#$

%

&' ()( (*#+),,'- ./0 ;&' "10"" /.

12,10 /. &)3/(/4&$"

5)6'0(),$ /. /5-/5

/$73 0'' /(4),73 2&//3 /. '-)2)5'8

7+4(,'7-8 [/5-/5"

9



$$23 456.

#

2

$3$

+)

$$2.
1
4

%&!1%

) -

( 71()

= 4

$$2.

450

, t)

% (

2



To my mother and sister.



ABSTRACT

Cell Membrane Permeability Coefficients of Murine and
Human Oocytes : Fluxes of Water and Cryoprotectants

During Cryopreservation Procedures.

The aim of this thesis was to determine the cell membrane
permeability characteristics of human pre-ovulatory oocytes
and to apply this information to the development of a
successful cryopreservation protocol. Currently, although
there is no reliable method for the cryopreservation of human
oocytes, there is an urgent need for such a technique in
clinical I.V.F. programmes. The permeability of cells to both
water and cryoprotectants is important in determining whether
a cell will survive the cryopreservation procedure, and these
basic parameters are unknown for human oocytes.

A microscope diffusion chamber was developed to allow
direct measurement of cell membrane permeability wunder
controlled environmental conditions of temperature and solute
exposure. Volumetric responses of individual oocytes were
recorded using video microscopy, and cell volume data
processed using a computer algorithm based on the Kedem-
Katchalsky membrane transport equations. From these values the
membrane water permeability ( Lp ), the temperature-dependent
Arrhenius activation energy ( Ea ) of the Lp, and the solute

permeability ( w ) were calculated. The values of Lp and Ea
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for fresh pre-ovulatory human oocytes were compared to those
calculated for mouse oocytes for which values have previously
been determined and failed-to-fertilise human oocyte ( Ff ).
Values for Lp and Ea in human oocytes were of the same range
as those determined for the mouse, but human pre-ovulatory
oocytes were inherently more diverse than mouse oocytes. The
most reliable value for Ea of the human oocytes was obtained
by studying individual fresh oocytes at several temperatures,
and this yielded a mean value for Ea similar to other
mammalian cells.

At low temperatures, both mouse and human oocytes,
responded to hypertonic perfusion with an altered morphology
and non-spherical shrinkage. Although this response was
morphologically reversible, it led to a reduction in the
subsequent fertilisation and embryonic development. However,
exposure of oocytes to cryoprotectants before cold shrinkage
provided some protection to the oocytes as Jjudged by
subsequent fertilisation and reduced the damage to the
developmental potential. Taking the values for Lp and Ea into
account, protocols were chosen to investigate cryopreservation
of human oocytes using glycerol or dimethyl sulphoxide as
cryoprotectants. Fertilisation was achieved using both
systems following cryopreservation, but further embryonic

development was inhibited.
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CHAPTER 1 - INTRODUCTION

CHAPTER 1

Introduction

1.1 Infertility

Infertility, usually diagnosed when a couple attempting
to become pregnant have not done so within 12 months, may
result from a number of causes. Often, infertility is a
result of multiple factors both male and female ( Figure
1T ). It can be divided into primary infertility - when the
couple have never achieved a pregnancy, or secondary - when
there has been a previous conception. In 1979 Steptoe and
Edwards successfully developed the techniques of in vitro
fertilisation ( I.V.F.) and embryo transfer ( E.T.) for
clinical use with patients. This enabled treatment of a
subgroup of infertility patients, those women in which the
fallopian tubes were blocked.

Progress in the treatment procedures involved in I.V.F.
has resulted in the techniques being applicable to a wider
range of infertility problems. Since the stimulation
procedures in I.V.F. may produce oocytes in excess of a
patient's requirements, if consent is obtained excess
gametes can be donated for transfer into the uterus of a
recipient female to establish a successful pregnancy
( Trounson et al, 1983 ). Thus it is now possible to treat

women from whom oocytes cannot be collected, either due to
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Tubal Disease Cervical Factor Male Factor
Reconstructive Antibodies Irregular Oligospermia
Surgery Ovulation | |
Varicocele Infection
Steroid Ovulation
Therapy Induction
Endometriosis Repair Treatment
I
Unexplained
Danazol
Therapy

In Vitro Fertilisation

Figure 1 Causes of infertility and Criteria for In Vitro

Fertilisation
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Indications for In Vitro Fertilisation

i) Tubal disease : unsuitable for surgery

unsuccessful surgery

patent but abnormal

ii) Unexplained Infertility

iii) Endometriosis

iv) Male subfertility : oligospermia

low motility

abnormal morphology

antisperm antibodies

v) Failed donor insemination

vi) Cervical hostility

vii) Failed ovulation induction

viii) Therapy for female cancer ( embryo freezing prior to

chemotherapy / cytotoxics )

ix) Premature menopause - Donor oocytes
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a failure to produce oocytes as a result of premature
menopause or failure to stimulate the ovary, by utilising
the technique of oocyte donation. In addition, donation
would overcome the risk of transmission of genetic disease
to an embryo from parents who are known carriers of such
diseases. Although few techniques exist to improve the
quality of semen such as sperm density, motility, and
morphology, I.V.F is a feasible option for couples where
the man presents subnormal semen characteristics.
Fertilisation in vitro can occur with sperm concentrations
in the range of 2 x 10° - 2 x 10° / ml ( Trounson et al,
1981 ). The low sperm density required for fertilisation
allowed the treatment of male factor infertility patients
by I.V.F. ( de Krester, 1985 ). In addition I.V.F. is now
used with those for couples whose infertility remains

unexplained ( Mahadeven et al, 1983 ).

1.2 The History of In Vitro Fertilisation

The culture of embryos outside of the maternal uterus
was reported for rabbits in 1890 ( Heape, 1890 ) and since
this time many improvements have been made which have made
culture and transfer techniques increasingly simple for
embryos of many species and of various pre-implantation
stages. In 1939 Pincus and Saunders collected and matured
the first mammalian oocytes in vitro, as determined by

chromosome studies. By 1965, this technique was applied to
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human oocytes which developed to the point of extrusion of
the first polar body ( Edwards, 1965a, 1965b ). Meanwhile
investigations into the role of the pituitary hormones lead
to the ability to induce superovulation. Adult mice werex
hormonally stimulated and pregnancies established with
greater than normal numbers of offspring ( Fowler and
Edwards, 1957 ). Within a few years human menopausal
gonadotrophins ( HMG ) and human chorionic gonadotrophins
( hCG ) were being used to stimulate women with abnormal
ovulation cycles ( Gemzel, 1967 ). With the advent of
laparoscopy it was possible to collect oocytes immediately
prior to ovulation and successfully fertilise them

( Edwards et al, 1969 ).

The major part of the basic research for in vitro
embryo culture was carried out on the mouse ( Brinster,
1965, Brinster, 1970, Whittingham, 1971, Whitten, 1971 ).
Although mouse embryos were able to grow in a variety of
conditions optimal growth occurred within the range pH 7.2
- 7.3, with a medium osmolality of approximately 280 mOsm
in an atmosphere of 5 % CO,, 5 % 0,, and 90 % N,. Supplements
of lactate and pyruvate were found to be required for the
growth of the early embryo since glucose can not be
utilized until after the initiation of the first cleavage
division ( Brinster, 1971 ). Serum albumin and amino acids
were also used to act as sources of nitrogen prior to the

formation of the two cell embryo.
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Although embryos cultured in vitro may lag behind those
developing in vivo ( Binkero et al, 1979 ) they can easily
progress to the hatching blastocyst stage. Even though it
was possible to fertilise and grow human oocytes on to the
blastocyst stage in vitro ( Edwards et al, 1969, 1970 ),
replacement of embryos into the uterus of an infertile
woman did not result in pregnancy ( Edwards, 1973 ).
Deficiencies in the 1luteal phase were indicated as the
major source of the problem and various combinations of
luteal support were investigated until an ectopic pregnancy
was established ( Steptoe and Edwards, 1976 ). This was
followed by the first development to term and live birth of
an in vitro cultured and fertilised oocyte following
natural cycle folliculogenesis ( Steptoe & Edwards, 1979).
Stimulated cycles using HMG or clomiphene were
reintroduced, successful implantations achieved and the
advantages of replacing more than a single embryo were
recognised ( Jones et al, 1984, Trounson et al, 1981,
Edwards and Steptoe, 1983 ). Endocrine stimulation
techniques were altered to prevent spontaneous or
unexpected ovulation, controlling the day of collection
( Porter, 1984 ).

Although the stimulation and embryo culture techniques
are continuously being modified and improved there are
still problems with the treatment. Successful TI.V.F.

combined with cryopreservation of the embryos / gametes
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would be beneficial, in a variety of species, particularly
endangered species, but application of the methods have so
far been 1limited. Much of the detail concerning the
development of embryos of particular species is unknown or
not fully understood. Even in the mouse, where much of the
basic research has been performed, 2 - cell blocks are
common in many strains, preventing on-growth of the embryos
in culture. Embryogenesis is extremely complex, involving
multiple cell divisions and differentiations which combine
to determine the fate of individual cells or groups of
cells in the embryo. Births following the transfer of human
in vitro fertilised embryos are now common. However,
although I.V.F. is often considered to be the solution to
infertility and is used in numerous centres around the
world, the success rates are not consistent. They have
improved little in recent years, the established pregnancy
rate being 15 % compared to the initial rate of
approximately 8 %. The techniques involved are extremely
sensitive and the success of individual I.V.F. programmes
is still very variable with some units achieving success
rates of approximately 40 %. Each of the procedures in
I.V.F. including cryopreservation, are the subject of
ongoing study in an attempt to improve the overall success

of the treatment.
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1.3 Oogenesis and Ovulation

Although superovulatory techniques have created an
abundance of material from a single stimulation cycle
leading to an excess of oocytes, and thus potentially
embryos, for transfer, the overall number of primary
oocytes available in the ovaries are limited. There are
several factors that contribute to the sparse numbers of
oocytes in mammalian species the most important of which is
that the number of primordial follicles is fixed from
birth. Unlike the male of the species, where
spermatogenesis is carried on throughout life, the female
has completed the initial differentiation of the germ cells
to the primordial oocyte stage prior to birth and is unable
to recruit any further cells if this finite stock is
depleted ( Figure 2 ). If all of the oocytes are destroyed
such as by exposure to X - irradiation or radio /
chemotherapy in cancer treatment, they will not be replaced
from the stem cells, resulting in infertility. The
migration of primordial germ cells to the ovary is followed
by a period of mitotic cell proliferation and these oogonia
subsequently differentiate into primary oocytes. Many of
the oogonia fail to mature and degenerate before reaching
the primary oocyte stage, and the small number that do
undergo a final mitotic division then replicate their DNA
and enter meiosis. The completion of mitosis and switch to

meiosis is a result of an initiation factor secreted from
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PRIMORDIAL GERM CELL

migration

GONAD

proliferation

OOGONIA

PRIMARY OOCYTE

arrested in prophase I

followed by a period of growth

SOrpH<FOU NHNOHMX QH0O T HQ NHNOHAHZX

1° OOCYTE
maturation - formation
of egg coat, cortical
granules
I
2° OOCYTE 1st POLAR BODY
R
i
v
i
MATURE OVUM 2nd POLAR BODY S
haploid i
o
_Inm
II

Figure 2 Development of the oocyte from the germ cell stage
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the rete ovarii tissue. Removal of the rete tissue prevents
meiosis from occurring.

In meiosis following the replication of the DNA strands
to produce chromatids, prophase is initiated with the
attachment of the chromosomes to the nuclear envelope via
attachment plaques ( leptotene ). The DNA then condenses,
the homologous chromosomes pair with the formation of the
synaptonemal complex, a protein axis between the homologous
chromosomes, ensuring they are kept closely aligned forming
bivalents ( zygotene ) ( Figure 3 ). Coiling causes
chromosome thickening which is accompanied by the formation
of recombination nodules ( pachytene ). Once in pachytene,
the cell may remain in this stage for an extended period
after which the chromatids cross over 1leading to the
appearance of the chromosomes as meiotic figures
( diplotene ). During this period desynapsis occurs and the
chromatin decondenses while RNA is synthesised ( Figure
4 ). At the onset of the diplotene phase the majority of
the primary oocytes are arrested in the nucleated phase
with the nucleus visible ( germinal vesicle ). The oocyte
is enclosed by a single layer of presumptive granulosa
cells that are connected to the oocyte via gap junctions
which allow the passage of small molecules or metabolites
and are maintained even when the oocyte has synthesised the
zona pellucida. Oocytes are enclosed in a follicle which

severs the links between the daughter cells of @a single
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oogonium. These primordial follicles then enter a ''rest"
period lasting from just prior to birth to the onset of
sexual maturation which may be many months or years
depending on the species. During this period there is
active transcription of the mRNA, loading the oocyte with
maternal genome products for the process of maturation and
development which is accompanied by growth of the oocyte.
A small proportion of the follicles begin to develop, the
follicle cells enlarge and increase in numbers producing a
multilayered coating. These granulosa cells secrete a
glycoprotein, forming an acellular layer around the oocyte,
the zona pellucida. In addition the oocyte plasma membrane
looses its smooth appearance, developing microvilli, and a
period of oocyte growth occurs ( Figure 5 ). For the
primary follicle to continue development past the initial
growth phase the pituitary gonadotrophin Follicle
Stimulating Hormone ( FSH ) must be released, stimulating
the formation of an antrum or fluid-filled cavity in
response to the accumulation of oestrogen. The granulosa
cell layer develops gap junctions between the cells, and
membrane receptors for oestrogen and FSH while the
surrounding vascularised thecal layer develops luteinizing
hormone ( LH ) receptors. There is a continuous progression
of follicles through the growth phase and they can only

progress on to the antral stage if the tonic level of FSH
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Chromosomal Synapsis and Desynapsis

Synaptonemal
Leptotene Pachytene Complex

Desynapsis
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Interphase Zygotene Diplotene
Figure 3.
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and LH in circulation are sufficiently high.The granulosa
and thecal cells increase in numbers so that there is
follicular growth, with continued synthesis of RNA and
proteins although there is little accompanying increase in
the size of the oocyte. The thecal cells form two distinct
layers, the vascular interna and the fibrous externa. Fluid
forms between the granulosa cells which, upon aggregation
in a single cavity forms the follicular fluid-filled
antrum. The oocyte initially remains embedded in the
follicle cells ( cumulus oophorus) which remain compact
until maturation is nearing completion.

The outer granulosa cells develop LH receptors
allowing both the thecal and granulosa cells to bind LH. If
this coincides with the LH surge, the follicles can
continue through to the pre-ovulatory phase ( Figure 6 ).
Cytoplasmic maturation commences with the Golgi apparatus
synthesising cortical granules which migrate to a
subcortical position. The chromosomes recondense and the
nuclear envelope surrounding the germinal vesicle breaks
down. The thecal layer becomes less prominent in response
to the initial rise in LH, and immediately after the LH
peak the outer granulosa cells exhibit a reduced ability to
bind with FSH. The cumulus cells expand to become the
corona radiata and initiate withdrawal of the cytoplasmic
connections with the follicle cells. The oocyte remains

attached to the peripheral granulosa cells of the follicle

45



CHAPTER 1 - INTRODUCTION

wall by a thin column of cells which suspend the oocyte in
the fluid filled antrum ( Figure 7 ). This may permit the
primary oocyte to develop into a secondary oocyte as the
follicular cells may release an inhibitory factor which
reduces the binding of FSH to the granulosa cells or the
accumulation of cAMP. The uncoupling of the oocyte from the
follicle wall reduces the level of the inhibitor. The LH
surge may act to prevent the production of this inhibitor,
reduce cAMP or cause the production of a maturation
promoter.

With the onset of maturation the oocyte resumes meiotic
cell division with the chromosomes attaching to the spindle
equator and the homologs separating to opposite poles. One
haploid set of chromosomes, along with a small amount of
cytoplasm, is extruded but retained inside the =zona
pellucida as the first polar body. The asymmetrical cell
division results in the formation of the secondary oocyte,
at which point there is a further interruption in the
meiotic process and a period of arrest while the oocyte is
ovulated ( Figure 8 ). The oocyte, which now has only a
cursory attachment to the outer granulosa cells, becomes
increasingly prominent on the ovarian surface. This leaves
only a thin layer of epithelial cells between it and the
peritoneal cavity and as the wall becomes avascular the
intervening cells appear to degenerate and the follicle

ruptures. The follicular fluid leaves the follicle and
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Preantral follicle
(a) Primordial follicle suspended in dictyate stage
(b) Primary oocyte following the growth period

Stromal Cells

Mitochondria

Golgi Complex
Germinal Vesicle
Granulosa Cells
Endoplasmic Reticulum

Membrana Propria
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(a) éwu ———————————— Granulosa Cells -
e ———————" Zona Pellucida

—————— Germinal Vesicle

S Microvilli ,

(b)

R ) |1 Chromosomes
—————— Spindle 1

Cortical Granules

Polar Body !

(d)

A ————- Granulosa Cells
S Spindle 2

————————————— —- Polar Body

Figure 6 Maturation of the oocyte, a) breakdown of the
germinal vesicle, b) chromosome condensation, c)
termination of cytoplasmic connections, d) migration of the
cortical granules to the surface and completion of meiotic

division I
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—————————————— Stroma
N8 Thecal Externa
N Thecal Interna
—————— Membrane Propria
________ Granulosa Cells

Theca Interna

Granulosa Cells

Membrane Propria

Follicular Antrum

Cumulus Oophorus

Figure 7 Development of the antral phase follicle, b)
proliferation of the thecal and granulosa cells c)

formation of the fluid filled antrum.
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carries the cumulus mass containing the oocyte into the

oviduct.

1.4 Fertilisation

Ciliary action on the fimbria of the oviduct moves the
cumulus egg mass into the ostium and the oocyte moves down
the oviduct to the ampulla where it may be eventually
fertilised ( Figure 9 ). The second meiotic cell division
in mammalian species is usually stimulated by penetration
of a spermatozoon, inducing the chromosomes to rapidly
orientate on the equator and the separation of sister
chromatids to opposite poles. The cell division is again
asymmetrical and a second polar body is extruded which,
along with the first, will eventually degenerate. The delay
of the second meiotic division means the oocyte is diploid
for most of the growth and development phase, thus avoiding
any deleterious effects of recessive alleles which are
extremely important when considering the long period of
arrest.

A period of capacitation, in which the glycoprotein
coatings of the spermatozoon are removed by breakdown of
interactions between the charged molecules, is required
before fertilisation of the oocyte can occur. Modification
of the plasma membrane, accompanied by an influx of ca®
through ion channels may initiate activation of the

spermatozoon in which the plasma membrane of the head fuses
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