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Abstract

Protein drug formulations are commonly produced in the solid form due to their
degradation in solution. Drying may alter protein conformation and cause loss of
activity. Stabilising excipients, particularly disaccharides, are used to protect proteins
during drying. The mechanism of this protection remains unclear. The aims of this
work were to investigate the use of the combined technique of dynamic vapour sorption
and near infrared spectroscopy (DVS/NIRS) for the analysis of spray-dried
protein/trehalose formulations and to examine the mechanism of protein stabilisation by
trehalose upon drying.

Anhydrous forms of trehalose (a disaccharide) were produced according to methods in
the literature and by drying in the DVS analyser. Characterisation was performed using
Differential Scanning Calorimetry (DSC), X-Ray Powder Diffraction analysis (XRPD)
and Thermogravimetric Analysis (TGA). NIR spectra of samples were recorded. A
new anhydrous form of trehalose was produced in the DVS analyser. Assignment of
peaks in the NIR spectra for the polymorphic forms of trehalose was achieved.

Spray-dried trehalose was prepared by spray-drying solutions of o, o-trehalose dihydrate
in water, of varying concentration, using parameters appropriate for the drying of
proteins. Crystallisation was induced at 75 % RH and NIR spectra recorded during the
experiments. Spray-dried trehalose was also produced using parameters commonly
used for drying sugars. Crystallisation was induced by repetitive exposure to 75 % RH
in the DVS analyser and NIR spectra were recorded. Variability was observed in the
behaviour of trehalose samples dried from solutions of low trehalose concentration.
Small amounts of anhydrous trehalose in otherwise amorphous samples were identified
by NIRS. The cause of variability/anhydrous nature was proposed to be the less
uniform droplets atomised from solutions of low concentration. DVS/NIR allowed the
examination of the crystallisation of amorphous trehalose in real-time, which was
shown not to be instantaneous. The presence of anhydrous trehalose in otherwise
amorphous samples was proposed to act as a seed for subsequent crystallisation, causing
the formation of an unstable dihydrate with a tendency to an anhydrous state.

Co-spray-dried samples of catalase (a protein) and trehalose were prepared and
DVS/NIR experiments were performed in the same way as for spray-dried trehalose
samples. The activity of the samples was determined before and after the experiments.
Mathematically produced theoretical NIR spectra were compared with the spectra of co-
spray-dried samples. A lower ratio of catalase: trehalose was required for the effective
stabilisation of catalase during drying. Upon exposure to 75 % RH, (mimicking
storage), the presence of trehalose in the formulation was detrimental to the stability of
the protein. Catalase: trehalose 50:50 was the most effective ratio of components for
the overall stabilisation of catalase during/following spray drying. The data supported
the water replacement hypothesis of protein stabilisation upon drying because the
greatest interaction between components was expected at a 50:50 ratio and evidence of
hydrogen bonding between co-spray-dried components was shown in the NIR spectra.

Multiple Linear Regression (MLR) and Partial Least Squares Regression (PLSR) were
used to determine the feasibility of NIRS for the quantification of components in co-
spray-dried catalase/trehalose formulations. Feasibility was demonstrated and PLSR
gave a more specific calibration model.

The simultaneous use of DVS/NIRS was shown to be very useful to analyse sample
transitions in real-time. The method allowed conclusions to be drawn that would be
difficult, or impossible to arrive at by the use of either method in isolation.
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List of Abbreviations

cf.
DSC
DVS
FTIR

HPLC
IR

KF

LC
MLR
MTDSC
NIR(S)
PCA
PCR
PLS(R)
RH
SEM
SNV

compared with

Differential Scanning Calorimetry
Dynamic Vapor Sorption
Fourier-Transform Infrared Spectroscopy
Hour(s)

High Performance Liquid Chromatography
InfraRed

Karl-Fischer titration

Liquid Chromatography

Multiple Linear Regression

Modulated Temperature Differential Scanning Calorimetry
Near InfraRed (Spectroscopy)

Principal Component Analysis

Principle Component Regression

Partial Least Squares (Regression)
Relative Humidity

Scanning Electron Microscopy

Standard Normal Variate

Amorphous trehalose

Alpha anhydrous trehalose

Beta anhydrous trehalose

Beta-vac anhydrous trehalose
DVS-anhydrous trehalose

Glass Transition Temperature (°C)
o,a-Trehalose dihydrate
ThermoGravimetric Analysis

Kappa anhydrous trehalose

Kauzmann Temperature

Melting Temperature (°C)

X-Ray Powder Diffraction
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1 Introduction

Protein drug formulations are commonly produced in solid form due to the tendency of
proteins in solution to degrade. However, the processes involved in the production of
solid protein formulations such as spray drying or freeze drying can be detrimental to
the protein. A change in protein conformation can lead to a reduction or total loss of the

biological activity of the protein (Prestrelski ez al., 1993a).

It has been shown that certain organisms are capable of surviving almost complete
desiccation (Crowe, 1971). Large concentrations of disaccharides have been found in
such organisms and evidence has been provided to suggest that it may be these sugars,
in the amorphous (glassy) state that afford protection against protein denaturation upon
total removal of water. The mechanism of this preservation is a subject of debate and it

is this area of research that is the focus of this thesis.

This chapter serves to give a general overview of the literature surrounding the topic of
protein stabilisation to date. This will be followed by four chapters of results opening

with more detailed introductions based upon the specific content of each chapter.

1.1 Anhydrobiosis

Anhydrobiosis is the term used to describe the state in which organisms exist with as
little as 0.1 % water available in their tissues and remain viable (Crowe et al., 1992).
On addition of water, the cells of the anhydrobiotic organisms swell and recommence
active life as before their dehydration. Examples of such organisms include the
‘resurrection plants’, Craterostigma plantagineum and Selaginella lepidophylla (Roser,
1991). These plants demonstrate the ability to remain viable over tens of years in
extremely hot, dry conditions in a ‘metabolic stasis’ in which metabolic processes are
undetectable. Upon exposure to water, these plants are able to resume metabolic
activity and become as they were prior to their dehydration (Gil ef al., 1996). Other
such ‘anhydrobiotes’ include the cysts of the brine shrimp, Artemia, certain nematodes
and some fungal spores (Crowe et al., 1992). These organisms have been the
fascination of scientists for many years owing to the possibility of harnessing the
mechanism of anhydrobiosis to protect organisms or structures without this functional

ability to remain viable upon dehydration.
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In the investigation of the mechanism of anhydrobiosis, it was discovered that a
common feature of anhydrobiotic organisms was an increased intracellular
concentration of disaccharides, particularly trehalose (Crowe et al., 1992). It was
considered that the presence of trehalose, which became amorphous under conditions of

dehydration, was fundamental to the mechanism of anhydrobiosis (Crowe et al., 1992).

It has been known for several years that many sugars, not just trehalose, are useful as
excipients in terms of their biostabilisation capabilities. The biostabilisation properties
of trehalose in particular have received attention due to its abundance in nature in
organisms that are able to withstand environments of extreme dehydration. Alongside
research into the effect of various stabilising additives on the maintenance of
phospholipid membranes upon dehydration (an in vitro method to mimic the situation in
anhydrobiotic organisms, Crowe et al, 1984, Crowe and Crowe, 1988) similar
investigations have been carried out to investigate the effect of stabilising additives
during the drying of proteins (e.g. Carpenter and Crowe, 1988, 1989). In the
pharmaceutical industry, the stabilisation of proteins by excipients in the amorphous
state has been of interest in the fields of biotechnology and drug delivery, where the
drying of proteins is required for the necessary shelf life of the eventual product. This is

discussed in more detail later in this chapter.

1.2 The Crystalline vs. the Amorphous Form

A crystalline material is defined as one exhibiting long-range order and well-defined
molecular packing (Yu, 2001). Crystalline solids have defined thermodynamic
properties such as melting temperature and solubility and can exist in several
polymorphic or solvated forms (Hancock and Zografi, 1997). Such materials are more
physically and chemically stable compared with their amorphous counterparts, having
lower free energy and hence reduced molecular motion within the crystal lattice
(Hancock and Zografi, 1997).

Amorphous materials may exhibit short-range molecular order within their structures
but lack long-range order. The amorphous form is less stable both chemically and
physically than the crystalline form due to increased internal energy and molecular
motion (Yu, 2001). It has better dissolution properties (Shekunov and York, 2000) and

may retain some free water within the less ordered structure.
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Amorphous materials have been studied in the pharmaceutical industry for many years
owing to the storage of dry products in the amorphous state and the desirable
formulation properties of such forms, e.g. rapid dissolution. Latterly, materials existing
in the amorphous or glassy state have been the subject of much research as a result of
their apparent ability to stabilise biotechnology products such as peptides and proteins
(Franks et al., 1991).

1.3 Glass Formation
Hancock and Zografi (1997) described four main ways in which an amorphous material

can be produced:

Condensation from the vapour state.
Mechanical activation of crystalline material (through milling or compaction).

Precipitation from solution (during spray or freeze drying).

Wb

Supercooling of a liquid below its melting point.

The processes involved in the formation of partial or full amorphous character may be
accidental or deliberate, a reason for the latter taking place being to improve the
dissolution characteristics of the solid product. However, the formation of a glass is
usually described in the literature by the process of supercooling as described below

(Hancock and Zografi, 1997, Craig et al., 1999).

When a liquid is cooled, rather than supercooled, crystallisation occurs when the liquid
reaches its melting temperature, Ty, (Figure 1.1). Here, the molecules within the liquid
state have adequate time to order themselves into the lattice-like crystalline structure.
This exothermic process is accompanied by a decrease in the specific volume (V) of the
system and a decrease in enthalpy (H). Conversely, when a liquid is supercooled, i.e.
rapid cooling below the melting temperature, molecules within the liquid do not have
enough time to orientate themselves into the crystal lattice formation and attain
equilibrium. There is no change seen in volume or enthalpy as the liquid passes Tm,
and the liquid is termed a ‘supercooled liquid’. This state is also known as the ‘rubbery
state’, owing to the pliable characteristics of some polymers under these conditions.
The viscosity of supercooled liquids is in the region of 103-10" Pa.S although this
varies with temperature (Angell, 1995). If the supercooled liquid is cooled further, it

will eventually reach a point at which molecular mobility is so low that it may be
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termed as ‘fixed’ in the glassy state. This point is known as the glass transition
temperature (Tg). Below T, the material exists in the glassy state that is
thermodynamically unstable, having a viscosity of greater than 10'? Pa.S. The material
could theoretically be further cooled below T, to another temperature point known as
the Kauzmann temperature, Tx (Figure 1.1). This temperature is generally ~ 20K below
T, and is thought to represent the theoretical lower limit of Ty, where the excess entropy
of the system reaches zero (Kauzmann, 1948). This temperature has also been deemed
the Zero Mobility Temperature, Ty, when molecular motion is brought to a standstill

(Hatley, 1997).

Licy
Supercooled

Liquid
Enthalpy (H) Rubbery’
or
Specific State
Volume (V)

Temperature

Figure 1.1. A phase diagram to illustrate the changes in enthalpy or specific volume

of a model solid substance upon changes in temperature (adapted from Hancock and
Zografi (1997)).

1.4  Plasticisation and the amorphous to crystalline transition

As the glass transition of water is very low (-135 °C, Crowe et al., 1996), the presence
of water in a given amorphous system will serve as a plasticiser, lowering the overall T,
of the system, as demonstrated by Elamin et al., (1995). If the T, of an amorphous
system is reduced to below the experimental temperature, then it may be expected that
the system will be converted from the glassy to the rubbery state. In the rubbery state,
molecular mobility is increased to such an extent that crystallisation of the substance is

likely to occur, leading to destabilisation of the system. Such crystallisation will begin
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with a nucleus (seed) of one crystal within the otherwise amorphous system, triggering

the crystallisation of the bulk.

The understanding of the crystallisation kinetics of the system in the presence of
excipients and at the proposed water content is advantageous for the prediction of
behaviour and long-term stability of drugs formulated in the amorphous state (Shekunov
and York, 2000). The existence of a substance in more than one crystal form
(polymorphism) is important to consider during drug product formulation. Solid-state
recrystallisation must be suppressed in formulations of substances known to have more
than one polymorphic form, in order to be able to accurately predict the stability of the

formulation.

1.5 The Glassy State and Stability

Amorphous substances are generally thought to be unstable above their Tg owing to
increased molecular mobility, and stable below their Tg, when reduced molecular
mobility within the system prevents destabilisation of the disordered form due to its
higher viscosity. However, this general concept is not clear-cut, as molecular motion
still occurs in amorphous products below their glass transition temperatures (Angell,
1995, Streefland et al, 1998). Indefinite stability is therefore not guaranteed for
amorphous products stored below their Tg (e.g. Duddu et al., 1997b, Streefland et al.,
1998).

Hancock et al. (1995) described the molecular mobility of amorphous solids below their
glass transition temperatures. They measured the molecular mobility of three
substances commonly used in pharmaceutical formulations (indomethacin, polyvinyl
pyrrolidone (PVP)) and sucrose following storage at various temperatures and for
various time periods below their known glass transition temperatures. By the use of
Differential Scanning Calorimetry for such measurements, these researchers were able
to conclude that storage at a temperature at least 50 K below the Tg of each substance
was required in order to be certain that the molecular motions detected would be
negligible over the shelf life of the products. Similar research has been carried out to
investigate the stability of amorphous substances at varying storage temperatures with
respect to their glass transition temperatures (e.g. Elamin et al., 1995, Duddu et al,

1997b, Hatley, 1997). Such research is useful to allow the accurate prediction of the
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shelf life of an amorphous product at given temperatures/water contents (e.g. Duddu and
Dal Monte, 1997a; Hatley, 1997).

The glassy state is particularly important in the pharmaceutical industry, particularly
with respect to the bioavailability and stability of drug products. Many drug products
are formulated in the amorphous state to improve their dissolution characteristics and
hence improve their bioavailability. As the amorphous form has more associated
energy due to its more disordered state, it is more hygroscopic and hence more liable to

dissolve and degrade faster than the associated crystalline form.

Production techniques such as milling and compression can induce small amounts of
amorphous character into a formulation (Saleki-Gerhardt et al., 1994; Buckton et al.,
1995b). These amorphous, highly reactive regions tend to be on the surface of the
material and are available to interact with other components of the formulation. These
regions can have a large and often detrimental impact on the performance and stability
of the final product. As changes to the crystallinity of a powder surface can cause
batch-to-batch variation, the detection and quantification of such low levels of
amorphous content has been a subject of much research in the pharmaceutical industry
in the last decade (Briggner et al., 1994; Saleki-Gerhardt et al., 1994; Sebhatu et al.,
1994; Buckton and Darcy, 1995a; Buckton et al., 1995b; Hogan and Buckton, 2000; Al-
Hadithi et al., 2004). It is thought that the understanding of the properties of amorphous
systems is important to be able to predict the behaviour of pharmaceutical products in

which process-induced amorphous regions have been produced (Elamin et al., 1995).

Spray drying and freeze drying are methods used in the pharmaceutical industry to
produce stable formulations of biotechnological products such as proteins. With the
advent of gene therapy it is likely that the demand for stable biological formulations
will increase. Both drying techniques may produce amorphous products; therefore
issues surrounding the stability of the amorphous state over the time periods required
for the storage of medicines have become increasingly important. There are many texts
available that discuss the spray drying and freeze drying of biotechnology products
(Franks et al., 1991, Féldt and Bergenstéhl, 1994, Skrabanja et al., 1994, Carpenter et
al., 1997, Franks, 1998, Maa et al., 1997, Maa et al., 1998), all of which concentrate on

the variables most likely to have unfavourable effects on fragile biotechnology

31


























































































































































































































































































































































































































































































































































































































































































































































































