing registered tests that are in place to verify or characterise 

product attributes that relate to product clinical efficacy.

Effective design space and process knowledge can provide opportunities to ensure 

effective specifications are set for testing of critical attributes from the outset. For 

example, process and product specific specifications can be applied for raw materials 

where a material’s physicochemical attribute has a critical affect on forward processing, 

despite the attribute test not being required in Pharmacopeial guidance. This can only 

occur once full process understanding is achieved.

1.5.2 PAT - Analyzing manufacturing / process monitoring

Once the design space is defined through process knowledge (Section 1.5.1), PAT can 

be applied for process monitoring of identified critical or variable attributes to 

demonstrate that processes are within the design space and consistently producing 

quality product.

If process signatures were devised during the process design and process understanding 

stage, the same sampling and testing procedures can be applied routinely to assure that 

the process is continuing to perform according to the understood process signature. If 

process signatures have not been developed, the process monitoring stage of PAT 

provides the optimum time to apply PAT to the identified critical process parameters to 

establish the normal behavior or monitor the typical variation. This is an important step
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to proceed through prior to applying specifications and thresholds to the data and 

moving into the process control stage of PAT (Section 1.5.3).

Often quite a large sample size is used during process monitoring. Real time monitoring 

provides the opportunity to use the information for rapid identification of any 

unexpected result or deviation and rapid initiation of root cause assessment followed by 

an opportunity for deviation rectification. At this stage, feedback is typically manual 

and requires operator interpretation. This may cause initial production downtimes when 

unexpected results or deviations occur, particularly as experience is gained in 

interpretation of PAT data.^

As the expertise of the PAT application develops through the process design and 

understanding stage and the process monitoring stage the PAT data can be used to 

predict how the process is expected to perform at the next stage in production.

Application of PAT to non-critical process or quality attributes is not value adding as all 

that will be achieved is the verification of a known stable process rather than satisfying 

the purpose of PAT to predict product quality attributes though a high degree of process 

understanding.^^ The FDA views monitoring of non-critical parameters and not using 

the data for process improvement or control as a deviation from the FDA philosophy of 

PAT. It should be noted that the FDA interpretation of critical parameters is those that 

impact product quality or efficacy. PAT may be applied to parameters that critically 

impact business aspects (e.g. speed of operation) however these applications need not be 

registered for regulatory review and the inclusion of such applications in filings may 

detract from the purpose of PAT enabled product and process control.
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1.5.3 PAT - Process control / quality assurance and continual process 

optimisation

As mentioned in Section 1.5.2, the FDA considers the use of PAT data to control the 

process an integral part of the PAT approach. With the development of sufficient 

process understanding, it is possible to establish causal and / or predictive relationships 

between critical parameters and quality attributes such as the incoming raw materials, 

manufacturing process, in-process materials, and final product quality, which could be 

used for real time process control.’ ’̂

Ultimately, PAT can be implemented to achieve “real time release” through 

demonstration in real time throughout manufacturing that all critical processes are 

understood and controlled to attain the desired quality attributes of the product.^^

Using feedback and feed forward controls, PAT can be used to provide a mechanism to 

keep processes within the design space or conforming to established acceptable 

behaviour. The PAT output can provide the ability to manage, reduce or eliminate 

identified variability in the process.

Specifications can be built from all the data acquired during the prior two stages of PAT 

implementation, to assist in rapid interpretation and feedback of the data to make 

quality decisions. With in-line and on-line PAT approaches the feedback loop can be 

automated (control loops and communication through software and equipment 

programmable logic controllers) without interpretation or human intervention.

Continuous process optimisation can occur, where process parameters can be modified 

within the design space using PAT to verify that the process remains in control. This 

modifies the view of static processes following the completion of process validation.’^
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1.5.4 PAT - Validation and continuous verification

Concurrent with implementing PAT for monitoring (section 1.5.2) or control (section 

1.5.3), PAT information can be utilised to support a change to the product quality 

validation and verification paradigm. Data generated from PAT can be applied to 

support validation or may facilitate a reduction in the level of validation testing 

normally applied. When based on PAT results validation may be achieved in less time, 

with fewer resources and with a greater degree of quality assurance. Validation and 

verification is focused on critical parameters with scientific rationale and understanding. 

This may allow faster scale-up and simpler supply assurance through quicker process 

validation.^

The application of PAT to large sample size, to a large number of process steps or for 

multiple critical process or quality attributes clearly exceeds the current quality 

assurance generated by pharmacopeial analysis on a very small sample size at the 

finished dosage stage.

The use of process knowledge of earlier process stages, followed by process prediction 

leads to the ability to make informed decisions when process changes occur (for 

example changes in raw material supply) to ensure the processes continue to operate 

within the design space. The PAT data rapidly provides confirmation that the process is 

in control and can thus revolutionise the approach to change control and continuous 

process improvement. It could thus be proposed that any process improvement or 

change that produces a process within the approved design space would need no further 

regulatory review. This is a complete shift from traditional views to process validation 

and quality assurance with process understanding the foundation.
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1.6 Current PAT constraints

With PAT, it could be envisaged that in the future all relevant critical quality and 

process attributes would be continually monitored, evaluated, and adjusted (within the 

defined design space) achieving flexible, process quality based endpoints using 

validated in-process PAT measurements. In doing so, the process would be allowed to 

cope with and deal with the inherent variability o f material and process attributes that 

can impact the quality of the output. The use of PAT in this way mitigates the risk of 

process variation to product quality.

However, there are currently several constraints (real or perceived) that need to be 

overcome to facilitate the industry moving forward with PAT. The constraints listed by 

Ciurczak in 2 0 0 3 based around the two broad areas of instrumentation and regulation 

are still constraints nearing ten years after the PAT initiative was launched.^’

Instrumental issues include the need for;

• Process hardened instrumentation

• Guidance for calibration, validation and instrument standards for process 

instrumentation

• Ease of interfacing process instrumentation / retrofitting process equipment

• Integrated data-management infrastructure capable of handling large data 

volumes

• Software compliance and integration with process data management systems

• Guidance on what data must be stored and archived

• Guidance for specifications for large sample size and development of new 

specifications for attributes with no historical specifications.
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Instrumentation issues are rapidly being addressed as technology becomes more 

advanced and as competition between vendors leads to provision of more robust 

equipment. The European and United States Pharmacopeias both contain general 

chapters on NER spectrometry^’ and spectrophotometry^^ respectively and focus on 

instrument operation and qualification, particularly reflectance measurement. The 

inclusion of chapters in pharmacopeia for analytical techniques often used for PAT 

measurement (e.g. NIRS, Raman) provides a mechanism to provide standardisation and 

guidance on instrumentation. Industry organisations such as ASTM, International 

Society for Pharmaceutical Engineering and International Organization for 

Standardization also provide a mechanism to provide consensus standards on a range of 

PAT related topics not covered in either regulatory or pharmacopeial guidance. Such 

industry consensus standards will continue to close some of the instrumentation issues.

Perceived regulatory barriers has been stated to be the largest cause of the 

pharmaceutical industry lagging in implementing PAT.’"’ Though the FDA guidance 

clearly demonstrated FDA support o f PAT, there are still regulatory concerns, 

including;

• How the current inspection process (regulatory audits) and regulations will 

change to encompass PAT

• How other regulatory agencies will adopt PAT (compared to FDA and EMA) in 

regions other than the United States and the EU

• Relief on cost of filing variations on approved products to implement 

improvements with regulatory impact

In addition to instrumentation and regulatory concerns and constraints, other aspects of 

PAT that need attention can be grouped under financial considerations and 

organisational readiness.
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Such constraints noted in literature include;

How to overcome / provide for the need for in-house expertise and training^ 

particularly in chemometrics and statistics

• Ensuring appropriate personnel and capital resources as well as project 

management and leadership to complete projects to sponsor expectations

• How to identify, recruit, and keep the necessary competencies

• How to deal with the culture shock of implementing PAT and changing 

validation, processing and quality paradigms

• Financial benefits for industry to pursue PAT and the perceived / actual poor 

return on investment.

The increased focus on science based manufacturing and presence of PAT in 

conferences, symposium and availability of web based training and webinars is assisting 

in building in capability of PAT related skill sets in the current and future workforce. 

Despite this focus, there is continued scope to ensure adequate skills are in graduating 

students."^ Retention of PAT capability is another significant challenge, with the 

experience within Pfizer that those with an aptitude for PAT are oflen promoted out of 

PAT roles. Management may assume training is a simple exercise; however there is a 

greater need for knowledge management of PAT related activities so that when a project 

manager moves on, a capable person in house has the knowledge and aptitude to 

maintain and further progress PAT projects.

Vendors may assume that the profits within the pharmaceutical industry are available to 

individual manufacturing facilities and as such inflate instrumentation and software 

pricing when selling to the Pharmaceutical industry. The reality is that the 

manufacturing facilities in the pharmaceutical industry are highly competitive, with the 

need to recover research and development costs and then compete with the generic
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marketplace once product licensing exclusivity has been lost. Within the current global 

economy every capital purchase within any company is based on the ability to recover 

the capital investment in a timely manner and such inflated vendor pricing reduces the 

deployment of PAT.

Areas of concern or constraint (instrumentation, regulatory, financial and organisational 

capability) need to be addressed and overcome across the industry and within individual 

companies before PAT can be truly effective, fully integrated and considered routine 

rather than as a separate initiative.

1.7 Critical review of the current status and future focus of PAT

The benefits of PAT are clearly demonstrated and have been well discussed in the 

public domain in published journal articles as well as with the prominence o f PAT in 

industry conference agendas since 2003. Though the PAT initiative is nearly a decade 

old, culture shock and how to ensure management embraces change continues to be a 

factor in debate on the success of PAT."  ̂This is more down to human nature’s resistance 

to change and the longer time needed for PAT competent personnel to reach upper 

management positions to champion cultural change.

The original drive to implement PAT based on it being the right thing to do, being 

perceived as an industry leader or to pursue relief from regulatory burden must also 

translate to business / financial benefits for continued implementation. Often the 

benefits are stated in soft terms that do not translate well to return on investment 

calculations and financial benefits. With the economic crises / depression occurring 

across the globe, pharmaceutical companies have become ever more cost conscious, 

which can be synonymous with financial conservativeness. Added to this is the greater 

presence of competing manufacturing in developing nations with cheaper production
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and labour costs and narrow margins. As such, investment in significant capital with 

long term returns is not an industry priority. It is therefore important to focus efforts in 

developing and implementing PAT on applications that meet the philosophy of the PAT 

initiative while also meeting constrained business operations. There is a disincentive to 

implement PAT applications necessitating regulatory filings for marketed products 

when costly variations are required for separate markets (may be in excess o f 100 for 

globally marketed products). Even when few markets are impacted, applications 

requiring preapproval may also translate to delayed return on investment depending on 

which markets are impacted, with some markets taking years to approve PAT related 

changes.

Review of literature describing historical implementation of PAT indicates that though 

on-line and in-line PAT analysers deliver greater process knowledge and opportunity 

for process control and continual process improvement, they do so with disadvantages 

in cost, time and complexity of installation. Alternatively, at-line applications provide 

opportunity for rapid installation without integration delays and the ability to apply non­

dedicated analysers across multiple process lines and process steps, despite lacking 

automation or process feedback. Similarly, PAT applications with complex regulatory 

consequences (necessitate filing) are not aligned with the current financial challenges 

facing many manufacturing facilities.

The application of PAT in the area of biologies manufacturing is the centre of a recent 

flurry of publications as the pharmaceutical industry recently gained momentum in 

developing biologies therapies. Glassey and Rathore provide an excellent summary of 

recent PAT applications and considerations for biopharmaceutical products^^’ Despite 

this new research area, the pharmaceutical industry continues to be dominated by oral 

dosage forms. In fact many new biopharmaceuticals target the use of oral dosage form 

delivery systems to capture the high level o f patient compliance seen with oral dosage
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forms compared with other delivery systems.^'^ It has been reported that tablets account 

for over 70% of the prescribed medications reaching patients.^^

Based on the review of the various integration options and stages o f PAT 

implementation as well as the constraints identified from literature review and an 

understanding of the current pharmaceutical business and economic climate, research in 

PAT should focus on low cost PAT applications that drive process robustness and 

efficiency, provide opportunity for monitoring and internal control without regulatory 

constraints. Focus should also continue on solid dosage form manufacturing as the 

largest portion of pharmaceutical manufacturing continues to be in this area. At-line 

applications of PAT focussed on process understanding and monitoring of tabletting 

processes, are seen as pivotal to address this research focus area and are the subject of 

this thesis.
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CHAPTER 2 NEAR INFRARED SPECTROSCOPY IN PROCESS

A n a l y t ic a l  T e c h n o l o g y

2.1 Introduction

This chapter describes the role of NIRS to support the PAT philosophy. The 

background theory of NIRS is touched on and the historical application of NIRS within 

the PAT framework is reviewed for various units of pharmaceutical operation. Through 

this review the potential areas for the novel use of NIRS to support at-line 

implementation of PAT was identified and is the focus of the research described in later 

chapters of this thesis.

2.2 Desirable attributes of PAT measurement systems

Techniques and tools for process analytics must be rapid to be applicable to test key 

process and quality attributes of pharmaceutical samples at, or in, the process at 

equipment operational speeds (real time analysis). They must be able to analyse a 

sufficiently large sample size to facilitate process understanding and to establish process 

signatures. PAT techniques must require little sample preparation, and techniques that 

are non-destructive are highly regarded due to ease of result investigation.

Therefore the desired attributes of PAT measurement techniques are:

• Rapid

• No, or limited, sample preparation

• Non-destructive
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As PAT applications are located in the manufacturing plant, it is also necessary that the 

control system for the PAT technique is able to support a simple operator interface so 

that the analysis can be performed or monitored by unskilled (non-chemistry trained) 

plant / factory operators for information feedback and control. Whether a simple 

interface is available for easy plant operator monitoring and control is largely an 

instrument software issue and would be of common interest independent of the 

analytical technique employed.

2.3 Background theory of NIRS

To understand how well suited NIRS is to PAT applications, the theory of NIRS must 

be examined.

As for mid and far infrared (IR) spectroscopy, NIRS is based on the absorption of 

energy (in the 780-2500 nm region of the electromagnetic spectrum) by molecular 

bonds with dipole moments (charge distribution inequality between the atoms) to absorb 

energy and vibrate.

Molecular vibration can be depicted by the energy diagram based on the Morse function 

as shown in Figure 1. Molecules largely reside at the ground energy state (vo) at room 

temperature and can transition to the higher energy states when the energy matches the 

energy gap between the energy levels.

The strong fundamental molecular vibrations, which are seen primarily in the mid IR 

region, occur due to the transition of molecules from the ground energy state (vo) to the 

1 excited energy state (vi energy level).
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Figure 1: Energy diagram  o f an anharm onic oscillator

In a perfectly  ham ionic oscillator, according to H ooke’s Law (Equation 1)^^ each 

energy level is equally spaced and transitions to h igher energy levels are not allow ed.

Frequency (u ) = —  x A —!---------
2/r  y W) W2

W here A = force constant 

m = m ass o f  atom s 

Equation 1: H ooke’s Law

How ever, m olecular vibrations are anharm onic due to intram olecular interactions, and 

transitions from the ground state to h igher energy states can occur w ith transitions from 

Vo to V2 being term ed 1 overtones, and vq to V3 2"^ overtones. O vertone transitions are 

100 to 1000 tim es less likely to occur^^ and are thus m uch w eaker absorptions. These 

overtones require higher energy and are shifted into the NIR region o f  the 

electrom agnetic spectrum .
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In poly-atomic molecules, multiple fundamental transitions (e.g. bending and stretching 

of the same bond) can occur simultaneously at the right energy frequency input. As for 

overtones the higher energy required often causes combination transitions to be seen as 

weak absorption in the NIR region.

The particular frequency at which molecules absorb energy and vibrate is dependent on 

the magnitude of the dipole moment, the orientation of the bonds within the molecule 

(presence of hydrogen bonding, double bonds and steric hindrance reducing the ability 

of bonds to vibrate) and the anharmonicity of the molecule. These characteristics cause 

each molecule to uniquely absorb NIR energy, thus creating a NIR spectral fingerprint. 

Typical NIR absorption bands for organic structures are shown in Figure 2.

Apart from pure liquid pharmaceutical formulations, irradiation of samples with NIR 

light causes several scattering phenomena by the particles present in the formulation. 

The different scattering typical with interaction with NIR light is shown in Figure 3.

Specular radiation contains no information on the sample, while the remaining 

phenomena all contain physical and /or chemical information of the sample. The path 

length of the NIR light through the sample during sample interaction is affected by the 

size of the particles through which the light travels; hence both transmission and diffuse 

reflection spectra contain physical information of the sample. Samples with larger 

particles will absorb more energy than those with finer particles, causing baseline 

offsets. The effects of scattering increase as wavelength of light increases causing a 

curve in the spectral baseline. These scattering phenomena are now well established and 

the impact is reduced by appropriate mathematical corrections.
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Figure 2: C haracteristic NIR absorption bands for com m on organic structures
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Q ij %Q û
Figure 3: NIR interaction with a particu late sam ple show ing absorption (___ ), specular

reflection (___ ), diffuse reflection (___ ) and transm ission (___ )

NIR m easurem ent occurs in three m ain m odes;

• T ransm ission: light passes through the sam ple with the light source on one side

o f  the sam ples and the detector on the other (black light path in Figure 3).

• D iffuse R eflection: light is shone onto the sam ple, w ith shallow  penetration into

the sam ple, and is then detected on the sam e side o f  the sam ple as the original 

light source (red light path in F igure 3).

• T ransflectance: light is shone through a sam ple, hits a reflector and is reflected 

back through the sam ple again before being detected on the sam e side o f  the 

sam ple as the original light source.

In all cases, absorbance values are m easured according to the follow ing equation.

Absorbance = log — or log —

W here T = transm itted  light

R = reflected (or transflected) light 

Equation 2: R elationship o f  absorbance to transm ission and reflection spectra
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2.4 Ability of NIRS to meet desirable attributes for PAT

As the NIR absorption is due to the weaker overtone and combination energy transitions 

discussed in Section 2.3, the NIR absorbance is much weaker than the fundamental 

absorbance in the IR region while the frequency of the energy provides excellent sample 

penetration. This feature allows samples to be analysed without sample dilution typical 

for IR (e.g. oil mull). The ability of NIRS to analyse neat samples, means that sample 

preparation is not necessary. Sample presentation for analysis is typically not difficult 

with two modes usually used - reflectance and transmission. Sample presentation is 

optimised to ensure the natural path length of the sample (e.g. tablet thickness, liquid 

cell) is appropriate and normally no sample modification is required.

The ability to analyse samples without modification coupled with weaker absorptions in 

the NIR region (causing no damage to the molecules) leads to NIRS being a non- 

invasive, non-destructive and inherently rapid analysis technique well suited to process 

analysis. The technique is ideal in situations where the sample quantity is limited, as the 

undamaged sample remains available for further analysis.

Pharmaceutical formulations are typically composed o f four to ten components which 

are primarily complex organic molecules. Therefore, most pharmaceutical components 

are NIR active. NIR spectra of pharmaceutical products are thus a complex spectral 

combination of the NIR active components in the formulations. The fingerprinting 

ability of NIR spectroscopy discussed in Section 2.3 is also reflected in the NIR spectra 

of pharmaceutical formulations. Though spectra o f pharmaceutical formulations are 

quite complex, once the data are resolved the spectral information provides immense 

information of the formulation (the excipients as well as the Active Pharmaceutical 

Ingredient (API)) and also the manufacturing process.
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Unlike the majority of analytical techniques, the chemical information of the 

formulation can also be obtained without losing physical information of the sample. 

Scattering phenomena, historically seen as a hindrance with NIRS, can be of significant 

value for process analysis. Scattering information can yield information on the sample 

particle size (materials or blends), sample density (tablet hardness or powder bulk 

density), sample thickness (e.g. tablet thickness) and suspension and emulsion 

characteristics.

Hence, with a single rapid NIR analysis, taking less than one minute, information on the 

API, key excipients and physical characteristics of the sample can be gained non- 

destructively without affecting product quality and with minimal sample preparation. 

NIRS therefore meets the needs for analytical techniques for PAT applications as 

outlined in Section 2.2.

2.5 Historical applications of near-infrared spectroscopy for PAT

NIRS has been used in the pharmaceutical industry since the late 1980’s. However, the 

early focus of NIRS was on alternate testing for compendial / QC testing. There were 

limited links to in-process testing or process understanding and instrumentation was 

largely located within QC testing laboratories. Blanco provides an excellent summary of 

the use of NIRS in the pharmaceutical industry in the pre-PAT era.^^ However, these 

applications do not fit within the PAT framework and will not be discussed further in 

this review.

Though more limited than laboratory based NIRS methods, process linked applications 

of NIRS pre-date the FDA guidance on PAT. The introduction of the terminology PAT 

makes identification of process related NIR applications much simpler during literature 

review on the topic after 2003. In following years, publications were split fairly equally
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between papers on how and why PAT is implemented and focus on specific 

applications. However, as the terminology of PAT became known throughout the 

pharmaceutical industry, publication of PAT implementation and applications became 

more popular.

This section reviews a subset of PAT NIRS applications, discussing how the 

applications have been implemented and whether there has been a discernable change in 

implementation of PAT related applications following the issue of the draft FDA 

guidance in September 2003. The review concentrates on solid oral dosage form 

applications, as the key focus area defined in Section 1.7, including the application of 

NIRS to input materials through to coating processes of tablets.

2.5.1 Material testing

Variability in physical or chemical properties of excipients and APIs can be a 

significant factor affecting process robustness and product quality. A number of drug 

product processes have shown sensitivities to variation in physical or chemical 

properties of APIs and excipients, even when the materials meet their compendial or 

registered specifications. Pharmacopeial tests may not focus on physical tests such as 

particles size distribution and flow, or chemical tests such as moisture content which 

directly relate to processability. Pharmacopeial tests may also be general for the 

material with no link to the varied way the material may be used or behave in different 

drug product manufacturing processes (e.g. therapeutic powder verses direct 

compression solid oral dosage form) or different formulations (e.g. percent API 

composition in one product may be 1% by weight and 25% by weight in another).

Compendial testing is performed on a delivery basis, and does not take into account 

variability that may occur in different containers of the same delivery. This author
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collaborated in one such work where despite deliveries passing compendial testing (on 

averaged results), container variation in starch content impacted the process and the 

ability of product manufactured from individual drums to meet finished product 

quality/^ In this work, NIRS was applied for rapid material testing for starch content in 

the receival warehouse to aid prediction o f product failure from the use of material from 

individual containers.

NIRS was identified as an important tool for assessing physical and chemical aspects of 

pharmaceutical materials as early as 1996, when it was established that comparison of 

NIR spectra can be a rapid tool to material analysis.A pplying NIRS to raw materials 

within the PAT framework must surpass the prior wide application of NIRS for material 

identification^^’ and target the application of NIRS to the task of qualifying the

material as appropriate for processing.

Material qualification employs various chemometric techniques to assess whether a 

particular sample is consistent with acceptable material (material meeting the 

established material specification). Traditional material qualification^^’ typically 

utilises qualitative classification techniques and compares the spectrum of a sample to a 

static library of acceptable material developed at a single point in time often without 

linkage to the successful use of the material in manufacturing. This provides limited 

process information. Roggo"^  ̂ equates qualification with distance based chemometric 

methods, however any classification technique that utilises a library to establish a 

variability tolerance or acceptability threshold can be applied as a qualitative method. 

Quantitative methods have also been utilised for material qualification of particular 

material attributes (e.g. particle size), however thresholds have been typically applied to 

the output to provide a categorical classification of acceptability.

For material analysis to be a true PAT application it is necessary to begin assessing the 

relationship between observed material quality and the effect on product quality or on
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processing behaviour rather than just relating the output to compendia test replacement 

or pass / fail binary knowledge of the material. Rather than qualifying that a material is 

acceptable compared to a reference library it must be established that the library 

represents a relevant variation that impacts product quality or process performance.

Various papers comment that qualification of materials has the potential to enable 

prediction of material performance in manufacturing processes.^^’ However, a

very limited number of publications explore this aspect beyond demonstrating the 

successful development of a qualification classification approach. Plugge^^ successfully 

demonstrated the value o f qualifying lactose and indicated that his approach could lead 

to greater understanding of the performance and impact of the lactose in the solid 

dosage form. This work in 1996 is well aligned with the PAT approach, however, 

despite much research utilising Plugge’s chemometrics approach (Conformity Index) 

limited application for process understanding has occurred. Rather, the chemometrics 

has been simply applied as a classification and identification approach. One other 

example of qualification being put into practice to relate material quality to processing 

is Lopes’ research which demonstrated the prediction of fermentation process success 

through a four level classification of soy bean flour, linking raw material NIR spectra to 

processability established in pilot scale experiments."^^ Similarly, Haware’s work 

utilised qualitative methods to characterise lactose and predict tensile strength and other 

attributes of tablets utilising the material.

The main area where material characterisation by NIR has related material quality to 

product and quality performance is in polymorph analysis. Though this has largely been 

in investigational rather than routine application, it is worthy of further discussion as 

follows in Section 2.5.1.1.
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2.5.1.1 Polymorph analysis

Polymorphs (different crystal structures of the same compounds) and compound 

solyates (often called pseudo-polymorphs) are an area o f particular interest due to the 

significant effect the different forms can haye on product efficacy due to differences in 

physical and chemical properties.^^ Onward processing of the API (e.g. in wet 

granulation and drying processes) can conyert the polymorph form into undesirable 

forms"^ ,̂ and conyersely the polymorph form of the API can greatly affect the ability of 

the API to be successfully processed into finished goods due to differences in physical 

characteristics.

Polymorphs and pseudo-polymorphs haye been identified as an ideal application for 

NIRS as polymorphs exhibit different NIR spectra due to yariations in crystal lattice 

impacting frequencies of yibration."^^ Chieng’s recent reyiew proyides a summary of the 

diyerse use of NIRS analysis as a PAT application for polymorph analysis 

complimenting the off-line characterisation with traditional techniques."^^ Polymorphic 

form of the API within the solid dose preparation matrix has been analysed with the 

ability to differentiate down to 1.5% of crystalline form of the API in the amorphous 

formulation."^^ Later work has successfully measured an API to a limit of quantification 

of 0.8% using a partial least squares regression me thod . In - l i ne  NIRS has been 

successfully applied to the analysis of phase transitions / polymorph conyersion during 

the wet granulation and crystallisation processes with inyestigation into the process 

kinetics. The NIRS methods were shown to proyide opportunities for process 

improyement."^^’
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2.5.2 Dryer process monitoring

Drying processes occur in pharmaceutical manufacturing, both in the manufacture of 

API and in final dosage form manufacturing where wet granulation processes are 

employed. Traditionally drying processes are conducted for a set time, the dried 

material sampled, and confirmation that the product is dried sufficiently obtained 

through off-line moisture analysis (such as Loss on Drying (LOD), Karl Fischer (KF) 

measurement or mass of condensate from dryer effluent). It is common for material to 

sit in the drying vessel while waiting for the analytical result and then to require further 

drying to achieve the desired moisture level. The delays waiting for analysis and the 

successful application of NIRS for moisture analysis in other industries (utilising the 

fact that 0 -H  vibrations of water exhibit a large absorption in the NIR region) led NIRS 

for pharmaceutical drying analysis to be one of the earlier applications explored. Initial 

focus of the use of NIRS was as direct analytical method replacement of laboratory 

based KF, gas chromatography (GC) and LOD methods by a quantitative NIRS method. 

A number of such end-point determination methods were performed and are 

summarised in Luypaert’s review article on NIR applications for moisture analysis.^^

The traditional approach (KF / GC / LOD), or the use of NIRS as a replacement of such 

methods within a QC framework, does not provide any information as to the actual 

drying process. The risk of over-drying the material and the variation in drying from 

batch to batch, led monitoring of pharmaceutical drying processes to be one of the 

earliest in-line, in-process applications o f NIRS in the pharmaceutical industry.

The application of a NIRS method for the determination of moisture during the drying 

of a pharmaceutical granulation was reported for a microwave vacuum dryer as early as 

1 9 9 4  52 Yî ig early paper focused on development of a quantitative NIR method as an 

alternate test to the KF method. However, White also conceded that additional valuable 

qualitative information about the drying process was provided by monitoring the
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moisture curve during the drying process. This is one of the earliest concessions to 

process trending of analytical data and is directly compatible to the PAT philosophies as 

espoused by the FDA guidance 10 years later. The application of NIRS to dryer 

monitoring has been described by various authors since this first successful reported 

application.^^’ The majority o f published work describes commercial scale

applications; however NIRS has also been applied during process development to 

develop process understanding of the drying process and determining optimum process 

conditions.^ ’̂^̂

An early in-line application of NIRS for monitoring the fluid bed drying process applied 

multivariate analysis to project the data into 2-dimensional plots and trend the output to 

correlate process activities with the NIRS data.^^ This article shows successful PAT use 

of NIRS in 2000, years prior to the advent of the PAT initiative. This initial application 

heralded a switch in research to in-line NIRS for real time monitoring and control of 

critical to quality attributes aligned with PAT. Henningsson’s work demonstrated that 

such an approach enabled improvements in batch-to-batch moisture content consistency 

leading to favourable yield and quality as well as reduction in process and testing cycle 

times (leading to an increase in drying capacity of 10%).'^ The development of on-line 

quantitative methods based on reference chemistry has been largely replaced by 

applying qualitative trending such as correlating NIR spectral data^’ to process activities 

without relying on reference chemistry. This approach can provide a much more 

accurate picture of the drying process and can also overcome building deficiencies in 

the reference chemistry into the NIRS method (e.g. KF methods may have high error for 

some analyses due to side reactions or hygroscopic nature of samples and reagents 

during sample preparation).^^’

The majority of recent papers on drying monitoring focus on in / on-line analysis of 

fluid bed dryers and agitated pan dryers both of which allow direct product analysis of
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the moving mass of drying product. On-line direct analysis of the product is not possible 

with tray dryers and the only possible option for on-line analysis is exhaust gas 

measurement (e.g. monitoring the solvent content in dryer effluent)^^’ which is an 

indirect indicator of the product moisture content.

Though at-line NIR analysis for end-point determination does not provide significant 

process related benefits over traditional moisture analysis techniques, it does provide a 

mechanism for greater quality assurance and process understanding through the ability 

to analyse samples o f product from various locations in the dryer. The use of at-line 

NIR for mapping the performance of tray dryers has been overlooked to date with no 

reports of work in this area. Such mapping would allow measurement across different 

trays and at different locations and powder depths) providing dryer process 

understanding and deeper quality assurance of the product. Similarly, enhanced quality 

assurance and positional mapping across the pan of a fluid bed or agitated pan dyer by 

at-line NIRS may also be applicable when cost of in-line installation is prohibitive. No 

work has been reported in this area to date.

2.5.3 Wet granulation and dry roller compaction monitoring

NIRS has been utilised for analysis of wet granulation processes since the late 1990’s.̂  ̂

PAT is typically applied to the fluidized bed or high shear wet granulation processes of 

a solid dosage form to monitor the drying process and to identify the optimum end­

point. Drying related application of NIRS is described in Section 2.5.2.

Additionally, NIRS has been applied to provide understanding of the mechanism for 

granule formation^"  ̂through the examination of NIR absorbance as the energetic state of 

water changed from bound to bulk water. Hydrogen bonding characteristics, related to 

bulk and bound moisture, vary during the different stages of granule formation.
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Rântânen assessed the three key process phases of mixing, spraying and wet massing of 

a high shear wet granulation process using an in-line qualitative multivariate method 

showing the utility of NIRS to provide significant chemical and physical process 

knowledge/^'

The monitoring of the state of water has been further investigated with a NIRS method 

that monitored the water state and the conversion of an API to a pseudo-polymorph 

during the wet granulation process/^ Applications also utilised the physicochemical 

nature of NIRS to simultaneously understand the chemical changes in moisture bonding 

with the physical growth of granules.^^’

Burggraeve’s excellent review^^ summarises the history of the use of NIRS for 

granulation monitoring showing that much work occurred prior to the FDA PAT 

guidance document being issued, indicating that NIRS was being applied to gain 

process understanding for wet granulation processes ahead of the FDA initiative.

Roller compaction process is used in combination with milling to moderate particle size 

(e.g. increase particle size and normalise distribution) and particle properties (e.g. 

shape). NIRS has been applied as a real-time at-line and in-line non-destructive 

technique to determine both physical (density, tensile strength and Young’s Modulus) 

and chemical (moisture content and API potency and content uniformity) of the blend 

compact in a single measurement.^^’ All of these parameters impact the efficiency of 

the next milling step in delivering the particle size desired for onward processing and 

later blend uniformity of the product blend. The application of NIRS for rapid 

measurement of roller compaction (dry granulation) enables process optimisation to 

reduce cycle time and reworks as well as monitoring, reducing and controlling 

variability of the blend as an input into the next process step. NIRS applied to monitor 

the particle size distribution following milling has also been applied to verify the

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 55 of 305



success of the roller compaction and milling process while also reducing process and 

QC testing cycle time and costs.

2.5.4 Active granule and pellet coating

Though the typical aspect of the granulation process to which PAT is applied is the 

formation of an API containing granule, it is of note that the growth of granule coating 

and active pellets has also been studied using NIRS. The active component may be in 

the granule / pellet core or in the coating. Non-active granule/ pellet coating is often 

used to control the API release in the finished formulation, enhance the API stability in 

the product or provide flavour masking.

NER has also been successfully implemented in the at-line mode to measure the polymer 

coating process of controlled release granules. The rapid at-line determination of the 

process endpoint led to an improved cycle time and reduced inventory^^ and was also 

noted to have potential opportunities for understanding, monitoring and controlling the 

processes (aligned with PAT philosophy).

The application of in-line NIRS to the granule coating process^^"^^ has demonstrated the 

greater process information gained by applying NIRS and indicates the possible use of 

NIRS for monitoring and controlling the granule coating process.

Recent work has investigated the use of NIR chemical imaging for the analysis of pellet 

cores and pellet coating^^ however as yet this has been applied in an investigational 

mode and the cost and the time to analyse a small sample size will likely result in NIR 

chemical imaging not being a widely deployable PAT application for the analysis, 

monitoring and control of granule coating within operations.
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2.5.5 Blend homogeneity

Traditionally, solid dosage forms are manufactured by blending together the 

formulation components for a set blend time established during three validation batches. 

It is accepted that to produce high quality solid dosage forms, the intermediate blend 

must be manufactured to a high degree of homogeneity. Traditional testing of 

pharmaceutical blends by techniques such as high performance liquid chromatography 

(HPLC) and ultra-violet (UV) spectrophotometry can take longer than the blending 

process itself and assess the uniformity of the API in sub-samples of the blend alone to 

describe the blend homogeneity. However, the process-ability of the blend in the next 

processing step can be greatly affected by excipients such as lubricants or flow agents 

and quality attributes such as dissolution can be dramatically affected by distribution of 

excipients such as disintegrants and hydrophobic l u b r i c a n t s . T h e r e f o r e  the 

distribution of key excipients should be determined as part of blend homogeneity 

testing.

Early laboratory experiments into the use of NIR for pharmaceutical blend mixtures was 

reported in 1991.^’ Ini 998, the use of NIRS for blend monitoring was described where 

the simple variance at wavelengths indicative of the API was used to decrease the use of 

HPLC assays and provide rapid decisions to forward process.^* The at-line NIRS 

analysis of blends across the whole blend matrix (combined NIR absorption of all 

components) was also first investigated over 10 years ago.^^’̂  ̂ This early research 

highlighted the benefit of NIRS to mitigate the extensive assays typically done in QC 

laboratories during blend validation. The use of NIRS for blend validation rather than 

just as end-point process monitoring, focused on providing process understanding, 

aligns well with the PAT philosophy.

The application of NIRS specifically to materials other than the API is more limited but 

has been discussed with regard to a blending study of magnesium stearate lubricant^^’̂ ^
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and starch content in a sucrose starch blend^^ and more recently for minor excipient 

components in a blend/^'

The greatest difficulty in measuring the homogeneity o f blends is the inherent errors 

involved in powder sampling using a conventional sampling tool such as a sample thief. 

Establishing blend homogeneity without the need to extract samples of the blend at all 

is therefore desired. NIRS lends itself to this application and has been investigated for 

many years. In-line NIRS also facilitates analysis of large sample size with no loss in 

product yield from sampling. Larger and more representative sample size is of interest 

and the industry and regulatory groups continue to debate stratified sampling and the 

minimum number of samples needed to describe the homogeneity of a blend with the 

FDA guidance on stratified sampling remaining in draft since 2003.^^

In in-line NIRS applications, the NIRS instrumentation is typically interfaced with the 

blenders through fibre optic probes and measurements are taken frequently throughout 

blending. The earliest in-line applications of NIRS to blend analysis was reported at the 

end of 1995^^ and early 1996.^^ Both papers utilised variance analysis and trend charts 

to monitor blend matrix homogeneity during the blending process. Other papers since 

have described similar statistical process control (SPC) approaches (variance analysis, 

trend charting. Hotelling’s T  ̂ test) coupled with chemometric data interpretation tools 

such as spectral matching, PGA and regression m e t h o d s . I t  has been found that 

the blending curve and blending end-point varies between batches, which highlights the 

benefit of applying PAT to each batch as ongoing quality verification.^^’

Much research predates the issue of the FDA guidance document in 2004. This 

demonstrates again that companies were already actively pursuing PAT for key 

pharmaceutical applications before the FDA promotion of PAT. Recent work has 

emphasised the value of NIRS in PAT applications to support quality by design 

efforts. '̂^ Papers by Puchert^^ and De Beer^^ provide good reviews of the diverse NIRS
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applications for blend analysis, while Blanco’s review describes the various qualitative 

and quantitative approaches to data analysis, particularly for end-point determination.^^

NIR chemical imaging, an area of recent growth, was also investigated prior to PAT 

becoming well established in the i n d u s t r y . R e c e n t  work on NIRS imaging^^’ 

continued the focus on process understanding on the microscopic level distribution of 

components within the blend matrix. This provides an incredible degree of information 

on both the spatial and chemical composition of the blend and has assessed correlation 

of NIR imaging results to later processing and finished product quality. The key 

limitations with NIR imaging being deployed within the production environment are; 

the sample area and resolution vs. the time of analysis, cost and ability to interface 

within the production environment (dusty, vibrating, etc.). Instrument and technology 

development continues to work towards real time NIR chemical imaging while 

competition in the market is starting to reduce prices. Within the current economic 

climate and instrument capabilities, NIR imaging is beyond scope for wide deployment 

to support process monitoring and control.

Though in-line analysis is the preferred mode of NIR analysis, some blenders (such as 

stationary ribbon blenders, or rotating screw cone blenders) do not facilitate in-line or 

on-line blend analysis. In such cases it may be possible to measure product at blender 

discharge however spatial understanding o f the blend uniformity within the blender is 

lost. Thus at-line blend testing with sampling will continue to be required in some form 

and will facilitate PAT application of NIRS.
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2.5.6 Chemical attribute monitoring of solid dosage form

Historical application of NIRS for intact tablet analysis has concentrated on the 

quantitative API potency prediction followed by content uniformity determinat ion.^^ 

Development o f these quantitative methods has been applied primarily as a tool to 

decrease the cycle time through the laboratories, exploiting the advantages of being fast 

and non-destructive. These methods are not typically applied to gain process 

understanding and are well summarised in Lupaert’s review."^^

A significant change in NIRS approach was demonstrated by Plugge and Van Der Vlies 

in 1993, where qualitative systems were used to provide semi-quantitative predictions 

and quality assurance. Plugge introduced the Conformity Index algorithm as a 

measure of the “degree of conformity” of a batch with samples of standard quality. 

Axon et al. appreciated the potential of transmission NIRS for the qualitative content 

uniformity assessment of drug substance in intact tablets using a simple univariate 

qualitative approach.^^ However, since this initial investigation of qualitative methods 

of NIR for tablet analysis in the early 1990’s, little further work has been reported in 

applying qualitative analysis in the area of in-process monitoring of larger sample size 

during tabletting manufacturing.

Reich mentioned qualitative NIR tablet methods (applying “conformity” testing) in 

passing during her review article on pharmaceutical applications of NI R S . H o w e v e r  

there was no detail and literature is dominated by quantitative methods. The primary 

arena that qualitative analysis is currently applied to tablet analysis is in tablet 

identification^^^'^^^ and counterfeit a n a l y s i s r a t h e r  than analysis of the tablet 

components within a manufacturing setting.

There is limited reference to semi-quantitative methods for tablet analysis chemistry^^^ 

and for quantitative methods developed without reference c h e m i s t r y . De
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Maesschalck’s work utilised a semi-quantitative approach coupling regression with 

discriminant analysis, however, this was then applied as an identification method within 

the research and development arena to differentiate different dosage strengths of clinical 

trial samples rather than in commercial tabletting o p e ra tio n s/B lan co ’s reference free 

approach was to enable calibrations built on pure component powder mixtures prepared 

gravimetrically in a laboratory setting to be corrected for spectral differences when 

applied to production samples. This approach, though rapid to develop, may lead to 

ongoing update of the representative process residual spectrum as process variations 

occur over time. Blanco does not comment on how this approach would be validated 

within a commercial facility and whether the limited calibration set would be robust to 

the typical process variability that occurs in the life of a product, NIR instrument and 

process equipment.’®̂’ Shi and Li’s work investigated the use of qualitative or low 

reference methods to assist in rapid screening of clinical trials tablets, however no 

discussion was given on the extension of the approach in the commercial setting.

A limited number of papers do discuss the virtue of applying NIRS to larger sample 

sizes^^’ to gain understanding of the tabletting process and provide heightened 

quality assurance. The applications for this purpose have been minimal due to the 

continued lack of direction of the application of appropriate specifications for large 

sample sizes (large n)}^^ Applying NIRS at-line for process monitoring rather than as 

product release testing does provide a mechanism for gaining the process understanding 

and inherent quality improvements while staying clear of the debate on large «, however 

this appears to have been overlooked and no papers were identified discussing tablet 

component trending.

NIR chemical imaging has been applied to process understanding of tablets and 

capsules and investigation into various quality issues fi*om as early as 2002^^ and 

continues to be an area of research.^^’ More recently NIR chemical imaging has
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been applied to counterfeit a n a l y s i s . A s  described in Section 2.5.5, the cost, time and 

small sample size limits chemical imaging analysis being deployed as a routine PAT 

application for finished solid dosage form component analysis.

Several on-line NIR analysers are commercially available, (e.g. Bruker Tandem) 

however the cost is quite prohibitive and success is very dependent on the ability to 

automatically deliver the tablets to the analyser in a consistent manner (requiring 

expensive robotics). The use of such on-line systems has not been published widely for 

tablet testing^ and has not been reported for capsules.

Colon Soto reported the first use of in-line NIRS at the exit of the tablet press for 

component quan t i t a t i on .Thi s  allowed a much larger sample size to be analysed, 

however the accuracy was in excess of 4% at the centre of the calibration range and an 

in-house conveyer system was required. Karande furthered this work through the use of 

in-line NIR inserted in the tablet press directly after the tablets are ejected from the 

dyes. However this work reported poor accuracy with the prediction error as high as 

17.4% at the target API content.^

No other work has been reported with in-line NIRS of intact tablets. An alternative to 

in-line tablet analysis, identified by Reich in 2005,"^  ̂ is described by Liu^^  ̂with the use 

of blend analysis from within the tablet press at the point of compression. This is 

proposed as an alternate approach to content uniformity testing and follows in-line 

analysis methodologies as for blend analysis in Section 2.5.5.

With the limitations of in-line and on-line analysis, at-line analysis is the primary mode 

of PAT aligned NIRS applications for large sample size analysis of tablets and capsules. 

Within this focus, qualitative approaches are an area of opportunity for research given 

the limited process focused application to date.
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2.5.7 Physical attributes monitoring of solid dosage forms

NIRS has been investigated to gain understanding on product attributes other than API 

potency prediction and content uniformity of solid dosage form (tablets and capsules), 

with considerable interest in dissolution, tablet disintegration and hardness 

characteristics.

One of the earliest papers on in-process assessment of physical attributes of solid 

dosage forms discussed the use of NIRS for predicting dissolution times and tablet 

hardness .^Though this 1995 work focused on developing quantitative methods for 

assessing the physical attributes, the authors acknowledged that pattern recognition 

methods were valuable and could be applied within manufacturing for qualitative 

classification of samples and that the developed quantitative methods could be applied 

on-line for process c o n t r o l . T h e  application of NIRS for tablet hardness analysis was 

further investigated with the comparison of the use of simple statistical techniques to the 

more complex chemometrics / multivariate regression analyses. This work correlated 

the absorption shifts seen due to changes in the effective pathlength of NIR light 

through tablets compressed under different tabletting pressures to the tablet hardness.^ 

The application to tablet hardness was extended to assess tablet porosity as well as 

hardness’ and has also applied NIRS to dissolution prediction at different compression 

forces”  ̂ (though in this later paper there is distinct deviation from linearity observed in 

the linearity graphs at low dissolved API content).

Hattori’s recent work investigated the ability of NIRS to study the ingress o f water, 

porosity and the relationship to dissolution of intact tablets.’ '̂’

Much of the research has remained focused on development of quantitative methods 

despite challenges in developing calibration samples over the range of the attribute 

under investigation. Reich indicated that qualitative approaches might prove more
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prac t i ca lhowever  limited research has been conducted on qualitative methods. Also 

though it is inferred that higher sample numbers can be tested, there is no published 

targeted discussion on the possibility of applying the method for real-time process 

monitoring or control.

2.5.8 Capsule and tablet coating

The capsule material used to encase the pharmaceutical blend in capsule finished dosage 

form has significant impact on quality attributes such as dissolution and in the end 

product efficacy. NIRS has been utilised for understanding the capsule characteristics 

for both hard and soft gelatine capsules. At-line NIRS has been employed for bulk 

capsule characterisation (such as moisture)’ synonymous to analysis of raw materials 

discussed in Section 2.5.1. Additionally, at-line NIRS has been applied to assess capsule 

changes once filled with product (e.g. cross-linking) summarised well by Reich.'’̂  

Investigation of capsule characteristics in an on-line mode during encapsulation has not 

been reported, however this is feasible within the encapsulation and packaging process 

prior to blister closure, which would provide a means to assess variability in capsule 

characteristics.

Tablets are coated for aesthetic purposes (e.g. appealing marketable colour), to align 

with regulations (e.g. country regulations on colour of particular therapeutic products), 

to provide flavour masking or to control active component release (e.g. dissolution rate 

of sustained release product). Coating materials are typically insoluble, slowly 

dissolving or erodible (for release control), readily soluble coating (for colour and 

appearance), sugar coating (for flavour masking) and less often active component 

coating.
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NIRS has been successfully applied to gain process understanding of coating processes 

for tabletted products and is commonly applied to assess the coating thickness^^’

and prediction of d i s s o l u t i o n . As  early as 1995, NIRS was applied to assessing 

film coating thickness of film coated tablets and predicting dissolution t i m e s . T h i s  

author collaborated on one such application where reflectance NIRS was used with 

quantitative models to correlate spectral features to coating components in an extended 

release product to gain understanding o f coating effectiveness.^^ This work also 

describes the extension of analysis from coating thickness to gaining additional process 

knowledge through understanding the relationship of spectral features to the API release 

rate. Valuable knowledge was gained despite the developed method showing 

insufficient correlation for quantitation. Other research has focused on the use of at-line 

NIRS to monitor the curing end point process to understand changes occurring in the 

coating structure.

Direct on-line analysis of the pan coated product during the process is hampered by the 

hostile mechanics of operation (heated environment tumbling product with atomised 

sprayed coating material). As such, limited work has been conducted with the NIR 

instrument deployed in an in-line mode. Recently in-line applications at commercial 

scale has been reported by Moltgen^^^ and Gendre indicating a new focus of NIRS 

for pan coating monitoring.

NIR chemical imaging has been applied to process understanding of tablet coating and 

related quality issues.^^’ As described previously, chemical imaging analysis is not 

currently suitable for routine PAT application for coating analysis.
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2.6 Scientific research gap analysis of NIRS for PAT - research aims 

and objectives

NLRS has been widely investigated and applied within the pharmaceutieal industry. The 

application of NIRS for PAT applications predates the introduction of the PAT 

framework by the FDA, however the publication of the FDA guidance has mobilised 

interest across the industry and ensured PAT terminology is embedded in the 

pharmaceutieal manufacturing culture.

Despite considerable research and application of PAT across the various areas of 

pharmaceutical manufacturing for solid oral dosage forms, several gaps of application 

of NIRS to support PAT exist. In particular, the typical approach of developing 

qualitative identification methods for materials with no extension beyond replacing 

traditional identification tests yields little process understanding and does not facilitate 

the development of causal relationships between materials and process behaviours. 

Also, development of alternate quantification methods with time consuming reference 

chemistry may not be suited to the need for rapid deployment within processing areas, 

flexibility or ease of update and may not provide process information necessary to gain 

the desired process understanding or provide process monitoring or control. There is a 

gap in the application of simple and rapid to implement NIR applications and methods 

which are aligned to PAT by providing a mechanism for process understanding and 

quality assurance. Research in this area will add value to the pharmaceutical industry by 

closing this gap and will also respond to the scientific need for mechanisms of NIR 

analysis not reliant on time consuming and potentially error laden reference chemistry. 

Thus research should focus on spectral information and novel uses of chemometric 

algorithms combined with SPC.
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After review of the pros and cons of at-line versus on-line mode of NIRS as well as the 

previous applications in literature, the aspect of NIRS measurement with greatest 

potential scope for impactful research was determined to be at-line analysis. The critical 

drivers for this focus were the ease of integration and interfacing, ability to 

multipurpose the instrumentation (thus offsetting capital investment) and the wide 

availability of at-line systems in the industry. Thus the research has global applicability 

for even the most cost conscious locations in the global pharmaceutical manufacturing 

environment.

The ideal deployment of PAT would assess critical attributes and parameters at each 

unit of operation throughout solid dosage form manufacture as each process step 

impacts the next. Following a review of published application of NIRS to solid dosage 

production across the breadth of pharmaceutical manufacturing, from materials and 

intermediate processing through to end stage processing described in section 2.5, it was 

identified that the most value would be derived from focusing research on gaps in the 

application of at-line NIRS to support PAT at raw material and tablet component 

analysis. The raw material process step is common to all oral dosage forms whether 

granulated or direct compression, while tabletting was found to be the dominant 

finished dosage form in the marketplace, and each of these areas were identified with 

research gaps.^^

Figure 4 shows a flow chart mapping the typical solid dose manufacturing process, 

highlighting the two research focus areas; materials and tabletting analysis. Sections

2.6.1 and 2.6.2 describe the aims and objectives of the two research focus areas, while 

Chapter 4 and Chapter 5 describe the research in detail.
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2.6.1 Aims and objectives -  research in materials analysis

Following the scientific research gap analysis and review of published work, the first 

research focus aim was to investigate and develop novel applications of NIRS for at-line 

analysis of materials aligned with PAT.

The objective was to develop an approach that rapidly assesses the material quality as a 

whole and for particular material attributes of interest through the application of rapid to 

develop qualitative NIRS methods and the use of SPC techniques to enhance the 

assessment of material quality through deeper interrogation of material attributes and 

the linkage to both product quality and process behaviour. The developed methodology 

was required to be approachable for scientifically untrained warehouse operators to 

allow rapid analysis at the point of material receipt.

2.6.2 Aims and objectives -  research in tabletting analysis

The aim for the second research focus area was to investigate and develop novel NIRS 

application to facilitate at-line process monitoring throughout tabletting for a key tablet 

component of interest aligned with PAT.

The objective was to develop an approach with rapid to develop qualitative or semi- 

quantitative methods that did not rely on significant reference chemistry and couple the 

methods with SPC techniques to provide a means for in-depth understanding of the 

tabletting process. The developed methodology was required to be approachable for 

scientifically untrained tablet press operators to allow at-line monitoring and potential 

manual feedback as the process occurs.
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CHAPTER 3 C h e m o m e tr ic s  a n d  s t a t i s t i c s  f o r  NIRS 

PAT APPLICATIONS

3.1 Introduction

To successfully utilise the complex NIRS spectral data for PAT applications, data 

mathematics treatments, multivariate analysis and statistical analysis techniques are 

applied to extract the important and relevant sample information.^^' Pomerantsev and 

Rajalahti provide good summaries of the use of chemometrics in PAT since 1993.^’ 

The common techniques applied, and in particular those employed in the PAT 

applications researched and described in Chapter 4 to Chapter 5, are summarised in this 

chapter.

3.2 Data treatments

Spectroscopic data such as that from NIR measurement systems is a complex data array, 

whereby each sample measurement comprises n individual results where n is the 

number of data points across the wavelength or wavenumber range of the measurement. 

As such, the NIR spectrum is a curve joining these individual measurement results. As 

mentioned in Section 2.3, the NIR spectrum includes the analytical response of the 

sample (absorbance of energy by the sample) as well as a component due to specular 

radiation (physical effects). The spectrum will also contain a component of instrumental 

noise.

Data treatments are mathematical corrections of the data to correct for components in 

the data not related to the sample measured (such as instrument noise) or to the analyte 

o f interest (such as pathlength effects). Common data treatments are described in the 

following sections.
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3.2.1 Smoothing

Smoothing acts to join data points in the NIR spectrum in a fluid curve across the range 

of frequencies analysed (range is typically quoted as wavelength (nm) or wavenumber 

(cm’’) depending on software) and remove instrument electronic noise. Smoothing is an 

essential step before other data treatments to ensure that small peaks caused by joining 

individual data points or electronic noise are not erroneously assigned an analytical 

source. Smoothing is a common technique used across analytical chemistry and not a 

data treatment unique to NIRS. Convention is to apply the lowest smoothing treatment 

to remove the random noise in the signal without inadvertently removing small peaks 

that do relate to the measured sample. A common smoothing technique is the moving 

block mean across n data points, described in the equation below. Figure 5 shows the 

effect of applying smoothing to NIR Spectra.

n - \
x+-----

2

n - l

Corrected = n

Where A x ~  absorbance value at frequency %
n = number of data points applied for smoothing

E quation  3: T ypical sm ooth ing  calculation
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Figure 5: Zoom ed im age o f spectra before (a) and after (b) sm oothing  

3.2.2 Scatter correction and normalisation

Scatter correction and baseline norm alisation is a useful m athem atical treatm ent for NIR 

spectra o f  particle based sam ples. As discussed in Section 2.3 and illustrated in Figure 

3, N IR  spectra o f  particulate sam ples includes contributions from specular reflection 

and scattering interactions o f  the light w ith the particles. Scattering effects are largely 

due to the size o f  the particles approaching the w avelength o f  the N IR  radiation. The 

sm aller the particles in a sam ple the m ore light is reflected from the partic le surface, and
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less absorption occurs compared to coarser material. The result of this effect is baseline 

shifts.

Scatter effects are more significant in transmission measurement where a larger portion 

of the sample is measured and is also compounded by pathlength effects. Variation in 

the thickness o f samples directly impacts the light emitting from the sample and 

reaching the detector, also contributing baseline offsets.

Particulate scatter effects also vary across the NIR wavelength range with more effects 

occurring at the IR end of the electromagnetic spectrum at lower energy and lower 

penetration. The varying nature of scattering across the wavelength range causes the 

NIR spectra to have a curved baseline.

Scatter correction and normalisation are a range of techniques used to correct for 

baseline and physical effects. The simplest scatter correction technique is applying a 

linear absorbance correction value across the wavelength range. These techniques do 

not take into account the varying impact of the effects across the wavelength range and 

can result in treated spectra containing baseline offsets at portions of the range (e.g. at 

extremes of the spectra when a centre point correction is applied).

Normalisation techniques are more effective in correcting the baseline offset across the 

entire spectrum by accounting for the variation in the range of absorbance. The Standard 

Normal Variate (SNY) pre-treatment described in Equation 4 is one such normalisation 

technique. SNY centres the spectrum by subtracting the average absorbance value of the 

spectrum from every point in the spectrum, then divides each point by the standard 

deviation calculated from the Y-axis value of every point in the spectrum. Each 

corrected spectrum will have a mean absorbance of zero and standard deviation of 

absorbance intensities across the wavelength range of one. Figure 6 shows the success 

of SNY normalisation in removing varying baseline offsets in NIR spectra.
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A x  -
/=i

Corrected A x  =

W here Ax ~  absorbance value at frequency x

n = num ber o f  data points in the spectrum  

^  = standard deviation o f  n absorbance values

Equation 4: Standard N orm al V ariate calculation
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Figure 6: Sm oothed ran spectra before (a) and after (b) SNV norm alisation
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3.2.3 Derivatives

As discussed in Section 3.2.2, the NIR spectrum has a curved baseline. This can lead to 

challenges in resolving analyte absorptions from this curve. In addition, the NIR 

spectrum is composed of complex broad, overlapping overtones and combination 

absorbance bands from multiple components and/or functional groups. Derivatives are a 

mathematical treatment which remove curved baselines, account for residual physical 

effects and resolve broad peaks and improve fine structure.

The derivative spectrum is derived from a moving block slope calculation across a 

set number of data points. The peaks in the derivative spectrum reflect changes to the 

slope of the NIR spectrum. Each raw NIR spectrum peak will thus result in two peaks in 

the 1 derivative spectrum

The 2"  ̂derivative spectral treatment repeats the moving block slope calculation on the 

derivative spectra and the resulting 2"  ̂ derivative spectrum represents the rate of 

change of slope in the original NIR spectrum. Figure 7 provides a depiction of the 

derivative mathematical treatment for a single absorption peak showing the relationship 

of the derivative to the original raw spectrum. The 2"  ̂ derivative is often preferred as 

the peak absorbance can be related directly to the known absorbance bands of organic 

structures while 1®̂ derivative peak absorbance values are shifted.

Figure 8 shows the ability of derivatives to extract and emphasise spectral features for 

the same data set as shown in Figure 6. Also note that as the order of derivatives 

increase, the noise increases which can impact method sensitivity. This is illustrated in 

Figure 6 and in Figure 8, where the absorbance range for the raw spectra in Figure 6 

reduces with each derivative treatment shown in Figure 8. The selection of the 

appropriate derivative treatment for a given data set should be determined balancing the 

enhancement of the spectral features with the reduction in signal to noise ratio.
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3.3 Chemometrics and multivariate analysis

The term  C hem om etries was founded in the early  1970’s and though m any definitions 

exist, in sim plest term s, ehem om etries ean be defined as:

"the application o f  m athem atica l a n d  sta tistica l m ethod  to chem ical 

m easurem ents.

In partieular, ehem om etries is applied to extraet inform ation from eom plex m ultivariate 

m easurem ent data sets, to reduee eom plexity  o f  data (often term ed data eom pression) 

understand the relationships and in terdependenee o f  the m ultiple variables and to
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improve performance of analytical methods generated from the complex chemical 

measurement data.

As mentioned previously in Section 23,  the NIR spectrum is composed of an array of 

individual absorbance values across the frequency range of the measurement system. At 

each data point in the range, the absorbance has contributions from many different 

sources, the analyte of interest, the product matrix, instrument noise, environmental 

factors (e.g. humidity, vibration), and sample handling effects (preparation and interface 

with the measurement system). Chemometrics is commonly used to interrogate the 

multivariate array of data in the NIR spectrum and draw out the important elements that 

relate to the analyte of interest.

In terms of NIR data analysis there are three main types of chemometrics applied; 

classification analysis, regression analysis and discriminant analysis (which utilises 

regression to enable classification analysis).

3.3.1 Classification analysis

Classification analysis in NIRS is the use of chemometrics to analyse the NIR spectra 

and produce a categorical determination, often pass or fail. This is most commonly 

applied within the pharmaceutical industry for identification determination (e.g. raw 

material identification).

Various chemometric algorithms are applied to the NIR spectrum as a means of 

comparison to an established reference spectrum or reference spectral dataset (often 

termed reference library). Several techniques dominate the literature and are discussed 

in this section.
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3.3.1.1 Correlation

Correlation determines how well the sample spectrum overlays with the reference 

spectrum (or average spectrum if a reference library is used). Correlation between two 

variables is defined in statistical terms as the covariance of the variables divided by the 

product of the respective standard deviations as shown in Equation 5. For correlation 

models used in classification chemometrics, the x variable is the sample spectrum while 

the y variable is the reference spectrum (or average spectrum if a reference library is 

used).

The correlation calculation is analogous to simple linear regression of the absorbance 

values of the sample spectrum at each fi*equency against the paired absorbance value of 

the reference. The resulting correlation coefficient (r) provides the output of the 

analysis, though often software will quote the r  ̂ value in place of r. An example is 

shown in Figure 9.

Correlation (r) = ' '

i = l  /= !

Where xi = absorbance value at frequency i for the sample 

y- = absorbance value at frequency i for the reference 

n = number of data points in the spectrum 

E quation  5: C orrelation  (r) calcu lation
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Figure 9: Sam ple and reference 2"*̂  derivative spectra (a) with resulting regression plot and

associated correlation coefficient (b)

3.3.1.2 Spectral distance and Euclidean distance

Spectral distance (SD ) can be considered as the array o f  differences betw een two 

spectra across n w avelengths. This is a com m on m easurem ent betw een the reference 

spectrum  (or average reference spectrum  o f  a reference library) and a sam ple spectrum .
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Different software packages provide various statistics based on the SD metric, these 

include:

• Total absolute SD - The sum of the absolute values of the SD across the spectra 

(equivalent to the area under the curve) as shown in the equation below:

Total absolute SD = ^ j A r e / j  ~ 
i—l

Where A ref  ̂ ~ absorbance values for the reference spectrum at point i 

Asj = absorbance values for the sample spectrum at point i 

n = number of data points in the spectrum range 

E quation  6: T otal absolute spectral d istance calculation

• Average absolute SD - The mean of the absolute values of the SD across the 

spectra as shown in the equation below:

As-

Average absolute SD =

Where Aref  ̂~ absorbance values for the reference spectrum at point i 

As. = absorbance values for the sample spectrum at point i 

n = number of data points in the spectrum range 

E quation  7: A verage absolute spectra l d istance calculation

• Maximum absolute SD - The maximum absolute SD value at any frequency 

across the spectra (termed Distance Score in some vendor software).

• Euclidean distance (ED) -  the square root of the sum of the squared SD across 

the measurement range as shown in the equation overleaf:
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Where Arefj ~ absorbance values for the reference spectrum at point i 

As- = absorbance values for the sample spectrum at point / 

n = number of data points in the spectrum range 

E quation  8: E uclid ian  d istance calculation

The total and average SD or ED statistic is preferred for global spectral qualification 

over maximum SD as these statistics encompass the results across the entire spectral 

range.

For the above calculations, each wavelength is given equal weighting in the calculation 

and does not take into account the magnitude of the absorbance at the wavelength or 

whether a particular wavelength is expected to have greater variation. The result is that 

SD measurements will emphasise when a sample varies at a peak of stronger 

absorbance. Smaller peaks which may be o f more interest in a particular analysis will 

have less impact on the results.

3.3.1.3 Normalised SD

Normalising the SD accounts for the different variance in the different variables (in this 

case wavelength) by dividing the SD at each wavelength by the standard deviation 

calculated at each point for the reference library. The four metrics in 3.3.1.2 can be 

calculated on the normalised SD values.

Some chemometrics software packages may term the display of normalised SD against 

wavelength the “Conformity Index Plot”. This visual display can be useful when 

diagnosing differences or identifying wavelengths of significant variation.
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3.3.1.4 Principal component analysis

NIR spectra have contributions from many different sources: the analyte of interest, the 

product matrix, instrument noise, environmental factors, and sample handling. NIR 

spectra also incorporate significant co-linearity where the analyte or product matrix 

absorbs at several places across the spectrum. Where the analyte absorption increases, 

matrix absorptions inversely decrease through dilution effects. This means that some of 

the variables (wavelength absorbance) can be written as approximate linear functions of 

others. Additionally, the NIR spectrum is composed of many overlapping bands of 

absorbance from each component in the matrix; therefore any given variable may have 

contributions from multiple components besides the analyte of interest.

Principal Component Analysis (PCA) solves this issue by combining variables that vary 

in a related way together into a principal component (PC). A reference library is used to 

establish the PCs. Each NIR spectrum is decomposed into a set of PCs (variation spectra 

or loadings) with a corresponding constant scaling factor (PC score). The first PC will 

account for the greatest sources of correlated spectral variation, with the subsequent PCs 

explaining lesser sources of variation. The set of PCs could be used to reconstruct the 

spectrum of a sample by multiplying each PC by the corresponding PC score and 

adding the results together until the new spectrum closely matches the original 

spectrum. Each sample would have a different set of PC scores since each sample will 

be at least subtly different. The portion of the spectrum not explained by the number of 

PCs chosen for the analysis (the spectral residual) is often assumed to be noise. 

However, it is best described as un-modelled variation.
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Spectrum  = ^  ( P Q  x Scorej ) + R S  
/=1

W here P C / = principal com ponent load ing  m atrix  for the /th principal com ponent 

Scorei = score values for th e /th  p rincipa l com ponent 

p  = num ber o f  principal com ponen ts 

R S  = residual unexplained speetral varia tion  m atrix

Equation 9: Equation relating principal com ponents to sam ple spectrum

PCA can be used to reduce noise from the spectra ( ‘c lean ’ the spectra), provide 

sim plified visualisation o f  the N IR  data and can also be utilised for classification 

analysis. Figure 10 show s a pictorial representation  o f  PCA for an exam ple w ith four 

sam ple spectra. Figure 11 illustrates the PC Scores plot for the exam ple in Figure 10 

show ing the scores for the second PC versus the scores for the third PC to dem onstrate 

visualisation and sim ple classillcation for a set o f  1 2  sam ples.

PC 1: Product

l i i i |> i i r i t \

W a v e l e n g t h  (nm) 

PC 2: Water 0.11

0.16

0.09

0.18
W a v e l e n g t h  (nm)

W a v e l e n g t h  (nm)
0.07I'

I PC 3: Impuritv
0.06

X
< 0.03

0.06
W a v e l e n g t h  (nm)

NIR Spectra Principal Component PC Score

Eigure 10: R epresentation o f deconstruction o f  four NIR spectra into PCs and PC scores.
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Bad product: 
high water content

Bad product: 
high impurities 
moderate water

Good product: 
low water & impurity

P C t

Figure 11: R epresentation o f PC scores plot show ing PC2 against PC3.

The sim plest form o f  classification can be perfonned  on one or m ore PCs through 

applying a threshold on acceptable score values. A lternatively, the ED and norm alised 

ED can be calculated on the PC score variables. N ote that the norm alised ED in PC 

space is term ed M ahalanobis d istance (M D ). The m odified equations for ED in PC 

space and M D are show n in Equation 10 and Equation 11.

ED  = -  Score,

W here ScorereJ] -  score values for the m ean reference spectrum  for PC / 

Scores^ -  score values for the sam ple spectrum  for PC / 

p  = num ber o f  principal com ponents in the analysis 

Equation 10: Euclidian d istance calculation in PC Space
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MD =
ÿ Score,. -Score,^f. ''

Si

Where Scorerefi = score values for the mean referencespectrum for PC z 

Scores^ -  score values for the sample spectrum for PC i

= numberof principalcomponentsin the analysis 
Si = standard deviationof Score valuesfbr PC z forrefereneelibrary

E quation  11: M ahalanob is d istance calculation

When the PCA analysis describes one population, the centre of the population will be at 

the origin. Thus the equations for ED and MD are simplified and become a direct 

function of the PC scores (the term Scorerefi becomes zero). When PCA analysis 

describes multiple populations, ED and MD ean be calculated between a sample 

spectrum and the center of each population. When a threshold is applied, the test sample 

can be classified as within one or more o f the reference populations.

Typically MD is used in this application to take into account the variability in the 

population in a given PC.

3.3.2 Regression analysis

Regression algorithms provide a method of correlating speetral data to the analyte 

concentration of interest. Four types of regression analysis are widely available in NIR 

software packages. These are discussed briefly in this section in increasing order of 

eomplexity.
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3.3.2.1 Classical least squares (linear) regression

In m ethods such as classical least squares (C LS) regression, a single point in the 

spectrum  is correlated against the reference m ethod to produce an equation that relates 

analyte concentration to N IR  absorbance at that point (B eer-L am bert Law). CLS 

regression is w idely  utilised in analytical chem istry  and is appropriate for N IR  analysis 

o f  sim ple m atrices such as solutions (e.g. F igure 12).

y  = mi Xi + b

W here y  = analyte concentration

Xi = absorbance value at frequency / for the sam ple 

nil -  regression coefficient (slope) at point / 

b -  residual unm odelled  com ponent 

Equation 12: Equation describ ing linear regression

6,5
- 0.5132 + 383.7 x

6,0

5.5

I
I
1̂

4.0

3.5

3.0
0.010 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018

(MIR Absorbance

Figure 12: Exam ple linear regression plot and associated regression equation
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3.3.2.2 Multiple linear regression

Co-linearity and co-absorption as described in section 3.3.1.4 contribute interference 

when calibrating NIR spectral data. Multiple Linear Regression (MLR) is a variant on 

linear regression in which two or more points in the NIR spectrum are correlated against 

the reference method to produce an equation with less impact of interfering co-linearity 

and co-absorption. The primary wavelength should correspond to a known absorption 

for the analyte of interest. The additional (helping) terms are typically chosen to 

represent inverse correlations (for example matrix components that are diluted as the 

analyte concentration increases) and/or areas in the spectrum with absorbance features 

not related to the analyte of interest (for example physical effects such as particle size or 

moisture absorption). As such, MLR is a simple improvement on CLS to account for 

co-linearity and co-absorption. The MLR regression equation can be written:

y  = rriiXi -t- nijXj  + b

Where y  = analyte concentration
Xi = NIR absorbance at wavelength i 

rrii = regression coefficient (slope) at point z 
Xj = NIR absorbance at wavelength j  

rrij = regression coefficient (slope) at point j  

b = residual unmodelled component 

E quation  13: E quation  describ ing  M L R  for tw o term s
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3.3.2.3 Principal Component Regression

Principal component regression (PCR) extends on MLR, however in place of the set of 

different linear variables (i.e. wavelengths), multiple PCs are used as regression terms. 

This is achieved in a two step process whereby a PCA is performed on the dataset to 

determine the PCs to include followed by regression of these variables against the 

reference values.

The selection of the PCs is solely based on the spectral variance in the data set and thus 

it is possible to include terms in the regression equation that explain spectral variations 

that have no relation to the analyte of interest and may lead to poor prediction 

performance and reduced specificity compared to other regression techniques. PCR is 

useful for simple matrices where spectral variation of the analyte of interest is dominant 

in the high order PCs and for such systems where wavelengths are highly correlated as 

the use of PCs take into account the underlying collinear relationships within the data. 

New samples are projected in the same PC space and scores calculated before prediction 

based on the established regression equation.

y  = 2^m i Scores.+ b 
i

Where y  = analyte concentration 

Scores- = score values for the sample spectrum for PC i 

p  = number of principal components in the analysis 

rrii = regression coefficient (slope) at PC i 

b = residual unmodelled component 

E quation  14: E quation  describ ing  principal com p onent regression
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3.3.2.4 Partial Least Squares Regression

Partial least squares (PLS) regression builds on PCR; however the relationship of the 

spectral variance to the analyte of interest is incorporated in the initial PCA. The analyte 

adjusted or (analyte weighted) PCs are often termed latent variables (LVs) rather than 

PCs to differentiate from pure spectral variance PCs. Once the LVs are determined, 

regression of these variables against the analyte reference values is performed.

y  = Scores.+ b
i

Where y = analyte concentration 

Scores- = score values for the sample spectrum for LV i 

p  = number of Latent Variables in the analysis 

mi = regression coefficient (slope) for LV i 
b = residual unmodelled component)

E quation  15: E quation  describ in g  partia l least squares regression

Note that some NIR vendor or chemometrics software now also provides PLS2 

capabilities which allows for regression with multiple analytes of interest 

(multiple ‘y’s).

3.3.3 Discriminant analysis

Discriminant analysis (DA) is a modification of the regression techniques where the y 

values used in the regression are assigned to categorise populations in the data to 

predetermined classification groups. For DA with two classes, one class is assigned the 

value “ 1” (often applied to ‘acceptable’ samples) and the other “0” (often applied to 

denote ‘unacceptable’ samples).
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All four regression techniques described in 3.3.2 can be utilised for DA with two 

classes. When there are more than two classes of interest CLS, MLR, PCR and PLS 

should be applied in series with one model created for each class. Additionally, NIR 

vendor or chemometrics software packages that provide PLS2 capabilities allow PLS2- 

DA to be used to create one model that incorporates all classes, with the multiple ‘y’s 

representing the different classes.

3.4 Statistics and statistical process control

Statistical techniques are used to assess the performance characteristics of the developed 

methods as well as to develop mechanisms for process monitoring and control.

3.4.1 Statistics used to assess method accuracy

The most common statistical parameters applied to chemometric regression methods to 

indicate method performance are correlation coefficient (r), the squared correlation 

coefficient (r^) and the standard error (SE).

The correlation coefficient and the squared correlation coefficient are applied to 

chemometric regression methods to indicate the closeness of fit of a particular 

relationship (e.g. linear fit).

The correlation equation shown in Equation 5 can be applied directly to the predicted 

and reference values. This is reproduced and modified to represent the r  ̂ statistic in 

Equation 16.

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 91 of 305



ÉW, -yp)-{yn -yr)
= -----------------------------------

t i y p . - ÿ p f - t i y n - ÿ r }
i=\ i=\

Where y  p. = predicted value for case i 

= reference value for case i 

ÿp  = mean predicted value 

ÿf. = mean reference value 
c = number of cases 

E quation  16: C alcu lation  o f  regression  statistic

Standard error is applied to chemometric regression methods to indicate the method 

accuracy and relates the error in prediction compared to the established true value 

(typically referred to as the reference value).

SE can be calculated for the estimated values for the calibration sample set (termed SEC 

or SEE depending on software), cross validation results (termed SECV), prediction 

results of validation data sets (termed SEP) as well as laboratory reference results 

(SEE).

SE =
tiyp,-yny
i=l

c - \

Where y  p. = predicted value for case i 

ŷ .. = reference value for case i 

c = number of cases 

E quation  17: E quation  for calcu lation  o f  Standard  E rror
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Note that some vendor software will utilise c rather than c-\ as the denominator in the 

SE calculation. For data sets with large sample size (e.g. over 30 samples) which is 

typical for chemometric regression methods, the impact of this calculation variation is 

negligible. However, it is important to check the calculation used before comparing 

values across different vendor software.

3.4.2 Student’s -  Atest -  a test for outliers and equivalence of means

The one sample /-test is used to determine whether a value is statistically different from 

the rest o f the values in a univariate data set and can be used as an outlier test. A paired 

/-test is used to demonstrate whether a subset of results (sample population) belongs to 

the global population and is often used for regression performance assessment to 

demonstrate equivalence between the output o f the NIR prediction and a reference 

method. In both cases, the /-test is performed by calculating the tent and determining the 

probability that the tent falls within the Student’s t distribution (given a particular 

confidence -  typically 95% confidence).

, _ \ y - y i \

4~c

Where ÿ  = mean of individual values 
y  I = individual value for case i 

c = number of cases 

E quation  18: E quation  for ca lcu la tion  o f  tcru for one sam ple /-test
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^crit
y o  -  yoi 

(Sd )

Where yj) = mean of (yp. - ) for c

yo,  =(ypi  -y ;;)  for case;

Sj) = standard deviation of (yp. - y^. ) for c 

y  p .  = predicted value for case / 

y^. = reference value for case i 

c = number of cases 

E quation  19: E quation  for  ca lcu lation  o f  tcru for P aired  M est

3.4.3 F-test and ANOVA -  analysis (equivalence) of variance

The F-test is used to determine if the variation in two univariate data sets are equivalent, 

the F-test is performed by calculating the fLrit and determining the probability that the 

fcrit falls within the F-distribution (given the degrees of freedom (« - 1) and a particular 

confidence -  typically 95%).

ANOVA (Analysis o f Variance) extends the F-test by taking into account variance 

contributions from groupings within the data sets and is applied to assess the 

significance of variation within and between data sets. It is a multivariate F-test used on 

a small number of variables. The most common uses o f ANOVA are intermediate 

precision assessments and inter-laboratory studies where contributions to the method 

variance due to different measurement conditions (different analyst, different day, 

different measurement process or different instrument) are assessed.
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^crit -
( s c ! f

Where Sc^~  standard deviation of values for first condition

S c 2 ~  Standard deviation o f  values for second condition

E quation  20: E quation  for  calcu lation  o f  fc„v for an F -test or A N O V A

3.4.4 Multivariate quality statistics -  Hotelling’s T^and O residual statistic

Hotelling’s and Q residual statistics are used to assess whether a value is statistically 

different from the rest of the population in a multivariate data set. The value is 

synonymous to a Student’s f-test in multidimensional space rather than univariate space 

and can be applied as a multivariate outlier test. The T  ̂statistic assesses how close to 

the population mean an individual sample (or the mean sample of a second sample 

population) lies by comparing the vectors in relationship to the covariance matrix for 

the multiple variables modelled in the multivariate data set.

The Q residual assesses the component of the sample measurement (or the mean sample 

o f a second sample population) that is not explained by the multiple variables modelled 

in the multivariate data set.

As with the univariate Students f-test, the T  ̂and Q residual statistics are calculated and 

the probability that the values fall within the expected distribution (given a particular 

confidence -  typically 95% confidence) is determined. Vendor software and 

multivariate and PAT texts contain details of the equations.^^’
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3.4.5 Normality

M any statistical techniques (e.g. S tuden t’s /-test) are based on the assum ption that data 

are random ly distributed about the m ean value w ith the frequency distribution form ing a 

‘n o rm al’ bell shaped curve. W hen such a state exists, the data are said to have a norm al 

or G aussian distribution. O nce norm ality  is established, the data can be assessed based 

on established characteristics o f  the norm al d istribution (e.g. 6 8 %, 95%  and 99.7%  o f  

data will fall w ithin ±1, ±2 and ±3 standard deviations o f  the m ean respectively).

Figure 13: Norm ality distribution curve with shading representing 95%  o f the data (w ithin tw o

standard deviations from  the mean)

V arious tests exist for assessing norm ality  (e.g. A nderson-D arling, Shapiro-W ilk 

test)'^^’ m ainly based on either correlation o f  the sam ple population d istribution to 

that o f  a G aussian distribution or com parison o f  the cum ulative em pirical d istribution 

function. D ifferent tests have d ifferent pow er or sensitiv ity  to non norm al behaviour 

such as kurtosis or skew ness and different capability  to assess different sam ple sizes. 

T here is m uch speculation as to the best technique to use w ith m ethods based on 

correlation said to be m ore pow erful w ith lim ited sam ple num ber com pared to em pirical 

cum ulative distribution funetion t e s t s . T h e  choice is often governed by the test 

availability  w ithin statistical software. In all cases, a m etric is calculated  to assess the 

p robability  that the values fall w ithin the expected norm al d istribution (given a 

particular confidence -  typically  95%  confidence).
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W hen data do not follow  a nonnal distribution, the data m ay be m athem atically  

converted (e.g. through logarithm ic or polynom ial transform s) to a norm al distribution 

so that standard statistical techniques m ay be perform ed.

3.4.6 Statistical process control

Statistical process control (SPC ) charts w ere introduced by Shew hart'^^ in the 1930’s as 

a m eans to provide a tool to m onitor and control variation in industrial processes. The 

basis o f  the approach is that a highly capable and controlled process should follow  a 

norm al distribution and deviations from  this nonnal distribution are caused by 

system atic noise and/or special cause events causing shifts or increased variance. The 

use o f  a graphical control chart aids in the identification o f  deviations from norm al 

G aussian behaviour and provides opportunity  for process quality  im provem ent.

The typical SPG charts take the form o f  data displayed in tim e sequenced order across 

the x-axis w ith the m easured values plotted on the y-axis centred about the process 

m ean and with control lines set at the appropriate confidence interval (m ost often ±3 

standard deviations o f  the m ean).

2.5 H

UCL

2 . 0 -

LCL

Observation

Figure 14: Exam ple o f a Shew hart SPC chart with upper and low er control lim its (___ ) show n at

three standard deviations from  the mean (___ )
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In modem SPC software, the identification of deviations from statistically expected 

behaviour is automated, with the software interrogating the data to identify systematic 

and special cause effects underlying the randomly distributed data. Patterns such as 

consecutive mns, oscillations, shifts and other trends will be flagged automatically for 

the reviewer once parameters are set for such pattern recognition. In some cases, control 

limits are of less interest than the presence of unexpected patterns and some SPC charts 

will not display control limits (e.g. Run charts in Minitab statistics software).

The typical Shewhart SPC chart assumes that the data set is of one population, data is of 

a continuous nature (not categorical or truncated) and that the population is of normal 

Gaussian distribution. If these assumptions are not met, tests for probability and 

statistical significance will lead to incorrect conclusions, although there may still be 

merit in the visualisation of the data and the identification of trends. Alternatively, data 

can be mathematically transformed to meet the normality assumption or non-parametric 

tests and charts can be used (beyond the scope of this discussion).

3.4.7 Multivariate statistical process control

SPC is historically performed in a univariate manner, with one chart per measured 

variable. When variables are inter-related, this may lead to incorrect assumptions of 

control and unexpected poor quality outcomes or incorrect presumptions of control (e.g. 

individual SPC charts for human height and age, which are clearly related variables, 

may not identify the special cause of a person with a growth hormone disorder).

For systems with correlated variables, multivariate SPC (MSPC) should be applied. 

The most common MSPC charts are based on Hotelling’s T  ̂ and Q statistics with the 

upper and lower control limits based on the desired confidence interval.
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Unlike conventional SPC charts, significant understanding is needed of the variables 

that are modelled in the underlying multivariate space when a result is identified as not 

conforming to the established control limits. As yet, MSPC is not widely deployed in 

the pharmaceutical industry for process control. MSPC charts are more often employed 

for graphically representing the performance of a given static multivariate analysis 

event (e.g. a specific PCA analysis^^) , model suitability and o p tim isa tion^o r for 

model monitoring^"^^ /verification before applying a quantitative model (verifying that a 

new sample is within the model space and within quantitative method scope). As such 

this may be considered a multivariate model statistic chart rather than true MSPC where 

the intention is to provide a mechanism for monitoring and control. Few examples have 

been published to date of MSPC applied to pharmaceutical manufacturing to enable 

monitoring and control.

3.5 Review of software capability for NIRS PAT applications

Within a pharmaceutical manufacturing operation, it is typical to employ vendor 

software to control PAT analyzers assuming the software is Good Manufacturing 

Practice (GMP) compliant. As such, method development and routine operation of NIR 

equipment for PAT applications rely on functionality within vendor software. Often 

vendor software is sadly lacking, with only a small selection of the various chemometric 

and statistical techniques described in Section 3.3 and Section 3.4 available within any 

given vendor offering.

In some cases, advanced chemometric functionality is available within development 

modules of the software (which proves useful during investigation, data mining and 

method development). However, the same chemometric algorithms are then not 

available in a routine operation mode. In an effort to provide easy user interface and
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reduce human error, some vendor software has reverted to a ‘black box’ where a user 

with no chemometric knowledge can follow a wizard and develop and implement a 

chemometric model. This may be enough when developing simple identification 

methods or traditional quantitative methods for samples with simple matrices. However, 

such lack of routine functionality inhibits the deployment of new and diverse 

applications which will be required to deliver the software capability to support PAT 

applications of NIRS and also prevents the use of the chemometrics tool to derive deep 

process understanding.

As part of this research, this author worked with one vendor to attempt to extend the 

chemometric and statistical functionality to the user interface. This effort was ultimately 

unsuccessful with functionality added in off-line analysis mode but not easily operated 

in real time by production operators or requiring significant investment (e.g. through the 

use of Microsoft SQL server database or macros that are difficult to validate to GMP 

requirements). It was felt that the inability to deliver the desired improvements may 

point to a lack of understanding of pharmaceutical specific requirements for software 

and data by vendors traditionally focused on other industries. There was limited uptake 

of the added functionality by Pfizer manufacturing sites, which was in turn 

misinterpreted by the vendor as lack of widespread interest in the functionality across 

Pfizer. The vendor was reluctant to invest further effort on increasing functionality until 

there was significant industry pressure that would translate to sufficient customers 

willing to pay to upgrade functionality. Despite Pfizer being a significant customer, the 

vendor felt the increased functionality was sufficient for the industry interest. This was 

not felt to be vendor specific, rather it is the sentiment from many vendors, and prevents 

innovative pursuit of improved chemometrics and statistics for PAT applications.
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Cross industry effort pursued the concept of a common PAT software platform that can 

be deployed across all PAT applications within a factory to manage the operation of 

analysers, application of process models and management of PAT data/"^^ Several 

vendors now have such software available (e.g. SiPAT from Siemens). However, 

despite this effort, implementation o f common PAT software platforms has been found 

to be largely cost prohibitive in the industry setting for established products and 

facilities.

The outcome is that the application of PAT based applications of NIRS involves a 

compromise in what software functionality is available combined with willingness to 

utilise multiple software to perform advanced chemometrics and SPC within the GMP 

controlled environment.

The impact of software capability will be further discussed with regard to the specific 

research described in Chapter 4 and Chapter 5.
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CHAPTER 4 A p p l i c a t i o n  o f  a t - l i n e  NIRS f o r  PAT 

APPLICATIONS IN SOLID DOSAGE PHARM ACEUTICAL  

PRODUCTION -  M ATERIAL ANALYSIS

4.1 Introduction

The first o f the identified areas o f research was the investigation of novel ways to apply 

at-line NIRS for PAT applications in the pharmaceutical industry for material analysis.

As discussed in section 2.5.1, NIRS has been widely employed for material 

identification and various qualification techniques have also been developed. Typically, 

material qualification by NIRS employs chemometric classification techniques to assess 

whether a particular sample is consistent with acceptable material (defined in a 

reference library). Within the pharmaceutical industry it is not common to utilise 

adaptive chemometrics techniques such as neural networks (where each sample 

analysed is added to a continuously growing reference library) due to real or perceived 

regulatory hurdles of method validation. Instead, material qualification methods 

compare new samples to a static reference library established when the method was 

developed with little consideration to the linkage of the reference spectra to changing 

process behaviour. Additionally, the continuous nature of the chemometrics data output 

is largely ignored once the classification is determined. It is challenging to derive any 

process information from a simple categorical classification. For material analysis to be 

a true PAT application, it is necessary to begin assessing the relationship between 

observed material quality and the effect on product quality or the effect on process 

behaviour. NfR material conformance is a term coined for this purpose to incorporate 

the material qualification chemometric output with SPC (through historical trending) to
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provide a means to gain greater understanding and a measure of process behaviour 

prediction (aligned with PAT philosophy).

Section 4.2 explores the identified gap of the application of NIRS for assessing global 

quality (whole spectra) of materials by trending the continuous chemometric output 

against historical data to gain process understanding and predict process behaviour of 

the material in the forward process.

Once process understanding is established, a particular material attribute may be 

identified as critical to the process or product quality. Section 4.3 reviews the 

application of the NIR material conformance approach to a target material attribute 

rather than the entire spectrum of a sample. The material attribute of interest may be 

traditionally tested to define material quality in QC laboratories or may be a material 

attribute specific to forward processing and as such provide additional process insight.

This research demonstrates the ability o f rapid NIR analysis of materials through NIR 

Material Conformance approach to assess global quality and critical material attributes 

that impact product quality and process effectiveness.

4.2 Global material quality conformance

The development and application of a global material quality conformance method is 

described in this section demonstrating the value of this research. Amlodipine besylate 

(structure shown in Figure 15) was selected as the target material as it was the API in 

Norvasc® tablets, the highest volume and highest value product for the manufacturing 

facility in which the work was undertaken. Prior to this research, NIR material 

identification was implemented at the site. As such, spectral data for each delivery (and 

each container within the delivery) was available to undertake the work without 

additional NIR analysis.
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NH NH

F igure 15: C hem ical stru cture o f  am lod ip ine besylate

4.2.1 Materials and methods

4.2.1.1 Design of analysis

A reference library was needed to provide flexibility in which qualification algorithms 

were investigated. A minimum number of five deliveries were required to develop a 

robust reference library. To ensure a suitable degree of natural variability o f the material 

was represented in the reference library, additional deliveries were obtained and a 

subset of these samples chosen to be included in the reference library. To avoid spectral 

redundancy, single spectra for each delivery were utilised for the reference library 

(spectra from the first container of each delivery). Various algorithms were explored to 

select the most appropriate modelling approach for the global quality conformance 

method.

To ensure robust development of the SPC approach, it was determined that a minimum 

of five deliveries independent of the reference library would be required. Individual 

spectra for each container in the deliveries were required to develop the SPC approach 

so that it was applicable to the real life scenario of assessing the conformance of every 

container in a delivery. This was important as the dosage strength of the amlodipine 

besylate in the Norvasc® finished product is low (approximately 3.45% weight / weight
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basis) and only one to two containers of API are utilised in any given batch of 

Norvasc® tablets, hence individual container conformance was essential.

4.2.1.2 Samples

One representative spectrum from each of nine deliveries of amlodipine besylate 

((R,S)3-ethyl-5-methyl-2-(2-aminoethoxymethyl)-4-(2-chlorophenyl)-l,4-dihydro-6- 

methyl-3,5-pyridinedicarboxylate besylate) were reviewed and six spectra were selected 

to establish the reference library. Seven further deliveries were utilised to establish (five 

deliveries) and verify (two deliveries) the SPC charts (varying number of spectra per 

delivery based on the number of containers delivered). A selection of six subsequent 

deliveries of the material was then reviewed and the suitability of the approach 

demonstrated as two deliveries were found to show non-conformance.

All samples were prepared for NIRS analysis by placing the material in SUN Sri 4 mL 

borosilicate glass shell vials (part number: 500 070) to a fill depth of 1 cm and 

compressing with uniform pressure using a stainless steel weighted cylinder (1 cm 

diameter and 5 cm length).

4.2.1.3 NIR apparatus and software

NIR reflectance spectra were measured using a FOSS NIRSystems 6500 Series II 

spectrophotometer (FOSS NIRSystems Inc., Silver Spring, MD, USA) configured with 

vial module with Si (400-1098 nm) and PbS (1100-2498 nm) detectors. The 

spectrophotometer was controlled by DeLight software, version 2.3b and D2NIRS 

software, version 1.2a (DSquared Development, La-grande, OR, USA).

NIR spectra were measured for each vial of material over the wavelength range of 

400-2498 nm at 2 nm intervals. Each recorded spectrum was the average of 32 

Bronwyn Grout \  UCL School o f  Pharmacy \ Process Analytical Sciences Group, Pfizer Page 105 o f  305



individual scans (a total of 35 s scan time per vial) and recorded with respect to a 

Spectralon® reference (LabSphere Inc, North Sutton, NH, USA). The analyses were 

conducted at typical laboratory temperature/ humidity environments of 20 to 25 °C / 

60% relative humidity using the FOSS vial module aperture plate and holder.

DeLight version 2.3b with DMentia 1.1b software (DSquared Development, La-grande, 

OR, USA) and Microsoft® Excel, version 9 (Microsoft® Corporation) were utilised for 

chemometric model development and predictions, while Minitab® 16 version. 1.16 

(Minitab Inc, State College, PA, USA) was utilised for statistical evaluation and SPC 

charts.

4.2.2 Global material quality conformance method development

4.2.2.1 Spectra pre-treatment

It is Pfizer general practice to apply the gentlest spectral pre-processing to remove noise 

and reduce specular reflection without masking or hiding spectral features that may be 

useful in the qualification o f the material or introducing artefacts not related to the 

sample analysed. For the measurement system utilised, five point smoothing is the 

minimum smoothing option applicable. SNV is also the Pfizer preferred normalisation 

treatment. Figure 16 demonstrates the effect of the selected pre-treatments, while each 

pre-treatment and the corresponding effects are described in Table 1.
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Figure 16: Raw NIR spectra o f ten am lodipine besylate deliveries across; (a) full w avelength range 

and (b) reduced w avelength range w ith five point sm oothing and SNV baseline correction

Table 1: O ptim isation o f  data pre-processing treatm ents

Extract 1100-2498 nm Remove visual region and focus on region 

available from PbS detector to prevent impact 

from detector switch over.

Five point smoothing Provide continuous curve through the data points

SNV normalisation Remove baseline, path length & multiplicative 

scatter effects
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Derivatives are commonly applied to further remove slope effects and enhance spectral 

peak features. The derivative and gap (number of data points) recommended by FOSS 

NIRSystems Inc for material analysis is 2"  ̂ derivative with 10 points. To assess the 

impact on spectral features, the 2"  ̂derivative spectra using five point and 10 point gaps 

were compared. Figure 17 shows the spectra of the two treatments and demonstrates 

that the ten point gap derivative treatment gives acceptable reduction of noise and 

simplifies the spectra (e.g. no unresolved saddle peaks) without loss of valuable spectral 

features.
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Figure 17: Full range and zoom ed 2'“* derivative spectra o f  am lodipine besylate w ith (a) five point

derivative gap and (b) ten point derivative gap
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4.22.2 Model development

PCA was used in addition to visual inspection of the pre-treated data to select the six 

deliveries that represented the range of natural variation in amlodipine besylate. Spectra 

from the deliveries at the extremes of the PCA scores plots were chosen for the 

reference library. Two deliveries were removed, one that was centred on the PCA plot 

(hence contributing redundant variation) and the other which was located near another 

point in the first two PCs (contributing similar variation to the nearby point). On closer 

review it was found that these two points were sequential deliveries received at the 

manufacturing site and were from the same material supplier manufacturing lot.

PCA: 1 : X Score 1 vs X Score 2
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PCA: 1 : X Score 2 vs X Score 3
0 .0004 -

0.0003

0.0002

<0 0.0001

-0.0001

-0.0002

-0.0002  - 0.0001 0.0001 0.0002 0.0003
X Score 3

F igure 18: P C A  scores p lot for the eight deliveries for (a) P C s 1 & 2 and (b) P C s 2 & 3 w h ere bold  

points are those assigned to the reference library
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Global material quality conformance can best be achieved with chemometrics 

techniques that assess the entire NIR spectrum. Three such techniques were assessed in 

parallel: correlation, average absolute normalised SD (termed ANSD hereafter), and 

PCA-MD (refer to Section 3.3.1 for a description of these techniques).

Correlation, normalised SD and PCA-MD models were developed in DMentia software 

using default thresholds of 0.99, 3 and 3 respectively and three PCs for the PCA-MD 

model (explaining 88.6% of variation). The models were then applied in DeLight 

software to predict correlation, normalised SD and PCA-MD results for the reference 

library. ANSD values were then calculated from the normalised absolute SD value 

across the full wavelength range. Table 2 shows the prediction results.

T able 2: P redicted  global m aterial quality  conform ance statistics for each chem om etric  technique

Correlation
ANSD

(Absorbance) PCA-MD

Reference library 1 0.99998 0.51015 1.9708

Reference library 2 0.99998 0.64204 1.2095

Reference library 3 0.99994 0.84962 1.4621

Reference library 4 0.99995 0.51577 1.6842

Reference library 5 0.99999 0.23911 0.79455

Reference library 6 0.99996 0.71290 2.0119

The reference library data were analysed in Minitab and charts of the individual values 

(I-charts) generated to represent the data graphically. These charts are shown in Figure

19 with the limits set at three standard deviations (___) from the mean value (___). The

I-chart for correlation uses an upper boundary limit of 1.0 and the ANSD a lower 

boundary limit of 0.0 as the calculated control limits were beyond the allowed values 

for correlation (1.0) and ANSD (0.0).

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 110 of 305



1,00000 UB=1

0.99998

X=0,999968

0,99996

S  0,99994

0,99992 -

LCL=0,99990210,99990 -

1 2 3 4
Observation

5 6

1,2 4
UCL=1,123

0 ,6 -
X=0,551

0,4-

0 ,2 -

LB=00 ,0 -

Observatlon

3,0 4
UCL =2,821

2,5-

2 , 0 -

1,5- X=l,424

1 ,0 -

0,5-

LCL =0,0280 ,0 -

Observation

Figure 19: I-chart o f conform ance prediction results for the reference library: (a) correlation,

(b) A N SD  and (c) PC A -M D

Bronvv^yn Grout \ UCL School o f  Pharm acy \ Process A nalytical Sc ien ces Group, P fizer Page 111 o f  305



4.2,23 Establishment of the conformance SPC charts

Once the conformance models have been created, SPC charts must be established that 

will monitor results over time. This ensures that, though the metric is calculated against 

a static model, deliveries can be compared to historically acceptable deliveries over time 

and trends towards non-conformance can be identified prior to failure against the static 

model. Five deliveries of varying number of containers were used to establish the SPC 

charts with a further two deliveries used to verify the SPC chart before implementation 

into the manufacturing environment. Though future deliveries may have any number of 

containers; it must be assumed that the historical deliveries are representative of both 

the typical number of containers as well as the typical variation within the delivery. As 

individual and/or combinations of containers may be used in production, both an 

individual container historical plot as well as an overall delivery summary historical 

plot is valuable.

An individual value SPC chart (I-chart) is used to represent the typical quality of 

individual containers in a given delivery with the control limits set by the individual 

results from the five historical deliveries. The individual container SPC chart also 

graphically represents the variability within containers of a delivery. As delivery 

acceptance decisions are based on the overall delivery result, a SPC chart for overall 

delivery average data was needed. An X-bar chart in Minitab was considered to be the 

ideal control chart to represent the overall quality of a delivery. However, the X-bar 

chart function in Minitab adjusts the control limits based on the sample size of the 

subgroups leading to a confusing control chart for operators to interpret when the 

number of containers may change for each delivery. For ease of implementation, 

average results were calculated for each delivery from conformance metric outputs for 

each container and an overall delivery control chart developed using the I-chart function 

on the averaged values.
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Shewhart^^^ control charts are based on the normal gaussian distribution and it is 

important to verify that the conformance data are normally distributed prior to 

developing the SPC charts. The Graphical Summary function in Minitab was used to 

represent the data and assess normality for each conformance metric (Appendix 1 on 

page 293). No evidence of non-normality was observed (p>0.05) at the 95% confidence 

level. Normality p-values for each set of data are shown in Table 3. Note that output for 

overall delivery metrics are an estimate only as the number o f data points is small, 

reducing the power of the normality tests.

T able 3: Sum m ary o f  the norm ality  assessm ent (p-value) o f  the g lobal m aterial quality  

conform ance pred iction  results for  the h istorical data set

Correlation ANSD PCA-MD

Individual Container 0.335 0.420 0.573

Overall Delivery 0.696 0.572 0.847

The SPG charts for the three metrics studied are shown in Figure 20 and Figure 21. 

These SPC charts show both the five historical deliveries used to establish the control 

chart limits as well as the two verification deliveries. The mean and standard deviations 

applied in establishing the control charts are shown in Table 4 on page 116. Control

limits (___) were established at three standard deviations from the mean (___), except

for correlation individual and overall delivery charts which used an upper boundary of 

1.0 and the PCA-MD individual and overall delivery charts which used a lower 

boundary of 0.0. Boundary limits were used in these cases as the control limits 

calculated were beyond the allowed values for correlation (1.0) and PCA-MD (0.0).
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Figure 20: Individual container SPC charts for historical and verification deliveries: 

(a) correlation, (b) ANSD and (c) PCA-M D
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Figure 21: O verall delivery SPC charts for historical and verification deliveries: (a) correlation,

(b) A NSD  and (c) PCA -M D
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Table 4: Parameters used to generate historical SPC charts for global material quality conformance

Correlation
ANSD

(Absorbance)
PCA-MD

1
Individual Container 0.99994 0.58873 1.4973

Overall Delivery 0.99993 0.58061 1.3902

■5 g 
^  i

Individual Container 0.0000272 0.10397 0.53436

1  1  
c/3 Q

Overall Delivery 0.0000344 0.11002 0.46461

4.2.2A Implementation of the conformance method in manufacturing

The developed global material quality conformance methods were applied to a selection 

of subsequent deliveries of amlodipine besylate (including two deliveries with non­

conformance) to demonstrate the suitability of the approach. The resulting SPC charts 

for these deliveries are shown in Figure 22 and Figure 23 with non-conforming points 

shown in red.

The first delivery is identified as out of conformance in the correlation and ANSD SPC 

charts while the fifth delivery is identified as out of conformance on all three SPC 

charts.

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 116 of 305



UB=1
X=0,999937 

LCL =0.999855
0.9998 -

g 0.9996-

o 0.9994-

0.9992 -

0.9990 -

2.0

1.5

1.0
UCL =0.901

I I _ I 1 1
X =0.589

0.5

LCL =0.277

UCL=3.100

X=1.497

LB=0

\ S .  v %
Figure 22: Individual container SPC charts for historical, verification and subsequent deliveries: 

(a) correlation, (b) A NSD  and (c) PC A -M D  with non-conform ing containers in red
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Figure 23: O verall delivery SPC charts for h istorical, verification and subsequent deliveries: 

(a) correlation, (b) A NSD  and (c) PC A -M D  with non-conform ing deliveries in red
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Correlation methods are based on similarity o f the test spectrum to the mean spectrum 

of the reference library without taking into account variation within the reference library 

about the mean spectrum. The ANSD method does take into account the variability in 

the reference library across the wavelength range and reduces overweighting of the 

result to wavelengths of high natural variation. PCA-MD also accounts for variance of 

acceptable deliveries in the reference library and also reduces the impact of variation 

not identified as the major sources in the PCs included in the algorithm.

The fact that PCA-MD found the first delivery to be in conformance while correlation 

and ANSD indicated the delivery was out of conformance indicates that the variation 

causing the non-conformance in the first delivery is occurring in later PCs and not in the 

first three PCs used to build the PCA-MD model. The fifth delivery, however, must 

have a variation to the reference library within the first three PCs to be identified as out 

of conformance.

The first step in investigating a deviation in conformance is to review the spectra o f the 

nonconforming deliveries with respect to both the reference library and recent 

conforming historical deliveries. Figure 24 shows the raw spectra overlay.

The first container of the fifth delivery has notably less raw spectral absorbance at 

higher wavelength than those in the reference library and other delivery samples 

indicating that the amlodipine besylate in this container is of finer particle size. This 

was confirmed by observation by the warehouse operators that sampled and analysed 

the delivery.

The spectra from the containers in the first delivery and the second container of the fifth 

delivery fall within the range of the raw spectra of the reference library and the spectra 

from containers in the conforming deliveries.
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The variation in particle size for the first container o f  the fifth delivery  is not the source 

o f  non-confonnance as the m athem atical p re-treatm ents rem ove physical effects prior to 

applying the conform ance algorithm s. F igure 25 show s the 2"“̂ derivative spectra 

overlay.
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Figure 24: Raw spectra o f individual containers from  deliveries 1 (___ ) and 5 (___ ) overlaid with

spectra from: (a) reference library (___ ) and (b) conform ing deliveries 2, 3, 4 & 6 (___ )
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Review  o f  the 2"^ derivative speetra clearly  show s a region o f  variation for the first 

delivery at 1900-2100 nm  (circled in Figure 25) w hile the fifth delivery  shows less 

obvious variation. It can be challenging to v isually  review  N IR  2"^ derivative spectra 

due to the com plexity  o f  the spectra. The use o f  investigational tools related to the 

conform ance m ethod algorithm s can aid in understanding the source o f  the non- 

confonnance.
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Figure 25: 2"  ̂derivative spectra o f  individual containers from  deliveries 1 (___ ) & 5 (___ ) overlaid

with spectra from: (a) reference library (___ ) and (b) conform ing deliveries 2, 3, 4 & 6 (___ )
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To investigate the source of the non-conformance in the correlation conformance 

method, correlation plots for the sample spectra against the reference mean spectrum 

(Figure 26 and Figure 27) and residual (sample -  reference mean spectrum) plotted at 

each wavelength (Figure 29 and Figure 30) for the first and fifth deliveries were 

reviewed. The plots were generated within Minitab as DeLight software did not provide 

any mechanism to review the cause of correlation deviation. The first containers of the 

second and third deliveries were also reviewed to indicate the plots appearance for 

conforming deliveries (Figure 28 and Figure 31). Note that the scale is identical for all 

residual plots shown in Figure 29 to Figure 31 to aid in comparison.

The first delivery showed a similar scatter about the line of best fit compared to the 

conforming deliveries with a small pocket of data points above the line, circled in 

Figure 26. This observation is consistent with the residual plot where the magnitude of 

the residuals at the majority of the range are similar to conforming batches apart from 

two wavelength locations, at 1944 nm and 2078 nm. This observation is consistent for 

all containers in the delivery. Variation at these wavelengths is characteristic of a 

change in absorption by 0-H  structures (refer to Figure 2) and points to moisture as the 

source of the variation. Smaller correlated variations occurring at 1446nm also relate to

0-H  overtone absorption support this hypothesis. The fifth delivery shows slightly 

increased scatter about the line of best fit compared to the conforming deliveries 

indicating variation across the range. The second container also shows a small pocket of 

data points above the line shown circled in Figure 27.

The residuals plot shows markedly greater variation in the fifth delivery compared to 

conforming deliveries. Additionally, the first container of the fifth delivery shows high 

residuals at 1132 nm, 1660 nm and 2154 nm and the second container of the fifth 

delivery high residuals at 1136 nm, 1502 nm, 1530 nm and 1668 nm which are 

characteristic of changes in absorption from C-H and N-H functional groups (refer to
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Figure 2). Both functional groups are present w ithin am lodipine besylate (refer to 

Figure 15) and are also com m only seen in solvents used in API m anufacture.
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Figure 26: C orrelation plots for delivery 1 (a) container 1 to (d) container 4
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Figure 27: C orrelation plots for delivery 5 (a) container 1 and (b) container 2
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Figure 28: C orrelation plots for P* container from (a) delivery 2 and (b) delivery 3
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Figure 29: R esidual plots for delivery 1 (a) container 1 to (d) container 4
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Figure 30: Residual plots for delivery 5 (a) container 1 and (b) container 2
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Figure 31: Residual plots for T* container from  (a) delivery 2 and (b) delivery 3
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To investigate the source of the non-conformance in ANSD results for the two non- 

conforming deliveries, the conformity index plot (absolute normalised SD against 

wavelength) available within the DeLight software was reviewed (Figure 32).
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2006 nm

1200 1400 1600 1800 
Wavelength (nm)

2000 2200 2400

2384 nm

1476 nm

1926 nm

1200 1400 1600 1800 
Wavelength (nm)

2000 2200 2400

Figure 32: C onform ity index plots for (a) delivery 1 and (b) delivery 5

The first delivery shows very high absolute normalised SD at 1946 nm and 1436 nm 

and moderately high values at 1922 nm and 2006 nm with low values elsewhere in the 

range. This is characteristic of changes in 0-H absorption (refer to Figure 2) indicative 

of moisture variation. The fifth delivery shows higher absolute normalised SD at
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wavelengths across the range, particularly 1430-1520 nm, 1880-2030 nm and 2350- 

2425 nm. These regions are characteristic of 0-H  and C-H functional group absorption 

present in amlodipine besylate (refer to Figure 15). The general increase in absolute 

normalised SD across the range may be due to residual physical effects; however it may 

also indicate changes within the crystal lattice of amlodipine besylate affecting the 

absorption of all functional groups present in the molecule.

Note that there are differences in the wavelengths of variation for the correlation 

method compared to the ANSD method. Normalising the data based on the reference 

library reduces the impact of smaller peaks and at those wavelengths already known to 

vary, as established in the reference library.

To investigate the source o f the non-conformance identified in the PCA-MD 

conformance method for the fifth delivery, PCA analysis was performed to review the 

projection of the 2"  ̂ derivative spectra for this delivery in PCA space alongside the 

reference library.

From the PCA scores plots shown in Figure 33, the first container of the fifth delivery 

separates significantly from the reference library on the 2"  ̂PC axis and moderately on 

the 3"̂  ̂ PC axis, while the second container separates significantly from the reference 

library on the 3"̂  ̂PC axis.
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F igure 33: PC A  scores scatter p lot o f  delivery  5 and reference lib rary  spectra , (a ) P C s 1 vs. 2 and

(b) P C s 2 vs. 3

Review of the loadings for the 2"  ̂and 3*̂  ̂PCs in Figure 34 shows that the first container 

varies to the reference library at 1136 nm, 1502 nm, 2256 nm and 2464 nm while the 

second container varies at 1128 nm, 1496 nm and 2156 nm. These regions are 

characteristic of changes in absorption from C-H and N-H fimctional groups (refer to 

Figure 2) present within amlodipine besylate (refer to Figure 15) and also commonly 

seen in solvents used in API manufacture.
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F igure 34: P C A  L oadings for (a) 2nd PC  and (b) 3*̂  PC  for delivery  5 and reference library  spectra

It is o f interest that the first delivery was not seen to be out of conformance by the 

PCA-MD conformance method. This is likely due to the spectral variation in this 

delivery occurring at wavelength regions not incorporated in the three PCs used to 

create the conformance algorithm. To confirm this hypothesis, PCA analysis was 

performed to review the projection of the 2"  ̂derivative spectra for this delivery in PCA 

space alongside the reference library.
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From the PCA scores plots shown in Figure 35, the first delivery separates distinctly 

from the reference library on the 2°  ̂ PC axis. The loadings plot for the 2”  ̂ PC (Figure 

36) indicates that the main source of variation within this delivery compared to the 

reference library is occurring at 1946 nm which is the characteristic O-H absorption 

associated with moisture.
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F igure 35: Scores scatter p lot o f  delivery  1 (bold) and reference library spectra , (a ) PC 1 vs. 2 and

(b) PC  2 vs. 3
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F igure 36: L oadings for P C 2 for P C A  an alysis o f  delivery  1 and reference library  spectra

Examination of the loadings plots for the PCs used in the PCA-MD conformance 

method (Figure 37) confirms that this region is not represented in the three PCs used in 

the conformance model. Figure 37 highlights this by overlaying the three PCs and 

focusing the wavelength axis to the region about the absorbance of interest (note the 

y-axis for plots in Figure 37 are to same scale for ease of comparison). Thus variation in 

absorbance in this region will not impact the PCA-MD value and will not trigger a non­

conformance.
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Figure 37: Loadings for (a) PC 1, (b) PC 2 and (c) PC 3 of the three PC loadings of the reference

library
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Figure 38: Zoom ed overlay o f the three PC loadings o f the reference library

4.2.3 Global material quality conformance method discussion

4.2.3.1 Im pact o f  non-conform ance to the product and process

The results o f  the N IR  global m aterial quality  confonnance for the first and fifth 

deliveries triggered close review  o f  the m aterial certificate o f  analysis (C oA ) and 

ensured that both deliveries received full QC testing. N o registered QC test failed for 

either delivery. H ow ever, m oisture content was confirm ed to be out o f  trend for the first 

delivery (tow ards upper specification lim it). As N orvasc®  tablets are a low dose direct 

com pression product (3 .45%  drug loading on w eight/ w eight basis), risk assessm ent 

determ ined that the h igher m oisture content API w ould not contribute significant 

m oisture to the fonnulation  and w ould have low im pact to finished product quality  and 

stability. The use o f  the m aterial w as observed closely in production to establish 

w hether this non-conform ance w ould im pact processability  (e.g. im pact flow 

characteristics or change the stickiness o f  the blend during tabletting). It was determ ined 

that the non-eonform ance had no im paet on product or process. T hough this non- 

eonform ance eould be elassified as a false negative, the occurrence provided
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opportunity to gain greater insight and understanding of the formulation and processing 

design space that would otherwise not have been available. As such, this excursion from 

normal trend provided an opportunity to gain process understanding and knowledge and 

demonstrates the fit of the global material quality conformance approach with the PAT 

initiative. With this variation understood and not found to impact quality or 

conformance, the global material quality conformance method would be able to be 

updated to include the variation if desired to prevent future false negative non­

conformance.

Despite the fifth delivery not being found to fail or to be out of trend on any QC test, at 

dispensing, the 2"  ̂ container was found to have become caked during storage (entire 

contents of container was one solid mass). This container was thus rejected and not 

utilised in production. Close observation of the use of the first container in production 

showed significant impact to processing with the product blend sticking considerably to 

the tablet press, extending processing time two-fold and impacting the product quality 

through poor clarity of the tablet embossing. Further QC testing as part of an extensive 

investigation as to the processing and material deviation continued to find no deviation 

on the registered quality tests. However, additional tests targeted to understand the 

observed changes to the NIR N-H absorption, found a higher level of amine based 

residual solvent content than typical (though well within acceptable residual solvent 

levels). It is hypothesised that incorporation of the residual solvent into the crystal 

lattice (solvate) is the source of the noted variation in the C-H functional groups 

absorption and the root cause of the sticking behaviour.

This work shows very clearly the significant impact that global material quality 

conformance methods can have in understanding processes and supporting investigation 

of process variations. At the time of receipt in the warehouse, rapid analysis of the
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material by NIR can raise awareness o f potential issues and assist in causative 

knowledge and deeper understanding of formulation and process understanding.

4.2.3.2 Conformance method selection for continued implementation

In a real world scenario, three conformance algorithms would not be selected for 

parallel implementation. Review of all three conformance methods within this research 

provided insight into the capabilities of the three approaches to suit practical 

implementation. Section 4.2.2.4 demonstrated that both correlation and ANSD were 

able to differentiate non-conforming deliveries of amlodipine besylate while PCA-MD 

was only able to identify one of the non-conforming deliveries. This is due to the 

variation in the first delivery occurring in regions of the spectra not modelled in the PC 

space. This demonstrates the importance in understanding the ability and limitations of 

the various techniques.

PCA based quality conformance algorithms are limited to identifying variation in only 

those wavelengths incorporated in the PCs of the model and risk false positive 

conformance. If a conforming delivery is then found to be involved in process or quality 

difficulties, the NER analyst has the opportunity to revise the algorithm to ensure the 

PCA model is sensitive to the variation and correct the false positive conformance. In 

the outcomes described in 4.2.3.1, the first delivery was not found to impact process or 

quality. However, if the PCA-MD model had been the only method utilised, the 

opportunity to gain process insight and broaden understanding of the design space and 

influence of moisture on the process and product would have been missed.

PCA-MD is best applied for materials with extensive understanding of material 

characteristics where there is confidence that the PCA model will truly represent 

expected variation in the material. It may not be the best choice initially when building
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process understanding. Another challenge is that vendor software may not facilitate the 

use of algorithms in PCA space for quality prediction. Often vendor software provides 

PCA for investigation rather than prediction. Where it is available, higher analyst 

understanding is needed to interpret the output.

Correlation based conformance methods are very simple to develop and require limited 

knowledge of sources of variation in the material. Correlation may risk emphasising 

variation at wavelengths with known and acceptable variability and may risk false 

negative conformance. When such false negative conformance occurs, the NIR analyst 

has the opportunity to revise the algorithm to ensure that the mean reference spectrum 

truly represents the mean absorbance. However, the variability or magnitude of 

absorbance peaks is not accounted for in the algorithm. In the outcomes described in 

4.2.3.1, the first delivery was found to be out of correlation conformance due to large 

variation at peaks associated with moisture; however this was not found to impact 

process or quality. Thus, the non-conformance for this delivery may be considered a 

false negative result. If the variation causing the non-conformance is an isolated 

incident, no update may be necessary. However, flagging subsequent deliveries 

exhibiting the same non-conforming variation would consume unnecessary time and 

effort documenting that the variation has no impact and may potentially delay 

production and supply of pharmaceutical product to customers. As such, if a repeat 

incident was expected, update of the correlation global material quality conformance 

method would be recommended.

Correlation is a very simple approach and all typical vendor software packages provide 

this algorithm. However, as vendors expect this algorithm to be applied in a pass / fail 

approach, there is typically no capability in the software to readily investigate the cause 

of non-conformance. As was seen in this research, data must be exported to external 

software to investigate the root cause of any non-conformance identified.
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ANSD appears to be a good compromise in balancing the risk of false positive and 

negative conformance. When a false result occurs, incorporating the un-modelled 

variation is more effective than with correlation as the variation will be built into the 

standard deviation at deviating wavelengths as well as the mean spectrum. Similarly to 

correlation, the non-conformance of the first delivery may be seen as a false negative 

conformance and may indicate the need to update the global material quality 

conformance method if subsequent deliveries are found to contain the same variation.

Not all vendor software provides flexibility in the quality metrics available for 

normalised SD. Some vendors do not provide the means to develop normalised SD 

methods at all, while others report only the maximum value at any wavelength in the 

region. In such cases, the resulting conformance SPC would be built on results at 

different wavelengths for each sample analysed which is of little statistical and 

predictive value. If normalised SD data are not available, data would need to be 

exported to external software for further calculations which would not suit the 

manufacturing (or material warehouse) environment.

In general, trending of results is not available in vendor software and SPC charts need to 

be developed external to vendor software and is independent of the conformance 

method algorithm chosen.

For the manufacturing facility where this work was conducted, both correlation and 

ANSD approaches were pursued. ANSD was the preferred option however, as the site 

already used a correlation model for material identification purposes, it was determined 

that both global material quality conformance methods would be implemented.

The DeLight software utilised at the site allowed simple implementation of the methods 

in the facility. This software has the capability to reproduce the individual container

I-chart including control limits to allow the operator to monitor the results in real time.
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As each delivery is saved as an individual data file and variable averaging is not a 

capability of DeLight (to address the variable number of containers in each delivery), it 

was not possible to reproduce the overall delivery SPC charts. As such, following data 

acquisition and model prediction, data were exported to external software for SPC 

trending and review by Quality Assurance personnel. The manufacturing staff selected 

Excel to perform the SPC trending due to operator familiarity with Excel compared to 

Minitab. Standard operating procedures (SOPs) were developed and warehouse 

operators trained to conduct the NIR analysis and the initial trend chart review. It was 

found that the conformance methodology was extremely approachable to warehouse 

operators who appreciated the visual nature and real time feebdack on their work. The 

warehouse operators felt an empowerment and enhanced engagement that offset the 

slight increase in workload to perform the NIR analysis. Warehouse operators were able 

to immediately raise a concern to the Quality Assurance department when a non­

conformance occurred. Quality Assurance personnel had increased information on the 

material quality to enable decisions on material investigations. Quality Assurance 

personnel received additional training on reviewing the output of global quality 

conformance methods, however an NIR trained analyst was generally required to 

perform deviation investigation and root cause assessments. The implementation of 

conformance methodology was seen as very successful by warehouse operators. Quality 

Assurance personnel and site management.

Figure 39 shows the user interface that operators were able to use to monitor the global 

material quality conformance in real time during material receipt testing.
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Figure 39: O perator interface for developed global m aterial quality conform ance for am lodipine

besylate w ith D eLight softw are

4.2.4 Summary - criticality of research

This research investigated the use o f  continuous data output from three qualifieation 

algorithm s (correlation, A N SD  and PC A -M D ) and SPC charting to create a G lobal 

M aterial Q uality  C onform ance approach. Typically , m aterial qualifieation  algorithm  

output is used sim ply as a categorieal classifieation technique and the extended use o f 

the data w ith SPC has not been previously  reported.

Three global m aterial quality  conform ance m ethods w ere developed and applied in 

parallel to com m ercial deliveries o f  am lodipine besylate at a Pfizer facility  and the 

value o f  the work was dem onstrated  in the ability  to identify non-conform ing deliveries 

as described in 4.2.3.1. The benefits and lim itations to the three different m ethods were
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compared and commentary was provided as to the availability of vendor software to 

easily implement such approaches.

Global material quality conformance methods were demonstrated to provide an 

opportunity to gain greater insight in to the design space of product formulations and 

processes and enabled rapid identification of material variation with the potential to 

greatly impact the pharmaceutical manufacturing process and/ or product quality. The 

approach also facilitated rapid root cause determination of material variation that 

impacted product and process.

4.3 Material attribute quality conformance

The development and application of a material attribute quality conformance method is 

described in this section to extend on the approach and value described in Section 4.2.

Material attribute quality conformance is applicable when a specific aspect of a 

material’s quality is identified as benefiting from monitoring and control. Unlike global 

material quality conformance methods, material attribute quality conformance methods 

are not sensitive to variation from aspects of the material other than the target attribute. 

Chemometric algorithms are chosen that narrow the focus to only those spectral features 

in the NIR spectra that relate to the attribute of interest. Following on from the research 

conducted in Section 4.2, amlodipine besylate was selected as an appropriate research 

subject with the amine based residual solvent content as the target attribute. Following 

exhaustive quality testing and investigation, it had been determined that the amine based 

residual solvent had no impact on product quality and stability other than issues with 

appearance. The significant challenge for the manufacturing site was the impact of 

processing the material with high amine based residual solvent content in the tabletting 

operations. Though the quality of the product reaching the customer was preserved, the
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supply of this vital medicine was impacted by the manufacturing difficulties of using 

the material and the uncertainty as to the extent of processing difficulties encountered 

lot to lot. Global investigation of this issue showed that deliveries o f API with high 

amine based residual solvent caused problems at many sites of manufacture with the 

severity of impact related to the processing equipment factors (e.g. brand of tablet press, 

speed of compression and compression tooling finish). Processing issues could be 

mitigated through process interventions such as slowing press operation and regularly 

cleaning and polishing press punches and dyes of sticking material throughout 

processing.

The high impact of the amine based residual solvent in amlodipine besylate indicated 

that this material attribute was an excellent candidate for the material attribute quality 

conformance method research.

4.3.1 Materials and Methods

4.3.1.1 Design of Analvsis

The reference library established for the global material quality conformance methods 

researched in Section 4.2 was the basis of developing the material attribute quality 

conformance method. The spectra in the global material quality conformance method 

reference library provided the range of amlodipine besylate deliveries with acceptable 

low amine based residual solvent content. For ease of description, this reference library 

is termed “acceptable reference library” for the remainder of Section 4.3.

Single spectra for two further deliveries with high amine based residual solvent content 

and unique manufacturer’s lot were required to provide flexibility in investigation of 

appropriate chemometrics algorithms. These spectra were used as either negative 

challenge samples (for method algorithm optimisation) or for extension of the
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acceptable reference library to represent unacceptable material depending on the 

algorithm chosen. For ease of discussion, the reference library including the two high 

amine residual solvent spectra is termed “extended reference library” for the remainder 

of Section 4.3. Various algorithms were explored to select the most appropriate 

modelling approach for the material attribute quality conformance method.

To ensure robust development of the SPC approach, it was determined that a minimum 

of five deliveries with acceptable level of amine based residual solvent content 

independent of the acceptable reference library would be required. An individual 

spectrum for each container in the deliveries was required to develop the SPC approach 

so that it was applicable to the real life scenario of assessing the conformance of every 

container in a delivery. As mentioned in Section 4.2.1.1, this is important as the dosage 

strength o f amlodipine besylate in the Norvasc® finished dosage form is low 

(approximately 3.45% weight / weight basis) and only one to two containers of API are 

utilised in any given batch of Norvasc® tablets.

4.3.1.2 Samples

The deliveries from the two different manufacturers’ lots with unacceptably high amine 

based residual solvent content were identified as those with high deviation in the global 

material quality conformance method SPC charts and confirmed as having severe 

impact on processing. One representative spectrum (from the first container in the 

delivery) from each of the two deliveries was selected and added to the acceptable 

reference library to create the extended reference library.

The seven deliveries with acceptable amine residual solvent content immediately prior 

to the first instance of a delivery with high amine based residual solvent content were 

selected to establish (five deliveries) and verify (two deliveries) the SPC charts (varying
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number of spectra per delivery based on the number of containers delivered). A third 

delivery with unacceptably high amine content was selected (independent o f those in the 

extended reference library) and included in the verification set.

Six subsequent deliveries were then reviewed and the suitability of the approach 

demonstrated through the inclusion of deliveries with non-conformance.

All samples were prepared for NIRS analysis by placing the material in SUN Sri 4 mL 

borosilicate glass Shell vial (part number: 500 070) to a fill depth of 1 cm and 

compressing with uniform pressure using a stainless steel weighted cylinder (1 cm 

diameter and 5 cm length).

4.3.1.3 NIR Apparatus and software

NIR reflectance spectra were measured as outlined in Section 4.2.1.3.

DeLight version 2.3b with DMentia 1.1b software (DSquared Development, La-grande, 

OR, USA) and Microsoft® Excel, version 9 (Microsoft® Corporation) were utilised for 

chemometric model development and predictions, while Minitab® 16 version. 1.16 

(Minitab Inc, State College, PA, USA) was utilised for statistical evaluation and SPC 

chart development.

4.3.2 Material attribute quality conformance method development

4.3.2.1 Spectra pre-treatment

The pre-treatment optimised in 4.2.2.1 was applied to all spectra for the material 

attribute quality conformance method development.
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43.2.2 Model development

Material attribute quality conformance can best be achieved with chemometric 

techniques that assess the spectral features directly related to the target attribute. Whole 

region techniques explored in Section 4.2 are not suited. The simplest approach is to 

identify an individual wavelength that directly relates to the attribute of interest. 

However, the complex overlapping nature of peak absorptions in NIRS makes it 

challenging to identify a single wavelength at which absorption is due solely to one 

matrix component free of other interference (from other matrix components or physical 

effects). As such, multiple wavelength techniques are better suited. Rather than 

performing ratios or other manual mathematical manipulations of absorbance at 

multiple wavelengths, MLR analysis (refer to Section 0) with DA (refer to Section 

3.3.3) can be developed in most vendor software. The MLR-DA output can then be 

trended to represent where on the continuum of acceptable to unacceptable future 

deliveries fall.

Normalised SD metrics (refer to Section 3.3.1.3) over a narrow range can be applied 

once a suitable range is identified that is specific to the target material attribute. Care 

needs to be taken to ensure that the region is not sensitive to variations not related to the 

attribute of interest.

PCA based methods can be applied after training the PCA on what variation is of 

interest. If the variation between good and acceptable lots is described wholly within the 

first PC, a simple threshold applied to the PC score values may be suitable. Where 

variation between acceptable and unacceptable material requires further PCs, PCA-MD 

can be used. However, it should be noted that the distance is calculated from the centre 

point of the distribution in the reference set (between the acceptable and unacceptable 

data). Weighting the reference set towards the acceptable lots can ensure the variation of 

interest is captured within high order PCs without shifting the centre o f the distribution
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too far towards the unacceptable lots. Care should be taken in understanding any other 

sources of variation contributing to the PCs used in the model to avoid false non­

conformance from other spurious causes.

PCR-DA or PLS-DA (refer to Section 3.3.3) can also be applied and the output trended 

for future samples. The main advantage of PLS-DA is that the variation in the reference 

data (in this case class category) directs the compression of the data, while PCR-DA 

relies solely on spectral variation in the data compression into PCs.

Three techniques were assessed in parallel, MLR-DA, total normalised absolute SD 

over reduced range (termed TNSD-RR hereafter), and PLS-DA. Note that the use of 

PCA scores thresholds was of interest however prediction of PCA scores from a stored 

PCA model is not available within DeLight software.

The normalised SD model developed in DMentia for the global material quality 

conformance method described in Section 4.2.2.2 was utilised for the basis of the 

TNSD-RR method. Note that for the TNSD-RR conformance method approach, the 

extended reference library is not used to develop the model, rather it is utilised to 

optimise the method. To determine the reduced range to use for the TNSD-RR method, 

the 2"  ̂ derivative spectra of the extended reference library was reviewed. Regions of 

distinct variation between acceptable and unacceptable amine based residual solvent are 

easily visually identified, in particular between 1446-1556 nm and 1900-2100 nm 

(circled in Figure 40). These regions relate to the characteristic regions of 1®̂ overtone 

and combination absorption related to 0-H  and N-H functional groups (refer to Figure 

2) in the amlodipine besylate and amine based solvent. Impact to the 0-H  absorptions 

may relate to the solvent itself or the impact o f the solvate on the 0-H  bonds of the API.
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Figure 40: 2"** derivative NIR spectra o f the extended reference library with high am ine based

residual solvent content spectra in red

TN SD -R R  for the extended reference library  was calculated from the norm alised SD 

value across the range 1446-1556 nm in the D eLight softw are. The T N SD -R R  results 

(show n in Table 5) w ere analysed in M initab and represented graphically  through the

developm ent o f  a chart o f  the individual values (I-chart) w ith the control lim its (___ ) set

at three standard deviations from the m ean ( ) for the six acceptable deliveries. The

resulting 1-chart for TN SD -R R  (show n in Figure 41) uses a low er boundary limit o f  0.0, 

as the calculated control lim it w as beyond the allow ed values o f  0.0. N ote that the two 

deliveries in the extended reference library  w ith high am ine based residual solvent 

content are m arked in red w ith a “ 1” superscript. This is the notation used in M initab to 

indicate data points that fail the control test o f  being w ithin three standard deviations 

from the mean.
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T able 5: Predicted m aterial attribute quality conform ance statistics for TN SD -R R

TNSD-RR

(A bsorbance)

Reference library 1 19.47

Reference library 2 46.43

Reference library 3 44.99

Reference library 4 41.30

Reference library 5 18.09

Reference library 6 23.51

Reference library High Amine 1 608.8

Reference library High Amine 2 489.7

600

500

Olu
400

2 0 0 -

100
UCL =68.9
X=32,3
LB=0

1 2 3 4 5 6 7 8
Observation

Figure 41: I-chart o f  predicted T N SD -R R  results for the extended reference library

The M LR-D A  m odel w as developed in D M entia softw are. A plot o f  correlation against 

w avelength (Figure 42) assisted in the selection o f  the prim ary w avelength (w avelength 

in a region o f  high correlation to the acceptab ility  classification) and a secondary 

w avelength (low  correlating w avelength utilised  to stabilise the M LR m odel against 

unrelated variation).
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d o s e r  exam ination o f  Figure 42 identified strong positive correlation (r>0.95) betw een 

1490-1512 nm  and 2 0 50-2072  nm  (circled in black) and strong inverse correlation 

(r<-0.95) betw een 1452-1484 nm and 2 008-2036  nm (circled in red). These regions 

included the regions identified visually when selecting the reduced range for the TN SD - 

RR m ethod.

MLR l ^ c e p t a d i l i t y  R i

Figure 42: C orrelation o f  acceptability class for 2"‘ derivative spectra o f the extended reference

library

Exam ination o f  the positive correlation regions show ed absolute m axim um  correlation 

at 1502 nm and 2052 nm, w hile the inverse correlation region show ed absolute 

m axim um  correlation at 1478 nm  and 2028 nm. O f  these highly correlating peaks, the 

peak at 1502 nm  is centred m ore w ithin the correlating region and w ould thus provide a 

m ore stable M LR m odel. A M LR -D A  m odel w as developed with 1502 nm  as the 

prim ary w avelength and w ith 1614 nm  selected by the D M entia softw are as the 

secondary w avelength.

Figure 43 show s the 2"^ derivative spectra focused into the w avelength region o f  these 

peaks to illustrate the suitability  o f  the w avelength choices. Both w avelengths are at 

peak m axim a and will therefore be stable to slight w avelength shifts for the life o f  the
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conform ance m ethod. There is also clear discrim ination betw een the aeceptability  

classes in the extended reference library at 1502 nm and no eorrelation at 1614 nm 

indicating this is an excellent secondary w avelength  choice to stabilise the M LR -D A  

m odel.

|2 nm

1614 nm

Figure 43: Zoom ed 2"*̂  derivative spectra o f the extended reference library with high am ine based 

residual solvent content spectra in red annotated with the M LR-DA  model w avelengths

The M LR-D A m odel statisties ealculated as deseribed in Section 3.4.1 are show n in 

T able 6  and dem onstrate the m odel is very capable o f  relating the eorrelation o f  

acceptability  class (r“ >0.99) w ith low error (SEE o f  0.03556 representing a 3.556%  

error in estim ating acceptable deliveries).

T able 6: M odel statistics for the M LR -D A  model

r2 0.9949

S E E

(class) 0.03556

slope 0.9661

Intercept
(class) 0.02539
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The MLR-DA results for the extended reference library predicted in DeLight (shown in 

Table 7) were analysed in Minitab and represented graphically through the development

of a chart of the individual values (I-chart) with the limits (___) set at three standard

deviations from the mean (___) for the six acceptable deliveries. The resulting I-chart

for MLR-DA is shown in Figure 44. Note that the two deliveries in the Extended 

Reference Library with high amine based residual solvent content are marked in red 

with a “ 1” superscript, the notation used in Minitab to indicate data points that fail the 

control test of being within three standard deviations from the mean.

T able 7: Pred icted  M L R -D A  m aterial a ttribute quality  conform ance results for  the extended

reference library

M L R -D A

(class)

Reference library 1 1.032

Reference library 2 0.9680

Reference library 3 1.023

Reference library 4 0.9711

Reference library 5 0.9571

Reference library 6 0.9986

Reference library High Amine 1 -0 .0 0 8 7 9 0

Reference library High Amine 2 0.05956
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Figure 44: I-chart o f  predicted M LR-DA  class results for the extended reference library

To assess the capability  o f  the M LR-D A  m odel to predict satisfactorily  for sam ples 

independent o f  those used in the m odel, deliveries external to the extended reference 

library w ere predicted with the m odel in D eLight and the prediction statistics review ed. 

Two deliveries o f  varying num ber o f  containers w ith acceptable am ine based residual 

solvent content and one delivery o f  unacceptable am ine based residual solvent content 

were used to verify the m odel. The predicted  results and the residual betw een the 

predicted and expected class are show n in Table 8 .

The SEP for the M LR -D A  w as calculated according to Equation 17 and found to be 

0.03682 (representing a 3.682%  error in estim ating acceptable deliveries) and yielded a 

SEP: SEE ratio o f  1.04. This close agreem ent in errors indicates that the M LR-DA 

m odel is very capable w hen predicting new  deliveries.
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Table 8: Predicted MLR-DA material attribute quality conformance for verification deliveries

Predicted Class Expected Class Residual

Verification 1 0.9824 1 0.0176

Verification 1 0.9823 1 0.0177

Verification 2 0.9717 1 0.0283

Verification 2 1.020 1 -0.0200

Verification 2 1.023 1 -0.0230

Verification 2 1.022 1 -0.0220

Verification 2 1.042 1 -0.0420

Verification 2 0.9758 1 0.0242

Verification 3 0.04227 0 -0.04227

Verification 3 -0.05751 0 0.05751

Verification 3 -0.05762 0 0.05762

PLS-DA models were developed over the full wavelength range in DMentia software. 

Review of the PLS scores plots in Figure 45, shows that the deliveries with the 

acceptable and unacceptable amine based residual solvent content separate 

predominantly along the first LV axis. The axes in the plots in Figure 45 are to the same 

scale showing the relative magnitude of the variation explained in each LV.
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PLS 1 ; X S c o re  1 v s  X S c o re  2

High Amine residual solvent content

PLS: 1 : X S c o re  3 v s  X S c o re  4

Figure 45: LV scores plots for the extended reference library (a) LVs 1 vs. 2 and (b) LVs 3 vs. 4

Exam ination o f  the w eighted loadings o f  the PLS m odels in Figure 46 show s that the 

first LV includes the w avelengths at the peaks identified in the M LR -D A  to be highly 

correlated  to the acceptability  o f  am ine based residual solvent content. The w avelengths 

o f  variation included in the 2""̂  and 3"̂  ̂ LV w ere not in specific regions identified with 

high correlation.
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PL S: 1 : X lo a d in g s  1

1502 nm

2056 nm

PL S:1 : X lo a d in g s  2

2148 nm 1256 nm

1670 nm

5  0.02

Wavetenflth (ran)

PLS: 1 : X lo a d in g s  3

1494 nm

1518 nm

Figure 46: Weighted loading for the PLS-DA model of extended reference library (a) LV 1,

(b) LV 2 and (c) LV 3
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To better understand the variations included in the second LV, a plot o f  the residual 

spectra after the rem oval o f  the variation included in the LV w as exam ined (Figure 

47). C loser inspection identified that the largest variation rem aining in the residual 

spectra that w ould be m odelled in the 2"^ LV is related to differences o f  tw o sam ples 

w ithin the extended reference library  (second and third reference deliveries).

Exam ination o f  the residual spectra at the w avelengths identified in the PLS-DA 

loading for the 2"^ LV, show ed that at 1670 nm  and 2148 nm, the unacceptable lots (red 

spectra in Figure 47) group w ith the second and third reference deliveries (bold black 

spectra in F igure 47) aw ay from  the rem aining four reference deliveries.

The 2"^ LV m ay then stabilise the PLS-D A  m odel through appropriately  w eighting the 

structured variation not associated w ith am ine based residual solvent content.

PLS 1 re s id u a ls

Figure 47: Residual spectra after rem oval o f spectral variation accounted for in LV 1, with  

associated 2"‘‘ derivative spectra at identified w avelengths o f LV 2; (a) 1670 nm, (b) 2148 nm and

(c) 2256 nm
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To better understand the variation included in the 3"̂  ̂ LV, a plot o f  the residual spectra 

after the rem oval o f  the variation from the first tw o LVs was review ed (F igure 48). It is 

w orth noting that the scale o f  the residual spectra is an order o f  m agnitude sm aller than 

the residual after only one LV is rem oved (F igure 47) and the residual spectra appears 

less structured (m ore random ). The areas o f  highest residual relate to d ifferences 

betw een the two unacceptable am ine based residual solvent content deliveries. C loser 

exam ination o f  the residual spectra at w avelength regions identified in the PLS-DA 

loading for the 3'^ LV, show s that at 1494 nm and 1518 nm  the residuals do not relate to 

specific peaks in 2 "  ̂ derivative spectra rather at points o f  inflection.

HLb 1 r e s ia u a is

1800 1800 2000 
Wavetenolh fnm)

1518 nm

1494 nm

Figure 48: (a) Residual spectra after first two PLS LVs with (b) associated 2"** derivative spectra at

identified w avelengths o f  LV 3
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Predicted Error Sum o f  Squares (PR E SS) w as calculated for five LVs with leave-one- 

out cross validation to assist in selecting the optim um  num ber o f  LVs to use in the 

m odel. As expected, Figure 49 show s a continued im provem ent in the SEE as an 

increasing num ber o f  LVs are included in the m odel. This relates to the m odel being 

better able to describe the extended reference library speetra as m ore variation is 

included. H ow ever, the SECV  show s an im provem ent as the 2"^ LV is included and 

then increasing error as additional LVs are ineluded in the m odel. This indicates that the 

m odel m ay be m odelling noise and unrelated variation in the data contributed by 

individual reference library sam ples, destabilising the m odel’s ability  to accurately 

prediet the acceptability  classification. O bservation o f  the variation rem oved in both the 

x-axis (spectral variance) and y-axis (acceptability  variance) as eaeh LV is included in 

the m odel, show s a steep increase w ith the inclusion o f  the 2"^ LV (to approxim ately  

85%  for each axis) follow ed by a slow er incline.

0.25

90%

80%0.2

60%

50%

40%

0.05 20%
10%
0%

L ate n t V ariab le

Spectral Variance Acceptability VarianceSEE SECV

Figure 49: Standard error (class) and percent variance for PLS-DA models developed with varying

num ber o f LVs
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Review of the scores, the loadings and the PRESS output indicates that two LVs may be 

optimal, balancing an improved error without over fitting and including noise and 

unrelated variation. As the PRESS was performed on limited data (8 spectra) it was 

worth also assessing a PLS-DA model with three LVs to see whether the additional 

y-axis variation included (reaching 93.6%) leads to sufficient improvement in prediction 

to offset the risk of adding noise and increasing error.

The PLS-DA model statistics for the two models are shown in Table 9 and indicate that 

the PLS-DA model with three LVs is more capable o f relating the correlation of 

acceptability class (higher r^) with lower error. Also note the three LV model compares 

well with the MLR-DA model statistics described in Table 6.

T able 9: P L S-D A  m odel statistics

Two LVs Three LVs

r2 0.9774 0.9959

S E E  (class) 0.06958 0.02949

slope 0.9774 0.9959

Intercept (class) 0.01694 0.003044

To assess the capability of the two PLS-DA models to perform satisfactorily for 

samples independent of those used in the models, deliveries external to the extended 

reference library were predicted with the models in DeLight and the prediction statistics 

reviewed. The three deliveries used to assess the MLR-DA model performance were 

utilised to verify the performance of PLS-DA models developed on both two and three 

LVs. The predicted results and the residual between the predicted and expected class are 

shown in Table 10.

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 157 of 305



Table 10: Predicted material attribute quality conformance for verification deliveries using the two

developed  P L S-D A  m odels

Two LVs Three LVs

Expected

Class

Predicted

Class Residual

Predicted

Class

Residual

Verification 1 1 1.070 -0.070 0.9965 0.0035

Verification 1 1 1.043 -0.043 0.9666 0.0334

Verification 2 1 0.8830 0.1170 0.9566 0.0434

Verification 2 1 0.9111 0.0889 1.010 -0.010

Verification 2 1 0.9157 0.0843 0.9953 0.0047

Verification 2 1 0.9154 0.0846 0.9896 0.0104

Verification 2 1 0.9211 0.0789 1.008 -0.008

Verification 2 1 0.8728 0.1272 0.9312 0.0688

Verification 3 0 -0.08713 0.08713 -0.01932 0.01932

Verification 3 0 -0.1406 0.1406 -0.1007 0.1007

Verification 3 0 -0.1299 0.1299 -0.09285 0.09285

The SEP for the PLS-DA predictions were calculated according to Equation 17. The 

two LV PLS-DA model had a SEP of 0.1045 yielding a SEP:SEE ratio of 1.50 while the 

three LV model had a SEP of 0.05213 yielding a SEPiSEE ratio of 1.77. As with the 

Extended Reference Set, the two LVs model SEP is almost twice that of the three LVs 

model. The SEP: SEE ratio gives an indication of the future capability of PLS models to 

predict unknown samples. A rule of thumb often used in the pharmaceutical industry 

(noted in the 2003 EMEA guidance on NfR*'^ )̂ is that SEP: SEE ratio greater than 1.4 

may indicate potential over-fitting of the model (inclusion of reference specific 

variation or noise) and may indicate a risk to long term robustness. The required 

accuracy for a two class DA model is not as stringent compared to the conventional use 

of PLS for quantitative analysis. Thus it is more useful to note that although the two LV 

model may be more robust for the prediction of future deliveries (lower SEP: SEE ratio)
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this slight improvement is offset by the significant increase in the error in the two LV 

model compared to the three LV model. Thus, the three LV PLS-DA model was 

selected for continued development of the material attribute quality conformance 

method.

The final PLS-DA prediction results for the extended reference library predicted in 

DeLight (shown in Table 11) were analysed in Minitab and represented graphically with

a chart of the individual values (I-charts) with the limits (___) set at three standard

deviations from the mean (___) for the six acceptable deliveries. The resulting I-chart

for MLR-DA is shown in Figure 50.

Note that the two deliveries in the extended reference library with high amine based 

residual solvent content are marked in red with a “ 1” superscript, the notation used in 

Minitab to indicate data points that fail the control test of being within three standard 

deviations from the mean.

T able 11: F inal predicted  m aterial a ttribute q uality  con form ance for the extended  reference library

using the final three L V  P L S-D A  m odel

PLS-DA
(Class)

Reference library 1 0.9901

Reference library 2 0.9545

Reference library 3 1.011

Reference library 4 1.046

Reference library 5 1.025

Reference library 6 0.9678

Reference library High Amine 1 0.001380

Reference library High Amine 2 0.004710
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Figure 50: I-chart o f predicted PLS-DA results for the extended reference library with points with

high am ine based residual solvent in red

4.3.2.3 E stablishm ent o f  the conform ance control charts

Once the confonnancc m odels have been created, SPC charts m ust be established that 

will m onitor results over time. This ensures that, although the m etric is calculated 

against a static m odel, deliveries can be com pared to historically  acceptable deliveries 

over tim e and trends tow ards non-conform ance can be identified prior to failure against 

the static m odel. Five historical deliveries o f  varying num ber o f  containers w ere used to 

establish the control charts for the m aterial attribute quality  conform ance m ethods. 

These five deliveries w ere all know n to process well and contained typical acceptable 

am ine based residual solvent content. Three deliveries (those used to verify  the 

M LR-D A  and PLS-D A  m odel SLPs in Table 8 and T able 10) w ere then used to verify  

the m aterial attribute quality  conform ance SPC charts to dem onstrate the suitability  o f  

the approach prior to im plem entation into the m anufacturing facility. As was discussed 

in 4.2.2.3, individual and/ or com binations o f  containers m ay be used in production, and 

both an individual container historical chart as well as an overall delivery  chart is 

valuable.
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Shewhart’^̂  control charts are based on the normal Gaussian distribution and it is 

important to verify that the conformance data is normally distributed. The Graphical 

Summary function in Minitab was used to represent the data and assess normality for 

each conformance metric (Appendix 2 on page 295). No evidence of non-normality was 

observed (p>0.05) at the 95% confidence level. Normality j9-value for each set of data is 

shown in Table 12. Note that output for overall delivery metrics is an estimate only as 

the number o f data points is small, reducing the power of the normality tests.

T able 12: Sum m ary o f  the norm ality assessm ent (p-value) o f  the m aterial a ttribute quaUty 

conform ance p red iction  resu lts for the h istorical data

TNSD-RR MLR-DA PLS-DA

1
I

Individual Container 0.439 0.248 0.569

Overall Delivery 0.369 0.407 0.433

An individual SPG chart (I-chart) was developed to represent the typical quality of 

individual containers in a given delivery with the control limits set by the individual 

results from the five historical deliveries. Average results were calculated for each 

delivery and overall delivery SPG charts developed using the I-chart Minitab function. 

The mean and standard deviations applied in establishing the control charts are shown

in Table 13. Gontrol limits (___) were established at three standard deviations from the

mean (___) value.
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Table 13: Parameters used to generate the SPC charts for material attribute quality conformance

TNSD-RR MLR-DA PLS-DA
(Absorbance) (Class) (Class)

1

Individual Container 57.54 1.034 0.9504

Overali Delivery 54.82 1.027 0.9527

s  §
ê  i

Individual Container 16.25 0.04690 0.04531

1  iSk q Overall Delivery 11.17 0.04850 0.03113

The SPC charts for the three material attribute quality conformance models studied are 

shown in Figure 51 and Figure 52. These SPC charts show both the five historical 

deliveries used to establish the control chart limits as well as the three verification 

deliveries and demonstrates that the SPC charts easily distinguish deliveries with 

unacceptable amine based residual solvent content.
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Figure 51: Individual container SPC charts for historical and verification deliveries: (a) T N SD -R R , 

(b) M LR-DA  and (c) PLS-DA w ith containers w ith high am ine based residual solvent in red
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Figure 52: O verall delivery SPC charts for h istorical and verification deliveries: (a) TN SD -R R , 

(b) M LR -D A  and (c) PLS-DA w ith deliveries w ith high am ine based residual solvent in red
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4.3.2A  Implementation of the developed method in manufacturing

The developed conformance methods were applied to six subsequent deliveries. The 

material attribute quality conformance SPC charts showing the historical, verification 

and subsequent deliveries are shown in Figure 53 and Figure 54. Note that the second 

delivery is the same delivery as that denoted as the fifth delivery in the global quality 

conformance method research detailed in 4.2.2.4.

The MLR-DA SPC chart indicated both containers of the second delivery were out of 

conformance, while only container two showed non-conformance for the TNSD-RR and 

PLS-DA SPC charts. 7'he fourth delivery was identified as just out of conformance for 

TNSD-RR, yet was seen as conforming in both MLR-DA and PLS-DA conformance 

SPC charts.

The fifth and sixth deliveries were both out of conformance for all three methods with 

the sixth delivery showing the most extreme non-conformance.

The first step in investigating a deviation in conformance is to compare the spectra of 

the non-conforming containers and deliveries to the acceptable reference library and 

recent conforming deliveries. Figure 55 shows the raw spectra overlay showing that the 

fourth delivery has increased absorbance at higher wavelength indicating the material is 

coarser and more scattering than the acceptable reference library and the other 

conforming deliveries. Meanwhile, the fifth and sixth deliveries and first container of 

the second delivery are finer (less absorbing). Container one of the second delivery 

appears the finest of all samples while container two sits at the coarser end of the range 

of particle size in the acceptable reference library and conforming deliveries. The 

difference in particle size of the second delivery was confirmed by appearance during 

sampling as noted in 4.2.2.4.
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Figure 53: Individual container SPC charts for h istorical, verification and subsequent deliveries: 

(a) TN SD -R R , (b) M LR-DA  and (c) PLS-DA with containers with high am ine based residual

solvent in red
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Figure 54: Overall delivery SPC charts for historical, verification and subsequent deliveries:

(a) TN SD -R R , (b) M LR-DA and (c) PLS-DA with deliveries w ith high am ine based residual solvent

in red
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V ^ve len ith  (nm)

Figure 55: Raw spectra o f individual containers for deliveries 2 (___ ), 4 (___ ) 5 & 6 (__ ) overlaid

with (a) acceptable reference library ( ) and (b) deliveries 1 «& 3 (___ )

Figure 56 show s the 2"^ derivative spectra overlay  indicating the regions o f  m ost 

difference are betw een 1440-1560 nm  and 1990-2110 nm  (circled in Figure 56) w hich 

are the regions identified to be related to the am ine based residual solvent content.

F igure 57 contains an expansion o f  the circled regions in Figure 56 to allow  closer 

exam ination o f  the variations occurring in these w avelength  regions.
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Figure 56: 2"̂  ̂ derivative spectra o f individual containers for deliveries 2 (___ ), 4 (___ ) 5 & 6 (___ )

overlaid with (a) acceptable reference library (___ ) and (b) deliveries 1 & 3 (___ )
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Figure 57: Zoom ed 2"‘ derivative spectra o f deliveries 2 (___ ), 4 (___ ) 5 & 6 (___ ) overlaid with

acceptable reference library & deliveries 1 & 3 (___ ) at (a) 1440-1560 nm and (b) 1990-2110 nm

To investigate the source o f  the non-conform ance in TN SD -R R  for deliveries tw o, four 

and six, Figure 57(a) was exam ined as this im age show s the region used for the 

TN SD -R R  conform ance m odel.

Deliveries five and six and container one o f  delivery  two all show ed the characteristic 

spectral deviation o f  m aterial w ith high am ine based residual content. The deviation 

aligns with that seen in deliveries w ith confirm ed high am ine based residual solvent 

content (see Figure 43).The deviation is m ore significant in delivery  six than in both
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delivery five and container one of delivery two, indicating that delivery six would be 

expected to have higher levels of amine based residual solvent. Note that container two 

of delivery two aligns with the acceptable reference library and conforming deliveries 

and as such is not seen as out of conformance.

Delivery four is not showing the spectral deviation expected for high amine based 

residual solvent, rather it indicates a deviation to the acceptable reference library in the 

opposite direction compared to deliveries with confirmed high amine based residual 

content. This may indicate delivery four is lower in amine based residual solvent 

content than the materials in the acceptable reference library.

Figure 57(a) also provides insight into the non-conformance seen in the MLR-DA 

conformance method for deliveries two, five and six as the absorbance at 1502 nm is the 

key x-variable in the MLR-DA regression equation. The marked reduction in the 

absorbance of deliveries five and six at this wavelength leads to the low MLR-DA 

prediction for these deliveries and subsequently the qualification of these deliveries as 

out of conformance.

It is interesting to note that both containers of delivery two are found to not conform 

despite container two of delivery two aligning with the acceptable reference library and 

other conforming deliveries in this region. The two wavelengths used in the MLR-DA 

model were scrutinised more closely as shown in Figure 58. Figure 58(a) demonstrates 

that container two of delivery two aligns well with conforming deliveries one and three 

at 1502 nm unlike container one which has markedly lower absorbance. However, the 

situation is reversed at 1614 nm with container one aligning to deliveries one and three 

while container two has higher absorbance. The inclusion of the absorbance at 1614 nm 

as an x-variable in the MLR-DA regression equation leads to the MLR-DA predicted 

result falling just beyond the control limits set from historically acceptable material.
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It is also w orth noting that the higher absorption for delivery  four at both w avelengths 

leads to reducing the d ifference in the prediction results for delivery  four and this 

delivery is not identified as a non-eonform ing delivery  as it w as w ith TN SD -R R . The 

outcom es for delivery tw o and four highlights the im portance o f  careful selection o f  the 

additional ‘stab ilising’ x-variables included in M LR based analysis.

0 .0014- Deliverv 4

0.0011

C o n ta in e r  2 o f  Deiiverv 2

0.0005-

20
Sample number

D elivery 4

S  0 .00 0 8 4 -
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Figure 58: 2"‘‘ derivative absorbance o f acceptable reference library (circled) and six deliveries at

(a) 1502 nm and (b) 1614 nm
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To investigate the PLS-DA non-conformance for deliveries four, five, six and container 

one of delivery two, the wavelengths used in the PLS-DA model (identified in Figure 

46) were scrutinised more closely. The key wavelengths utilised in the 1®̂ LV, 1502 nm 

and 2056 nm, are shown in Figure 57. As discussed with regards to TNSD-RR, Figure 

57(a) clearly shows separation of the deliveries and containers with non-conformance 

compared to the acceptable reference library and the conforming deliveries. This is 

mirrored also in Figure 57(b) with deliveries five and six separating distinctly at 

2056 nm.

The key wavelengths utilised in the 2"*̂  LV, 1670 nm, 2148 nm and 2256 nm, are shown 

in Figure 59. These wavelengths show grouping of non-conforming and conforming 

deliveries. Note that in Figure 59(a), delivery four is absorbing more strongly than the 

conforming deliveries one, three and the acceptable reference library, while deliveries 

two, five and six have lower absorbance. As discussed with regards the TNSD-RR 

results, the non-conformance in delivery four is not the same as in deliveries five and 

six. It is also worth noting that delivery four was not identified as out of conformance 

with individual samples however it is flagged with the tighter control limits for the 

overall delivery control chart.

The key wavelengths utilised in the LV, 1494 nm and 1518 nm are also included in 

the region shown in Figure 57(a). As mentioned during model development, these 

wavelengths are not signifying peak absorptions; rather the variation at these 

wavelengths is related to changes to inflection points and slopes due to the surrounding 

peaks (the largest of which is the key wavelength in the LV).
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Figure 59: 2"** derivative spectra o f deliveries 2 (___ ), 4 (___ ) 5 & 6 (___ ) overlaid with the

acceptable reference library, deliveries 1 «& 3 (___ ) at (a) 1670 nm , (b) 2148 nm and (c) 2256 nm
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4.3.3 Material attribute quality conformance method discussion

4.3.3.1 Impact of non-conformance for the product and process

The results of the material attribute quality conformance for deliveries two, four, five 

and six alerted the Quality and Production departments that these deliveries had amine 

based residual solvent levels deviating from that found in material with acceptable 

levels. This assisted in scheduling decisions as the production team was forewarned that 

processing would likely be slowed for the deliveries with suspected high amine based 

residual solvent. Due to the ongoing investigation initiated by the first delivery with 

non-conformance of the global quality material conformance, all deliveries received full 

confirmation testing according to the registered specification and results aligned with 

the results on the CoA, passing all specified acceptance criteria.

As mentioned in 4.2.3.1, container two of delivery two was found to have become 

caked into one solid mass during storage and this container was rejected and not utilised 

in production. Close observation of the use of container one of delivery two in 

production showed significant impact to processing with the product blend sticking 

considerably to the tablet press, extending processing time two-fold and impacting the 

product quality through poor clarity on the tablet embossing. Delivery five showed 

similar delays in production, while delivery six was found to have an extreme impact on 

processing almost halting manufacturing with hourly stoppages to remove sticking 

material from punches. It was also found that the impact to processing was most severe 

for the smaller 5 mg dosage strength tablet compared to the 10 mg tablet. This was 

hypothesised to be a function o f the tablet surface area and the different compaction 

force used during tabletting to meet the different hardness specification for the two 

dosage strengths (11-14 kg for 5 mg tablets compared to 28-30 kg for 10 mg tablets).
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Delivery four, which showed an inverse variation to the other non-conforming 

deliveries, processed well in production. The identification of the non-conformance for 

this delivery assisted in understanding the relationship of the variation in the spectra and 

impact on processing. Through the non-conforming deliveries, it was demonstrated that 

the more extreme the non-conformance of the material attribute quality conformance the 

larger the impact in processing.

Data from the material attribute quality conformance method was utilised to assist with 

scheduling production of Norvasc® through either mixing material from deliveries 

predicted to impact processing with deliveries predicted to process well or allocating the 

deliveries with severe non-conformance to the 10 mg dosage strength. In doing so, 

material could be utilised with reduced impact on processing and product embossing 

appearance.

The approach also assisted a global investigation into the issue which identified impact 

to processing at several other Pfizer drug product manufacturing facilities. The severity 

o f the impact appeared to vary related to tablet press model, compaction settings, 

tooling surface finish and quality and percent of magnesium stearate (lubricant) in the 

formulation. The production facility for which this research was performed, utilised the 

data to negotiate lot selection at the API manufacturing site so that, where possible, 

material predicted to impact the production facility would be redirected to other global 

sites with less severe impact while resolving the issue and implementing mitigation 

procedures.
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4.3.3.2 Conformance method selection for continued implementation

Review of all three conformance methods within this research provided insight into the 

capabilities of the three approaches to suit practical implementation. Section 4.3.2.4 

demonstrated that all three approaches were able to correctly differentiate non- 

conforming deliveries five, six and container one of delivery two which impacted 

processing.

TNSD-RR also identified the individual containers and overall delivery quality for 

delivery four to be out of conformance. For the purpose of the conformance method (to 

identify deliveries with unacceptable amine based residual solvent) this can be seen as a 

false negative. As TNSD-RR is based on the absolute variation to the average spectra of 

the acceptable reference library, the control chart does not give any indication of 

directionality. Absolute spectral differences are typically used for 2"  ̂derivative spectra 

as a single positive peak in raw spectra will have a central negative peak with two 

positive shoulder peaks in the 2"  ̂ derivative spectra (see Figure 7). Thus, without the 

use of absolute SDs, deviations in the shoulder peaks will negate deviations in the 

central peak. The lack of directionality in the conformance control chart is therefore a 

limitation to the TNSD-RR approach. Both MLR-DA and PLS-DA conformance 

methods incorporate directionality of the deviation. This can be seen by the fact that the 

output for delivery four is at the opposite side of the centre line in the MLR-DA and 

PLS-DA control charts in Figure 53 and Figure 54. It is worth noting that delivery four 

is found as out of conformance for the PLS-DA SPC chart for overall delivery quality. 

Again, this could be considered a false negative given that delivery four processed well. 

However, the directionality of the control chart coupled with the fact that the individual 

containers were acceptable according to the individual container SPC chart lends useful 

information as to this delivery’s level of amine based residual solvent content.
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MLR-DA also identified container two of delivery two to be out of conformance. 

Whether this is a false negative is challenging as this container was not utilised in 

production. However, review of the data indicates that the cause of the variation was 

due to a relative change in the stabilising wavelength used in the MLR-DA calculation. 

This is an interesting outcome and it may be worth further scrutiny given the fact that 

this container formed a solid mass on storage while other containers and deliveries did 

not. There is therefore something uniquely different about this container which probably 

should have been flagged. However, this material attribute conformance method was 

established to analyse the acceptability of the amine based residual solvent content. For 

this reason, the identification of this container to be out of conformance by MLR-DA 

can be seen as a false negative. This demonstrates the criticality in identifying the most 

appropriate stabilising / supporting wavelengths when applying MLR analysis. It would 

be possible to redevelop the MLR model using different secondary stabilising 

wavelengths. However, given the high number o f possible wavelengths, PLS-DA 

provides a more practical approach through the use of LVs to weight wavelengths 

appropriately in the regression equation.

Based on the lack of dimensionality in the TNSD-RR and the criticality of secondary 

wavelength selection in MLR-DA, this work indicates that PLS-DA is the optimal 

approach to use for continued implementation.

Further enhancements could be made through including more than two classes in the 

model (e.g. to categorise deliveries as acceptable, moderately or severely deviating) 

once further data was gathered and aligned with feedback on processability from 

production. Additionally, control limits could be established based on historical data for 

deliveries with extreme non-conformance to indicate deliveries that should be rejected 

(with agreement with API Supplier). However, the Pfizer facility was satisfied with the 

two class DA approach with control charts based on historically acceptable material.
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Though the SPC charts in this research were performed in Minitab, the Pfizer facility 

chose to implement the conformance method and SPC charts with Excel due to operator 

familiarity and accessibility.

As was discussed in Section 4.2.3.2, vendor software does not often provide the 

capability to implement NIRS conformance methods. In general trending of results is 

not available in vendor software for at-line NIR instruments and SPC charts often need 

to be developed external to vendor software. Additionally, not all vendor software 

provide flexibility in the quality metrics available for normalised SD (as mentioned in 

Section 4.2.3.2, normalised SD algorithms may be missing entirely or report only the 

maximum value at any wavelength in the region used). The majority of vendor software 

includes MLR analysis and all include PLS regression.

The DeLight software utilised at the site allowed simple implementation of the methods 

in the facility. The DeLight software has the capability to reproduce the individual 

container I-chart including control limits to allow the operator to monitor the results in 

real time. As mentioned in 4.2.3.2, DeLight does not have the capability to reproduce 

the overall delivery SPC chart. As such, following data acquisition, data were exported 

to Excel for SPC trending and review by Quality Assurance personnel.

Figure 60 shows the user interface that operators were able to use to monitor the 

material attribute quality conformance in real time during material receipt testing. In 

this case, the user interface incorporated output for both the global and material attribute 

quality conformance methods in one combined simple user interface for warehouse 

personnel.
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Figure 60: O perator interface for developed within D eLight Softw are with m aterial attribute  

quality conform ance individual container control chart m arked in red
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4.3.4 Summary - criticality of research

This research investigated the use of continuous data output from three qualification 

algorithms (TNSD-RR, MLR-DA and PLS-DA) and SPC charting to create a material 

attribute quality conformance approach for monitoring undesirable amine based residual 

solvent content in amlodipine besylate. Typically, qualification algorithm output is used 

simply as a categorical classification technique (pass / fail) and the extended use of the 

data with SPC has not been previously reported.

Three material attribute quality conformance methods were developed and applied in 

parallel to real deliveries o f amlodipine besylate at a Pfizer facility and the value o f the 

work was demonstrated in the ability to identify non-conforming deliveries as described 

in 4.3.3.1. The benefits and limitations to the three different methods were compared 

and commentary was provided as to the availability of vendor software to easily 

implement such approaches.

Material attribute quality conformance methods were demonstrated to enable rapid 

identification of material variation with the potential to greatly impact the 

pharmaceutical manufacturing process and / or product quality. The approach facilitated 

processability prediction and appropriate scheduling of material use in manufacturing 

and also provided the means to negotiate preferred manufacturers lot selection based on 

established causality. The work also continued to provide valuable information into the 

global effort to establish the root cause of material variation impacting production o f a 

key Pfizer product.
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4.4 Review of research outcomes

The research described in Chapter 4 successfully addressed the identified need for the 

development of novel applications of NIRS for at-line analysis of materials aligned with 

PAT. The innovative approach of NER Material Conformance enables powerful process 

understanding of the material variation and its impact on product quality and process 

performance. Rather than the traditional application of NER for material identification or 

the use o f the NER data for pass / fail categorisation of material qualification, the 

developed NER Material Conformance approach utilises the continuous nature of 

chemometrics qualification algorithms coupled with SPC to monitor material rapidly at 

receipt and assess whether the delivery conforms to statistical expectations compared to 

both the validated static model and continuously evolving historical deliveries. 

Deviations from SPC can be identified prior to impact to product quality and process 

performance. Behaviours of the material in the formulation and in future process steps 

can be predicted based on enhanced causal knowledge.

The approach goes beyond the black box approach to qualification model development. 

To gain real process information requires a skilled practitioner to delve deeper into the 

analysis of spectral deviations and the chemometrics behind the algorithms available in 

software.

To harness the breadth of possible applications and the diverse use of chemometrics for 

such Material Conformance methods, vendor sofiware will need to evolve to enable 

greater functionality in both chemometrics algorithms as well as statistics. Pfizer 

continues to work with strategic vendors to attempt to influence the direction of 

software updates. However, as discussed in Section 3.5, this has not been overly 

successful to date.

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 182 of 305



The research met the desired objectives of developing novel ways to apply at-line NIR 

for material analysis, aligning with the PAT philosophy described in Chapter 1 and 

addressing the gaps in material analysis identified in Chapter 2. The work was well 

received by the Pfizer facility fi-om warehouse operators and Quality personnel through 

to management and provided an unprecedented level o f insight into the material 

characteristics of an important raw material.
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CHAPTER 5 A p p l i c a t i o n  o f  a t - l i n e  NIRS f o r  PAT

APPLICATIONS IN SOLID DOSAGE PHARM ACEUTICAL  

PRODUCTION -  TABLET ANALYSIS

5.1 Introduction

As discussed in Section 2.5, historical application of NIRS for intact tablet analysis has 

concentrated on the API potency prediction followed by content uniformity 

determination to decrease the cycle time through the laboratories, exploiting the 

advantages of NIRS analysis being fast and non-destructive. These methods are not 

typically applied to gain process understanding and thus not aligned with the PAT 

philosophy. Applying NIRS at-line for process monitoring rather than as product release 

testing in the laboratory provides a mechanism for gaining process understanding and 

inherent quality improvements.

The proposed conformance methodology builds on the material attribute quality 

conformance approach discussed in Section 4.3. The focus of NIR tablet conformance 

methodology is to assess whether the quality attribute of interest (typically the API 

content) fits within a previously established acceptable and/or ‘normal’ population and 

combines qualitative or semi-quantitative chemometrics with SPC techniques.

Though different algorithms have historically been used to assess the conformance of a 

sample spectrum to the predetermined acceptable set of spectra (particularly applied for 

raw material quality assessment), any algorithm result, spectral processing output or 

straight absorbance value can be utilised in a conformance method.

A benefit of conformance methodology over traditional quantitative methods, is that 

reference chemistry can be restricted to samples used to validate the method, greatly 

reducing the large extent of reference chemistry which is typically conducted when
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developing quantitative NIRS methods. This leads to rapid development of the 

conformance methods.

Section 5.2, describes the investigation of qualitative NIRS tablet conformance methods 

to provide a method to assess the API content of tablets and determine the quality of the 

product by demonstrating that the product is consistent to the predetermined threshold 

of acceptability (obtained from a historical set of acceptable batches). Once established, 

this method provides a mechanism to monitor the quality of the tabletting process by 

trending the result for a large number o f tablets throughout manufacturing, providing 

the opportunity to establish normal process signatures for the tabletting process.

Section 5.3 extends the NER tablet conformance methodology with semi-quantitative 

regression based chemometric algorithms. Rather than utilising reference values, this 

semi-quantitative approach extends DA by the use o f nominal values in the regression 

methods explored. The semi-quantitative output is then applied using SPC techniques to 

monitor the tabletting process. Once more, the combination of SPC with the 

conformance model data provides a window of insight into the manufacturing process.

Although the explored conformance methodology is not targeted for regulatory filing, 

aspects of analytical method validation for such qualitative and semi-quantitative 

methods are explored in Section 5.4 to address concerns on how to validate the 

underlying analytical methods which will provide a mechanism for quality assurance. 

Fit for purpose validation of the methods is discussed, aligning with ICH Guidelines on 

Analytical Method validation.
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5.2 Qualitative tablet component quality conformance

The development and application of a Qualitative Tablet Component Quality 

Conformance method is described in this section demonstrating the value of this 

research. Continuing from the product focus in Chapter 4, Norvasc® 5 mg tablets was 

selected as the target product as it was the highest volume and highest value product at 

the manufacturing facility in which the work was undertaken. The component of interest 

was the active component of Norvasc® 5 mg tablets, the amlodipine base.

5.2.1 Materials and methods

5.2.1.1 Design of analvsis

A minimum of five batches were required to establish the normal range of spectra for 

Norvasc® 5 mg tablets and comprise the historical dataset used to develop the 

conformance model and establish SPC charts. To ensure a suitable degree of natural 

process and material variability in the tablets was represented in the historical data set, 

ten batches were obtained covering several years and compressed on all tablet presses 

utilised for the product at the manufacturing facility. A subset of these batches was then 

chosen to be included in the historical dataset equally representing each of the tablet 

presses utilised, with the remaining batches available to assist in optimising and 

verifying the suitability o f the method.

To represent typical within batch variability, 10 tablets for each batch were utilised for 

the historical dataset. Various qualitative algorithms were explored to select the most 

appropriate modelling approach for the qualitative tablet component quality 

conformance method. As production processes are highly controlled, the natural range 

of concentrations of the API in production tablets is very narrow and the likelihood of 

sampling tablets from the tails of the distribution to extend the range of the method is
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very low. As such, extended range tablets were manufactured at pilot scale. Though 

ideally extended range tablets would be made based on DoE, exploring variation of all 

components in the matrix, given financial and time constraints, a simple spiking with 

API (amlodipine besylate) and dilution with diluent (microcrystalline cellulose PH 102) 

approach was selected to develop the extended range using a production blend of the 

Norvasc® formulation. Tablets were then compressed to mimic the same physical traits 

of the Norvasc® production tablets. The extended range tablets were used to assist in 

optimising and verifying the suitability of the method.

The developed qualitative models were then applied to nine commercial tablet batches 

with appropriate frequent time based sampling to allow the development of process 

based SPC charts. Six batches, manufactured on the three tablet presses the facility uses 

to manufacture Norvasc®, were used to establish normal process behaviour and the 

remaining three commercial batches (one jfiom each tablet press model) were utilised in 

assessing the suitability of the complete Qualitative Tablet Component Quality 

Conformance Method.

5.2.1.2 Reagents and samples

Non-film coated Norvasc® tablets were manufactured at development (pilot batch) and 

production scales (over a four year period). Norvasc® 5 mg production tablets 

nominally have 5 mg amlodipine base content per 200 mg tablet (i.e. 2.5% weight 

basis). Norvasc® are formulated with the API amlodipine besylate rather than the active 

component, amlodipine base. For ease of discussion, amlodipine base is termed the 

“amlodipine active” and amlodipine besylate the “amlodipine API” for the remainder of 

Chapter 5.
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Development scale tablets were produced by dry blending the amlodipine API with the 

other tablet components (microcrystalline cellulose PH 102, dibasic calcium phosphate, 

sodium starch glycollate and magnesium stearate) and compressing into 200 mg tablets. 

The amlodipine API and microcrystalline cellulose PH 102 (nominally 62.0% weight 

basis) were varied in the different development batches while keeping the remaining 

components constant to form a suitable range of amlodipine active content, expressed as 

75%, 85%, 115% and 125% of label claim.

For each development batch, blends were pressed into white, octagonal shape tablets 

(average thickness 3.43 mm, and average mass 200 mg), with a bisect line on one face. 

The development tablets were devoid of embossment and markings.

HPLC grade methanol and purified water (both Riedel-de Haën, Seelze, Germany) and 

potassium dihydrogen orthophosphate (Fisher Chemicals, Loughborough, 

Leicestershire, UK) were used for the HPLC mobile phase and diluent solvents.

5.2.1.3 NIR apparatus and software

NIR transmission spectra were measured using a FOSS NlRSystems 6500 Series 11 

spectrophotometer (FOSS NlRSystems Inc., Silver Spring, MD, USA) configured with 

an InTact™ tablet transmittance analyser (NR-1650) with an Indium-Gallium-Arsenide 

(InGaAs) detector. The spectrophotometer was controlled by DeLight software, version 

2.3b and D2N1RS software, version 1.2a (DSquared Development, La-grande, OR, 

USA).

NER spectra were measured for individual tablets over the wavelength range 

600-1900 nm at 2 nm intervals. Each recorded spectrum was the average of 32 

individual scans (a total of 35 seconds scan time per tablet) and recorded with respect to 

an air reference. The ten tablets in each of the ten production batches as well as ten
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tablets from each of the four 75% to 125% development batches were scanned in a 

typical laboratory temperature / humidity environment of 20° to 25° C / 60% relative 

humidity using custom made tablet holders to minimise light leakage and assure 

reproducible sample positioning and presentation. Tablets were placed in the tablet 

holders with the same orientation to ensure the bisect line (and embossing for 

production tablets) contribution to scatter was consistent to minimize spectral variation. 

A total of 140 spectra were saved for threshold and method validation. NIR spectra for 

individual tablets sampled throughout commercial production for the nine batches 

studied were acquired using the same procedure.

Individual tablet components were evaluated utilising a 1 mm deep top loading 

transmission cell (glass 20-C 1 mm cell (Stama Pty Ltd, Australia)) for presentation for 

transmission NIR analysis.

Data analysis and model development were achieved using DeLight software, version 

2.3b and DMentia 1.1b software (DSquared Development, La-grande, OR, USA), 

Minitab version 16.1 (MinitabTM, Inc.) and Microsoft® Excel, version 9 (Microsoft® 

corporation). Minitab® 16 version. 1.16 (Minitab Inc, State College, PA, USA) was 

utilised for statistical evaluation and SPC chart development.

5.2.1.4 HPLC apparatus, software and methods

Reference chemistry measurements were made using a Thermo Separation Products and 

Varian integrated HPLC systems (Aligent Technologies, Palo Alto, CA, USA ) with UV 

detection. The columns used for this reversed-phase method were Supelcosil LC-18-DB 

with a 50 mm length x 4.6 mm internal diameter stainless steel columns (Supelco) with 

5 pm particle size packing. The operating temperature was ambient (20° to 25 °C).
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The amlodipine active content o f individual tablets was measured by isocratic reversed- 

phase HPLC with UV detection at 237 nm. The mobile phase was purified methanol: 

0.03 M phosphate buffer (600:400, v/v), and the flow rate was 1.5mL/min. The 

phosphate buffer was made by dissolving 4.08 g of potassium dihydrogen phosphate in 

distilled water in a 1 L volumetric flask which was then made up to volume.

Sample solutions were prepared by dissolving an individual tablet in 200 mL of mobile 

phase, and then diluting 25 mL of this stock solution to make a 50 mL working sample 

solution. Duplicate 20 pL injections were made for each sample and the peak areas 

measured. To calibrate the system, standard solutions of the amlodipine active were 

prepared by dissolving 35 mg of amlodipine API reference standard in 200 mL mobile 

phase and diluting by the same factor as used for the tablet samples. Duplicate 

injections (20 pL) were made for each standard and the measured peak areas used to 

construct a peak area vs. mass of amlodipine active calibration curve.

5.2.2 Qualitative tablet component quality conformance method development

5.2.2.1 Spectra pre-treatment

As described in Section 4.2.2.1, the gentlest mathematical spectral pre-treatment should 

be applied to remove noise and reduce specular reflection without masking or hiding 

spectral features that may be useful in the analysis. The spectra from the ten production 

and four extended range tablet batches were utilised for optimising mathematical pre­

treatments and derivative transforms. Table 14 describes the optimised pre-treatment 

with the associated desired effect. Figure 61 shows the success of the mathematical pre­

treatment to remove noise and normalise baseline shifts due to pathlength effects of 

within and between batch tablet thickness variations and blend density scattering 

effects. The success of the pre-treatment can be seen in Figure 61.
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Table 14: O ptim isation o f  data pre-processing treatm ents for tablet analysis

Extract 800-1360 nm Remove regions o f high noise and non-linearity o f the detector 

response as well as region below 800 nm impacted by product 

colour in the visible region

Five point smoothing Provide continuous curve through the 2 nm data interval

SNV nonnalisation Remove baseline, path length & multiplicative scatter effects

600 800 1000 1200 1400
Wavelength ! nm

1600 1800

0.5

•0.5

800 900 1000 1100 
Wavelength / nm

1200 1300

Figure 61: (a) Raw NIR spectra o f com plete data set across full w avelength range, (b) pretreated  

spectra NIR with reduced w avelength range, five point sm oothing and SNV norm alisation
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D erivatives are com m only applied to further rem ove slope effects and enhance spectral 

peak features. For com plex m atrices such as tablet form ulations, it is im portant to apply 

appropriate derivative treatm ent to extract useful spectral features from  the overlapping 

absorption bands o f  both the API and other com ponents in the form ulation w ithout loss 

o f  inform ation. This is vital in N orvasc®  tablets as the percentage o f  am lodipine active 

in the form ulation is low (2.5%  on w eight basis).

The typical derivative transform  used for tablet analysis recom m ended by FOSS is 2"^ 

derivative. The resulting spectra from application o f  and 2"^ derivative transform s 

with five point derivative gap are show n in Figure 62.

0.12

0,08

0.06

0.04

0.02

-0.02

-0.04-

800 900 1000 1100 
W avelength /  nm

1200 1300

0.008

0.006

n 0.004

Z  0.002

- 0.002

■D -0.004-

-K-0.006

-0.008

800 900 1000 1100 
W aveleng th /nm

1200 1300

Figure 62: (a) f ‘ derivative and (b) 2"** derivative data with five point derivative gap
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To determine the optimum parameters suitable for the Norvasc® tablet data, impact of 

the treatments for a region of the spectra specific to the amlodipine API was reviewed. 

To identify the region related to the amlodipine API, the ten commercial and the four 

development batches (75% to 125% label claim) were utilised to evaluate the 

correlation coefficient between the nominal amlodipine active content and NIR 

absorbance at each wavelength for both first and second derivative maths treatment 

using the lowest gap for both 1®‘ and 2̂ '̂  derivative transforms. The correlation plots in 

Figure 63 demonstrate regions at 1100-1140 nm and 1120-1150 nm have high stable 

correlation.

0.8

0.6

0.4.

0 -0.2

-0.4

■0.6

-0.8

800 900 1000 1100 1200 
Wavelength / nm

1300

0.8

0.6

0.4-

I
u

-0.4.

-0.6

-0.8

800 900 1000 1100 
Wavelength /

1200 1300

Figure 63: Correlation to nominal amlodipine active content of (a) 1*‘ derivative and (b) 2"** 

derivative data with five point derivative gap
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The spectrum  o f  each individual form ulation com ponent w as overlaid to exam ine the 

region identified in the correlation plots in Figure 63 to ensure that the correlation seen 

is due to am lodipine active absorption and not dilution or other effects. F igure 64 show s 

the spectra o f  all com ponents w ith a five pt derivative data interval.

0.2

0.1

-0.1

-0.2

1060 1080 1100 1120 1140 1160 1180 1200 1220
__________________________Wavelength / nm________________________

0.02

0.01

0.01

o 0.02

0.03

0.04-

0.05

0.06
1060 1080 1100 1120 1140 1160 1180 1200 1220

Wavelength / nm

Figure 64: Overlay o f (a) f  ‘ derivative and (b) 2"̂ * derivative spectra o f  N orvasc®  tablet

com ponents; am lodipine besylate (___ ), sodium  starch glycollate (___ ),calcium  phosphate (_____),

m icrocrystalline cellulose (___ ), and m agnesium  stearate (____)

V isualisation o f  com ponent spectra identified the peaks at 1122 and 1136 nm  as the 

m ost prom ising w avelengths for specific m easurem ent o f  the am lodipine active for 

and 2"^ derivative m athem atical treatm ents respectively.
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The NIR absorbance at these wavelengths correspond to second overtone N-H and 

aromatic C-H vibrations (Figure 2) enabling good specificity in the measurement o f 

amlodipine active as the remaining components of the tablet matrix do not contain 

aromatic and N-H functional groups. Note that both the amlodipine active (amlodipine 

base) and the besylate ion contain aromatic functional groups.

First and second derivatives with varying data intervals were visually and statistically 

evaluated using the ten commercial and the four 75% to 125% development batches to 

assess the correlation of NIR absorbance with the nominal amlodipine active content at 

the regions identified in Figure 64. Table 15 shows the correlation at the centre of the 

stable correlation region and the associated range of derivative spectral absorption for 

different derivative gap intervals. Note that the centre of the stable region shifted as 

indicated for the 1 derivative spectra as the data interval gap increased.

Table 15: Optimisation of derivative data transforms for tablet analysis

First derivative Second derivative

Data gap 

Interval

Correlation

(wavelength)

Absorbance range 

(and values)

Correlation

(wavelength)

Absorbance range 

(and values)

5 0.9735 

(1122 nm)

0.007624

(0.01017-0.01779)

-0.9038 

(1136 nm)

0.002048

(0.001371-0.00342)

6 0.9661 

(1122 nm)

0.007016

(0.01039-0.01741)

-0.9034 

(1136 nm)

0.001869

(0.001643-0.003513)

7 0.9535 

(1120 nm)

0.006413

(0.007090-0.01350)

-0.9034 

(1136 nm)

0.001687

(0.001905-0.003591)

8 0.9391 

(1120 nm)

0.005841

(0.007496-0.01334)

-0.9041 

(1136 nm)

0.001508

(0.002141-0.003649)

9 0.9156 

(1118 nm)

0.005359

(0.004768-0.01013)

-0.9058 

(1136 nm)

0.001339

(0.002344-0.003682)

10 0.8845 

(1116 nm)

0.004922

(0.002449-0.007372)

-0.9086 

(1136 nm)

0.001183

(0.002508-0.003691)
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It was found that 1®̂ derivative data transform resulted in improved correlation of 

absorbance to nominal amlodipine active content and a five point derivative gap 

enhanced absorbance sensitivity (higher absorbance and wider absorbance range).

5.2.22 Model development

PCA of the optimised pre-treated spectra of the ten historical production batches was 

used to assist in the selection o f six production batches that represented the range of 

acceptable variation in excipient and amlodipine active variation in commercial 

production (which covered four years of manufacture). Six PCs were required to 

describe 90% of the spectral variance.

While the first two PCs explained 75% of the variance, it should be noted that the 

spectral variance explained is primarily physical scattering effects (the separation o f 

scores into two groups in Figure 65(a) relates to production batches manufactured on 

the two tablet press brands, Korsch and Fette. Note that two Fette and one Korsch tablet 

presses were utilised at the manufacturing facility to compress Norvasc®.

The production batches at the extremes of the PCA scatter plots (representing four years 

of production and all tablet presses) were chosen for the historical dataset, representing 

the natural physical variation as well as variation due to the chemical components of the 

formulation. The remaining four batches were utilised for validation (covering three 

years of production batches and all tablet presses).
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Figure 65: PCA scores scatter plot for the ten production batches for (a) PCs 1 & 2, (b) PCs 3 & 4 

and (c) PCs 5 & 6 w itb selected historical dataset set in bold

Bronwyn Grout \ UCL School o f  Pharmacy \ Process A nalytical S c ien ces Group, Pfizer Page 197 o f  305



Options for simple non-regression qualification chemometric techniques were reviewed 

that would be specific for the tablet attribute of interest, the amlodipine active content. 

The simplest technique is the use of single wavelength absorbance values. Absorption at 

1122nm was previously shown to be appropriately specific to amlodipine API (see 

Figure 63(a) and Figure 64(a)) and was selected as one of the qualitative metrics for 

further investigation for the conformance method.

Correlation and normalised SD algorithms over a reduced range were considered. As it 

was desired that the conformance method would indicate direction of deviation when 

not in conformance, average normalised SD over reduced range with sign maintained 

(absolute value not taken) was selected for further investigation. For ease of discussion 

this is termed ANSD-RR hereafter.

Given the heavy influence of physical effects in the PCA, it was determined that 

PCA-MD would not provide specificity for amlodipine active content without training 

the PCA with the extended range batches. Such training would equate to a regression or 

discriminant analysis approach and is explored and discussed in Section 5.3.

Normalised SD models were developed in DMentia software using the default threshold 

of 3. The model was then applied in DeLight software to predict normalised SD results 

for the historical dataset. ANSD-RR values were then calculated from the normalised 

SD value across the wavelength range 1110-1132 nm (the region with correlation over

0.75 in the correlation plot shown in Figure 63(a)). The absorbance value at 1122 nm 

for the pre-treated derivative spectra were also obtained from DeLight software 

(termed 1122 nm Absorbance for ease of further discussion).
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S.2.2.3 Establishment o f the conformance SPC charts

Once the conformance chemometrics have been established and models created, SPC 

charts must be established that will monitor results within and between batches over 

time. This ensures that, although the metric is calculated against a static model (in the 

case o f the ANSD-RR method), batches can be compared to historically acceptable 

deliveries over time and trends towards non-conformance can be identified prior to 

failure.

For tablet analysis, assessment on a unit dose level is required (at the individual tablet 

basis) as well as overall batch quality. Additionally, within batch trend analysis is 

required when NIR analysis is performed throughout production at the process 

monitoring level.

To establish the individual tablet SPG chart, the 1122 nm Absorbance and ANSD-RR 

data for the six batches in the historical dataset (tabulated in Appendix 3 on page 297) 

were exported into Minitab software to establish normality to allow the development of 

Shewhart’^̂  SPC charts. The Graphical Summary function in Minitab was used to 

represent the data and assess normality for each conformance metric (Appendix 4 on 

page 299). No evidence of non-normality was observed (p>0.05) at the 95% confidence 

level. Normality p-value for each set of data is shown in Table 16.

Figure 66 shows the Minitab I-chart for the historical dataset. The mean and standard 

deviations applied in establishing the control charts are shown in Table 16. Control

limits (___) were set at three standard deviations from the mean (___) to represent the

“Voice o f the Process” (VOP).
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T able 16: Param eters used to generate the SPC charts for the qualitative tablet com ponent

conform ance m ethods

1122 nm

Absorbance ANSD-RR

/7-value 0.053

Mean

(Absorbance)
0.01411 -0.00002

Standard Deviation

(Absorbance)
0.0004070 0.8422

0.0155
UCL =0.015333

0,0150

0.0145

X=0.014112
f  0.0140

0.0135

0.0130
LCL =0.012891

%

UCL =2.527

X=-0.000

LCL =-2.527

'v / V /

Figure 66: I chart for the historical dataset for (a) 1122 nm A bsorbance & (b) A N SD -R R
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To dem onstrate that the determ ined SPC chart w ith V O P lim its are appropriate, the SPC 

chart w as applied to new  tablets from four com m ercial production batches and the 

developm ent tablets intentionally  m anufactured outside o f  norm al am lodipine active 

content.

The SPC chart for 1122 nm A bsorbance data show n in Figure 67(a) dem onstrates that 

the thresholds are appropriate to m onitor w hen individual values fall outside the 

established nornial process (m arked in red w ith “ I” ) and also w hen trends occur such as 

runs o f  tablets on either side o f  the m ean (m arked in red w ith “ 2 ”).
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Figure 67: I-chart for the verification data show ing verification batches for 

(a) 1122 nm A bsorbance and (b) A N SD -R R
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The control chart for ANSD-RR shown in Figure 67(b) shows that the VOP limits 

indicate some of the tablets that are at the limits of acceptable amlodipine active content 

(85% label claim) are within the expected normal population of the process. This 

indicates a lack of sensitivity (analyte response) of the method (potentially from 

averaging in response of other components absorbing near to the amlodipine API). 

However, it also may indicate that the development tablets were not at the nominal 

amlodipine active content.

It is important to establish thresholds that also effectively flag when the amlodipine 

active content of tablets fall outside the acceptable “Voice of the Customer” (VOC) 

range rather than just the VOP, i.e. when the amlodipine active content falls outside an 

acceptable level rather than just outside the established normal process variation. For a 

product developed under QbD, the VOP may be considered the normal operating range 

while the VOC may be considered the limits of the defined design space.

Large discussions have been held within the pharmaceutical industry regarding 

application of the Pharmacopeial content uniformity concept to large sample sizes.* 

However, looking at what is an acceptable content for each individual tablet that reaches 

the market, we can apply a conservative threshold for the VOC of an absorbance that is 

equivalent to a amlodipine active content of 15% from target label claim.

The VOC limits can be set by the use of tablets with known amlodipine active content 

and correlating the algorithm output to amlodipine active content. One of the key 

benefits of the conformance methodology is the reduced number of samples required to 

validate the approach and hence the reduced reference chemistry required. Two tablets 

from each of the verification batches were used to establish the VOC limits by 

performing a simple linear regression on the algorithm output and HPLC assay results 

(in mg per tablet) acquired through reference chemistry.
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The data used to establish the VOC limits are shown in Table 17 and indicate that the 

tablets in the 85% development batch would be expected to just be beyond ‘acceptable’ 

tablets (assaying at an average of 83% label claim, while the 115% development batch 

would be expected to fall just within the ‘acceptable’ tablet range (assaying at an 

average of 114% label claim). Note that the 75% Development batch was assayed at 

67% of label claim (while the other development batches were assayed closer to the 

targeted percentage of label claim). This indicates an error likely occurred in calculating 

or dispensing the excipient used to dilute the Norvasc® blend during the manufacture of 

the 75% development batch.

T able 17: R eference chem istry  resu lts used to estab lish  V O C  lim its

HPLC Assay 

(mg / tablet)

% Label 

Claim

1122 nm 

Absorbance

ANSD-RR

(Absorbance)

75% Development 1 3.42 68.4% 0.01084 -4.401

75% Development 2 3.35 67.0% 0.01049 -4.954

85% Development 1 4.20 84.0% 0 . 0 1 2 2 1 -2.390

85% Development 2 4.09 8L8% 0.01199 -2.757

115% Development 1 5.74 114.8% 0.01611 3.243

115% Development 2 5.68 113.6% 0.01592 2.993

125% Development 1 5.94 118.8% 0.01711 5.051

125% Development 2 6.03 120.5% 0.01763 5.859

Production 1-1 5.04 100.7% 0.01392 -0.6385

Production 1-2 4.89 97.8% 0.01370 -0.9206

Production 2-1 4.91 98.1% 0.01362 -1.154

Production 2-2 4.80 96.0% 0.01360 -1.177

Production 3-1 4.800 96.0% 0.01446 0.7235

Production 3-2 4.96 99.1% 0.01453 0.8534

Production 4-1 4.89 97.7% 0.01380 -0.3828

Production 4-2 4.95 9&9% 0.01390 -0.2465
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The regression and resulting equations are show n in Figure 6 8 . The VOC lim its can be 

established from the equation for 4.25 m g / tablet (85%  o f  label claim ) and 5.75 m g / 

tablet (115%  o f  label claim ). The calculated VOC lim its for the tw o m etrics are shown 

in Table 18.

6.5 HPLC = - 0.5132 + 383.7 (1122nm Absorbance)

6.0

5.5

5.0-

4.5-

4.0

3.5
0.161005

% .1%R-Sq
3.0

0.010 0.011 0.012 0.013 0.014
1122 nm Absorbance (Absorbance)

0.015 0.016 0.017 0.018

6.5 HPLC = 4.859 + 0.2464 (ANSD-RR)
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5.0
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-5.0 -2.5 0.0
ANSD-RR (Absorbance)

2.5 5.0

Figure 68: Regression fitted line and equation for sixteen representative tablets from the 

verification batches for (a) 1122 nm A bsorbance and (b) A N SD -R R
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T able 18: C alculated VOC lim its for 1122 nm A bsorbance and A N SD -R R  m etrics

1122 nm A bsorbance ANSD-RR

85% Label Claim 0.01241 -Z472

115 Label Claim 0.01632 L6 6 8

Figure 69 show s the control chart o f  the verification batches w ith both the VO P limits

(___ ) and the VOC Lim its ( _  ). N ote that the VOC lim its are offset from  the VOP

lim its as the VOC limits are centred about the target assay content (label claim ) and not 

based on the process m ean ( ),
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Figure 69: I-chart for the verification data show ing verification batches w ith VOC and V O P lim its 

for (a) 1122 nm A bsorbance and (b) A N SD -R R
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Applying the equations determined in Figure 68 to the process mean values used to 

establish the VOP limits found that the process mean was equivalent to a HPLC 

amlodipine active content results of 4.902 mg and 4.859 mg per tablet for the 1122 nm 

Absorbance and ANSD-RR methods respectively. The average of the HPLC results for 

the verification production tablets (shown in Table 17) confirmed the offset to label 

claim with the average assay 4.903 mg per tablet.

It is also of note that the suspected sensitivity issue of the ANSD-RR method was 

confirmed through the addition of the VOC limits. The VOC limits fall within the VOP 

limits at low amlodipine active content showing that the method is not capable of 

accurately discriminating tablets at the limits desired. This may be a factor of non-linear 

response in the ANSD-RR metric (r  ̂o f 0.916 as shown in Figure 68b).

The verification results of the 1122 nm Absorbance method show that the derived SPC 

charts for the individual tablets (reflecting both the VOP and VOC) is appropriate to be 

applied during the tabletting process to monitor individual tablets as they are 

manufactured. The SPC chart correctly identified that the 115% development batch 

tablets were at or just within VOC limits while identifying the 85% development batch 

tablets were at or outside of the VOC limits. The 1122 nm Absorbance control chart 

also showed sensitivity with separation of the tighter VOP limits from the VOC limits.

The developed SPC charts would provide sufficient insight into the content uniformity 

of processes when applied throughout tabletting operations by identifying individual 

tablets beyond 85 -  115 % label claim, thus allowing manufacturing to count the 

number of tablets beyond the acceptable range, arrange for confirmatory testing and 

determine batch compliance to content uniformity as described in Sandell’ŝ ^̂  approach 

for content uniformity for large n.
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The established individual SPC chart addresses the important question of whether each 

individual tablet is within the normal process limits and also whether the tablets 

analysed will meet quality requirements (average amlodipine active content and content 

uniformity). However, there are key process questions that the individual tablet SPC 

chart alone does not address, namely whether:

1. any abnormal process trends exist for a given batch compared to normal

batch trends,

2. any abnormal within batch process trends exist for a given batch,

3. the overall variation within the batch is typical.

To enable monitoring of tablets throughout the process to address these questions, the 

number of tablets to be tested at each sampling point and the frequency of sampling 

must be established. The number o f samples to be taken at each time point should be 

kept to a minimum to prevent burden on operators, while being sufficient to give a 

representative set of samples to derive the time point sample mean to represent the 

amlodipine active content in the product at that point of tabletting. Five tablets were 

considered appropriate to yield an accurate estimate of the sample point mean. 

Increasing this number will only give more information about the consistency of the 

individual tablet punches on the tabletting press turret (typically composed of 20 to 40 

punch / die sets).

The frequency of sampling must be set to ensure adequate description of the process 

trends and should be considered proportional to the frequency of any known process 

events (e.g. tablet press operational adjustments). With modem automatic tablet presses 

it is suggested that half hourly to hourly sampling would be sufficient. The batch size 

and resulting tabletting process run time should also be considered to ensure that a 

minimum of 20 sample positions are achieved. A minimum of 20 sampling positions
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will provide opportunities to identify runs and cyclic patterns in the data. Consideration 

should also be taken as to whether different frequency should be applied at tablet press 

stoppages, shift changes or bulk blend feed changes (e.g. changing holding bins, or 

refilling rate o f tablet press feed hopper).

The tablet press compression speed and batch size for Norvasc® 5 mg tablets at the 

facility at which this work was conducted led to the tabletting operation requiring 

35-40 hours. Product was collected in pails with one pail equating to approximately 

30 minutes of tabletting. It was determined that five tablets would be taken at the 

completion of each pail at approximately 30 minute intervals to ensure that each sample 

point represents equal portions of the tablet product (by tablet volume manufactured). 

This testing frequency required less than three minutes of analysis time for each 

sampling point.

To address whether any abnormal process trends exist for a given batch compared to 

typical batch trends, individual tablets analysed throughout tabletting for six process 

batches were reviewed. The data were represented in a time series plot to establish 

whether any characteristic process trends exist for the Norvasc® tabletting process. 

Figure 70 shows the trend of the 1122 nm Absorbance result for six commercial batches 

manufactured on three models of tablet presses with five tablets sampled every half 

hour.

No characteristic process signature occurs batch to batch. Batch four and five 

(manufactured on two different tablet press brands) show an increase in absorbance over 

the length of the process run then a decline near the end of the batch while batch six 

shows a decrease in absorbance throughout the batch. As there is no typical systematic 

process signature, process signature trajectory modelling across batches would not be 

beneficial.
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Figure 70: Tim e series chart o f six com m ercial batches show ing lack o f com m on process signature

across the tabletting operation

To address the second process m onitoring question, SPC charts to assess w ithin batch 

trends for a tim e ordered subset o f  the process w ere required. These control charts 

would identify deviations from the process and allow  m onitoring o f  changes to the 

process trends w ithin a batch. A ssessm ent o f  the six process batches (w ith five tablets 

sam pled at h a lf  hourly intervals), determ ined that the I-chart and M oving Range (M R ) 

chart for Sam ple M eans and the Run chart w ere appropriate control charts to assess 

w ithin batch process trends.

The I-chart for Sam ple M ean identifies any process deviation using w ithin-batch control 

lim its set at three standard deviations from the batch m ean value. The M R chart for 

Sam ple M ean identifies any sudden shift from one tim e point to the next tim e point 

beyond w hat is n o nnally  observed for that batch. The Run chart com plem ents the 

I-chart by objectively  identifying the presence o f  trends, patterns or deviations w hich 

cannot be explained by random  variation.
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It should be noted that the standard X -bar chart could not be used as the process limits 

are based on the w ithin sam ple point variation (representing the variation in tablet 

punch/ dies in the tablet press turret), therefore the I-chart for Sam ple M eans is used to 

ensure that the process control lim its are based on betw een sam ple point and across the 

process variation.

Figure 71 and Figure 72 show  an exam ple o f  the l-M R  and Run chart respectively  for 

the first o f  the six batches used to develop the SPC strategy. The l-M R chart (F igure 71) 

show s that several sam pling points are beyond the expected population (beyond three 

standard deviations o f  the batch m ean) and also that there are four sudden shifts 

betw een sam pling points. The Run chart (F igure 72) also indicates that there is a 

significant degree o f  clustering o f  points on one side o f  the m ean (p-value for clustering 

<0.05). These plots provide insight into the tabletting  operation. This inform ation m ay 

be able to be aligned w ith tablet press operation param eters, pow der blend charging and 

also operator shift patterns to enable further im provem ents to process capability.

0,0152 -

0,0150 -

X=0,0148542
0,0148 -

1 0,0146 -

0,0144 -

Observation

0,0004

O' 0,0003

O' 0,0002

z 0.0001
MR=0,0000697

0,0000 LCL=0

Observation

Figure 71: l-M R  chart o f 1122 nm A bsorbance for the T ‘ historical batch show ing within batch 

trends with (a) I chart for sam ple mean (A bsorbance) and (b) M R chart for sam ple mean

(A bsorbance)
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Figure 72: Run chart o f 1122 nm A bsorbance (A bsorbance) for the T ‘ historical batch show ing

within batch trends

To address w hether the overall variation w ithin a bateh is typical, a m echanism  to 

m onitor both the overall spread and the variation pattern o f  results in a large sam ple set 

was required. Six real process data sets w ere used to investigate various m ethods for 

m onitoring the spread and variation pattern aspects o f  the process.

The fact that the sam ple size d iffers betw een batches w hen sam ples are taken on a tim e 

basis com plicates the establishm ent o f  appropriate m easures. Sam pling by product 

volum e (per product pail) was an attem pt to lim it this effect how ever fill height per pail 

was subjective (m anual sw itch o f  pail by operator).

S tandard statistical theory postulates that the probability  o f  sam pling at the extrem es o f  

the sam ple population increases as sam ple size increases. H ow ever, this is the situation 

when random ly sam pling from  a population, w here each tablet has equal probability  o f  

being selected for testing. This situation does not occur w ith tim e-based process 

m onitoring as tablets are targeted specifically  for analysis based on the m anufacturing 

process tim e. In tim e based sam pling, sam ples at the extrem es o f  the sam ple population 

will be captured in greater num bers only if  the frequency o f  sam pling increases at the
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time points of increased process instability or extremes of process trends. The process is 

likely to be most unstable at the start of manufacturing and at the very end of the 

tabletting process where powder flow to the powder press can become disrupted from 

normal mass flow characteristics. Sampling is no longer random, therefore conventional 

probability calculations no longer prevail.

An assumption can be made that the sampling frequency has been set appropriately to 

capture the breadth of the process and that the subset of tablets taken from the process is 

truly representative of the process. Here we must assume that the operation speed of the 

tablet press does not change throughout the manufacturing process so that each time 

point represents an equal portion of the process throughout manufacturing. In this 

instance the range calculated across all samples in the subset will be a reflection of the 

range of the process, regardless of the sample size (given a fixed batch size) and thus 

the range can be used to indicate the spread of the batch population.

The six commercial process batches were used to calculate the typical range for the 

product. The range of the 1122 nm Absorbance was calculated and the Graphical 

Summary function in Minitab used to represent the data and assess normality (Appendix 

4 on page 299). No evidence of non-normality was observed (p>0.05) at the 95% 

confidence level. The normality /?-value is shown in Table 19. Note that output is an 

estimate only as the number of data points is small, reducing the power of the normality 

tests.

Figure 73 shows the range Minitab I-chart of 1122 nm Absorbance for the six 

commercial Norvasc® batches. The mean and standard deviations applied in

establishing the chart are shown in Table 19. The control limits (___) were set at three

standard deviations from the mean (___) value.
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T able 19: Param eters used to generate the bateh range SPC chart for the qualitative tablet

com ponent quality conform ance method

/7-value 0.553

Mean
(Absorbance)

0.001032

Standard Deviation
(Absorbance)

0.000058

0.00125

UCL=0.0012057

o  0,00115

0,00110

^  0,00105
X=0,0010317

0,00100

<  0,00095

% 0,00090

LCL =0,00085770,00085

Observation

Figure 73: I chart o f the range o f  1122 nm A bsorbance for the six com m ercial Batches

The determ ination o f  the variability  w ithin the range is m ore com plicated as the 

calculation typically  used, standard deviation, is in i t s e l f ‘n ’ dependent and does not ju st 

rely on the sam pling plan capturing an unbiased representative view  o f  the process in 

successive batches. The presence o f  process trends also affects the use o f  a standard 

deviation calculation as the standard deviation calculation assum es the population is 

random ly distributed about the m ean. It m ay then be o f  m ore interest to assess the 

distribution pattern o f  the data, independent o f  the distribution orientation to the m ean.
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D istribution histogram s are typically  perform ed w ith the y-axis as the frequency o f  the 

occurrence o f  results w ithin contiguous equal sized divisions (or bins) o f  the range o f  

values. The use o f  frequency percent (frequency over the sam ple size) rather than ju s t 

the frequency ensures that the analysis is independent o f  sam ple size. The convention 

on selecting the num ber o f  bins to use for developing a d istribution histogram  is to use 

the square root o f  the num ber o f  sam ples. H ow ever, to be able to d irectly  com pare the 

distributions histogram s batch to batch, the sam e num ber o f  bins is required. For the 

N orvasc®  tablet process, the m ean sam ple size was 370 tablets. This is likely a good 

estim ate o f  future sam ple size given the tablet press speed o f  operation and batch 

volum e. T herefore 19 bins w ere chosen for the analysis (close to the square root o f  

370). Figure 74 depicts the frequency distribution histogram s for the six com m ercial 

batches o f  tablets w ith the percent frequency occurrence across 19 bins.

- , r r m T — ■. . . . I l k . . . I V n J . . -----1 n~i

fh

J # I k J l ’ . . . . k ,— r d l - - - - - I k

Figure 74: D istribution histogram s for 1122 nm A bsorbance for the six com m ercial batches

The shape o f  the distribution histogram  (standardised across batches by the use o f  

percent frequency and constant binning) can be used to establish the boundary o f  

acceptable distribution w here the lim its are three standard deviations from  the m ean
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distribution curve (calculated from the six historical batches). This control m echanism  

is analogous to the m onitoring control m ethods available and routinely  utilised for on­

line particle size m onitoring PAT analyzers. H ow ever the application o f  such an 

approach is novel to N IR S m ethods.

Figure 75 dem onstrates the resulting distribution profile SPC chart w ith VO P limits

(___ ) set at three standard deviations from the m ean frequency percent in each bin for

the six com m ercial batches used to establish the SPC strategy. A boundary  lim it o f  0.0 

w as utilised for the low er lim it at any bin that exceeded the allow ed range o f  percent 

values.

N ote that although M initab allow s for frequency percent distribution histogram s with 

m anual binning. M initab does not have the capability  to develop the distribution profile 

SPC chart (w ithout extensive m acros w hich are not ideal w ithin a G M P environm ent 

due to softw are validation requirem ents). The distribution profile SPC chart was 

therefore developed using Excel.

30 %
 Batch 6

 Batch 525%  -
 Batch 4

 Batch 32 0 %  -

 Batch 2

Batch 1u  15%  -
Limits

10%

5%

0%

15

Figure 75: O verlay o f distribution profiles for six com m ercial batches w ith the derived VOP

lim its (___ )
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The application of I-MR for Sample Mean, Run charts, Range I-charts and distribution 

profile SPC charts all provide significantly greater process understanding than simply 

counting tablets that fall beyond 85 -  115 % Label Claim; the current best practise for 

applying content uniformity assessment to large sample s i z e s / T h i s  is an example of 

clear separation of process based analytical analysis verses regulatory directed quality 

compliance driven analysis. It is this author’s position that such conformance based 

approaches to process data are more scientifically sound and provides much greater 

assurance of the quality of product produced by a well understood and controlled 

process.

5.2.2A Implementation of the developed method concepts in manufacturing

The developed qualitative tablet component quality conformance method was applied to 

three additional commercial batches independent of the batches used to establish the 

conformance method to assess the suitability of the approach for implementation.

The application of the individual tablet SPC chart to the new commercial process 

batches is shown in the three graphs in Figure 76 where five tablets were sampled at 

half hourly intervals throughout the tabletting process. Figure 76 demonstrates that no 

individual tablet falls outside the VOP or VOC limits. This demonstrates that the 

process has generated tablets that conform to previous product history and that tablets 

will meet the desired quality. Note that batches two and three are shifted towards lower 

absorbance compared to batch one.
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Figure 76: Individual tablet SPC chart o f 1122 nm A bsorbance for three production batches; 

(a) batch 1 to (c) batch 3 with VOP (___ ) and VOC (____ ) lim its & product mean (___ )

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 217 of 305



The application of the within batch control charts for these three process batches are 

shown in Figure 77 and Figure 78. The l-MR for sample mean SPC chart for the three 

batches (Figure 77) indicates that within the three batches there are excursions beyond 

the within batch process limits (flagged in red). The MR portion of the chart also has 

identified that there are occasional sudden changes between time points that are higher 

in magnitude than expected for batch one and batch three. This may align with tablet 

press adjustments, refill of blend in press feed hoppers or operator shift patterns and is 

worth further investigation to identify whether any of these factors can be improved to 

positively affect the process capability. This was not conducted at the time of scanning 

and was a missed opportunity for process knowledge.

The Run charts for the three batches shown in Figure 78 indicate that all three batches 

have a higher proportion of clusters of points on one side of the mean than would be 

statistically expected. As the /?-value is less than 0.05 at 95% confidence, the 

distribution of points in clusters is seen as likely due to non-random effects. This 

indicates that there is likely to be a non-random cause of variation in the data yielding 

the process signature for the process. The first batch also has a higher proportion of runs 

of increasing or decreasing data than would be expected (p<0.05 for trends). The 

presence of runs suggests the presence of underlying process trends and visually there 

does appear to be a general cyclic pattern across the batch mean throughout the batch. 

This information could provide insight into the tablet press operation through the day 

and across different operator shift patterns. Further batches should be monitored with 

these trend charts to establish any root causes for the within batch process signature 

(clusters, point to point steps and runs) and whether there are opportunities for process 

improvement.

Bronwyn Grout \ UCL School of Pharmacy \ Process Analytical Sciences Group, Pfizer Page 218 of 305



0.0145
UCÜ=0,0144579

0.0144

0.0143

0.0142 LCL^O .0141962

0.0141

Observation

0.00024

0.00018
UCL=0.0001607

0.00012

MR=0.0000492

0.00000

Observation

UCL=0.0140321
0.0140

K .0 .0138509
0.0138

LCL»0.0136696

0.0136

Observation

U CU .0.0002226
0.00020

I  0.00015 
Oig' 0.00010 
r  0.00005

LCL-00.00000

Observation

UCL-0.0139246
0.0139

0.0138

X=0.0137297
0.0137

0.0136

LCWO .0135348
0.0135

Observation

0.0003

UCü=0.0002395

0.0002

0.0001
MR=0.0000733

0.0000 LCÜ=0

Observation

Figure 77: l-M R  charts o f 1122 nm A bsorbance (A bsorbance) for three production batches; 

(a) batch 1 to (c) batch 3 with within batch process lim its (___ ) and batch mean (___ )
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Figure 78: W ithin batch Run chart o f 1122 nm A bsorbance (A bsorbance) for three production

batches; (a) batch 1 to (c) batch 3
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Figure 79 show s the Range I-chart for the three additional batches o f  the product using 

the established threshold from  the six production batches. F igure 79 dem onstrates that 

the three batches have unexpectedly  narrow  range com pared to the six batches used to 

establish the conform ance Range chart lim its. This m ay indicate the production process 

was m aintained m ore tigh tly  and the tablets are m ore uniform  or that the uniform ity  o f  

the blend under com pression w as im proved. The breach o f  the low er control lim it in the 

SPC chart w ould w arrant further investigation to determ ine w hy the range o f  the data is 

narrow ed in these batches and to determ ine how  to influence the variability  o f  tablet 

product in future deliveries. This is an opportunity  for learning about the process and 

gaining process insight and process understanding. O nce the reason for these tw o 

batches to have reduced variability  is understood, the historical SPC chart could be 

updated to include these batches in the lim it calculations.

UCL =0.00120570.0012

0.0011

X=0.0010317
0.0010

0.0009

E 0.0008

0.0007
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Figure 79: I-chart o f Range o f  1122 nm A bsorbance (A bsorbance) for three production batches
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Figure 80 dem onstrates that the d istribution profile o f  the am lodipine active content for 

the three additional batches is w ithin the acceptable distribution lim its and that the 

batches each conform  to expectation. N ote that the extrem es o f  the distribution (the 

‘ta ils’) are reduced in percent frequency despite the profiles being  w holly with the 

established norm al profile for N orvasc®  5 m g tablets. This d irectly  led to the out o f  

trend range output seen in Figure 79.

30%
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Batch 1
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(Ü 15%  -

10%
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Figure 80: D istribution profile o f 1 122nm A bsorbance (A bsorbance) for three production batches 

with established distribution profile SPC lim its (___ )

5.2.3 Qualitative Tablet Component Quality Conformance Method Discussion

The qualitative conform ance m ethods investigated, and the resulting univariate 

qualitative tablet com ponent quality  conform ance m ethod for N orvasc®  5 m g tablets, 

were extrem ely  rapid to develop with very lim ited reference chem istry  (only 16 tablets). 

This com pares sharply w ith the traditional quantitative N IRS m ethods, which typically  

require extensive developm ent tim e and considerable reference analysis (in the order o f  

100-200 tablets). The qualitative approach, in its sim plicity, requires less experienced 

NIRS analysts to develop com pared to traditional regression based approaches. 

C om petency in NIRS is still required to be able to select the qualitative m etric that is
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most suited given the matrix and component of interest. Any of the diverse 

chemometric techniques discussed in literature that are applied to classification of 

materials may be utilised to develop a conformance approach. This research has shown 

that qualitative metrics that provide continuous data with their signs are preferred so 

that the direction of any identified deviation can be quickly discerned by the operator. 

Within this work ANSD-RR was found to lack sensitivity despite appearing to be 

specific to the amlodipine active content. Regression based approaches may be 

necessary if  a qualitative approach with sufficient specificity, linearity and sensitivity in 

response for the attribute of interest cannot be achieved.

The developed conformance method includes the use of various SPC charts to monitor 

individual tablets and within batch variation as well as conformance batch to batch. 

Consideration of the ease of use within manufacturing operations (appropriate 

complexity and easy to use operator interface) must be balanced with providing 

sufficient information on the quality of the product and process capability.

During the development of this approach it was noted that vendor software typically 

lacks the capability to provide flexibility to implement qualitative methods for purposes 

other than identification and most also lack the ability to perform process relevant 

statistics and develop and display SPC charts in real time. Some software has in-line 

process modules in the software which can handle continuous data collection as the 

process runs. However, these still generally apply the traditional identification and 

quantitative algorithms in a continually updating mode. Many do not chart the results, 

but rather tabulate the prediction results. Those that do graph results have limited user 

customisation and / or require costly server data storage. There is also a general lack in 

consideration to establishing conformance limits related to product history rather than 

the static model. Current NIRS vendor software does not provide the means to perform 

distribution profile analysis. If a manufacturing site has the software utilised for on-line
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particle size analysis, data could be exported and analysed in this software, otherwise 

the data must be exported to Excel to perform this analysis manually. Ideally automated 

capability would be available in NIRS vendor software. As part of this research, Pfizer 

has worked with some NIRS software vendors to develop the ability to provide SPC 

charts with minimal success. There continues to be a lack of flexibility to develop and 

implement a range of SPC charts such as has been outlined in this research.

The DeLight software has the capability to reproduce the individual tablet I-chart 

including VOP and VOC limits to allow the operator to monitor the results in real time. 

It is possible to reproduce the I-chart and MR-chart for Sample Means within DeLight, 

however, the control limits must be manually overlaid on the data by the operator at the 

end of the batch as it is only once the batch is complete that the within batch process 

control limits can be determined and overlaid on the plots. This can be performed with 

appropriate steps outlined in a SOP. It is not possible to reproduce the Run chart or 

distribution profile SPC chart within DeLight. Data must be exported to create these 

conformance plots in Excel and Minitab and within the manufacturing environment this 

would likely be performed by Quality Assurance personnel and would be valuable 

information to include in batch documentation. Figure 81 shows the user interface that 

operators can use to monitor the tablet conformance method in real time during 

tabletting operations.

The developed approach provides a simple conformance SPC chart view for operators 

to monitor during manufacturing within NIR software, while also providing 

considerable process information about conformance within and between batches 

through the use of additional SPC metrics at batch completion in external software 

(Excel and Minitab).
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Figure 81: O perator interface for the developed qualitative tablet com ponent quality conform ance

SPC charts w ithin DeLight softw are

The application o f the qualitative conformance to commercial batches with frequent 

sampling through manufacture demonstrated significant insight into the tabletting 

operation. This is demonstrated through the application o f the method to commercial 

tablets monitored throughout tabletting discussed in Section 5.2.2.4. The individual 

tablet 1-chart showed that each batch produced tablets that were within the historically 

established product SPC limits (both at the VO ? and VOC level). The I-MR and Run 

charts, however showed each batch contained within batch variation that was seen as 

significant at the 95% confidence level. It is possible that these events were within the 

normal random behaviour o f the process and within the 5% o f the population expected 

to fall beyond the limits. Further work may be valuable in understanding how events 

identified in the I-MR chart and Run charts relate to tabletting press operation activities. 

This was not undertaken at the time that the qualitative methods were applied to the 

commercial batches. The three batches studied indicated the tablets were within an 

acceptable distribution that fell within the established expected distribution (within the 

SPG control limits for the product) however the distribution profile indicates a narrower
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distribution with smaller tails resulting in lower than expected range in the conformance 

method metric (range I-chart showed abnormally low range for two assessed batches).

It is important to understand the value of the information in terms of process knowledge 

and how the new understanding relates to quality perspectives. Questions such as those 

listed below may need to be considered;

• When does an out-of-conformance occurrence become an actionable 

manufacturing deviation?

• What data or reports should be part of the batch record?

• Does deviation to historical norm necessitate an investigation

Hesitation to adopt such applications may result if the output is reviewed within the 

traditional quality assurance mindset.

5.2.4 Summary - Criticalitv of research

This research investigated the use of data from two qualitative techniques (simple 

univariate output and ANSD-RR) coupled with SPC charting to create a qualitative 

tablet component quality conformance approach. Typically a qualification algorithm 

output is used simply as a categorical classification technique and the extended use of 

the data coupled with SPC for tablet process monitoring has not been previously 

reported.

A conformance method based on univariate output was developed and applied to real 

commercial batches of Norvasc® 5 mg tablets at a Pfizer facility and the value of the 

work was demonstrated in the ability to interrogate batch to batch and within batch 

trends in conformance as discussed in Section 5.2.2.4. The benefits and challenges to 

the implementation for the conformance method were discussed including a

Bronwyn Grout \  U CL School o f  Pharmacy \ Process Analytical Sciences Group, Pfizer Page 226 o f  305



commentary on the availability of vendor software to easily implement sueh 

approaches.

Qualitative tablet eomponent quality eonformanee methods can be applied for any tablet 

eomponent, not just the API. Suceess for the aetive component for Norvasc® 5 mg 

tablets, which is at a low percentage by weight of the formulation, indicates that this 

approaeh would be applieable for any component for any produet, provided a qualitative 

method can be developed with sufficient speeificity, sensitivity and the appropriate 

linearity of response. The requirement for the qualitative approach to provide 

specificity, sensitivity and appropriate linearity was demonstrated with the ANSD-RR 

approach lacking sensitivity and henee not meeting the needs of the applieation to 

monitor tabletting at the process and VOC levels.

The applieation of the qualitative tablet component quality eonformanee method was 

demonstrated to provide an opportunity to gain greater insight in to the tabletting 

process and enable real time identification of deviation of process and product from the 

normal operation. This approach allows rapid remedial action to prevent any oecurrence 

that would have the potential to greatly impact the pharmaceutical manufacturing 

process and/ or produet quality. This work is clearly aligned with the philosophy of 

PAT through providing an in depth understanding of tabletting operations, providing 

opportunity for process optimisation and improvement while also assuring quality.
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5.3 Semi-quantitative tablet component quality conformance

Although research in Section 5.2 has demonstrated the ability to establish a qualitative 

tablet component quality conformance method, the success requires the qualitative 

method to have sufficient specificity, selectivity and linearity as described in Section 

5.2.3. Where development of such methods is challenging, a semi-quantitative approach 

using regression based Chemometric techniques may be more appropriate. The 

development and application of a semi-quantitative tablet component quality 

conformance method using regression based chemometrics is described in this section 

demonstrating the value of this research.

Norvasc® 5 mg tablets were selected as the target product as it was the highest volume 

and highest value product at the manufacturing facility that the work was undertaken. 

The use of the same research subject as was studied in Section 5.2 allowed direct 

comparison of the qualitative and semi-quantitative conformance approaches with no 

further analytical testing or NIRS analysis.

5.3.1 Materials and Methods

5.3.1.1 Design of analvsis

The historical dataset established for the qualitative tablet component conformance 

method research in Section 5.2.1.1 was utilised to develop the semi-quantitative 

conformance method and establish SPC charts. The verification batches established in 

Section 5.2.1.1 (including four commercial batches and the four development scale 

extended range batches) were used to assist in optimising and verifying the suitability of 

the method. Various regression algorithms were explored to select the most appropriate 

modelling approach for the semi-quantitative tablet component quality conformance 

method.
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The use of the same data sets for the semi-quantitative approach as with the qualitative 

approach enabled direct comparison of the fit of both approaches for the purpose of 

monitoring the tablet operation without the need to take into account differences in the 

underlying sample sets.

The developed semi-quantitative tablet component quality conformance models were 

then applied to the same nine commercial tablet batches outlined in Section 5.2.1.1 to 

establish normal process behaviour (six batches) and assess the suitability of the 

complete semi-quantitative tablet component quality conformance method (three 

batches).

5.3.1.2 Reagents and samples

Non-film coated Norvasc® 5 mg tablets at production scales (over a four year period) 

and development tablets at pilot batch scale were manufactured as described in Section 

5.2.I.2.

HPLC grade methanol and purified water (both Riedel-de Haën, Seelze, Germany) and 

potassium dihydrogen orthophosphate (Fisher Chemicals, Loughborough, 

Leicestershire, UK) were used for the HPLC mobile phase and diluent solvents.

5.3.1.3 NIR apparatus and software

NIR spectra for method development and verification (140 spectra in total) and for 

tablet operation monitoring (nine commercial batches) were measured as described in 

Section 5.2.1.3.
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Individual tablet components were evaluated during specificity assessment utilising a 

1 mm deep top loading transmission cell (glass 20-C 1 mm cell (Stama Pty Ltd, 

Australia)) for presentation for transmission NIR analysis.

Data analysis and calculation of the thresholds was achieved using DeLight software, 

version 2.3b and Dementia 1.1b software (DSquared Development, La-grande, OR, 

USA), Minitab version 16.1 (Minitab, Inc.) and Microsoft® Excel, version 9 

(Microsoft® Corporation).

5.3.1.4 HPLC apparatus, software and methods

Reference chemistry measurements were made as described in Section 5.2.1.3.

5.3.2 Qualitative Tablet Component Quality Conformance Method Development

5.3.2.1 Spectra pre-treatment

The mathematical pre-treatment (800-1360 nm extract, SNV and five point smoothing) 

and derivative transform (1®‘ derivative with five point gap) optimised in 5.2.2.1 was 

applied to all spectra for the semi-quantitative tablet component quality conformance 

method.

5.3.2.2 Model development

As univariate qualification methods were previously reviewed in Section 5.2, 

multivariate regression techniques were explored. The simplest multivariate regression 

technique, MLR (refer to Section 0), and the more traditionally applied PLS regression 

(refer to 0), were chosen for further analysis.
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Rather than full regression techniques, a hybrid of DA (refer to Section 3.3.3) using 

nominated values at five levels was chosen to reduce the volume of reference analysis 

and create a semi-quantitative approach. The reference analysis results (in mg per 

tablet) described in 5.22.3  on 16 tablets from the verification batches (results tabulated 

in Table 17) were used to nominate values for each tablet in the historical batches used 

to develop the regression model. Originally the intention was to apply the theoretical 

amlodipine active content, 3.75, 4.25, 5.75 and 6.25 mg per tab le t, for each of the ten 

tablets in the 75 %, 85 %, 115 % and 125 % development batches. However following 

the assay of the 16 tablets during the development of the qualitative tablet component 

quality conformance method development (Section 5.2.2.3), it was apparent that 

assigning the theoretical value was not appropriate due to the hypothesis error in 

formulating the 75% development batch. Therefore, each tablet in the historical dataset 

used to develop the calibration curve was nominated the amlodipine content based on 

the result obtained from the HPLC analysis of the two representative tablets from the 

verification data at each concentration level. The nominated amlodipine active content 

for the ten tablets in the 75 %, 85 %, 115 % and 125 % development batches were 3.35, 

4.15, 5.70 and 6.00 mg per tablet respectively. All production samples were nominated 

amlodipine active content values of 4.90 mg per tablet based on the two representative 

tablets assayed for each of the four verification batches. This result was lower than the 

expected 5.00 mg per tablet (label claim) indicating either a slight offset in process 

target (possibly tied to a purity assumption in dispensing the amlodipine API in the 

formulation) and or systematic bias in the HPLC reference method. Note that the 

discrepancy between expected and HPLC determined amlodipine active content is 

within acceptable validation limits for a HPLC method.

For the purpose of discussion MLR-DA with nominated values is termed MLR-NV and 

PLS-DA with nominated values is termed PLS-NV hereafter.
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The MLR-NV model (with two terms) was developed in DMentia software utilising the 

historical dataset (composed of six production batches) and the first five development 

spectra of each content level (for ease of discussion this data set is termed Regression 

Dataset). Initially, the DMentia software was allowed to automatically pick the 

optimum wavelengths for the two terms in the regression. The wavelength 1122 nm was 

selected as the primary variable while 1282 nm was selected for the secondary variable.

Figure 82 shows the correlation plot for the first term in the MLR-NV regression 

indicating that 1122 nm is the optimum wavelength for the primary wavelength as the 

maximum occurs at a stable correlation. The primary wavelength is the same as that 

identified in Section 5.2.2.1 as highly correlated to the amlodipine besylate content and 

the wavelength utilised in the development of the qualitative tablet component quality 

conformance method.

1122 nm

0.8

0.6

= 0.2

-0.2

-0.4-

800 800 1000 1100 1200 1300
Wavelength (nm)

Figure 82: C orrelation  p lot for the 1st M L R -N V  w avelength  term

The correlation plot for the 2"  ̂ term (Figure 83) shows the correlation at each 

wavelength to the residual content (predicted content from term subtracted from the 

nominated content). This shows that spectra are strongly correlated to the residual 

content between 1172-1194 nm and 1266-1294 nm with the maximum at 1282 nm.
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Figure 84 shows the 1st derivative spectra focused on these wavelength regions to 

illustrate the suitability of the wavelength choices. There is clear discrimination between 

the content levels at 1122 nm indicating this wavelength is ideal for the primary 

MLR-NV wavelength term, while there is no differentiation by content at 1196 nm or 

1282 nm. As 1284 nm is a peak maximum, this wavelength would provide a more stable 

wavelength selection as the secondary term rather than 1196 nm and 1282 nm. 

Including the spectral information at this wavelength will stabilise the prediction and 

correct for any underlying systematic noise in the spectra and as such 1284 nm was 

selected as the secondary stabilising MLR-NV term.

Note that the correlation at 1284 nm in the term correlation plot is very low 

confirming that this wavelength is not collinear with 1122 nm.
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D ataset with; production batches (— ), 85 % & 115% developm ent batches (— ) and 75 % & 125%

developm ent batches (— )
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A third term was reviewed however the third term had little impact on the MLR-NV 

model statistics and wavelength selection was not clear (correlation appeared low with 

no prominent features thus indicating that a third term will include random noise in the 

regression). As such a two term model was chosen for further study.

The MLR-NV results for the Regression Dataset used to create the model are tabulated 

in Appendix 5 on page 301. The MLR-NV model statistics are show in Table 20 and 

demonstrates the model is very capable of relating the correlation of tablet content 

(r^>0.95) with low error (SEE of 0.08634 represents a 1.727% error in estimating 

content at label claim).

T able 20: M odel statistics for the M L R -N V  m odel

r2 0.9764

S E E

(mg / tablet) 0.08634

slope 0.9470

Intercept

(mg / tablet) 0.2584

To assess the capability of the MLR-NV model to predict satisfactorily for samples 

independent of those used in the model, deliveries external to the Regression Dataset 

were predicted with the models in DeLight and the prediction statistics reviewed. Four 

production batches (ten tablets for each batch) and the remaining development tablets 

(five tablets for each batch) were used to verify the model. The predicted results are 

tabulated in Appendix 6 on page 303. The SEP for the MLR-NV predictions was 

calculated according to Equation 17 and found to be 0.1024, yielding a SEP: SEE ratio 

of 1.19. This close agreement in errors indicates that the MLR-NV model is very 

capable when predicting new deliveries. Figure 85 depicts the residuals o f the 

predictions and indicates a degree of non-random scatter about zero.
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Figure 85: M LR-NV  residuals plot for prediction o f verification tablets

Despite the MLR-NV yielding appropriate prediction error, the non-random pattern o f 

the residuals indicates that there is a need to include further variables in the MLR to 

explain all correlations in the data to the amlodipine active content. Including additional 

wavelengths (increasing the terms in the MLR-NV analysis) is one option, however the 

initial assessment showed little clarity in selection o f the 3"̂  ̂ tenn and investigation o f 

PLS based models was preferred.

PLS-NV models were developed over the 810-1340 nm range in DMentia software 

utilising the Regression Dataset. The range was reduced from 800-1360 nm due to 

spreading o f  the data at the extremes o f the range as an effect o f the SNV correction 

which had a strong influence on the PLS regression. Given the complexity o f the 

formulation (five components) and tablet physical matrix, an initial model was 

developed with eight LVs to explore the variables and their relationship to the 

amlodipine active content.

Review o f the scores plots in Figure 86 and Figure 87, show that the data separates 

relative to the amlodipine active content predominantly along the first and second LV 

axes.
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Differences between batches and between commercial and development batches 

(independent o f amlodipine active content) appear to be explained in the 2"^ through 5*'̂  

LVs. Note also that the magnitude o f the scores for fifth to eighth LVs in Figure 87 are 

an order o f magnitude lower than the earlier variables.

PLS; 1 : X Score 1 vs X Score 2
0.015

0.01

*•0.006

X  -0 .0 1

#  ♦-0.015

-0.02

■0.025
75%

-0.01 0.01 
X Score 2

0.02 0.03

PLS: 1 : X Score 3 vs X Score 4
0.02

0.015
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-0.015

-0.02
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-0.015 -0.01 -0.005 
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Figure 86: LV scores plots for the regression data set (a) LVs 1 vs. 2 and (b) LVs 3 vs. 4 w ith  

sam ples from  the developm ent batches in bold
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PLS: 1 : X Score 5 vs X Score 6
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Figure 87: LV scores plots for the regression data set (a) LVs 5 vs. 6 and (b) LVs 7 vs. 8 with  

sam ples from  the developm ent batches in bold

Examination o f the weights (red lines) o f the LV spectral loadings (black lines) in 

Figure 88(a) shows that the first LV includes the wavelength (1122 nm) that has 

previously been identified to be highly correlated to the amlodipine active content. The 

wavelengths o f variation included in the next two LVs (refer to Figure 88(b)-(c)) relate 

to 0 -H  functional group absorbance (at -970  nm) commonly seen in free moisture 

(refer to Figure 2) and C-H functional group absorbance (1180-1240 nm) commonly 

seen in aliphatic compounds (refer to Figure 2) indicating contribution from excipients 

such as microcrystalline cellulose, magnesium stearate and sodium starch glycollate.

Bronw yn Grout \ UCL School o f  Pharmacy \ Process A nalytical S c ien ces Group, Pfizer Page 2 3 8  o f  305



0.4- I'l 1 122 nm

0.3

0.2

0.1

- 0.1

-0.2

1000800 900 1100 
Wavelength (nm)

1200 1300

1122 nm

0.05

-0,06

972 nm-0.15 1184 nm

1000 1100 
Wavelength (nm)

800 900 1200 1300

0.2
1210 nm

0.15

970 nm0.1

0.05

-0.05

-0.1

-0.15

\j 1238 nm-0.2
800 900 1000 1100 

Wavelength (nm)
1200 1300

Figure 88: W eighted loading for the PLS-NV model o f regression dataset (a) LV 1 to (c) LV 3 w ith

loadings in black and w eights in red
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Figure 89: W eighted loading for the PLS-NV model o f regression dataset (a) LV 4 to (c) LV 6 with

loadings in black and w eights in red
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The wavelengths of variation included in the fourth LVs (refer to Figure 89(a)) also 

relate to 0-H  functional group absorbance (at -970 nm) and contributions from 

excipients. The variation explained in fifth LV is less obvious (Figure 89(b)), relating to 

the differences between batch six and the other production batches and also differences 

seen in the spike and dilute development batches compared to the production batches. 

This is likely due to physical effects and tablet press as no distinct regions of the 

wavelength are identified as assignable to functional group absorption of particular 

formulation components and many wavelengths are affected (which would be expected 

to be the case with physical effects affecting the entire spectrum). The sixth LV (Figure 

89(c) once more shows contribution from the region likely indicative of a C-H 

functional group absorbance and therefore is likely to be modelling residual batch to 

batch or individual tablet to tablet matrix variations.

PRESS was calculated for the eight LVs with leave-one-out cross validation to assist in 

selecting the optimum number of variables to use in the PLS-NV model. As expected, 

Figure 90 shows a continued improvement in the SEE as an increasing number of LVs 

are included in the model. This relates to the model being better able to describe the 

Regression Dataset spectra as more spectral detail is included. The SECV shows a 

marked improvement as the second LV is included and then decreasing error in parallel 

to the SEE with the closest agreement occurring at the fourth LV.

Observation of the variation removed in the x-axis (spectral variance) as each LV is 

included in the model shows a steep increase with the inclusion of the first five 

variables (reaching 81.8% variance explained) then a slower increase thereafter. The 

majority o f the variation in the y-axis (amlodipine active content variance) is explained 

in the first and second LVs (explaining 77.5% of the variance) with a gradual increase 

in the variation explained for subsequent variables.
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Review o f  the scores, the loadings and the PRESS output indicates that five LVs may be 

optimal and balances an improved error without over fitting and including noise and 

unrelated variation which may lead to laek o f  robustness o f  the model over time.
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Figure 90: SE and variation for the PLS NV models developed with varying num ber o f LVs

The PLS-NV results for the Regression Dataset used to create the model are tabulated in 

Appendix 5 on page 301. The PLS-NV model statistics for the model is shown in Table 

21 and indicates that the PLS-NV model with five LVs is capable o f  relating the 

correlation o f amlodipine active content (r“>0.95) with low error (SLL o f 0.08805 

represents a 1.761% error in estimating content o f label claim). Also note the model 

compares well with the MLR-NV model statistics described in Table 20 with similar 

correlation and error.

Table 21: M odel statistics for the PLS-NV m odel with five LV

r2 0 .9 7 4 5

S E E  (mg / tablet) 0.08805

slope 0 .9 7 4 5

Intercept (mg/tablet) 0 .0 1 2 4 3
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To assess the capability o f the PLS-NV model to perform satisfactorily for samples 

independent o f those used in the model, the verification data set utilised to assess the 

MLR-NV model was applied to assess the PLS-NV model developed on five LVs. The 

predicted results are tabulated in Appendix 6 on page 303.

The SEP for the PLS-NV model was calculated according to Equation 17 and found to 

be 0.09220 yielding a SEP:SEE ratio o f 1.05. This close agreement in the errors 

indicates that the PLS-NV model is very capable when predicting new deliveries.

Figure 91 depicts the residuals o f the prediction and indicates a slight degree o f 

non-random scatter about zero. The slight linear variation in the data will result in low 

potency tablets being predicted slightly lower in expected content while over potency 

tablets would be predicted slightly over expected content. This is equivalent to erring on 

the side o f caution. Note that the PLS-NV model shows more homoscedastic behaviour 

than was seen in the MLR-NV model (refer to Figure 85).
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Figure 91: PLS-NV residuals plot for prediction o f verification tablets m odelled with five LVs
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Following review of the MLR-NV and the PLS-NV models, the five LV PLS-NV 

model was selected for continued development of the semi-quantitative tablet 

component quality conformance method.

5.3.2.3 Establishment of the conformance control charts

As was discussed in S.2.2.3, once the conformance chemometrics have been established 

and models created, SPC charts must be established that will monitor results within and 

between batches over time.

To establish the individual tablet conformance control chart, the predicted amlodipine 

active content from the PLS-NV model with five LVs for the six historical dataset 

(tabulated in Appendix 6 on page 303) were exported into Minitab software to establish 

normality to allow the development of Shewhart’^̂  control charts. The Graphical 

Summary function in Minitab was used to represent the data and assess normality 

(Appendix 7 on page 305). No evidence of non-normality was observed (/?>0.05) at the 

95% confidence level. The normality /?-value is shown in Table 22.

Note that one tablet result was identified as a potential outlier. This individual tablet 

was assayed by HPLC and confirmed that the amlodipine active content was higher 

(HPLC assay of 5.20 mg / tablet) than would be expected from the data within the rest 

of the historical data set. As HPLC confirmed the result, it was determined that it was 

valid to include the tablet result in the historical dataset for the development of the SPC 

charts.
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Table 22: Param eters used to generate the SPC charts for the sem i-quantitative tablet com ponent

quality conform ance m ethod

/7-value

M ean

(mg / tablet)

S ta n d a r d  D ev ia tio n

(mg / tablet)

0.061

4.903

0.0875

Figure 92 shows the 1-chart for the historical dataset. The mean and standard deviations

applied in establishing the control charts are shown in Table 22. Control limits (___ )

indicating the VOP were set at three standard deviations from the historical dataset 

mean ( ) value. The confirmed higher amlodipine content sample is marked in red

with a “ I” notation as the sample is beyond three standard deviations from the mean.

5.2
UCL =5.1655

I ’
5,0

I
u  4,9

I
I  4,8 

?  4.7

X=4,9G3

I LCL=4,64G5
4,6

\ .
% %

V
%

Figure 92: 1-chart for the historical dataset for the PLS-NV m odel
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As the units o f measure for the output from the PLS-NV predietions are in mg per 

tablet, VOC limits ean be applied direetly. Aligned with the VOC limits applied in the 

qualitative tablet eomponent quality conformance method, limits were set at ±15 % o f 

label claim (4.25 and 5.75 mg per tablet).

To demonstrate that the determined VOP and VOC limits are appropriate, tablets from 

four further commercial production batches and the remaining five extended range 

development tablets were assessed with the developed SPC chart. Figure 93 

demonstrates that the thresholds are appropriate to m onitor when individual values fall 

outside the established normal process as all development batch samples are marked in 

red with the“ l ” denoting the samples exceed the VOP limits.

I 5.75

UCL =5.165

X=4.903

LCL =4.640u
4.5

4.25

I
Q.

Figure 93: I-chart for the verification data show ing verification batches w ith VOC (_____) and VO P

(___ ) limits

The tablets assayed by HPLC and used to nominate amlodipine active content values 

(shown in Table 17) indicate that the tablets in the 85 % development batch would be 

expected to just be beyond ‘acceptable’ tablets (assaying at an average o f  4.15 mg per 

tablet), while the 115 % development tablets would be expected to fall just within the
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‘acceptable’ tablet range (assaying at an average of 5.71 mg per tablet). The SPC chart 

shown in Figure 93 aligns directly with these expectations demonstrating the suitability 

of the VOP and VOC limits.

The verification results of the PLS-NV method show that the derived SPC chart for the 

individual tablets (refiecting both the VOP and the VOC) is appropriate to be applied 

during the tabletting process to monitor individual tablets as they are manufactured. The 

SPC chart correctly identified that the 115% development samples were at or just within 

VOC limits while identifying the 85% development were at or outside of the VOC 

limits.

The developed SPC charts would provide sufficient insight into the content uniformity 

o f processes when applied throughout tabletting operations by identifying individual 

tablets beyond 85-115 % label claim allowing manufacturing to count the number of 

tablets beyond the acceptable range, arrange for confirmatory testing and determine 

batch compliance to content uniformity as described in SandelTs^’̂  approach for 

content uniformity for large n.

The established individual control chart addresses the important question of whether 

each individual tablet is within the normal process parameters for that product and also 

whether the tablets analysed will meet quality requirements (average amlodipine active 

content and content uniformity). To assess the key process questions identified in

5.2.2.3 (within batch trends and overall batch variation conformance), control charts 

aligned with that developed for the qualitative tablet content conformance method 

(described in 5.2.2.3) were developed. The batches o f Norvasc® 5 mg tablets utilised in 

the development of the process monitoring SPC chart strategy in 5.2.2.3 were again 

utilised for the semi-quantitative tablet component quality conformance method to 

allow direct comparison of the two approaches.
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For each o f  the nine batehes (representing the use o f three tablet presses), five tablets 

were taken at half hourly intervals throughout tabletting operations. This frequency was 

set based as per diseussion in Section 5.2.2.3 on page 208.

Although no typieal systematie proeess signature was seen in the qualitative tablet 

component conformance method (refer to Figure 70), the data output from predietion 

with the PLS-NV model were reviewed for the same six eommereial batehes. Onee 

more. Figure 94 shows no characteristic batch to batch process trends / trajectories 

existed for the Norvasc® tabletting proeess. As there was no typieal systematie process 

signature, proeess signature trajectory modelling across batehes was not pursued.

5.2 -

Im 5,1

&  5.0

4.9

■q. 4.8

I.,
•§

4.6

4.5

B itch  1 
B itch  2 
B itch  3 
B itch  4 
B itch  5 
B itch  6

PI P8 P16 P24 P32 P39 P47 P55 P63 P71 P78
Sampling Point

Figure 94: Tim e Series chart o f  six com m ercial batches show ing lack o f com m on process signature

across the tabletting operation

I-MR chart for Sample Means and Run charts were developed as control charts to assess 

within batch process trends. Figure 95 and Figure 96 show an example o f  the I-MR and 

Run charts for the first o f  the six historical batehes used to develop the control chart 

strategy.
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The I-MR chart (Figure 96) shows that several sampling points are beyond the expected 

population (beyond three standard deviations o f the batch mean marked with a “ 1” ) and 

also that there is a series o f data points on one side o f the mean (marked with a “2”). No 

sudden shifts between sampling points were identified in the MR chart.

5.05

>  5.00

^  4.95

LCL=4.9118
4.90

O bservation

0.08

0.06

0.04

0.02

0.00

O bservation

Figure 95: I-M R chart o f predicted am lodipine active content (m g / tablet) for the T' historical 

batch show ing within batch trends with (a) I-chart for sam ple mean and (b) MR chart for sam ple

mean

The Run chart (Figure 96) indicates that there is a significant degree o f  clustering o f 

points on one side o f the mean (p-value for clustering <0.05) and also a degree o f  

trending up and down (/;-value for trends < 0.05). Data were not found to alternate up or 

down or to have any significant oscillating / cycling pattern (/?-value for mixtures and 

oscillations > 0.05).

As was noted in the qualitative tablet component quality conformance method, these 

plots provide insight into the tabletting operation. The information may be able to be 

aligned with tablet press operation parameters, powder blend charging and operator shift 

patterns to enable further improvements to process capability.
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Figure 96: Run chart o f predicted A m lodipine active content (m g / tablet) for the 1*' historical batch

show ing w ithin batch trends

An I-chart for ranges was calculated across all samples in the six commercial process 

batches to establish a SPC chart to monitor the spread o f amlodipine active content 

across the batch. Once more an assumption is made that the systematic sampling by 

time provides a means to capture the approximate spread o f the batch population. As 

this sampling strategy was applied for all batches, the assumption is that the SPC ehart 

developed with six historical commercial batches will approximate future manufactured 

batches.

The range o f  the predicted amlodipine active content (from the PLS-NV model) was 

calculated and the Graphical Summary function in Minitab used to represent the data 

and assess normality (Appendix 7 on page 305). No evidence o f  non-normality was 

observed (/?>0.05) at the 95% confidence level. The normality /7-value is shown in 

Table 23. Note that output is an estimate only as the number o f data points is small,

reducing the power o f the normality tests. 135
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Figure 97 shows the M initab 1-ehart for ranges for the historical dataset. The mean and 

standard deviations applied in establishing the control charts are shown in Table 23. The 

control limits (___ ) were set at three standard deviations from the mean ( ).

0.55

UCL =0.5182
0.50

œ 0.45

0.40

X=0.3580.35

■5 0.30

0.25

0 .2 0 - LCL =0.1978

Figure 97: I chart o f the range o f PLS-NV predicted am lodipine active content for the six

com m ercial batches

Table 23: Param eters used to generate the range SPC chart for the sem i-quantitative tablet 

com ponent quality conform ance method

/7-value 0 .6 9 0

Mean

(mg / tablet)
0 .3 5 8 0

Standard Deviation

(mg / tablet)
0 .0 5 3 4

Distribution profiles were derived from frequency distribution histograms o f the 

PLS-NV model predictions as discussed in Section 5.2.2.3. To enable direct comparison 

batch to batch and the development o f  an appropriate control mechanism, the 

distribution histograms were standardised through the use o f percent frequencies rather 

than absolute frequencies and also by the use o f  19 data bins (as discussed in Section
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5.2.2.3). Figure 98 depicts the frequency distribution histograms for the six commercial 

batches o f  tablets with the percent frequency occurrence across 19 bins.

Figure 98: Distribution histogram of the PLS-NV predicted amlodipine active content for the six

commercial batches

The curves o f the distribution histograms (standardised across batches by the use o f 

percent frequencies and constant binning) were used to establish the boundary o f 

acceptable distribution (control limit was set as three standard deviations from the mean 

o f the established typical distribution). Figure 99 shows the control chart for the 

distribution profiles developed from the six commercial batches.
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Figure 99: Overlay of distribution profiles for six commercial batches with derived control

limits (___ )

The developed semi-quantitative tablet component quality confonnance method 

provides significantly greater assurance o f  the quality o f the product through providing 

a mechanism to demonstrate the product is manufactured using a well understood and 

controlled process.

5.3.2.4 Implementation o f the developed method concepts in manufacturing

The application o f  the individual tablet control chart to commercial process data (five 

tablets sampled at half hourly intervals throughout the tabletting process) is shown in 

Figure 100.
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Figure 100: Individual tablet SPC char t  of predicted amlodipine active content (mg / tablet) for

three production batches; (a) batch 1 to (c) batch 3 with VOP (___ ) and VOC (____ ) limits and

product mean (___ )
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Figure 100 demonstrates that batch two and three are centred about the VOP mean with 

no tablets beyond the VOP limits. Batch one is shifted to lower amlodipine active 

content with three individual tablets at or just outside the VOP limits. It may have been 

of interesting to rescan the out of trend tablets alongside a control to verify that the 

analysis was representative with no operator errors. This was not conducted at the time 

of scanning. No individual tablets fell near the VOC limits demonstrating tight 

processing control and that tablets will meet the desired quality expectations. The shift 

in batch one mean from the established product mean is of interest and indicates an 

opportunity for process understanding and improvement.

The application of the within batch control charts for the three process batches used 

previously are shown in Figure 101 and Figure 102. The I-MR control charts for the 

three batches shown in Figure 101 indicate that within the three batches there are 

excursions beyond the within batch process limits (flagged in red and marked with a 

“ 1”). Batch one and three also have occurrences of nine consecutive sample points on 

one side of the line (flagged in red and marked with a “2” in the chart). The MR chart 

also has identified that there are occasional sudden changes between time points that are 

higher in magnitude than expected for batch one and three. This may align with tablet 

press adjustments, refill o f blend in press feed hoppers or operator shift patterns and is 

worth further investigation to identify whether any of these factors can be improved to 

positively affect the process capability. As mentioned in Section 5.2.2.4, this was not 

conducted at the time of scanning and was a missed opportunity for process knowledge.
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Figure 101: 1 MR chart of predicted amlodipine active content (mg / tablet) for three production 

batches; (a) batch 1 to (c) batch 3 with within batch process limits (___ ) and batch mean (___ )
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Figure 102: Within batch Run char t  of predicted amlodipine active content (mg / tablet) for three 

production batches; (a) batch 1 to (c) batch 3
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The Run charts for the three batches shown in Figure 102 indicate that Batches one and 

three have a higher proportion o f clusters o f points on one side o f the mean than would 

be statistically expected (as (/?<0.05) at 95% confidence, the distribution o f points in 

clusters is seen as likely due to non-random effects. No batch is seen to have a 

significant number o f consecutive runs, oseillations/cyeles or alternating values 

(mixtures).

The information regarding within batch process trending could provide insight into the 

tablet press operation through the day and across different shift patterns or the impact o f 

charging blend into the blender. Further batches should be monitored with these trend 

charts to establish any root causes for the within batch process signature (clusters, point 

to point steps) and whether there are opportunities for process improvement.

Figure 103 shows the Range 1-ehart for the three additional batches o f the product using 

the established threshold from the six commercial batches. The range o f  all three 

batches conforms to the established control limits indicating that the range o f the 

amlodipine active content is typical for Norvasc® 5 mg tablet batches.
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0.50
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^  0.30-

0.25-
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Batch

Figure 103: I-chart of range for predicted amlodipine active content (mg / tablet) for three

production batches
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Figure 104 shows the derived distribution profile SPC chart for the three verification 

production batches. The distribution profile SPC chart indicates that batch one is shifted 

to lower amlodipine active content; breaching the control limits at lower amlodipine 

active content bins. Additionally batch two has a higher percentage o f  tablets at the 

centre o f the distribution and a narrower curve indicating production was controlled 

more tightly about the process mean. Batch three had a distribution profile well aligned 

with the established typical process.

18%

 Batch 3
16%

 Batch 2
14% Batch 1

Limits12%  -

8 %  -

4%

2 %  -

0%

Figure 104; Distribution profile of predicted amlodipine active content of three production batches 

with established distribution profile SPC limits (___ )

5.3.3 Semi-quantitative tablet component quality conformance method discussion

As with the qualitative tablet component quality conformance m ethod discussed in 

Section 5.2.3, the semi-quantitative tablet component quality confonnance method for 

Norvasc® 5 mg tablets was extremely rapid to develop with approximately 10% o f  the 

reference chemistry compared to that typically required for traditional quantitative NIR 

methods. The semi-quantitative approach requires similar chemometric expertise as is 

required for development o f traditional fully quantitative methods. The key difference in 

approaches is the use o f nominated reference values rather than individual reference
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values for each tablet used in the regression calibration and verification sets and the 

coupling of the output of the model to historical process oriented SPC trending.

The use of theoretical content would require no reference chemistry. However, the 

developer would have to be supremely confident that the extended range tablets 

developed were at the target content, relying on the ability to formulate the extended 

range tablets. The use of nominated values can lead to increased prediction errors due to 

averaging the content for any given set of samples. Therefore, knowingly choosing to 

add another source of uncertainty by using the theoretical amlodipine active content 

with no reference chemistry was not considered ideal. As such, it was determined that 

the use of reference chemistry of a minimum number of tablets to enable the assignment 

of nominated content is an appropriate balance o f introducing error into the regression 

while providing rapid development and implementation.

While any regression model could be utilised in the development of a semi-quantitative 

tablet component quality conformance approach, this work assessed two common 

multivariate regression techniques, MLR and PLS. It was found that for this complex 

direct compression low dose product PLS, with nominated amlodipine active content, 

was more capable at correlating the amlodipine active content within the tablet form, 

overcoming matrix absorption and physical effects.

The vendor software limitations identified in Section 5.2.3 are similar, except that 

regression chemometrics are typically standard functionality in most vendor software. 

The main limitation is with the inability of the vendor software to incorporate SPC 

functionality requiring the export of data and use of external software for SPC trending. 

Within GMP production environments, the routine export of data is typically avoided as 

is the use of macros requiring software validation. Additionally, the use o f multiple 

software programs requires additional training and operator capability. Until industry as
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a whole demands funetionality sueh as that applied in this researeh, vendors will likely 

be reluctant to incorporate such features.

As discussed in Section 5.2.2.4 the DeLight software has the capability to reproduce the 

individual tablet I-chart including VOP and VOC limits to allow the operator to m onitor 

the results in real time. The I-MR chart for sample means can also be replicated within 

DeLight without the control limits. The Run ehart and distribution profile SPC ehart 

cannot be replicated within DeLight and data must be exported to create these 

conformance plots in external software. Figure 105 shows the operator user interface for 

monitoring the tablet confonnance method in real time during tabletting.

Paw Spectra

Figure 105: O pera to r  interfaee for developed semi-quantitative tablet component quality 

conformance SPC charts  within DeLight software

The developed semi-quantitative tablet content quality conformance method was shown 

to provide simple easy to use real time SPC charts to identify individual tablets 

deviating from expected behaviour as well as valuable process information regarding 

within batch trending as well as the range and distribution profile o f Norvasc® 5 mg 

tablets at batch completion.
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This is demonstrated through the application of the method to commercial tablets 

monitored throughout tabletting discussed in Section 5.3.2.4. The individual tablet 

I-chart showed that batch one produced three tablets that were at the VOP limit 

established for Norvasc® 5mg tablets based on the established historical control limits. 

As all tablets were within the VOC limits and also as the entire batch was shifted to 

lower predicted amlodipine active content, these tablets were not analysed by reference 

chemistry. However this would be an option if quality assurance were particularly 

concerned at the predicted result o f any given tablet. Performing reference chemistry 

could assist in investigating any unexpected deviation (as part of established site SOPs).

The I-MR and Run charts showed batch one and two had minimal within batch 

variation while batch three had more numerous out of conformance events that were 

seen as significant at the 95% confidence level. It is possible that these events were 

within the normal random behaviour of the process and within the 5% of the population 

expected to fall beyond the limits. Further work may be valuable in understanding how 

events identified in the I-MR chart and Run charts relate to tabletting press operation 

activities and why batch three was seen to contain significantly different process 

signature that the other two batches. Such data was not collected at the time that the 

semi-quantitative method was applied to the commercial batch data. Note that these 

within batch SPC charts could not be generated in real time and as such, within batch 

variations were only identified at batch completion and opportunity to relate 

observations to real time process operation events was missed.

The I-chart for range demonstrated that the range of amlodipine active content for the 

entire batch was consistent with historical expectation. The distribution profile SPC 

chart indicates a narrower distribution with smaller tails resulting in lower than 

expected range in the conformance method metric for batch two. This batch could be 

reviewed more closely to determine why this batch has shown greater process capability
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(tighter distribution with less trends and clustering) and can be considered a ‘gold 

standard’ batch to replicate in future manufacturing.

5.3.4 Summary - Criticalitv of Research

This research investigated the use of data from two semi-quantitative techniques (MLR 

and PLS with nominated reference values) coupled with SPC charting to create a Semi- 

quantitative Tablet Component Quality Conformance approach. There has been limited 

application of ‘reduced reference’ quantitative method development through the use of 

gravimetrically developed and nominal or theoretically assigned reference values^ and 

the use o f discriminant analysis applied with regression analysis of tab le ts .H o w ev er, 

the use o f the data coupled with SPC for analysis of large number of tablets through 

process monitoring has not been previously reported.

Two semi-quantitative conformance methods were developed and compared for 

suitability for the application and PLS-NV found to be the most applicable. A 

conformance method based on PLS-NV model coupled with SPC was developed and 

applied to real commercial batches of Norvasc® 5 mg tablets at a Pfizer facility and the 

value of the work demonstrated in the ability to interrogate batch to batch and within 

batch trends in conformance as discussed in Section 5.3.2.4. The benefits and 

challenges of implementing the conformance method were discussed including a 

commentary on the availability of vendor software to facilitate such approaches.

The semi-quantitative tablet component quality conformance method was demonstrated 

to provide an excellent means to gain greater insight into the tabletting process and can 

enable real time identification of deviation of process and product from the normal 

operation allowing rapid remedial action to prevent any occurrence that would have the
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potential to greatly impact the pharmaceutical manufacturing process and / or product 

quality.

With an appropriate DoE and development batch programme, the semi-quantitative 

tablet quality conformance approach could be applicable to any key tablet component, 

not just the active component as studied in this research. Success for the active 

component for Norvasc® 5 mg tablets at low percentage of the formulation indicates 

that this approach would be applicable for any component for any product where an 

appropriate semi-quantitative model can be developed.

This work is clearly aligned with the philosophy of PAT through providing an in depth 

understanding of tabletting operations, providing opportunity for process optimisation 

and improvement while also assuring quality. The work was implemented into the 

Pfizer Canada manufacturing facility and is the basis of amlodipine active content 

alternate testing within the real time release strategy for Norvasc® 5 mg current being 

implemented at the Pfizer Sydney site.

5.4 Interpretation and appropriateness of ICH guidelines on 

analytical method validation to conformance methodology

The qualitative and semi-quantitative conformance approaches developed in Section 5.2 

and Section 5.3 are built upon the initial ability to develop an appropriate model or 

metric for the tablet component of interest - the active component in individual tablets.

The methods were developed rapidly with minimum reference chemistry and the 

development of the control charts and implementation of these charts on real batches 

indicates successful methods.
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However, to satisfy review by those used to reviewing traditional analytical methods, 

this section provides a summary of the validity of the method with reference to the 

principles outlined by the ICH Harmonised Tripartite Guideline - Q2 (R2): Validation 

of Analytical Procedures: Text and Methodology/

The EMEA (now known as EMA) published a note for guidance on NIRS in 2003 

which provided guidance on validation of NIRS analytical methods. For many years this 

was widely used in industry to direct analytical method validation activities, however 

this document did not cover the use of qualitative methods (other that as pass / fail 

classification) or semi-quantitative methods. The EMA issued an updated guidance in 

2012^^^ which removed the section providing detailed guidance on validation in lieu of 

the applicability of the ICH Q2 (R2) guidance following harmonisation activities. 

Throughout this period, the application of ICH Q2 (R2) approach to analytical method 

validation of PAT based methods has been inconsistent, as discussed by De Bleye,^"^  ̂

and literature mainly describe validation of off-line and at-line quantitative NIRS 

methods^^’ and less frequently in-line in-process control analysis.^^

Directly applying validation guidelines according to the ICH Q2 (R2) guidance is not 

appropriate, as semi-quantitative methods are not within the scope of this document. 

Many of the validation principles in the ICH guidance do stand, however, they should 

be considered with respect to the purpose of the conformance methods. The various 

traditional validation characteristics are discussed in this section in relation to the 

applicability to conformance methodology.
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5.4.1 Specificity

The ICH guidance document defines specificity as:

Specificity is the ability to assess unequivocally the analyte in the presence 

of components which may be expected to be presen t

NIR spectra consist of overlapping absorption bands, therefore there is difficulty in 

stating unequivocally that the absorbance at a specific measured wavelength is solely 

due to the API. To demonstrate method specificity, it is important to demonstrate that 

the model or metric used in the conformance method appropriately targets the attribute 

of interest and addresses the aspect of interference from other components in the matrix 

as well as interference from unrelated spectral effects (e.g. scatter effects).

The qualitative tablet component quality conformance method was developed with a 

univariate method at a single wavelength. Therefore, to demonstrate specificity, this 

single wavelength must be shown to be specific to the attribute of interest. Through 

examination of the matrix components, it has previously been shown that the 

wavelength 1122 nm was found to be related to API absorbance (Figure 61). 

Amlodipine besylate specificity within the product matrix was further demonstrated by 

overlaying development tablet spectra at 75%-125% label claim with normal production 

tablet cores (nominally at 2.5% w/w) (Figure 64).

Furthermore, throughout the development o f the method tablets from a variety of 

production batches manufactured over a four year timeframe utilising components from 

different manufacturers lots were utilised to build in robustness to typical variations in 

the tablet matrix into the method. This provides added assurance that the SNV, 

derivative absorbance at 1122 nm is specific for changes to the amlodipine active 

content.
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The semi-quantitative tablet component quality conformance method was developed on 

a PLS-NV model. Examination of the LVs of the model in Figure 88 demonstrated that 

the primary variable in the model was the absorbance at 1122 nm and as described 

earlier, this wavelength demonstrates clear specificity to the amlodipine active content.

Additionally, the inclusion of a variety of production batches manufactured over an 

extended period and capturing natural variation in physical characteristics of the tablets, 

demonstrated the developed semi-quantitative method is specific to the amlodipine 

active in the presence of factors such as scattering phenomenon and that these factors do 

not interfere.

5.4.2 Linearity

The ICH guidance document defines linearity as:

“77ze linearity o f an analytical procedure is its ability (within a given range) 

to obtain test results which are directly proportional to the concentration 

(amount) o f analyte in the sample

The linearity of a NIRS conformance method can be directly assessed according to the 

ICH principles. The linearity of the qualitative tablet component quality conformance 

model was established earlier and visually demonstrated in Figure 68. The data used in 

the regression were tabulated in Table 17. The regression statistics are shown in Table 

24. Note that the large slope coefficient relates to the different order of magnitudes in 

the axes (absorbance vs. mg / tablet).
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T able 24: L inearity  outcom es for  the qualita tive tablet com ponent quality  con form ance m odel

Intercept
(Absorbance)

Slope

Coefficients -0.5132 383.7

95% Confidence Interval -1.135-0.1089 339.6 -427.7

Standard Error 0.2901 20.53

Correlation 0.9805

0.9614

Standard Error
(Absorbance)

0.1610

The linearity of the semi-quantitative tablet component quality conformance model was 

calculated by regression of the predicted amlodipine active content from the PLS-NV 

model against the paired HPLC reference values for the 16 tablets that were used to 

establish the nominated values. The regression statistics are shown in Table 25. The 

data used in the regression are tabulated in Table 26 and linearity is visually 

demonstrated in Figure 106.

Table 25: Linearity outcomes for the semi-quantitative tablet com ponent quality conformance

model

Intercept
(rag / tablet)

Slope

Coefficients -0.1160 1.022

95% Confidence Interval -0.3407-0.1086 0.9768- 1.068

Standard Error 0.1047 0.02130

Correlation 0.9970

0.9940

Standard Error
(rag / tablet)

0.06371
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Table 26: R eference chem istry and predicted am lodipine active content for the PLS-NV model

H PL C  A ssay

(mg / tablet)

P L S -N V  P redicted  

C on ten t (mg / tablet)

75% D evelopm ent 1 3.42 3.49

75% D evelopm ent 2 3.35 3.42

85% D evelopm ent 1 4.20 4.14

85% D evelopm ent 2 4.09 4.10

115% D evelopm ent 1 5.74 5.78

115% D evelopm ent 2 5.68 5.71

125% Developm ent 1 5.94 5.81

125% Developm ent 2 6.03 6.04

Production 1-1 5.04 5.02

Production 1-2 4.89 4.80

Production 2-1 4.91 4.92

Production 2-2 4.80 4.92

Production 3-1 4.80 4.88

Production 3-2 4.96 4.97

Production 4-1 4.89 4.85

Production 4-2 4.95 4.93

HPLC = -0.1160+ 1.022 (PLS.
6.0

5.5

4.0

3.5

R-Sq

3.0
3.5 4.0 4.5 5.0 5.5 6.0

5LV PLS_NV predicted Active Content (mg /  Tablet)

Figure 106: Regression fitted line and  equation for sixteen representative tablets from the 

verification batches for the PLS-NV model with five LVs
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The linearity assessment results demonstrate that both the qualitative and semi- 

quantitative NIR tablet component quality conformance methods are appropriately 

linear and fit-for-purpose.

5.4.3 Precision (repeatability and intermediate precision)

The ICH guidance document defines precision as:

“77ze precision o f an analytical procedure expresses the closeness o f  

agreement (degree o f scatter) between a series o f measurements obtained 

from multiple sampling o f the same homogeneous sample under the 

prescribed conditions. Precision may be considered at three levels: 

repeatability, intermediate precision and reproducibility”

The precision of a NIRS conformance method can be directly assessed according to the 

ICH principles. It is simpler to assess than in conventional circumstances due to the 

non-destructive nature of NIRS measurements. There is no issue regarding homogeneity 

of the samples used to perform the test, the sample is simply rescanned.

The repeatability (short term precision or measurement variability) of the methods was 

determined by the same operator scanning the same tablet six times. The data for the 

repeatability assessment is shown in Table 27. The standard deviations and relative 

standard deviations of the tablet component quality conformance model outputs for the 

replicate scans were extremely small as anticipated.
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T able 27: R epeatab ility  ou tcom es for the tab let com ponent quality  conform ance m odels

Replicate 1122 nm Absorbance
(Absorbance)

PLS-NV Prediction
(mg / tablet)

1 0.013909 4.9375

2 0.013910 4.9406

3 0.013911 4.9428

4 0.013910 4.9406

5 0.013907 4.9455

6 0.013908 4.9423

Mean 0.013909 4.9416

Mean ± 95% 

Confidence Interval
0.013909 ± 1.2x10-06 4.9416 ± 0.002145

Standard Deviation 1.5x10-06 0.0027

Relative Standard 

Deviation
0.01058% 0.05425%

The intermediate precision (mid term precision or within laboratory variability) was 

assessed by two different analysts measuring the same set of samples on separate days 

by NIRS. It can be seen from Table 28 that the Pooled relative SE (operator one and 

operator two pooled results) were very low (considerably less than 1.0%).

A test for equal variance was performed in Minitab and the intermediate precision data 

for both tablet component quality conformance models were found to be equivalent 

across the studied range at 95% confidence (p>0.05) as shown in Figure 107.
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Table 28: Intermediate precision outcomes for the tablet com ponent quality conform ance models 

with analysis by different analysts on different days

Sample 1122 nm Absorbance
(Absorbance)

PLS-NV Prediction 
(mg / tablet)

Day 1 

Analyst 1

Day 2 

Analyst 2

Day 1 

Analyst 1

Day 2 

Analyst 2

75% 1 0.009767 0.009681 3.1708 3.1517

75% 2 0.009891 0.009813 3.2071 3.1943

85% 1 0.01174 0.01163 4.0110 3.9867

85% 2 0.01170 0.01159 3.9321 3.9369

115% 1 0.01586 0.01581 5.5257 5.5212

115% 2 0.01582 0.01580 5.4972 5.4991

125% 1 0.01786 0.01780 6.1190 6.1112

125% 2 0.01791 0.01787 6.0729 6.0782

Production 1 0.01387 0.01395 4.9115 4.8989

Production 2 0.01388 0.01395 4.9726 4.9736

Production 3 0.01385 0.01383 4.8401 4.8328

Production 4 0.01390 0.01397 4.9860 4.9892

Production 5 0.01372 0.01378 4.9656 4.9530

Production 6 0.01396 0.01399 5.0588 5.0205

Production 7 0.01385 0.01393 5.0248 5.0048

Production 8 0.01392 0.01398 5.0297 5.0105

Pooled Mean 0.01384 4.8277

SE 0.000071 0.01218

Relative SE 0.513% 0.252%
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DlAl

D2A2

F-Test 
Test Statistic 0.99
P-Value 0.979

Levene's Test 
Test Statistic 0.00
P-Value 0.982

0.0020 0.0025 0.0030 0.0035 0.0040
95% Bonferroni Confidence Intervals for StDevs

DlAl

D2A2

0.010 0.012 0.014 0.016
il2 2 n m  Absorbance

0.018

DlAl

D2A2

Test Statistic 0.99
P-Value 0.988

Levene's Test 
Test Statistic 0.00
P-Value 0.999

0.50 0.75 1.00 1.25
95% Bonferroni Confidence Intervals for StDevs

1.50

DlAl

D2A2

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
PLS-NV Prediction

Figure 107: Minitab test for equal variances ou tpu t for sixteen paired intermediate precision 

samples for (a) 1122 nm Absorbance and  (b) PLS-NV model with five LVs

Reproducibility was not studied as the method was applicable only to the product 

manufactured at the site for which the researeh was conducted and on the instrument on 

which it was developed (only instrument at the site). There was no plan to transfer the 

method between instruments or laboratories. Any future transfer o f the method would 

be assessed fully under a method transfer protocol (which would include reproducibility 

studies).
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5.4.4 Accuracy

The ICH guidance document defines accuracy as:

''"'The accuracy o f an analytical procedure expresses the closeness o f  

agreement between the value which is accepted either as a conventional 

true value or an accepted reference value and the value found. This is 

sometimes termed trueness

However, it is further stated that ""accuracy may be inferred once precision, linearity 

and specificity have been established".

Accuracy cannot be assessed for the qualitative tablet component quality conformance 

method as the units of measure (Absorbance units), though correlated to the traditional 

method, are on a different scale and magnitude. Therefore accuracy of the qualitative 

tablet component quality conformance method is inferred from the established 

acceptable precision, linearity and specificity.

Accuracy can be assessed for the semi-quantitative tablet component quality 

conformance method as for other traditional quantitative NIRS methods, through the 

comparison of the predicted NIRS results to an established true (reference) values. The 

data used in the accuracy determination were those applied to assessing linearity, 

tabulated in Table 26. The accuracy statistics are shown in Table 29 demonstrating that 

the semi-quantitative tablet component quality conformance method is accurate with a 

relative SEP of less than 2% and very small bias. A paired T-test for means was also 

performed which demonstrated that there was no significant difference between the 

means of the two analysis methods at 95% confidence (p-value>0.05).
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T able 29: A ccu racy  outcom es for the tab let com ponent quality  conform ance m odels

HPLC
(mg / tablet)

PLS-NV

Prediction
(mg / tablet)

Mean 4 .8 5 4 4.861

Pooled Mean 4 .858

SEP 0 .0637

Relative SEP 1.311%

Bias -0 .00694

tmV 2.13

tstat 0 .43398

p-value 0 .67048

5.4.5 Range

The ICH guidance document defines range as;

"'The range o f an analytical procedure is the interval between the upper and 

lower concentration (amounts) o f analyte in the sample (including these 

concentrations) for which it has been demonstrated that the analytical 

procedure has a suitable level ofprecision, accuracy and linearity”

The range of a NIRS conformance method can be directly assessed according to the 

ICH principles. The qualitative tablet component quality conformance method was 

determined to have a range 0.01049-0.01763 Absorbance which is equivalent to 

3.512 - 6.251 mg per tablet once the established equation correlating model response to 

reference data is applied (refer to Figure 68).

The semi-quantitative tablet component quality conformance method was determined to 

have a range 3.256 -  6.047 mg per tablet based on the predicted values of the 

Regression dataset used to develop the PLS-NY model.
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5.4.6 Robustness

The ICH guidance document defines range as:

'"''The robustness o f an analytical procedure is a measure o f its capacity to 

remain unaffected by small, but deliberate variations in method parameters 

and provides an indication o f its reliability during normal usage

As samples were collected from a variety of production batches, manufactured over a 

four year timeframe from different component manufacturers lots and compressed on 

different tablet presses, the conformance methods inherently include seasonal changes 

(such as environmental aspects), wear and tear of the NIR spectrometer (including part 

servicing and lamp replacement), component material variations, formulation (weighing 

and blending) variation as well as processing (compression, thickness) variations. The 

intermediate precision result has demonstrated the conformance method is robust to 

changes in analyst and daily fluctuations. Thus, it is deemed that the method is 

inherently robust and appropriately fit for purpose.

5.5 Comparison of qualitative and semi-quantitative conformance 

methods for applicability in the manufacturing setting

Though conformance methods based on qualitative and semi-quantitative algorithms 

were both explored (Sections 5.2 and 5.3 respectively) and demonstrated to provide a 

mechanism for monitoring the Norvasc® 5mg tabletting process, a manufacturing 

facility would select one approach for a given application.

Both approaches provided an opportunity for increased understanding of within and 

between batch variability and provided opportunity for process improvements. There 

were slight differences in the trends seen for the same batches studied by both
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approaches, most notably in the I-chart for sample means for batch three (Figure 77 

compared to Figure 101). These differences are related to the impact of matrix and 

physical effects on the conformance algorithm. It is expected that the semi-quantitative 

method may be less impacted by these affects assuming sufficient representation of 

matrix and physical effects are built into and appropriately weighted in the regression 

model.

The semi-quantitative approach provided an advantage over the qualitative tablet 

component quality conformance method by providing control charts based on the 

natural unit of measurement of the analyte, in this case mg per tablet. However, this can 

also be a distraction within production with operators or quality personnel becoming 

fixated by the predicted numerical value (quality compliance mindset) rather than 

utilising the information given to gain further understanding of the process. This could 

lead to unnecessary, time consuming, deviation investigations of what may be the 

inherent process signature and variability characteristics of a given product. If this is a 

concern, it may be preferred to opt for a qualitative approach.

The main disadvantage of the semi-quantitative approach compared to the qualitative 

approach described in Section 5.2 is the higher complexity in the chemometrics and 

thus the need for greater NIRS analytical expertise to develop the method. However the 

advantages of rapid development and reduced reference chemistry are still achieved.

The manufacturing facility for which the research was undertaken chose to progress the 

semi-quantitative approach. The facility was then sold and exited the Pfizer 

manufacturing network in 2008 and outcomes of routine application of the approach 

since 2008 are not available.

The developed tablet component quality conformance method would be simple to apply 

in a non-routine setting for validation or process optimisation activities and would
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provide opportunity to very quickly implement a means for real-time tablet monitoring 

to deliver process understanding to enable process enhancements and improvements. 

When supporting validation activities, historical SPC charts can be developed for an 

existing process and then product manufactured following the process improvement or 

approved material or process change can be compared to the established baseline. The 

conformance method development can be tailored to the specific validation activity (for 

example a conformance method can be developed to monitor a key excipient in the 

product before the introduction of an alternate supplier).

It is worth noting that within the research and development realm, insufficient batches 

are typically manufactured to develop a historical SPC approach in early product 

development. In such cases, the same qualitative or semi-quantitative approach with 

reduced reference chemistry can be implemented with the associated statistical charts 

without historical limits to aid in visualisation of batch distribution and within and 

between batch variability. Within batch I-MR, Run charts and distribution profiles could 

be very valuable when reviewing DoE’s performed while developing the final dosage 

form process.

5.6 Review of research outcomes

The rapid development of NIRS Tablet Conformance analysis was successfully 

demonstrated in Chapter 5 through the application o f the approach to the active tablet 

component, amlodipine base, in Norvasc® 5 mg tablet finished cores. This work 

successfully addressed the identified need for process oriented application o f NIRS 

aligned with the PAT initiative to monitor tabletting production.

The novel approach of tablet component conformance analysis enabled extensive deep 

understanding of the within and between batch process behaviour while also assessing
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the ability of individual tablets to meet the quality expectations of customers at a more 

significant sampling level with no impact to regulatory commitments.

Conformance models based on qualitative and semi-quantitative algorithms were 

explored in Sections 5.2 and 5.3 respectively. In both cases the reference chemistry 

required was reduced to only 16 tablets. The models were rapidly developed and 

validated as fit for purpose with respect to the expectations outlined in the ICH 

Harmonised Tripartite Guideline - Q2 (Rl): Validation of Analytical Procedures: Text 

and Methodology’'̂ '̂  in Section 5.4. SPC charts were developed for qualitative and semi- 

quantitative model predictions based on commercial historical process batches.

The application of the developed conformance methodologies to commercial production 

batches demonstrated the success of the approach in gaining in-depth process 

knowledge of the tabletting process and would facilitate process enhancements leading 

to improved product quality for the consumer.

One of the greatest difficulties faced with implementing the new approaches to data 

analysis in real time within the process environment is the limitations in the software 

that runs the NIR spectrometer. This is an area which will need to be improved to 

enable industry to implement advanced PAT applications using NIR. However, this will 

require the companies that develop the software to accept that industry is moving in 

new ways and requires a desire in those companies to move with the industry to harness 

the full potential o f NIRS for PAT applications.

The research met the desired objectives of developing novel ways to apply at-line NIR 

for material analysis, aligning with the PAT philosophy described in Chapter 1 and 

addressing the gaps in material analysis identified in Chapter 2.
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C H A PT E R  6 Re se a r c h  Su m m a r y  a n d  t h e sis

CONCLUSION

PAT, though often considered a new initiative, has been actively pursued since the early 

1990’s, though the term PAT was cemented in pharmaceutical technology language 

following the FDA launch of the Guidance for Industry on PAT. During Chapter 1 the 

history of PAT was reviewed highlighting the different drivers of PAT and the 

perceived benefits fi*om the regulatory, manufacturer and consumer view point. 

Different modes and different stages of application of PAT in pharmaceutical 

manufacturing were reviewed following a brief discussion on the constraints impacting 

implementation of PAT broadly in the industry. The future of PAT was considered in 

relation to the current economic and business climate within which the pharmaceutical 

industry currently operates.

Application of PAT measurement systems as fully in-line and on-line integrated 

systems are often thought to be the final desired state to allow unmanned analysis of 

large sample size to fully describe the process performance and product quality. 

However, integrated applications often have increased cost and challenges for 

implementation preventing widespread deployment. Similarly, applications that impact 

regulatory timelines for new products or have long lead time for regulatory approvals 

detract from the value of implementing PAT due to long periods before return on 

investment can be achieved. It was noted that pharmaceutical products are dominated by 

solid dosage forms and in particular by tablets. It was thus concluded that at-line PAT 

applications for process understanding and monitoring and control for solid oral dosage 

forms that avoid regulatory impact are an economically viable area for widespread 

deployment of PAT and worthy of focussed scientific research.
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The application of NIRS to support PAT initiatives was explored in Chapter 2, where it 

was demonstrated that NIRS has a rich history of application within the pharmaceutical 

industry. The PAT initiative has focused the use of NIRS in the pharmaceutical industry 

as a process understanding and improvement tool rather than as a direct replacement to 

conventional QC testing as NIRS was often previously applied.

The deployment of NIRS within the PAT framework was reviewed for solid dosage 

form processes and two process areas of particular scientific need were identified. 

Despite significant use of NIRS in material testing, the traditional use of NIRS as a 

replacement identification method falls short of the aims of the PAT initiative. There 

was a strong need for NIRS to be applied to material characteristics that relate to 

product quality and process performance to develop the deep understanding of the 

causal relationships between input materials and processes and the resulting output 

products.

Additionally, it was determined that there was a gap in current practise and research in 

the application of NIRS to tablet component analysis beyond alternate assay and content 

uniformity measurement. Directly replacing traditional QC testing by NIRS does not 

progress PAT philosophy. Rather, the application of NIRS must delve into the analysis 

of the tablet component throughout the tabletting operation, relating the observed NIRS 

spectra to relevant process performance and product quality metrics. A novel approach 

was needed in applying NIRS for these two aspects o f solid dosage form manufacturing 

aligned with the PAT philosophy.

To enable the development of novel PAT applications of NIRS, common mathematics 

and chemometrics treatments and analyses along with univariate and multivariate 

statistical process control concepts were reviewed in Chapter 3.
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Novel applications of at-line NIRS were investigated and developed aligned with the 

PAT philosophy to establish an innovative system of analysis that combined 

chemometrics and spectral analysis with statistical process control.

Various chemometric algorithms were explored to enable rapid monitoring of global 

spectral quality as well as the quality of specific critical-to-process material attribute 

within a statistical process control framework which related material characteristics to 

historically demonstrated acceptable product quality and process performance. The 

developed material conformance methods were implemented within a commercial 

pharmaceutical facility in Pfizer and the success of the approach clearly demonstrated 

by the identification and investigation into non-conforming deliveries in Chapter 4. The 

conformance approach provided unforeseen opportunity to gain understanding of causal 

relationships between raw materials and an important Pfizer product. The valuable 

information gained through the application of raw material conformance methods 

enabled rapid identification of potential product or processing issues at material receipt 

and allowed schedule modification to prevent production facility impact, provided 

customer supply assurance and facilitated rapid root cause analysis. The statistical 

process control charts and NIRS user interface were well received by the warehouse 

operators despite challenges in available statistical and chemometrics features within 

vendor NIR software.

Novel approaches to within and between batch statistical process control for tablet 

quality conformance were also developed. Tablet component conformance methods 

were created using rapid to develop qualitative and semi-quantitative chemometrics 

algorithms that required minimal reference analysis. The chemometrics methods were 

then coupled with statistical process control analysis to develop a strategy of analysis 

that assessed the tablet component of interest within intact tablets sampled in large 

sample size throughout tabletting operations. The SPC charts that were developed

Bronwyn Grout \ UCL School o f  Pharmacy \ Process Analytical Sciences Group, Pfizer Page 282 o f  305



assessed the ability of individual tablets to meet historically established normal 

component behaviour for the product as well as conventional quality metrics. 

Additionally, within batch and between batch variability was analysed to fully assess 

the conformance of a batch of tablets to expected product quality and process 

performance. This work, described in Chapter 5, included the novel adaption of 

distribution profile control charts typically applied to particle size measurement. The 

tablet component conformance methods provided an opportunity for extensive process 

monitoring and unsurpassed in-depth process understanding. The approach was found to 

be approachable for plant operators through to quality assurance analysts.

The research described in Chapter 4 and Chapter 5 was shown to provide exceptional 

business value and advanced the critical science based understanding of the 

pharmaceutical formulation. The research was well aligned with the PAT initiative; 

clearly meeting the overall aims of the research in developing PAT aligned at-line 

applications of NIRS and the specific aims and objectives outlined in Section 2.6.

6.1 Future Work

The approach demonstrated in this thesis is broadly applicable with the potential to 

extend beyond the solid dosage form studied. Raw materials are applicable to all 

manufacturing processes and the physicochemical nature of NIRS analysis enables 

assessment of both chemical and physical material attributes in a single analysis.

The approach has since been rolled out as a standard methodology within Pfizer and has 

been applied most recently in manufacturing sites in Egypt and Venezuela.

Similarly, though the focus o f this work was tablet component analysis and the aspect 

studied was the active component, the tablet component conformance methodology can 

be applied for excipients and also for any other process step in solid dosage form
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manufacture or more broadly across manufacturing to other finished dosage forms. 

Further work is currently planned to extend the conformance approach to at-line 

conformance analysis of moisture for tray drying applications as well as incorporating 

the concepts in NIRS support of process validation.

There is also potential applicability of the conformance methodology for PAT 

techniques beyond NIRS. Any process analysis measurement would benefit from both 

the reduced reference approach as well as the broader use of statistical process control 

analysis to shed greater light on the process under study.

The work highlighted gaps in currently available chemometric and statistical process 

control capabilities within NIR instrument control software. A recent brainstorm by 

PAT experts within Pfizer identified this as one area o f ftjture focus to close the gaps 

and enable PAT support for advanced paradigms. NIRS vendors will need to be willing 

to add capability to meet the evolving needs of the pharmaceutical industry; otherwise 

pharmaceutical manufacturers will pursue other strategic partnerships with software and 

hardware vendors that are willing to work towards the future directions of PAT 

deployment.
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APPENDIX 1 -  G l o b a l  m a t e r i a l  q u a l i t y  c o n f o r m a n c e

M in it a b  g r a p h ic a l  s u m m a r ie s  w it h  n o r m a l i t y  a s s e s s m e n t
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058035
0.75577

35%  Confidence Interval for Mean 

0.54377 0 53363

35%  Confidence Interval for Median 

0.53373 0.65420

35%  Confidence Interval for StDev 

058041 0.14716

(c)

Û.4 ÙS U  1£ 2D 2A

9 5 %  Confidence Intervals

Anderson-Dariinq Normality Test

A-Squared 0 2 3
P-Value 0.573

Mean 1.4373
StDev 0.5344
Variance 0.2855
Skewness -0.237371
Kuitosis 0.217211
N 23

Minimum 0.2753
1st Quaitile 1.0613
friedian 1.6113
3rd Quaitile 1.7731
Maximum 2.5344

35%  Confidence Interval for Mean

12662 1.7283

35%  Confidence Interval for Median

1.2450 1.7373

35%  Confidence Interval for StD ev

0.4133 0.7563

Figure 108: M initab graphical sum m ary with norm ality results for individual container  

conform ance results for historical deliveries: (a) correlation, (b) A N SD  and (c) PCA -M D
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(a)

9 5 %  Confidente Inlervalt

Andereon-Dârfing Nonnslity Test 

A-Squared 0.21
P-Value 0.696

Mean
StDev
Venante
Skewness

N

0.99993
0.00003
0.00000

-0.967180
0.890286

Minimum 
1st Quattile 
Median 
3rd Quaitile 
Maximum

0.99988
0.99990
0.99993
0.99996
0.99997

95%  Confidence Interval for Mean 

0.99989 0.99997

95%  Confidence Interval for Median 

0.99988 0.99997

95%  Confidence Interval for StDev 

0.00002 0.00010

(b )

Û.A5 055

9 5 4 t Confidence Inlereelf

Anderson-Dariinq Normality Test

A-Squared 0 25
P-Vahje 0572

Mean 0.58061
StDev 0.11001
Variance 0.01210

0.10154
Kurtosis 1.50910
N 5

Minimum 0.42937
1st Quaitile 0.49229
Median 0.57724
3rd Quaitile 0.67062
Maximum 0.73647

95%  Confidence Interval for Mean

0.44402 0.71720

95%  Confidence Interval for Median

0.42937 0.73647

95%  Confidence Interval for StDev

0.06591 0.31611

(c)

954b Confidence Intervals

Anderson-Dariinq Normality Test

A-Squared 0.17
P-Value 0.847

Mean 1.3902
StDev 0.4646
Variance 0.2159
Skewness -0.295764
Kurtosis -0.766838
N 5

Minimum 0.7500
1st Quaitile 0.9694
Median 1.3472
3rd Quartüe 1.8326
Maximum 1.9321

95%  Confidence Interval for Mean

0.8133 1.9671

95%  Confidence Interval for Median

0.7500 1.9321

95%  Confidence Interval for StDev

0 2 784 1.3351

o a  IJQ 1.4 15 1j8 2Û

Figure 109: M initab graphical sum m ary w ith norm ality results for overall delivery conform ance  

results for historical deliveries: (a) correlation, (b) A NSD  and (c) PCA-M D
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APPENDIX 2 -  M a t e r i a l  a t t r i b u t e  q u a l i t y  c o n f o r m a n c e

M in it a b  g r a p h ic a l  s u m m a r ie s  w it h  n o r m a l i t y  a s s e s s m e n t

(a)

90

95<M> Cenfidancc Intervals

Anderson-Darling NotmelUy Test 

A-Squared 0.35
P-Value 0.439

Mean
StDev
Variance
Skewness
Kurtosis
N

57.543
16.247

263.977
0.548823

-0.487460
26

Minimum 
1st Quartile 
Median 
3rd Quartile 
Maximum

33.569
44.852
54.756
68.903
91.806

95%  Confidence Interval For Mean 

50.981 64.106

95%  Confidence Interval For Median 

46.804 64.424

95%  Confidence Interval For StDev 

12.742 22.428

(b)

1.151.10

9 5%  Confiiiance Inlarvals

Anderson-Darling Normality Test 

A-Squared 0.45
P-Value 0.248

Mean
StDev
Variance

Kurtosis
N

1.0340
0.0469
0.0022

0.654427
-0.103253

26

Minimum 
1st Quartile 
Median 
3rd Quattile 
Maximum

0.9635
1.0008
1.0224
1.0737
1.1479

95%  Confidence Interval For Mean 

Id) 151 1.0530

95%  Confidence Interval For Median 

1.0068 1.0538

95%  Confidence Interval For StDev 

0.0368 0.0648

(c)

95 %  Conridence Intervals

Anderson-Darling Normality Test 

A-Squared 0.30
P-Value 0.569

Mean
StD ev

Skewness
Kurtosis
N

0.95044
0.04531
0.00205

-0.475034
-0.211512

26

Minimum 
1st Quartile 
Median 
3rd Quartile 
Maximum

0.85566
0.92475
0.95406
0.97929
1.02670

95%  Confidence Interval For Mean 

0.93214 0.96874

95%  Confidence Interval For Median 

0.93452 0.97598

95%  Confidence Interval For StDev 

0.03554 0.06255

Figure 110: M initab graphical sum m ary w ith norm ality results for individual container  

conform ance results for historical deliveries: (a) T N SD -R R , (h) M L R -D A  and (c) PLS-DA
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(a)

70

9S<H> Confidence Intervals

Anderson-Dariinq Notmality Test 

A-Squared 0.32
P-Value 0.363

Mean
StDev
Variance

Kurtosis
N

54.820
11.172

124.822
1.03619
0.63306

Minimum 
1st Quartile 
Median 
3rd Quartile 
Maximum

43.383
46.548
43.761
65.620
72D83

35%  Confidence Interval for Mean 

40.347 68.632

35%  Confidence Interval for Median 

43.383 72.083

35%  Confidence Interval for StDev 

6.634 32.104

(b)

1Û75 IUÛ

954b Confidence Inlerveis

Anderson-Dariinq Normality Test

A-Squared 0.31
P-Value 0.407

Mean 1.0270
StDev 0.0485
Variance 0.0023
Skewness 0.66052

1.84133
N 5

Minimum 0.% 65
1st Quaitile 0.3310
Median 1.0185
3rd Quartile 1.0674
Maximum 1.1010

35%  Confidence Interval for Mean

0.% 63 1.0872

35%  Confidence Interval for Median

0.%65 1.1010

35%  Confidence Interval for StDev

0.0230 0.1333

0.930 0.975 lOQO iû25  1ÛSÛ 1075 1.100

(c)

0.99

959b Confidence Intervals

Anderson-Dariinq Normality Test

A-Squared 0.30
P-Value 0.433

Mean 0.35263
StDev 0.03113
Variance 0.00037

0.36582
Kurtosis 1.63682
N 5

Minimum 0.31733
1st Quartile 0.32%3
Median 0.34335
3rd Quartile 0.38043
Maximum 1.00145

35%  Confidence Interval for Mean

0.31404 0.33135

35%  Confidence Interval for Median

0.31733 1.00145

35%  Confidence Interval for StD ev

0.01865 0.08345

0.92 0.9* 0.95 0.99 100

Figure 111: M initab graphical sum m ary w ith norm ality results for overall delivery conform ance  

results for historical deliveries: (a) TN SD -R R , (b) M LR-DA  and (c) PLS-DA
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APPENDIX 3 -  Q u a l i t a t i v e  t a b l e t  c o m p o n e n t  q u a l i t y

CONFORMANCE PREDICTION RESULTS FOR THE HISTORICAL 

THRESHOLD BATCHES

B a tch  -T a b let
1122 nm  

A b so rb a n ce
A N S D  R R B atch  -T a b le t

1122 nm  

A b so r b a n ce
A N S D -R R

1-1 0.0137 -0.8785 3-1 0.01337 -1.532

1-2 0.01378 -0.7909 3-2 0.01356 -1.24

1-3 0.01428 -0.2146 3-3 0.01356 -1.284

1-4 0.01402 -0.5173 3 -4 0.01345 -1.358

1-5 0.0141 -0.4265 3-5 0.01361 -1.237

1-6 0.01393 -0.5338 3 -6 0.01368 -1.119

1-7 0.01402 -0.5031 3 -7 0.01332 -1.542

1-8 0.01408 -0.4412 3-8 0.01363 -1.186

1-9 0.0142 -0.274 3 -9 0.01341 -1.422

1-10 0.01397 -0.5322 3-1 0 0.01345 -1.384

2-1 0.01436 0.1596 4-1 0.01421 0.2149

2-2 0.01415 -0.1038 4-2 0.01434 0.3871

2-3 0.01418 -0.06524 4-3 0.01432 0.3859

2-4 0.01399 -0.3254 4-4 0.01398 -0.002242

2-5 0.0142 0.04181 4-5 0.01407 0.135

2-6 0.01414 -0.03106 4-6 0.01415 0.2215

2 -7 0.01466 0.4745 4-7 0.01454 0.7107

2-8 0.01404 -0.1887 4-8 0.01447 0.6531

2-9 0.01429 0.1281 4-9 0.01423 0.3836

2 -1 0 0.01387 -0.3953 4-10 0.01421 0.3038
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Batch -Tablet
1122 nm 

Absorbance
ANSD-RR Batch -Tablet

1122 nm 

Absorbance
ANSD-RR

5-1 0.01474 1.297 6-1 0.01406 0.2609

5-2 0.01471 1.331 6-2 0.01379 -0.015

5-3 0.01483 1.457 6-3 0.01383 0.07393

5-4 0.0148 1.395 6-4 0.01423 0.4888

5-5 0.01461 1.209 6-5 0.01397 0.1486

5-6 0.01491 1.483 6-6 0.01381 -0.01242

5-7 0.01484 1.467 6-7 0.01399 0.1678

5-8 0.01462 1.268 6-8 0.0142 0.4114

5-9 0.01477 1.436 6-9 0.01402 0.2207

5-10 0.01468 1.276 6-10 0.0138 -0.03544
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A P P E N D IX  4 -  Q u a l it a t iv e  t a b l e t  c o m p o n e n t  q u a l it y

C O N F O R M A N C E  M l N I T A B  G R A P H I C A L  S U M M A R I E S  W I T H  

N O R M A L I T Y  A S S E S S M E N T

(a)

QJÛD6 Q Q K  QQiM

9 5%  Confidence Intervols

And«reon-DiHinfl Notnfi»lity Test

A-Squered 0.44
P Velue 0.279

Mean 0.014112
StDev 0.000407
Verience 0.000000
Skewness 0.096291
Kurtosis -0.576813
N 60

Minimum 0.013320
1st Quartile 0.013815
Median 0.014090
3rd Quartile 0.014335
Maximum 0.014910

95%  Confidence Interval for Mean

0.014007 0.014217

95%  Confidence Interval for Median

0.013990 0.014201

95%  Confidence In te r/a l for StDev

0.000345 0.000496

(b)

•12  -02  0 0  0 2  12

9 5 %  Confidence Inlervols

Anderson-Dariinq Normality Test

A-Squared 0 73
P-Value 0.053

Mean -0.00002
StDev 0.84224
Variance 0.70938

0.084606
Kurtosis -0.500450
N 60

Minimum -1.58600
1st Quartile -0.42790
Median -0.01244
3rd Quartile 0.40948
Maximum 1.58600

95%  Confidence Interval for Mean

-0.21760 021755

95%  Confidence Interval for Median

-0.27225 0.16642

95%  Confidence Interval for StDev

0.71391 1.02725

-OJ -0 2  -0.1 0 0  0.1 0 2

Figure 112: M initab graphical sum m ary with norm ality results for the individual tablet historical 

dataset for (a) 1122 nm A bsorbance and (b) A N SD -R R
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ÛDOIÛÛO 0 jCÛ1Û25

9596 Confidence Inlervols

ÛJÛÛ09S ÛJÛÛIOÛ QJÛÛICU QjQOlCH ÛJQÛIÛS 000108 OOQllÛ

Anderson-DiHinq Nmmality Test

A -Squ«ed 0.26
P-Vâlue 0 5 5 3

Mean 0.001032
StDev 0.000058
Variance 0.000000
Skewness 0.18432
Kurtosis ■1.80728
N 6

Minimum 0.000970
1st Quartile 0.000970
Median 0.001030
3rd Quaitde 0.001088
Maiimum 0.001110

95%  Confidence Intentai for Mean

0.000971 0.001093

95%  Confidence In ten tai for Median

0.000970 0.001099

95%  Confidence Interval for StDev

0.000036 0.000143

Figure 113: M initab graphical sum m ary with norm ality results for the range o f 

1122 nm A bsorbance for the six com m ercial batches
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APPENDIX 5 -  S e m i - q u a n t i t a t i v e  t a b l e t  c o m p o n e n t

QUALITY CONFORMANCE PREDICTION RESULTS FOR THE 

REGRESSION DATASET

Batch -Tablet MLR-NV PLS-NV Batch -Tablet MLR-NV PLS-NV

1-1 4.827 4.748 3-1 4.84 4.8

1-2 4.892 4.86 3-2 4.884 4.896

1-3 5.046 5.003 3-3 4.895 4.896

1-4 4.979 4.95 3-4 4.824 4.784

1-5 5.008 4.978 3-5 4.917 4.937

1-6 4.879 4.824 3-6 4.926 4.886

1-7 4.95 4.909 3-7 4.778 4.726

1-8 4.986 4.947 3-8 4.873 4.83

1-9 4.991 4.936 3-9 4.797 4.751

1-10 4.898 4.837 3-10 4.824 4.767

2-1 4.994 4.974 4-1 4.947 4.937

2-2 4.968 4.978 4-2 4.981 4.986

2-3 4.959 4.947 4-3 4.95 4.932

2-4 4.948 4.957 4-4 4.837 4.795

2-5 4.96 4.977 4-5 4.853 4.813

2-6 4.953 4.989 4-6 4.9 4.869

2-7 5.155 5.166 4-7 4.996 4.946

2-8 4.907 4.932 4-8 4.969 4.941

2-9 4.969 4.989 4-9 4.899 4.884

2-10 4.823 4.813 4-10 4.903 4.881
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Batch -Tablet MLR-NV PLS-NV Batch -Tablet MLR-NV PLS-NV

5-1 4.946 4.935 75%-l 3.55 3.488

5-2 4.936 4.939 75%-2 3.457 3.423

5-3 4.913 4.807 75%-3 3.31 3.256

5-4 4.968 4.965 75%-4 3.539 3.494

5-5 4.904 4.897 75%-5 3.345 3.272

5-6 4.978 4.927 85% -l 4.091 4.143

5-7 4.978 4.98 85%-2 4.028 4.098

5-8 4.881 4.875 85%-3 4.114 4.213

5-9 4.91 4.872 85%-4 4.057 4.072

5-10 4.923 4.94 85%-5 4.14 4.22

6-1 4.913 5.025 115%-1 5.687 5.777

6-2 4.789 4.852 115%-2 5.496 5.574

6-3 4.756 4.751 115%-3 5.611 5.705

6-4 4.948 5.042 115%-4 5.617 5.737

6-5 4.873 4.964 115%-5 5.514 5.591

6-6 4.802 4.795 125%-1 5.808 5.814

6-7 4.86 4.905 125%-2 5.992 6.038

6-8 4.946 5.04 125%-3 5.881 5.906

6-9 4.886 4.923 125%-4 6.04 6.047

6-10 4.773 4.753 125%-5 5.957 5.978
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APPENDIX 6 -  S e m i - q u a n t i t a t i v e  t a b l e t  c o m p o n e n t

QUALITY CONFORMANCE PREDICTION RESULTS FOR THE 

VERIFICATION DATASET

Batch -Tablet MLR-NV PLS-NV Batch -Tablet MLR-NV PLS-NV

1-1 5.029 5.024 3-1 4.929 4.877

1-2 4.885 4.799 3-2 4.96 4.972

1-3 5.044 4.993 3-3 4.947 4.96

1-4 4.899 4.818 3-4 4.934 4.936

1-5 4.8 4.694 3-5 4.962 4.982

1-6 5.17 5.139 3-6 4.969 4.962

1-7 4.825 4.781 3-7 4.9 4.922

1-8 4.89 4.817 3-8 4.838 4.829

1-9 5.17 5.122 3-9 5.106 5.139

1-10 4.909 4.832 3-10 4.849 4.849

2-1 4.966 4.924 4-1 4.824 4.852

2-2 4.957 4.92 4-2 4.861 4.925

2-3 4.946 4.894 4-3 4.798 4.833

2-4 4.95 4.925 4-4 4.838 4.891

2-5 4.986 4.959 4-5 4.864 4.907

2-6 4.964 4.937 4-6 4.859 4.891

2-7 5.018 4.995 4-7 4.904 4.922

2-8 4.978 4.935 4-8 4.797 4.839

2-9 4.986 4.944 4-9 4.937 4.993

2-10 4.871 4.834 4-10 4.774 4.805
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Batch -Tablet MLR-NV PLS-NV Batch -Tablet MLR-NV PLS-NV

75%-l 3.469 3.411 115%-! 5.606 5.717

75%-2 3.355 3.287 115%-2 5.532 5.657

75%-3 3.523 3.477 115%-3 5.495 5.569

75%-4 3.437 3.39 115%-4 5.64 5.734

75%-5 3.567 3.529 115%-5 5 j # 5.757

85% -l 4.075 4.152 125%-! 5.9 5.926

85%-2 4.081 4.133 125%-2 5.992 6.003

85%-3 4.137 4.214 125%-3 5.824 5.825

85%-4 4.184 4.231 125%-4 6.02 6.053

85%-5 4.181 4.211 125%-5 5.884 5.889
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APPENDIX 7 -  S e m i - q u a n t i t a t i v e  t a b l e t  c o m p o n e n t

QUALITY CONEORM ANCE M lN IT A B  GRAPHICAL SUM M ARIES WITH  

NORM ALITY ASSESSM ENT

3 5 %  CenfiWente Intervals

Anderson Darling Normality Test

A Squared 0.71
P-Value 0461

Mean 4.9026
StDev 0.0875
Variance 0.0077

0.018214
Kurtosis 0.228405
N 60

Minimum 4.7260
1st CJuattile 4.8317
Median 4.9250
3rd (Quartile 4.%23
Maiimum 5.1660

35%  Confidence Interval for Mean 

4.8800 4.9252

95%  Confidence Interval for Median 

4.8838 4.9391

95%  Confidence Inter>.<al for StDev 

0d)742 0.1067

Figure 114: M initab graphical sum m ary with norm ality results for the PLS-NV predictions for the

h istorical dataset

Anderson-Darling Normality Test

A Squared 0 22
P-Value 0.690

Mean 0.35800
StDev 0.05341
Variance 0.00285
Skewness 0.3%66
Kurtosis 1.24806

6

Minimum 0.28300
1st Quartile 0.31825
Median 0.35600
3rd Quartile 0.39525
Maiimum 0.44400

9 5 %  Cenfidencc Intervals

95%  Confidence Interval for Mean 

0.30195 0.41405

95%  Confidence Interval for Median 
0.29979 0.42079

95%  Confidence Interval for StD ev 

0.03334 0.13099

Figure 115: M initab graphical sum m ary with norm ality results for the range o f PLS-NV predicted  

am lodipine active content for the six historical com m ercial batches

Bronwyn Grout \ UCL School o f  Pharmacy \ Process Analytical Sciences Group, Pfizer Page 305 o f  305


