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Abstract. The shift to cloud-based APIs has made application security
critically depend on understanding and reasoning about policies that reg-
ulate access to cloud resources. We present stratified predicate abstrac-
tion, a new approach that summarizes complex security policies into a
compact set of positive and declarative statements that precisely state
who has access to a resource. We have implemented stratified abstrac-
tion and deployed it as the engine powering AWS’s IAM Access Analyzer
service, and hence, demonstrate how formal methods and SMT can be
used for security policy explanation.

1 Introduction

A growing number of developers are using cloud-based implementations of basic
resources like associative arrays, encryption, storage, queuing, and event-driven
execution, to engineer client applications. For example, millions of Amazon Web
Services (AWS) customers use cloud APIs like Amazon SQS for queues, Amazon
S3 for storage, AWS KMS for crypto key management, Amazon DynamoDB for
associative arrays, and AWS Lambda for executing functions in a pure virtualized
environment. This shift to the cloud has made application security critically
depend upon deeply understanding and reasoning about policies that regulate
how different principals are allowed to access cloud resources. AWS users, for
example, configure principals in the Identity and Access Management (IAM)
service. The users define which requests are allowed access via resource policies
which allow some resources to be purposefully shared with the entire internet,
while restricting access to others to limited sets of identities.

The IAM policy language has many features that are essential to allow users
to build a wide array of possible applications. Some of these features make reason-
ing about policies challenging. First, individual policy elements can use regular
expressions, negation, and conditionals. Second, the policy elements can inter-
act with each other in subtle ways that make the net effect of a policy unclear.
Previously, we developed Zelkova [2], a tool that encodes policies as logical
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formulas and then uses SMT solvers [3,8] to answer questions about policies,
e.g. whether a particular policy is correct, too strict, or too permissive. While
Zelkova can be queried to explore the properties of policies e.g. whether some
resource is “publicly” accessible, our experience shows that formal policy anal-
ysis remains challenging as users must have sufficient technical sophistication
to realize the criteria important to them and be able to formalize the above as
Zelkova queries.

- Effect: Allow
Condition:

StringEquals:
SrcVpc:
- vpc -a
- vpc -b

- Effect: Allow
Condition:

StringEquals:
OrgID: o-2

- Effect: Deny
Condition:

StringEquals:
SrcVpc: vpc -b

StringNotEquals:
OrgID: o-1

Fig. 1. An example AWS policy Fig. 2. Stratified abstraction search tree

In this paper, we present a new approach to help users understand whether
their policy is correct, by abstracting the policy into a compact set of positive and
declarative statements that precisely summarize who has access to a resource.
Users can review the summary to decide whether the policy grants access accord-
ing to their intentions. The key challenge to computing such summaries is the
combinatorial blowup in the number of possible requests, which comprise the
combination of user name and account, identifiers, hostnames, IP addresses and
so on. Our key insight is that we can make summarization tractable via strati-
fied predicate abstraction, which allows us to collapse many equivalent (concrete)
requests into a single (abstract) finding. To this end, we introduce a new algo-
rithm for computing stratified abstractions of policies, yielding a set of findings
that are sound, i.e. which include all possible requests that can be granted access,
and precise, i.e. where the findings are as specific as possible.

We have implemented stratified abstraction and deployed it as the engine
powering AWS’s recently launched IAM Access Analyzer service, which helps
users reason about the semantics of their policy configurations. We present an
empirical evaluation of our method over a large set of real-world IAM policies.
We show that IAM Access Analyzer generates a sound, precise, and compact
set of findings for complex policies, taking less than a second per finding. Thus,
our results show how key ideas like SMT solving and predicate abstraction [1,5],
can be used not just to verify computing systems, but to precisely explain their
behavior to users.
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2 Overview

AWS access control policies specify who has access to a given resource, via a
set of Allow and Deny statements that grant and prohibit access, respectively.
Figure 1 shows a simplified policy specifying access to a particular resource. This
policy uses conditions based on which network (known as a VPC) the request
originated from and which organizational Amazon customer (referred to by an
Org ID) made the request. The first statement allows access to any request
whose SrcVpc is either vpc-a or vpc-b. The second statement allows access
to any request whose OrgId is o-2. However, the third statement denies access
from vpc-b unless the OrgId is o-1.

Crucially, for each request, access is granted only if: (a) some Allow statement
matches the request, and (b) none of the Deny statements match the request.
Consequently, it can be quite tricky to determine what accesses are allowed by a
given policy. First, individual statements can use regular expressions, negation,
and conditionals. Second, to know the effect of an allow statement, one must
consider all possible deny statements that can overlap with it, i.e. can refer to
the same request as the allow. Thus, policy verification is not compositional, in
that we cannot determine if a policy is “correct” simply by locally checking that
each statement is “correct”. Instead, we require a global verification mechanism,
that simultaneously considers all the statements and their subtle interactions,
to determine if a policy grants only the intended access.

As policies organically grow and become more complex and baroque, the
ultimate question that users have is: “is my policy correct?” Of course, this
specification problem has bedeviled formal methods from the day they were
invented. In our context: how does the security analyst know whether the policy
is, in fact not too strict or too permissive? Zelkova [2] is already used by users
of Amazon’s Simple Storage Service (S3) to determine whether any of their “data
buckets” are publicly accessible. More generally, the AWS Config service provides
templated Zelkova checks that can be filled in by users to validate their policies.
Some advanced users even use the Zelkova service directly, asking their own
questions about policies. While all of the above are useful, formal policies and
formal analysis remains difficult to use, as the user must have sufficient technical
sophistication to: (1) intuit the criteria important to them, (2) formalize the
above in the query language of Zelkova, and (3) interpret the results returned
by the tool. Ultimately, to answer “is this policy correct?”, the tool must help
the user understand what “correct” means in their particular context.

2.1 Approach

The core contribution of this work is to change the question from “is this policy
correct?” to “who has access?”. The response to the former is a Boolean while
the response to the latter is a set of findings. There are several key requirements
that findings must meet to be useful in the context of analyzing security policies
and answering the question “who has access?”.
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Sound. Users need confidence that findings summarize a policy. In particu-
lar, we must ensure that every access allowed by the policy is represented by
some finding. This over-approximation crucially enables compositional reason-
ing about the policy: if a user deems that each finding is safe, then she may rest
assured that the entire policy is safe.
Precise. Users require that findings be specific. A finding of “everybody has
access” is a sound and over-approximate summary of every policy, but is only
useful if the policy allows everyone access. Instead, we want findings that adhere
closely to the accesses allowed by the policy, and do not report false-alarms that
say certain identities have access when that is not, in fact, the case.
Compact. Users require that the set of findings be small. For example, we could
simply enumerate all the different kinds of requests that have access, but such a
list would typically be far too large to manually inspect. Instead, we require that
the findings be a compact representation of who has access, while still ensuring
soundness and precision.
Example. For example, the policy in Fig. 1 can be summarized through a set
of three findings, that say that access is granted to a request iff:

– Its SrcVpc is vpc-a, or,
– Its OrgId is o-2, or,
– Its SrcVpc is vpc-b and its OrgId is o-1.

The findings are sound as no other requests are granted access. The findings
are precise as in each case, there are requests matching the conditions that are
granted access.1 Finally, the findings compactly summarize the policy in three
positive statements declaring who has access.

2.2 Solution: Computing Findings via Stratified Abstraction

Next, we describe an informal overview of our algorithm for computing the
findings, by building it up in three stages.
1: Concrete Enumeration. One approach to synthesize findings would be to
(1) enumerate possible requests, (2) query Zelkova to filter out the requests
that do not have access, and (3) return the remainder as findings. Such an
approach is guaranteed to be both sound and precise. However, real-world poli-
cies comprise many fields, each of which have many possible values. For example,
there are 1012 (currently) possible AWS account numbers and 2128 possible IPv6
addresses. Enumerating all possible requests is computationally intractable, and
even if it were, the resulting set of findings is far too large and hence useless.
2: Predicate Abstraction. We tackle the problem of summarizing the super-
astronomical request-space by using predicate abstraction. Specifically, we make
a syntactic pass over the policy to extract the set of constants that are used to
constrain access, and we use those constants to generate a family of predicates
1 The finding “OrgId is o-2” also includes some requests that are not allowed, e.g.

when SrcVpc is vpc-b.
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whose conjunctions compactly describe partitions of the space of all requests.
For example, from the policy in Fig. 1 we would extract the following predicates

pa
.= SrcVpc = vpc-a, pb

.= SrcVpc = vpc-b, p�
.= SrcVpc = �,

q1
.= OrgId = o-1, q2

.= OrgId = o-2, q�
.= OrgId = �.

The first row has three predicates describing the possible value of the SrcVpc of
the request: that it equals vpc-a or vpc-b or some value other than vpc-a and
vpc-b. Similarly, the second row has three predicates describing the value of the
OrgId of the request: that it equals o-1 or o-2 or some value other than o-1 and
o-2.

We can compute findings by enumerating all the cubes generated by the above
predicates, and querying Zelkova to determine if the policy allows access to
the requests described by the cube. For example, the above predicates would
generate the cubes shown in Fig. 3. We omit trivially inconsistent cubes like
pa ∧ pb which correspond to the empty set of requests. Next to each cube, we
show the result of querying Zelkova to determine whether the policy allows
access to the requests described by the cube: ✓(resp. ✗) indicates requests are
allowed (resp. denied).

pa∧q1 pa∧q2 pa∧q�

pb∧q1 pb∧q2 pb∧q�

p�∧q1 p�∧q2 p�∧q�

Fig. 3. Cubes generated by the predicates pa, pb, p�, q1, q2, q� generated from the policy
in Fig. 1 and the result of querying Zelkova to check if the requests corresponding to
each cube are granted access by the policy.

Finally, we can translate each allowed cube into a finding, yielding five find-
ings. While this set of findings is sound and precise, it suffers in two ways.
First, real-world policies have many different fields, and hence, enumerating-
and-querying each cube can be quite slow. Second, the result is not compact.
The same information is more succinctly captured by the set of three findings
in Sect. 2.1 which, for example, collapses the three findings in the top row to a
single finding, “SrcVpc is vpc-a.”
3: Stratified Abstraction. The chief difficulty with enumerating all the cubes
greedily is that we end up eagerly splitting-cases on the values of fields when that
may not be required. For example, in Fig. 3, we split cases on the possible value
of OrgId even though it is irrelevant when SrcVpc is vpc-a. This observation
points the way to a new algorithm where we lazily generate the cubes as follows.
Our algorithm maintains a worklist of minimally refined cubes. At each step, we
(1) ask Zelkova if the cube allows an access that is not covered by any of its
refinements, (2) if so, we add it to the set of findings; and (3) if not, we refine the
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cube “point-wise” along the values of each field individually and add the results
to the worklist. The above process is illustrated in Fig. 2.

– Level 1. The worklist is initialized with �∧� which represents the cube where
we don’t care about the value of either SrcVpc or OrgId, i.e. which represents
every possible request. Zelkova determines that every access allowed by this
cube and by the policy are covered by one of the refinements of this cube (the
second level of the tree). Thus this � ∧ � finding is not essential, and we can
find more precise findings. We indicate this by the red shade and the ✗. Next,
we refine the above cube point-wise, by considering the two sub-cubes pa ∧�
and pb ∧ � which respectively represent the requests where SrcVpc is either
vpc-a or vpc-b (and OrgId could be any value), and, the two sub-cubes �∧q1
and � ∧ q2 which respectively represent the requests where OrgId is either
o-1 or o-2 (and SrcVpc could be any value). These refined cubes are added
to the worklist and considered in turn.

– Level 2. Zelkova determines that there are requests allowed by pa ∧ � and
� ∧ q2 which are not covered by any of their refinements, hence those are
shaded green and have a ✓. However, Zelkova rejects pb ∧ � and � ∧ q1
as anything allowed by them is allowed by one of their refinements. Now we
further refine the rejected cubes, but can omit considering the cubes pa ∧ q1,
pa ∧ q2 and pb ∧ q2 in the unshaded boxes, as each of those is covered or
subsumed by one of the two accepted cubes.

– Level 3. Hence, we issue one last Zelkova query for pb ∧ q1 which indeed
allows a request which is not covered by any of its refinements (as it has
none). Finally, we gather the set of accepted cubes, i.e. those in the green
shaded boxes, and translate those to the findings described in Sect. 2.1.

3 Algorithm

Next, we formalize our algorithm for computing policy summaries and show how
it yields findings that are sound and precise. In Sect. 4 we demonstrate how our
algorithm yields compact results for real-world policies..

3.1 Policies and Findings

Requests. Let K = {k1, . . . , kn} be a set of keys. Let Vk = {v1, . . .} be a
(possibly infinite) set of values for the key k. A request r a mapping from keys k
to values in Vk. For example, the request r1 maps the keys Principal, SrcIP, and
OrgID as:

r1 = {Principal �→ 123 : user/A, SrcIP �→ 192.0.2.3, OrgID �→ o-1}

Policies. A policy is a predicate on requests p : r → Bool . The denotation of a
policy p is the set of requests it allows:

γ(p) .= {r | p(r) = True}
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Predicates. A predicate is a map φ : Vk → Bool . The denotation of a predicate
is the set of values that satisfy the predicate:

γ(φ) .= {v | φ(v) = True}

We define a partial order on predicates, φ1 � φ2 iff γ(φ1) ⊆ γ(φ2). For example:

φ123(v) .= “v is a principal in account 123”
φua(v) .= “v is user-a in account 123”
φub(v) .= “v is user-b in account 123”

Here we have φua � φ123 and φub � φ123 because users are a type of principal.
The set of predicates must always contain � and must have the following prop-
erty: for all φ1, φ2 either φ1 � φ2, φ2 � φ1, or γ(φ1) ∩ γ(φ2) = ∅. This ensures
the set of predicates for a given key can be tree-ordered.
Findings. A finding σ is a map from keys K to predicates Φ. The denotation
of a finding σ is the set of requests where each key k is mapped to a value v in
the denotation of σ(k):

γ(σ) .= {r | ∀k.r(k) ∈ γ(σ(k))}

We represent a finite set of findings as Σ = {σ1, . . . , σn}. The denotation of a
set of findings is the union of the denotations the findings:

γ({σ1, . . . , σn}) .= γ(σ1) ∪ · · · ∪ γ(σn)

3.2 Properties

Next, we formalize the key desirable properties of findings, i.e. that they be
sound, precise, and compact, as coverage, irreducibility, and minimality respec-
tively.
Coverage. A set of findings Σ covers a policy p if γ(p) ⊆ γ(Σ). For example,
the set Σ1 containing the two findings

Σ1
.= {[SrcVpc �→ pa,OrgID �→ �], [SrcVpc �→ �,OrgID �→ q2]}

corresponding to the green boxes on level 2 of Fig. 2, does not cover the policy
from Fig. 1, as it excludes the request whose SrcVpc is vpc-b and OrgID is o-1.
However, Σ2 below does cover the policy as it includes all requests that are
granted access.

Σ2
.= Σ1 ∪ {[SrcVpc �→ pb,OrgID �→ q1]}

Reducibility. A finding σ refines another finding σ′, written σ  σ′ if for each
key k we have σ(k) � σ′(k). A finding σ refines a set of findings Σ, written
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σ  Σ if σ refines some σ′ ∈ Σ. Note that σ  σ′ implies γ(σ) ⊆ γ(σ′). We say
that a finding σ is irreducible for a policy p if

∃r ∈ γ(p) ∩ γ(σ). ∀σ′ � σ. r �∈ γ(σ′).

That is, σ is irreducible if it contains some request that is excluded by all its
proper refinements. For example, the finding [SrcVpc �→ pa,OrgID �→ �] is irre-
ducible as it contains a request [SrcVpc �→ vpc-a,OrgID �→ o-3] that is excluded
by its refinements [SrcVpc �→ pa,OrgID �→ q1] and [SrcVpc �→ pa,OrgID �→ q2].
Note that irreducibility is inherently tied to the available predicates, Φ.
Minimality. A set of findings Σ is minimal if the denotation of each Σ′ ⊂ Σ
is strictly contained in the denotation of Σ. For example, the set

{[SrcVpc �→ pa,OrgID �→ �], [SrcVpc �→ pa,OrgID �→ q1]}
is not minimal as the subset containing just the first finding denotes the same
set of requests, but, the set containing either finding individually is minimal.

3.3 Algorithm

Given a policy p and a finite set of partially ordered predicates Φ, our goal is to
produce a minimal covering of p comprising only irreducible findings.
Access Oracle. Our algorithm is built using an access oracle that takes as
input a policy p and a finding σ and returns Some iff some request described by
σ is allowed by p, and None otherwise.

CanAccess(p, σ) =

{
Some if γ(σ) ∩ γ(p) �= ∅
None if γ(σ) ∩ γ(p) = ∅

def AccessSummary(p:P ) -> [Σ]:

σ� = λk→�
wkl = queue ([σ�])

res = []

while wkl �=∅:
σ = wkl.deque ()
if CanAccess(p,Reduce(σ)) == Some:

res += [σ]
else:

wkl += [σ′ |σ′ ∈Refine(σ), σ′ ��res]
return res

Fig. 4. Algorithm to compute a minimal set of irreducible findings that cover policy p.

Dominators. We define the immediately dominates set of φ ∈ Φ as the set of
elements strictly smaller than φ but unrelated to each other:

idom(φ) .= {φ′ | φ′ ≺ φ and ∀φ′′.¬(φ′ ≺ φ′′ ≺ φ)}
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Reducing a Finding. The procedure ReducePred (resp. Reduce) takes as input
a predicate φ (resp. finding σ) and strengthens it to exclude all the requests that
are covered by the refinements of φ (resp. σ):

def ReducePred(φ:Φ) -> Φ:

φ1, . . . , φn = idom(φ)
return φ ∧ ¬φ1 ∧ · · · ∧ ¬φn

def Reduce(σ:Σ) -> Σ:

σ′ = λk → ReducePred(σ(k))
return σ′

Intuitively, Reduce allows us to determine if a finding is irreducible.

Lemma 1. σ is irreducible iff γ(Reduce(σ)) ∩ γ(p) �= ∅.

Refining a Finding. The procedure Refine takes as input a finding σ and
returns the set of findings obtainable by individually refining one value of σ.

def Refine(σ:Σ) -> [Σ]:

return [σ[k �→ φ′] | k ∈ K, φ′ ∈ idom(σ(k))]
If a finding σ is reducible, we will use Refine to split it into more precise findings.

Lemma 2. Let σ be reducible for p. Then γ(σ) ∩ γ(p) = γ(Refine(σ)) ∩ γ(p).

Summarizing Access. The procedure AccessSummary (Fig. 4) takes as input a
policy p and returns a minimal set of irreducible findings res that covers p. The
procedure maintains a queue wkl comprising a frontier of findings that are to
be explored. The queue is initialized with the trivial finding σ� that maps each
key to �. It then iteratively picks an element from the queue, checks if it is an
irreducible finding, and if so, adds it to the result set res. If not, it computes the
finding’s refinements and adds those to wkl . The process repeats till the queue
is empty. The algorithm maintains three loop invariants: (1) wkl ∪ res covers
p; (2) Each finding in res is irreducible; (3) res is minimal. Consequently, the
algorithm terminates with a minimal set of irreducible findings that covers p.
Note, the worklist is a queue so that if σ1 � σ2 the algorithm will consider σ2

before σ1.

Theorem 1. Let Σ = AccessSummary(p). Then (1) Σ covers p, (2) each σ ∈ Σ
is irreducible, and (3) Σ is minimal.

4 Implementation and Evaluation

The algorithm AccessSummary is implemented in the IAM Access Analyzer fea-
ture launched on Dec 2, 2019 [10]. The Zelkova tool [2] is used as the access
oracle for the algorithm. Access Analyzer monitors the relevant resource policies
in an account and re-runs the algorithm on any changes. Findings are presented
to the user through a web console and through APIs. Users can archive findings
that represent intended access to the resource. For unintended findings, Access
Analyzer links to the relevant policy that users can edit to remove that access.
Access Analyzer will automatically run on the changed policy and any findings
that are no longer relevant will be set to a resolved state. By monitoring any
existing or new active findings, users can ensure their polices grant only the
intended access.



174 J. Backes et al.

Evaluation Metrics. We evaluate our algorithm along two dimensions: (1)
“how efficient is the algorithm at generating findings?” and (2) “how effective
are the generated findings at simplifying the complexity of a policy?”. As our
algorithm solves a new problem, we do not have an external basis for comparison.
Instead, we compare the algorithm against the state space it operates over. To
this end, for each policy, we define the following measures:

– size is the size of the set of all possible findings for the policy.
– findings is the number of findings produced by the algorithm.
– queries is the number of SMT queries made by the algorithm.
– runtime is the total runtime of the algorithm.

Note that findings ≤ queries ≤ size, as each query generates at most one
finding and we query each possible finding at most once.
Benchmarks. We randomly selected 1,387 policies from a corpus of in-use poli-
cies. As we are interested primarily in difficult policies, we filtered out all poli-
cies that had size less than 10. That left 165 policies. Each policy was evalu-
ated on a 2.5 GHz Intel Core i7 with 16 GB of RAM. The runtime per finding
(runtime/findings) was less than 430ms for all policies except one outlier at
2,267 ms. The 165 policies ranged in size from 56 to 810 lines of pretty-printed
JSON with a median size of 91 lines.

Fig. 5. Actual findings vs. search space Fig. 6. Actual queries vs. search space

Results. Figures 5 and 6 show the number of findings and queries, respectively,
compared to the overall search space. Both graphs are sorted to be monotonic,
i.e. the x-axes are different. Figure 5 shows to what degree the findings sim-
plify the policy, with smaller numbers being better. This measure will always be
between 0 and 1 since 0 ≤ findings ≤ size. We see that 85% of policies achieve
a ratio of 0.5 or better, and 64% achieve a ratio of 0.2 or better. Figure 6 shows
how efficient the algorithm is in exploring its state space, with smaller numbers
being better. This measure is between 0 and 1 as 0 ≤ queries ≤ size. The
algorithm explores the entire search space for only 15% of the policies, with a
median ratio of 0.22.
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5 Related Work

The majority of tools available for access policy analysis are based on log analy-
sis or syntactic pattern matching, which are both imprecise (i.e. fail to account
for the complex logic in AWS policies) and unsound (i.e. fail to check for all
requests) and hence, can take months to discover that resources are susceptible
to potentially unintended access. Most formal methods based work has focused
on securing individual pieces of cloud infrastructure via low-level proofs of soft-
ware correctness e.g. Ironclad [6]. Cloud Contracts [4] are requirements over net-
work access control lists and routing tables. Cloud Contracts are verified using
the SecGuru tool [7] that compares network connectivity policies using the SMT
theory of bit vectors. In contrast, our work answers a larger question about the
entire enterprise-level security posture using a series of Zelkova queries [2].
The Fireman system [11] shows how to use Binary Decision Diagrams to ana-
lyze access control lists (ACL) in firewall configurations. The ACL configuration
language is more restricted than IAM’s and the tool is limited to a fixed set
of queries about which accesses (packets) are allowed. Most closely related to
our work is the Margrave system [9] which encodes firewall policies as propo-
sitional logic formulas, and then use SAT solvers to answer queries about the
policies. Margrave introduces the notion of scenario finding, and shows how to
produce an exhaustive set of scenarios that witness the queried behavior. The
IAM policy language is significantly richer, and hence, enumerating scenarios
is computationally intractable, which led us to the develop stratified abstrac-
tion as a means of summarizing policy semantics, thereby providing analysts
comprehensive visibility into the accessibility of resources, helping detect mis-
configurations, and ensuring that updates indeed fix the potential for unintended
accesses.
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