Y CHROMOSOME EFFECTS ON THE KINETICS OF SPERMATOGENESIS IN THE DEVELOPING MOUSE

by

MAXINE J SUTCLIFFE

Thesis submitted for the degree of

Doctor of Philosophy

at the University of London

University College (London)

February 1990

ProQuest Number: 10611089

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10611089

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, MI 48106 – 1346

This thesis is dedicated to my parents

William J and Doris L Atkins

with love and gratitude for everything

ABSTRACT

The mammalian Y chromosome has a fundamental role in the control of primary sex determination, diverting the undifferentiated bi-potential gonad to form a testis. In addition, the Y chromosome has been implicated in a number of other male-specific functions. This study aims to provide additional details of the function of the Y chromosome in spermatogenesis during development.

A quantitative analysis of germ cells in XOSxr^b mice compared to their XY±Sxr^b sibs, during the first two post-natal weeks, investigated the function of the spermatogenesis gene *Spy*. The spermatogenesis gene was shown to act on the survival and proliferation of early differentiating A spermatogonia by five days after birth.

By a quantitative analysis of germ cells in XOSxr^a and XYSxr^a mice - the latter identified by DNA analysis - throughout puberty, it was shown that there was no pre-meiotic cell loss. Cell degeneration was first observed at metaphase I in XOSxr^a testes, but earlier, at pachytene, in XYSxr^a mice. XYSxr^a testes are mosaic for normal and defective germ cell patches. The 'pairing site' hypothesis of Miklos (1974) states that there is a correlation between the number of 'unsaturated' pairing sites and the extent of spermatogenic impairment. It is suggested that the earlier spermatogenic breakdown in XYSxr^a testes, results from the presence of two unpaired univalents (as opposed to one in XOSxr^a) with the consequent increased number of 'unsaturated' sites.

The XSxr^a chromosome was provided with a pairing partner - the chromosomal product, Y^{del} , derived from XY^* mice - which could satisfy at least some of the pairing sites, without adding Y long arm material. The germ cells in $XSxr^aY^{del}$ testes overcame the block at MI seen in $XOSxr^a$ mice, and proceeded to sperm. All sperm, however, were abnormal, confirming previous findings that a sperm morphology gene (Smy), present on the long arm, is essential for fertility.

TABLE OF CONTENTS

	Page No
ABSTRACT	3
Table of Contents	5
List of Figures	8
List of Plates	11
List of Tables	13
CHAPTER 1 INTRODUCTION	
THE SEX CHROMOSOMES - A HISTORICAL PERSPECTIVE	15
1.1 Discovery of the X Chromosome	15
1.2 Discovery of the Y Chromosome	16
1.3 Mammalian Sex Chromosomes	17
1.4 The Y Chromosome, Testes and Hormones	18
1.5 Conclusion	19
2. THE MAMMALIAN Y CHROMOSOME	19
2.1 Y Chromosome Structure	20
2.1.1 Human	20
2.1.2 Mouse	21
2.2 Y Chromosome Function	22
2.2.1 Testis determination	24
2.2.2 Control of H-Y antigen expression	26 27
2.2.3 Spermatogenesis gene2.2.4 Other genes on the Y chromosome	2 <i>7</i> 28
2.2.5 The Y chromosome as a meiotic pairing partner	28 29
2.2.5.1 The pseudoautosomal region	30
2.2.5.2 Consequence of pairing failure	32
2.2.6 Conclusion	37

3. BACKGROUND TO PROJECTS	37
 3.1 Spermatogenesis 3.2 Sex-reversed (Sxr) 3.2.1 Sxr^a 3.2.2 Sxr^b 3.3 XO Development 3.4 XY* 	38 41 41 43 44 45
CHAPTER 2 A QUANTITATIVE ANALYSIS OF XOSxrb TESTES DUF THE FIRST TWO WEEKS AFTER BIRTH	RING
INTRODUCTION	48
MATERIALS AND METHODS	50
Karyotyping Histology Identification of Spermatogonia	50 51 51 52 58
•	59
DISCUSSION	82
CHAPTER 3 A QUANTITATIVE ANALYSIS OF SPERMATOGENESIS THROUGHOUT PUBERTY IN XOSxr ^a AND XYSxr ^a MICE	
INTRODUCTION	87
Mice Karyotyping and Histology Quantitative Analysis	89 89 89 90
RESULTS	92
DISCUSSION	111

CHAPTER 4 EVIDENCE THAT X-Y PAIRING AND A Y-LINKED SPERM MORPHOLOGY GENE ARE REQUIRED FOR NORMAL SPERMATOGENESIS

INTRODUCTION	117
MATERIALS AND METHODS	120
Mice	120
PGK Enzyme Assay	122
Karyotyping	122
Air Dried Testis Preparations	123
Synaptonemal Complexes	123
Histology	124
Quantitative Analysis	124
Sperm Count and Morphology	124
RESULTS	125
DISCUSSION	136
CHAPTER 5 GENERAL DISCUSSION APPENDICES	140
Appendix 2a. Breeding Cross to Produce XOSxrb Male Mice	145
Appendix 2b. Spermatogonia	146
Appendix 3a. Southern Blot Analysis	149
Appendix 4 a-g.Multi-generation Breeding Programme to	
produce XSxraydel and XOSxra Male Mice	161
Appendix 4h. Biochemical Microassay for the PGK-1 Enzyme	170
Acknowledgements	175
REFERENCES	177

LIST OF FIGURES

CHAPTER 1

- 1a. Schematic of the Y Chromosome in man and mouse.
- 1b. Outline of spermatogonial and meiotic stages in the developing mouse from embryo to adult.
- 1c. Schematic showing the Y^{*} chromosomal rearrangement in the mouse.

CHAPTER 2

- 2a. Histogram showing the XOSxr^b deviation (within litters) from the XY±Sxr^b body weight mean.
- 2b. Histogram showing the XOSxr^a deviation (within litters) from the XY±Sxr^a body weight mean.
- 2c. Graph showing mean weighted differences in testis weights for XOSxr^b and XY±Sxr^b mice for the period 19 1/2 32 1/2 dpc.
- 2d. Graph showing the mean number of Sertoli cells and germ cells per tubule cross-section in XOSxr^b and XY±Sxr^b mice for the period 19 1/2 32 1/2 dpc.
- 2e-f.Graphs showing the number of germ cells per 100 Sertoli cells for (e) T₁-prospermatogonia, and (f) T₂-prospermatogonia stages in XOSxr^b and XY±Sxr^b testes for the period 19 1/2 32 1/2 dpc.
- 2g-h.Graphs showing the number of germ cells per 100 Sertoli cells for (g) undifferentiated A spermatogonia, and (h) A₁/A₂ differentiated spermatogonia stages in XOSxrb and XY±Sxrb testes for the period 19 1/2 32 1/2 dpc.
- 2i-j. Graphs showing the number of germ cells per 100 Sertoli cells for (i) A₃/A₄ differentiated spermatogonia, and (j) Intermediate and B spermatogonia stages in XOSxr^b and XY±Sxr^b testes for the period 19 1/2 32 1/2 dpc.

- 2k-I. Graphs showing the number of germ cells per 100 Sertoli cells for (k) preleptotene/leptotene spermatocyte, and (l) zygotene/ pachytene spermatocyte stages in XOSxr^b and XY±Sxr^b testes for the period 19 1/2 32 1/2 dpc.
- 2m. Histogram showing the mitotic index according to germ cell stage of XOSxr^b and XY±Sxr^b mice.
- 2n. Graph of the mitotic index of A₁/A₂ spermatogonia in XOSxr^b and XY±Sxr^b mice during the period 19 1/2 32 1/2 dpc.
- 20. Graph showing the germ cell degeneration index in XOSxr^b and XY±Sxr^b mice during the period 19 1/2 32 1/2 dpc.

CHAPTER 3

- 3a. Graph showing the mean weighted differences in body weights for XY, XYSxr^a and XOSxr^a mice for the period 27 1/2 49 1/2 dpc.
- 3b. Graph showing the mean weighted differences in testis weights for XY, XYSxr^a and XOSxr^a mice for the period 27 1/2 49 1/2 dpc.
- 3c. Histogram showing the total number of germ cells per 100 Sertoli cells for XY, XYSxr^a and XOSxr^a mice during the period 27 1/2 49 1/2 dpc.
- 3d. Histogram showing the total number of germ cells per 100 Sertoli cells for XY, XYSxr^a and XOSxr^a mice according to germ cell stage.
- 3e. Graph showing the total number of pachytene spermatocytes per 100 Sertoli cells in XY, XYSxr^a and XOSxr^a testes during the period 27 1/2 49 1/2 dpc.
- 3f-g.Graphs showing the total number of (f) pooled diplotene/diakinesis/MI spermatocytes, and (g) diploid spermatids per 100 Sertoli cells in XY, XYSxr^a and XOSxr^a testes during the period 27 1/2 49 1/2 dpc.
- 3h-i. Graphs showing the total number of (h) haploid spermatids, and (i) condensed spermatids/spermatozoa per 100 Sertoli cells in XY, XYSxr^a and XOSxr^a testes during the period 27 1/2 49 1/2 dpc.
- 3j. Graph showing the germ cell degeneration index of meiotic and post-meiotic germ cells in XY, XYSxr^a and XOSxr^a mice for the period 27 1/2 49 1/2 dpc.

3k. Histogram showing the degeneration index of meiotic and post-meiotic germ cells in XY, XYSxr^a and XOSxr^a mice according to germ cell stage.

CHAPTER 4

- 4a. Schematic showing the chromosomal products following pairing and exchange between X and Y* chromosomes at meiosis.
- 4b. Histogram showing the total number of germ cells per 100 Sertoli cells in XOSxr^a and XSxr^aY^{del} mice according to germ cell stage.
- 4c. Regression analysis of testis weights plotted against total germ cell number in three XOSxr^a and three XSxr^aY^{del} mice.

<u>APPENDICES</u>

- Ap3a. Schematic showing capillary blot apparatus.
- Ap4h. Biochemical reaction of the PGK-1 enzyme assay.

LIST OF PLATES

CHAPTER 2

2a-c. Histological sections showing stages of:

- a. T₁-prospermatogonia
- b. T₂-prospermatogonia
- c. Undifferentiated A spermatogonia

2d-f. Histological sections showing stages of:

- d. A₁ differentiated spermatogonia
- e. A2 differentiated spermatogonia
- f. A₃ differentiated spermatogonia

2g-i. Histological sections showing stages of:

- g. A₄ differentiated spermatogonia
- h. Intermediate spermatogonia
- i. B spermatogonia
- 2j. Histological sections of (i) XOSxr^b, (ii) XY±Sxr^b, and (iii) XOSxr^a testes at 24 1/2 dpc (5dpp).
- 2k. Histological sections of (i) XOSxr^b, (ii) XY±Sxr^b, and (iii) XOSxr^a testes at 27 1/2 dpc (8dpp).
- 21. Histological sections of (i) XOSxr^b, (ii) XY±Sxr^b, and (iii) XOSxr^a testes at 29 1/2 dpc (10dpp).

CHAPTER 3

- 3a. Histological sections showing the pachytene stage in (i) XY, (ii) XYSxr^a, and (iii) XOSxr^a testes.
- 3b. Histological sections showing the condensed spermatid/ spermatozoa stages in (i) XY, (ii) XYSxr^a, and (iii) XOSxr^a testes (low power).
- 3c. Histological sections showing the condensed spermatid/ spermatozoa stages in (i) XY, (ii) XYSxr^a, and (iii) XOSxr^a testes (high power).

CHAPTER 4

- 4a. Mitotic spread showing the karyotype of an XSxr^aY^{del} mouse.
- 4b-d.Synaptonemal complex preparations of (b) XY, (c) XOSxr^a, and (d) XSxr^aY^{del} pachytene spreads.
- 4e. Histological sections showing the condensed spermatid/ spermatozoa stages in (i) XOSxr^a, and (ii) XSxr^aY^{del} testes.
- 4f. Sperm head morphology in (i) XY, and (ii) XSxraYdel mice.

APPENDICES

- Ap3a. Electrophoresed agarose gel with *Eco* R1 digested DNA from XYSxr^a and XY mice.
- Ap3b. Autoradiograph of Southern blotted genomic DNA samples, probed with ³²P labelled pSX1 insert, from XYSxr^a and XY mice.

LIST OF TABLES

CHAPTER 2

- 2a. (i) Mean body weights for XOSxr^b and XY±Sxr^b mice and the estimated difference between them for the period 19 1/2 32 1/2 dpc.
 - (ii) Mean body weights for XOSxr^a and XY±Sxr^a mice and the estimated difference between them for the period 19 1/2 33 1/2 dpc.
- 2b. (i) Mean testis weights for XOSxr^b and XY±Sxr^b mice and the estimated difference between them for the period 19 1/2 32 1/2 dpc.
 - (ii) Mean testis weights for XOSxr^a and XY±Sxr^a mice and the estimated difference between them for the period 19 1/2 33 1/2 dpc.

CHAPTER 3

- 3a. (i) Mean body weights for XYSxr^a and XY mice and the estimated difference between them for the period 27 1/2 49 1/2 dpc.
 - (ii) Mean body weights for XOSxr^a and XY mice and the estimated difference between them for the period 27 1/2 49 1/2 dpc.
- 3b. (i) Mean testis weights for XYSxr^a and XY mice and the estimated difference between them for the period 27 1/2 49 1/2 dpc.
 - (ii) Mean testis weights for XOSxr^a and XY mice and the estimated difference between them for the period 27 1/2 49 1/2 dpc.

CHAPTER 4

- 4a. Table showing testis weights and sperm counts for three XOSxr^a and four XSxr^aY^{del} adult mice.
- 4b. Table showing percentage X Y dissociation scored from metaphase I testis preparations in four XSxr^aY^{del} mice.

CHAPTER 1

INTRODUCTION

1. THE SEX CHROMOSOMES - A HISTORICAL PERSPECTIVE

Genetical sex determination is characterised by the establishment of male or female sex at conception and involves some hereditary material (Deeming and Ferguson, 1988). The concept that this hereditary material might be certain chromosomes dates back to Mendel, 1865 (published 1866 - reviewed by Sturtevant, 1965) who wrote to Nageli suggesting that sex determination might follow the same segregational pathway as other inherited characteristics.

Whilst many plants, a few lower animals, and several fish species, such as teleosts, remain synchronously or functionally hermaphroditic because no particular chromosome has accumulated enough sex-determining factors to qualify as a sex chromosome, most species are gonochorists and do possess a chromosomal sex-determining mechanism (Ohno, 1967).

1.1 <u>Discovery of the X Chromosome</u>

The description 'X' was assigned to a chromatin element observed by Henking (1891 - reviewed by Mittwoch, 1967) which passed to only half of the spermatozoa in the plant bug *Pyrrhocoris apterus*. Montgomery (1898 - reviewed by McClung, 1902) recognised the element as a chromosome, but it was McClung's (1902) studies of the sex-determining accessory X chromosome and spermatogenesis in Orthoptera and Hemiptera that heralded the birth of the chromosome theory of sex determination. Stevens (1905 - reviewed by Mittwoch, 1973) observed dimorphic sperm in the mealworm *Tenebrio molitor*, whilst Wilson (1905) investigated members of the Hemiptera group and found that males had

one less chromosome than females. He concluded, therefore, that males determined the sex of offspring by donating X or O gametes. From this simple XX-XO sex-determining system arose the concept of a heterogametic sex, two types of gametes, and a homogametic sex with one type of gamete. Simultaneously, Correns (1907 - reviewed by Mittwoch, 1967) working with *Bryonia*, also provided definite evidence of the heterogametic male role in the inheritance of sex in plants.

1.2 Discovery of the Y Chromosome

The terms 'Y' and 'sex' chromosome were introduced by Wilson (1909) to describe the observation in various insects that one of a pair of chromosomal bodies showed a size difference in males as opposed to that seen in females. He argued that there must be a causal connection between these chromosomes and sex, although he believed the number of X chromosomes, rather than the Y chromosome, determined sex; a theory that proved correct for the insect species he observed. Experiments on XXY Drosophila melanogaster were carried out by Morgan (1910, 1911) and Bridges (1914, 1916 - reviewed by Whitehouse, 1969) who confirmed Wilson's theory of sex determination as a function of the X chromosome to autosome ratio, with males XY or XO and females XX or XXY. Although the Y chromosome in Drosophila melanogaster does not have a role in sex determination, it is nonetheless essential to male fertility. Stern (1929 - reviewed by Hess and Meyer, 1968) recognised that factors on the Y were involved in the formation of normal functioning sperm and by the late 1930's, five fertility genes were identified on the Y chromosome (Neuhaus, 1939). More recently, it has been shown that there are at least five regions on the long arm and two on the short arm of

the *Drosophila melanogaster* Y chromosome, which are involved in spermatogenesis (Brosseau, 1960; Hess and Meyer, 1968; Hess, 1970; Baker and Lindsley, 1982).

1.3 Mammalian Sex Chromosomes

The latter part of the 19th and early 20th century also saw the birth of mammalian cytogenetics. Tafani (1889 - reviewed by Evans, 1981), was the first to score the haploid chromosome number as 20 in the mouse, and although some numerical discrepancy followed, this chromosome number was later confirmed by Long (1908), Painter (1925) and Cox (1926). The 40, XY karyotype was first described by Crew and Koller (1932) with the Y described as the shortest chromosome in the complement.

Attempts to study human chromosomes were first made in 1882, with the human X chromosome described in the early 1900's (Flemming, 1882; Guyer, 1910 and Winiwater, 1912 - all reviewed by Mittwoch, 1967). Wieman (1917 - reviewed by Painter, 1923) and Painter (1924 - reviewed by Mittwoch, 1967) provided evidence for a Y, as well as an X chromosome, but the correct autosome number was to remain in dispute for a further thirty years. Although in 1949, Matthey reviewed sex chromosomes in a variety of vertebrates, the Y chromosome was still considered unnecessary for male determination (Matthey, 1949 - reviewed by Mittwoch, 1967).

It was not until 1956, that Tjio and Levan demonstrated that there were 46 chromosomes in man comprising 22 pairs of autosomes and one pair of sex chromosomes, XY in males and XX in females. The human

chromosome number was confirmed shortly after by Ford and Hamerton (1956). Three years later, Ford *et al.* (1959) and Welshons and Russell (1959) established that in humans and mouse, an XO constitution was female, and concluded that to be male required a Y chromosome. The original belief that sex determination in humans was controlled by the X to autosome ratio, therefore, proved incorrect, and the importance of the Y chromosome was established.

This XX-XY sex-determining mechanism is now known to prevail in virtually all eutherian mammals, with the male the heterogametic sex; the few exceptions involve multiple or aberrant sex chromosomes (Fredga, 1988). Another system known as the ZW-WW sex chromosomal mechanism, in which the female is the heterogametic sex, is the form of sex determination for birds, moths and some reptiles and amphibians (Ohno, 1967).

1.4 The Y Chromosome, Testes and Hormones

In 1953, Jost's experiments involving castration and hypophysectomy of foetal rabbits conclusively demonstrated that testicular factors (androgens and the 'Mullerian regression factor') were responsible for masculinisation of foetal structures. Female organogenesis was shown to result from the mere absence of testes, hence the concept that male determination equated to testis determination (Jost, 1953; Jost, 1970; Jost *et al.*, 1973). The role of the Y chromosome was thus established to be that of testis determination.

1.5 Conclusion

From findings based on insect experiments, it was originally assumed that in mammals also, the Y chromosome had no role in sex determination. Half a century later, it was acknowledged that a testis-determining factor on the mammalian Y chromosome diverted the indifferent foetal gonad to form a testis, but no other function was ascribed to it. During the last few decades, however, following research mainly in mouse and man, the Y chromosome has been implicated in a number of other male-specific morphogenetic and fertility functions.

2. THE MAMMALIAN Y CHROMOSOME

There are two functionally distinct parts to the mammalian Y chromosome. The Y chromosome pairing and exchange or pseudoautosomal region (see Section 2.2.5.1) with an equivalent region on the X chromosome, and the Y-differential region which is normally protected from any recombination with the X chromosome. This differential region carries Y-specific genes, including the gene for testis determination, and is unique in the mammalian genome because it is perpetually monosomic.

2.1 Y Chromosome Structure

Three types of genetic mapping - deletion, meiotic and physical - have been used to construct a structural and functional plan of the Y chromosome.

2.1.1 <u>Human</u>

In man, the Y chromosome comprises approximately 2% of the haploid male genome (Laird, 1971) and has a long arm, Yq, and a short arm, Yp. The pairing and exchange region lies at the distal tip of the Y short arm (Burgoyne, 1982; Pritchard *et al.*, 1987) (see Section 2.2.5.1) and the boundary between the pseudoautosomal and differential sectors is defined by *Alu* repeat sequences which provide an abrupt change between the two regions (Ellis *et al.*, 1989). The testis-determining factor lies proximal to this boundary on Yp (see Section 2.2.1). The Y centromeric region, like centromeres throughout the genome, comprises alphoid satellite repeat sequences (Wolfe *et al.*, 1985; Tyler-Smith, 1987).

The human Y chromosome can also be divided into two equal sized portions on the basis of staining characteristics. The euchromatic region spans Ypter - q11 and the heterochromatic region Yq11 - qter (Goodfellow et al., 1985). More than 50% of the Y chromosome consists of tandemly repeated sequences - 'junk' DNA - with no apparent function (Goodfellow et al., 1985). These sequences are concentrated in the Yq heterochromatin, such that individuals lacking this heterochromatic region can be normal fertile males (Smith et al., 1987; Muller, 1987a).

Whilst there is complete sequence homology between distal Xp and distal Yp consistent with a pairing and exchange region (Bishop *et al.*, 1984; Muller, 1987a; Petit *et al.*, 1988), a larger region of 99% sequence homology has been identified between Yp and the X long arm, Xq13.2 - 21.2 (Page *et al.*, 1984; Vergnaud *et al.*, 1986). This Xq and Yp homology is evidence for a 'recent' (in evolutionary terms) large

transposition between the sex chromosomes. The Y chromosome also shares sequence homology with a number of autosomal regions (Bishop et al., 1984; Affara et al., 1986; Smith et al., 1987).

2.1.2 Mouse

All chromosomes in the mouse genome have been described as telocentric including the Y chromosome (Nesbitt and Francke, 1973; Eicher, 1981), despite Ford's (1966) observations of the Y 'short arm' morphology in mitotic preparations. However, Ford's (1966) view has recently been vindicated (Roberts *et al.*, 1988; McLaren *et al.*, 1988). Unlike the situation in humans, the mouse pairing and exchange region is located distally on the long arm (Burgoyne, 1982). The information for testis determination is located in the short arm (Roberts *et al.*, 1988; McLaren *et al.*, 1988). This means that in the mouse, the testis determinant (*Tdy*) is at the opposite end of the Y to the pairing and exchange region, so that unlike the situation in humans, there is no danger of accidental transfer of *Tdy* to the X during male meiosis.

Much of the sex-determining region of the mouse Y has sequence homology to a Bkm satellite sequence isolated from the heterogametic female banded krait snake (Singh *et al.*, 1981; Jones and Singh, 1981) (see Section 3.2.1). Such sequence homology has been shown to be highly conserved in most vertebrates, especially mammals, in a sex specific manner (Jones and Singh, 1981).

The mouse Y long arm has a large heterochromatic region, as in man, and much of this region has been presumed to be 'junk' DNA. A viral probe,

M720, recognises two repeat retroviral sequences comprising approximately 3% and 10% of the mouse Y chromosome, the latter, MuRVY, present as 300 or more copies of tandem repeats (Eicher *et al.*, 1983; Eicher and Washburn, 1986). Blatt *et al.* (1983) have also identified Y chromosome murine virus-related sequences. A genomic sequence, the pY353B insert, cloned by Bishop and Hatat (1987), occurs in multiple copies along the length of the mouse Y long arm. As in man, large deletions of long arm heterochromatin are compatible with fertility. However, mice with such deletions are prone to higher than normal levels of X-Y non-disjunction (Burgoyne - personal communication) and have a higher incidence of abnormal sperm (Moriwaki *et al.*, 1988) (see Section 2.2.4). A schematic labelled Fig. 1a, outlines the structural information known to date in man and mouse.

Fig. 1a. Schematic showing the Y chromosome in mouse and man. (after Craig et al., 1987; Weissenbach et al., 1989) All sequences indicated on the mouse long arm are thought to be multiple copy sequences. MIC2-Y in humans and Sts in mouse are both pseudoautosomal genes. The STS pseudogene on the Y chromosome in humans has been variously assigned to the distal region of the long arm (Craig and Tolley, 1986) and Yq11 (Fraser et al., 1987)

2.2 Y Chromosome Function

In spite of its small size, absence of extensive recombination and minimal genetic markers, the Y chromosome has been the subject of extensive classical (from phenotypic level to the gene and DNA level) and molecular (from the DNA sequence to the phenotypic and functional level) genetic investigations to determine its functional role (Goodfellow *et al.*, 1985; Weissenbach, 1988).

2.2.1 <u>Testis determination</u>

Deletion mapping and pedigree analysis in humans has been possible because sex chromosome mutations are generally not lethal. Using a cytogenetic approach, Jacobs and Strong (1959) constructed deletion maps of XX males, who usually retain a fragment of Y chromosome within their genome, and XY females who usually have deletions of Y chromosome material. They postulated that male determination in humans resulted from a gene, or genes, located on the short arm, Yp. Both cytogenetic and molecular techniques have since confirmed the assignment of the testis determination factor *TDF* to the distal Yp region (Rosenfeld *et al.*, 1979; Davies, 1981; Magenis *et al.*, 1982; Fryns *et al.*, 1985; Buhler, 1985; Vergnaud *et al.*, 1986; Disteche *et al.*, 1986; Pritchard *et al.*, 1987; Muller, 1987b). (Note: It is accepted practice that genes assigned to humans are coded by capitals, e.g. *TDF*, whereas those for the mouse have only an initial capital, e.g. *Tdy*).

In 1987, Page *et al.* (1987a) identified a gene, close to the human pseudoautosomal boundary, which was generally accepted to be the testis-determining factor *TDF*. This gene has been given the label *ZFY*

because it encodes a protein with thirteen zinc fingers. One of the prerequisites for a candidate testis-determining gene, was high sequence conservation on the Y chromosome in other mammals and ZFY appeared to amply satisfy this criterion (Page *et al.*, 1987a). In addition to ZFY, a highly homologous region was found on the X chromosome and designated ZFX (Page *et al.*, 1987a; Page, 1988).

Concurrent with human studies, the testis-determining gene *Tdy* in mouse has also been the subject of investigation via Y chromosome rearrangements, partial deletions and molecular studies (Bishop et al., 1987a; Burgoyne, 1988). Recent molecular evidence has demonstrated that *Zfy*, which has 80% homology to human *ZFY*, is present in two copies *Zfy-1* and *Zfy-2* in mouse, both of which map to the proximal short arm and are present in the sex-reversed factor Sxr^a (see Section 3.2.1) (Roberts *et al.*, 1988; McLaren *et al.*, 1988; Mardon *et al.*, 1989). However, male determination can occur in the absence of *Zfy-2* (Mardon and Page, 1989; Nagamine *et al.*, 1989). A homologous sequence on the X chromosome, *Zfx*, and an autosomal sequence, *Zfa*, have also been described (Page, 1988).

Despite its Y-specific and highly conserved nature, questions remained as to whether ZFY was equivalent to TDY. A small number of rare XX(Y-) human males have been recorded (Vergnaud et al., 1986; Ferguson-Smith and Affara, 1988) and it has been suggested that male determination may result from a cascade of genetic events or alternatively, be the result of a complex interaction between the Y and one or more autosomes (Page, 1986; Bishop et al., 1987a; McLaren, 1987b; de la Chapelle, 1987; Craig et al., 1987; Eicher, 1988; Page,

1988). It has even been hypothesised that testis determination may occur in the absence of a Y chromosome in XX hermaphrodites, although these individuals have not been probed for the Y-specific pseudoautosomal boundary sequences (Waibel *et al.*, 1987; Ferguson-Smith and Affara, 1988; Mittwoch, 1988). Findings in marsupials (who have an XX-XY sex-determining mechanism) that *ZFY* homologues are autosomal, rather than on the Y chromosome, did nothing to inspire confidence in the testis-determining role of *ZFY* (Renfree and Short, 1988; Sinclair *et al.*, 1988; Hodgkin, 1988).

The most recent molecular and transcriptional evidence strongly opposes ZFY and Zfy-1 as the primary testis-determining gene in man and mice (Palmer et al., 1989a; Koopman et al., 1989). However, Burgoyne (1989) has suggested that in man, ZFY together with ZFX may nevertheless be necessary to ensure that the primary testis-determining gene can pre-empt the ovarian pathway.

2.2.2 Control of H-Y antigen expression

The H-Y antigen was originally defined by female rejection of male skin grafts from within the same inbred strain in mice. A gene required for H-Y antigen expression has been assigned to the Y chromosome but not yet characterised (Eichwald and Silmser, 1955; Billingham and Silvers, 1960). Male specific 'H-Y' antigen has subsequently been detected serologically (Goldberg *et al.*, 1971) and by cytotoxic T-cell assay (Goldberg *et al.*, 1973; Gordon *et al.*, 1975).

Conflicting results and controversy centred on whether the transplantation and serological methods recognised the same or different antigens (Melvold et al., 1977; Ohno, 1985; Wiberg, 1985; Stewart, 1986) and whether H-Y was the primary male determinant (Wachtel et al., 1975; Wolf et al., 1980; McLaren 1987a; McLaren, 1987b). consensus of opinion to date is that the transplantation and cytotoxic Tcell assay detect the same antigen. This antigen retains the label H-Y. The Y-linked gene which is required for expression of H-Y maps within deletion interval 4B-7 on the human Y (TDY maps to interval 1) (Wiberg, 1987; Simpson et al., 1987a) and along with Tdy, to the mouse Y short arm (Simpson et al., 1986; Simpson et al., 1987b). The serologicallydetected antigen may be distinct from H-Y and has been variously referred to as: SDM/SDMA = serologically-determined male antigen, Sxs/Ssxs = serological sex-specific antigen, and possibly also Hye = histocompatibility Y expression antigen (reviewed by Goldberg, 1988) and MEA = male enhanced antigen (Lau, 1987). Although it remains unclear whether H-Y and SDM are separate antigens, the finding that XXSxrb male mice (see Section 3.2.2) lack male specific antigen(s) by transplantation (Simpson et al., 1986), cytotoxic T-cell (Simpson et al., 1986) and serological tests (Goldberg, 1988), excludes both antigens from being required for primary male sex determination.

2.2.3 Spermatogenesis gene

From a conservational viewpoint and from findings of fertility factors on the *Drosophila melanogaster* Y chromosome, a multi-functional role for the mammalian Y chromosome might well be expected (Hess, 1970; Ohno, 1967; Vogt, 1989). Recent molecular investigations suggest that many genes are associated with HTF islands (Hpa II tiny fragment sequences)

and approximately 40 of these have been estimated for the human Y chromosome (Wolfe, 1987). So far, less than 10 Y genes have been described.

Yq deletions in humans have often been correlated with azoospermia and led to suggestions that a spermatogenesis gene may be located on the Y chromosome long arm (Neu *et al.*, 1973; Tiepolo and Zuffardi, 1976; Yunis *et al.*, 1977; Alvesalo and de la Chapelle, 1981; Affara *et al.*, 1986). The Y chromosome was first implicated in spermatogenesis in mice by Evans *et al.* (1969). Evidence for a spermatogenesis gene, *Spy*, acting germ cell autonomously, was provided by Levy and Burgoyne (1986b) in their study of XO germ cells in XO/XY/XYY mosaics. From the germ cell block apparent in histological sections of XOSxr^b compared to XOSxr^a testes, it was concluded that *Spy* was present in the Sxr^a region (but missing from Sxr^b) and was therefore located in the mouse Y short arm (Burgoyne *et al.*, 1986; McLaren *et al.*, 1988) (see Section 3.2.2). It is not yet clear whether the spermatogenic defect in men with Yq deletions is equivalent to that seen in XOSxr^b mice.

2.2.4 Other genes on the Y chromosome

Additional genes implicated on the human Y chromosome relate to body growth, skeletal maturation and dental development (Tanner *et al.*, 1959; Alvesalo and de la Chapelle, 1981; Lau *et al.*, 1989), suppression of Turner's stigmata (Jacobs and Ross, 1966; Rosenfeld *et al.*, 1979; Fryns *et al.*, 1985; Buhler, 1985, Levilliers *et al.*, 1989) and gonadoblastoma predisposition in dysgenetic gonads (Page, 1987). Recently, Y-encoded RNA transcripts have been found in human and

mouse testes which are thought to be part of a family of testis-specific transcripts whose function is, as yet, unknown (Arnemann *et al.*, 1987; Bishop *et al.*, 1987a; Bishop *et al.*, 1987b).

In mice, comparing different Y chromosomes on the same genetic background, demonstrated Y-linkage for genes involved in testis size (Hayward and Shire, 1974; Herrick and Wolfe, 1977), predisposition to non-disjunction (Beamer et al., 1978), sexual/aggressive behaviour and androgen level/sensitivity (reviewed by Stewart, 1983; Jutley and Stewart, 1985) and sperm head development (Krzanowska, 1971; Krzanowska, 1976; Stewart, 1983). Recent evidence from Moriwaki et al. (1988) investigating mice with a mid-region long arm deletion, revealed more than 70% of spermatozoa with abnormal head shape, confirming that a sperm head morphology gene, probably present in multiple copies, is located on the Y long arm.

An XY to XX developmental difference has been recorded in CD1 mouse embryos at the blastocyst stage (Tsunoda *et al.*, 1985), with males ahead of females. This difference is controlled by the Y chromosome (Burgoyne - personal communication). XY embryos are also more advanced at early somite stages (Seller and Perkins-Cole, 1987) but in this case the Y does not appear to be responsible (Burgoyne - personal communication).

2.2.5 The Y chromosome as a meiotic pairing partner

As well as a direct genetic function in the male germ line, the Y chromosome provides a pairing partner for the X chromosome during meiotic prophase (Hulten, 1974; Burgoyne, 1987a).

2.2.5.1 The pseudoautosomal region

Autosomal chromosome pairing is an essential meiotic mechanism ensuring successful recombination, segregation and fertility (Federley, 1931 - quoted by Miklos, 1974; Darlington, 1937 - quoted by Burgoyne, 1982; Hulten, 1974). The hypothesis that pairing and exchange is a necessary feature of sex chromosomes also, was proposed by Koller and Darlington (1934) and was reiterated by Burgoyne (1982). With the advent of silver staining techniques and visualisation of meiotic pachytene cells both at the light and electron microscope levels, X and Y synaptonemal complexes were identified, and sequence homology was inferred (Moses et al., 1975; Polani, 1982). Unfortunately, it is now known that the formation of a synaptonemal complex per se, whilst being an essential prerequisite for recombination, neither necessarily implies homology nor ensures that a chiasma has occurred (Chandley et al., 1984). Despite late challenges to the concept of regular X-Y exchange (Ashley, 1984; Ashley, 1985), proof that X-Y crossing over is a regular event in man and mouse has now been obtained.

By linkage analysis and molecular techniques, the short arms of the human X and Y chromosomes have been shown to have both non-homologous and homologous regions (Cooke et al., 1985; Simmler et al., 1985). Both homology and recombination have now been demonstrated by sex linkage analysis of three pseudoautosomal loci (Rouyer et al., 1986), by mapping of the pseudoautosomal region (Page et al., 1987b) and by cloning of the pseudoautosomal gene, MIC2, in man (Goodfellow et al., 1988). MIC2 codes for the cell surface antigen 12E7 (Buckle et al., 1985; Goodfellow et al., 1986; Goodfellow and Goodfellow, 1987; Goodfellow et al., 1987). The X and Y copies of MIC2

are homologous (Darling et al., 1986) and in situ hybridisation has assigned MIC2 to Xp22.3 and Yp11-pter respectively (Pritchard et al., 1987; Goodfellow et al., 1988).

In mice, the steroid sulfatase gene, *Sts*, has been shown to be pseudoautosomally located with functional X and Y copies (Keitges *et al.*, 1985). Breeding experiments using high and low activity *Sts* alleles have proved unequivocally that there is at least one obligatory cross-over event between the X and Y chromosomes at meiosis (Keitges *et al.*, 1985; Nagamine *et al.*, 1987). A *Mov15* viral insert in a strain of transgenic mice (Harbers *et al.*, 1986), and recent linkage analysis, has indicated more than one cross-over may be possible in this region (Soriano *et al.*, 1987).

Although in humans *STS* is X-linked rather than pseudoautosomal, there is a non-functioning Y-chromosomal pseudogene at Yq11 (Craig and Tolley, 1986; Fraser *et al.*, 1987). It is thought that an inversion event may have removed the Y copy of *STS* from the pseudoautosomal region, and that at the same time, brought *TDF* close to the pseudoautosomal boundary (Fraser *et al.*, 1987; Craig *et al.*, 1987).

The size of the pseudoautosomal region is estimated at only 5 x 10^6 base pairs in length, so a recombination rate at meiosis in this region is likely to be ten times higher in males than the rate for the genome in general. This factor is a persuasive indicator that, in spite of the limited size of the region, not just pairing, but the recombinational event may be of paramount importance in males (Rouyer *et al.*, 1986; Goodfellow and Goodfellow, 1987).

31

2.2.5.2 Consequence of pairing failure

Disruption of sex chromosome pairing, like that observed for autosomes, is associated with varying degrees of spermatogenic breakdown. Findings such as those of Beechey (1973) of spermatogenic failure in an XY mouse with 100% non-association of sex chromosomes, and of Chandley *et al.* (1976) who found a positive correlation between X-Y non-association and infertility, have lent support to the hypothesis that X-Y chromosome pairing is a prerequisite for normal spermatogenesis (Searle, 1982).

By what mechanism could failure of sex chromosome bivalent formation at meiosis lead to spermatogenic faults? Two major models were proposed in the early 70's relating to spermatogenic failure. Lifschytz and Lindsley (1972), reviewing X-autosome translocations, concluded that since the X chromosome in all organisms with heteromorphic X and Y chromosomes was positively heteropycnotic, (which is correlated with late replication and inactivation - Monesi, 1965; Kofman-Alfaro and Chandley, 1970), Xinactivation was a basic meiotic control mechanism at the chromosome level. They proposed that X-inactivation was a necessary requirement for spermatogenesis and anything that interfered with this, e.g. Xchromosome translocations, would result in a disturbance to spermatogenesis. Further studies of autosomal translocations, led Foreit and Gregorova (1977) and Foreit (1982) to suggest that delays at the pachytene stage could result in non-homologous sex chromosome to autosome associations, which would in turn interfere with X-inactivation, and therefore lead to spermatogenic impairment. This model cannot readily be extended to explain spermatogenic failure associated with X-Y

dissociation and X univalence. The second model was proposed by Miklos (1974), who extrapolated data and rationale from his extensive studies of chromosome pairing in *Drosophila melanogaster*. He postulated that chromosomes have pairing sites which must interact and become 'saturated' for normal post-meiotic development. Any situation, such as sex chromosome univalence, leading to 'unsaturated' sites, would result in spermatogenic disruption and sterility. The Miklos model can be put to the test when observing a number of anomalous sex chromosome situations.

XYY individuals frequently have unpaired sex chromosomes at meiosis, so this potentially seems to be a good test of the pairing hypothesis. XYY sex chromosome aneuploidy was first recorded in humans by Sandberg et al. (1961) and has subsequently been identified in mouse and rat (Cattanach and Pollard, 1969) as well as various other mammals (reviewed by Searle and Wilkinson, 1986; Hale and Greenbaum, 1986). The fertility in humans ranges from near normal to severe impairment (Skakkebaek et al., 1973; Baghdassarian et al., 1975) with only two recorded cases of transmission of a YY gamete giving rise to XYY sons (Tzoneva-Maneva et al., 1966; Sundequist and Hellstrom, 1969). The spermatogenic impairment in man is thought to be due, at least in part, to disruption of chromosome pairing (Chandley et al., 1984). Although there are numerous examples stating that the second Y is absent in surviving germ cells of XYY men, Hulten and Pearson (1971), using a flourescent staining technique have identified two Y chromosomes in a greater proportion of germ cells than had previously been estimated. It is probable that many XYY men have a mosaic germ line and that the degree of fertility is proportional to the number of normal XY cells in their testis tubules.

By contrast, XYY mice are usually sterile. Rathenberg and Muller (1973) and Evans *et al.* (1978) have reported that XYY mice show severe spermatogenic failure and oligospermia. Rathenberg and Muller (1973) observed predominantly Y-Y and X-Y bivalents with X and Y univalents at meiosis and more than 50% loss of spermatocytes between metaphase I and metaphase II. Whilst four XYY mice examined by Evans *et al.* (1978) showed all types of associations, five times more XY, Y than XYY cells were observed at MI. Only one of these males was transiently fertile, and even in this individual the sperm count was only 1% of normal (Evans *et al.*, 1978). More recently, Das and Behera (1984) found both XY and XYY spermatocytes in an XO/XY/XYY mosaic mouse. Whilst the 41, XYY cells exhibited all types of associations, there were three times the number of XY, Y to XYY spermatocytes. The fertility of this mouse was not determined since it was unmated, although it was reported to have normal looking sperm.

Three sex chromosomes at meiosis in XYY males may well disrupt normal pairing but the additional problem of two Y chromosomes, which implies a surfeit of Y-derived genes, may also cause genetic imbalance with deleterious consequences. Furthermore, these two problems need not necessarily be mutually exclusive. Burgoyne (1979) and Burgoyne and Biddle (1980) attempted to distinguish between these two possibilities by statistical analysis of the available meiotic XYY data, and they argued, in support of the pairing hypothesis, that the model of 'best fit' was one in which only MI trivalent configurations contributed to MII. Recent observations, however, in XO/XY/XYY mosaic mice (Palmer *et al.*, 1989b - in press) have shown that despite very high trivalent and Y-Y bivalent pairing at early pachytene, XYY cells were rapidly eliminated in the late

pachytene stages and virtually all were gone by MI. Hunt and Eicher (1989 - unpublished) have recently described some fertile XYY^{del} male mice (see Section 3.4). They attributed this fertility to the reduced amount of Y material, compared to XYY males, although in general the results were somewhat inconclusive. However, findings from a similar system using XYY^m males with a mutated Y chromosome, Y^m (Lovell-Badge, 1990 - in preparation), show that despite two normal sized Y chromosomes, these males can be fertile (Mahadevaiah and Burgoyne - unpublished). One possible explanation for such diversity could be the variation attributable to genetic background, which separate studies in our laboratory have shown affects the level of spermatogenic success and fertility in XYY mice (Mahadevaiah and Burgoyne - unpublished).

Since XYY mice have two copies of the Y short arm and three chromosomes it is interesting to compare pairing and fertility in this condition with that of XYSxr^a mice which also have two copies of the Y short arm but only two chromosomes (see Section 3.2.1). XYSxr^a mice were originally reported to have normal pairing at meiosis (Cattanach, 1975), but subsequent studies have demonstrated increased asynapsis (Winsor *et al.*, 1978; Chandley and Fletcher, 1980). Further studies have confirmed pairing irregularities and spermiogenic death in XYSxr^a mice (Chandley and Speed, 1987) and Tease and Cattanach (1989) have shown that this is due to the Sxr^a fragment in some way interfering with correct chromosome alignment and pairing. Burgoyne and Baker (1984) suggested that the mosaic appearance of XYSxr^a testes, initially described by Hannapel and Drews (1979), was due to regions of normal or defective pairing, the latter leading to cell degeneration. In support of this theory, is the fact that from breeding data, XYSxr^a mice do not

produce more aneuploid offspring, which would be expected if the univalents arising from disrupted pairing segregated randomly and contributed to viable gametes.

Sex-reversed XOSxr^a mice, with a univalent X chromosome, would appear to be an ideal system to investigate the consequences of lacking a pairing partner at meiosis. XOSxr^a mice suffer spermatogenic disruption around the time of metaphase I and have high levels of degenerating secondary spermatocytes (Cattanach *et al.*, 1971; Cattanach, 1975). Surviving spermatids are mainly diploid (Levy and Burgoyne, 1986a), and any surviving spermatozoa have abnormal heads (see Sections 3.2.1 and 3.2.2). The disadvantage of the XOSxr^a system as a suitable model, is the loss of the Y long arm. XYO mice (Eicher *et al.*, 1983; Eicher and Washburn, 1986) (see Section 3.4), escape this problem, since they have virtually all of the Y chromosome attached to most of the X chromosome, yet remain univalent. In terms of the Miklos hypothesis, this would provide a unique test of the pairing model. Unfortunately, although some of these mice have been reported as fertile, there has so far been no systematic detailed study undertaken in these mice.

2.2.6 Conclusion

From the concept that the Y chromosome in mammals had the sole function of determining sex, the pendulum has swung far in the opposite direction and the Y chromosome is now realised to have an important contribution both in terms of genetic function and as a pairing partner for the X during male meiosis. This thesis attempts to further the understanding of the various functions of the Y in spermatogenesis; specifically:-

- (a) To provide further details relating to the spermatogenesis gene *Spy*, by a quantitative analysis of spermatogenesis in XOSxr^b mice.
- (b) To document details of the spermatogenic block in XOSxr^a males and the partial impairment in XYSxr^a males, by a quantitative analysis of spermatogenesis through puberty to adulthood.
- (c) Thirdly, to try and ascertain to what extent the spermatogenic defects in XOSxr^a mice are due to the unpaired X chromosome or to the absence of the Y long arm, by providing a pairing partner for the XSxr^a chromosome, i.e. XSxr^aY^{del}.

3. BACKGROUND TO PROJECT

Before moving to the next chapter, it is deemed appropriate to describe a number of background aspects to this study.

3.1 Spermatogenesis

This thesis aims to demonstrate the Y chromosome involvement in spermatogenesis. It seems relevant, therefore, to briefly describe the spermatogenic stages in the developing mouse. Primordial germ cells, i.e. the embryonic germ cell lineage, are first identified by differential staining of the enzyme alkaline phosphatase which is highly expressed in the mesoderm around 8 days *post coitum* (dpc) (McLaren, 1985). The germ cells reside in the mesoderm at the base of the allantois having been derived from the epiblast (McLaren, 1985). When first identified, germ cells number less than 100 (McLaren, 1983a) but proliferate as they

migrate through the hindgut into the genital ridges overlying the mesonephric kidney by 10 - 11 dpc.

Sexual differentiation is first seen around 12 1/2 dpc in males when new, large, clear primordial Sertoli cells aggregate around the germ cells and form cords (Spiegelman and Bennett, 1973). The germ cells, now termed M-prospermatogonia (Multiplying prospermatogonia) (Hilscher *et al.*, 1974; Hilscher and Hilscher, 1978), undergo several more divisions but by around 14 1/2 - 16 1/2 dpc arrest at the G1 stage as T1-prospermatogonia (Transitional prospermatogonia) (Hilscher and Hilscher, 1978; Hilscher, 1981b; McLaren, 1984). Resumption of mitosis, commencing the day after birth (20 1/2 dpc), gives rise to a second prospermatogonial stage T2, and the daughter cells of this division are the undifferentiated A stem cells - the first spermatogonia (Hilscher *et al.*, 1974).

Some controversy surrounds the existence of T_2 -prospermatogonia, and the mode of regeneration of undifferentiated stem cells, with some researchers believing that the daughter cells of the T_1 division are the stem cells (Clermont and Bustos-Obregon, 1968; Oakberg, 1971; Huckins and Oakberg, 1978; Hilscher, 1981a; Kluin and de Rooij, 1981). The stem cells have the dual function of establishing a self-replenishing system and proliferating to form the ongoing differentiating spermatogonia. Most evidence for the following six spermatogonial stages, A_1 - A_4 , Intermediate and B, has been inferred from adult studies (Huckins, 1971; Clermont, 1972; Huckins and Oakberg, 1978). The final division of B spermatogonia gives rise to the interphase meiotic (preleptotene) cells around 27 1/2 dpc. Five meiotic prophase stages

follow: leptotene, zygotene, pachytene, diplotene and diakinesis, with the first pachytene cells seen around 32 1/2 dpc (Sung et al., 1986). The metaphase I reduction division leading to MII secondary spermatocytes is first seen around 39 1/2 dpc. The development of rounded and then elongated (condensed) spermatids as described by Oakberg (1956), continues over the next two to three weeks so that by six weeks of age the young adult male is fully developed and has motile sperm. Fig. 1b shows an outline of the various germ cell divisions and stages of spermatogenesis in the mouse, from the foetus to the adult.

Fig. 1b. Outline of spermatogonial and meiotic stages in the developing mouse from foetus to adult.

3.2 <u>Sex-Reversed (Sxr)</u>

The term sex-reversed (Sxr) is used to describe an inherited form of sex reversal which causes XX and XO mice with Sxr to develop as phenotypic males (Cattanach *et al.*, 1971). Sex reversal is also now known in a number of other mammals including man (Cattanach, 1974; Chandley and Fletcher, 1980). With the recent discovery of Sxr variants, a new terminology was introduced with the original Sxr called Sxr^a (McLaren *et al.*, 1988) and this is the form used throughout this thesis.

3.2.1 <u>Sxr</u>a

XXSxr^a adult mice were found to have small testes devoid of germ cells. The presence of two X chromosomes in male germ cells is incompatible with their survival beyond the T₂-prospermatogonial stage (Lyon, 1970; Burgoyne, 1978; McLaren, 1983b; Hilscher and Hilscher, 1989 - personal communication), so in order to investigate the effects of Y-chromosomal deficiencies, it is necessary to produce males with a monosomic X. Whilst having all stages of spermatogenesis XOSxr^a mice had reduced numbers of spermatids, which were often diploid, and few spermatozoa that were, in any case, abnormal although motile (Cattanach *et al.*, 1971; Levy and Burgoyne, 1986a; Burgoyne, 1987a).

Although the segregation of Sxr^a appeared to follow an autosomal dominant pattern of inheritance, extensive studies failed to map it to an autosome (Cattanach, 1975; Evans *et al.*, 1980; Chandley and Fletcher, 1980). In a series of experiments by Singh and Jones (Singh *et al.*, 1981; Jones and Singh, 1981; Singh and Jones, 1982), a Bkm probe

isolated from the sex-determining chromosome of the banded krait snake, was found to hybridise to male, but not female, DNA in the mouse. Although their detailed interpretation was incorrect, they did demonstrate that a part of the Y chromosome had transferred to the X in XXSxra mice. These molecular studies, coupled with cytogenetic evidence (Evans et al., 1982), provided proof for the hypothesis that Sxra arose by a transposition of the testis-determining region to the distal region of the Y chromosome long arm beyond the pairing and exchange region, thus allowing crossing-over onto the X chromosome during male meiosis (Burgoyne, 1982; Eicher, 1982; Hansmann, 1982). Sex reversal in mice, therefore, provided the first real evidence of the postulated X-Y crossover event. Recently it has been shown that the testis-determining region in the mouse is located on the Y short arm (Roberts et al., 1988), so that transposition could most easily have occurred following intrachromosomal irregular fold-back pairing and self-synapsis of the Y chromosome (Bishop et al., 1988; McLaren et al., 1988).

The Y-derived Sxr^a fragment is H-Y antigen positive (*Hya*) (Bennett *et al.*, 1977; Simpson *et al.*, 1981) and clearly carries genes for testis determination and spermatogenesis. Most XYSxr^a mice are fertile, although fertility ranges from normal to sterile (Cattanach, 1975). Hannapel and Drews (1979) observed that in XYSxr^a testes there was a mosaic pattern of normal and defective spermatogenesis. They suggested that in regions that appeared normal only the Y chromosome was expressed, whereas in areas of defective spermatogenesis only Sxr^a was expressed (at this time, the origin of Sxr^a was not known). The interpretation by Burgoyne and Baker (1984), was that the mosaic appearance was due to normal areas with X-Y chromosome pairing, whilst

the defective areas were due to the high level of X-Y non-association caused by the Sxr^a fragment.

3.2.2 Sxrb

A variant of Sxr, designated Sxr^b, was discovered when crossing a homozygous XSxr^aYSxr^a male with a T(X;16)16H (T16H) translocation female (McLaren *et al.*, 1984). The T16H/XSxr propositas proved to be H-Y antigen negative, unlike all previous T16H/XSxr^a females. It was not established whether loss of H-Y antigen expression was due to a mutation or a deletion. The progeny proved to be H-Y antigen negative which demonstrated that H-Y antigen expression was not the product of the testis-determing gene. It has recently been shown that XXSxr^b mice are also negative for the serologically determined antigen SDM (Goldberg, 1988). This finding finally excludes SDM from having any primary male sex-determining function either.

Molecular studies of the Sxr^a region have recently demonstrated that Sxr^b arose as a result of a partial deletion within Sxr^a and it is postulated to have occurred by an irregular intrachromosomal recombinant event (Roberts *et al.*, 1988).

Whilst XXSxr^b and XXSxr^a mice show the same histology, XOSxr^b present an entirely different picture to XOSxr^a (Burgoyne *et al.*, 1986; Burgoyne, 1987b). Disruption in spermatogenesis was seen to occur prior to meiosis in XOSxr^b mice, and it was hypothesised that a spermatogenesis gene (*Spy*), present in Sxr^a, was deleted in Sxr^b (Burgoyne *et al.*, 1986). As

a correlation existed between the absence of *Spy* and *Hya* expression, it was postulated that they could be one and the same.

3.3 XO Development

In human females, XO Turner's syndrome (Turner, 1938) individuals suffer phenotypic and gonadal disruption and sterility (Ford *et al.*, 1959). By contrast, XO female mice are viable and fertile (Welshons and Russell, 1959), although fecundity is reduced due to oocyte pool depletion (Lyon and Hawker, 1973; Burgoyne and Baker, 1981a) and litters are smaller with a higher mortality rate (Cattanach, 1962; Burgoyne and Biggers, 1976). XO female foetal development has been shown to be delayed by about 3 1/2 hours at 7 1/4 dpc - the earliest stage studied (Burgoyne *et al.*, 1983a) and XO mice have a lowered birthweight compared to controls (Burgoyne and Baker, 1981b; Burgoyne *et al.*, 1983b). It has been suggested that reduced post-natal growth rate may be connected to findings of altered metabolism and hypothyroidism (Deckers and van der Kroon, 1981).

The majority of studies to date have considered XO females with a paternal X (XP), and a null-0 gamete from the mother. The paternal X undergoes preferential X-inactivation in extra-embryonic tissue in the early embryo (Harper *et al.*, 1982) probably due to differential methylation. It is possible, therefore, that XO females who derive their X chromosome maternally (X^mO) may suffer less deleterious effects than those described with a paternal X, (XPO). Regardless of the causative factor, a residual 'XO effect' pertains. When XO male mice (e.g. such as XOSxr^a, XOSxr^b and XSxr^aY^{del}) are bred, consideration must be given to

the possibility of inherent developmental delay attributable to an 'XO effect'.

3.4 XY*

In the mouse, an opportunity exists to selectively breed from males with Y chromosomal rearrangements or partial deletions. One such structurally rearranged Y chromosome in the mouse is denoted Y* (Eicher, 1982: Eicher et al., 1983). Amongst the gametes, two translocation products are produced; one, symbolised YX, comprises a centromere and the pseudoautosomal region, now described as Ydel by Hunt and Eicher (1989 - unpublished), and this will be the form used throughout this thesis. The other product, symbolised XY, comprises almost the entire Y chromosome attached distally to most of the X chromosome (Eicher and Washburn, 1986). XXY males are sterile because the presence of two X chromosomes is incompatible with normal male germ cell development (Lyon, 1970). From matings of XY* males with XO females, some XYO male progeny were produced. These males have motile sperm and are sometimes fertile and type H-Y antigen positive, thus genetic information necessary for male determination and spermatogenesis is located within this attached Y region (Eicher and Washburn, 1986). XYdel mice are, of course, female since Ydel has lost the testis-determining region. A schematic showing the possible rearrangement for the Y* chromosome is shown in Fig. 1c.

Fig. 1c. Schematic showing the proposed Y^{\star} chromosomal rearrangement in the mouse.

CHAPTER 2

A QUANTITATIVE ANALYSIS OF XOSxrb TESTES DURING THE FIRST TWO WEEKS AFTER BIRTH

INTRODUCTION

An inherited form of sex reversal (Sxr^a) in mice, recently designated Tp(Y)1Ct, causes XX and XO individuals to develop as phenotypically normal males (Cattanach *et al.*, 1971; Cattanach, 1988). It is now known that Sxr^a originated by the Y short arm transposing, distal to the pairing and exchange region, to the tip of the Y long arm (McLaren *et al.*, 1988; Roberts *et al.*, 1988). This transposed Y short arm, regularly crossesover onto the X chromosome at meiosis, such that XX, XXSxr^a, XY and XYSxr^a progeny are produced in a 1:1:1:1 ratio (Burgoyne, 1982; Eicher, 1982; Evans *et al.*, 1982; Hansmann, 1982; Singh and Jones, 1982).

In addition to testis-determining information, Sxr^a types positive for transplantation H-Y antigen expression (Bennett *et al.*, 1977; Simpson *et al.*, 1981). A variant of Sxr^a, called Sxr^b, although retaining testis-determining information, has lost this H-Y antigen gene (McLaren *et al.*, 1984; Simpson *et al.*, 1986). This finding negated the widely accepted hypothesis of Wachtel *et al.* (1975), that H-Y antigen was the primary testis determinant. In that Wachtel *et al.* (1975) did not recognise two H-Y antigens (i.e. transplantation and serological SDM), this evidence only related to the transplantation H-Y antigen, but has recently been extended to include SDM (Goldberg, 1988).

Both XXSxr^a and XXSxr^b males are sterile. In XXSxr males, the second X chromosome is reactivated in the foetal germ line at the same time as in XX females (McLaren and Monk, 1981), and two active X chromosomes are detrimental to the survival of male germ cells post-natally (Lyon, 1970; McLaren, 1983b), such that few daughter cells survive the T₁-

prospermatogonial mitotic division (Hilscher and Hilscher, 1987 - personal communication). In order to investigate the effect of the Y-chromosomal loss in Sxr mice, it is therefore necessary to produce males with a univalent X chromosome, i.e. XOSxr^a or XOSxr^b.

XOSxr^b males have a severe spermatogenic impairment compared to XOSxr^a mice, with only a few germ cells occasionally reaching early meiotic prophase (Burgoyne *et al.*, 1986). The XO germ cells in an XO/XY/XYY mosaic male suffered a similar fate to XOSxr^b germ cells, despite a normal XY Sertoli cell environment (Levy and Burgoyne, 1986b). These findings led Burgoyne *et al.* (1986) to suggest that Sxr^a carries a spermatogenesis gene (*Spy*) which acts cell autonomously in the germ line, and that Sxr^b, which recent studies show arose by a deletion of DNA from Sxr^a (Bishop *et al.*, 1988; Mardon *et al.*, 1989), has lost *Spy*.

Handel (1987) stated that the only definitive evidence for the presence on the Y chromosome of a gene controlling spermatogonial proliferation would be specific information about the differentiation of spermatogenic cells in mice lacking portions of the Y chromosome. The purpose of the present study was to define the timing of the spermatogenic block in XOSxr^b mice by a quantitative analysis of germ cells in the first two weeks after birth, when the block first becomes apparent. It is clear that the spermatogenic block associated with the deletion in Sxr, clearly satisfies Handel's criterion.

MATERIALS AND METHODS

Mice

XYSxr^b males were mated with females heterozygous for the inversion In(X)1H. In(X)/X females produce some nullo-X eggs following crossing-over within the inversion (Evans and Phillips, 1975) and approximately 1 in 19 of the progeny from this cross have the XOSxr^b genotype (see Appendix 2a). The In(X)/X females were checked for vaginal plugs each morning, and coitus was presumed to have taken place at the midpoint of the previous dark cycle. Ages were calculated from conception, rather than birth, because it is known that the duration of pregnancy is affected by litter size. The majority of litters were born about 19 1/2 days *post coitum* (dpc), so that in what follows, this is equated with the day of birth. 157 litters were bred of which 59 included XOSxr^b males. Litters were processed from 19 1/2 dpc through 30 1/2 dpc (11 days *post partum*), 32 1/2 dpc (13 dpp) and 59 1/2 dpc (40dpp).

A similar breeding cross was set up to produce XOSxr^a males as a control for a possible 'XO effect'. Data from 35 litters are included in this study. The litters were processed at 19 1/2, 21 1/2 through 24 1/2, 27 1/2, 29 1/2, 31 1/2 and 33 1/2 dpc.

Body weights were recorded at autopsy. Following exclusion of 'runts' (Burgoyne *et al.*, 1983a), litters were evaluated, provided at least one XOSxr and one XY±Sxr male was present. Both a qualitative and quantitative analysis demonstrated that XY and XYSxr testes were not

significantly different during the pre-meiotic stages (see Chapter 3), therefore XY and XYSxr males were not separately identified. 52 Sxr^b and 35 Sxr^a litters finally provided data.

Karvotyping

Mitotic spreads were prepared either by dissociating liver fragments (19 1/2 and 20 1/2 dpc) or by flushing out bone marrow cells (21 1/2 dpc onwards) in 004% colcemid in Hepes-buffered Eagle's minimal essential medium, and incubating at 32°C for 60 minutes (liver) or 15 minutes (bone marrow). Cells were then treated with 0.56% potassium chloride for 20 minutes followed by five changes of 3:1 methanol:glacial acetic acid fixative. The cells were then air-dried on slides and stained for 15 minutes in 2% Giemsa in pH 6.8 buffer. XOSxr males were identified by scoring at least 5 consecutive spreads with 39 chromosomes and no evidence of a Y chromosome. XY±Sxr males were identified by 40 chromosomes, with a Y recognised by size and the presence of splayed arms (Ford, 1966).

Histology

Both testes from each male were weighed using a Cahn electrobalance, and then retained in Bouin's fixative awaiting the results of karyotyping. Testes from XOSxr and XY±Sxr littermates were dehydrated through a series of alcohols and then cleared in cedar wood oil. The testes were embedded in paraffin wax, and serially sectioned at 3 µm. The sections were cleared with histoclear, rehydrated in alcohol and stained with haematoxylin and eosin, according to standard procedures.

Identification of Spermatogonia

Whilst the identification of meiotic cells is fairly straightforward since each stage has characteristics that are easy to recognise, the spermatogonial stages show more subtle differences. Their morphology has been characterised and described in adult rats and mice with reference to the adjacent meiotic stages, since there is a hierarchal order within the adult tubule from the basement membrane towards the lumen (Oakberg, 1956; Roosen-Runge, 1962; Monesi, 1962; Huckins, 1971; Oakberg, 1971; Huckins and Oakberg, 1978). The prospermatogonial stages in the prenatal and neonatal rat have been described by Hilscher *et al.* (1974) and Hilscher and Hilscher (1976).

A description of some of the problems of spermatogonial identification in the immature mouse together with the other references consulted, are described in Appendix 2b. Stage identification is outlined below:-

- (a) T_1 -prospermatogonia : large, round nucleus with one or two round 'blobs' of heterochromatin, often with a clear 'halo' around them. Usually located near the centre of the tubule. Example shown in Plate 2a.
- (b) T₂-prospermatogonia: large, round nucleus with two or three irregular shaped 'blobs' of heterochromatin and no 'halo'. Often located at the periphery of the tubule adjacent to the basement membrane. Example shown in Plate 2b.
- (c) Undifferentiated A spermatogonia: Large, usually oval, homogeneously granular nucleus with one small, round heterochromatic

'blob'. Location adjacent to the basement membrane, often lying horizontally. The first of the spermatogonial stages, these undifferentiated cells are believed to be the stem cell stock. Example shown in Plate 2c.

Five of the following six stages, all differentiating spermatogonia, lie mostly adjacent to the basement membrane, often with a clear visible ring of cytoplasm surrounding the nucleus. The nuclei progressively show a decrease in diameter and an increase in the amount of heterochromatisation.

- (d) A₁ spermatogonia: Rounder and slightly smaller, with one or two small round 'blobs' of heterochromatin. Example shown in Plate 2d.
- (e) A₂ spermatogonia: Round or oval, only slightly smaller with two to four round 'blobs' of heterochromatin. Example shown in Plate 2e.
- (f) A₃ spermatogonia: Round or oval, smaller and with the first signs of a 'crust-like' ring around the nuclear membrane as well as two to four 'blobs' of heterochromatin. Example shown in Plate 2f.
- (g) A₄ spermatogonia: Round or oval, small, with a heavy 'crust' around the nuclear membrane and more than three 'blobs' of heterochromatin. Example shown in Plate 2g.
- (h) Intermediate (In) spermatogonia: Smaller, round, heavily encrusted nuclear membrane intermingling with heterochromatic 'blobs', usually in small clusters at the periphery with a few towards the lumen. Example shown in Plate 2h.

(i) B spermatogonia: Similar to the previous stage except even smaller, and present in larger clusters, mainly located in the centre of the lumen, with only a few near the periphery. Example shown in Plate 2i.

Plates 2a - c. Histological sections showing stages of (a) T_1 -prospermatogonia, (b) T_2 -prospermatogonia, and (c) undifferentiated A spermatogonia. BM = basement membrane; SC = Sertoli cell; PTC = pertitubular cell; IC = interstitial cell; C = cytoplasm. Magnification X1350.

Plates 2d - f. Histological sections showing stages of (d) A_1 differentiated spermatogonia, (e) A_2 differentiated spermatogonia, and (f) A_3 differentiated spermatogonia. BM = basement membrane; SC = Sertoli cell; PTC = peritubular cell; IC = interstitial cell; C = cytoplasm. Magnification X1350.

Plates 2g - i. Histological sections showing stages of (g) A4 differentiated spermatogonia, (h) Intermediate spermatogonia, and (i) B spermatogonia. BM = basement membrane; SC = Sertoli cell; PTC = peritubular cell; IC = interstitial cell; C = cytoplasm. Magnification X1350.

Quantitative Analysis

This analysis was carried out 'blind' with respect to genotype of the mice from which the sections were taken. The sampling was one tubule cross-section from every 20th section, or every 10th section for smaller testes, such that between 25 and 35 tubule cross-sections were analysed per testis. The procedure for selecting tubules for analysis was as follows:

(a) A 0.25 mm square grid (R-4 grid, Graticules Ltd, Tonbridge, Kent) was 'stuck' to the bottom of the microscope slide with a film of water and a Chalkley grid (G52, Graticules Ltd) was inserted in the eyepiece. (b) When a section was selected, the square grid was focused under low power with a x10 objective and a square chosen at random. The central cross of the Chalkley grid was centered over the square and the section was brought back into focus. (c) The tubule cross-section adjacent to the central cross was analysed using x100 objective under oil immersion, provided it could be encompassed within the field of view.

This selection procedure ensures that all regions of the gonad have an equal chance of being sampled. Once a tubule was selected, all cells within the tubule cross-section were classified as to cell type, except dead or dying cells which were counted but could not be classified. Sertoli cells were scored as being in interphase or division. Gonia were scored as being in interphase or division, and were also classified as to stage, (i.e. T₁-prospermatogonia, T₂-prospermatogonia, undifferentiated A spermatogonia, differentiated A₁ or A₂ spermatogonia, differentiated A₃ or A₄ spermatogonia, Intermediate or B spermatogonia) using the criteria described in the preceeding section. It was often difficult to assign divisions to specific spermatogonial stages and in these cases

they were classified according to the adjacent interphase stages in the same tubule. A category existed for cells that could not be classified. This group formed less than 0.5% of the germ cells scored and have been omitted from the analysis. It should be pointed out that these cell counts are crude counts, uncorrected for cell size and thickness of the sections.

RESULTS

The body weight data for the Sxrb and Sxra litters are given in Table 2a. (i) and (ii). The best estimates for the body weights of the four genotypes (XOSxrb, XY±Sxrb, XOSxra, XY±Sxra) at the various ages studied are provided by the mean of litter means. In order to compare the two genotypes in each cross, mean weighted differences between these genotypes and the significance of these differences have been calculated from 'within litters' as described by Burgoyne et al. (1983b). From these mean weighted differences, it is clear that XOSxrb mice are underweight when compared with XY±Sxrb mice. Despite the limited number of mice at each age, the difference is significant for 5/13 age groups, and pooling across age groups (the mean weighted differences are similar throughout the age range studied) gives an overall estimated weight deficit of -0.359 ± 0.059 g (P<0.005). XOSxra mice are not significantly underweight when compared with XY±Sxra mice (pooled mean weighted difference = 0.044 ± 0.069 g).

The body weight difference from the 'within litter' XY±Sxr mean, for the two genotypes, are shown as histograms in Fig. 2a - b. The negative to positive ratio shows that XOSxr^a weights are fairly evenly distributed whereas the XOSxr^b weights show a heavy negative bias.

The testis weight data for the Sxr^b and Sxr^a litters are given in Table 2b. (i) and (ii). The XOSxr^a testes, Table 2b (ii), are not underweight when compared with XY±Sxr^a littermates, but XOSxr^b testes, Table 2b. (i), are significantly underweight for 9/13 of the ages studied. Since XOSxr^b mice are underweight, this testis weight deficit could simply be a reflection of the overall reduction in body weight. The XOSxr^b testis weights were therefore corrected by dividing by individual body weight and multiplying by the mean XY±Sxr^b body weight for the relevant litters. The mean weighted XOSxr^b to XY±Sxr^b differences for these corrected testis weights are plotted in Fig. 2c. XOSxr^b testes are significantly underweight by 23 1/2 dpc and the weight deficit rapidly increases thereafter.

The reason for the reduced testis weight in XOSxr^b mice is apparent in Fig. 2d, which gives the mean number of germ cells and Sertoli cells per tubule cross-section in XOSxr^b and XY±Sxr^b mice, throughout the period studied. As expected, there is a marked increase in the number of germ cells per tubule cross-section in XY±Sxr^b mice, but by contrast there is no increase in XOSxr^b mice. There is no deficiency of Sertoli cells in XOSxr^b mice. Indeed the mitotic index for Sertoli cells during the period 19 1/2 - 32 1/2 dpc was found to be very similar in XOSxr^b (0.85%) and XY±Sxr^b (0.90%). The mitotic index for Sertoli cells drops to less than 0.3% after 24 1/2 dpc in both genotypes. Clearly, the testis weight deficiency in XOSxr^b mice is due to germinal failure.

In view of the normal numbers of Sertoli cells in XOSxr^b mice, in the more detailed analysis of the germ cell deficiency that follows, germ cell numbers are expressed per 100 Sertoli cells, rather than per tubule cross-section.

In Fig. 2 e - I, germ cell numbers are plotted against age for the various classes of germ cells identified in the scoring procedure. The numbers of T_1 -prospermatogonia are indistinguishable in XOSxr^b and XY±Sxr^b mice. However, XOSxr^b mice clearly have fewer T_2 -prospermatogonia than the controls and pooling over the period 20 1/2 - 24 1/2 dpc reveals that XOSxr^b have only 39% of the control value. By contrast, XOSxr^a mice have 91% of the control value. Since T_2 -prospermatogonia are assumed to be the progenitors of the undifferentiated A spermatogonia, a deficit of undifferentiated A spermatogonia is expected in XOSxr^b mice, and is indeed observed (XOSxr^b is 54% of XY±Sxr^b). Similarly, there is the expected deficit of differentiating A_1/A_2 spermatogonia (XOSxr^b is 42% of XY±Sxr^b). The number of A_3/A_4 spermatogonia, however, is reduced much more than expected (XOSxr^b is 7% of XY±Sxr^b) and there are no Intermediate or B spermatogonia.

Examples of histological sections are shown for XOSxr^b, XY±Sxr^b and XOSxr^a testes in Plates 2j - I. Plate 2j. shows (i) XOSxr^b, (ii) XY±Sxr^b and (iii) XOSxr^a testes at 24 1/2 dpc. There is virtually no difference between XOSxr^b testes at this stage, except perhaps slightly less evidence of active germ cell division. Three days later, at 27 1/2 dpc, XOSxr^b testes already show signs of the mitotic germ cell block, Plate 2k (i), compared to (ii) XY±Sxr^b and (iii) XOSxr^a testes that already have the first wave of B spermatogonia and a few preleptotene cells. By 29 1/2 dpc, XOSxr^b germ cells are virtually depleted and many tubules are Sertoli cells only, Plate 2l (i), whilst (ii) XY±Sxr^b and (iii) XOSxr^a tubules show active mitosis and increased numbers of late differentiating spermatogonia, preleptotene and leptotene cells.

This pattern of germ cell deficiency in XOSxr^b mice is largely accounted for by observations on mitotic index (Fig. 2m). That is to say, there is a shortage of dividing T_1 -prospermatogonia accounting for the drop in the number of T_2 -prospermatogonia; a reduced frequency of divisions among A_1/A_2 spermatogonia accounting for the much more severe shortage of A_3/A_4 spermatogonia; and no dividing A_3/A_4 spermatogonia accounting for the absence of In/B spermatogonia.

During the scoring procedure, the gonia with the morphological characteristics of A_1 and A_2 spermatogonia were pooled, although it is assumed that they are distinct generations of spermatogonia as in the adult (Appendix 2a). When the mitotic index of A_1/A_2 spermatogonia is plotted against age (Fig. 2n), there is no marked shortage of divisions in $XOSxr^b$ mice until 25 1/2 dpc, raising the possibility that it is the A_2 , rather than the A_1 , spermatogonia that are affected.

If A_1/A_2 spermatogonia rarely divide to give A_3 or A_4 , but the undifferentiated A spermatogonia continue to divide, one might expect a 'piling up' of A_1/A_2 stages. This is not observed, implying that the cells that fail to divide are degenerating. This is supported by observations on the germ cell degeneration index (Fig. 2o), which has been calculated on the assumption that all the dying cells observed were germ cells. The degeneration index is very low in $XOSxr^b$ and $XY\pm Sxr^b$ mice. Nevertheless, from 26 1/2 dpc onwards, $XOSxr^b$ mice clearly have more degenerating cells than controls, which is consistent with the increased degeneration of A_1/A_2 spermatogonia. It is tempting to suggest that the increased degeneration index in $XOSxr^b$ mice at 22 1/2 dpc is similarly due to the death of T_1 -prospermatogonia that failed to divide.

Although no Intermediate or B spermatogonia were scored during the quantification, very rare patches of these spermatogonia, and also early meiotic stages can be found in 32 1/2 dpc and adult (59 1/2 dpc) $XOSxr^b$ testes. They occur without the normal hierarchy of stages, and in small patches, as if an occasional A_3/A_4 spermatogonium divides and the products proceed via the usual stages up to early pachytene.

Da	s i	No. of Mice	Mean ± s.e.m. bc	Mean ± s.e.m. body weights (g) *	ğ	Significance of
post coitum	sr um	XOSxr ^b XY ₊ Sxr ^b	XOSxrb	XY±Sxrb	AUSXL2 – XY±Sxrb difference (g)	XOSxr XY-SxrB difference (P)
19	1/2	3 5	1.570 + 0.03	1.693 ± 0.08	- 0.120 ± 0.046	8
20	1/2	6 E	1.917 ± 0.10	2.200 ± 0.10	-0.284 ± 0.070	< 0.005
21	1/2	4 12	2.065 ± 0.15	2.175 ± 0.10	-0.120 ± 0.180	SZ
22	1/2	7 16	2.436 ± 0.12	2.862 ± 0.11	-0.496 ± 0.160	< 0.005
23	1/2	11 14	3.297 ± 0.24	3.645 ± 0.30	-0.237 ± 0.135	SZ
24	1/2	6 19	3.876 ± 0.16	4.240 ± 0.13	-0.347 ± 0.197	0.05 - 0.025
25	1/2	5 19	4.094 + 0.19	4.932 ± 0.26	-0.842 ± 0.108	< 0.005
56	1/2	3	5.130 ± 0.66	5.500 ± 0.79	-0.330 ± 0.266	SZ
27	1/2	4 8	5.290 ± 0.25	5.525 ± 0.16	-0.324 ± 0.144	< 0.005
28	1/2	3 7	6.385 ± 0.11	6.500 ± 0.10	-0.115 ± 0.194	SZ
59	1/2	6 12	6.618 ± 0.66	6.675 ± 0.47	-0.219 ± 0.284	S
30	1/2	4 6	7.505 ± 0.71	8.025 ± 0.67	-0.498 ± 0.332	SZ
32	1/2	4	8.060 ± 0.50	8.563 ± 0.53	- 0.483 ± 0.407	<u>8</u>
			Pooled mean weighted difference	hted difference	- 0.359 ± 0.059	< 0.005

* Mean of litter means

TABLE 2a (i) Mean body weights for XOSxr^b and XY±Sxr^b mice and the estimated differences between them for the period 19 1/2 - 32 1/2 dpc.

Days		No. of Mice	Mean ± s.e.m.	body weights (g) *	Mean ± s.e.m. body weights (g) * Mean ± s.e.m. weighted	Significance of
coitum		XOSxr ^a XY <u>+</u> Sxr ^a	XOSxra	XY±Sxr ^a	difference (g)	difference (P)
1	6	9	1.467 + 0.04	1.450 ± 0.01	+ 0.010 ± 0.050	SZ SZ
•	4	9	2.727 ± 0.27	2.927 ± 0.01	-0.241 ± 0.103	0.05 - 0.025
22 1/2	2 5	4	3.142 ± 0.43	3.148 ± 0.45	-0.003 ± 0.102	SY
	4	12	3.448 ± 0.14	3.465 ± 0.25	+ 0.004 ± 0.082	2
•	4	12	4.123 ± 0.31	4.213 ± 0.17	-0.130 ± 0.219	S
•	4	10	5.868 ± 0.40	6.273 ± 0.54	-0.404 ± 0.162	0.025 - 0.010
	9	17	6.658 ± 0.45	6.305 ± 0.32	$+ 0.529 \pm 0.230$	0.025 - 0.010
•	4	15	7.918 ± 0.38	8.285 ± 0.47	-0.367 ± 0.275	S
-	4	12	9.145 ± 0.62	9.295 ± 0.33	-0.092 ± 0.157	S
			Pooled mean we	Pooled mean weighted difference	- 0.044 ± 0.069	SN

* Mean of litter means.

TABLE 2a (ii) Mean body weights for XOSxr^a and $XY_{\pm}Sxr^a$ mice and the estimated difference between them for the period 19 1/2 - 33 1/2 dpc.

Fig. 2a. Histogram showing the XOSxrb deviation (within litters) from the XY±Sxrb body weight mean

Fig. 2 b. Histogram showing the XOSxr^a deviation (within litters) from the XY±Sxr^a body weight mean

Days post	No. of Mice	Mean ± s.e.m. testis weights (mg)*	tis weights (mg)*	Mean ± s.e.m. weighted XOSxrb-XY+Sxrb	Significance of XOSxrb_XY+Sxrb
i	XOSxrb XY±Sxrb	XOSxrb	XY±Sxrb	difference (mg)	difference (P)
٥.	3	0.883 ± 0.01	0.960 ± 0.26	- 0.063 ± 0.019	0.05 - 0.025
<u> </u>	о С	0.980 ± 0.17	1.167 ± 0.18	-0.185 ± 0.167	S
\sim	4 12	1.183 ± 0.10	1.260 ± 0.02	-0.091 ± 0.163	S
ς.	7 16	1.440 ± 0.10	1.782 ± 0.17	-0.380 ± 0.167	0.025 - 0.010
	11 14	2.190 ± 0.14	2.622 ± 0.20	-0.373 ± 0.117	< 0.005
	6 19	2.528 ± 0.13	2.942 ± 0.05	-0.402 ± 0.268	S
ΩI.	5 19	2.734 ± 0.18	4.148 ± 0.22	- 1.396 ± 0.239	< 0.005
ΟI.	о В	3.580 ± 0.18	4.207 ± 0.25	-0.606 ± 0.405	SZ
α	4 8	3.708 ± 0.27	5.003 ± 0.23	-1.232 ± 0.255	< 0.005
a	3 7	3.385 ± 0.68	4.555 ± 0.48	-1.114 + 0.383	0.025 - 0.010
1/2	6 12	4.555 ± 0.40	6.248 ± 0.41	-1.974 ± 0.613	< 0.005
۵	4	4.615 ± 0.16	7.685 ± 1.80	-3.617 ± 0.896	< 0.005
Ω.	4	6.027 + 0.19	10.347 + 0.64	- 4.356 + 0.293	< 0.005

* Mean of litter means

TABLE 2b (i) Mean testis weights for XOSxr^b and XY±Sxr^bmice and the estimated difference between them for the period 19 1/2 - 32 1/2 dpc.

Days	No. of Mice		Mean ± s.e.m. testis weights (mg)*	weights (mg)*	Ψe	Significance of
post soitum	XOSxr ^a XY <u>+</u> Sxr	Sxra	XOSxra	XY±Sxr ^a	difference (mg)	difference (P)
19 1/2	8	9	0.837 + 0.02	0.757 ± 0.08	+ 0.068 ± 0.106	Š
21 1/2	4	9	1.863 ± 0.18	1.940 ± 0.10	-0.097 + 0.091	<u>\$</u>
•	5	4	2.108 ± 0.33	2.104 ± 0.30	-0.036 ± 0.105	\$2
•	4	2	2.608 ± 0.24	2.563 ± 0.26	$+ 0.078 \pm 0.188$	SZ
•	4	7	2.818 ± 0.22	3.030 ± 0.27	- 0.226 ± 0.228	2
•	4	0	4.938 ± 0.56	4.898 ± 0.40	+ 0.059 + 0.156	S 2
•	6	7	6.358 ± 0.69	5.655 ± 0.38	$+ 0.907 \pm 0.192$	< 0.005
31 1/2	4	2	8.898 + 1.20	9.323 ± 1.15	-0.435 ± 0.620	SZ
•	4	8	12.688 ± 2.87	12.343 ± 1.05	$+ 0.691 \pm 0.944$	SZ

* Mean of litter means.

TABLE 2b (ii) Mean testis weights for XOSxr^a and XY±Sxr^a mice and the estimated difference between them for the period 19 1/2 - 33 1/2 dpc.

Fig. 2c. Mean weighted difference in testis weights (mg) (corrected for body weights) for $XOSxr^b$ and $XY_{\pm}Sxr^b$ mice for the period 19 1/2 - 32 1/2 dpc. Where error bars are shown, the differences are significant (t-test, 1-tailed).

Fig. 2d. Mean number of Sertoli cells (SC) and germ cells (GC) per tubule cross-section in XOSxr^b and XY±Sxr^b mice for the period 19 1/2 - 32 1/2 dpc. The numbers in parentheses are the numbers of litters scored at each age. Asterisks indicate XOSxr^b points which are significantly different from controls (t-test, 2-tailed). The significantly higher number of Sertoli cells in XOSxr^b tubules at 29 1/2 and 32 1/2 dpc is a scoring artifact: at these ages some large tubule cross-sections from the controls had to be excluded because they would not fit in the field of view, resulting in an underestimate of the numbers of Sertoli cells and germ cells for controls at these ages.

Fig. 2e - f. Number of germ cells per 100 Sertoli cells for the (e) T_{1-} prospermatogonia, and (f) T_{2} -prospermatogonia stages in $XOSxr^{b}$ and $XY_{\pm}Sxr^{b}$ testes during the period 19 1/2 - 32 1/2 dpc.

Fig. 2g-h. Number of germ cells per 100 Sertoli cells for (g) undifferentiated A spermatogonia, and (h) A_1/A_2 spermatogonia stages in $XOSxr^b$ and $XY\pm Sxr^b$ testes during the period 19 1/2 - 32 1/2 dpc.

Fig. 2i-j. Number of germ cells per 100 Sertoli cells for (i) A_3/A_4 spermatogonia, and (j) Intermediate and B spermatogonia stages in $XOSxr^b$ and $XY\pm Sxr^b$ testes for the period 19 1/2 - 32 1/2 dpc.

Fig. 2k-I. Number of germ cells per 100 Sertoli cells for (k) Preleptotene/leptotene spermatocyte, and (l) Zygotene/pachytene spermatocyte stages in $XOSxr^b$ and $XY_\pm Sxr^b$ testes during the period 19 1/2 - 32 1/2 dpc. The asterisk denotes occasional $XOSxr^b$ zygotene or pachytene cells.

Plate 2j. Histological sections at 3 μ m of (i) XOSxr^b, (ii) XY \pm Sxr^b and (iii) XOSxr^a testes at 24 1/2 dpc (5 dpp). SC = Sertoli cell; MP = mitotic prophase; MM = mitotic metaphase; DS = differentiating spermatogonia. Magnification X700.

Plate 2k. Histological sections at 3 μ m of (i) XOSxr^b, (ii) XY \pm Sxr^b and (iii) XOSxr^a testes at 27 1/2 dpc (8 dpp). SC = Sertoli cell; MP = mitotic prophase; MM = mitotic metaphase; DS = differentiating spermatogonia; B = B spermatogonia. Magnification X700.

Plate 2I. Histological sections at 3 μ m of (i) XOSxr^b, (ii) XY \pm Sxr^b and (iii) XOSxr^a testes at 29 1/2 dpc (10 dpp). SC = Sertoli cell; PM = mitotic prophase; MM = mitotic metaphase; DS = differentiating spermatogonia; B = B spermatogonia; PL = preleptotene; L = leptotene. Magnification X700.

Fig. 2m. Histogram showing the mitotic index according to germ cell stage of $XOSxr^b$ and $XY_\pm Sxr^b$ mice.

Fig. 2n. Mitotic index of A_1/A_2 spermatogonia in XOSxr^b and XY \pm Sxr^b mice during the period 19 1/2 - 32 1/2 dpc.

Fig. 2o. The germ cell degeneration index in XOSxr^b and XY±Sxr^b mice for the period 19 1/2 - 32 1/2 dpc was calculated on the assumption that all dying cells were germ cells. The two points marked with an asterisk are artifically high, in that only one of the males at each of these points showed an elevated degeneration index.

DISCUSSION

The present results show that XOSxr^b testes have normal numbers of germ cells at birth, but become severely deficient in germ cells in the ensuing two weeks. During the same period, the numbers of Sertoli cells remain normal. These findings are consistent with the view of Burgoyne et al. (1986) that the spermatogenic failure in XOSxr^b mice is due to the loss of a gene (*Spy*) that acts cell autonomously in the germ line.

The quantitative analysis of the germ cell deficiency in $XOSxr^b$ mice firstly revealed a reduction in mitotic activity among T_1 -prospermatogonia, which resulted in a shortage of T_2 -prospermatogonia, and consequently a reduced pool of undifferentiated A spermatogonia. However, mitotic activity among the undifferentiated A spermatogonia, which includes the spermatogonial stem cells, was found to be normal.

It was during the early differentiating spermatogonial stages that the spermatogenic block occurred, with mitotic failure rapidly leading to an almost complete absence of Intermediate and B spermatogonia and subsequent meiotic stages. The proliferation block resulted in less than half the total number of differentiating A spermatogonia by 25 1/2 dpc with a further rapid decline to less than a quarter of A spermatogonia by 29 1/2 dpc compared to the XY±Sxrb littermates.

XO female mice are developmentally retarded in early pregnancy (Burgoyne *et al.*, 1983a) and are significantly underweight post-natally (Burgoyne *et al.*, 1983b). It was anticipated that XOSxr^b mice would also be underweight at birth, and this proved to be the case. Unexpectedly, however, a significant body weight difference was observed between

XOSxr^b and XOSxr^a mice. The XOSxr^a mice were originally included in this study, to act as a control for the 'XO effect' in XOSxr^b mice, but this was obviously negated by the body weight findings.

Coincidentally, the genetic basis for the early developmental advantage of XY over XX embryos (Tsunoda et al., 1985; Seller and Perkins-Cole, 1987) was being investigated in our laboratory, concurrently with this study of XOSxrb mice. It was thought that an explanation for the postnatal weight difference between XOSxrb and XOSxra mice might be due to a postulated growth and development factor (dubbed Gdy) on the Y, responsible for accelerating growth at the foetal stage, and this factor might be present on Sxra but missing from Sxrb. A separate study of XXSxra and XXSxrb foetal body weights subsequently proved this postulate to be incorrect. Additionally, further study in our laboratory now suggests that the XO developmental retardation seen in early pregnancy may be due to the X chromosome's paternal derivation, which is known to be preferentially inactivated, rather than to X univalence per se. Regardless of the causative factor, an 'XO effect' appears to retard growth in XOSxrb mice and seems to be ameliorated in XOSxra mice, at least post-natally.

The reason for this growth differential remains unresolved. It is known that the Y-derived Sxr^b chromosomal fragment in XYSxr^b mice originated from a different Y background than the normal intact Y chiromosome (which derives from the R^{III} background - the same as the Y of the Sxr^a chromosomal fragment in XYSxr^a), so there could be some incompatibility

related to the 'Y background' that might be a causative factor.

Alternatively, a growth gene, first expressed neonatally, could be present in Sxr^a but not in Sxr^b.

The deletion of Y-chromosomal material involved in the generation of Sxr^b has thus removed genetic information required for H-Y antigen expression (McLaren *et al.*, 1984) and for spermatogenesis (Burgoyne *et al.*, 1986). The gene controlling spermatogenesis (*Spy*) and the gene for H-Y antigen expression (*Hya*) might be one and the same (Burgoyne *et al.*, 1986).

At the molecular level, it has been shown that one of the two mouse homologues to the human ZFY (a Y-chromosomal gene that encodes a zinc finger protein), Zfy-2, which is present along with Zfy-1 in Sxra, has been deleted from Sxrb (Roberts et al., 1988; Mardon et al., 1989; Nagamine et al., 1989). Because Zfy-1 and Zfy-2 were strongly transcribed in normal adult mouse testes, probably in germ cells (Mardon and Page, 1989; Nagamine et al., 1989), Zfy-2 was an obvious candidate for Spy. Recent evidence demonstrates that Zfy-1, but not Zfy-2, is expressed in differentiating embryonic mouse testes and that neither are expressed in mutant We/We mouse testes which lack germ cells entirely (Koopman et al., 1989). A separate study is currently underway to determine Zfy-2 expression in XOSxra testes during the critical post-natal period, demonstrated in XOSxrb mice, when the spermatogenesis gene is expressed (Koopman et al. - unpublished).

As to the function of the 'spermatogenesis gene' *Spy*, we have clearly shown that the spermatogenic failure seen in XOSxr^b mice is due to a

failure in proliferation during the differentiating A spermatogonial stages, and so by definition, Spy is important for the survival/proliferation of these spermatogonial stages. Whether the deficiency of T_1 -prospermatogonial divisions of $XOSxr^b$ mice is also a consequence of the deletion of Spy, or whether it is due to the deletion of a gene separate from Spy, remains to be determined.

CHAPTER 3

A QUANTITATIVE ANALYSIS OF SPERMATOGENESIS

THROUGHOUT PUBERTY IN XOSxr^a AND XYSxr^a MICE

Dr S Darling provided assistance at the latter end of this project for some of the DNA Southern blot analysis. 105 results were obtained by the writer, of which 78 were used in the final data, and 37 results by Dr Darling, of which 35 were used in the final data.

INTRODUCTION

In the previous study, the loss of the spermatogenesis gene in XOSxr^b mice resulted in a premeiotic block in germ cell proliferation. By contrast, XOSxr^a mice have active spermatogenesis up to and including prophase of meiosis, some surviving spermatids and occasionally sperm which are defective (Cattanach *et al.* 1971; Cattanach, 1975).

Hannapel and Drews (1979) showed many degenerating primary spermatocytes at late pachytene and metaphase I in the XOSxr^a tubular patches derived from loss of an X chromosome in XXSxr^a mice. The spermatids that survived in these tubules appeared to have very large nuclei, i.e. diploid (Hannapel *et al.*, 1980). Burgoyne and Baker (1984) found similar large spermatids in XOSxr^a testes and postulated that these large diploid spermatids were a manifestation of the spermatogenic arrest in these mice, and that this spermatogenic arrest was a consequence of X chromosome univalence, as suggested by Miklos (1974).

Spermatid DNA content measured for both round and elongated spermatids in XOSxr^a mice demonstrated that two classes of spermatids existed, haploid and diploid. The majority of mice analysed did have a high percentage of diploid spermatids, with the diploid component ranging between 34 - 94% (Levy and Burgoyne, 1986a).

A significant correlation has been found between high frequency of cells with univalent sex chromosomes at diakinesis/metaphase I in human male meiosis and low numbers of cells at metaphase II (Chandley *et al.*, 1976). At pachytene, studies have shown that the univalent XSxr^a chromosome may self-pair and form a ring, balloon or hairpin in a proportion of cells (Chandley and Fletcher, 1980; Mahadevaiah *et al.*, 1988). It was suggested that the only cells capable of forming haploid spermatids in XOSxr^a mice were those that had non-homologously self-synapsed at pachytene, but experiments to test this were inconclusive (Levy, 1986).

XYSxra males have also been the subject of considerable analysis. Whilst most XYSxr^a males are fertile, they may occasionally be sterile (Cattanach, 1975). They show increased levels of X-Y dissociation at pachytene and MI (Winsor et al., 1978; Evans et al., 1980; Chandley and Fletcher, 1980) and the sterile males appear to have the highest level of dissociation. Self-synapsis of the YSxra chromosome in the form of a balloon shape has been described (Chandley and Speed, 1987; Mahadevaiah et al., 1988) and it was suggested that this might be the underlying cause of the univalence, but recent evidence suggests that univalence and subsequent self-pairing is a consequence of, rather than the cause of, disruption to pairing (Tease and Cattanach, 1989). XYSxra testes have been shown by Hannapel and Drews (1979) to exhibit a mosaic pattern of normal and defective tubules. They suggested that normal spermatogenesis was controlled by the Y chromosome and that the tubules showing spermatogenic breakdown at pachytene and MI were controlled by the Sxra fragment. (At this time it was thought that Sxra was located on an autosome). Burgoyne and Baker (1984), however, attributed the defective

spermatogenesis to the increased incidence of X-Y separation at meiosis, once again invoking Miklos' (1974) model to explain the spermatocyte loss.

The study described in this chapter provides a quantitative analysis of the spermatogenic defects in pubertal XOSxr^a and XYSxr^a mice throughout the first meiotic wave. The objective was to see whether the spermatogenic defects were restricted to the period following meiotic pairing, as is required by Miklos' model (1974).

MATERIALS AND METHODS

Mice

XOSxr^a (and XYSxr^a) mice were produced as described in Chapter 2, Materials and Methods, except the fathers were XYSxr^a (rather than XYSxr^b). Approximately 1 in 16 of the progeny from the cross were of the XOSxr^a genotype. 168 litters were bred of which 55 litters included XOSxr^a and XY males. Litters were processed on alternate days from 27 1/2 days *post coitum* through to 37 1/2 dpc, then daily at 38 1/2, 39 1/2 and 40 1/2 dpc and again on alternate days from 41 1/2 dpc through to 49 1/2 pdc. Following the exclusion of runts, 54 litters were subjected to DNA analysis and 35 litters finally provided data.

Karvotyping and Histology

Both karyotyping and histology were according to the methods already described in Chapter 2, Materials and Methods.

Quantitative analysis

This analysis was carried out in a similar manner to that described in Chapter 2, Materials and Methods, with the following modifications. Sampling was one tubule cross-section from every 20th, 30th, 40th or 50th section depending upon testis size, such that 20 tubule cross-sections were analysed per testis. The square grid was focused under low power with a x10 or x4 objective, and oil immersion was carried out under x100 or x50 objective, the demarcation point for higher powers being testes up to 33 1/2 dpc and lower powers for testes from 35 1/2 dpc and older.

Between 27 1/2 dpc and 33 1/2 dpc inclusive, once a tubule was selected, all cells within the tubule cross-section were classified as described in Chapter 2, Materials and Methods. With the larger testes from 35 1/2 dpc to 49 1/2 dpc, the selected tubule was randomly divided into quadrants, using the Chalkley grid (G52, Graticules Ltd) inserted in the eyepiece. All cells falling within two adjacent quadrants (i.e. half the tubule) were classified.

Southern blot analysis

In the past, XYSxr^a and XY littermates have been identified either by testis weights or test matings, but the age of the mice in this project precluded these methods. A 1.8kb genomic sequence has been cloned, and the probe, designated SX1, detects an additional homologous sequence in XYSxr^a compared to XY genomic DNA on Southern blots. (pSX1 was a gift from Dr C Bishop of the Institute Pasteur, Paris). The isolation of DNA from

tails and the Southern blot hybridisation procedure using the pSX1 probe are described in detail in Appendix 3a, but are briefly outlined below.

Approximately 1.5 cm of tail was digested overnight at 50°C with proteinase K. The DNA was then purified away from the proteins and other molecules by several phenol extractions. The DNA was subsequently precipitated, washed and dried, before being resuspended in TE buffer and stored at 4°C. DNA concentrations and impurities were calculated from O.D. spectrophotometer readings at 260 and 280 nm. micrograms of DNA were digested with the restriction enzyme Eco R1 at 37°C. The resulting DNA fragments were then ordered, according to size, by electrophoresis over a 16 - 20 hour period in a 0.8% agarose gel. The technique of Southern blotting was used to transfer the DNA fragments from the gel onto Hybond-N membrane filters using a 20 x SSC transfer buffer (Southern, 1975). The membrane-bound DNA was then crosslinked under ultra violet irradiation for 5 minutes. Although this procedure originally gave good results, problems were later encountered with poor transfer of the higher molecular weight DNA fragments. Despite an intensive period of trouble-shooting, the problems were not entirely resolved (see Appendix 3a) but some improvement followed the substitution of Hybond-N positive membranes and an alkali transfer buffer.

The filters were probed with pSX1 insert, labelled with ³²P isotope, by random priming and hybridised overnight at 68°C. Filters were washed in 2 x SSC followed by a high stringency wash at 0.1 x SSC for 15 minutes, all at 68°C. Finally, the filters were exposed to Fuji RX100 film with intensifying screens and stored at -70°C for 24 - 72 hours.

RESULTS

The body weight data is presented as the estimated mean of litter means for the three genotypes, XYSxr^a, XOSxr^a and XY in Table 3a (i) and (ii). As described in the Results section of Chapter 2, the mean weighted differences and the significance of these differences have been calculated from 'within litters' as described by Burgoyne *et al.* (1983b). No significant difference is demonstrated at any of the age groups in the XYSxr^a - XY comparison, Table 3a (i). In the XOSxr^a - XY comparison, Table 3a (ii), there is a significant difference in only 2/14 age groups. These results are plotted in Fig. 3a. Although the negative point plotted at 33 1/2 dpc is significant in Table 3a (ii), it is thought this might be spurious, since the points on either side are positive. However, the negative point plotted at 41 1/2 dpc is significant and forms part of a consistent negative trend over a number of days, and appears, therefore, to be a meaningful body weight loss although this cannot be explained at this age.

Testis weight data for the three genotypes is given in Table 3b (i) and (ii). XYSxr^a testes, Table 3b (i), are underweight for the majority of age groups from 33 1/2 dpc but this is not significant until 45 1/2 dpc. The XOSxr^a testis weights, Table 3b (ii), are consistently underweight from 33 1/2 dpc and significantly so at 41 1/2 dpc and from 47 1/2 dpc. These results are plotted in Fig. 3b.

In order to investigate the reduction in testis weights, the total number of germ cells per day are pooled and adjusted per 100 Sertoli cells for XY, XYSxr^a and XOSxr^a mice (Fig. 3c). There is no consistent difference in germ cell numbers in either XYSxr^a or XOSxr^a compared to XY until 40 1/2 dpc, at which point the numbers are consistently lower in both, with

XOSxr^a more severely affected than XYSxr^a. Clearly, the reduction in testis weights in both XOSxr^a and XYSxr^a mice is a direct consequence of either a deficiency in germ cell proliferation and/or an increase in germ cell degeneration.

When the number of germ cells per 100 Sertoli cells is plotted against cell type for the three genotypes (Fig. 3d), it is clear that XYSxr^a males, have an earlier germ cell reduction (approximately 25%) at the pachytene stage, and an approximate 50% reduction at subsequent stages. By contrast, there is a severe, almost total, lack of haploid spermatids in XOSxr^a mice.

A detailed analysis of XY, XYSxra and XOSxra germ cells at each of the pachytene to spermatozoa stages during the period under review is represented graphically in Figs. 3e - i. At pachytene, there are overall less germ cells in XYSxra mice from 38 1/2 dpc onwards whereas the number of XOSxr^a germ cells at pachytene closely matches that of XY (Fig. 3e). The reduction in germ cells in XYSxra testes is seen throughout the meiotic and post-meiotic stages and additionally there is an approximate 24 hour delay prior to the first appearance of diplotene/diakinesis/MI cells (Fig. 3f). In XOSxra mice, pooling diplotene/diakinesis and MI data shows a decreased number of XOSxra germ cells at all ages from 39 1/2 dpc compared to XY mice (Fig. 3f). Diploid spermatids are present in both XYSxr^a and XY mice but represent less than 10% of the haploid number whereas in XOSxra testes, few spermatids survive and of those that do, approximately one third are diploid (Fig. 3g). From Figs. 3h - i, it can be seen that there are less than half the number of haploid spermatids (Fig. 3h) and elongated spermatids/spermatozoa (Fig. 3i) in XYSxra compared to XY testes.

Examples of testis histology are shown for XY, XYSxr^a and XOSxr^a tubules in Plates 3a - c. The XYSxr^a tubules show small patches of germ cell degeneration at the onset of pachytene, Plate 3a (ii), but there is no obvious degeneration in XOSxr^a mice, Plate 3a (iii) or in the control XY litter, Plate 3a (i). By the first appearance of condensed spermatids around 47 1/2 dpc, tubules in XYSxr^a mice show a mosaic appearance of dying MI cells and surviving elongated spermatids/spermatozoa, Plate 3b (ii) and 3c (iii), compared to the block at MI in XOSxr^a tubules, Plate 3b (iii) and 3c (iii). By contrast, XY tubules have elongated spermatids/spermatozoa and no sign of degeneration, Plate 3b (i) and 3c (i).

The mitotic indices of XY = 0.15, XYSxr^a = 0.14 and XOSxr^a = 0.16, confirm that there is no reduction in germ cell proliferation prior to meiosis in XYSxr^a or XOSxr^a and the spermatogonial degeneration index of 0.01 for all three genotypes confirms that there is no excess pre-meiotic cell death in XYSxr^a or XOSxr^a testes either. The meiotic and post-meiotic degeneration index shows an earlier degeneration by 37 1/2 dpc in XYSxr^a, compared to XY, and cell death throughout the period (Fig. 3j), whereas the degeneration index for XOSxr^a males shows an exponential rise in dying cells from 39 1/2 dpc compared to normal XY and XYSxr^a mice.

When the degeneration index is plotted against germ cell stage for XOSxr^a mice, virtually all cell death occurs at diplotene/diakinesis/MI stages, although cells that survive until the spermatid stage then degenerate (Fig. 3k). There is increased germ cell death at pachytene in XYSxr^a mice which could account for the reduced numbers of pachytene cells shown in Fig. 3e. Further degeneration occurs at MI. Additionally, diploid spermatids in XYSxr^a tubules have a higher degeneration index than XY.

Days	No. of Mice	9	Mean ± s.e.m. b	Mean ± s.e.m. body weights (g) *	Mean ± s.e.m. weighted	Significance of
coitum	XYSxra	⋩	XYSxra	×	difference (g)	difference (P)

	-	8	6.230 ± 0.00	6.050 ± 0.13	$+0.18 \pm 0.23$	SZ
	ω	4	6.320 ± 0.58	6433 ± 0.38	-0.16 ± 0.37	SZ
	7	8	7.945 ± 0.49	7.470 ± 0.41	$+0.13 \pm 0.46$	SZ
	8	-	9.190 ± 0.48	10.340 ± 0.00	-1.15 ± 0.83	SZ
	က	2	9.260 ± 0.50	8.610 ± 0.93	$+0.65 \pm 0.95$	SZ
	4	4	9.300 ± 0.87	8.925 ± 0.38	$+0.13 \pm 0.59$	SZ
38 1/2	_	-	11.060 ± 0.00	11.270 ± 0.00	-0.21 ± 0.00	
	-	4	11.313 ± 0.73	11.115 ± 0.57	$+0.16 \pm 0.56$	SZ
	4	2	12.888 ± 0.34	13.685 ± 0.72	-0.76 ± 1.32	SZ
	က	က	10.783 ± 0.00	10.673 ± 0.00	+0.11 + 0.80	SZ
	_	က	19.100 ± 0.00	15.910 ± 1.43	+3.19 ± 2.86	SZ
		-	17.770 ± 0.35	16.330 ± 0.00	+1.44 ± 0.60	SZ
	4	7	20.160 ± 1.55	19.800 ± 1.21	$+0.25 \pm 0.85$	S
		က	21.775 ± 0.44	22.585 ± 0.24	-0.71 + 0.72	<u>\$</u>

(i) Mean body weights for XYSxr^a and XY mice and the estimated difference between them for the period 27 1/2 - 49 1/2 dpc. TABLE 3a

Denotes only 1 litter at this age 0.00 indicates no standard error possible

Mean of litter means

* * *

	Days	No. of Mice	ĕ	Mean ± s.e.m. b	ody weights (g) * N	Mean ± s.e.m. body weights (g) * Mean ± s.e.m. weighted	Significance of
3	post coitum	XOSxr ^a	⋩	XOSxra	*	difference (g)	difference (P)
				**			
• •	•	2	က	5.295 ± 0.51	5.510 ± 0.54	-0.22 ± 0.17	\$2
	29 1/2	2	4	7.007 ± 0.40	6.433 ± 0.38	+0.65 ± 0.38	2
.,		2	8	7.570 ± 0.73	7.650 ± 0.59	-0.08 + 0.00	
.,		7	5	8.495 ± 0.57	10.130 ± 0.21	-1.46 ± 0.15	< 0.005
.,	•	2	8	7.790 ± 0.37	8.610 ± 0.93	-0.82 ± 0.99	<u>\$</u>
.,		2	4	9.260 ± 0.58	8.925 ± 0.38	$+0.30 \pm 0.75$	<u>\$</u>
.,	•	2	8	12.025 ± 1.16	11.855 ± 0.59	$+0.17 \pm 0.00$	
	•	5	4	10.743 ± 0.89	11.115 ± 0.57	-0.49 ± 0.85	S
7	•	4	5	11.405 ± 1.56	13.685 ± 0.72	-2.27 ± 1.32	S
7	•	4	7	10.763 ± 1.87	13.593 ± 2.24	-2.79 ± 0.84	0.025 - 0.010
•	•	2	9	16.860 ± 0.38	17.925 ± 2.02	-1.07 ± 1.65	2
•	45 1/2		-	17.140 ± 0.00	16.330 ± 0.00	+0.81 + 0.00	
•	47 1/2	9	6	20.500 ± 1.27	20.36 ± 1.02	+0.06 ± 0.76	2
•	49 1/2	က	5	24.083 ± 0.96	23.330 ± 0.76	$+0.65 \pm 2.30$	S

Mean of litter means Denotes only 1 litter at this age 0.00 indicates no standard error possible * * *

TABLE 3a (ii) Mean body weights for XOSxr^a and XY mice and the estimated difference between them for the period 27 1/2 - 49 1/2 dpc.

Fig. 3a. Mean weighted difference in body weights for XY, XYSxr^a and XOSxr^a mice for the period 27 1/2 - 49 1/2 dpc. Where error bars are shown, the differences are significant (t-test, 1-tailed).

	Days	No. of Mice	Ф	Mean ± s.e.m. tes	stis weights (mg)* N	Mean ± s.e.m. testis weights (mg)* Mean ± s.e.m. weighted	Significance of
O	posi coitum	XYSxra	≽	XYSxra	×	difference (g)	difference (P)
				**			
*	•	-	8	4.890 ± 0.00	5.050 ± 0.32	-0.16 ± 0.55	SZ
. 4	•	∞	4	5.830 ± 0.37	6.052 ± 0.36	-0.26 ± 0.31	\$
.,	•	7	8	7.542 ± 0.53	7.120 ± 0.40	$+0.45 \pm 1.14$	82
.,	•	8	-	11.890 ± 0.93	13.059 ± 0.00	-1.16 ± 1.61	<u>\$</u>
*	•	က	7	13.650 ± 1.49	13.033 ± 1.24	$+0.62 \pm 2.13$	SE
.,	•	4	4	12.885 ± 2.05	16.080 ± 2.22	-3.29 ± 1.78	S 2
*	38 1/2	-	-	16.728 ± 0.00	23.238 ± 0.00	-6.51 ± 0.00	
رن	•	Ξ	4	20.370 ± 1.36	27.890 ± 2.37	-7.74 ± 1.73	< 0.005
4	•	4	2	26.256 ± 0.58	31.514 ± 3.71	-5.73 ± 6.36	2
	•	က	က	21.030 ± 0.00	23.499 ± 0.00	-2.46 + 3.35	2
	•	-	က	49.260 ± 0.00	40.770 ± 4.87	$+8.49 \pm 9.74$	SZ
*	•	8	-	33.362 ± 0.14	35.330 ± 0.00	-1.97 ± 0.24	0.05 - 0.025
7	17 1/2	4	7	48.400 ± 9.26	55.230 ± 1.75	-9.46 ± 3.07	0.025 - 0.010
7	19 1/2	2	က	44.673 + 7.96	61.522 ± 0.49	-17.94 ± 2.75	0.05 - 0.025

* Mean of litter means
** Denotes only 1 litter at this age
*** 0.00 indicates no standard error possible

TABLE 3b (i) Mean testis weights for XYSxr^a and XY mice and the estimated difference between them for the period 27 1/2 - 49 1/2 dpc.

_ (Days	No. of Mice	φ	Mean ± s.e.m. te	stis weights (mg)* I	Mean ± s.e.m. testis weights (mg)* Mean ± s.e.m. weighted	Significance of
00	itum	XOSxra	⋩	XOSxra	×	difference (g)	difference (P)
				**			
27	•	2	က	5.023 ± 1.38	4.390 ± 0.66	$+ 0.73 \pm 0.42$	S
29	•	5	4	6.830 ± 0.71	6.055 ± 0.36	+ 1.03 + 0.41	0.05 - 0.025
31	•	2	8	7.090 ± 0.82	7.125 ± 0.40	- 0.03 ± 0.00	S
33	•	2	5	9.632 ± 2.28	13.720 ± 0.67	-3.71 ± 0.33	< 0.005
35	•	2	8	9.765 ± 1.43	13.032 ± 1.24	-3.27 ± 1.89	S
37	•	2	4	16.230 ± 0.59	16.080 ± 2.22	-0.40 ± 2.95	S
38	•	2	8	25.120 ± 1.93	25.442 ± 2.21	-0.32 ± 0.00	
39	9 1/2	5	4	23.380 ± 1.43	27.890 ± 2.37	-4.94 ± 3.93	S
40	•	4	IJ	26.485 ± 5.78	31.512 ± 3.71	-5.18 + 6.36	S
41	•	4	7	25.090 ± 5.80	37.345 ± 11.55	-11.82 ± 3.28	0.010 - 0.005
43	•	2	9	31.500 ± 5.61	46.862 ± 6.09	-10.34 ± 5.71	2
45	•	-	-	34.228 ± 0.00	35.330 ± 0.00	-1.11 ± 0.00	
47	7 1/2	9	6	39.390 ± 2.89	53.452 ± 2.17	-14.46 ± 4.22	0.010 - 0.005
49	3 1/2	က	ß	40.810 + 0.18	63.350 ± 1.85	-22.69 + 7.50	0.05 - 0.025

TABLE 3b (ii) Mean testis weights for XOSxr^a and XY mice and the estimated difference between them for the period 27 1/2 - 49 1/2 dpc.

^{*} Mean of litter means ** Denotes only 1 litter at this age *** 0.00 indicates no standard error possible

Fig. 3b. Mean weighted differences in testis weights for XY, XYSxr^a and XOSxr^a mice for the period 27 1/2 - 49 1/2 dpc.

Fig. 3d. Histogram showing the total number of germ cells per 100 Sertoli cells in XY, XYSxr^a and XOSxr^a testes according to germ cell stage.

Fig. 3e. Total number of pachytene spermatocytes per 100 Sertoli cells in XY, XYSxr^a and XOSxr^a testes during the period 27 1/2 - 49 1/2 dpc.

Fig. 3f-g. Total number of (f) pooled diplotene/diakinesis/MI spermatocytes, and (g) diploid spermatids per 100 Sertoli cells in XY, XYSxr^a and XOSxr^a testes during the period 27 1/2 - 49 1/2 dpc.

Fig. 3h-i. Total number of (h) haploid spermatids, and (i) condensed spermatids/spermatozoa per 100 Sertoli cells in XY, XYSxr^a and XOSxr^a testes during the period 27 1/2 - 49 1/2 dpc.

Plate 3a. Histological sections showing the pachytene stage in (i) XY, (ii) XYSxr a , and (iii) XOSxr a testes at 33 1/2 dpc. SC = Sertoli cell; DS = differentiating spermatogonia; L = leptotene; Z = zygotene; P = pachytene; DP = degenerating pachytene. Magnification X700.

Plate 3b. Histological sections showing condensed spermatids/spermatozoa stages in (i) XY, (ii) XYSxr^a, and (iii) XOSxr^a testes at 47 1/2 dpc. SC = Sertoli cell; DS = differentiating spermatogonia; L = leptotene; Z = zygotene; P = pachytene; M = metaphase I; DM = degenerating metaphase I; RS = round spermatid; ES = elongated spermatid. Magnification X180.

Plate 3 c. Histological sections showing condensed spermatid/ spermatozoa stages in (i) XY, (ii) XYS xr^a , and (iii) XOS xr^a testes at 47 1/2 dpc. SC = Sertoli cell; DS = differentiating spermatogonia; L = leptotene; Z = zygotene; P = pachytene; M = metaphase I; DM = degenerating metaphase I; RS = round spermatid; ES = elongated spermatid. Magnification X700.

Fig. 3j. Germ cell degeneration index of meiotic and post-meiotic germ cells in XY, XYSxr^a and XOSxr^a mice during the period 27 1/2 - 49 1/2 dpc.

Fig. 3k. Histogram showing the degeneration index of meiotic and post-meiotic germ cells in XY, XYSxr^a and XOSxr^a mice according to germ cell stage.

DISCUSSION

The present results confirm the findings of Hannapel and Drews (1979) that the total spermatogonial number in XYSxr^a mice is not reduced compared to XY. They demonstrate further that this finding is consistent at all stages, from undifferentiated A through to B spermatogonia and extends to the early meiotic prophase stages up to, and including, zygotene. Additionally, the results show conclusively that a similar situation pertains in XOSxr^a mice. The quantitative analysis also demonstrates that the breakdown during meiosis and the subsequent degeneration begins earlier in XYSxr^a than XOSxr^a males.

Let us first consider the comparison of XYSxr^a to XY littermates. The first appearance of pachytene cells in XYSxr^a is the same as XY and intially the cell number is the same. XYSxr^a mice show a one day delay before the first appearance of diplotene/diakinesis/MI and this 24 hour delay is sustained throughout the subsequent stages. In addition, degeneration commences earlier in XYSxr^a tubules, and by diplotene/diakinesis/MI and spermatid stages there are approximately half the number of XYSxr^a cells compared to XY with degenerating and surviving cells in the same tubule. By the condensed spermatid stage, this number has fallen to less than 50%.

The picture that emerges from the XOSxr^a comparison with XY is somewhat different. There is clearly no difference between these sibs in terms of the first appearance of pachytene or the total number of germ cells at this stage. Germ cells at diplotene/diakinesis/MI stages in XY testes are first seen at 37 1/2 dpc, whereas in XOSxr^a mice they appear to be delayed by one day. Any cells surviving to the spermatid stage in XOSxr^a mice are delayed by four days. In addition to this delay, there is marked

degeneration. These results clearly indicate meiotic failure around diplotene/diakinesis/MI in XOSxr^a mice. The degeneration index indicates that most of the cells, blocked at MI, eventually degenerate and the few cells that 'slip through the net' then degenerate as haploid or diploid spermatids.

The impairment in XYSxr^a mice is therefore earlier, at pachytene, but although there is a one day delay, there is no drastic block like that seen in XOSxr^a mice, and those cells that segregate at MI (approximately half), continue through to round spermatids, the majority of which elongate to spermatozoa.

The pairing-abnormal spermatid development hypothesis (Miklos, 1974)

A hypothesis, derived from extensive data on abnormal chromosome behaviour and abnormal spermatid development in *Drosophila melanogaster* was proposed by Miklos in 1974 which linked disruption in chromosome pairing to sterility in a number of other species. The original concept of pairing sites on the X and Y chromosome and their association during male meiosis was introduced by Cooper (1964). Miklos expanded this concept and postulated that specific pairing sites existed on both autosomes and sex chromosomes and that interaction between homologous pairing sites was essential for normal spermiogenic development. Failure of the pairing sites to become 'saturated' during meiosis would lead to arrest and post-meiotic abnormality.

How does the XOSxra and XYSxra spermatogenic breakdown observed in this study compare to the hypothesis proposed by Miklos? Clearly, there is no germ cell degeneration prior to pachytene, so all cell loss occurs postpairing in accordance with Miklos' model. However, the timing of cell loss differs between XOSxra and XYSxra, so can this finding too be accounted for by the model? In XOSxra testes, all germ cells have a single unpaired univalent chromosome and, according to the model, this implies a number of 'unsaturated' pairing sites with cell loss seen at MI. Conversely, in XYSxra mice, the testes are mosaic for normal and defective spermatogenesis and the onset of cell loss is at pachytene. It is assumed that when the X and Y chromosomes pair, all subsequent post-meiotic stages proceed normally through to functional sperm. However, high levels of X-Y non-association have been described in XYSxra mice (Winsor et al., 1978; Evans et al., 1980; Chandley and Fletcher, 1980) and here there are two unpaired univalents, which implies double the number of 'unsaturated' pairing sites. It is suggested, therefore, that the discrepancy in the stage of initial cell loss seen in XYSxra and XOSxra testes can be accounted for by the Miklos theory.

In 1979 and 1980, Burgoyne and Biddle undertook a statistical analysis of the available data on XYY mice. They concluded that only trivalents gave rise to post-meiotic products and that all cells with univalents blocked between MI and MII. Most germ cells in XOSxr^a testes are seen to block at MI (Cattanach *et al.*, 1971) although some spermatids are found. The majority of these spermatids are diploid (Burgoyne and Baker, 1984; Levy and Burgoyne, 1986a), consistent with the proposal that diploid spermatids resulted from omission of the MII reduction division (Burgoyne and Baker, 1984), and in keeping with the Burgoyne and Biddle (1980)

predictions. The finding of haploid spermatids in XOSxr^a mice, however, was at variance with their conclusions. It was suggested by Levy (1986) and Burgoyne (1987a) that self-synapsis of the single XSxr^a chromosome (Chandley and Fletcher, 1980) might result in satisfaction of some, or all, of the pairing sites leading to spermatid formation, in accordance with Miklos' model. Although Mahadevaiah *et al.* (1988) argued against this possibility because the XOSxr^a component in some XXSxr^a mice appeared to give rise to normal-looking sperm without self-synapsis, reference is made, in this respect, to the following chapter.

It is known that variation in genetic background can affect the overall spermatogenic success in different mouse strains (Burgoyne and Mahadevaiah - personal communication). The paucity of spermatid stages and absence of sperm in the XOSxra mice of this study compared to those previously described (Cattanach et al., 1971; Lyon et al., 1981; Levy and Burgoyne, 1986a; Mahadevaiah et al., 1988) could be explained by variation in genetic background. An interesting alternative explanation stems from recent investigations of sex chromosome aneuploid mice in our laboratory that suggests fertility of chromosomally anomalous mice may vary with age (Mahadevaiah and Burgoyne - personal communication). Some males in the aneuploid group that were assumed to be sterile following prolonged periods of non-productive matings, finally fathered their first litters after 7/8 months. Whilst the first meiotic prophase stages have been described for normal XY mice (Goetz et al., 1984), no systematic study of the first meiotic wave in sex-reversed mice has previously been undertaken since all other XOSxra and XYSxra studies have been conducted on adult animals. If an age effect is applicable to XOSxra mice in this study, then adult XOSxra individuals would be expected to have an increased number of spermatids and occasional

sperm. In a recent study by Krzanowska (1989), a higher level of X-Y chromosome non-association was seen in pubertal males compared to that seen in the adult, and this was ascribed to an age effect. The XY control littermates of my study showed a proportion of diploid spermatids, and it is suggested that this probably arose from X-Y non-association in these pubertal mice. One possible explanation for an age effect could be a stricter cell selection against faulty cells in young adults with the screening system becoming less efficient with age (akin to the rationale of ageing occytes in older females and the increased incidence of Down's Syndrome). If the rationale of age increasing spermatogenic success applies to XOSxr^a mice, this would conflict with the claim made by Goetz *et al.* (1984) that the first meiotic wave was entirely representative of that found in the adult.

In conclusion, the results of this developmental germ cell study in XOSxr^a and XYSxr^a mice are consistent with the pairing hypothesis predicted by Miklos (1974). As a further test of this model, Burgoyne (1987a) proposed that the XSxr^a chromosome be provided with a pairing partner, without additional Y chromosome material, and this experiment forms the basis of the following chapter.

CHAPTER 4

EVIDENCE THAT X-Y PAIRING AND A Y-LINKED SPERM MORPHOLOGY GENE ARE REQUIRED FOR NORMAL SPERMATOGENESIS

This experiment was undertaken as a joint laboratory project, assigned as follows:- (1) Breeding, PGK enzyme assay, bone marrow preparations, histology and quantitation was undertaken by the writer, (2) Synaptonemal complexes and sperm counts by Dr S K Mahadevaiah, (3) Partial splenectomies, vas smears, air dried testis preparations and MI analysis by Dr P S Burgoyne and Mr S J Palmer.

INTRODUCTION

A complex rearranged Y chromosome in the mouse has been described by Eicher (1982) and designated Y* (Eicher et al., 1983). The possible origin of Y* was proposed by Eicher and Washburn in 1986, but recent findings that Tdy is located on the Y short arm rather than the proximal region of the long arm (McLaren et al., 1988; Roberts et al., 1988), precludes the Y rearrangement originating by a single event. Details of the Y rearrangement have therefore still to be determined, but we do know that Y* lacks a short arm, the pairing and exchange region is located proximally on the long arm, and the testis-determining region is located distal to the pairing and exchange region. The chromosome products resulting from the cross over between the Y* and X chromosomes at meiosis are shown in the schematic Fig. 4a. One of the recombinant chromosomal products, XY, comprises most of the X chromosome with most of the Y chromosome attached distally. The reciprocal product YX, referred to as Ydel (Hunt and Eicher, 1989 - unpublished), is a tiny Y fragment comprising little more than a centromere and the X-Y pairing and exchange region. Y^{del} is only just visible cytogenetically and, since it lacks the testis-determining region, XY^{del} mice are female.

Fig. 4a. Schematic showing the chromosomal products following pairing and exchange between the X and Y^{\star} chromosomes at meiosis.

As described in the previous experiment, XOSxr^a male mice have normal spermatogenesis until meiosis and then varying degrees of impairment with greatly reduced numbers of spermatids (Cattanach *et al.*, 1971), most of which are diploid (Levy and Burgoyne, 1986a). If sperm are produced - and this seems to vary with genetic background - the sperm are few in number and have abnormal heads, but are motile (Burgoyne, 1987a).

The spermatogenic impairment seen in XOSxr^a mice may be a consequence of the lack of a pairing partner for the XSxr^a chromosome during meiosis or due to the absence of the long arm of the Y chromosome. These two postulates are not necessarily mutually exclusive.

Despite the pairing phenomenon of XOSxr^a mice being the subject of a number of studies and reviews (Cattanach, 1975; Chandley and Fletcher, 1980; Burgoyne and Baker, 1984; Levy and Burgoyne, 1986a; Burgoyne 1987b; Mahadevaiah *et al.* 1988), it has remained difficult to experimentally separate the two points raised in Cattanach *et al.*'s (1971) original paper. The experiment described in this chapter attempts to separate these two possibilities by providing the Y^{del} from the XY* system, as a pairing partner for the XSxr^a chromosome, without the addition of any known long arm Y chromosome material.

MATERIALS AND METHODS

Mice

The XSxr^aY^{del} mice used in this study were derived from a multigeneration breeding programme. This programme is detailed in Appendices 4a - g and is summarised below.

Part 1: The aim of Part 1 of the breeding programme was to produce T16HB/XASxra females and XASxraYSxra males.

Females heterozygous for Searle's translocation T(X;16)16H and homozygous for the X-linked PGK-1^b allele (T16H^B/X^B females) were mated to males carrying the sex reversal factor Sxr^a and the PGK-1^a allele (XAYSxra males). (The original T16HB/XB females were a gift from Dr C Beechey at the MRC Radiobiology Unit, Didcot, Oxon). The progeny of this cross include T16HB/XASxra mice, approximately 60% of which were expected to develop as females (McLaren, 1986) (Appendix 4a). Initially the XAYSxra males used in this cross derived their XA chromosome from mothers who had a random-bred MFI background (Appendix 4b). These males consistently failed to father T16HB/XASxradaughters. Only one out of the twenty-five agouti PGK-1^B daughters was thought to carry Sxr^a, but became infertile during test matings before this was confirmed. The problem was resolved by using XAYSxra males in which the XA chromosome was derived from mothers with a C3H background, as was the case in the original study of McLaren and Monk (1982). This anomaly is currently under investigation, but falls outside the scope of this thesis.

The T16HB/XASxra females eventually produced were identified as such by their PGK-1B phenotype (only the translocation X is expressed) and by their ability to produce striped Ta/+ male offspring (i.e. XTa/X+Sxra) when mated to XTaY males. These T16HB/XASxra females were then backcrossed to their XAYSxra fathers (Appendix 4c). Adult PGK-1A male progeny with large testes were test mated to see if they produced all male offspring (McLaren and Burgoyne, 1983) (Appendix 4d) as is the case with XASxraYSxra males. One such XASxraYSxra male was identified.

Part 2: The aim of part 2 of the breeding programme was to produce X^AOSxr^a and $X^ASxr^aY^{del}$ males on the same genetic background.

The XY* males were a gift from Dr E Eicher of the Jackson Laboratory, Maine, USA. X^BY^* males were crossed with homozygous inversion In(X)1H females from our laboratory (Appendix 4e). Two types of progeny from this cross, heterozygous $In(X)^B/X^B$ females and $In(X)^BY^*$ males were used for the next generation breeding.

 $In(X)^B/X^B$ females crossed to the homozygous $X^ASxr^aYSxr^a$ male from Part 1 (Appendix 4f), produced X^AOSxr^a males amongst their offspring. $In(X)^BY^*$ males mated to T16HB/XASxra females from Part 1 (Appendix 4g), produced the $X^ASxr^aY^{del}$ males.

Three adult XAOSxra and four adult XASxraYdel males were used in this study.

PGK Enzyme Assay

The biochemical microassay for the X-chromosome-linked phosphoglycerate kinase enzyme, PGK-1, was carried out using blood samples taken from the tail vein. The assay distinguishes between the electrophoretic variant isozyme bands PGK-1A and PGK-1B and is described in detail in Appendix 4h. Briefly, tissue extracts are diluted in sample buffer and loaded onto the cathodal side of a cellulose acetate strip soaked in running buffer. Electrophoresis is carried out using a water cooled Whatman electrophoresis tank run at 200 volts for one and half hours. Staining is achieved by the addition of a number of reagents that activate fructose 1,6 diphosphate in a forward PGK-1 reaction. When this reaction is coupled to an auxillary enzyme system, flourescent NADPH is produced which can be visualised under ultra violet light (Monk, 1987).

Karyotyping

Partial splenectomies were performed for the purpose of preparing mitotic spreads without sacrificing the animal. Mice were anaesthetised by injecting Avertin at a concentration of 1.25% into the peritoneal cavity at a dosage dependent upon body weight (e.g. ·75ml/30g). Approximately one tenth of the spleen was removed, dissociated in a test tube by pipetting vigorously with a Pasteur pipette in ·004% colcemid in Hepes-buffered Eagle's minimal essential medium and incubated for 60 minutes at 32°C. Preparations were then treated as for bone marrow cells, described in Materials and Methods, Chapter 2.

At autopsy, mitotic spreads were prepared from bone marrow cells as described in Materials and Methods, Chapter 2, as confirmation of the splenectomy results. G banding of a bone marrow preparation was undertaken by Dr E P Evans (Sir William Dunn School of Pathology, Oxford), which confirmed a T16HSxr^aY^{del} karyotype, that was excluded from the subsequent quantitative analysis.

Air Dried Testis Preparations

Both testes of adult males were removed at autopsy and weighed using a Mettler balance. One testis was fixed in Bouins for histology (see Histology section). The other testis was divided into two halves. Tubules from one half of the testis were freed from the tunica and dissociated in 2.2% isotonic sodium citrate for one minute. The pellet was then treated with 1% sodium citrate for 13 minutes, followed by 3:1 ethanol:glacial acetic acid fixative carefully added drop-by-drop, with the pellet flicked into the suspension after each drop. A further five rapid changes of fixative were followed by a final resuspension of the pellet in 2 drops of 3:1 methanol:glacial acetic acid. The cells were dropped onto slides, air dried and stained in 2% Giemsa in pH 6.8 phosphate buffer for 25 minutes (Evans, Breckon and Ford, 1964).

Synaptonemal Complexes

From the remaining half testis, tubules were dissociated in a few drops of RPMI 1640 medium onto slides, incubated in 5% carbon dioxide at 37°C and used for synaptonemal complex preparations (Guitart et al., 1985; Mahadevaiah, 1987). Briefly, the cells are subjected to 0.4% sodium

chloride hypotonic solution, fixed in 0.03% sodium dodecyl sulphate in 4% formaldehyde and dipped in 0.4% photoflo at pH 8.0. Staining was carried out at 57°C with gel-developer and 50% silver nitrate. Plastic coated slides were used since all material was required for analysis under the electron microscope.

Histology

The contralateral testes from XAOSxra and XASxraYdel males were then processed for histology, as described in Materials and Methods, Chapter 2.

Quantitative Analysis

Quantitative analysis of histological serial sections was carried out as described in Materials and Methods, Chapter 2, with the following modifications. The sampling was one tubule every 40th section, such that 20 tubule cross-sections were analysed per testis. A low power x4 objective was used to focus the grid underlying the slide. The high power objective used was x50 under oil immersion.

Sperm Count and Morphology

Vas smears for sperm dimension measurements and morphology, were prepared according to the technique of Burgoyne (1973). The vasa were held by forceps at one end and the sperm squeezed out and mixed into one drop of phosphate-buffered saline for one minute. Two drops of nigrosine/eosin were then added, mixed and left for a further two minutes. One drop was then smeared onto a clean slide and allowed to air dry.

Sperm counts were made from both capita epididymides which were dissected free from fat, weighed, placed in a petri dish with 0.2ml of 1% sodium citrate and chopped up using a scalpel and forceps. A further 1.8ml of sodium citrate was added, and the suspension mixed well with a Pasteur pipette. A small drop was placed on a haemocytometer and a count made of four squares, each square representing a chamber containing 0.0001 ml of cell suspension. The number of spermatozoa per ml was then calculated by dividing the total square count by 4 x 0.0001.

RESULTS

For ease of description, the PGK-1A and B classification will be omitted from the genotype descriptions for the remainder of this thesis.

An example of the XSxr^aY^{del} karyotype is shown in Plate 4a. This illustrates the extremely small size of the Y^{del} fragment and its unambiguous identification compared to the normal Y chromosome which approximates in size to the smallest autosome, chromosome 19.

The data on testis weights and sperm counts are shown in Table 4a for the three XOSxr^a and four XSxr^aY^{del} adult mice analysed in this study. The testis weights for the XOSxr^a mice concur with previous findings and those seen in Chapter 3. Although sperm are occasionally found in XOSxr^a mice, none were observed in these three individuals. By contrast, the testis weights of all four XSxr^aY^{del} mice were approximately double those of XOSxr^a. The sperm count ranged from 3/4 to more than 3 million, the higher values within the range of normal XY mice from other genetic

backgrounds. Unfortunately, since all males in this cross have abnormal genotypes, no testis weight or sperm count data for normal XY mice on this background could be recorded, although data from a project involving males on a similar outbred background had testis weights ranging from 135.0 - 150.0 mg and sperm counts around 4 million (Mahadeviah - personal communication).

Plates 4b - d show electron micrographs of the synaptonemal complex association in XY, XOSxr^a and XSxr^aY^{del} pachytene spreads. The univalent XOSxr^a chromosome sometimes self pairs by forming a ring or hairpin loop. The Y^{del} fragment is seen to pair with the XSxr^a chromosome along the X-Y pairing and exchange region, confirming synapsis in XSxr^aY^{del} mice (Plate 4d).

Air dried preparations were used to score the percentage of XSxra-Ydel dissociation at metaphase I and the results, shown in Table 4b, average around 40%. A larger sample would have to be scored to determine whether there is a positive correlation between the amount of dissociation and sperm number.

The histological picture is in agreement with the testis weight and sperm count findings. Plate 4e. (i) - (ii) show that spermatogenesis breaks down at meiosis in XOSxr^a testes and most metaphase I cells are seen to be degenerating, Plate 4e. (i). A few metaphase I cells do survive, however, giving rise to a limited number of round spermatids although no sperm. (The number of spermatids and the occurence of sperm is influenced by genetic background - Burgoyne - personal communication). XSxr^aY^{del}

mice, by comparison, have active spermatogenesis with both round and condensed spermatids and large numbers of spermatozoa, Plate 4e. (ii).

A quantitative analysis of germ cell types was undertaken from these histological serial sections. Since Sertoli cells cease dividing around 14 days post partum, adults have a stable Sertoli cell population and germ cell numbers were therefore expressed per 100 Sertoli cells (Russell and Clermont, 1977). The number for each meiotic germ cell stage is shown as a histogram for three XOSxra and three of the four XSxraYdel adult mice (Fig. 4b). There is clearly no difference in the total number of prophase cells between XOSxra and XSxraYdel, but the high number of degenerating cells at metaphase I in XOSxra explains the comparative paucity of round spermatids. There is also some evidence of degenerating metaphase I cells in XSxraYdel but proportionally much less so than in XOSxr^a. Surviving XOSxr^a spermatid cells are mainly diploid and a small proportion of XSxraYdel spermatids are also diploid. The addition of the Ydel fragment to XSxra dramatically alters the number of spermatids and sperm. A regression analysis of testis weights and total germ cell number for three XOSxra and three XSxraYdel adult mice demonstrates a strong positive correlation (Fig 4c), with the correlation coefficient for XOSxra = 0.9970 and for $XSxr^{a}Y^{del} = 0.9557$.

Despite the high sperm number, the sperm in XSxr^aY^{del} mice were all found to be abnormal. A typical example of the abnormal sperm head shape, compared to the normal for XY mice, is shown in Plate 4h (i) and (ii).

Plate 4a. Mitotic bone marrow spread showing the karyotype of XSxr^aY^{del} mice. (courtesy of Dr E P Evans). The Y^{del} fragment can be seen lying alongside chromosome number 19 (the smallest autosome), which is approximately the same size as a normal Y chromosome.

<u>Genotype</u>	<u>No</u> .	Testis weight (mg) Left Right		Sperm/caput
	H25	52	53	0
XOSxr ^a	G23	43	49	o
	H67	46	43	0
	E12	136	136	3,095,000
XSxr ^a ydel	E11	112	119	1,242,500
	D 8	98	98	745,000
	A55	103	102	1,527,000

Table 4a. Table comparing the testis weights and sperm counts for three $XOSxr^{a}$ and four $XSxr^{a}Y^{del}$ adult mice (courtesy Dr S K Mahadevaiah and Dr P S Burgoyne).

Plate 4b - d. Electron micrographs of synaptonemal complex preparations in (b) XY, (c) XOSxr^a and (d) XSxr^aY^{del} pachytene spreads (courtesy of Dr S K Mahadevaiah).

Genotype	No.	% X-Y Pairing	% X-Y Dissociation*
XSxraydel	E12	72.7	27.3
	E11	48.0	52.0
	D 8	70.7	29.3
	A55	49.0	51.0
	İ		

^{*} Allowances for non-appearance of Y^{del} (assumed to be present but sometimes difficult to visualise because of small size) made in the dissociation percentages.

Table 4b. Percentage X-Y dissociation scored from metaphase I testis preparations in four XSxr^aY^{del} mice (courtesy Dr P S Burgoyne).

Plate 4e. Histological sections showing the condensed spermatids/spermatozoa stages in (i) $XOSxr^{a}$, and (ii) $XSxr^{a}Y^{del}$ testes. $SC = Sertoli \ cell$; $DS = differentiating \ spermatogonia$; L = leptotene; Z = zygotene; P = pachytene; $M = metaphase \ I$; $DM = degenerating \ metaphase \ I$; $RS = round \ spermatid$; $ES = elongated \ spermatid$. Magnification X1500.

Fig 4b. Histogram showing the total number of germ cells per 100 Sertoli cells in three XOSxr^a and three XSxr^aY^{del} mice according to germ cell stage. The blocked areas show the proportion of MI degenerating spermatocytes and diploid spermatids in both genotypes.

Fig 4c. Regression analysis of testis weights plotted against total germ cell number in $XOSxr^a$ and $XSxr^aY^{del}$ mice. Correlation coefficient: $XOSxr^a = 0.9970$; $XSxr^aY^{del} = 0.9557$.

Plate 4f. Examples of sperm head morphology in (i) normal XY, and (ii) abnormal XSxr^aY^{del} mice.

DISCUSSION

The breeding programme was set up to add the tiny Y fragment, Y^{del} (derived from Y^{*}) to XSxr^a. The second cross was set up to produce XOSxr^a mice as controls on the same genetic background. Providing the Y^{del} pairing partner to XSxr^a overcame the severe spermatogenic impairment seen at meiosis in XOSxr^a mice and resulted in a dramatic increase in the number of spermatids and spermatozoa. However, in spite of the large number of sperm produced, all sperm had misshapen heads and the mice proved to be infertile.

When XOSxr^a males were first described (Cattanach *et al.*, 1971) it was hypothesised that spermatogenesis might fail in these individuals because of lack of a pairing partner for the X-univalent or because of the loss of a gene required for ongoing development. The results of this study provide strong evidence in support of the former hypothesis.

It could be argued that the interpretation of this data need not relate to the provision of a pairing partner, but merely the provision of a second pseudoautosomal region, irrespective of actual pairing and exchange. Normal XY males with correct pseudoautosomal dosage show a percentage of X-Y dissociation, varying according to strain and genetic background, but the effect of this pairing failure is not apparent because the dissociation levels are usually too low to affect fertility (Chandley and Speed, 1987; Krzanowska, 1989). However, studies of XYSxra males have demonstrated that, despite two pseudoautosomal regions, the presence of Sxra disrupts pairing with as much as 70 - 90% dissociation (Cattanach, 1975; Evans *et al.*, 1980; Chandley and Speed, 1987). Although these

XYSxr^a mice have normal dosage for the pseudoautosomal region, they nonetheless often have profound pairing problems and are sometimes infertile. It is therefore unlikely that reinstatement of pseudoautosomal dosage alone, explains the spermatogonial success in XSxr^aY^{del} mice.

Although the Y^{del} pairing fragment leads to successful spermatogenesis in XSxraYdel mice, the absence of additional Y chromosomal material results in abnormal sperm. Since Sxra comprises only the short arm, the Y chromosomal long arm must be implicated in the sperm abnormality. Yqdeletions in humans have been associated with abnormal spermatogenesis and azoospermia (Tiepolo and Zuffardi, 1976; Davis, 1981; Fryns et al., 1985). Despite deletions of the Y long arm in mice being postulated to control sperm motility (Eicher et al., 1983), observations of motile sperm in XOSxra individuals negates this suggestion (Short and Aitken - quoted by Lyon et al., 1981; Burgoyne, 1987a). However, the production of congenic mice with different Y chromosomes on the same genetic background, has demonstrated a Y effect, not on motility, but on the percentage of sperm head abnormality (Krzanowska, 1971; Krzanowska, 1976). Mice, originating in our laboratory, carrying a small Y chromosome have approximately two thirds of the long arm deleted. These mice are fertile, but have varying proportions of abnormal sperm (Burgoyne unpublished). In addition, recent evidence by Moriwaki et al. (1988), has shown that deletions of the mid-region of the Y long arm in mice were correlated with more than 70% sperm head abnormality. In the case of XSxraYdel mice the complete absence of the Y chromosome long arm leads to the entire sperm population being abnormal. Since the size of the deletion is correlated with the proportion of abnormality, it implies that a

gene, needed for normal sperm head development, is present in multiple copies along the length of the Y long arm.

A Y-specific 1.5 kb genomic sequence, Y353B, has recently been cloned (Bishop and Hatat, 1987). The pY353B insert is specifically transcribed in mouse testes and is present in multiple copies along the entire length of the Y long arm (Bishop and Hatat, 1987). Not surprisingly, the pY353B insert does not hybridise to the tiny Y^{del} fragment (Bishop - personal communication). It is suggested that Y353B is an ideal candidate for this multiple copy, sperm morphology gene (dubbed *Smy*), located on the mouse Y long arm.

One of the chromosomal products of Y* is XY. XYO males (XXY males would be infertile due to the two X chromosomes) are reported to have normal sperm shape and are apparently sometimes fertile (Eicher and Washburn, 1986), but unfortunately, there is no pachytene or metaphase I data available for these mice. How could XYO males overcome their univalent pairing problem and undergo successful spermiogenesis? Certainly the length of the XY chromosome would enhance the chance of self-pairing (de Boer et al., 1986; Mahadevaiah - personal communication) and this may contribute to the fertile sperm found in these males. A detailed analysis of synaptonemal complexes, testis histology and sperm morphology of XYO mice would obviously provide interesting answers.

In conclusion, and to answer the original dichotomy, it appears that satisfying the pairing requirement alone without additional genetic information is sufficient to allow spermatogenesis to actively proceed.

However, to avoid sterility, additional genetic information, present on the Y chromosome, must act further down the line to produce fertile sperm.

CHAPTER 5

GENERAL DISCUSSION

The Y chromosome's role is not just that of testis determination, with the remainder comprising 'junk' DNA as was previously held to be the case up until the early 60's. Despite slow progress in genetic analysis (Goodfellow et al., 1985), it is now accepted that the Y chromosome is multi-functional. Genes have been described for male-specific characteristics and various aspects of fertility in both man and mouse, furthermore the Y has an important role as a pairing partner for the X chromosome during meiosis. The purpose of this thesis was to investigate aspects of the Y chromosome's role in spermatogenesis during development from birth to puberty, using the sex reversed mouse as a model.

In the first project, a quantitative analysis was undertaken of the germ cell block in XOSxr^b testes. Sxr^b is a fragment of the Y short arm, now known to be the result of a deletion from Sxra (McLaren *et al.*, 1988; Roberts *et al.*, 1988; Bishop *et al.*, 1988; Mardon *et al.*, 1989). At birth, XOSxr^b mice are phenotypically normal males with testes that were shown in this project to have normal numbers of Sertoli cells and germ cells. The testisdetermining gene, *Tdy*, must therefore be present in the Sxr^b fragment. By five days after birth, spermatogonial proliferation is impaired at the early differentiating A stages and, coupled with germ cell degeneration, few cells reach the A₃/A₄ differentiating stages. XOSxr^a mice of the same age show no such germ cell block. This evidence demonstrates that the gene required for ongoing spermatogenesis, which is present in Sxr^a but missing in XOSxr^b, is expressed during the first wave of differentiating A₁/A₂ spermatogonia.

The second project extended the quantitative analysis to XOSxr^a (and XYSxr^a) testes, covering the period throughout puberty. This study

demonstrated that in XOSxra testes, spermatogenesis proceeded normally through the meiotic prophase stages, culminating in a drastic germ cell block and degeneration at MI. Only 15% of germ cells reached the spermatid stages in these mice (on this genetic background). The Sxra fragment has been described as the Y short arm (Bishop et al., 1988; Mardon et al., 1989), so germ cell degeneration at MI could be due to the absence of essential sequences from the Y long arm. However, cell breakdown coincides with the stage in meiosis, MI, following bivalent pairing at pachytene and a hypothesis proposed by Miklos (1974) links pairing disruption with spermatid failure. XOSxra mice have 'unsaturated' pairing sites due to the univalent sex chromosome in every cell. It has remained difficult to distinguish between these two possible causative factors. The quantitative analysis in the XYSxra littermates showed degeneration commencing earlier at pachytene, as well as at MI, but no drastic germ cell block as in XOSxra mice. This finding has led to the suggestion that, since the Sxra fragment in XYSxra mice has already been shown to disrupt pairing (Winsor et al., 1978; Hannapel and Drews, 1979; Chandley and Fletcher, 1980; Evans et al., 1980; Chandley and Speed, 1987; Mahadevaiah et al., 1988; Tease and Cattanach, 1989), some cells have two univalent sex chromosomes, and these could cause earlier impairment than that seen in XOSxra. This explanation is supportive of the Miklos theory, since there would be double the number of 'unsaturated' pairing sites in spermatocytes with X-Y separation in XYSxr^a testes.

Despite these findings, the XOSxr^a and XYSxr^a analysis only conclusively proved disruption to be post-pairing, but could not prove the Miklos model. In a further attempt to distinguish the causative factor of the XOSxr^a germ cell block and a further test of the Miklos hypothesis,

Burgoyne (1987a, 1987b) proposed that the XSxra univalent chromosome be provided with a pairing partner, but without additional Y chromosome material. This experiment has recently become feasible through a multistep breeding programme using XY* male mice (Eicher, 1982; Eicher et al., 1983). One of the gametic products, Y^{del}, comprises little more than a centromere and a pairing and exchange region. This project formed the final part of this study. The provision of this tiny Ydel fragment to XSxra, overcame the germ cell block seen in XOSxra testes, resulting in all stages of spermatids and motile sperm in high numbers. It could be argued that successful spermatogenesis resulted from pseudoautosomal dosage alone, i.e. two pairing and exchange regions, irrespective of whether pairing occurred or not. However, in XYSxra mice, two normal pairing and exchange regions are unable to prevent spermatogenic disruption, implying that pairing and exchange is an important feature in spermatogenesis. The results of this study provide persuasive evidence to support the Miklos theory as well as demonstrating that the long arm of the Y chromosome is not required for spermatogenesis.

Although XSxraYdel mice had high numbers of motile sperm, the mice were found to be infertile. Sperm head morphology was found to be abnormal in all spermatozoa. This evidence supports recent findings that the Y long arm has a gene required for sperm morphology, and, since increased deletions of the long arm are correlated with increased percentage of sperm abnormality, this gene is probably present in multiple copies (Moriwaki *et al.*, 1988; Burgoyne - personal communication). It is tempting to suggest that a Y-specific genomic sequence, Y353B, present in multiple copies along the entire length of the Y long arm (Bishop and Hatat, 1987), may be the sperm morphology gene, *Smy*.

APPENDICES

ACKNOWLEDGEMENTS

APPENDIX 2a

BREEDING CROSS TO PRODUCE XOSxrb MALE MICE

In(X)/X	Q	×	X/YSxr ^b	ð
		Progeny	<u>Sex</u>	
		In(X)/X	φ	
		X/X	Q	
		0/X	Q .	
		In(X)/XSxr ^b	o*	
		X/XSxrb	ď	
		In(X)/Y	ð	
		XY	O	
		In(X)/YSxr ^b	0	
		X/YSxr ^b	0	
(aborted)	O/YSxrb	O	
		O/XSxr ^b	o € (1 in 19	progeny)

APPENDIX 2b

SPERMATOGONIA

Training in the identification of prospermatogonia and spermatogonia was given by Professor Werner and Dr Barbara Hilscher, University of Dusseldorf, Federal Republic of Germany.

In the past, spermatogonial stages in the mouse and rat were identified by reference to the adjacent meiotic stages (Oakberg, 1956; Roosen-Runge, 1962; Huckins, 1971; Oakberg, 1971; Huckins and Oakberg, 1978) since there is a hierarchal order from the basement membrane towards the lumen in normal XY testis tubules. All six differentiating spermatogonial stages, A₁-A₄, In and B were confirmed in the adult mouse by Monesi (1962) who studied DNA synthesis and the cell cycles using tritiated thymidine.

'Early' spermatogenesis, as defined by Hilscher (1988), describes the formation of the stem cell stock and the first wave of differentiating cells, and many of the studies directed towards this period have investigated the undifferentiated stem cell stock and its mode of renewal (Hilscher, 1981b; Oakberg, 1981). The first wave of differentiating spermatogonia and the number of generations in the immature mouse is, however, less well understood (Kluin *et al.*, 1984; Sung *et al.*, 1986), but the inference has been that it is the same as in the adult.

Although a large number of studies have been undertaken in prepubertal mice and rats (Clermont and Perey, 1957; Huckins, 1965; Huckins, 1973; Bellve et al., 1977; Kluin and de Rooij, 1981; Kluin et al., 1982; Kluin et al., 1984), there has been no confirmation of all six differentiating

spermatogonial stages in the first wave. There is a consensus of opinion that differentiating A, In and B spermatogonial stages are present but the A₁-A₄ and In-B stages have not been separately identified from each other during the early post-natal period. Discrepancies exist between authors with respect to the age when meiotic cells first appear (Clermont and Perey, 1957; Sapsford, 1962; Hilscher and Hilscher, 1976; Oakberg, 1981; Kluin and de Rooij, 1981), which could be accounted for by strain differences, but there seems to be general agreement that preleptotene cells are observed within three to four days of the first sighting of undifferentiated A spermatogonia. In the adult mouse and rat, the cell cycle time has been evaluated between 27 1/2 - 30 hours (Monesi, 1962; Hilscher, 1981b), whereas labelling experiments in immature mice have suggested this period is shorter (Oakberg, 1981; Kluin et al., 1982), although this remains in dispute (Sung et al., 1986). Certainly, the interval between the onset of dividing undifferentiated A cells and the appearance of the first preleptotene cells seems too rapid to accommodate a minimum of six successive generations of differentiating spermatogonia, unless they occur much more rapidly than in the adult (Hilscher, 1981b).

Whilst an A_1 cell is clearly distinguishable from an A_4 , there is some overlap between consecutive stages, from a morphological point of view, particularly since scoring was undertaken at 3 μ m histology sections. The plane of the nuclear section could be misleading in terms of the number and amount of heterochromatic regions, which is a diagnostic morphological feature. For the purposes of scoring in the first project which was attempting to pin point the particular stage of breakdown in the first spermatogonial wave, therefore, germ cells A_1 and A_2 were pooled, as were A_3 and A_4 , and also In and B. An attempt is underway to determine whether all six differentiating

spermatogonial stages are present in the first wave in prepubertal mice, but this is outside the scope of this thesis.

There is also some controversy surrounding the two neonatal prospermatogonial stages and the appearance of the undifferentiated A spermatogonia (the stem cell stock). There is agreement that the large round gonocytes seen at birth (named T₁-prospermatogonia by Hilscher *et al.*, 1974), divide mitotically within the first two post-natal days in the mouse or four days in the rat (the mouse is two days ahead of the rat - Nebel *et al.*, 1961). The dispute arises from the identification of the daughter cells of this T₁ division. Beaumont and Mandl (1963) and Oakberg (1981) state that these are the stem cells whereas Clermont and Perey (1957) and Kluin and de Rooij (1981) agree with Hilscher *et al.*, (1974) and Hilscher and Hilscher (1976) that there is another prospermatogonial stage (named T₂-prospermatogonia by Hilscher *et al.*, 1974). From this study it is evident that an additional stage does exist between T₁ and the undifferentiated A spermatogonia, and this has been described as T₂-prospermatogonia in accordance with Hilscher *et al.* (1974) for the purposes of this thesis.

APPENDIX 3a

Southern Blot Analysis

All males were karyotyped; XOSxr^a mice were identified as having 39 chromosomes and no Y chromosome. To distinguish XY and XYSxr^a littermates, genomic DNAs were analysed by Southern blots. Following a high stringency wash, the SX1 probe hybridises to three bands in XY mice, 7.0, 2.8 and 1.8 kb. However, in Sxr^a carriers, an additional 5.0 kb band is seen. The extraction of genomic DNA, Southern blotting and hybridisation followed the protocols described by Maniatis *et al.* (1982) and Hogan *et al.* (1986), with minor modifications. The steps are described below:-

1. Isolation of genomic DNA from tail tips

Approximately 1.5 cm of tail tip was removed, placed in an Eppendorf, snap frozen in liquid nitrogen and stored at -20°C. The tail tissue was subsequently chopped up in 700 µl of proteinase K buffer and incubated overnight in a water bath at 50°C (modification of Hogan *et al.*, 1986). The lysate was then either stored at 4°C or immediately extracted with phenol. An equal volume of buffered phenol was added to each Eppendorf, rotated on a vertical rotator for 10 minutes, then microfuged for 10 minutes. The aqueous phase plus interface were transferred to a fresh Eppendorf and an equal volume of phenol added and the above rotation and microfuging repeated. Prior to the third phenol addition, only the aqueous phase was removed, the interface being discarded. Phenol extraction is a standard method for the removal of proteins from the nucleic acid solution.

After the third phenol extraction, the aqueous phase was removed to a fresh Eppendorf and an equal volume of phenol:chloroform/isoamyl alcohol added to each tube. The tubes were then rotated and microfuged as above. The addition of chloroform facilitates the removal of phenol.

The aqueous phase was transferred to a polypropylene test tube, and three volumes of ethanol added. The fibrous precipitate was hooked out with a flamed glass pipette, washed twice in 70% ethanol to remove traces of phenol, allowed to dry at room temperature, and resuspended, by overnight rotation on a vertical rotor, in 150 µl of TE buffer. The purified DNA was then stored at 4°C.

Optical density readings were recorded on a spectrophotometer (Pye Unicam SP8-150 UV/VIS) at a dilution of 1/100 (5 μ l DNA in 495 μ l H₂O; blank 5 μ l TE in 495 μ l H₂O) at 260 and 280 nm. Sample ratios ranged from 1.6 - 1.8 (1.8 - 2.0 optimum). Since 1 OD unit = 50 μ g/ μ l and dilution was 1 in 100, the DNA concentration was calculated in μ g/ μ l, by multiplying the OD reading x 0.05 x 100.

3. Restriction enzyme diaestion of genomic DNA

Ten micrograms of tail DNA were digested with the restriction enzyme, *Eco* R1 using the *Eco* R1 restriction buffer supplied by the manufacturer (NBL). A 4-fold excess of enzyme was used per microgram of genomic DNA. An example of a typical enzyme digest is as follows:

10 µg tail DNA

1 x Eco R1 buffer

40 Units Eco R1 enzyme

dd H₂0 to a final volume of 40 µl

The digest was incubated overnight at 37°C. The following morning a further 40 Units of enzyme were added and the incubation allowed to continue for three more hours.

Care was taken to avoid *Eco* R1 star activity. *Eco* R1 has a recognition sequence of GAATTC, but when a high excess of enzyme (25 Units *Eco* R1/ng) or glycerol concentrations of 5% are present, star activity (reduced specificity) is observed. The enzyme then cleaves at the sequence AATT. Following digestion, samples were stored at -20°C.

4. Electrophoresis of restricted DNA fragments

A 0.8 % agarose gel was prepared by boiling 2.4 g agarose in 300 ml of a 1 x TBE solution. After cooling the agarose to a temperature of approximately 60°C, ethidium bromide was added to a final concentration of 0.5 ug/ml, and the agarose poured onto a gel plate with a comb at one end. Once the gel had solidified, the comb was removed and the gel was placed in an electrophoresis tank. 1 x TBE buffer was poured into the tank to a level just covering the gel. 6µl of 5 x loading buffer was added to each sample, such that the total volume of DNA/enzyme/buffer was 50 µl, and the DNA loaded onto the gel. The gel was electrophoresed for 16 - 20 hours at 30 - 40 V, the DNA moving from the cathode to the anode, and then visualised and photographed under ultra violet light. An example of the digested DNA run on an ethidium bromide gel is shown in Appendix Plate 3a.

4. Transferring of DNA onto filter membrane by Southern blotting

The capillary blot was set up according to Southern's (1975) protocol, using 20 X SSC as the transfer buffer. The gel was depurinated (2 X 20 minutes),

denatured (2 X 15 minutes) and neutralised (1 X 30 minutes) in a glass dish on a rocking platform. The gel was then placed on the capillary blot. The schematic Appendix Fig. 3a, illustrates the main steps:

Gel placed 'inverted' on to platform

Appendix Fig.3a. Schematic illustrating the main features of the capillary blot (after Southern, 1975).

Saran wrap was used to surround the gel to prevent transfer buffer from flowing directly from the reservoir to the paper towels on top of the gel. The Hybond-N membrane (Amersham) was cut to the size of the gel and placed dry on top of the gel.

Care was taken to ensure that no air bubbles remained trapped between the filter papers, gel and membrane. Three layers of Whatman 3MM soaked in 2 X SSC were placed on top of the membrane followed by a 10 cm pile of paper towels, a glass plate and a 1 kg weight on top. The transfer was allowed to proceed overnight.

The following day, the Hybond-N membrane was removed, washed briefly in 2 X SSC, placed in dry Whatman paper and baked in a vacuum oven for 20 minutes at 80°C. The DNA was cross-linked onto the membrane under UV irradiation for five minutes, rebaked for 20 minutes at 80°C and finally bagged up in plastic.

5. Hybridisation of radioactive labelled probe to DNA

To radioactively label the probe, 100 ng pSX1 insert was added to 33 μ l dd H_2O in an Eppendorf and boiled for 5 minutes to denature the DNA double helix (Wetmur and Davidson, 1968). An example of a typical labelling reaction is shown below:

3µl DNA

33 µl dd H₂O 2 µl Klenow

10 µl OLB 5 µl ³²P dCTP

2 µl BSA

The reaction was allowed to proceed for a minimum of five hours at room temperature. To separate the labelled probe away from unincorporated radionucleotides, a 1 ml syringe, plugged at the neck with siliconised glass wool, was used as a column to which Sephadex G50 was repeatedly added until the buffer stopped dripping through freely. The column was centrifuged for exactly two minutes, ensuring that the packed column height reached a minimum of 0.8 ml. 50 µl of TES buffer was added to the probe solution, then the contents pipetted onto the top of the column. The column was then centrifuged for exactly two minutes. Probe with incorporated label forms the eluate, whilst unincorporated isotope adheres to the Sephadex column. 1 µl of eluate was counted on a scintillation counter (LKB Wallac 1211 Minibeta liquid scintillation counter) to a specific activity not less than 1.0 x 108 cpm

Meanwhile, the membrane was pre-wet with 2 X SSC and re-bagged in plastic to which pre-warmed prehybridisation solution was added. Air bubbles were squeezed out of the bag before sealing, and the bag with enclosed membrane was placed in a water bath for two hours at 68°C.

The probe with incorporated isotope was added to the pre-warmed hybridisation solution. The prehybridisation fluid was tipped out of the bag and replaced by the hybridisation mix and the bag re-sealed (once again ensuring that air bubbles were removed). The bag was then placed in a plastic box in a shaking water bath and hybridised overnight at 68°C.

The following morning, the hybridisation fluid was tipped out of the bag, the membrane removed, washed briefly in 2 X SSC with 0.1% SDS, then placed in a plastic box with 2 X SSC plus 0.1 % SDS for 15 minutes at 68°C in a shaking water bath. This procedure was repeated twice more, with a final

high stringency wash at 0.1 X SSC plus 0.1% SDS salt solution for 12 minutes at 68°C.

Autoradiography was performed by exposing the membrane to Fuji RX100 X-ray film at -70°C with an intensifying screen (Laskey and Mills, 1977). The time of exposure was between 24 and 72 hours. A typical autoradiogram is shown in Appendix Plate 3b.

Troubleshooting

Although this protocol originally produced good results, problems were later encountered with poor resolution of the higher molecular weight 7.0 and single copy 5.0 kb bands. Test runs were undertaken varying the depurination times and concentration, and with no depurination (since it is not an essential step for DNA below 10.0 kb) but no differences were detected. Neither were differences found when the time of the digests was shortened to 3 hours or to a single digest. Varying the cross-linkage time did show that optimal timing was 3-4 minutes (rather than 5), but despite changing the timing, overall little improvement was found. Varying batches of *Eco* R1 enzyme, enzyme buffer and Hybond membrane had little overall effect.

Hybond-N positive membrane has recently been introduced by Amersham, which utilises an alkali transfer buffer such that denaturation, baking and UV cross linking are all unnecessary steps. Some improvement was detected when Hybond-N was used, but a number of samples were re-run several times with limited success. Unfortunately, the problem remained largely unresolved and it was concluded that the DNA quality must have been poor.

Appendix Plate 3a. Example of an electrophoresed agarose gel with Eco R1 digested tail DNA from XY and XYSxr a mice.

Appendix Plate 3b. Example of an autoradiograph of Southern blotted DNA, probed with ^{32}p labelled pSX1 insert, from XY and XYS xr 3 mice.

SOLUTIONS AND BUFFERS

Proteinase K buffer

50mM Tris pH 8.0

100mM EDTA (Disodium ethylene diamine tetraacetate) pH 8.0

100mM NaCl (Sodium chloride)

1 % SDS 10 % (Sodium dodecyl sulfate)

0.5mg/mlProteinase K

Phenol/Chloroform

Phenol with equal w/v buffered Tris 1M pH 8.0

0.1 % Hydroxyquinolone

2mM EDTA pH 8.0

Chloroform 24:1 v/v isoamyl alcohol

50 % Phenol)

50 % Chloroform) for final extraction

TE buffer

10mM Tris pH 7.6

1mM EDTA pH 8.0

Electrophoresis buffer

10 x TBE

890mM Tris pH 7.6

890mM Boric acid

20mM EDTA pH 8.0

Eco R1 Restriction Enzyme assay buffer (supplied by the manufacturer)

50mM Tris pH 7.5

100mM NaCl

10mM MgCl₂ (Magnesium chloride)

1mM DTT (Dithiothreitol)

Loading buffer (Hans Lehrach's)

5 x loading buffer

5 x TBE

50 % Glycerol

60mM EDTA pH 8.0

0.1 % BPB (Bromophenol blue)

Southern blot solutions using Hybond membrane

- (i) Depurination buffer:
 - 0.25M HCI (Hydrochloric acid)
- (ii) Denaturation solution:
 - 0.5M NaOH (Sodium hydroxide)
 - 1.5M NaCl
- (iii) Neutralisation solution:
 - 3.0M NaCl
 - 0.5M Tris pH 7.0

Transfer solution for Hybond-N membrane

20 X SSC:

- 3.0M NaCl
- 0.3M Na₃Ct (Sodium citrate)

Transfer solution for Hybond-N membrane (positive)

Alkali:

0.4M NaOH

Prehybridisation solution

- 1 X SSC
- 5 X Denhardts
- 0.1 % Sodium pyrophosphate
- 100µg/ml Salmon/Herring sperm DNA (denatured by boiling 5 minutes)
 - 0.1 % SDS

Hybridisation solution

- 3 X SSC
- 5 X Denhardts
- 0.1 % Sodium pyrophospate
- 100µg/ml Salmon/Herring sperm DNA
 - 0.1 % SDS

Oligonucleotide buffer (OLB)

Solution O:

- 1.25M Tris pH 8.0
- 0.125M MgCl₂

Solution A:

1 ml Solution O

18 μl 2- mercaptoethanol (at a concentration of 0.1M).

5 μl dATP))

5 μl dTTP) in: 3mM Tris pH 7.0) at a concentration of 0.5mM

 $5 \mu I$ dGTP) 0.2mM EDTA)

Solution B:

2M Hepes pH 6.6

4M NaOH

Solution C:

Hexanucleotide primers (Pharmacia) suspended in TE at 90 OD

Units/ml.

Solutions A:B:C are mixed in a ratio of 100:250:150 to make OLB.

Column buffer

TES-2 buffer

10mM Tris 1M pH 7.6 10mM EDTA 0.5M

0.1 % SDS 10 %

APPENDIX 4a

BREEDING CROSS TO PRODUCE T16HB/XASxra FEMALE MICE

T16	в _{/ХВ} ф	×	XAVYSxra o
	Progeny	<u>Sex</u>	PGK
	T16 ^B /X ^A Sxr ^a	ဝှ ဝှီ ဝီ	В
	T16 ^B /X ^A	φ	В
	χ ^B /χ ^A	ę	АВ
	x ^B /xSxr ^a	8	AB
	T16 ^B /Y	8	В
	T16 ^B /YSxr ^a	8	В
	XB/Y	8	В
	x ^B /YSxra	8	В

APPENDIX 4b

BREEDING CROSS TO PRODUCE XAYSXra MALE MICE

x ^A /x ^A	9	x	X ^B /YSxr ^a	0
	Progeny X ^A /X ^B	<u>Se</u> Ç		
	x ^A /x ^B Sxr ^a	d	<i>3</i>	
	x ^A /YSxr ^a	ď	3	

APPENDIX 4c

BREEDING CROSS TO PRODUCE XASxra/YSxra MALE MICE

T16 ^B /X ^A Sxr ^a Q	x	xA/YSxra o
Progeny	Sex	<u>PGK</u>
T16 ^B /X ^A T16 ^B /X ^A Sxr ^a T16 ^B Sxr ^a /X ^A T16 ^B Sxr ^a /X ^A Sxr ^a		В В В
x ^A /x ^A x ^A /x ^A Sxr ^a x ^A Sxr ^a /x ^A Sxr ^a	Q 40 40 40	A A A
T16 ^B /Y T16 ^B /YSxr ^a T16 ^B Sxr ^a /Y T16 ^B Sxr ^a /YSxr ^a	6 6 6	В В В
X ^A /YSxr ^a X ^A Sxr ^a /Y	6 6	A A A
x ^A Sxr ^a /YSxr ^a	ð	A

Rare Double Cross-overs

Progeny	<u>Sex</u>	PGK
T16 ^A /X ^A	ပ္ ၀ ¢ ီဝီ	A A
T16 ^A Sxr ^a /X ^A	ð	Α
T16 ^A Sxr ^a /X ^A Sxr ^a	8	Α
x ^B /x ^A x ^B /x ^A Sxr ^a	<u>Ф</u>	AB AB
xB _{Sxr} a _{/X} A	0	AB
$\chi^{B}_{Sxr}a/\chi^{A}S_{xr}a$	o [#]	AB
T16 ^A /Y	ð ð	A A
T16 ^A Sxr ^a /Y	0	Α
T16 ^A Sxr ^a /YSxr ^a	0	Α
x ^B /Y	o#	В
x ^B /YSxr ^a	0	В
x ^B Sxr ^a /Y	0	В
x ^B Sxr ^a /YSxr ^a	A	В

APPENDIX 4d

BREEDING CROSS TO VERIFY HOMOZYGOUS XSxr^aYSxr^a MALE MOUSE

Note: No females are possible from this cross, unless a null-O gamete is produced, i.e. XO = Q (rare).

APPENDIX 4e

BREEDING CROSS TO PRODUCE $In(X)^B/X^B$ FEMALE AND $In(X)^B/Y^{\star}$ MALE MICE

In(X)B/In(X)	В Q	×	XB/Y*	0
	Progeny	<u>Sex</u>		
	In(X)B/XB	Q		
	In(X) ^B /Y*	ď		
	$ln(X)^{B}/Y^{del}$ $ln(X)^{B}/X^{Y}$	₽ ♂		

APPENDIX 4f

BREEDING CROSS TO PRODUCE XOSxra MALE MICE

In(X)B/XB	9	x	XASxra/YSxra O
	Progeny	<u>Sex</u>	PGK
	In(X) ^B /X ^A Sxr ^a	0	АВ
	xB/xasxra	ď	AB
	In(X) ^B /YSxr ^a	O [#]	В
	x ^B /YSxr ^a	ď	В
	O/X ^A Sxr ^a	ď	А

APPENDIX 4g

BREEDING CROSS TO PRODUCE XASxra/Ydel MALE MICE

T16 ^B /X ^A Sxr ^a Q x		In(X)B/Y* of	•
Progeny	Sex	PGK	
T16 ^B /In(X) ^B T16 ^B /Y ^{del} X ^A /In(X) ^B	9 9	B B AB	
×A _{/Y} del	Р Р	A	
T16 ^B /In(X) ^B Y T16 ^B /Y* X ^A /In(X) ^B Y X ^A /Y*	30 30 30 30	B B AB A	
T16 ^B Sxr ^a /In(X) ^B Y T16 ^B Sxra/Y* X ^A Sxr ^a /In(X) ^B Y X ^A Sxr ^a /Y*	0000	B B AB A	
T16 ^B Sxr ^a /ln(X) ^B T16 ^B Sxr ^a /Ydel X ^A Sxr ^a /ln(X) ^B	8 8	A B AB	
xA _{Sxr} a _{/Y} del	8	Α	

Rare Double Cross-overs

Progeny	<u>Sex</u>	PGK
T16 ^A /In(X) ^B T16 ^A /Ydel	9	A
XB/In(X)B	9 9	В
_X B _{/Y} del	P	В
T16 A /In(X) B Y. T16 A /Y* X^{B} /In(X) B Y X^{B} /Y*	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	A A B
T16ASxra/In(X)BY	8	Α
T16 ^A Sxr ^a /Y*	8	Α
$\chi^{B}Sxr^{a/In}(X)^{B}Y$	A	В
x ^B Sxr ^a /Y*	ð	В
T16 ^A Sxr ^a /In(X) ^B T16 ^A Sxr ^a /Y ^{del}	ð ð	A A
$\chi^{B}Sxr^{a/In}(X)^{B}$	8	В
xB _{Sxr} a _{/Y} del	d	В

APPENDIX 4h

BIOCHEMICAL MICROASSAY FOR THE PGK-1 ENZYME (Monk, 1987)

X-chromosome-linked phosphoglycerate kinase (PGK-1) is one of the enzymes present in the glycolysis cycle. The glycolysis cycle acts by breaking down and oxidising carbohydrates (glycogen, glucose and fructose), by a sequential series of anaerobic reactions, and gives rise to pyruvic or lactic acid. The PGK-1 enzyme assay, originally developed for humans, was first described in the late 60's and utilized the backward PGK-1 reaction converting 3-phosphoglycerate into glycerol phosphate. This reaction couples conversion of NADH into non-flourescent NAD, and PGK-1 activity is visualised under ultra violet light by dark bands on a flourescent background. Improved, faster electrophoresis has now been developed and PGK-1 activity in a forward reaction can now be visualised by the production of flourescent NADPH. The biochemical steps are illustrated in Appendix Fig. 4h.

The constituents of the various buffers and stain reagents are listed in Appendix Table 4h.

A Whatman 'Cellogel' cellulose acetate strip, the 'gel', is hydrated in 150 ml of running buffer for 10 minutes, then 250ml, to which 25 mg dithioerythritol is added, for a further 10 minutes (dithioerythritol is a reducing agent used to stabilise the enzyme). This second running buffer is poured into both the cathodal and anodal sides of a Whatman electrophoresis tank. 45 mg of AMP is added to the cathodal side (AMP binds to the adenylate kinase, which would otherwise react with the ADP and ATP, and this accelerates the kinase

off the gel ahead of PGK-1). The gel is placed in the tank over a water cooled bridge, linked to a thermostatically controlled water bath and pump, which maintains the gel at 20°C during operation. The tissue samples, in this case venous blood, are diluted in sample buffer and PBS and loaded onto the cathodal side of the gel using a micropipette. A control sample is loaded at one end of the gel and the samples dotted along a straight line at least 3/4 cm apart. The gel is then electrophoresed for 1 1/2 hours at 200 volts.

Apart from the buffer, the staining solutions comprise reagents which are involved in various steps of the biochemical reaction described below and referred to in Appendix Fig. 4h.

Stain B: The continuous generation of 1,3-diphospho-glycerate, the unstable substrate of PGK-1, is maintained by adding fructose 1,6-diphosphate (Part 1),

Stain C: supplies glucose (Part 7) to initiate the auxillary system (Part 6),

Stain D: supplies Aldolase (Part 2); Glyceraldehyde 3 phosphate dehydrogenase (Part 3); Glycerol phosphate dehydrogenase (Part 4); Hexokinase (Part 8) and Glucose 6 phosphate dehydrogenase (Part 9).

Stain B and C provide NAD (Part 3a) and ADP (Part 5a) for conversion into NADH and ATP, the former utilized in the reaction of dihydroxyacetone phosphate. The ATP generated is coupled to the auxillary sytem (Part 6). Stain C also supplies NADP which is reduced to flourescent NADPH. PGK-1 enzyme activity (Part 5) is measured by the position and intensity of these

flourescent NADPH bands which can be visualised under ultra violet light at 360 nm.

The component parts of the stain are mixed together 5 minutes prior to use and added to a clean support tray. A cellulose acetate strip (Cellogram) is soaked in the stain and the gel, which is cut from the bridge, is laid face downwards on the Cellogram. The tray is covered with a glass plate, placed in the dark, and allowed to develop (approximately 10 minutes). For the purposes of this experiment, it was sufficient to detect the presence or absence of the A, B or AB flourescent bands, but quantitative measurements can be obtained by calibration and the use of a spectrophotometer.

Appendix Fig.4h.

BIOCHEMICAL REACTION

Appendix Table 4h.

PREPARATION OF SOLUTIONS FOR PGK-1 CELLOGEL

ELECTROPHORESIS

Running Buffer		
5,5-diethylbarbituric acid	4.12	•
Sodium citrate	2.94	•
MgSO ₄ .7H ₂ O	1.23	_
EDTA	0.74	g/I
1,4-dithioerythritol	25.00	mg
5' AMP	45.00	mg
Sample Buffer		
Triethanolamine (50mM), pH 7.6	20.00	ml
1,4-dithioerythritol	6.00	•
Bovine serum albumin	10.00	_
Glycerol	20.00	mı
Stain Solution A		
Triethanolamine (100mM), pH 7.5	14.92	g/l
MgSO ₄ .7H ₂ O	4.93	g/l
Stain Solution B		
Triethanolamine (50mM), pH 7.6	10.00	
K ₂ HPO ₄ .3H ₂ O	91.00	_
NAD	9.00	•
Fructose diphosphate	220.00	mg
Stain Solution C		
Triethanolamine (50mM), pH 7.6	5.00	mg
Glucose	135.00	_
ADP	60.00	_
NADP	165.00	_
MgSO ₄ .7H ₂ O	160.00	mg
Stain Solution D		
Aldolase	20.00	ul
Glucose-6-phosphate dehydrogenase	20.00	ul
Glycerol phosphate dehydrogenase	10.00	ul
Glyceraldehyde-3-phosphate dehydrogenase	10.00	ul
Hexokinase	10.00	ul

Stain solutions mixed 5 minutes before use in the following proportions:

800 µl A 400 µl B 100 µl C 20 µl D

ACKNOWLEDGEMENTS

Firstly, I acknowledge my good fortune in having Dr Paul Burgoyne as my supervisor. He has been a constant source of fascinating ideas, stimulating discussion, and endless patience. I am extremely grateful for his help, guidance and support.

My special appreciation goes to Dr Anne McLaren, who had faith in me from the beginning, and showed this throughout with encouragement, advice, concern and especially kindness.

I am indebted to a number of people who have given me time and training, especially Drs Werner and Barbara Hilscher, Dr Robin Lovell-Badge, Dr Peter Koopman, Dr Susan Darling, Mrs Ann Newman, Mr Steven Palmer and Mr Nigel Vivian. I thank all members of the Mammalian Development Unit for their cooperation and friendship. I also acknowledge my debt to my mice.

My grateful thanks are extended to Dr Colin Bishop for the SX1 probe, Dr Colin Beechey for the T16H/X mice, Dr Eva Eicher for the XY* mice and Dr Edward Evans for the beautiful G-banding of mitotic spreads.

I acknowledge with appreciation the Medical Research Council for awarding me a grant which enabled me to pursue my studentship.

Most importantly I acknowledge my family - my father William, my mother Doris and especially my husband Victor Sutcliffe - who, whilst enduring my neglect, have continued to love, help and encourage me in all possible ways. Thank you all so much - without your support this was not possible.

REFERENCES

REFERENCES

- Affara, N. A., Florentin, L., Morrison, N., Kwok, K., Mitchell, M., Cook, A., Jamieson, D., Glasgow, L., Meredith, L., Boyd, E. & Ferguson-Smith, M. A. (1986). Regional assignment of Y-linked DNA probes by deletion mapping and their homology with X-chromosome and autosomal sequences. Nucl. Acids Res. 14 (13), 5353 5373.
- Alvesalo, L. & de la Chapelle, A. (1981). Tooth sizes in two males with deletions of the long arm of the Y chromosome. Ann. Hum. Genet. <u>45</u>, 49 54.
- Arnemann, J., Epplen, J. T., Cooke, H. J., Sauermann, U., Engel, W. & Schmidtke, J. (1987). A human Y-chromosomal DNA sequence expressed in testicular tissue. Nucl. Acids Res. 15 (2), 8713 8723.
- Ashley, T. (1984). A re-examination of the case for homology between the X and Y chromosomes of mouse and man. Hum. Genet. <u>67</u>, 372 377.
- Ashley, T. (1985). Is crossover between the X and Y a regular feature of meiosis in mouse and man? Genetica <u>66</u>, 161 167.
- Baghdassarian, A., Bayard, F., Borgaonkar, D. S., Arnold, E. A., Solez, K. & Migeon, C. J. (1975). Testicular function in XYY men. John Hopkins Medical Journal <u>136</u>, 15 24.
- Baker, B. S. & Lindsley, D. L. (1982). The genetic control of sex determination and male fertility in *Drosophila melanogaster*. In: Genetic Control of Gamete Production and Function. Proceedings of the Serono Clinical Colloquia on Reproduction (3). (eds. Crosignani, P. G.; Rubin, B. L.; Fraccaro, M.) Academic Press.
- Beamer, W. G., Whitten, W. K. & Eicher, E. M. (1978). Spontaneous sex mosaicism in BALB/cWt mice. In: Genetic Mosaics and Chimeras in Mammals. (ed. Russell, L. R.) Plenum Publ. Corp. 195 207.
- Beaumont, H. M. & Mandl, A. M. (1963) A quantitative study of primordial germ cells in the male rat. J. Embryol. Exp. Morph. <u>11</u> (4), 715 740.
- Beechey, C. V. (1973). X-Y chromosome dissociation and sterility in the mouse. Cytogenet. Cell Genet. <u>12</u>, 60 67.
- Bellve, A. R., Cavicchia, J. C., Millette, C. F., O'Brien, D. A., Bhatnagar, Y. M. & Dym, M. (1977). Spermatogenic cells of the prepubertal mouse. Isolation and morphological characterization. J. Cell Biol. <u>74</u>, 68 85.

- Bennett, D., Mathieson, B. J., Scheid, M., Yanagisawa, K., Boyse, E. A., Wachtel, S. & Cattanach, B. M. (1977). Serological evidence for H-Y antigen in *Sxr*, XX sex-reversed phenotypic males. Nature <u>265</u>, 255 257.
- Billingham, R. E. & Silvers, W. K. (1960). Studies on tolerance of the Y chromosome antigen in mice. J. Immunol. <u>85</u>, 14 16.
- Bishop, C.E., Guellaen, G., Geldwerth, D., Fellous, M. & Weissenbach, J. (1984). Extensive sequence homologies between Y and other human chromosomes. J. Mol. Biol. <u>173</u>, 403 417.
- Bishop, C. E. & Hatat, D. (1987). Molecular cloning and sequence analysis of a mouse Y chromosome RNA transcript expressed in the testis. Nucl. Acids Res. <u>15</u> (7), 2959 2969.
- Bishop, C. E., Roberts, C., Michot, J. L., Nagamine, C. M., Winking, H., Guenet, J. L. & Weith, A. (1987a). A molecular analysis of the mouse Y chromosome. In: Evolutionary Mechanisms in Sex Determination, Int. Conf. on Dev. Biol. (ed. Wachtel, S. S.) CRC Press Inc. Florida. 79 90.
- Bishop, C. E., Roberts, C., Michot, J. L., Nagamine, C. M., Winking, H., Guenet, J. L. & Weith, A. (1987b). The use of specific DNA probes to analyse the *Sxr* mutation in the mouse. Development (Suppl.) <u>101</u>, 167 175.
- Bishop, C. E., Weith, A., Mattei, M. G. & Roberts, C. (1988). Molecular aspects of sex determination in mice: an alternative model for the origin of the Sxr region. In: Sex Determination in Mouse and Man. Phil. Trans. R. Soc. Lond. B 322, 119 124.
- Blatt, C., Mileham, K., Haas, M., Nesbitt, M. N., Harper, M. E. & Simon, M. I. (1983). Chromosomal mapping of the mink cell focus-inducing and xenotrophic *env* family in the mouse. Proc. Natl. Acad. Sci. USA <u>80</u>, 6298 6302.
- de Boer, P., Searle, A. G., van der Hoeven, F. A., de Rooij, D. G. & Beechey, C. V. (1986). Male pachytene pairing in single and double translocation heterozygotes and spermatogenic impairment in the mouse. Chromosoma (Berl.) <u>93</u>, 326 336.
- Brosseau, G. E. (1960). Genetic analysis of the male fertility factors on the Y chromosome of *Drosophila melanogaster*. Genetics <u>45</u>, 257 274.
- Buckle, V., Mondello, C., Darling, S., Craig, I. W. & Goodfellow, P. N. (1985). Homologous expressed genes in the human sex chromosome pairing region. Nature <u>317</u> (6039), 739 741.

- Buhler, E. M. (1985). Clinical and cytologic impact of Y-chromosome abnormalities. In: The Y Chromosome, Part B: Clinical Aspects of Y Chromosome Abnormalities. Alan R. Liss, Inc. 61 93.
- Burgoyne, P. S. (1973). The genetic control of germ cell differentiation in mice. Thesis submitted for PhD, University of Edinburgh.
- Burgoyne, P. S. (1978). The role of the sex chromosomes in mammalian germ cell differentiation. Ann. Biol. Anim. Bioch. Biophys. <u>18</u> (2b), 317 325.
- Burgoyne, P. S. (1979). Evidence for an association between univalent Y chromosomes and spermatocyte loss in XYY mice and men. Cytogenet. Cell Genet. 23, 84 89.
- Burgoyne, P. S. (1982). Genetic homology and crossing over in the X and Y chromosomes of mammals. Hum. Genet. <u>61</u>, 85 90.
- Burgoyne, P. S. (1987a). The role of the mammalian Y chromosome in spermatogenesis. Development (Suppl.) 101, 133 141.
- Burgoyne, P. S. (1987b). Genetics of XX and XO sex reversal in the mouse. In: Evolutionary Mechanisms in Sex Determination, Int. Conf. on Dev. Biol. (ed. Wachtel, S. S.) CRC Press Inc. Florida. 161 169.
- Burgoyne, P. S. (1988). Role of mammalian Y chromosome in sex determination. In: Sex Determination in Mouse and Man. Phil. Trans. R. Soc. Lond. B 322, 63 72.
- Burgoyne, P. S. (1989). Thumbs down for zinc finger? Nature <u>342</u> (6252), 860 862.
- Burgoyne, P. S. & Baker, T. G. (1981a). Oocyte depletion in XO mice and their XX sibs from 12 to 200 days *post partum*. J. Reprod. Fert. 61, 207 212.
- Burgoyne, P. S. & Baker, T. G. (1981b). The XO ovary development and function. In: Development and Function of Reproductive Organs. (ed. Byskov & Peters) 122 128.
- Burgoyne, P. S. & Baker, T. G. (1984). Meiotic pairing and gametogenic failure. In: Controlling Events in Meiosis, 38th Symp. of Soc. for Exp. Biol. (ed. Evans C. W. & Dickinson H. G.) Company of Biologists, Cambridge. 349 362.
- Burgoyne, P. S. & Biddle, F. G. (1980). Spermatocyte loss in XYY mice. Cytogenet. Cell Genet. 28, 143 144.

- Burgoyne, P. S. & Biggers, J. D. (1976). The consequences of X-dosage deficiency in the germ line: impaired development *in vitro* of preimplantation embryos from XO mice. Dev. Biol. <u>51</u>, 109 117.
- Burgoyne, P. S., Evans, E. P. & Holland, K. (1983b). XO monosomy is associated with reduced birthweight and lowered weight gain in the mouse. J. Reprod. Fert. <u>68</u>, 381 385.
- Burgoyne, P. S., Levy, E. R. & McLaren, A. (1986). Spermatogenic failure in male mice lacking H-Y antigen. Nature 320 (6058), 170 172.
- Burgoyne, P. S., Tam, P. P. L. & Evans, E. P. (1983a). Retarded development of XO conceptuses during early pregnancy in the mouse. J. Reprod. Fert. <u>68</u>, 387 393.
- Cattanach, B. M. (1962). Short note: XO mice. Genet. Res. Camb. <u>3</u>, 487 490.
- Cattanach, B. M. (1974). Genetic disorders of sex determination in mice and other mammals. Proc. 4th Int. Cong. Birth Defects. Int. Cong. Series (ed. Motulsky, A.G. & Lentz, W.) Excerpta Medica, Amsterdam. 310, 129 141.
- Cattanach, B. M. (1975). Sex reversal in the mouse and other mammals. In: The Early Development of Mammals. (ed. Balls, M. & Wild,.A.) Camb. Univ. Press. 305 317
- Cattanach, B. M. (1988). Sex reversed mice and sex determination. Ann. N.Y. Acad. Sci. <u>513</u>, 27 39.
- Cattanach, B. M. & Pollard, C. E. (1969). An XYY sex-chromosome constitution in the mouse. Cytogenetics <u>8</u>, 80 86.
- Cattanach, B. M., Pollard, C. E. & Hawkes, S. G. (1971). Sex-reversed mice: XX and XO males. Cytogenet. Cell Genet. <u>10</u>, 318 337.
- Chandley, A. C. & Fletcher, J. M. (1980). Meiosis in *Sxr* male mice I. Does a Y-autosome rearrangement exist in sex-reversed (*Sxr*) mice? Chromosoma (Berl.) <u>81</u>, 9 17.
- Chandley, A. C., Goetz, P., Hargreave, T. B., Joseph, A. M. & Speed, R. M. (1984). On the nature and extent of XY pairing at meiotic prophase in man. Cytog. Cell Genet. <u>38</u>, 241 247.
- Chandley, A. C., Maclean, N., Edmond, P., Fletcher, J. & Watson, G. S. (1976). Cytogenetics and infertility in man II. Testicular histology and meiosis. Ann. Hum. Genet. Lond. 40, 165 176.

- Chandley, A. C. & Speed, R. M. (1987). Cytological evidence that the Sxr fragment of XY, Sxr mice pairs homologously at meiotic prophase with the proximal testis-determining region. Chromosoma. (Berl.) <u>95</u>, 345 349.
- de la Chapelle, A. (1987). The Y-chromosomal and autosomal testisdetermining genes. Development (Suppl.) 101, 33 - 38.
- Clermont, Y. (1972). Kinetics of spermatogenesis in mammals: Seminiferous epithelium cycle and spermatogonial renewal. Physiol. Rev. <u>52</u>, 198 236.
- Clermont, Y. & Bustos-Obregon, E. (1968). Re-examination of spermatogonial renewal in the rat by means of seminiferous tubules mounted *in toto*. Am. J. Anat. <u>122</u>, 237 248.
- Clermont, Y. & Perey, B. (1957). Quantitative study of the cell population of the seminiferous tubules in immature rats. Am. J. Anat. <u>100</u>, 241 268.
- Cooke, H. J., Brown, W. R. A. & Rappold, G. A. (1985). Hypervariable telomeric sequences from the human sex chromosomes are pseudoautosomal. Nature <u>317</u>, 687 692.
- Cooper, K. W. (1964). Meiotic conjunctive elements not involving chiasmata. Proc. Natl. Acad. Sci. USA. <u>52</u>, 1248 1255.
- Cox, E. K. (1926). The chromosomes of the house mouse. J. Morph. Physiol. 43 (1), 45 51.
- Craig, I., Levy, E. & Fraser, N. (1987). The mammalian Y chromosome: Molecular search for the sex determining gene summary and perspectives. Development (Suppl.) 101, 185 190.
- Craig, I. W. & Tolley, E. (1986). Steroid sulphatase and the conservation of mammalian X chromosomes. T.I.G. Elsevier Sci. Publ. BV Amsterdam. 201 204.
- Crew, F. A. E. & Koller, P. C. (1932). The sex incidence of chiasma frequency and genetical crossing-over in the mouse. J. Genet. <u>26</u>, 359 383.
- Darling, S. M., Banting, G. S., Pym, B., Wolfe, J. & Goodfellow, P. N. (1986). Cloning an expressed gene shared by the human sex chromosomes. Proct. Natl. Acad. Sci. USA <u>83.</u> 135 139.
- Das, R. K. & Behera, A. K. (1984). A 39, X/40, XY/41, XYY mosaic male mouse. Cytogenet. Cell Genet. <u>38</u>, 138 141.

- Davis, R. M. (1981). Localisation of male determining factors in man: A thorough review of structural anomalies of the Y chromosome. J. Med. Genet. 18, 161 195.
- Deckers, J. F. M. & van der Kroon, P. H. W. (1981). Some characteristics of the XO mouse (*Mus musculus L.*) I. Vitality: growth and metabolism. Genetica <u>55</u>, 179 185.
- Deeming, D. C. & Ferguson, M. W. J. (1988). Environmental regulation of sex determination in reptiles. In: Sex Determination in Mouse and Man. Phil. Trans. R. Soc. Lond. B 322, 19 39.
- Disteche, C. M., Casanova, M., Saal, H., Friedman, C., Sybert, V., Graham, J., Thuline, H., Page, D. C. & Fellous, M. (1986). Small deletions of the short arm of the Y chromosome in 46, XY females. Proc. Natl. Acad. Sci. USA. <u>83</u>, 7841 7844.
- Eicher, E. M. (1981). Foundation for the future: Formal genetics of the mouse. In: Mammalian Genetics and Cancer: The Jackson Lab. 50th Ann. Symp. Alan R Liss Inc. New York. 7 49.
- Eicher, E. M. (1982). Primary sex determining genes in mice: A brief review. In: Prospects for Sexing Mammalian Sperm. (ed. Amann, R. P. & Seidel, G. E.) Colorado Assoc. Univ. Press. 121 135.
- Eicher, E. M. (1988). Autosomal genes involved in mammalian primary sex determination. In: Sex Determination in Mouse and Man. Phil. Trans. R. Soc. Lond. B <u>322</u>, 109 118.
- Eicher, E. M., Phillips, S. J. & Washburn, L. L. (1983). The use of molecular probes and chromosomal rearrangements to partition the mouse Y chromosome into functional regions. In: Recombinant DNA and Medical Genetics. (ed. Messer, A. & Porter, I. H.) Acad. Press. New York. 51 70.
- Eicher, E. M. & Washburn, L. L. (1986). Genetic control of primary sex determination in mice. Ann. Rev. Genet. 20, 327 360.
- Eichwald, E. J. & Silmser, C. R. (1955). Untitled communication. Transplant. Bull. 2, 148 149.
- Ellis, N. A., Goodfellow, P. J., Pym, B., Smith, M., Palmer, M., Frischauf, A. M. & Goodfellow, P. N. (1989). The pseudoautosomal boundary in man is defined by an *Alu* repeat sequence inserted on the Y chromosome. Nature <u>337</u>, 81 84.
- Evans, E. P. (1981). Karyotype of the house mouse. In: Biology of the House Mouse. Symp. Zool. Soc. Lond. <u>47</u>, 127 139.

- Evans, E. P., Beechey, C. V. & Burtenshaw, M. D. (1978). Meiosis and fertility in XYY mice. Cytogenet. Cell Genet. 20, 249 263.
- Evans, E. P., Breckon, G. & Ford, C. E. (1964). An air drying method for meiotic preparations from mammalian testes. Cytogenetics 3, 289 294.
- Evans, E. P., Burtenshaw, M. D. & Brown, B. B. (1980). Meiosis in *Sxr* male mice: II Further absence of cytological evidence for a Y-autosome rearrangement in sex-reversed (*Sxr*) mice. Chromosoma <u>81</u>, 19 26.
- Evans, E. P., Burtenshaw, M. D. & Cattanach, B. M. (1982). Meiotic crossing over between the X and Y chromosomes of male mice carrying the sex-reversing (*Sxr*) factor. Nature <u>300</u>, 443 445.
- Evans, E. P., Ford, C. E. & Searle, A. G. (1969). A 39, X/41, XYY mosaic mouse. Cytogenetics <u>8</u>, 87 96.
- Evans, E. P. & Phillips, R. J. S. (1975). Inversion heterozygosity and the origin of XO daughters of *Bpa/+* female mice. Nature <u>256</u>, 40 41.
- Ferguson-Smith, M. A. & Affara, N. A. (1988). Accidental X-Y recombination and the aetiology of XX males and true hermaphrodites. In: Sex Determination in Mouse and Man. Phil. Trans. R. Soc. Lond. B 322, 133 144.
- Ford, C. E. (1966). The murine Y-chromosome as a marker. Transplantation 4, 333 334.
- Ford, C. E., Jones, K. W., Polani, P. E., de Almeida, J. C. & Briggs, J. H. (1959). A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner's syndrome). Lancet (i), 711 713.
- Ford, C. E. & Hamerton, J. L. (1956). The chromosomes of man. Nature <u>178.</u> 1020 1023.
- Forejt, J. (1982). X and Y involvement in autosomal male-sterile translocations. In: Workshop on Chromosomal Aspects of Male Sterility in Mammals (eds. Searle, A. G., de Boer, P.) 204 205.
- Forejt, J. & Gregorova, S. (1977). Meiotic studies of translocations causing male sterility in the mouse I. Autosomal reciprocal translocations. Cytogenet. Cell Genet. <u>19</u>, 159 179.
- Fraser, N., Ballabio, A., Zollo, M., Persico, G. & Craig, I. (1987). Identification of incomplete coding sequences for steroid sulphatase on the human Y chromosome: evidence for an ancestral pseudoautosomal gene? Development (Suppl.) 101, 127 132.

- Fredga, K. (1988). Aberrant chromosomal sex-determining mechanisms in mammals, with special reference to species with XY females. In: Sex Determination in Mouse and Man. Phil. Trans. R. Soc. Lond. B <u>322</u>, 83 95.
- Fryns, J. P., Kleczkowska, A. & van den Berghe, H. (1985). Clinical manifestations of Y chromosome deletions in man. In: The Y Chromosome, Part B: Clinical Aspects of Y Chromosome Abnormalities. Alan R. Liss. Inc. 151 170.
- Goetz, P., Chandley, A. C. & Speed, R. M. (1984). Morphological and temporal sequence of meiotic prophase development at puberty in the male mouse. J. Cell Sci. 65, 249 263.
- Goldberg, E. H. (1988). H-Y antigen and sex determination. In: Sex Determination in Mouse and Man. Phil. Trans. R. Soc. Lond. B <u>322</u>, 73 81.
- Goldberg, E. H., Boyse, E. A., Bennett, D., Scheid, M. & Carswell, E. A. (1971). Serological demonstration of H-Y (male) antigen on mouse sperm. Nature 232, 478 480.
- Goldberg, E. H., Shen, F. & Tokuda, S. (1973). Detection of H-Y male antigen on mouse lymph node cells by the cell to cell cytotoxicity test. Transplantation <u>15</u>, 334 336.
- Goodfellow, P. J., Darling, S., Banting, G., Pym, B., Mondello, C. & Goodfellow, P. N. (1987). Pseudoautosomal genes in man. Development (Suppl.) 101, 119 125.
- Goodfellow, P. J., Darling, S. M., Thomas, N. S. & Goodfellow, P. N. (1986). A pseudoautosomal gene in man. Science <u>234</u>, 740 743.
- Goodfellow, P., Darling, S. & Wolfe, J. (1985). The human Y chromosome. J. Med. Genet.. 22, 329 344.
- Goodfellow, P. N. & Goodfellow, P. J. (1987). The pseudoautosomal region of man. In: Evolutionary Mechanisms in Sex Determination. (ed. Wachtel, S. S.). CRC Press Inc. 99 108.
- Goodfellow, P. N., Pym, B., Pritchard, C., Ellis, N., Palmer, M., Smith, M. & Goodfellow, P. J. (1988). MIC2: a human pseudoautosomal gene. In: Sex Determination in Mouse and Man. Phil. Trans. R. Soc. Lond. B 322, 145 154.
- Gordon, R. D., Simpson, E. & Samelson, L. E. (1975). *In vitro* cell-mediated immune responses to the male specific (H-Y) antigen in mice. J. Exp. Med. <u>142</u>, 1108 1120.

- Guitart, M., Coll, M. D., Ponsa, M. & Egozcue, J. (1985). Sequential study of synaptonemal complexes in mouse spermatocytes by light and electron microscopy. Genetica <u>67</u>, 21 30.
- Hale, D. W. & Greenbaum, I. F. (1986). Spontaneous occurrence of XYY primary spermatocytes in the Sitka deer mouse. J. Hered. <u>77</u>, 131 132.
- Handel, M. A. (1987). Genetic control of spermatogenesis in mice. In: Spermatogenesis: Genetic Aspects. Results and Problems in Cell Differentiation. (ed. Hennig, W.) Springer Verlag, Berlin, Heidelberg, New York. 15, 1 62.
- Hannappel, E. & Drews, U. (1979). Mosaic character of spermatogenesis in carriers of the sex reversed factor in the mouse. Horm. Metab. Res. 11, 682 689.
- Hannappel, E., Siegler, W. & Drews, U. (1980). Demonstration of 2n spermatids in carriers of the "sex reversed" factor in the mouse by Feulgen cytophotometry. Histochemistry <u>69</u>, 299 306.
- Hansmann, I. (1982). Sex reversal in the mouse. Cell 30, 331-332.
- Harbers, K., Soriano, P., Muller, U. & Jaenisch, R. (1986). High frequency of unequal recombination in pseudoautosomal region shown by proviral insertion in transgenic mouse. Nature <u>324</u>, 682 685.
- Harper, M. I., Fosten, M. & Monk, M. (1982). Preferential paternal X inactivation in extra-embryonic tissues of early mouse embryos. J. Embryol. exp. Morph. <u>67</u>, 127 135.
- Hayward, P. & Shire, J. G. M. (1974). Y chromosome effect on adult testis size. Nature <u>250</u>, 499 500.
- Herrick, C. S. & Wolfe, H. G. (1977). Effect of the Y-chromosome on testes size in the mouse (*Mus musculus*). Abstract. Genetics <u>86</u>, s27.
- Hess, O. (1970). Genetic function correlated with unfolding of lampbrush loops by the Y chromosome in spermatocytes of *Drosophila hydei*. Molec. Gen. Genet. <u>106</u>, 328 346.
- Hess, O. & Meyer, G. F. (1968). Genetic activities of the Y chromosome in *Drosophila* during spermatogenesis. Adv. Genet. <u>14</u>, 171 223.
- Hilscher, B. (1981b). Spermatogoniogenesis, an interacting proliferation process between stem cell spermatogonia and differentiating spermatogonia. Fortsch. der Androl. 7, Grosse Verlag. Berlin. 46 57.

- Hilscher, W. (1981a). T₁-Prospermatogonia (Primordial Spermatogonia of Rauh): the "ameiotic" counterpart of early oocytes. Fortsch. der Androl. <u>7</u>, Grosse Verlag. Berlin. 21 32.
- Hilscher, W. (1988). Prespermatogenesis and early spermatogenesis in mammals. Carl Schirren Symposium. Adv. Androl. Diesbach Verlag. 25 34.
- Hilscher, W. & Hilscher, B. (1976). Kinetics of the male gametogenesis. Andrologia <u>8</u> (2), 105 116.
- Hilscher, B. & Hilscher, W. (1978). Kinetics of gametogenesis II. Comparative autoradiographic studies of oogonia and multiplying prospermatogonia of the Wistar rat. Cell Tiss. Res. <u>190</u>, 61 68.
- Hilscher, B., Hilscher, W., Bulthoff-Ohnolz, B., Kramer, U., Birke, A., Pelzer, H., & Gauss, G., (1974). Kinetics of gametogenesis I. Comparative histological and autoradiographic studies of oocytes and transitional prospermatogonia during oogenesis and prespermatogenesis. Cell Tiss. Res. <u>154</u>, 443 470.
- Hodgkin, J. (1988). Right gene, wrong chromosome. Nature 336, 712.
- Hogan, B., Constantini, F. & Lacy, E. (1986). Analysis of transgenic mice. A protocol for isolating high-molecular-weight DNA from mouse tails. In: Manipulating the Mouse Embryo. A Laboratory Manual. Cold Spring Harbour Laboratory.
- Huckins, C. (1965). Duration of spermatogenesis in pre- and post-pubertal Wistar rats. (Abstract) Anat. Rec. <u>151</u>, 364.
- Huckins, C. (1971). The spermatogonial stem cell population in adult rats I. Their morphology, proliferation and maturation. Anat. Rec. <u>169</u>, 533 558.
- Huckins, C. (1973). Cell cycle properties of differentiating spermatogonia and primary spermatocytes in immature Sprague-Dawley rats. Anat. Rec. 175, 347 348.
- Huckins, C. & Oakberg, E. F. (1978). Morphological and quantitative analysis of spermatogonia in mouse testes using whole mounted seminiferous tubules I. The normal testes. Anat. Rec. <u>192</u>, 519 528.
- Hulten, M. (1974). Chiasma distribution at diakinesis in the normal human male. Hereditas <u>76</u>, 55 78.

- Hulten, M. & Pearson, P. L. (1971). Fluorescent evidence for spermatocytes with two Y chromosomes in an XYY male. Ann. Hum. Genet. Lond. 34, 273 276.
- Jacobs, P. A. & Ross, A. (1966). Structural abnormalities of the Y chromosome in man. Nature <u>210</u>, 352 354.
- Jacobs, P. A. & Strong, J. A. (1959). A case of human intersexuality having a possible XXY sex-determining mechanism. Nature <u>183</u>, 302 303.
- Jones, K. W. & Singh, L. (1981). Conserved repeated DNA sequences in vertebrate sex chromosomes. Hum. Genet. <u>58</u>, 46 53.
- Jost, A. (1953) Problems of fetal endocrinology: the gonadal and hypophyseal hormones. Rec. Prog. Horm. Res. <u>8</u>, 379 413.
- Jost, A. (1970). Hormonal factors in the sex differentiation of the mammalian foetus. Phil. Trans. R. Soc. London. B <u>259</u>, 119 130.
- Jost, A., Vigier, B., Prepin, J. Perchellet, J. P. (1973). Studies on sex differentiation in mammals. Rec. Prog. Horm. Res. <u>29</u>, 1 35.
- Jutley, J. K. & Stewart, A. D. (1985). Genetic analysis of the Y-chromosome of the mouse: evidence for two loci affecting androgen metabolism. Genet. Res. Camb. <u>47</u>, 29 34.
- Keitges, E., Rivest, M., Siniscalco, M. & Gartler, S. M. (1985). X-linkage of steroid sulphatase in the mouse is evidence for a functional Y-linked allele. Nature. 315, 226 227.
- Kluin, Ph. M., Kramer, M. F. & de Rooij, D. G. (1982). Spermatogenesis in the immature mouse proceeds faster than in the adult. Int. J. Androl. <u>5</u>. 282 294.
- Kluin, Ph. M., Kramer, M. F. & de Rooij, D. G. (1984). Proliferation of spermatogonia and Sertoli cells in maturing mice. Anat. Embryol. <u>169</u> 73 78.
- Kluin, Ph. M. & de Rooij, D. G. (1981). A comparison between the morphology and cell kinetics of gonocytes and adult type undifferentiated spermatogonia in the mouse. Int. J. Androl. 4, 475 493.
- Kofman-Alfaro, S. & Chandley, A. C. (1970). Meiosis in the male mouse. An autoradiographic investigation. Chromosoma (Berl.) 31, 404 420.

- Koller, P. C. & Darlington, C. D. (1934). The genetical and mechanical properties of the sex-chromosomes. I. *Rattus norvegicus*. J. Genet. 29, 159 173.
- Koopman, P., Gubbay, J., Collignon, J. & Lovell-Badge, R. (1989). *Zfy* gene expression patterns are not compatible with a primary role in mouse sex determination. Nature <u>342</u> (6252), 940 942.
- Krzanowska, H. (1971). Influence of Y chromosome on fertility in mice. In: The Genetics of the Spermatozoon. Proc. Int. Symp. Edinburgh. 370 386.
- Krzanowska, H. (1976). Inheritance of sperm head abnormality types in mice the role of the Y chromosome. Genet. Res., Camb. 28, 189 198.
- Krzanowska, H. (1989). X-Y chromosome dissociation in mouse strains differing in efficiency of spermatogenesis: elevated frequency of univalents in pubertal males. Gamet. Res. 23, 357 365.
- Laird, C. D. (1971). Chromatid structure: Relationship between DNA content and nucleotide sequence diversity. Chromosoma (Berl.) <u>32</u>, 378 406.
- Lasky, R. A. & Mills, A. D. (1977). Enhanced autoradiographic detection of ³²P and ¹²⁵I using intensifying screens and hypersensitized film. FEBS Letters <u>82</u> (2), 314 316.
- Lau, Y. F. (1987). Are male-enhanced antigen and serological H-Y antigen the same? In: Evolutionary Mechanisms in Sex Determination. (ed. Wachtel, S. S.) CRC Press Inc. 151 157.
- Lau, E. C., Mohandas, T. K., Shapiro, L. J., Slavkin, H. C. & Snead, M. L. (1989). Human and mouse amelogenin gene loci are on the sex chromosomes. Genomics 4, 162 168.
- Levilliers, J., Quack, B., Weissenbach, J. & Petit, C. (1989). Exchange of terminal portions of X- and Y-chromosomal short arms in human XY females. Proc. Natl. Acad. Sci. USA. <u>86</u>, 2296 2300.
- Levy, E. R. (1986). The role of the mouse Y chromosome in spermatogenesis. Thesis submitted for PhD, University College, London.
- Levy, E. R. & Burgoyne, P. S. (1986a). Diploid spermatids: a manifestation of spermatogenic impairment in XOSxr and T31H/+ male mice. Cytogenet. Cell Genet. 42, 159 163.

- Levy, E. R. & Burgoyne, P. S. (1986b). The fate of the XO germ cells in the testes of XO/XY and XO/XY/XYY mouse mosaics: evidence for a spermatogenesis gene on the mouse Y chromosome. Cytogenet. Cell Genet. 42, 208 213.
- Lifschytz, E. & Lindsley, D. L. (1972). The role of X-chromosome inactivation during spermatogenesis. Proc. Nat. Acad. Sci. USA <u>69</u> (1), 182 186.
- Long, J. A. (1908). Some maturation stages of the mouse egg. Science 27 (690), 443 444.
- Lyon, M. F. (1970). The activity of the sex chromosomes in mammals. Sci. Prog. Oxford. <u>58</u>, 117 130.
- Lyon, M. F., Cattanach, B. M. & Charlton, H. M. (1981). Genes affecting sex differentiation in mammals. In: Mechanisms of Sex Differentiation in Animals and Man. (eds. Austin, C. R., Edwards, R. J.) Academic Press. 329 386.
- Lyon, M. F. & Hawker, S. G. (1973). Reproductive lifespan in irradiated and unirradiated chromosomally XO mice. Genet. Res. Camb. <u>21</u>, 185 194.
- Magenis, E., Webb, M. J., McKean, R. S., Tomar, D., Allen, L. J., Kammer, H., Van Dyke, D. L. & Lovrien, E. (1982). Translocation (X;Y) (p22.33; p11.2) in XX males: Etiology of male phenotype. Hum. Genet. 62, 271 276.
- Mahadevaiah, S. K. (1987). Synaptonemal complex analysis in spermatocytes and oocytes of male-sterile and subfertile mice with autosomal chromosome anomalies. Thesis submitted for PhD, University College, London.
- Mahadevaiah, S., Setterfield, L. A. & Mittwoch, U. (1988). Univalent sex chromosomes in spermatocytes of *Sxr*-carrying mice. Chromosoma (Berl.) <u>97</u>, 145 153.
- Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular cloning: A Laboratory Manual. Cold Spring Harbor Laboratory.
- Mardon, G., Mosher, R., Disteche, C. M., Nishioka, Y., McLaren, A. & Page, D. C. (1989). Duplication, deletion, and polymorphism in the sex-determining region of the mouse Y chromosome. Science <u>243</u>, 78 80.
- Mardon, G. & Page, D. C. (1989). The sex-determining region of the mouse Y chromosome encodes a protein with a highly acidic domain and 13 zinc fingers. Cell <u>56</u>, 765 770.

- McClung, C. E. (1902). The accessory chromosome sex determinant? Biol. Bull. 3, 43 84.
- McLaren, A. (1983a). Primordial germ cells in mice. Biblio. Anat. <u>24</u>, 59 66.
- McLaren, A. (1983b). Does the chromosomal sex of a mouse germ cell affect its development? In: Current Problems in Germ Cell Differentiation. Symp. of B.S.D.B. 225 240.
- McLaren, A. (1984). Meiosis and differentiation of mouse germ cells. In: Controlling Events in Meiosis. 38th Symp. of Soc. for Exp. Biol. (eds. Evans, C. W., Dickinson, H. G.) Company of Biologists, Cambridge. 7 23.
- McLaren, A. (1985). Mouse germ cells: fertilization to birth. Arch. Anat. Micr. Morphol. Exper. 74 (1), 5 9.
- McLaren, A. (1986). Sex ratio and testis size in mice carrying *Sxr* and T(X;16)16H. Dev. Genet. <u>7</u>, 177 185.
- McLaren, A. (1987a). Testis determination and the H-Y hypothesis. Curr. Top. Dev. Biol. <u>23</u>, 163 183.
- McLaren, A. (1987b). Sex determination and H-Y antigen in mice. In: Genetic Markers of Sex Differentiation. (eds. Haseltine, F. P., McClure, M. E., Goldberg, E. H.) Plenum Publ. Corp. 87 97.
- McLaren, A. & Burgoyne, P. S. (1983). Daughterless XSxr/YSxr mice. Genet. Res. Camb. 42, 345 349.
- McLaren, A & Monk, M. (1981). X chromosome activity in the germ cells of *sex-reversed* mouse embryos. J. Reprod. Fert. <u>63</u>, 533 537.
- McLaren, A. & Monk, M. (1982). Fertile females produced by inactivation of an X chromosome of 'sex-reversed' mice. Nature 300 (5891), 446 448.
- McLaren, A., Simpson, E., Epplen, J. T., Studer, R., Koopman, P., Evans, E. P. & Burgoyne, P. S. (1988). Location of the genes controlling H-Y antigen expression and testis determination on the mouse Y chromosome. Proc. Natl. Acad. Sci. USA <u>85</u>, 6442 6445.
- McLaren, A., Simpson, E., Tomonari, K., Chandler, P. & Hogg, H. (1984). Male sexual differentiation in mice lacking H-Y antigen. Nature <u>312</u>, 552 555.

- Melvold, R. W., Kohn, H. I., Yerganian, G. & Fawcett, D. W. (1977). Evidence suggesting the existence of two H-Y antigens in the mouse. Immunogenetics <u>5</u>, 33-41.
- Miklos, G. L. G. (1974). Sex-chromosome pairing and male fertility. Cytogenet. Cell. Genet. <u>13</u>, 558 577.
- Mittwoch, U. (1967). In: Sex Chromosomes. Acad. Press Inc. New York. London.
- Mittwoch, U. (1973). In: Genetics of Sex Differentiation. Acad. Press Inc. New York. London.
- Mittwoch, U. (1988). The race to be male. New Scientist 22 Oct. 38 42.
- Monesi, V. (1962). Autoradiographic study of DNA synthesis and the cell cycle in spermatogonia and spermatocytes of mouse testis using tritiated thymidine. J. Cell. Biol. <u>14</u>, 1 18.
- Monesi, V. (1965). Synthetic activities during spermatogenesis in the mouse. Exp. Cell Res. 39, 197 224.
- Monk, M. (1987). Biochemical microassays for X-chromosome-linked enzymes HPRT and PGK. In: Mammalian Development. a practical approach. (ed. Monk, M.) IRL Press, Oxford, Washington. 139 161.
- Morgan, T. H. (1910). Sex limited inheritance in Drosophila. Science <u>32</u>, 120 122.
- Morgan, T. H. (1911). An attempt to analyze the constitution of the chromosomes on the basis of sex-limited inheritance in Drosophila. J. Exp. Zool. 11, 365 411.
- Moriwaki, K., Suh, D. S. & Styrna, J. (1988). Genetic factors governing sperm morphology of the mouse. (Abstract) 6th Int. Workshop on Mouse Molec. Genet. Cambridge.
- Moses, M. J., Counce, S. J. & Paulson, D. F. (1975). Synaptonemal complex complement of man in spreads of spermatocytes, with details of the sex chromosome pair. Science <u>187</u>, 363 365.
- Muller, U. (1987a). Molecular biology of the human Y chromosome. In: Evolutionary Mechanisms in Sex Determination. (ed. Wachtel, S. S.) CRC. Press Inc. 91 98.
- Muller, U. (1987b). Mapping of testis-determining locus on Yp by the molecular genetic analysis of XX males and XY females. Development (Suppl.) 101, 51 58.

- Nagamine, C. M., Michot, J. L., Roberts, C., Guenet, J. L. & Bishop, C. E. (1987). Linkage of the murine steroid sulfatase locus, *Sts*, to sex reversed *Sxr*: a genetic and molecular analysis. Nucl. Acids Res. <u>15</u> (22), 9227 9237.
- Nagamine, C. M., Chan, K., Kozak, C. A. & Lau, Y. F. (1989). Chromosome mapping and expression of a putative testis-determining gene in mouse. Science <u>243</u>, 80 83.
- Nebel, B. R, Amarose, A. P, & Hackett, E. M. (1961). Calendar of gametogenic development in the prepubertal male mouse. Science 134, 832 833.
- Nesbitt, M. N. & Francke, U. (1973). A system of nomenclature for band patterns of mouse chromosomes. Chromosoma <u>41</u>, 145 158.
- Neu, R. L., Barlow, M. J. & Gardner, L. I. (1973). A 46, XYq- male with aspermia. Fert. Steril. <u>24</u>, 811 813.
- Neuhaus, M. J. (1939). A cytogenetic study of the Y-chromosome of *Drosophila melanogaster*. J. Genet. <u>37</u>, 229 254.
- Oakberg, E. F. (1956). A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. Am. J. Anat. <u>99</u> (3), 391 409.
- Oakberg, E. F. (1971). Spermatogonial stem-cell renewal in the mouse. Anat. Rec. <u>169</u>, 515 532.
- Oakberg, E. F. (1981). The age at which the long-cycling spermatogonial stem-cell population is established in the mouse. In: Proceedings of the Vth Workshop on the Development and Function of the Reproductive Organs. 149 154
- Ohno, S. (1967). In: Sex Chromosomes and Sex-linked Genes. Springer-Verlag. Berlin. Heidelberg. New York.
- Ohno, S. (1985). The Y-linked testis determining gene and H-Y plasma membrane antigen gene: Are they one and the same? Endoc. Rev. <u>6</u> (3), 421 431.
- Page, D. C. (1986). Sex reversal: Deletion mapping the male-determining function of the human Y chromosome. Cold Spring Harbor Symp. Quant. Biol. Vol. <u>51</u>, 229 235.
- Page, D. C. (1987). Hypothesis: a Y chromosomal gene causes gonadoblastoma in dysgenetic gonads. Development (Suppl.)101 151 155.

- Page, D. C. (1988). Is *ZFY* the sex-determining gene on the human Y chromosome? In: Sex Determination in Mouse and Man. Phil. Trans. R. Soc. Lond. B <u>322</u>, 155 157.
- Page, D. C., Bieker, K., Brown, L. G., Hinton, S., Leppert, M., Lalouel, J-M., Lathrop, M., Nystrom-Lahti, M., de la Chapelle, A. & White, R. (1987b). Linkage, physical mapping, and DNA sequence analysis of pseudoautosomal loci on the human X and Y chromosomes. Genomics 1, 243 256.
- Page, D. C., Harper, M. E., Love, J. & Botstein, D. (1984). Occurrence of a transposition from the X-chromosome long arm to the Y-chromosome short arm during human evolution. Nature. 311, 119 123.
- Page, D. C., Mosher, R., Simpson, E. M. C., Fisher, E. M., Mardon, G., Pollack, J., McGillivray, B., de la Chapelle, A. & Brown, L. G. (1987a). The sex-determining region of the human Y chromosome encodes a finger protein. Cell <u>51</u>, 1091 1104.
- Painter, T. S. (1923). Studies in mammalian spermatogenesis II. The spermatogenesis of man. J. Exp. Zool. <u>37</u> (3), 291 321.
- Painter, T. S. (1925). A comparative study of the chromosomes of mammals. Am. Nat. <u>59</u> (664), 385 409.
- Palmer, M. S., Sinclair, A. H., Berta, P., Goodfellow, P. N. Ellis, N. A., Abbas, N. E. & Fellous, M. (1989a). Genetic evidence that *ZFY* is not the testis-determining factor. Nature <u>342</u> (6252), 937 939.
- Palmer, S. J., Burgoyne, P. S. & Mahadevaiah, S. K. (1989b). XYY spermatogenesis in XO/XY/XYY mosaic mice. Cytogenet. Cell Genet. (in press).
- Petit, C., Levilliers, J. & Weissenbach, J. (1988). Physical mapping of the human pseudo-autosomal region; comparison with genetic linkage map. EMBO J. 7 (8), 2369 2376.
- Pritchard, C. A., Goodfellow, P. J. & Goodfellow, P. N. (1987). Mapping the limits of the human pseudoautosomal region and a candidate sequence for the male-determining gene. Nature <u>328</u>, 273 275.
- Polani, P. E. (1982). Pairing of X and Y chromosomes, non-inactivation of X-linked genes, and the maleness factor. Hum. Genet. <u>60</u>, 207 211.
- Rathenberg, R. & Muller, D. (1973). X and Y chromosome pairing and disjunction in a male mouse with an XYY sex-chromosome constitution. Cytogenet. Cell Genet. 12, 87 92.

- Renfree, M. B. & Short, R. V. (1988). Sex determination in marsupials: Evidence for a marsupial-eutherian dichotomy. Phil. Trans. R. Soc. London B 322 41 53.
- Roberts, C., Weith, A., Passage, E., Michot, J. L., Mattei, M. G. & Bishop, C. E. (1988). Molecular and cytogenetic evidence for the location of *Tdy* and *Hya* on the mouse Y chromosome short arm. Proc. Natl. Acad. Sci. USA. 85, 6446 6449.
- Roosen-Runge, E. C. (1962). The process of spermatogenesis in mammals. Biol. Rev. <u>37</u>, 343 377.
- Rosenfeld, R. G., Luzzatti, L., Hintz, R. L., Miller, O. J., Koo, G. C. & Wachtel, S. S. (1979). Sexual and somatic determinants of the human Y chromosome: Studies in a 46, XYp- phenotypic female. Am. J. Hum. Genet. 31, 458 468.
- Rouyer, F., Simmler, M. C., Johnsson, C., Vergnaud, G., Cooke, H. J. & Weissenbach, J. (1986). A gradient of sex linkage in the pseudoautosomal region of the human sex chromosomes. Nature <u>319</u>, 291 295.
- Russell, L. D. & Clermont, Y. (1977). Degeneration of germ cells in normal, hypophysectomized and hormone treated hypophysectomized rats. Anat. Rec. <u>187</u>, 347 366.
- Sandberg, A. A., Koepf, G. F., Ishihara, T. & Hauschka, T. S. (1961). An XYY human male. Lancet (ii), 488 489.
- Sapsford, C. S. (1962). Changes in the cells of the sex cords and seminiferous tubules during the development of the testis of the rat and mouse. Aust. J. Zool. <u>10</u>, 178 192.
- Searle, A. G. (1982). The genetics of sterility in the mouse. In: Genetic Control of Gamete Production and Function. (ed. Crosignam, P. G., Rubin, B. L. & Fraccaro, M.) 93 114.
- Searle, J. B. & Wilkinson, P. J. (1986). The XYY condition in a wild mammal: an XY/XYY mosaic common shrew (*Sorex araneus*). Cytogenet. Cell Genet. <u>41</u>, 225 233.
- Seller, M. J. & Perkins-Cole, K. J. (1987). Sex difference in mouse embryonic development and neurulation. J. Reprod. Fert. <u>79</u>, 159 161.

- Simmler, M. C., Rouyer, F., Vergnaud, G., Nystrom-Lahti, M., Ngo, K. Y., de la Chapelle, A. & Weissenbach, J. (1985). Pseudoautosomal DNA sequences in the pairing region of the human sex chromosomes. Nature 317, 692 697.
- Simpson, E., Chandler, P., Goulmy, E., Disteche, C.M., Ferguson-Smith, M. A & Page, D. C. (1987a). Separation of the genetic loci for the H-Y antigen and for testis determination on human Y chromosome. Nature 326, 876 878.
- Simpson, E., Chandler, P., Hunt, R., Hogg, H., Tomonari, K. & McLaren, A. (1986). H-Y status of X/XSxr' male mice: *In vivo* tests. Immunology <u>57</u>, 345 349.
- Simpson, E., Chandler, P., McLaren, A., Goulmy, E., Disteche, C. M., Page, D. C. & Ferguson-Smith, M. A. (1987b). Mapping the H-Y gene. Development (Suppl.) 101, 157 161.
- Simpson, E., Edwards, P., Wachtel, S., McLaren, A. & Chandler, P. (1981). H-Y antigen in *Sxr* mice detected by H-2 restricted cytotoxic T cells. Immunogenetics <u>13</u>, 355 358.
- Sinclair, A. H., Foster, J. W., Spencer, J. A., Page, D. C., Palmer, M., Goodfellow, P. N. & Marshall Graves, J. A. (1988). Sequences homologous to *ZFY*, a candidate human sex-determining gene, are autosomal in marsupials. Nature <u>336</u>, 780 783
- Singh, L. & Jones, K. W. (1982). Sex reversal in the mouse (*Mus musculus*) is caused by a recurrent nonreciprocal crossover involving the X and an aberrant Y chromosome. Cell <u>28</u>, 205 216.
- Singh, L., Purdom, I. F. & Jones, K. W. (1981). Conserved sex chromosome-associated nucleotide sequences in eukaryotes. Cold Spring Harbor Symp. Quant. Biol. 45, 805 813.
- Skakkebaek, N. E., Hulten, M., Jacobsen, P. & Mikkelsen, M. (1973). Quantification of human seminiferous epithelium II. Histological studies in eight 47, XYY men. J. Reprod. Fert. 32, 391 401.
- Smith, K. D., Young, K. E., Talbot, C. C. & Schmeckpeper, B. J. (1987). Repeated DNA of the human Y chromosome. Development (Suppl.) 101, 77 92.
- Soriano, P., Keitges, E. A., Schorderet, D. F., Harbers, K., Gartler, S. M. & Jaenisch, R. (1987). High rate of recombination and double crossovers in the mouse pseudoautosomal region during male meiosis. Proc. Natl. Acad. Sci. USA. <u>84</u>, 7218 7220.

- Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. <u>98</u>, 503 517.
- Spiegelman, M. & Bennett, D. (1973). A light- and electron-microscopic study of primordial germ cells in the early mouse embryo. J. Embryol. Exp. Morph. 30 (1), 97 118.
- Stewart, A. D. (1983). The role of the Y-chromosome in mammalian sexual differentiation. In: Development in Mammals <u>5</u>, Elsevier Science Pub. BV, (ed. Johnson, M.H.) 321 367.
- Stewart, A.D. (1986). Where next for mammalian male-specific (H-Y) antigen(s)? TIG Elsevier Sci. Publ. BV. Amsterdam. 273.
- Sturtevant, A. H. (1965). In: A History of Genetics. Modern Perspectives in Biology Series. (ed. Roman, H. L., Bell, E. & Halvorson, H. O.) Harper & Row. New York.
- Sundequist, U. & Hellstrom, E. (1969). Transmission of 47, XYY karyotype? Lancet <u>1367</u>
- Sung, W. K., Komatsu, M. & Jagiello, G. M. (1986). The kinetics of the first wave of spermatogenesis in the newborn male mouse. Gamet. Res. 14, 245 254.
- Tanner, J. M., Prader, A., Habich, H. & Ferguson-Smith, M. A. (1959). Genes on the Y chromosome influencing rate of maturation in man. Skeletal age studies in children with Klinefelter's (XXY) and Turner's (XO) syndromes. Lancet (ii), 141 144.
- Tease, C. & Cattanach, B. M. (1989). Sex chromosome pairing patterns in male mice of novel *Sxr* genotypes. Chromosoma (Berl.) <u>97</u>, 390 395.
- Tiepolo, L. & Zuffardi, O. (1976). Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm. Hum. Genet. 34, 119 124
- Tjio, J. H., & Levan, A. (1956). The chromosome number of man. Hereditas 42, 1 6.
- Tzoneva-Maneva, M. T., Bosajieva, E. & Petrov, B. (1966). Chromosomal abnormalities in idiopathic osteoarthropathy. Lancet (i), 1000 1002
- Tsunoda, Y., Tokunaga, T. & Sugie, T. (1985). Altered sex ratio of live young after transfer of fast- and slow-developing mouse embryos. Gamet. Res. 12, 301 304.

- Turner, H. H. (1938). A syndrome of infantilism, congenital webbed neck and cubitus valgus. Endocrinology 23, 566 574.
- Tyler-Smith, C. (1987). Structure of repeated sequences in the centromeric region of the human Y chromosome. Development (Suppl.) 101, 93 100
- Vergnaud, G., Page, D. C., Simmler, M. C., Brown, L., Rouyer, F., Noel, B., Botstein, D., de la Chapelle, A. & Weissenbach, J. (1986). A deletion map of the human Y chromosome based on DNA hybridization. Am. J. Hum. Genet. 38, 109 124.
- Vogt, P., HoBl, P., Kohler, M., Lengauer, C., Lewe, D. & Lewe, G. (1989). Selection of potential fertility gene sequences from the human Y chromosome by sequence homology to a Y chromosomal fertility factor of *Drosophila*. Hum. Chrm. Gene Map. 10. Cytogenet. Cell Genet. <u>51</u>, 1099.
- Wachtel, S. S., Ohno, S., Koo, G. C. & Boyse, E. A. (1975). Possible role for H-Y antigen in the primary determination of sex. Nature <u>257</u>, 235 236.
- Waibel, F., Scherer, G., Fraccaro, M., Hustinx, T. W. J., Weissenbach, J., Wieland, J., Mayerova, A., Back, E. & Wolf, U. (1987). Absence of Y-specific DNA sequences in human 46, XX true hermaphrodites and in 45, X mixed gonadal dysgenesis. Hum. Genet. <u>76</u>, 332 336.
- Weissenbach, J. (1988). Mapping the human Y chromosome. In: Sex Determination in Mouse and Man. Phil. Trans. R. Soc. Lond. B <u>322</u>, 125 -131.
- Weissenbach, J., Goodfellow, P. N. & Smith, K. D. (1989). Report of the committee on the genetic constitution of the Y chromosome. Cytogenet. Cell Genet. <u>51</u>, 438 449.
- Welshons, W. J. & Russell, L. B. (1959). The Y-chromosome as the bearer of male determining factors in the mouse. Proc. Natl. Acad. Sci. USA. 45, 560 569.
- Wetmur, J. G. & Davidson, N. (1968). Kinetics of renaturation of DNA. J. Mol. Biol. 31, 349 370.
- Whitehouse, H. L. K. (1969). In: Towards an Understanding of the Mechanism of Heredity. (2nd. edition) Edward Arnold Ltd. London.
- Wiberg, U. H. (1985). H-Y transplantation antigen in human XO females. Hum. Genet. 69, 15 18.

- Wiberg, U. H. (1987). Facts and considerations about sex-specific antigens. Hum. Genet. <u>76</u>, 207 219.
- Wilson, E. B. (1905). The chromosomes in relation to the determination of sex in insects. Science 22 (564), 500 502.
- Wilson, E. B. (1909). Recent researches on the determination and heredity of sex. Science <u>29</u>, 53 70
- Winsor, E. J. T., Ferguson-Smith, M. A. & Shire, J. G. M. (1978). Meiotic studies in mice carrying the sex reversal (Sxr) factor. Cytogenet. Cell Genet. 21, 11 18.
- Wolfe, J., Darling, S. M., Erickson, R. P., Craig, I. W., Buckle V. J., Rigby, P. W. J., Willard, H. F. & Goodfellow, P. N. (1985). Isolation and characterization of an alphoid centromeric repeat family from the human Y chromosome. J. Mol. Biol. <u>182</u>, 477 485.
- Wolfe, J. (1987). Other genes of the Y chromosome. Development (Suppl.) 101, 117 118.
- Wolf, U., Fraccaro, M., Mayerova, A., Hecht, T., Zuffardi, O. & Hameister, H. (1980). Turner syndrome patients are H-Y positive. Hum. Gen. <u>54</u>, 315 318
- Yunis, E., Garcia-Conti, F. L., Torres de Caballero, O. M. & Giraldo, A. (1977). Yq deletion, aspermia and short stature. Hum. Genet. <u>39</u>, 117 122.

Analysis of the testes of H-Y negative XOSxr^b mice suggests that the spermatogenesis gene (*Spy*) acts during the differentiation of the A spermatogonia

MAXINE J. SUTCLIFFE and PAUL S. BURGOYNE

MRC Mammalian Development Unit, Wolfson House, 4 Stephenson Way, London NW1 2HE, UK

Summary

H-Y antigen negative $XOSxr^b$ mice, like their H-Y positive $XOSxr^a$ counterparts, have testes; but, in contrast to $XOSxr^a$ males, $XOSxr^b$ testes almost totally lack meiotic and postmeiotic stages of spermatogenesis. The quantitative analysis of the testes of $XOSxr^b$ males and their $XY\pm Sxr^b$ sibs, described in the present study, identified two distinct steps in this spermatogenic failure. First, there was a reduction in mitotic activity among T_1 prospermatogonia, so that approximately half the normal number of T_2 prospermatogonia were produced. Second, there was a dramatic decrease in the number of A_3 and A_4 spermatogonia and no Intermediate or B spermatogonia. These reductions were also largely due to decreased mitotic activity, there being a

shortage of A₁ and A₂ spermatogonial divisions and no divisions among A₃ or A₄ spermatogonia. Mitotic activity among the T₂ prospermatogonia and the undifferentiated A spermatogonia was normal. This means that the spermatogonial stem cells, which are a subset of the undifferentiated A spermatogonia, are unaffected in XOSxr^b mice. Sxr^b is now known to have arisen by deletion of DNA from Sxr^a. It is clear from the present findings that a gene (or genes) present in the deleted DNA plays a major role in the survival and proliferation of the differentiating A spermatogonia.

Key words: mice, spermatogenesis, sex reversal, H-Y antigen negative, Spy.

Introduction

Sex-reversed (Sxr) is a factor that causes an inherited form of sex-reversal, such that XX and XO mice carrying Sxr develop as phenotypic males (Cattanach et al. 1971). In 1982 evidence was obtained that Sxr was in fact an extra copy of the testis-determining region of the mouse Y chromosome which had become located distal to the pairing and exchange region of the Y, so that it regularly crossed over onto the X chromosome during male meiosis (Singh and Jones, 1982; Evans et al. 1982; Burgoyne, 1982; Eicher, 1982; Hansmann, 1982).

In addition to testis-determining information, the original Sxr (now termed Sxr^a – McLaren et al. 1988) included information required for H-Y antigen expression (Bennett et al. 1977). In 1984 McLaren et al. discovered a variant of Sxr^a (originally designated Sxr', but now Sxr^b) that retained the testis-determining information, but which had lost the Y-chromosomal gene required for transplantation H-Y antigen expression (Simpson et al. 1981, 1986). This finding, recently confirmed by the separation of TDF from H-Y loci in humans (Simpson et al. 1987), negated the hypothesis of Wachtel et al. (1975) that H-Y antigen was

the primary testis determinant (at least in so far as the transplantation H-Y antigen is concerned).

XXSxr males differ genetically from normal males not only in that they lack most of the Y chromosome, but also in having two X chromosomes. The presence of two X chromosomes is incompatible with male germ cell survival beyond the perinatal period (reviewed by McLaren, 1983) so that in order to investigate the effects of the Y-chromosomal deficiencies associated with Sxr^a and Sxr^b, it is necessary to produce Sxr males with single X chromosomes.

XOSxr^a mice were first described by Cattanach *et al.* (1971) and although all stages of spermatogenesis are represented in their testes, the later stages are severely depleted so that the testes are small and the mice are sterile. The majority of the spermatids are in fact diploid and the few sperm produced, whether haploid or diploid, are abnormal (Levy and Burgoyne, 1986a).

XOSxr^b mice have a more severe spermatogenic impairment with only a few germ cells reaching early meiotic prophase (Burgoyne *et al.* 1986). The XO germ cells in an XO/XY/XYY mosaic male described by Levy and Burgoyne (1986b) suffered a similar fate despite a normal XY Sertoli cell environment. These

findings led Burgoyne *et al.* (1986) to suggest that Sxr^a carries a spermatogenesis gene (*Spy*) that is lacking in Sxr^b, and that *Spy* is expressed cell-autonomously in the germ line. Recent studies have shown that the Sxr^b variant arose by deletion of DNA from Sxr^a (Bishop *et al.* 1988; Mardon *et al.* 1989).

The purpose of the present study was to define the spermatogenic block in $XOSxr^b$ mice by a quantitative analysis of germ cells in the two weeks following birth (when the block first becomes apparent) and from this deduce the function of Spy. During the course of the experiment, the finding of a significant body weight difference between $XOSxr^b$ and $XOSxr^a$ mice supported a hypothesis, under separate study, that a growth and development gene (dubbed Gdy) may also be deleted.

Materials and methods

Mice

XYSxr^b males were mated with females heterozygous for the inversion In(X)1H. In(X)/X females produce some nullo-X eggs following crossing-over within the inversion (Evans and Phillips, 1975), and approximately 1 in 19 of the progeny from this cross have the XOSxr^b genotype. The In(X)/X females were checked for vaginal plugs each morning, and coitus was presumed to have taken place at the midpoint of the previous dark cycle. Ages were calculated from conception, rather than birth, because it is known that the duration of pregnancy is affected by litter size. The majority of litters were born about 19½ days post coitum (dpc), so in what follows this is equated with the day of birth. 157 litters were bred of which 59 included XOSxr^b males. Litters were processed from 19½ dpc (day of birth) through 30½ dpc (11 days post partum), 32½ dpc (13dpp) and 59½ dpc (40dpp).

A similar breeding cross was set up to produce XOSxr^a males as controls for a possible XO effect. Data from 35 litters are included in this study. The litters were processed at $19\frac{1}{2}$, $21\frac{1}{2}$ through $24\frac{1}{2}$, $27\frac{1}{2}$, $29\frac{1}{2}$, $31\frac{1}{2}$ and $33\frac{1}{2}$ dpc.

Body weights were recorded at autopsy. Following exclusion of 'runts' (Burgoyne et al. 1983b), litters were evaluated provided at least one XOSxr and one XY±Sxr male was present. Since a qualitative analysis suggests that XY and XYSxr testes are not significantly different during the premeiotic stages (results not shown) XY and XYSxr males were not separately identified. 52 Sxr^b and 35 Sxr^a litters finally provided data.

Karyotyping

Mitotic spreads were prepared either by dissociating liver fragments (19½ and 20½ dpc) or by flushing out bone marrow cells (21½ dpc onwards) in 0.04% colcemid in Hepes-buffered Eagle's minimal essential medium, and incubating at 32°C for 60 min (liver) or 15 min (bone marrow). Cells were then treated with 0.56% KCl for 20 min followed by five changes of 3:1 methanol: glacial acetic acid. The cells were then air-dried on slides and stained for 15 min in 2% Giemsa in pH 6.8 buffer. XOSxr males were identified by scoring at least 5 consecutive spreads with 39 chromosomes and no evidence of a Y chromosome. XY±Sxr males were identified by 40 chromosomes, with a Y recognised by size and the presence of splayed short arms (Ford, 1966).

Histology

Both testes from each male were weighed using a Cahn electrobalance, and were then retained in Bouin's fixative awaiting the results of karyotyping. Testes from XOSxr and $XY\pm Sxr$ littermates were dehydrated and cleared according to standard procedures, embedded in paraffin wax, serially sectioned at $3 \mu m$ and stained with haematoxylin and eosin.

Quantitative analysis

This analysis was carried out 'blind' with respect to genotype of the mice from which the sections were taken. The sampling was one tubule cross-section from every 20th section, or every 10th section for smaller testes, such that between 25 and 35 tubule cross-sections were analysed per testis. The procedure for selecting tubules for analysis was as follows: (1) A 0.25 mm square grid (R-4 grid, Graticules Ltd, Tonbridge, Kent) was 'stuck' to the bottom of the microscope slide with a film of water and a Chalkley grid (G52, Graticules Ltd) was inserted in the eyepiece. (2) When a section was selected, the square grid was focused under low power with a ×10 objective and a square chosen at random. The central cross of the Chalkley grid was centered over the square and the section was brought back into focus. (3) The tubule cross-section adjacent to the central cross was analysed under oil immersion, provided it could be encompassed within the field of view.

This selection procedure ensures that all regions of the gonad have an equal chance of being sampled. Once a tubule was selected, all cells within the tubule cross-section were classified as to cell type except dead or dying cells which could not be classified. Sertoli cells were scored as being in interphase or division. Gonia were scored as being in interphase or division, and were also classified as to stage (i.e. T₁ prospermatogonia, T₂ prospermatogonia, undifferentiated A spermatogonia, differentiating A₁ or A₂ spermatogonia, A₃ or A₄ spermatogonia, Intermediate or B spermatogonia) using the criteria described by Clermont and Perey (1957), Oakberg (1971), Hilscher et al. (1974), Hilscher and Hilscher (1976), Bellve et al. (1977), Huckins and Oakberg (1978) and Kluin and de Rooij (1981). It was often difficult to assign divisions to specific spermatogonial stages and in these cases they were classified according to the adjacent interphase stages in the same tubule. A category existed for cells that could not be classified. This group formed less than 0.5% of germ cells scored and have been omitted from the analysis. It should be pointed out that these cell counts are crude counts, uncorrected for cell sizes and thickness of the sections.

Results

The body weight data for the Sxr^a and Sxr^b litters are given in Table 1. The best estimates for the body weights of the four genotypes (XOSxr^a, XY±Sxr^a, XOSxr^b, XY±Sxr^b) at the various ages studied are provided by the means of litter means. In order to compare the two genotypes in each cross, mean weighted differences between these genotypes and the significance of these differences have been calculated from 'within litters' as described by Burgoyne et al. (1983b). From these mean weighted differences it is clear that XOSxr^b mice are underweight when compared with XY±Sxr^b mice. Despite the limited number of mice at each age, the difference is significant for 5/13 age groups, and pooling across age groups (the mean weighted differences are similar throughout the age

Table 1. Mean body weights for (A) XOSxrb and XY±Sxrb, and (B) XOSxra±Sxra mice and the estimated difference between them for the period $19\frac{1}{2}-33\frac{1}{2}dpc$

(A)

Days post coitum	No. of Mice		Mean±S.E.M. body weights (g)*		Mean±s.e.m. weighted XOSxrb-XY±Sxrb	Significance of XOSxrb-XY±Sxrb
	XOSxrb	XY±Sxrb	XOSxrb	XY±Sxrb	difference (g)	difference (P)
19½	3	5	1.570±0.03	1.693±0.08	-0.120±0.046	NS
$20\frac{1}{2}$	3	9	1.917 ± 0.10	2.200 ± 0.10	-0.284 ± 0.070	< 0.005
$21\frac{1}{2}$	4	12	2.065 ± 0.15	2.175 ± 0.10	-0.120 ± 0.180	NS .
$22\frac{1}{2}$	7	16	2.436 ± 0.12	2.862 ± 0.11	-0.496 ± 0.160	< 0.005
$23\frac{1}{2}$	11	14	3.297 ± 0.24	3.645 ± 0.30	-0.237 ± 0.135	NS
$24\frac{1}{2}$	6	19	3.876 ± 0.16	4.240 ± 0.13	-0.347 ± 0.197	0.05-0.025
$25\frac{1}{2}$	5	19	4.094 ± 0.19	4.932 ± 0.26	-0.842 ± 0.108	< 0.005
$26\frac{1}{2}$	3	8	5.130 ± 0.66	5.500 ± 0.79	-0.330 ± 0.266	NS
$27\frac{1}{2}$	4	8	5.290 ± 0.25	5.525 ± 0.16	-0.324 ± 0.144	< 0.005
$28\frac{1}{2}$	3	7	6.385 ± 0.11	6.500 ± 0.10	-0.115 ± 0.194	NS
$29\frac{1}{2}$	6	12	6.618±0.66	6.675 ± 0.47	-0.219 ± 0.284	NS
$30^{\frac{1}{2}}$	4	6	7.505 ± 0.71	8.025 ± 0.67	-0.498 ± 0.332	NS
$32\frac{1}{2}$	4	6	8.060 ± 0.50	8.563 ± 0.53	-0.483 ± 0.407	NS
	Pooled mean weighted difference				-0.359 ± 0.059	< 0.005

(B)

Days post coitum	No. of Mice		Mean±s.E.M. body weights (g)*		Mean±s.E.M. weighted XOSxra-XY±Sxra	Significance of XOSxra-XY±Sxra
	XOSxra	XY±Sxra	XOSxra	XY±Sxra	difference (g)	$\begin{array}{c} AOSX12 - A1 \pm SX12 \\ \text{difference } (P) \end{array}$
$\frac{19\frac{1}{2}}{}$	3	6	1.467±0.04	1.450±0.01	+0.010±0.050	NS ·
$21\frac{1}{2}$	4	6	2.727 ± 0.27	2.927 ± 0.01	-0.241 ± 0.103	0.05-0.025
$22\frac{1}{2}$ '	5	· 14	3.142 ± 0.43	3.148 ± 0.45	-0.003 ± 0.102	NS
$23\frac{1}{2}$	4	12	3.448 ± 0.14	3.465 ± 0.25	$+0.004\pm0.082$	NS
24½	4	12	4.123 ± 0.31	4.213±0.17	-0.130 ± 0.219	NS
$27\frac{1}{2}$. 4	10	5.868 ± 0.40	6.273 ± 0.54	-0.404 ± 0.162	0.025-0.010
$29\frac{1}{2}$	6	17	6.658 ± 0.45	6.305 ± 0.32	$+0.529\pm0.230$	0.025-0.010
$31\frac{1}{2}$	4	15	7.918 ± 0.38	8.285 ± 0.47	-0.367 ± 0.275	NS
$33\frac{1}{2}$	4	12	9.145±0.62	9.295 ± 0.33	-0.092 ± 0.157	NS
		Poole	ed mean weighted dif	ference	-0.044 ± 0.069	NS

^{*}Mean of litter means.

range studied) gives an overall estimated weight deficit of $-0.359\pm0.059\,\mathrm{g}$ (P<0.005). XOSxr^a mice are not significantly underweight when compared with XY±Sxr^a mice (pooled mean weighted difference= $-0.044\pm0.069\,\mathrm{g}$).

The testis weight data for the Sxr^a and Sxr^b litters are given in Table 2. XOSxr^a testes (Table 2B) are not underweight when compared with XY±Sxr^a litter mates, but XOSxr^b testes (Table 2A) are significantly underweight for 9/13 of the ages studied. Since XOSxr^b mice are underweight, this testis weight deficit could simply be a reflection of the overall reduction in body weight. The XOSxr^b testis weights were therefore corrected by dividing by individual body weight and multiplying by the mean XY±Sxr^b body weight for the relevant litters. The mean weighted XOSxr^b-XY±Sxr^b differences for these corrected testis weights are plotted in Fig. 1. XOSxr^b testes are significantly underweight by 23½ dpc and the weight deficit rapidly increases thereafter.

Fig. 1. Mean weighted differences in testis weights (corrected for body weights) for $XOSxr^b$ and $XY\pm Sxr^b$ mice for the period $19\frac{1}{2}-32\frac{1}{2}$ dpc. Where error bars are shown the differences are significant (t-test, 1-tailed).

The reason for the reduced testis weight in XOSxr^b mice is apparent in Fig. 2, which gives the mean number of germ cells and Sertoli cells per tubule cross-section in XOSxr^b and XY±Sxr^b mice, throughout the period

Table 2. Mean testis weights for (A) XOSxrb and XY \pm Sxrb, and (B) XOSxra \pm Sxra mice and the estimated difference between them for the period $19\frac{1}{2}$ - $33\frac{1}{2}$ dpc

•		`	
1	А	١	
١.	4 3	.,	

Days post coitum	No. of mice		Mean±s.E.M. testis weights (mg)*		Mean±s.E.M. weighted	Significance of
	XOSxrb	XY±Sxrb	XOSxrb	XY±Sxrb	XOSxrb-XY±Sxrb difference (mg)	XOSxrb-XY±Sxrb difference (P)
19½	3	5	0.883±0.01	0.960±0.26	-0.063 ± 0.019	0.05-0.025
$20\frac{1}{2}$	3	9	0.980 ± 0.17	1.167 ± 0.18	-0.185 ± 0.167	NS
$21\frac{1}{2}$	4	12	1.183 ± 0.10	1.260 ± 0.02	-0.091 ± 0.163	NS
$22\frac{1}{2}$	7	16	1.440 ± 0.10	1.782 ± 0.17	-0.380 ± 0.167	0.025 - 0.010
$23\frac{1}{2}$	11	14	2.190 ± 0.14	2.622 ± 0.20	-0.373 ± 0.117	< 0.005
$24\frac{1}{2}$	6	19	2.528 ± 0.13	2.942±0.05	-0.402 ± 0.268	NS
$25\frac{1}{2}$	5	19	2.734 ± 0.18	4.148 ± 0.22	-1.396 ± 0.239	< 0.005
$26\frac{1}{2}$	3	8	3.580 ± 0.18	4.207 ± 0.25	-0.606 ± 0.405	NS
$27\frac{1}{2}$	4	8	3.708 ± 0.27	5.003 ± 0.23	-1.232 ± 0.255	< 0.005
$28\frac{1}{2}$	3	7	3.385 ± 0.68	4.555 ± 0.48	-1.114 ± 0.383	0.025-0.010
$29\frac{1}{2}$	6	12	4.555 ± 0.40	6.248 ± 0.41	-1.974 ± 0.613	< 0.005
$30\frac{1}{2}$	4	6	4.615±0.16	7.685 ± 1.80	-3.617 ± 0.896	< 0.005
$32\frac{1}{2}$	4	6	6.027±0.19	10.347±0.64	-4.356 ± 0.293	< 0.005

(B)

Days post coitum	No. of Mice		Mean±s.E.M. testis weights (mg)*		Mean±S.E.M. weighted	Significance of
	XOSxra	XY±Sxra	XOSxra	XY±Sxra	XOSxra-XY±Sxra difference (mg)	XOSxra-XY±Sxra difference (P)
19½	3	6	0.837±0.02	0.757±0.08	+0.068±0.106	NS
$21\frac{1}{2}$	4	6	1.863 ± 0.18	1.940 ± 0.10	-0.097 ± 0.091	NS
$22\frac{1}{2}$	5	14	2.108 ± 0.33	2.104 ± 0.30	-0.036 ± 0.105	NS
$23\frac{1}{2}$	4	12	2.608 ± 0.24	2.563 ± 0.26	$+0.078\pm0.188$	NS
$24\frac{1}{2}$	4	12	2.818±0.22	3.030 ± 0.27	-0.226 ± 0.228	NS
$27\frac{1}{2}$	4	10	4.938±0.56	4.898 ± 0.40	$+0.059\pm0.156$	NS
$29\frac{1}{2}$	6	17	6.358 ± 0.69	5.655 ± 0.38	$+0.907\pm0.192$	< 0.005
$31\frac{1}{2}$	4	15	8.898 ± 1.20	9.323 ± 1.15	-0.435 ± 0.620	NS
$33\frac{1}{2}$	4	12	12.688 ± 2.87	12.343 ± 1.05	$+0.691\pm0.944$	NS

^{*} Mean of litter means.

studied. As expected, there is a marked increase in the number of germ cells per tubule cross-section in XY±Sxr^b mice, but by contrast there is no increase in XOSxr^b mice. There is no deficiency of Sertoli cells in XOSxr^b mice. Indeed the mitotic index for Sertoli cells during the period $19\frac{1}{2}-23\frac{1}{2}$ days was found to be very similar in XOSxrb mice (0.85%) and XY±Sxrb mice (0.90%). The mitotic index for Sertoli cells drops to less than 0.3% after $24\frac{1}{2}$ dpc in both genotypes. Clearly, the testis weight deficiency in XOSxr^b mice is due to germinal failure.

In view of the normal numbers of Sertoli cells in XOSxr^b mice, in the more detailed analysis of the germ cell deficiency that follows, germ cell numbers are expressed per 100 Sertoli cells, rather than per tubule cross-section.

Fig. 2. Mean number of Sertoli cells (SC) and germ cells (GC) per tubule cross-section in XOSxr^b and XY±Sxr^b mice for the period $19\frac{1}{2}$ – $32\frac{1}{2}$ dpc. The numbers in parentheses are the numbers of litters scored at each age. Asterisks indicate XOSxrb points which are significantly different from controls (t-test, 2-tailed). The significantly higher numbers of Sertoli cells in XOSxrb tubules at 29½ and 32½ dpc is a scoring artifact: at these ages some large tubule cross-sections from the controls had to be excluded because they would not fit in the field of view, resulting in an underestimate of the numbers of Sertoli cells and germ cells for controls at these ages.

In Fig. 3, germ cell numbers are plotted against age for the various classes of germ cells identified in the scoring procedure. The numbers of T_1 prospermatogonia are indistinguishable in $XOSxr^b$ and $XY\pm Sxr^b$ mice. However, XOSxrb mice clearly have fewer T2 prospermatogonia than the controls and pooling over the period $20\frac{1}{2}$ – $24\frac{1}{2}$ dpc reveals that XOSxr^b have only 39 % of the control value. By contrast, XOSxra mice have 91 % of the control value. Since T₂ prospermato-

Fig. 3. Number of germ cells per 100 Sertoli cells for each germ cell stage during the period $19\frac{1}{2}-32\frac{1}{2}$ dpc. The asterisk denotes occasional XOSxr^b zygotene or pachytene cells.

Fig. 4. Histogram showing the mitotic index according to germ cell stage of XOSxr^b and XY±Sxr^b mice.

gonia are assumed to be the progenitors of the undifferentiated A spermatogonia, a deficit of undifferentiated A spermatogonia is expected in $XOSxr^b$ mice, and is indeed observed ($XOSxr^b$ is 54% of $XY\pm Sxr^b$). Similarly, there is the expected deficit of differentiating A_1/A_2 spermatogonia ($XOSxr^b$ is 42% of $XY\pm Sxr^b$). The number of A_3/A_4 spermatogonia, however, is reduced much more than expected ($XOSxr^b$ is 7% of $XY\pm Sxr^b$) and there are no Intermediate or B spermatogonia.

This pattern of germ cell deficiency in $XOSxr^b$ mice is largely accounted for by observations on mitotic index (Fig. 4). That is to say, there is a shortage of dividing T_1

This pattern of germ cell deficiency in XOSxr⁰ mice is largely accounted for by observations on mitotic index (Fig. 4). That is to say, there is a shortage of dividing T_1 prospermatogonia, accounting for the drop in the number of T_2 prospermatogonia; a reduced frequency of divisions among A_1/A_2 spermatogonia accounting for the much more severe shortage of A_3/A_4 spermatogonia; and no dividing A_3/A_4 spermatogonia accounting for the absence of In/B spermatogonia.

During the scoring procedure the gonia with the morphological characteristics of A_1 and A_2 spermatogonia were pooled, although it is assumed that they are distinct generations of spermatogonia, as in the adult. When the mitotic index of the A_1/A_2 spermatogonia is plotted against age (Fig. 5), there is no marked shortage of divisions in $XOSxr^b$ mice until $25\frac{1}{2}$ dpc, raising the possibility that it is the A_2 rather than the A_1 spermatogonia that are affected.

If A₁/A₂ spermatogonia rarely divide to give A₃ or A₄, but the undifferentiated A spermatogonia continue to divide, one might expect a 'piling up' of A₁/A₂ stages. This is not observed, implying that the cells that fail to divide are degenerating. This is supported by observations on the germ cell degeneration index (Fig. 6), which has been calculated on the assumption that all the dying cells observed were germ cells. The degeneration index is very low in XOSxr^b and XY±Sxr^b mice. Nevertheless, from 26½ days onwards XOSxr^b mice clearly have more degenerating cells than controls, which is consistent with the increased degeneration of A₁/A₂ spermatogonia. It is tempting to suggest that the increased degeneration index in

Fig. 5. Mitotic index of A_1/A_2 spermatogonia in $XOSxr^b$ and $XY\pm Sxr^b$ mice during the period $19\frac{1}{2}-32\frac{1}{2}$ dpc.

Fig. 6. The germ cell degeneration index for the period $19\frac{1}{2}-32\frac{1}{2}$ dpc was calculated on the assumption that all dying cells were germ cells. The two points marked with an asterisk are artifically high, in that only one of the males at each of these points showed an elevated degeneration index.

XOSxr^b mice at $22\frac{1}{2}$ days is similarly due to the death of T_1 prospermatogonia that failed to divide.

Although no Intermediate or B spermatogonia were scored during the quantification, very rare patches of these spermatogonia, and also of early meiotic stages, can be found in $32\frac{1}{2}$ dpc and adult $(59\frac{1}{2}$ dpc) $XOSxr^b$ testes. They occur without the normal hierarchy of stages, and in small patches, as if an occasional A_3/A_4 spermatogonium divides and the products proceed *via* the usual stages up to early pachytene.

Discussion

The present results show that XOSxr^b testes have normal numbers of germ cells at birth, but become

severely deficient in germ cells in the ensuing two weeks. During the same period the numbers of Sertoli cells remain normal. These findings are consistent with the view of Burgoyne *et al.* (1986) and Levy and Burgoyne (1986b) that the spermatogenic failure in XOSxr^b mice is due to the loss of a gene (*Spy*) that acts cell autonomously in the germ line.

The quantitative analysis of the germ cell deficiency in $XOSxr^b$ mice revealed a reduction in mitotic activity among T_1 prospermatogonia, which resulted in a shortage of T_2 prospermatogonia, and consequently a reduced pool of undifferentiated A spermatogonia. However, mitotic activity among the undifferentiated A spermatogonia, which include the spermatogonial stem cells, was found to be normal. It was during the early differentiating spermatogonial stages that the spermatogenic block occurred, with mitotic failure leading to an almost complete absence of Intermediate and B spermatogonia and subsequent meiotic stages.

XO female mice are developmentally retarded in early pregnancy (Burgovne et al. 1983b) and are significantly underweight postnatally (Burgoyne et al. 1983a). It was anticipated that XOSxrb mice would also be underweight from birth, and this proved to be the case. Unexpectedly, however, the XOSxra mice originally included as controls for this 'XO effect' showed little, if any, postnatal weight deficit. Coincidentally, the genetic basis for the early developmental advantage of XY over XX embryos (Tsunoda et al. 1985; Seller and Perkins-Cole, 1987) was being investigated in this laboratory, concurrently with the present study of XOSxr^b mice, and the findings may provide an explanation for this difference in postnatal weight between XOSxr^b and XOSxr^a mice. Briefly, it was shown that the Y chromosome carries a factor that accelerates the early growth and development of XY embryos, and it appears that this factor (Gdy) may be present in Sxr^a (P. S. Burgoyne, S. Kalmus, E. P. Evans, K. Holland and M. J. Sutcliffe, unpublished) but deleted from Sxr^b (P. S. Burgoyne and C. E. Bishop, unpublished). Thus it may be that the 'XO effect' is ameliorated by the presence of Gdy in XOSxra but not XOSxrb mice.

The deletion of Y-chromosomal material involved in the generation of Sxrb has thus removed genetic information required for H-Y antigen expression (McLaren et al. 1984), for spermatogenesis (Burgoyne et al. 1986) and for an early acceleration of growth and development (P. S. Burgoyne et al. unpublished). Burgoyne et al. (1986) pointed out that the spermatogenesis gene (Spy) and the gene controlling H-Y expression (Hya) might be one and the same, and this possibility still holds. Similarly, Gdy may not be a separate gene from Hya and/or Spy. At the molecular level, it has been shown that Zfy-2, one of the Y-chromosomal copies of a gene encoding a zinc finger protein, present along with Zfy-1 in Sxr^a, has been deleted from Sxr^b (Roberts et al. 1988; Mardon et al. 1989; Nagamine et al. 1989a). Because it is strongly expressed in testes, probably in germ cells (Mardon and Page, 1989; Nagamine et al. 1989b), it is an obvious candidate for Spy.

As to the function of the 'spermatogenesis gene' Spy,

we have clearly shown that the spermatogenic failure seen in $XOSxr^b$ mice is due to a failure of proliferation during the differentiating A spermatogonial stages, and so by definition Spy is important for the survival/proliferation of these spermatogonial stages. Whether the deficiency of T_1 or prospermatogonial divisions in $XOSxr^b$ mice is also a consequence of the deletion of Spy, or whether it is due to the deletion of a gene separate from Spy, remains to be determined.

M.J.S. is very grateful to Drs W. and B. Hilscher for training in the recognition of the germ cell stages. M.J.S. is a recipient of an MRC Studentship.

References

- Bellve, A. R., Cavicchia, J. C., Millette, C. F., O'Brien, D. A., Bhatnager, Y. M. and Dym, M. (1977). Spermatogenic cells of the prepuberal mouse. *J. Cell Biol.* 74, 68–85.
- Bennett, D., Mathieson, B. J., Scheid, M., Yanagisawa, K., Boyse, E. A., Wachtel, S. and Cattanach, B. M. (1977). Serological evidence for H-Y antigen in Sxr, XX sex-reversed phenotypic males. *Nature*, *Lond*. **265**, 255–257.
- BISHOP, C. E., WEITH, A., MATTEI, M. G. AND ROBERTS, C. (1988). Molecular aspects of sex determination in mice: an alternative model for the origin of the Sxr region. *Phil. Trans. R. Soc. Lond.* B322, 119–124.
- Burgoyne, P. S. (1982). Genetic homology and crossing over in the X and Y chromosomes of mammals. *Hum. Genet.* 61, 85-90.
- Burgoyne, P. S., Evans, E. P. and Holland, K. (1983a). XO monosomy is associated with reduced birthweight and lowered weight gain in the mouse. J. Reprod. Fert. 68, 381–385.
- Burgoyne, P. S., Levy, E. R. and McLaren, A. (1986). Spermatogenic failure in male mice lacking H-Y antigen. *Nature*, *Lond.* 320, 170-172.
- Burgoyne, P. S., Tam, P. P. L. and Evans, E. P. (1983b). Retarded development of XO conceptuses during early pregnancy in the mouse. J. Reprod. Fert. 68, 387-393.
- Cattanach, B. M., Pollard, C. E. and Hawkes, S. G. (1971). Sex-reversed mice: XX and XO males. *Cytogenetics* 10, 318–337. Clermont, Y. and Perey, B. (1957). Quantitative study of the cell
- population of the seminiferous tubules in immature rats. *Am. J. Anat.* **100**, 241–268.
- EICHER, E. M. (1982). Primary sex determining genes in mice: A brief review. In *Prospects for Sexing Mammalian Sperm* (ed. R. P. Amann and G. E. Seidal), pp. 121–135. Boulder: Colorado Associated University Press.
- Evans, E. P., Burtenshaw, M. D. and Cattanach, B. M. (1982). Meiotic crossing-over between the X and Y chromosomes of male mice carrying the sex-reversing (Sxr) factor. *Nature, Lond.* 300, 443–445.
- Evans, E. P. and Phillips, R. J. S. (1975). Inversion heterozygosity and the origin of XO daughters of Bpa/+ female mice. *Nature*, *Lond*. **256**, 40-41.
- FORD, C. E. (1966). The murine Y-chromosome as a marker. Transplantation 4, 333-335.
- HANSMANN, I. (1982). Sex reversal in the mouse. Cell 30, 331-332.
 HILSCHER, W. AND HILSCHER, B. (1976). Kinetics of the male gametogenesis. Andrologia 8 (2), 105-116.
- HILSCHER, B., HILSCHER, W., BULTHOFF-OHNOLZ, B., KRAMER, U., BIRKE, A., PELZER, H. AND GAUSS, G. (1974). Kinetics of gametogenesis. I. Comparative histological and autoradiographic studies of oocytes and transitional prospermatogonia during oogenesis and prespermatogenesis. Cell Tiss. Res. 154, 443-470.
- Huckins, C. and Oakberg, E. F. (1978). Morphological and quantitative analysis of spermatogonia in mouse testes using whole mounted seminiferous tubules. I. The normal testes. *Anat. Rec.* 192, 519-528.
- Kluin, Ph. M. and de Rooij, D. G. (1981). A comparison between the morphology and cell kinetics of gonocytes and adult

- type undifferentiated spermatogonia in the mouse. *Int. J. Androl.* 4, 475–493.
- Levy, E. R. AND BURGOYNE, P. S. (1986a). Diploid spermatids: a manifestation of spermatogenic impairment in XOSxr and T31H/+ male mice. Cytogenet. Cell Genet. 42, 159–163.
- Levy, E. R and Burgoyne, P. S. (1986b). The fate of XO germ cells in the testes of XO/XY and XO/XY/XYY mouse mosaics: evidence for a spermatogenesis gene on the mouse Y chromosome. *Cytogenet. Cell Genet.* 42, 208-213.
- MARDON, G., MOSHER, R., DISTECHE, C. M., NISHIOKA, Y., McLAREN, A. AND PAGE, D. C. (1989). Duplication, deletion and polymorphism in the sex-determining region of the mouse Y chromosome. *Science* 243, 78–80.
- MARDON, G. AND PAGE, D. C. (1989). The sex-determining region of the mouse Y chromosome encodes a protein with a highly acidic domain and 13 zinc fingers. *Cell* **56**, 765–777.
- McLaren, A. (1983). Does the chromosomal sex of a mouse germ cell affect its development. In *Current Problems in Germ Cell Differentiation*. Symposium of the Brit. Soc. Dev. Biol., pp. 225–240.
- McLaren, A., Simpson, E., Epplen, J. T., Studer, R., Koopman, P., Evans, E. P. and Burgoyne, P. S. (1988). Location of the genes controlling H-Y antigen expression and testis determination on the mouse Y chromosome. *Proc. natn. Acad. Sci. U.S.A.* 85, 6642–6645.
- McLaren, A., Simpson, E., Tomonari, K., Chandler, P. and Hogg, H. (1984). Male sexual differentiation in mice lacking H-Y antigen. *Nature, Lond.* 312, 552-555.
- NAGAMINE, C. M., CHAN, K., KOZAK, C. A. AND LAU, Y. F. (1989a). Chromosome mapping and expression of a putative testis-determining gene in mouse. *Science* 243, 80–83.
- NAGAMINE, C. M., CHAN, K. AND LAU, Y. F. (1989b). Expression of the candidate testis-determining gene (Zfy) is linked to spermatogenesis in the mouse. In press.

- OAKBERG, E. F. (1971). Spermatogonial stem-cell renewal in the mouse. *Anat. Rec.* 169, 515-532.
- ROBERTS, C., WEITH, A., PASSAGE, E., MICHET, J. L., MATTEI, M. G. AND BISHOP, C. E. (1988). Molecular and cytogenetic evidence for the location of *Tdy* and *Hya* on the mouse Y chromosome short arm. *Proc. natn. Acad. Sci. U.S.A.* 85, 6646–6449.
- SELLER, M. J. AND PERKINS-COLE, K. J. (1987). Sex difference in mouse embryonic development at neurulation. J. Reprod. Fert. 79, 159-161.
- SIMPSON, E., CHANDLER, P., GOULMY, E., DISTECHE, C. M., FERGUSON-SMITH, M. A. AND PAGE, D. C. (1987). Separation of the genetic loci for the H-Y antigen and for testis determination on human Y chromosome. *Nature* 326, 876–878.
- SIMPSON, E., CHANDLER, P., HUNT, R., HOGG, H., TOMONARI, K. AND McLAREN, A. (1986). H-Y status of X/XSxr' male mice: in vivo tests. Immunology 57, 345-349.
- SIMPSON, E., EDWARDS, P., WACHTEL, S., McLAREN, A. AND CHANDLER, P. (1981). H-Y antigen in Sxr mice detected by H-2 restricted cytotoxic T cells. *Immunogenetics* 13, 355–358.
- SINGH, L. AND JONES, K. W. (1982). Sex reversal in the mouse (Mus musculus) is caused by a recurrent nonreciprocal crossover involving the X and an aberrant Y chromosome. *Cell* 28, 205–216.
- TSUNODA, Y., TOKUNAGA, T. AND SUGIE, T. (1985). Altered sex ratio of live young after transfer of fast- and slow-developing mouse embryos. *Gamet. Res.* 12, 301-304.
- Wachtel, S. S., Ohno, S., Koo, G. C. and Boyse, E. (1975). Possible role for H-Y antigen in the primary determination of sex. *Nature*, *Lond*. **257**, 235–236.

(Accepted 19 June 1989)