UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Analysis of brain atrophy and local gene expression in genetic frontotemporal dementia

Altmann, A; Cash, DM; Bocchetta, M; Heller, C; Reynolds, R; Moore, K; Convery, RS; ... Rohrer, JD; + view all (2020) Analysis of brain atrophy and local gene expression in genetic frontotemporal dementia. Brain Communications 10.1093/braincomms/fcaa122. (In press). Green open access

[thumbnail of fcaa122.pdf]
Preview
Text
fcaa122.pdf - Accepted Version

Download (2MB) | Preview

Abstract

Frontotemporal dementia is a heterogeneous neurodegenerative disorder characterized by neuronal loss in the frontal and temporal lobes. Despite progress in understanding which genes are associated with the aetiology of frontotemporal dementia, the biological basis of how mutations in these genes lead to cell loss in specific cortical regions remains unclear. In this work we combined gene expression data for 16,772 genes from the Allen Institute for Brain Science atlas with brain maps of gray matter atrophy in symptomatic C9orf72, GRN and MAPT mutation carriers obtained from the Genetic Frontotemporal dementia Initiative study. No significant association was seen between C9orf72, GRN and MAPT expression and the atrophy patterns in the respective genetic groups. After adjusting for spatial autocorrelation, between 1,000 and 5,000 genes showed a negative or positive association with the atrophy pattern within each individual genetic group, with the most significantly associated genes being TREM2, SSBP3 and GPR158 (negative association in C9orf72, GRN and MAPT respectively) and RELN, MXRA8 and LPA (positive association in C9orf72, GRN and MAPT respectively). An overrepresentation analysis identified a negative association with genes involved in mitochondrial function, and a positive association with genes involved in vascular and glial cell function in each of the genetic groups. A set of 423 and 700 genes showed significant positive and negative association, respectively, with atrophy patterns in all three maps. The gene set with increased expression in spared cortical regions was enriched for neuronal and microglial genes, while the gene set with increased expression in atrophied regions was enriched for astrocyte and endothelial cell genes. Our analysis suggests that these cell types may play a more active role in the onset of neurodegeneration in frontotemporal dementia than previously assumed, and in the case of the positively-associated cell marker genes, potentially through emergence of neurotoxic astrocytes and alteration in the blood-brain barrier respectively.

Type: Article
Title: Analysis of brain atrophy and local gene expression in genetic frontotemporal dementia
Open access status: An open access version is available from UCL Discovery
DOI: 10.1093/braincomms/fcaa122
Publisher version: https://doi.org/10.1093/braincomms/fcaa122
Language: English
Additional information: © The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).
Keywords: Frontotemporal dementia, atrophy, gene expression, astrocytes, imaging genetics
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Brain Repair and Rehabilitation
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neurodegenerative Diseases
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Genetics and Genomic Medicine Dept
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10108520
Downloads since deposit
89Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item