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Abstract

The goal of the thesis is to study the role of the reward signal in deep reinforcement
learning. The reward signal is a scalar quantity received by the agent, and it has a
big impact on both the training process of a reinforcement learning algorithm and
its resulting behaviour.

Firstly, we study the behaviour of an agent that is learning with different reward
signals in the same environment with the same learning algorithm. We introduce
and measure agents’ happiness as a relation between agents’ actual reward obtained
from the environment, as compared to the possible maximum and minimum rewards
in a given setting. The experiments show that the rewards intended to result in a
given behaviour during training do not result in the same behaviour when agents
interact with each other.

Secondly, we use these observations to investigate the role of the reward signal
further. Namely, we explore the space of all possible reward signals in a given envi-
ronment through an evolutionary algorithm. Through experiments, we demonstrate
that it is possible to learn complex behaviours of winning, losing, and cooperating
through reward signal evolution. Some of the solutions found by the algorithm are
surprising, in the sense that they would probably not have been chosen by a person
trying to hand-code a given behaviour through a specific reward signal.

The results presented in the thesis indicate that the role of the reward signal
in reinforcement learning is likely bigger than indicated by its current coverage
in the literature and is worth investigating in greater detail. Not only can it lead to
programmes with less overfitting, but it can also improve our understanding of what
reinforcement learning algorithms are really learning. This in turn will give us more
robust, explainable, and overall safer systems.
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Impact statement

The results presented in the thesis can be of benefit for the Reinforcement Learning
community in both academia and business.

In academia, for the field of Deep Reinforcement Learning specifically, we ar-
gue that our findings indicate that more focus should be placed on investigating the
role of the reward signal. Firstly, we showed that the agents trained on different re-
wards in the same environment do not transfer their intended behaviour to situations
when they interact with each other. Secondly, our experiments revealed that simply
manipulating the reward signal in an evolutionary manner can be enough to obtain
agents that are able to manifest a variety of complex behaviours.

Our hope is that such results will spark more research on the theoretical guar-
antees of reinforcement learning algorithms, mostly in a multi-agent setting. Addi-
tionally, combining our approach with population-based training could potentially
result in agents with a more diverse set of strategies to choose from that are less
prone to display unwanted behaviour. We see that as a potential contribution to the
wider field of AI safety.

As far as the world outside of academia is concerned, the findings of our work
will have an incremental impact on businesses that use machine learning in their
products. Our experiments showed how unpredictable deep reinforcement learn-
ing algorithms can be, when trained on different rewards. Robustness of systems
and their safety are of crucial importance in many practical applications such as
self-driving cars, and more generally in each situation where we have autonomous
agents interacting. Understanding what the agents are really learning is of vital im-
portance in those industries. Hopefully, our work will be seen as a warning sign to
those not testing their models properly, but also as a way forward, towards safer and
more robust algorithms that offer a higher variety of solutions with less overfitting.
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Chapter 1

Introduction

It is becoming evident that artificial intelligence (AI) plays an increasingly more
important role in our lives - from drug design, credit scoring, to providing us with
the news we see on our social media. The more prominent AI’s position in the
world is, the more scrutiny and ethical considerations it attracts. As a result, there
seems to be a bigger and bigger need in business and academia for models that are
reliable, have predictable performance with no bias and are explainable. This issue
is relevant for both the developers in companies creating the algorithms, and also
for policymakers and customers. As we put more and more trust into AI, can we
really say that our understanding of its inner workings improves satisfactorily?

The situation described in the previous paragraph typically involves supervised
learning (SL) problems, which have enjoyed a rapid progress in the last few years
due to the black-box class of algorithms - deep neural networks (DNNs). DNNs
have achieved an incredible performance on many tasks such as image recognition,
language translation and speech recognition. However, even the best algorithms
can still be quite easily fooled as shown by the many adversarial examples present
in the literature. And that is despite the well established know-how that the super-
vised learning practitioners enjoy from years of both academic theory and business
applications. For example, in a supervised learning setting we typically have a
well defined performance metric that we strive to optimize. Moreover, dividing the
dataset into training, development and test sets allows us to perform model selection
and avoid overfitting.

Reinforcement learning (RL) might soon play an equally important, if not even
a more important, role in our lives as supervised learning does today. By contrasting
RL with the typical SL setting, we can tell that RL problems can be even seen as
more challenging, in the sense that they lack some of those well established good
practices, and theoretical guarantees. For example, it is often the case in RL, that
one would train and test the model in exactly the same environment. Hence, the
familiar dataset split from supervised learning is absent from the RL pipeline. As
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a result, we end up not only using black-box algorithms to learn, but one might be
tempted to say that our evaluation of a single algorithm is also black-box and not
fully understood.

Any university course introducing reinforcement learning usually involves pre-
senting a diagram similar to Figure 2.5. It shows an agent taking an action in some
environment and receiving a reward for it. Typically, most of the course is spent
explaining the algorithms needed to learn actions leading to high rewards, ideally
maximizing some cumulative reward function. By contrast, little time is usually
spent discussing the reward signal itself and its impact on the learning process as a
whole. Hence, it seems that the role of the reward signal might be a potentially in-
teresting, yet often neglected, part of the reinforcement learning set-up. As it forms
an integral part of the general RL ”black-box”, we have decided to explore it in
greater detail in this thesis.

Do the reinforcement learning algorithms really learn what we think they learn?
Not always, as shown - among others - by our experiments. Can we use the reward
signal in order to achieve higher diversity of the resulting behaviours of the agent?
Our other experiments suggest the answer is yes. Our findings indicate that there
is potential in exploring generating good reward signals. This can lead to greater
exploration of the state space, higher number of resulting strategies for the agent to
choose from and, possibly, less overfitting and more predictability.

The structure of the thesis is as follows. In Chapter 2 we introduce the key
concepts in reinforcement learning and evolutionary computation which we draw
on in subsequent chapters. Chapter 3 describes unintuitive behaviour of the agents
trained in the same environment, with the same learning algorithm, but with a dif-
ferent reward signal. The questions posed by the results of that simple experiment
are studied further in Chapter 4, in which we develop an algorithm for exploring the
state space of all possible reward signals, for a given goal function, using evolution-
ary computation. Conclusions spanning both studies, as well as open questions left
to be answered in the future, are presented in Chapter 5.
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Chapter 2

Preliminaries

2.1 Learning and its types

Marvin Minsky published “The Society of Mind” ([45] around the time the author of
this thesis was born. The term artificial intelligence (AI) had only been introduced
three decades earlier. And only in the last 30 years researchers have managed to
develop AI systems better at chess than Garry Kasparov, or at Go than Lee Sedol.
Hopefully, in the near future computers will become proficient at driving a car -
saving around 1.25 million lives per year ([57]).

All the above examples testify to an enormous progress we have made and de-
scribe a situation when thinking humans try to create thinking machines. This dis-
tinction led to the creation of the term machine learning. Machine learning was
born as a field out of a need for computer programmes that can perform tasks that
seem easy for humans, such as recognizing your friends in a crowded room, yet are
almost impossible to be described as a set of step by step rules for the algorithm
to follow. A simple exercise of trying to describe precisely in words what our best
friend looks like quickly showcases this issue.

It turns out, that in the case of this problem, known as facial recognition, it is far
better to collect many photos of faces (a training set) along with the names of people
in them (labels). Then, one might apply an algorithm with adjustable parameters

to try to make as close a match as possible of the labels to the original photos. As a
result, we receive the learned parameters, which we then want to use on a new set
of previously unseen photos and labels (a test set) to make sure that the system has
a good generalization power. Getting as high a generalization as possible on new
sets of data can be seen as the main goal of machine learning [12].

As usually is the case, there are many types of problems that we can encounter in
life, and many ways to solve them. In machine learning this has led to the following
three main classes of problems [2].
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In supervised learning, as in the example of face recognition mentioned above,
we are essentially given the input data along with the correct output, all the data on
the clients of the bank (e.g. their salary, credit history, etc. - known as features) and
whether they paid their loan back or not - the label.

Reinforcement learning is characterized by the fact that the algorithm is given
input data, but only some output with a grade for that output. A self-driving car can
receive data from many sensors and cameras, but we cannot tell it if every single
minuscule change it makes while driving is good or bad, we can only give that
feedback periodically.

In unsupervised learning the algorithm receives the input, but no output. That
means it receives no correct labels. It has to figure out, learn those labels by itself.
Trying to categorize books into genres can be seen as a practical example of this
problem.

There are many other approaches to learning from data, or to AI in general (cf.
[67]). Lastly, we want to mention evolutionary computation. It comprises algo-
rithms inspired by biology, and uses the ideas of trial-and-error, random mutations
and inheritance to create better and better solutions to a given problem.

In the following subsections of this chapter we spend more time describing the
concepts from both reinforcement learning and evolutionary computation, as they
form the basis of the main studies presented in the thesis. Concretely, DQN - a deep
reinforcement learning algorithm is used in both Chapters 3 and 4, and evolutionary
computation is used in Algorithm 2.

First of all, we describe the necessary concepts from deep learning, a powerful
supervised learning technique that has helped accelerate the progress in reinforce-
ment learning in the recent years.

2.2 Deep Learning

2.2.1 Key building blocks

Deep learning [41, 72] has emerged in recent years as a powerful technique to solve
many supervised learning problems for which we have big amounts of labeled data.
It has turned out, that as we have bigger and bigger datasets, using algorithms with
more and more parameters can actually allow us to learn the function transforming
the data into labels (f : X → Y ) better. As opposed to shallow learning in which
we learn the f : X → Y in one step, deep learning learns a deep representation of
f : X → Y through a composition of many functions. As a result, each level of
composition learns representations at different level of abstraction. This approach
is represented in Equation 2.1, where the input x is transformed through function
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h1 along with parameters w1, which is then transformed through function h2 along
with parameters w2, and so on. Eventually, we get the output y, passed to the loss

function l in the last step to compare predictions with true labels and give us a sense
of how good our model is.

x h1 ... hn y l

w1 ... wn

(2.1)

The process presented in Equation 2.1 is also known as the forward pass. It
is possible to learn good values of the weights (or parameters) by using the chain

rule known from calculus, and backpropagating the error calculated at the end of
the forward pass to the parameters earlier in the graph, and making small tweaks to
them. This is known as the backward pass, and the algorithm used for updating the
weights is called back-propagation. The process is shown in Equation 2.2.

δl

δx

δl

δh1
...

δl

δhn

δl

δy

δl

δw1

...
δl

δwn

δh1
δx

δh1
δw1

δh2
δh1

δhn
δhn−1

δh1
δwn

δy
δhn

(2.2)

There are different choices for the forms that the function h can take.

• Linear transformations

ht+1 = Wht

• Nonlinear activation functions

ht+1 = σ(ht), where σ(·) = max(0, ·), 1

1 + exp(·)
, ...

The nonlinear activation functions play a crucial role, as they allow to capture
and model the complex structure of real-world data with higher accuracy.

The loss function l can be calculated as Mean Squared Error, but it can also take
different forms, depending on the details of our problem.

Finally, since it is computationally expensive to calculate the cost function (loss
over all training examples, J) for the full dataset, different optimization algorithms
can be used to update (or learn) the weights w in a more efficient way. All of them
work by adjusting the value of w by a small scalar value known as the learning rate

(α) multiplied by the gradient of the cost function.
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Figure 2.1: An example of a Multilayer Perceptron architecture with 4 input neu-
rons, 3 hidden layers of sizes 5, 5, and 3, and 1 output neuron.

w := w− α∇J (2.3)

Typically, the update is performed based on the gradient calculated on a ran-
dom mini-batch of i examples (i > 1 and smaller than the size of the training
set). This approach is known as mini-batch gradient descent. Other choices include
([65]): gradient descent with momentum [61], Root Mean Square Prop algorithm
(RMSprop)[32], and ADAM [37], which is the combination of the former two.

2.2.2 Deep Learning models

We can use the building blocks introduced in the previous section, along with some
further techniques, to create a vast array of architectures [25]. Arguably, the three
main ones are multilayer perceptron (MLP), convolutional neural network (CNN),
and recurrent neural network (RNN).

An example of an MLP network is presented in Figure 2.1. It consists of an
input layer, output layer, and a number of hidden layers. Each hidden layer consists
of neurons that perform linear and nonlinear calculations described in the previous
section. If all the neurons in the layer have a connection to all the neurons in the next
layer, we say that the layer is fully connected. Edges in the figure represent the flow
of information through the layer and have weights w associated with them. All the
neurons in the first hidden layer use the information from all the inputs, transform
it according to their specified transformations, and send the information to all the
neurons in the following layer, until it reaches the output. The weights can be
initialized randomly, and are later learned through the process of back-propagation.

If we think about an image of dimensions 1000 pixels by 1000 pixels by 3
RGB channel values as an input to the fully connected layer, we can immediately
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×1 ×0 ×1

Figure 2.2: An example of a convolution of an image with a 3x3 filter.

notice that the number of weights needed to describe even one neuron is enormous.
Learning such a network would require a lot of computational power and many
examples of images in order to avoid overfitting.

However, the convolution operation can help streamline the process and leads
to a second important class of deep learning architectures - a convolutional neu-
ral network [42], in which weights are shared between local regions of our data
(typically visual data). Sharing of weights, and reducing the number of parameters
needed by the network is achieved through an operation of convolution. A convo-
lution of 2d matrix of numbers with another 2d matrix is presented in Figure 2.2.
On the left we see a 7x7 image with its pixels encoded with numbers. It is con-
volved with another 3x3 matrix, known as filter or kernel to produce a new 5x5
image on the right. Each entry in the resulting image is obtained by calculating
a sum of elementwise multiplications of the entries in the original image with the
filter. As an example, number 4 (highlighted in green) is obtained by calculating
1∗1+0∗0+0∗1+1∗0+1∗1+0∗0+1∗1+1∗0+1∗1. In reality, the values of
the numbers in the filter are not known and are learned through back-propagation.

Depending on the size of the original image we can use padding if the filter
size is not a full multiple of the original image. We can also calculate the filter at
different strides by skipping the desired amount of pixels. To build a full CNN,
we usually combine the convolution calculation (and calculate its activation) with
pooling and fully connected layers. Instead of performing convolution operation
of a size given by the filter, pooling operation typically returns a max of a given
region (this is known as max-pooling, average pooling - where the average of a
given region is returned - is used less often). An illustration of an example of a
full CNN is provided in Figure 2.3. It shows a representation of an input image of
128x128 pixels. The image is convolved with 8 filters of the size 8x8 in the first
layer, which is followed by another convolutional layer with 24 filters of the size
16x16. The next two layers perform max-pooling operation, after which the results
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Figure 2.3: An example of a Convolutional Neural Network and its main ingredi-
ents: convolution, pooling and fully connected layers.

A A A A=A

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .
Figure 2.4: Recurrent Neural Networks share parameters over timesteps.

are passed to two fully connected layers and produce ten outputs, e.g. 10 different
handwritten digit categories.

The last main class of deep learning architectures is a recurrent neural network
[66] which also uses the idea of sharing the weights - similarly to CNN. However,
the weights are shared between timesteps of the computation, not between local
regions of our data. Figure 2.4 shows a basic RNN architecture and illustrates the
fact that parameters A are used to produce not only the output of h0 when applied
to input x0, but also for all future outputs ht. Since we do not concentrate on RNNs
in this thesis, we refer the reader to [25] for further details.

2.3 Reinforcement Learning

Reinforcement learning (RL) [78] is an area of machine learning that describes the
learner as an agent in an environment. The dynamics of a classical RL setting are
depicted in Figure 2.5. The agent is embedded in an environment in state St and
is given a reward Rt for visiting that state. Subsequently, the agent takes an action
At only to find itself in the new state St+1 with a reward Rt+1 - the loop keeps
repeating.

Consequently, the agents in RL settings face two crucial problems. Firstly, the
agent has to find the right balance between exploration - visiting states it never
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Figure 2.5: Typical Reinforcement Learning setting.

visited before, trying out new actions - and exploitation - using the learned “knowl-
edge” in order to maximize its cumulative reward (defined in the next section).
Secondly, the agent has to solve a credit assignment problem. This means that the
algorithm has to find a way to connect the dots between the actions it took and the
rewards that were consequences of those actions, and the two are often delayed in
time - making the whole problem even more difficult.

The above constitutes the classical view of RL. We can also think about it along
the following axes. Firstly, the number of agents interacting in the environment
yields single or multi-agent RL. Secondly, the complexity of the environments and
the techniques used allow us to distinguish between classical and deep learning
approaches to RL.

2.3.1 Single agent reinforcement learning

Classical techniques

A key concept on which RL hinges is the Markov property which states that only
the current state affects the next state for the agent. This means that the future is
conditionally independent of the past, given the current state. As a result, a case
when there is a single agent within a RL framework is usually formalized as a
Markov decision process (MDP), a 5-tuple, where:

• S is a finite set of states,

• A is a finite set of actions,

• Pa(s, s
′) = P (st+1 = s′ | st = s, at = a) is the probability that action a in

state s at time t will lead to state s′ at time t+1, called the transition function,

• Ra(s, s
′) is the immediate reward received after transitioning from state s to

state s′, as a consequence of action a (we will refer to this quantity as rt for
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simplicity),

• γ ∈ [0, 1] is the discount factor, which represents the difference in importance
between future rewards and present rewards, and keeps the cumulative reward
finite.

The goal of the agent, the goal of learning in MDP, is to find a policy π that
maximizes the cumulative reward by best mapping states to action selection proba-
bilities. The cumulative reward is described by the sum of immediate scalar reward
r over t timesteps:

∑t
1 rt.

In the case when the model of the environment is not available, reinforcement
learning can be used to find π. Q-learning [17] is arguably the most famous example
of an RL algorithm. It is a model-free temporal difference algorithm. In Q-learning,
a value function Q(s, a) is calculated over state-action pairs. It is updated based on
the immediate reward and the discounted expected future reward in the following
way:

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a
Q(st+1, a)−Q(st, at)].

In the update rule above, γ is the discount factor for future rewards, and α ∈
[0, 1] is the learning rate that determines how quickly Q is updated based on new re-
ward information. Q-learning is proven to converge to the optimal policy π∗, given
“sufficient” number of updates for each state-action pair, and a decreasing learn-
ing rate α. Additionally, the first two terms in square brackets, form the temporal
difference target (TD target), which is the basis of temporal-difference learning al-
gorithms. Q-learning is a specific TD algorithm used to learn the Q-function.

Of course, countless other approaches have been developed to tackle different
scenarios. For a comprehensive treatment of the subject we refer the reader to [78].
We included a brief description of Q-learning as it is the most relevant algorithm in
the context of the work presented in subsequent chapters.

Deep Reinforcement Learning techniques

The growing amount of data and much better technology to work with it, have both
contributed greatly to the recent reemergence of interest in neural networks. As a
result, neural networks have grown from “shallow” models of a few layers to “deep”
models that have quickly shown impressive practical power in the realm of image
recognition and beyond [41, 72]. This new approach has been called deep learning,
and was extended to the reinforcement learning setting in [46] as a Deep Q-learning
algorithm (DQN) - and has given birth to Deep Reinforcement Learning (DRL).
Deep learning techniques can be seen as excelling at low-level intelligence - work-
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Algorithm 1 Deep Q-Network algorithm. Adapted from [46]
1: initialize replay memory D
2: initialize action-value function Q with random weights θ
3: initialize target action-value function Q̂ with weights θ− = θ
4: for episode = 1 to M do
5: initialize sequence of images s1 = x1 and preprocessed sequence φ1 = φ(s1)

6: for t = 1 to T do

7: select at =

{
a random action with probability ε
argmaxaQ(φ(st), a;θ) otherwise

8: execute at and observe rt and xt+1

9: set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
10: store (φt, at, rt, φt+1) in D
11: // experience replay
12: sample (φj, aj, rj, φj+1) from D

13: set yj =

{
rj if episode terminates at step j + 1

rj + γmaxa′Q̂(φj+1, a
′;θ−) otherwise

14: perform a gradient descent step on (yj −Q(φj, aj;θ))2 w.r.t. the network
parameter θ

15: // periodic update of target network
16: every N steps, reset Q̂ = Q, i.e., set θ− = θ
17: end for
18: end for

ing with visual of audio data. High-level intelligence requires making decisions and
planning - which have traditionally been a goal of reinforcement learning. Hence,
in DRL we can naturally merge the two by using DL to learn the representation part
of the problem, and use RL to learn the objective.

Many other approaches besides DQN (and its extensions) have been developed
in DRL. For a brief summary see [8], or [43]. Here, we specifically concentrate
on the original DQN, as one of the building blocks behind the experimental results
presented in the following chapters.

DQN is a value-function based algorithm. What was groundbreaking about it
was the fact that it was the first algorithm shown to work from scratch, only with
pixels as an input, on the challenging domain of Atari 2600 games [11]. No changes
to the architecture were made, and it was able to master many of the games at a
super-human level. The full algorithm introduced in [46] is presented in Algorithm
1.

Instead of using the information about the true state of the game contained
within 128 bytes of Atari 2600 RAM, the DQN directly learns from the pixels on
the screen. This constitutes the state st of the environment encoded by a 210x160
pixel 8-bit RGB image. This makes the possible state space incredibly big and
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Figure 2.6: Diagram presenting DQN architecture used in the experiments in the
following chapters.

impractical to use to build the Q-table of state-action pairs to look up.

The novelty of the DQN was in its ability to learn in this high-dimensional
setting and to learn a Q-function by using deep neural networks. The DQN also ad-
dressed the issue of instability of function approximation in RL by using experience
replay and target networks.

Experience reply acts as a memory bank of the tuple (st, at, st+1, rt+1). As a
result the agent can sample from this experience without further interacting with
the environment. This is used for offline training of the algorithm. There are a
few advantages to such an approach. Firstly, by sampling batches of experience we
reduce the variance of learning updates. Secondly, since the typical memory buffer
is large, sampling from it breaks the temporal correlations that can adversely affect
RL algorithms. Last but not least, there is a practical advantage to using a memory
buffer, as modern hardware is well-suited for working with batches of data, which
speeds up the training process.

Introduction of the target network has led to further stabilization of the algo-
rithm. Initially, the target network contains the weights of the network enacting the
policy, but the weights are kept frozen for a large period of time. The weights are
only updated during training to make the target network match the policy network
after a fixed number of steps.

The DQN algorithm has been extended in many ways since its introduction [8].

Lastly, we present the DQN architecture used in the experiments in the subse-
quent chapters in Figure 2.6.

2.3.2 Multi-agent reinforcement learning

In the MDP formulation we assume that there is only one agent interacting with
the environment. If we want to extended this to model multi-agent reinforcement
learning (MARL), where many agents may interact with each other and learn si-
multaneously, Markov games, or stochastic games offer a generalization of MDPs
[13]. The joint action space now consists of all the actions taken by n agents. The
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same goes for the rewards and transitions between states - they all depend on joint
actions taken by the agents.

Learning in a multi-agent setting is much more complex. Agents may compete
for a limited reward, they may have different, opposite goals, they can impede and
shape actions of one another. The environment becomes non-stationarity and the
Markov property does not hold anymore from the perspective of a single agent.
What follows is a brief description of key approaches to learning in multi-agent
settings from the classical perspective and in the context of DRL.

According to [13] there are two main approaches to learning in multi-agent RL
setting, and one approach which can be seen as a mix of the two.

The first, and maybe obvious approach to working with MARL, is the one classi-
fied as independent learning. The approach simply consists in reducing the MARL
problem to the single agent RL setting. Basically, each agent treats other agents just
as a part of the random environment with which it interacts. The clear advantage of
this approach is that we can just try using the algorithms developed for the single
agent RL. However, we lose the convergence properties when actually working with
MARL. The previously discussed Q-learning is and example of an algorithm that
falls within this category.

The second approach to MARL - joint-action learning - takes the other agents
present in the environment into account. Agents learn from the space of joint ac-
tions, not the individual actions as in independent learning. The fact that agents need
to be able to observe actions of others is one of the drawbacks of this approach. Ad-
ditionally, as the number of agents grows, the complexity of the algorithm grows
exponentially.

Lastly, gradient ascent optimization can be seen as a mix of the two approaches
discussed above. The key concept is to use gradient descent and have the agents’
policies follow the gradient of their individual expected rewards. For examples of
joint-action learning and gradient ascent optimization algorithms used in MARL
see [13].

Learning in multi-agent environment has been studied extensively [31], but only
recently has the use of DRL in that setting been gaining attention. Perhaps the first
example of using DRL in the context of multi-agent setting was [79], which studied
cooperation and competition by manipulating the rewards received by agents. Since
then, the field of DRL has really taken off, incorporating more and more techniques,
including ideas from evolution. We discuss such studies in more detail in Chapter
4.

The experiments presented in the following chapter adopt an independent learn-
ing approach.
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Figure 2.7: The general Evolutionary Algorithm flow. Adapted from [20].

2.4 Evolutionary computation

Reinforcement learning methods presented earlier in the chapter focus on estimating
value functions in order to solve reinforcement learning problems. However, there
are other approaches to solving those same problems that do not rely on the idea
of the value function at all. Evolutionary computation is an example of one such
approach. The following treatment is based on [20].

Evolutionary computation is a biologically inspired class of algorithms. Its main
building block is an evolutionary algorithm. The way an evolutionary algorithm
works is similar to the way the actual biological evolution takes place. Namely, we
have a population in a specific environment with limited resources, which causes a
pressure for natural (or in a computational setting - artificial) selection. This leads to
the survival of the fittest. Consequently, the overall fitness of the whole population
increases.

More concretely, the main components of evolutionary algorithms are [20]:

• representation (definition of individuals)

• evaluation function (or fitness function)

• population

• parent selection mechanism

• variation operators, recombination and mutation

• survivor selection mechanism (replacement)

A typical evolutionary algorithm has all of the above ingredients specified, usu-
ally along with some initialization and termination conditions (see Figure 2.7).
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Initialization is usually performed at random, whereas the termination conditions
usually involve [20]: specifying the maximall CPU time, fitness improvement or
population diversity dropping under some specified threshold.

To explain the flow in Figure 2.7 in more detail, imagine we are given a quality
function that we want to maximize. During initialization we can randomly generate
a set of candidate solutions. Each candidate has its own fitness, as measured by the
fitness function. The higher value means higher fitness. Those values can help us
choose parents. By applying recombination and/or mutation to them we create the
offspring. The distinction between recombination and mutation is that in recombi-
nation we choose two or more parents to produced one or more children, whereas
mutation typically is applied to one parent and results in one child. Children enter
the population and have their fitness assessed. At this point the cycle repeats until a
desired output is found. It is worth noting that many components of the described
process are stochastic in their nature.

Recombination and mutation can be seen as the driving forces behind increasing
the diversity of the solution, while the selection process concentrates on ensuring
the quality of it.

Popular evolutionary algorithm variants along with data structures that they
work on include [20]:

• Genetic Algorithms (strings over a finite alphabet)

• Evolution Strategies (real-valued vectors)

• Evolutionary Programming (finite state machines)

• Genetic Programming (trees)

According to Eiben and Smith [20], the emergence of the differences between
these algorithm classes are mainly historical in nature, and the choice of the ap-
proach depends on the suitability of the data representation of our problem.

Sutton and Barto [78] give many contrasting points between evolutionary com-
putation and reinforcement learning algorithms. First of all, evolutionary methods
do not really produce agents that learn while interacting with the environment, in
a typical machine learning sense. Secondly, evolutionary computation methods ig-
nore the variety of the useful information given by the reinforcement learning prob-
lem, such as the clear relationship between the states and actions. Thirdly, pure
evolutionary computation can be effective when the space of policies is small, we
have a lot of time for search, or the agent cannot sense the complete state of its envi-
ronment. As a result, Sutton and Barto “[...] do not consider evolutionary methods
by themselves to be especially well suited to reinforcement learning problems [...].”
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The authors do, however, note that evolutionary computation can be a useful com-
ponent of a bigger reinforcement learning system.
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Chapter 3

Obvious Reward Choice Leads to
Unexpected Behaviour: Personality
Learning in a Society of Agents

3.1 Summary

The original goal of this paper was to explore the possibility of modeling differ-
ent personalities in artificial agents. However, it became apparent that the results
of the experiments gave evidence of the fact that hand-designed reward signals are
not always predictive of the intended behaviour of the agent, and that the problem
of overfitting quickly becomes pronounced when we move from independent rein-
forcement learning to a setting with more than one agent. At the time of working on
this part of the thesis, other researchers reported similar problems with undesired
behaviours of their RL algorithms and the issue of overfitting (most notably [6],
which can be seen at https://openai.com/blog/faulty-reward-functions/ and [40]).

Modeling personality is a challenging problem with applications spanning com-
puter games, virtual assistants, online shopping and education. Many techniques
have been tried, ranging from neural networks to computational cognitive architec-
tures. However, most approaches rely on examples with hand-crafted features and
scenarios.

Here, we approach learning a personality by training agents using a Deep Q-
Network (DQN) model on reward signals inspired by psychoanalysis. The agents
are trained against hand-coded AI in the game of Pong. As a result, we obtain 4
agents, each with its own “personality.” Then, we define happiness of an agent as
a relation between the actual reward obtained by it and the potential minimum and
maximum values of the reward. The happiness measure can be seen as a measure
of alignment with the agent’s objective function, and we study it when agents play
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Figure 3.1: Components of personality according to Freud.

both against hand-coded AI, and against each other, in a small society of agents. We
find that the agents that achieve higher happiness during testing against hand-coded
AI, have lower happiness when competing against each other. This suggests that
higher happiness in testing can be seen a sign and measure of overfitting in learning
to interact with hand-coded AI, and leads to worse performance against agents with
different personalities.

3.2 Introduction

Personality is defined in [73] as the “unique, relatively enduring internal and exter-
nal aspects of a person’s character that influence behavior in different situations.”
Theories of personality strive to explain and describe different types of personalities
among people.

Freud [23, 22] was the first to develop a modern theory of personality based
mostly on clinical observations. In [73], Freudian structure of personality is de-
scribed as composing of three elements: id, ego, and superego (presented in Figure
3.1). The first element - id - is concentrated on following basic instincts. It is in-
terested in instant gratification, knows no morality and is selfish. On the opposite
side, superego constitutes the moral aspect of personality. It wants to act according
to parental and societal values and standards. Finally, ego is the rational element
of the Freudian model. Its role is to resolve the conflicts between the demands
of id and the moralizing superego by using defense mechanisms such as denial or
repression.

Many alternative approaches describing personality have been proposed since
(for a detailed discussion see [73]). Moreover, computational models of personality
have also been implemented (see section 3.3). Most of them concentrate on in-
trapersonal aspects of personality and work with hand-crafted features, in relatively
simple settings.
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In the last few years, the advances in Deep Learning (DL) [41, 72] and the
development of Deep Q-Networks (DQN) [46] have made it possible to work with
increasingly more complex environments, e.g. Atari 2600 games [11], using only
pixels as input. Hence, the need for specifying the features for the model to use has
lessened.

In this chapter, we explore the applicability of DQN to computational psychol-
ogy on the intrapersonal level. We concentrate on id and superego components of
personality. The key idea is to employ DQN to learn a Freudian-inspired person-
ality model from raw input in the game of Pong and use the resulting agents with
different “personalities” to study their performance both in training and in a society
of bots. We want to underline, that we refer to agents trained on different reward
signals as having different “personalities” and our goal is not to emulate humans’
behaviour, but to study such artificial agents in the context of a reinfrocement learn-
ing framework.

Firstly, to achieve agents with different personalities, we formulate and train a
DQN-based model using Freudian-inspired reward functions (section 3.4). We let
one DQN learn from a reward signal strengthening selfish behavior - in Pong this
can be reflected by scoring a point against an opponent - which is a typical charac-
teristic of id [73]. Another DQN learns superego - based on rewards corresponding
to morality, cooperation. In the game, this can be represented by trying to win, but
without getting ahead of our opponent by more than one point. Secondly, we define
a “happiness” measure of a resulting id/superego agent based on its performance
in relation to its objective function (section 3.4). Finally, when the trained id and
superego agents play against each other, we find that the agents that are less happy
after the training session - or less aligned with their intended reward objective - are
more happy when they compete against each other (section 3.5). This suggests that
less overfitting during training, leads to a more successful, resilient behavior of an
agent when encountering other agents in the society.

3.3 Related work

To our knowledge, the first attempt to computationally describe the psychoanalytic
theory of mind is [55] (cf. [54]). The model involves ego, superego and id which
correspond to reality, morality and pleasure respectively. Defensive mechanism is
assumed to play an important role and inductive probability is used for modeling
it. Id, superego and ego are each assigned an energy level which sum to one. Ad-
ditionally, separate parameters for repression and anxiety are set. An agent updates
its parameters based on the interactions with the environment. The agent reacts to
a trigger, which leads to a conflict between id and superego. The conflict leads to
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anxiety of ego, and if the critical anxiety levels are reached - defense mechanisms
are invoked. The authors give a numerical example demonstrating how the repres-
sion mechanism works in predefined conditions. We did not find any extensions of
the model to computer simulations.

The above approach relies on basic probability to describe the Freudian theory
of personality. More recently, researchers have used neural networks to learn per-
sonality models based on more modern theories of personality. A computational
model of personality using some of the traits present in arguably the most widely
accepted interindividual theory of personality - the Big Five (cf. [73]) - was demon-
strated in [64]. The authors note that the Big Five (also called the Five Factor Model
- FFM) does not provide a model of psychological dynamics. In other words, it de-
scribes the structure of personality with five factors, not the dynamics of the struc-
ture. The authors describe personality by configurations of resources, goals and
behaviors given different situations. The model is a hierarchical neural network. A
list of situational features feeds into the goal list (avoidance or approach behaviors),
which in turn - together with the layer of available resources - feed into the final
layer describing different behaviors. A hidden layer is present both between the sit-
uational features and the goal list, and between the goal list with resources and the
final behavior layer. Other examples of simpler models and scenarios using neural
networks to learn a personality include [62, 63]. Another probabilistic approach
is given by [39], which uses a Bayesian Belief Network with the FFM to build a
multilayer personality model. The three layers used are emotion categories, mood,
and personality. The model is used in a simulation of personality for an emotional
virtual human in a chat application.

Yet another approach to modeling personality is to use cognitive architectures.
Cognitive architectures stem from cognitive science and play a similar role to in-
telligent agents in AI community. Newell introduced the idea of Unified Theories

of Cognition (UTC) - a single set of mechanisms supposed to characterize all of
cognition [48]. Many such mechanisms have been proposed since, concentrating
mostly on the rational aspects of cognition (cf. [10]). However, there exists a line
of work extending the cognitive architectures to studying personality. The fact that
you can replicate many of the previous experiments used in computational models
of personality, e.g. [64, 63], within a CLARION cognitive architecture was demon-
strated in [77]. This work shows that a cognitive architecture by itself is enough
to simulate a personality without making too many changes and can incorporate
individual invariance of an agent and the variability of behavior. Its inclusiveness
of previous simulations indicates that the CLARION architecture is more general
than other computational models of personality. The CLARION architecture relies
on both Q-learning and neural networks to learn the model. As far as other cogni-
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Figure 3.2: The goal of the original Pong game is for either of the players to bounce
the ball past the opponent’s paddle.

tive architectures are concerned, [36] use one trait of the Five Factor Model in the
ACT-R architecture and demonstrate the behavior of their model (PIACT) in a soc-
cer simulation environment. The BDI architecture has also been used to simulate
personality in [58], or more recently with the FFM in [4].

The biggest difference in our approach to modeling personality is that it only
involves specifying new reward signals for the id or superego components of the
personality model to achieve complex behavior in a challenging environment.

We also acknowledge that there is a big difference between personalities in peo-
ple and the computational models of personality described in the literature men-
tioned above (including ours). The focus in this work is not to emulate a person’s
behavior, but rather to study the behaviour of artificial agents trained on the rewards
signals inspired by Freudian theory of personality.

3.4 Problem description

Motivated by the Freudian theory of personality [23, 22], we formulate two types of
rewards and agents corresponding to the id and superego elements of personality.

Definition 1. ID reward (rID) is a predefined, scalar reward signal sent to the agent

at each time step, encouraging selfish behavior.

Definition 2. SE reward (rSE) is a predefined, scalar reward signal sent to the agent

at each time step, encouraging social behavior.

Definition 3. Cumulative ID reward (RID) is a total reward achieved by an agent

in a Markov Chain of length n, ending with a terminus event e:

RID = rID1 + ...+ rIDn (3.1)
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Definition 4. Cumulative SE reward (RSE) is a total reward achieved by an agent

in a Markov Chain of length n, ending with a terminus event e:

RSE = rSE1 + ...+ rSEn (3.2)

Definition 5. ID is an agent with an objective of maximizing RID.

Definition 6. SUPEREGO (SE) is an agent with an objective of maximizing RSE .

The last thing we need defined is happiness. Happiness of people can be mea-
sured through surveys, e.g. [44], and later captured as a scalar value on a scale.
More recently, it has been described mathematically in computational neuroscience
as a relation between certain rewards, expected values of given gambles, and the dif-
ference between expected and actual rewards in individual [69], and more broadly
in social context [68]. Our definition of happiness is for artificial agents and takes
into account maximum and minimum values they can obtain in an environment in
relation to their actual reward, and is independent of the happiness of other agents
(but of course is influenced by the performance of the opponent encountered).

Definition 7. Happiness of Agent X (HX) is defined as the quotient:

HX = (RX −R∗X)/(R∗∗X −R∗X) (3.3)

where the cumulative reward obtained by agent X in a Markov Chain, ending with a

terminus event e is denoted as RX , and its potential maximum and minimum values

as R∗∗X and R∗X , respectively.

Using the above definitions, we train ID and SE agents in the game of Pong.
We study their happiness both when training against hand-coded AI, and when they
play against each other in a society of bots. Again, we want to acknowledge that the
measure of happiness presented in this section serves as a measure of performance
of an artificial agent in its environment, and not as a proposed method to study
happiness in humans.

3.5 Experiment set-up and results

In order to demonstrate ID and SE agents in practice, we modified a simple Pong
game (example of screen setting seen by each agent is presented in Figure 3.2). The
game has 2 players, each controlling one of the paddles on either side of the screen.
The goal of the game is to bounce the ball in such a way, so that it goes past the
opponent’s paddle - for which the player is awarded 1 point. The game ends with
one of the players scoring 11 points.
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Figure 3.3: Possible RID and RSE values combinations at the end of the game and
the actual average values obtained by the agents during 1000 test games against
hand-coded AI.

Figure 3.4: The evolution of training of the IDR agent plotted against the possible
outcomes of each game in terms of the cumulativeRID andRSE rewards, shows the
successful convergence of the scores closer and closer to the agent’s optimal goal.
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In terms of the terminology from section 3.4, scoring 11 points is the terminus
event (e), after which a new match begins. A subjective reward (rID) used to train
ID relates to the id component of the Freudian theory of personality that is selfish.
Here, we set rID to +1, if the ball goes past the opponent (ID scores a point), -1 if
it goes past ID (ID loses a point), and 0 otherwise. As a result, the minimum value
of RID (i.e. R∗ID) in one match is -11 (losing every single point), and the maximum
is +11 (R∗∗ID). On the other hand, rSE captures the social aspect of the environment,
in line with the superego component of personality. Here, the rules for getting the
reward are more involved. In short, the goal of SE is still winning, ideally 11:10,
and taking turns in scoring the points with the opponent.1 Hence, R∗SE is -6, and
R∗∗SE is 10.5. Fig. 3.3 shows possible values of RID and RSE that an agent can
obtain at the end of each match (for clarity, the values of RSE are rounded). Note
the natural trade-off line between the optimal ID (pair RSE = 3, RID = 11, the
green diamond at the top) and SE values (pair RSE = 10.5, RID = 1, the rightmost
blue diamond).

3.5.1 Training phase

To train ID and SE agents, we implement DQN [46] in TensorFlow [1] (used
also for the experiments in the following chapter) with rID and rSE as the reward
signals. Both ID and SE agents are first trained separately against a hand-coded
AI (which simply tries to follow the ball so that it is in the middle of the paddle
at each point of the game), and strive to maximize RID and RSE respectively. We
train ID to control the paddle on the left and right on 10 million frames. We do
the same for the SE agent. As a result we obtain 4 models: ID trained to control
the paddle on the left (IDL), right (IDR), and the SE agents respectively (SEL

and SER). Note that IDL did not perform well when used to control the paddle
on the opposite end of the screen (the same was observed for other agents), hence
the 2 agents per side. Figure 3.5 shows a learning curve for the IDL and SER

agents during training. For clarity, the lines on the graph show the moving averages
of RID and RSE over the last 10 matches. The learning curves of IDR and SEL

look similarly and are therefore omitted. Note that performance of SER starts to
deteriorate slightly around 4 million frames. We observe a similar behavior when
training SEL. Hence, in the following experiments we froze the weights calculated
at 4.2M frames for SEL, 4.15M for SER, and 10M for both ID agents. Different
way to visualize the training of the agent is to plot the evolution of its score against
all the possible reward values as training progresses. As an example, we show that
for IDR agent in Figure 3.4. One can note the positive progress of training, as the

1To see the full code and the videos showing the performance of agents, go to https://git.io/vbT1v.
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Figure 3.5: Training IDL and SER agents against hand-coded AI for 10 million
frames.

Figure 3.6: Lower happiness score during testing correlates with smaller drop in
happiness in a society.

subsequent outcomes of each match are closer and closer to the maximum value for
the agent (the top of the graph).

3.5.2 Testing phase

In the test phase, we set the epsilon value to 0, and run each model for 1000 matches
against the hand-coded AI (see Table 3.1). One can note, that ID agents learned
to win every single time (% won column in Table 3.1), with IDR agent beating the
hand-coded opponent by a larger number of points than IDL, as can be seen by
its higher average RID value. SEL agent did not learn to win consistently, but it
achieves the highest score among all the agents on its core objective - maximizing
the RSE value. The numbers indicate that rSE is a harder signal to learn, as both
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Table 3.1: Performance of agents during 1000 test games against hand-coded AI.

Average Average
Agent score % won RID RSE

IDL 11.00 100 9.99 2.48
IDR 11.00 100 10.76 3.03
SEL 8.84 16 -1.69 5.09
SER 10.78 91 4.08 4.41

Table 3.2: Summary statistics of 100 matches between agents.

Average score % won
Match L R L R

IDL vs. IDR 10.80 5.29 91 9
SEL vs. SER 3.50 10.93 3 97
IDL vs. SER 9.44 8.96 51 49
SEL vs. IDR 8.92 9.05 40 60

SE agents did not get as close to their potential maximum (RSE = 10.5, RID = 1)
as both ID agents. The visual confirmation of this is presented in Fig. 3.3, where
the average values ofRSE andRID obtained by the agents during testing are plotted
against all the possible scenarios. Indeed, the averages of both ID agents are closer
to their respective maximum (the green diamond at the top), than those for the SE
agents (the rightmost blue diamond). We find that rID is easier to learn as the same
actions lead to the same rewards. The SE agent has a more difficult function to
learn, as the same actions result in different reward depending on the score. ID
rewards are independent of the score.

Subsequently, the 4 trained agents played 100 matches against each other (see
Table 3.2). The IDL agent - which performed worse than IDR during testing - won
91% of the games against its opponent, and also beat SER by a small margin. SER

also achieved lower RSE than SEL in testing, yet it greatly outperformed SEL in
a series of matches. Finally, happiness statistics (see Figure 3.6) further indicate,
that agents achieving lower happiness on their respective objective during testing,
show higher happiness when interacting with other agents during the matches. This
suggests that achieving high performance on the given reward objective against the
hand-coded Pong AI is not enough to generate a resilient strategy. Agents may need
more variability during training to better respond to the changing environment later
on.
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3.6 Conclusions

In this chapter we describe the computational model of personality based on Freudian
psychoanalysis and DQN, and define “happiness” of an agent. Through the exper-
iments, we show that the agents that are less aligned with their intended objective
after the training period, exhibit more alignment when interacting with other agents.
Here, we acknowledge the weaknesses of this work and mention possible further
improvements. Firstly, due to the nature of the DQN algorithm, it is impossible
to compare our work with other computational models of personality as was done
in [77]. Secondly, this study relies on the psychoanalytic theory of personality.
However, it appears that extending this work to the FFM could further improve the
ability of the model to capture human personality. Lastly, in order to calculate the
happiness, one needs to know the minimum and maximum values of RSE and RID,
which may be impossible in more complex environments. We also note, that we
see the potential for extending this work to multi-agent settings with individual per-
sonalities in computer games (e.g., [60, 5]) or even for using this approach to study
life changing events being either a result of one big “reward” (e.g., from Holmes
and Rahe stress scale [33]) or a summation of many events with smaller “rewards.”
Furthermore, experiments presented in this chapter suggest that the algorithms with
hand-coded reward signals do not always learn the desired behaviour, and that there
is no structured approach for telling how the agent is going to perform in new situ-
ations.
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Chapter 4

Learning to Win, Lose, and
Cooperate through Reward Signal
Evolution

4.1 Summary

The problem of designing an optimal reward signal for a Deep Reinforcement
Learning (DRL) algorithm has been gaining some popularity as we are facing a
point when some DRL systems may enter our daily lives at a big scale in the next
few years, as in the case of self-driving cars [38]. Despite this practical advances,
we still do not have many theoretical guarantees predicting the performance of such
systems, and we see more and more examples in the literature of DRL systems that
learned something different than what the person who built it had initially intended
[6]. In this chapter we concentrate on the problem of exploring the space of possible
reward signals in a DRL setting. We propose an evolutionary algorithm for optimiz-
ing the reward signal at each timestep of agents’ interaction with the environment.
We show that it is possible to use goal functions as fitness functions evaluating the
quality of a given solution. Through experiments, we demonstrate that the algorithm
can work in the domain of the game of Pong. Moreover, the algorithm leads to a
simultaneous emergence of a population of agents learning complex behaviours of
winning, losing, and cooperating. Some of the solutions found by the algorithm are
surprising, in the sense that they would probably have not been chosen by a person
trying to hand-code a given behaviour through a specific reward signal. We hope
that the algorithm presented in the chapter will spark more research in this area and
ultimately lead to the development of safer, more predictable systems.
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4.2 Introduction

The reward signal plays a defining role in reinforcement learning. After all, the most
important goal of the agent is to maximize a cumulative reward over the long run,
based on the immediate reward it receives at each timestep from the environment
(see Chapter 2). Consequently, the reward is the main source of information for
the algorithm allowing it to decide whether a given interaction within its setting
was positive or not. In a way, the reward plays a similar role for an agent, as the
biological sensations of pain, pleasure, etc. do for humans [78].

What is more, the reward is also the main driver behind changing the agents’
policy π - actions followed by low or negative rewards may be replaced by other
actions later on. This defines the immediate role of the reward signal. Over the long
run, the agent decides what is good through its value function. The value function
indicates what cumulative reward an agent can expect by starting from a given state.
As a result, a value function can allow us to sacrifice the immediate reward and
steer us towards future states that yield a higher cumulative reward overall. This
forms an interplay of sorts, between these two concepts. The algorithm starts in
an unknown environment, sampling the reward signal in a way by performing the
actions, uses that information to form a value function, only to use it to increase
the total reward received. Yet, the rewards guide the process of learning over the
long run and they are harder to estimate, compared to the rewards, which are just
given by the environment. As a result, most of the focus in RL research has been
on efficiently determining the value function. In fact, [78] note that “[t]he central
role of value estimation is arguably the most important thing we have learned about
reinforcement learning over the last few decades.”

However, in this chapter of the thesis we want to focus precisely on the reward,
not the value function. The main reason for that comes from the observation in
many practical applications that the choice of the reward signal strongly influences
the results, and there are more and more examples in the literature highlighting un-
desired behaviour of the RL algorithms with misspecified rewards - even when the
intentions of the designer of the given system seemed intuitive. We give examples
of such studies below, and also in the following section.

Typically, each RL algorithm is specified with some goal function in mind. Of-
tentimes, in simple environments, it is straightforward to translate the desired in-
tention (our goal) into the reward signal. Yet, one might argue that as we move
towards more difficult environments, especially those that modern deep reinforce-
ment learning tries to study, this process can quickly become unpredictable and lead
to surprising results [47]. This situation is often exacerbated by the the problem of
sparse rewards. To make things worse, RL algorithms have been shown to be able to
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“hack” their own goal functions to deliver the reward in unintended and unexpected
ways [6].

Hence, it seems that the reward signal is an important part of any RL system,
and it is worth investigating it in greater detail. One might say, that typically a
reward signal is hand-designed to reflect the goal its creator had in mind. In practice,
this usually comes down to trying many variants of the settings, and observing the
process of algorithm’s improvement on the goal along the way. To conclude, [78]
state that “[s]ome more sophisticated ways to find good reward signals have been
proposed, but the subject has interesting and relatively unexplored dimensions.”

When deciding on the choice of the reward signal, do we assume one unique
reward signal to achieve a given goal? Can the optimal goal choice depend on a
specific moment at which we stop the training phase for a given reward signal? In
this chapter we approach designing the reward through an evolutionary scheme in
a highly dimensional environment of the game of Pong to try and find answers to
these questions.

4.3 Related work

We present the literature connected to our work by looking through the following
lenses: approaches to learning a reward signal and evolutionary methods, with the
focus on deep reinforcement learning.

4.3.1 Reward learning

Over the years, many approaches to learning a reward have been proposed. Inverse

RL [50] has been introduced to investigate the setting in which we do not know what
the reward should be, but we can observe an expert performing the task, and can try
inferring the reward signal from the demonstrations. As a result we can receive an
approximation of the reward, and can try and improve the performance of the agent
on the task based on it. Generally, these methods of learning the reward can also be
known as “imitation learning,” “learning from demonstration,” or “apprenticeship
learning.”

Inverse reward design (IRD) [30] is based on the observation that the specified
reward function can be treated as approximation of what the designer actually had
in mind. As a result, the reward should be interpreted in the specific context in
which it was created. IRD uses approximate methods for solving the IRD problem,
and the experiments show that it can help lessen the problems of both misspecified
rewards and reward hacking.

Another approach based on learning a reward function from human preferences
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is [15]. Learning is achieved by comparing pairs of trajectory segments, and has
been shown to work in the complex DRL setting of Atari games and simulated
robot locomotion.

Yet another dimension of looking at devising the reward signal, is that of decid-
ing whether the agent should learn some specific task in the environment in which it
happened to find itself, or should it try to learn to optimize some non-task-specific
reward. This approach is called intrinsic motivation, and can be seen as doing some-
thing “for its own sake” [78]. A prominent example is [71] where the agent’s reward
is a function of how quickly its environment model is improving as far as predicting
state transitions is concerned. A recent example of training a single agent using a
non-task-specific reward scheme in a DRL setting is presented in [59].

Another approach of designing a reward is by using the experience gained by
the agent during its lifetime. The approach is approximating the optimal reward
online by gradient ascent [76] and generalizes the standard policy gradient method.
The approach has been extended to learn non-linear reward-bonus function param-
eters in [29], to learn intrinsic motivation [82], and [81] approach learning return
function’s parameters through a gradient-based meta-learning algorithm.

Lastly, the designer can also carefully engineer a reward function such that it
gives the agent intermediate reward for progressing towards the desired goal. This
approach is known as reward shaping [49]. Potential-based reward shaping adds
a reward for moving from state s to s′, based on the difference in potential func-
tions of the given states [49]. The approach has been extended to plan-based reward
shaping [28], hierarchical reinforcement learning [24], and multi-agent RL [18, 19].
Recently, the approach has been further extended to use natural language instruc-
tions as the reward shaping machanism [26]. Reward shaping can still be a difficult
and time-consuming endeavour [26].

Reward evolution

Perhaps the most closely related works to that presented in this chapter, are those
concentrating on the evolution of the reward. The observation leading to this ap-
proach can be the fact, that the reward can be seen as one of the variables in the
general RL setting. As a result, it can be optimized, and evolutionary algorithms
are often a good choice for any optimization task. The proposed solution can then
be evaluated against the designer’s goal, and the worst performing solutions elimi-
nated, leading to an improved result.

To the best of our knowledge, the work presented in [74] is the closest in spirit to
ours. The authors approach designing a reward through an evolutionary algorithm.
The paper formulates an optimal reward function given a fitness function and some
distribution of environments. Through the experiments, the rewards are discovered

41



through exhaustive search rather than prespecified. The authors find that the reward
found through this process can differ from the one intended by the fitness function,
but can still be advantageous.

Our work differs in the sense that we present the evolution of the reward in
a complex domain of a Pong game, in an environment with an opponent present.
Whereas [74] concentrate on experiments in a setting with predefined features to
define the combinatorial space of reward functions, we consider the mutations of
the reward at each timestep. We also pay more attention to the subject of overfitting
and possible role of evolutionary algorithms in countering it. The work of [74]
presents an emergence of reward functions, our approach additionally shows an
emergence of complex behaviours of an agent.

The work of [74] is discussed further in [75], however the main focus of that
work is the problem of intrinsic versus extrinsic motivation. More recently, [27]
extend the framework presented in [74] to the space of reward functions spanned by
a given set of feature states and multi-objective evaluation function.

In [51, 53, 52], the authors used Genetic Programming in order to evolve a
population of reward functions. In order to search for reward functions, the search
is preformed over the space of programmes generating the rewards. The approach is
proposed as a method to “alleviate the difficulty of scaling reward function search”
and replace the exhaustive search used in [74].

The authors of [3] concentrate on using evolutionary computation to evolve a
population of agents behaviour, allowing them to inherit the rewards as a secondary
optimization process. The rewards are mutated, hence the fitness can increase over
time. There are two neural networks involved. First evaluation network is fixed and
uses inherited weights to produce a scalar reward. Second - action network - is also
inherited, but trainable after initialization.

4.3.2 Evolutionary methods in deep reinforcement learning

Lastly, we broadly describe the context of using evolutionary methods specifically
in a deep reinforcement learning setting.

Perhaps the first study to present the applicability of evolutionary methods in
the context of complex environments was [70]. It showed that using evolutionary
strategies and enough computational power was enough to learn to perform well
in the complex domain of Atari games. The research mixing the worlds of deep
reinforcement learning and evolution has quickly followed. Ideas from evolution-
ary computation have been mostly applied by creating populations of agents which
undergo mutations and increase the diversity of strategies created for the agents.
Then, when agents interact, the process of elimination guarantees high quality of
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the resulting solution. Such an approach was part of an algorithm mastering a dif-
ficult domain of Starcraft II [80], and the evolutionary aspects of that system have
been investigated in [7]. Another study drawing on ideas from evolution in the DRL
setting is [34] with an objective of “the emergence of complex cooperative agents.”
The goal is achieved by applying a variant of population-based training [35] to DRL
agents.

Recently, the reward search has been automated by adding an additional, evo-
lutionary layer over standard reinforcement learning layer, to find the reward that
maximizes the task objective (through proxy rewards [14] - parameterized versions
of the standard environment rewards) in a continuous control task [21].

To the best of our knowledge, ours is the first study to concentrate specifically
on the problem of learning a reward signal in a complex, multi-agent setting through
an evolutionary algorithm without any prespecified features used as combinations
to mutate the reward function. We create a population of agents by training them
separately on different mutations of the reward signal. The reward signal is not
prespecified, but its evolution allows us to achieve a set of complex and diverse
behaviours.

4.4 Reward signal evolution

In this section we concentrate on the details of our approach. If we think about
the interplay between the number of reward signals and goal functions, we can
distinguish the following three main situations.

1. 1 to 1

2. n to 1

3. n to N

Usually, in RL we have a situation in which there is one predefined reward
signal, designed with one assumed goal in mind - we call it the 1 to 1 case. One can
also have a situation, when many reward signals (n) can be explored to find the one
best optimizing our goal (n to 1). The last combination is the one in which we have
n reward signal candidates, and use them to optimize for many different goals N (n
to N ). The Algorithm 2 presented in this section can be used to cover these cases,
and can be seen as a general framework of sorts.

Concretely, the proposed approach (see Algorithm 2) requires us to choose our
learning algorithm, 1 or many goal functions we are interested in (can be seen as
fitness functions), and 1 or many unique random reward sequences (here, the goal is
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Algorithm 2 Reward signal evolution algorithm
1: initialize learning algorithm A
2: initialize i goal functions Gi(r)
3: initialize j unique random reward sequences rj
4: store r = {i‖rj}i×j
5: burn-in: train A on rj for M timesteps
6: repeat
7: train A(rj) until M timesteps
8: test A(rj) for m timesteps
9: calculate Gi(rj) on test data

10: for i do
11: remove argminḠi(rj) from r
12: add p unique random mutations of rj to r
13: end for
14: M := M +M
15: until convergence

a function representing our intended behaviour of the agent, whereas the reward is
the instantaneous scalar quantity received by the agent from the environment at each
timestep). The algorithm of choice is then trained on the initial reward signals, and
its performance on the specified goal functions is checked periodically. At that point
two things happen - firstly, we eliminate the rewards leading to the worst result for
each of the goals, and secondly, we add the required number of new reward signal
mutations to the population. In the example provided in Section 4.5 the convergence
means that we have eliminated all the possible reward signal mutations, and are left
with one winner per each goal. In general, in many examples one could create
almost infinitely many reward signals. That could be seen as a mutation phase.
Once you do not mutate any new reward signals, the algorithm enters an elimination

phase, until we are left with top k solutions that we require.

4.4.1 Choosing rj

Lastly, we distinguish the following ways to choose rj in Algorithm 2:

• Fixed - the typical way for setting a reward signal in RL

• Semi-evolutionary - the algorithm is free to mutate the reward for the set of
rules specified by the expert (e.g. position of the ball in a pong game, or for
interacting with specific elements of the environment)

• Evolutionary - the algorithm is free to mutate the reward at any timestep t

Finally, we note that the evolutionary approach for choosing rj can be seen as
a reward sampling scheme, sampling from the distribution of all possible reward
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Figure 4.1: The Pong game screen showing the regions in which the reward signal
can be mutated.

signals.

4.5 Experiment

4.5.1 Set-up

To illustrate how Algorithm 2 could work in practice, we chose the Pong game
environment, as shown in Figure 4.1.

In all experiments we concentrate on controlling the paddle on the right side
of the screen. We use DQN [46] as the base algorithm A in Algorithm 2. The
architecture of the DQN used is presented in Figure 2.6. Typically, RL algorithms
have one reward function to optimize for. Here, we give the algorithm 3 reward
functions (i = 3). Concretely, the goals are:

• Winning, maximizing the cumulative number of points scored by the agent
(G1(r))

• Losing, maximizing the cumulative number of points lost by the agent (G2(r))

• Cooperation, maximizing the time spent playing until the point is lost by
either of the players (G3(r))

We use the semi-evolutionary way to choose rj by introducing mutation regions

to lower the computational cost of the algorithm and have a better intuition and
control of the obtained results. To generate the reward sequences, rj , the algorithm
can choose from the values of either 0 or 1, in any of the reward regions r1, r2,
r3 depicted in Figure 4.1. That means that there is one unique reward signal when
the ball passes either of the paddles, and another one when the ball is between the
paddles. The three regions, combined with a 0 or 1 reward signal in each of them,
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yield a total of 8 unique reward signals that the algorithm can discover through mu-
tations. We set the initial value of j to 3. Furthermore, we initialize the parameters
M and m to have the values of 1 million and 100,000 respectively. That means that
we perform the elimination and mutation step of the algorithm after each 1 million
timesteps, based on the test results from further 100,000 timesteps. Lastly, after
each elimination, we add two new unique reward signals to the population (p = 2).

4.5.2 Results

First, we randomly generated 3 reward signals, and obtained the following values
of rj: r1 = 000, r2 = 001, and r3 = 011. As an example, r2 = 001 corresponds to
a reward signal of 1 when the ball passes the paddle on the right, and 0 otherwise
(see Figure 4.1). The DQN algorithm was trained on each of the reward signals rj
for 1 million timesteps, as a burn-in phase. Now, the algorithm entered its main
loop. After the next 1 million timesteps of training, each A(rj) was tested for
100,000 timesteps. The values of Gi(rj) were calculated, and the reward signals
corresponding to the lowest value for each goal were eliminated from r. Lastly, two
unique reward signal mutations were added: r4 = 101 and r5 = 110. Hence, the
state of r after the first iteration is given by:

r =


1‖��000 001 011 101 110

2‖000 001 ��011 101 110

3‖��000 001 011 101 110

 (4.1)

The algorithm continued to run for six more iterations. We present the steps of
that process in a graphical form in Figures 4.2, 4.3, 4.4. The figures capture the
creation of each new mutation of the reward signal, its score for a given goal, and
the reward signals eliminated along the way. Ties (in case when different reward
signals led to the same outcome for a given goal) were decided at random.

Additionally, we present the details of each of the iterations in a matrix form, to
show the outcome of each loop in more detail:

46



2 4 6 8

0

200

400

timesteps (million)

w
on

000
001
010
100
011
101
110
111

Figure 4.2: Survival and fitness of a given signal when the goal is winning.
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Figure 4.3: Survival and fitness of a given signal when the goal is losing.
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Figure 4.4: Survival and fitness of a given signal when the goal is cooperation.
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r =


1‖��000 001 011 101 110

2‖000 001 ��011 101 110

3‖��000 001 011 101 110


3M−−→


1‖��001 011 101 110 010 100

2‖000 001 101 ��110 010 100

3‖��001 011 101 110 010 100


4M−−→


1‖011 ��101 110 010 100 111

2‖000 001 101 010 ��100 111

3‖011 ��101 110 010 100 111


5M−−→


1‖011 110 010 100 ��111

2‖000 001 101 ��010 111

3‖011 110 010 100 ��111


6M−−→


1‖��011 110 010 100

2‖000 001 101 ��111

3‖��011 110 010 100


7M−−→


1‖110 ��010 100

2‖000 ��001 101

3‖110 010 ��100


8M−−→


1‖��110 100

2‖000 ��101

3‖110 ��010



(4.2)

Eventually, the surviving reward combinations for each of the goals were:

• Winning: r7 = 100

• Losing: r1 = 000

• Cooperation: r5 = 110

4.5.3 Sensitivity analysis and comparisons

In this section, we concentrate on analysing the sensitivity of the results presented
in the previous section and comparisons with baselines.

Table 4.1 shows the intermediate score on each of the goals for each of the
reward signals every 1 million timesteps. This allows us to evaluate the sensitivity
of the presented solutions, as we can investigate what could have happened, had
the algorithm made different choices along the way. The table also includes the
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scores on the said 1 million checkpoints for three baseline DQN algorithms (’b100’,
’b010’, ’b001’ in Table 4.1) and a random play baseline (rand in Table 4.1). The
random play baseline takes random actions at each timestep. With equal probability
it can move up, down, or stay it the same place. The baseline DQN algorithms have
the same architecture as the DQN used in Algorithm 2, however the reward signals
on which they learn differ. The rewards for the baseline DQNs are based on the
score. This means that ’b100’ receives a reward of 1 only when it scores a point,
’b001’ when it loses a point, and ’b010’ receives a reward of 1 as long as neither
of the players scores. The baseline algorithms ’b100’, ’b010’, ’b001’ are closest -
it would seem - to the semi-evolved algorithms that used ’100’, ’010’, and ’001’
as their respective reward signals. The main difference is in the frequency of the
timeframes for which the algorithm receives the reward.

The results of the random play, as shown in Table 4.1 are rather consistent as far
as all the three proposed goal functions are concerned.

Learning to lose

Losing every single point seems to be the easiest goal to learn, as expected. Semi-
evolved rewards ’000’ and ’111’ did not lead to any significant learning, even over
9 million timesteps of training. The final results on all the goals for the said reward
signals where close to that of ’011’ and ’101’, which proved too confusing for
the DQN to learn based on the same pixel input. The reward signal ’001’ led,
as expected, to a very good result on the goal of losing the maximum number of
points, but its performance was close on that goal to many other reward signals that
just proved too difficult to learn, and similar to the baseline score ’b001’.

Learning to win

Three out of the eight semi-evolved reward signals led to an algorithm that was able
to score more points than random play. Namely, ’010’, ’100’, ’110’. It seems that
as long as the reward is given for keeping the ball between the paddles, and there
is no incentive to lose - the signal is good enough to learn to score some points.
Interestingly, the signal ’110’ led to the second best performing algorithm on the
goal concerning scoring as many points as possible. It was only toped by perhaps
the “obvious” reward signal choice of ’100’. The baseline algorithm ’b100’ proved
better on average than ’100’ across the 8 test checkpoints, however it did suffer from
less consistency, and even got stuck in a local extremum at 3 million timeframes (the
algorithm kept the paddle in the lower part of the screen and only occasionally man-
aged to hit the ball). It seems that the performance of the algorithm trained on the
’100’ signal was more consistently improving on its goal, and achieved the highest
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Table 4.1: Performance of DQN on reward signals with no elimination.

2M 3M 4M
rj won lost co-op won lost co-op won lost co-op

000 0 1366 73.17 0 1375 72.66 0 1372 72.84
001 27 1328 73.78 0 1376 72.47 0 1359 73.54
010 79 624 142.06 79 541 160.97 68 624 144.33
100 312 586 111.05 141 523 150.04 284 553 119.26
011 0 1123 88.90 2 1235 80.72 0 1369 73.01
101 0 1380 72.42 0 1311 76.21 0 1380 72.42
110 137 579 139.36 138 416 180.09 66 504 175.07
111 0 1275 78.41 2 1369 72.90 1 1385 72.11
b100 62 773 119.54 0 1311 76.24 256 895 86.64
b010 152 855 99.18 244 344 169.92 110 644 132.37
b001 0 1378 72.50 0 1378 72.47 0 1392 71.92
rand 62 997 94.24 75 965 96.07 62 1006 93.46

5M 6M 7M
rj won lost co-op won lost co-op won lost co-op

000 3 1120 88.84 0 1373 72.68 0 1372 72.79
001 1 1383 72.14 0 1386 72.10 51 1202 79.72
010 163 277 226.97 54 481 186.40 99 339 227.83
100 341 552 111.79 223 431 152.05 394 434 120.65
011 13 743 132.07 15 1302 75.81 0 1310 76.23
101 0 1359 73.51 0 1370 72.92 0 1369 72.90
110 343 272 161.76 192 405 167.16 206 294 199.16
111 0 1383 72.19 41 1175 82.08 0 1231 81.20
b100 433 304 135.44 550 355 110.37 577 267 118.3
b010 262 412 148.15 64 547 163.49 102 509 163.11
b001 0 1376 72.57 0 1373 72.78 0 1384 72.21
rand 72 990 94.06 49 986 96.54 68 933 99.84

8M 9M Avg.
rj won lost co-op won lost co-op won lost co-op

000 0 1382 72.27 0 1374 72.70 0 1342 74.74
001 0 1375 72.62 0 1385 72.14 10 1349 73.56
010 48 503 180.99 98 338 228.74 86 466 187.29
100 494 499 100.44 505 385 112.05 337 495 122.17
011 2 1381 72.23 0 1382 72.23 4 1231 83.90
101 0 1380 72.40 0 1382 72.33 0 1366 73.14
110 194 200 253.17 161 286 222.98 180 370 187.34
111 0 1370 72.94 0 1381 72.38 6 1321 75.53
b100 528 289 122.09 482 289 129.45 361 560 112.26
b010 140 331 211.9 83 559 155.55 145 525 155.46
b001 0 1392 71.76 0 1382 72.31 0 1382 72.32
rand 58 999 94.49 65 975 96.07 64 981 95.60
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score at 9 million timesteps, with the highest score on G1 of all the algorithms. It
seems it was also learning faster than baseline in the beginning.

Learning to cooperate

As far as cooperation is concerned, two reward signals led to a very similar average
performance for that goal. Concretely, running an algorithm to learn on the reward
signal ’010’ and ’110’ would give comparable performance. We find it interesting,
as we would argue that ’110’ is not an obvious choice to set-up a priori with coop-
eration in mind. Both reward signals led to a better cooperation than the baseline
’b010’. It is worth noting, that not only did the reward signal ’110’ lead to the high-
est average cooperation, but also to the third highest score on the “winning” goal
(including the baseline ’b100’).

Finally, Algorithm 2 led to the following choice of reward signals: ’100’, ’000’,
’110’ for G1, G2 and G3, respectively. The results are sensitive mostly with respect
to G2, as many reward signals led to losing many points quickly. The reward signal
’100’ led to a clearly superior performance onG1 quickly, and only the signals ’010’
and ’110’ led to a high performance on the goal of cooperation.

For clarity, we summarize the main results of the experiment in the list below:

• Algorithm 2 proved to work on highly dimensional input space of pixels

• many rewards can lead to a good performance of the “losing” goal

• fewer reward signals lead to learning to cooperate

• the goal of “winning” proved the most difficult to learn, with the smallest
number of reward signals leading to the desired outcome

• our experiments give further evidence of the fact that there exist multiple
reward signals to learn a given goal

• interestingly, the performance during training of the baseline ’b100’ seemed
much less stable and predictable than for the algorithm trained on the reward
signal ’100’, possibly due to the frequency of timesteps for which each algo-
rithm “experienced” the reward

• lastly, the sensitivity of the results shows that it is not obvious at which point
the training phase should stop, in order to have the agent performing at its
best with respect to the goal.
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4.6 Conclusions

The problem of reward signal design is an interesting open area of research in re-
inforcement learning, especially as we move from simple toy examples, into highly
dimensional input spaces of video games, and beyond. That increase in complexity
requires us to spend more time considering the problems of AI safety, as we are
going to rely on this systems more and more, but still have little understanding of
what they actually learn, and how predictable these systems are.

In this chapter we have investigated the role of the reward signal in a deep rein-
forcement learning setting. We proposed an algorithm based on evolutionary com-
putation to search through the space of possible reward signals in the game of Pong.
We showed that it is possible to use the proposed algorithm in order to learn com-
plex behaviours of winning, cooperation and losing by specifying high level goal
functions, but without providing a concrete reward signal for any of them. The
reward signals were discovered from scratch, and allowed us to investigate their
role in the proposed system. We found that often there is no unique reward signal
to achieve a certain level of performance on a given goal. The number of reward
signals leading to a given goal also varies, depending on the complexity of the goal.

The algorithm we propose is highly adaptable, i.e. the designer can change the
algorithm used, modify the goals, change the statistic used as the fitness function,
control the number of mutations, etc. We hope that the results could lead to a better
understanding of such systems, and eventually help us create safer systems, more
aligned with our intended goals.
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Chapter 5

Conclusions and Future Work

In order to conduct a thorough investigation of the role of the reward signal in deep
reinforcement learning, we began by introducing the necessary concepts from the
field of machine learning, with the focus on reinforcement learning, in which the
reward signal plays a key role. Additionally, we described the ideas from a powerful
supervised learning technique called deep learning, which led to the development
of deep reinforcement learning. Finally, we also included a discussion of the role
of evolutionary computation in the field or reinforcement learning, and its usage as
a component in designing reward signals.

Through our first study, we have shown that the a priori specification of the
reward signal, which seems “obvious” to the designer, can lead to an unexpected
behaviour of agents trained on it when the said agents can interact with each other.
Namely, the agents trained on different rewards in the game of Pong did not translate
their intended behaviour from training with a hand-coded AI opponent to a situation
when the agents were playing against each other. For example, training the agent
to win every single point did not result in an agent winning with another agent that
was trained to win only slightly ahead of the opponent. The results suggested the
problem of overfitting to the environment and the opponent in a highly-dimensional
setting of the game.

In the second study we investigated the behaviour of agents trained on different
reward signals even further, by introducing a flexible evolutionary reward signal
algorithm, with the aim of sampling from the space of all possible reward signals.
The results obtained from the experiments suggest, that it is possible to evolve a
range of reward signals, which when combined with high-level goals, can lead to
the emergence of complex behaviours of the agents, such as winning, losing, and
cooperating. Furthermore, the results can be seen as another piece of evidence
towards the fact, that many reward signal specifications can be used to achieve a
given goal. Additionally, it seems that the more complex the goal is, the smaller
the number of reward signals leading to the desired outcome. Lastly, the results are
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consistent with our previous study - and other studies in the literature (presented
in Chapter 4) - in terms of the fact that it is not always obvious how to choose the
reward signal a priori, in order to achieve the behaviour intended by the designer.

There are many possible directions in which further work based on this results
can go. They can be broadly categorized into the extensions of the algorithm for
reward signal evolution presented in the last chapter, and joining it with other results
from the literature to explore adjacent topics. Firstly, the proposed algorithm allows
for the mutation of the reward at each timestep. This seems computationally quite
expensive, but would be worth investigating further (at least by relaxing the number
of reward regions used), how the algorithm behaves in such a setting, in even more
complex environments with longer episodes. Sampling a reward from a continuous,
rather than discreet set of values needs more research as well. Additionally, it would
be interesting to research the possibility of sending “good” reward signal sequences
to the environment, and trying to learn those that result in consistent, predictable
behaviour. Finally, we propose that measuring the complexity of the goal in relation
to the number of reward signals that lead to learning it in a satisfactory manner is
also a potential research direction.

In the context of the broader literature, we see the potential of joining our ap-
proach with the work in deep reinforcement learning that uses population-based
training to achieve a diverse set of strategies of the resulting agents. Evaluating the
performance of agents has received relatively little attention, but there are studies
emerging that challenge the classical train-test split [9, 56], especially as the poli-
cies learned using independent reinforcement learning have been shown to overfit
to the other agents’ policies during training [40, 47]. It would be interesting to in-
vestigate the role that the reward signal evolution could play in those problems, as
currently most of the focus is on evolving the agents to increase the diversity of the
solution. In other words, it seems to be the case that using population-based training
results in less overfitting and better solutions. Hence, we argue that joining reward
evolution with population-based training could improve such solutions to an even
bigger degree. Lastly, our work can be seen as an example of a quality and diver-
sity optimization [16], and perhaps new measures of diversity of the population of
agents can be of benefit to the broader field as well.

In general, the thesis indicates that there is a need for more work on the theory of
reinforcement learning, especially in the context of AI safety of the systems based
on deep reinforcement learning. As we outsource more and more of our important
daily tasks to these algorithms, it is vital that we can reliably and with high degree
of confidence predict their behaviour. The results presented in this thesis and in
the literature indicate that this goal is possible to achieve. Hopefully, in the not too
distant future we can all benefit from such safe systems.
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